WO2023132288A1 - 情報処理装置、情報処理方法及び情報処理プログラム - Google Patents

情報処理装置、情報処理方法及び情報処理プログラム Download PDF

Info

Publication number
WO2023132288A1
WO2023132288A1 PCT/JP2022/047893 JP2022047893W WO2023132288A1 WO 2023132288 A1 WO2023132288 A1 WO 2023132288A1 JP 2022047893 W JP2022047893 W JP 2022047893W WO 2023132288 A1 WO2023132288 A1 WO 2023132288A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information processing
probes
wave
medium
Prior art date
Application number
PCT/JP2022/047893
Other languages
English (en)
French (fr)
Inventor
峻裕 大石
憲人 三保田
幸生 飯田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023132288A1 publication Critical patent/WO2023132288A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and an information processing program for determining media such as soil.
  • a soil moisture sensor is a device that measures the amount of moisture in media such as soil, and is used in the fields of agriculture and soil environment surveys. For example, in the field of agriculture, soil moisture sensors can be used to optimally irrigate crops and are used to improve the added value of products.
  • the purpose of the present disclosure is to improve the measurement accuracy of the soil moisture sensor device. More specifically, the object of the present disclosure is to increase the measurement accuracy by installing the sensor device in a position where the influence of obstacles (objects) does not occur, and to measure the moisture distribution in the depth direction of the medium. It's about improving accuracy.
  • An information processing device includes: a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; a transmission coefficient calculator that calculates a transmission coefficient from the time waveform of the received transmitted wave; a determination unit that determines whether an object exists within a predetermined range in the medium with respect to the pair of probes based on the transmission coefficient; Equipped with
  • the information processing device A determination result output unit for outputting the determination result of the determination unit to a display device may be further provided.
  • the determination result output unit When it is determined that an object exists within a predetermined range in the medium with respect to the pair of probes, the determination result output unit provides information indicating that the installation positions of the pair of probes in the medium are incorrect. may be output to the display device.
  • the determination result output unit When it is determined that an object exists within a predetermined range in the medium with respect to the pair of probes, the determination result output unit outputs information indicating the predetermined range in which the object is determined to exist to a display device. You may
  • the determination result output unit recommends that the pair of probes be installed outside the predetermined range in the medium. You may output the information which shows that it carries out to a display apparatus.
  • the information indicating the predetermined range may include an image indicating the predetermined range.
  • the user can easily re-install the pair of probes outside the predetermined range.
  • the information processing device may further include an electrical signal transmission control unit that outputs a command for the transmitter to transmit the electrical signal to the transmitter when a predetermined trigger occurs.
  • the predetermined triggers may include the installation of the pair of probes, fixed periodic timing, variable periodic timing and/or weather changes.
  • Invariable periodic timing means, for example, timing such as every day, every week, every month.
  • the variable periodic timing means for example, increasing the period (timing occurs frequently) in bad weather, in seasons when plant roots tend to grow, or the like.
  • a change in weather means conditions in which stones and rocks in the soil are likely to move, such as during bad weather, rain, or after bad weather or rain.
  • the determination unit may determine whether or not an object exists at a predetermined position in the medium with respect to two or more pairs of probes.
  • a first determination unit may be provided for determining that an object exists in the first range when the maximum value is not obtained.
  • the information processing device further comprising a propagation time calculation unit that calculates the propagation time and signal strength of the transmitted wave, and calculates the peak signal strength A and time t 1m_S21 of the desired wave
  • the determination unit is a time width calculation unit that calculates a time width F of the wave when the peak signal strength A of the desired wave becomes a predetermined signal strength less than the peak signal strength A;
  • the time width F is greater than or equal to the first threshold, it is determined that an object exists in a second range from the pair of probes, and when the time width F is less than the first threshold, the pair of probes a second determination unit that determines that an object does not exist in the second range from may have
  • the information processing device further comprising a propagation time calculation unit that calculates the propagation time and signal strength of the transmitted wave, and calculates the peak signal strength A and time t 1m_S21 of the desired wave
  • a third determination unit that determines that there is a may have
  • the unnecessary wave calculation unit calculates a signal strength B when + ⁇ t time has elapsed from the time t 2m_S21 of the peak of the unnecessary wave,
  • the third determination unit determines that there is no object in the third range when AB is greater than or equal to a third threshold, and determines that there is no object in the third range when AB is less than the third threshold. It may be determined that the object exists in the third range.
  • the third determination unit determines that an object exists in the third range, the time difference ⁇ t, the position of the pair of antennas, the dielectric constant of the medium, the speed of light, the distance and propagation delay between the pair of probes a position calculation unit that calculates a set of position information where the object may exist based on the time
  • the moisture distribution of the medium can be measured and presented to the user.
  • Each of the pair of probes has a first end connected to the transmitter or the receiver, and is spaced apart from the first end in an axial direction orthogonal to the separation direction of the pair of antennas. a second end;
  • the antenna may be provided at a position of the probe spaced apart from the first end in the axial direction.
  • the antenna is not provided widely over the axial direction of the probe, but is provided at a pinpoint in the axial direction. Therefore, the antenna has a narrow axial water content measurement area and high spatial resolution. That is, the antenna according to the present embodiment can measure the water content of a pinpoint area in the axial direction rather than the overall water content in the axial direction of the medium.
  • the antenna may be provided at the second end of the probe.
  • the antenna at the second end, which is the insertion tip of the probe, the water content of the medium can be measured over a wider range in the axial direction when the probe is inserted into and removed from the medium.
  • the moisture content conversion unit is configured to operate during an insertion/extraction period in which the pair of probes are inserted into and extracted from the medium from the second end in the axial direction, and the depth of the antenna in the medium continues to change dynamically. , continuously obtaining the moisture content of the medium, and recording the moisture content within the insertion/removal period in the memory in chronological order;
  • the moisture content output unit may display the moisture content within the insertion/removal period recorded in the memory in time series on the display device in time series.
  • the antenna when the antenna is located at different positions in the medium in the depth direction, it is possible to continuously measure the water content at different positions in the depth direction. Thereby, the continuously measured water content at different positions in the depth direction can be presented to the user as the water distribution in the depth direction of the medium.
  • the moisture content output unit creates a graph with two axes, the history of the moisture content recorded in the memory in time series and the elapsed time corresponding to the time series or the depth that changes in the time series, It may be displayed on the display device.
  • the user can intuitively display the amount of water in the medium corresponding to the elapsed time when the probe is inserted or removed or the depth of the antenna approximately proportional to the elapsed time.
  • Insertion amount conversion for converting the distance that dynamically changes according to the insertion amount of the pair of probes measured by a ranging sensor that measures the distance to the surface of the medium into the depth of the antenna in the medium.
  • the moisture content output unit may display, on the display device, a graph having two axes, the history of the moisture content recorded in the memory in chronological order and the depth that changes in chronological order. .
  • the water content output unit may display information indicating the depth of the object existing in the medium, which is estimated based on the change in the water content with respect to the depth, on the display device.
  • the user can take measures such as inserting the probe at a different point so as not to be affected by the object, or installing the probe in a state where it protrudes slightly from the medium M without inserting the entire probe.
  • the water content output unit may display a history of a desired wave propagation delay time corresponding to the water content on the graph instead of the water content history.
  • the moisture content output unit may further display a history of propagation delay times of unwanted waves in the graph.
  • the unwanted wave propagation delay time is displayed in addition to the desired wave propagation delay time, the user can intuitively understand that it is better to change the installation location because the object exists within a predetermined range.
  • the water content output unit may display the graph on the basis of the desired wave propagation delay time, and may indicate that an object exists within a predetermined range in the medium with respect to the pair of probes and may affect the calculation of the desired wave propagation delay time. You may also display a range of potential.
  • the propagation delay time of the unwanted wave When at least part of the propagation delay time of the unwanted wave is included in the range that may affect the calculation of the desired wave propagation delay time, it is possible that an object exists within a predetermined range in the medium with respect to the pair of probes. It means that there is a gender. If at least part of the propagation delay time of the unwanted wave is included in the range that may affect the calculation of the desired wave propagation delay time, the user indicates that it is better to change the installation location because the object exists in the predetermined range. is intuitively understandable.
  • the moisture content conversion unit measures the moisture content frequently during insertion and removal of the pair of probes, and measures the moisture content less frequently than the high frequency when the pair of probes is non-dynamic. can be measured in
  • the information processing device Based on the history of the water content and the propagation delay time recorded in time series in the memory, it is determined whether or not an object exists within a predetermined range in the medium with respect to the pair of probes, and the presence of the object is determined.
  • a fourth determination unit that determines the depth of the object; Information indicating that the installation positions of the pair of probes in the medium are incorrect when the fourth determination unit determines that an object exists within the predetermined range in the medium with respect to the pair of probes to the display device; and may be further provided.
  • the information processing device a ranging sensor that measures the distance to the surface of the medium; an insertion amount conversion unit that converts the distance measured by the range sensor, which dynamically changes according to the insertion amount of the pair of probes, into the depth of the antenna in the medium,
  • the determination result output unit based on the depth of the object determined by the fourth determination unit and the depth of the antenna in the medium converted by the insertion amount conversion unit, Information may be output to the display device to recommend the amount of insertion into the .
  • the determination result output unit recommends the amount of insertion to the user by outputting a message such as "more shallow” or “more deep” based on the determination result. can do.
  • the information processing device outputting to an audio output device audio indicating information indicating that the installation positions of the pair of probes in the medium are not acceptable and/or information indicating that the amount of insertion of the probes into the medium is recommended;
  • a guide part may be further provided.
  • the guide unit may provide audio or visual guidance based on the determination status and determination results. For example, if the insertion speed is too fast for the judgment speed, instruct to insert at a slower speed, if there is an object nearby, instruct to change the installation location, announce the mode change, instruct according to the mode ( For example, an instruction not to move when shifting to normal mode, an instruction to move slowly when shifting to high speed mode, etc. may be mentioned.
  • the moisture distribution of the medium can be measured and presented to the user.
  • An information processing method includes: a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; calculating a transmission coefficient from the time waveform of the received transmitted wave; Based on the transmission coefficient, it is determined whether or not an object exists within a predetermined range in the medium with respect to the pair of probes.
  • An information processing program includes the processor of the information processing device, a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; a transmission coefficient calculator that calculates a transmission coefficient from the time waveform of the received transmitted wave; Based on the transmission coefficient, the pair of probes is operated as a determination unit that determines whether or not an object exists within a predetermined range in the medium.
  • An information processing program includes the processor of the information processing device, a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; a transmission coefficient calculator that calculates a transmission coefficient from the time waveform of the received transmitted wave; a propagation time calculator that calculates the propagation time and signal strength of the transmitted wave, and calculates the peak signal strength A and time t 1m_S21 of the desired wave; a reflection coefficient calculation unit for calculating a reflection coefficient from a time waveform of a reflected wave reflected by the incident wave from the one of the pair of probes received by the receiver; a round-trip time calculation unit that calculates the round-trip time and signal strength of the reflected wave, and calculates the peak signal strength and time t1m_S11 of the reflected wave; a propagation delay time calculator that calculates a propagation delay time t pd
  • FIG. 1 shows a configuration example of a measuring device.
  • 1 shows a configuration example of a measurement unit.
  • 1 shows a functional configuration of an information processing apparatus according to a first embodiment; 4 shows an operational flow of the information processing apparatus;
  • FIG. 4 is a diagram for explaining the occurrence of multipath;
  • FIG. 4 is a diagram for explaining a peak time of a desired wave and a peak time of a reflected wave; It is a figure for demonstrating the process of an unnecessary wave calculation part.
  • FIG. 3 is a diagram for explaining a peak time of a desired wave and a peak time of an unwanted wave;
  • FIG. 11 shows a functional configuration of an information processing apparatus according to a first modified example
  • FIG. 11 shows a functional configuration of an information processing device according to a second modified example
  • FIG. 11 shows a functional configuration of an information processing device according to a third modified example
  • FIG. 11 shows a functional configuration of an information processing device according to a fourth modified example
  • FIG. 11 shows a functional configuration of an information processing device according to a fifth modified example
  • FIG. 12 shows a functional configuration of an information processing device according to a sixth modification
  • FIG. 1 schematically shows a measuring device according to the present embodiment and a comparative example
  • 2 shows a functional configuration of an information processing apparatus according to a second embodiment
  • 4 shows an operational flow of the information processing apparatus
  • a display example by the moisture content output unit is shown.
  • 4 schematically shows a graph of water content and a relationship of displacement of the depth of the antenna with respect to the graph of water content according to the first example
  • FIG. 10 schematically shows a graph of water content and a relationship of displacement of antenna depth with respect to the graph of water content according to a second example
  • FIG. 10 schematically shows a graph of water content and a relationship of displacement of antenna depth with respect to the graph of water content according to a third example
  • FIG. 10 schematically shows a graph of water content and a relationship of displacement of antenna depth with respect to the graph of water content according to a fourth example
  • FIG. 4 shows a moisture sensor according to a comparative example
  • FIG. 11 shows a functional configuration of an information processing device according to an eighth modified example
  • FIG. 4 shows an operational flow of the information processing apparatus
  • 4 schematically shows a water content graph and the relationship of antenna depth displacement to the water content graph
  • a ninth modification is shown.
  • a tenth modification is shown.
  • FIG. 12 shows an operation flow of the eleventh modified example;
  • FIG. A twelfth modification is shown.
  • FIG. 21 shows a functional configuration of an information processing device according to a thirteenth modification
  • FIG. 4 shows an operational flow of the information processing apparatus
  • FIG. 21 shows a functional configuration of an information processing apparatus according to a fourteenth modification
  • FIG. 12 shows a functional configuration of an information processing device according to a fifteenth modification
  • FIG. FIG. 22 shows a functional configuration of an information processing device according to a sixteenth modification
  • FIG. 4 shows an operational flow of the information processing apparatus
  • Fig. 1 shows a configuration example of a measuring device.
  • the measuring device 100 measures the amount of water contained in the medium M and has a sensor device 110 .
  • the medium M for example, soil for growing crops is assumed.
  • the sensor device 110 acquires data necessary for measuring the moisture content as measurement data. Sensor device 110 transmits measurement data to information processing device 400 via signal 409 .
  • the information processing device 400 can communicate with the sensor device 110, and is, for example, a terminal device (eg, smart phone, tablet computer, personal computer, etc.) used by an end user (agricultural worker, agricultural work manager, etc.).
  • the signal 409 from the sensor device 110 to the information processing device 400 is transmitted by wireless communication.
  • the information processing device 400 may be built in the body of the sensor device 110 .
  • the signal 409 from the sensor device 110 to the information processing device 400 may be transmitted by wired communication or by wireless communication.
  • the information processing device 400 measures the water content using the measurement data.
  • the sensor device 110 has a sensor head 200 and a measurement unit 300.
  • the sensor head 200 is a component made up of a pair of probes 201 and 202 . These probes 201 and 202 are connected to the measurement unit 300 via cables and/or traces 308 and 309 on the board. Coaxial cables, for example, are used as the cables and/or wirings 308 and 309 on the substrate. These cables and/or wirings 308 and 309 on the board are connected to probes 201 and 202 by embedding their respective tips inside probes 201 and 202 .
  • the measurement unit 300 causes one of the probes 201 and 202 to transmit an electromagnetic wave EW and the other to receive the electromagnetic wave EW to generate measurement data.
  • the sensor head 200 has probes 201 and 202 .
  • the length of each of probes 201 and 202 is, for example, 75 to 150 millimeters (mm).
  • Each of the probes 201 and 202 has a thickness (diameter or cross-sectional width of the probe) of, for example, 3 to 30 millimeters (mm).
  • These probes 201 and 202 are arranged in a medium such as soil, and each have an antenna 210 capable of transmitting and receiving electromagnetic waves of a predetermined frequency between the probes 201 and 202 .
  • a pair of probes 201 and 202 are elongate rod-like and have first ends 203, 203 and second ends 204, 204, respectively.
  • First ends 203, 203 of probes 201 and 202 connect to transmitter 320 or transmitted wave receiver 350 of measurement unit 300 (FIG. 2).
  • the second ends 204, 204 of the probes 201, 202 are spaced from the first ends 203, 203 in the axial direction Z of the probes 201, 202 and are the insertion tips for the medium M. That is, the axial direction Z of the probes 201 and 202 is the insertion direction into the medium M.
  • the axial direction Z of the probes 201 and 202 is perpendicular to the separation direction X of the pair of antennas 210 and 210 .
  • Antennas 210, 210 are provided at positions spaced apart from the first ends 203, 203 of the probes 201, 202 in the axial direction Z. As shown in FIG. Specifically, antennas 210 , 210 are provided at second ends 204 , 204 of probes 201 and 202 . In other words, the antennas 210 , 210 are provided at pinpoints in the axial direction Z of the probes 201 and 202 rather than widely provided in the axial direction Z. FIG. For this reason, the antennas 210, 210 have a narrower water content measurement area in the axial direction Z and a higher spatial resolution in the axial direction Z than in the case where the antenna is provided widely over the axial direction Z of the probe.
  • the probes 201 and 202 are embedded in the medium in the axial direction Z so that the distance between the respective antennas 210 in the separation direction X is a predetermined value D.
  • these probes 201 and 202 are embedded in the medium M in the axial direction Z in a generally vertical orientation.
  • their orientation is not limited to the vertical orientation.
  • a vertical hole is dug in the medium M by an excavator such as a shovel, and the probes 201 and 202 are inserted into the medium M from the inner peripheral wall surface of the vertical hole.
  • the axial direction Z of probes 201 and 202 (that is, the direction of depth of insertion) is horizontal (horizontal) rather than vertical (longitudinal).
  • the present embodiment can also be applied to such use cases.
  • the size of the distance D between the antennas 210 is not particularly limited. If the distance D is too large, the attenuation of the electromagnetic wave EW propagating through the medium M will increase, and there is a risk that sufficient reception intensity will not be obtained. On the other hand, if the distance D is too small, it may technically become difficult to observe. Considering these, the distance D is set to an appropriate value. For example, distance D is between 25 and 75 millimeters (mm).
  • FIG. 2 shows a configuration example of the measurement unit.
  • the measurement unit 300 has a directional coupler 310 , a transmitter 320 , a communication section 360 , an incident wave receiver 330 , a reflected wave receiver 340 and a transmitted wave receiver 350 .
  • a vector network analyzer for example, is used as the measurement unit 300 .
  • the directional coupler 310 separates the electrical signal transmitted through the cable and/or wiring 308 on the board into an incident wave and a reflected wave.
  • the incident wave is the wave of the electrical signal transmitted by the transmitter 320 and the reflected wave is the wave reflected from the terminal end of the probe 201 .
  • the directional coupler 310 feeds the incident wave to the incident wave receiver 330 and the reflected wave to the reflected wave receiver 340 .
  • the transmitter 320 transmits an electrical signal of a predetermined frequency as an electrical signal to the probe 201 via the directional coupler 310 and the wiring 308 on the cable and/or substrate.
  • a CW (Continuous Wave) wave for example, is used as the incident wave in the electrical signal.
  • the transmitter 320 for example, transmits electrical signals within a frequency band of 1 to 9 gigahertz (GHz), switching frequencies in steps of 50 megahertz (MHz).
  • the incident wave receiver 330 receives the incident wave from the directional coupler 310 .
  • Reflected wave receiver 340 receives the reflected wave from directional coupler 310 .
  • the transmitted wave receiver 350 receives transmitted waves from the probe 202 .
  • the transmitted wave is an electromagnetic wave that has passed through the medium between the probes 201 and 202 and is converted into an electric signal by the probe 202 .
  • the incident wave receiver 330, the reflected wave receiver 340, and the transmitted wave receiver 350 perform quadrature detection and AD (Analog to Digital) conversion on the received incident wave, reflected wave, and transmitted wave to obtain measurement data. It transmits to the information processing apparatus 400 via the signal 409 .
  • AD Analog to Digital
  • FIG. 3 shows the functional configuration of the information processing device according to the first embodiment.
  • the information processing apparatus 400 loads an information processing program stored in the ROM into the RAM by a processor such as a CPU and executes the information processing program.
  • the first determination section 402 , the duration calculation section 407 , the second determination section 408 , the unnecessary wave calculation section 414 and the third determination section 410 constitute a determination section 415 .
  • the determination unit 415 determines whether an object exists within a predetermined range in the medium with respect to the pair of probes 201 and 202 .
  • the information processing device 400 further has a moisture content conversion unit (described in the second embodiment).
  • the water content converter measures the water content based on round-trip time (described later), propagation time (described later), and propagation delay time (described later).
  • the water content converter first calculates the propagation delay time from the round-trip time and the propagation time.
  • the water content converter reads out coefficients indicating the relationship between the water content and the propagation delay time.
  • the water content converter converts the calculated propagation delay time into a water content using a coefficient.
  • the water content converter outputs the obtained water content to an external device or equipment as required.
  • FIG. 4 shows the operation flow of the information processing device.
  • the electrical signal transmission control section 413 outputs to the transmitter 320 a command for the transmitter 320 of the measurement unit 300 to transmit an electrical signal containing an incident wave (step S400).
  • Predetermined triggers include installation of a pair of probes 201 and 202, fixed periodic timing, variable periodic timing and/or weather changes.
  • Fixed periodic timing means, for example, timing such as every day, every week, every month.
  • the variable periodic timing means, for example, increasing the period (timing occurs frequently) in bad weather, in seasons when plant roots tend to grow, or the like.
  • a change in weather means conditions in which stones and rocks in the soil are likely to move, such as during bad weather, rain, or after bad weather or rain.
  • Transmitter 320 is commanded to transmit an electrical signal comprising an incident wave.
  • the transmission coefficient calculator 401 calculates the transmission coefficient from the time waveform of the transmitted wave received by the transmitted wave receiver 350 (step S401).
  • tA is the propagation time of the first medium (for example, air) contained in the medium.
  • tB is the propagation time of a second medium (for example, water) that is different from the first medium contained in the medium.
  • the first determination unit 402 determines this peak as the desired wave, and the pair of probes 201 and 202 (step S402, NO).
  • the first determination unit 402 determines the first Therefore, it is determined that the pair of probes 201 and 202 are not installed (step S402, YES).
  • Obstacles are, for example, roots and branches of plants, stones and rocks.
  • FIG. 5 is a diagram for explaining the generation of multipaths (two paths of desired waves and unwanted waves).
  • the time axis waveform shows There is a desired wave representing the propagation time of (B).
  • the reflection coefficient calculator 403 calculates the reflection coefficient from the time waveform of the reflected wave received by the reflected wave receiver 340 (the reflected wave of the incident wave reflected by the probe 201) (step S403).
  • FIG. 6 is a diagram for explaining the peak time of the desired wave and the peak time of the reflected wave.
  • the propagation time calculation unit 404 calculates the propagation time of the transmitted wave and the signal The intensity is calculated, and the signal intensity A of the peak of the desired wave and the time t1m_S21 are calculated (step S404).
  • the peak of the desired wave that gives the propagation time and its signal strength is determined from the signal strength at several points before and after the time t1_S21 that gives the maximum strength.
  • a quadratic function is fitted and the point of maximum value is set as t 1m_S21 . Fitting may be performed using a function other than a quadratic function.
  • t 1m_S21 t 1_S21 may be set without fitting.
  • the round-trip time calculator 405 calculates the round-trip time and signal intensity of the reflected wave, and calculates the peak signal intensity and time t1m_S11 of the reflected wave (step S405).
  • the peak of the desired wave that gives the round trip time and its signal strength is determined from the signal strength at several points before and after the time t1_S11 that gives the maximum strength.
  • a quadratic function is fitted and the point of maximum value is defined as t 1m_S11 . Fitting may be performed using a function other than a quadratic function.
  • t 1m_S11 t 1_S11 may be set without fitting.
  • Propagation delay time is the time it takes for an electromagnetic wave to propagate through the medium between probes 201 and 202 .
  • the duration calculation unit 407 calculates the duration F of the wave when the peak signal intensity A of the desired wave (the signal intensity A in step S404) is less than the predetermined signal intensity (step S407).
  • the predetermined signal strength less than the peak signal strength A of the desired wave is, for example, a signal strength less than or equal to half the peak signal strength A of the desired wave.
  • the time width F of the wave when the predetermined signal strength is obtained is sometimes referred to as the half-value width F hereinafter. For example, when the peak signal strength A of the desired wave is 6 dB, the signal strength less than half the signal strength A is 3 dB or less. F does not necessarily have to be the half width, and may be the time width of X dB or less of the signal intensity of the peak of the desired wave.
  • the second determination unit 408 determines whether an object exists in the second range by determining whether the time width F is greater than or equal to the first threshold (step S408).
  • the second range is, specifically, the extremely close range of at least one of the pair of probes 201 and 202 .
  • the second determination unit 408 determines that there is a possibility that an object exists in the second range from the pair of probes 201 and 202. It is determined that the installation location is not available (step S408, YES).
  • “the time width F is greater than or equal to the first threshold” means that two peaks overlap and the half width is thick.
  • the second determination unit 408 determines that there is no object within the second range from the pair of probes 201 and 202 (step S408, NO).
  • FIG. 7 is a diagram for explaining the processing of the unwanted wave calculator.
  • FIG. 8 is a diagram for explaining the peak time of the desired wave and the peak time of the unwanted wave.
  • the unnecessary wave calculation unit 414 confirms the signal intensity in the + time axis direction from the peak time t 1m_S21 of the desired wave (that is, the signal intensity of the transmitted wave temporally after the time t 1m_S21 ). do.
  • the unwanted wave calculation unit 414 sets the time at which the second maximum value of the amplitude at the point where the amplitude has increased and then decreased from the previous amplitude is the peak time t2m_S21 of the unwanted wave.
  • the signal strength at this time is assumed to be A'.
  • t 2m_S21 t 2_S21 may be set without fitting.
  • the unwanted wave calculator 414 calculates the signal intensity B of the unwanted wave when + ⁇ t time has passed since the peak of the unwanted wave.
  • the signal intensity B is calculated using the function g(T) (T is time) of the envelope of the unwanted wave. If g( ⁇ t) is known, B can be found.
  • Window functions include, for example, a Kaiser window and a Hamming window. No window function is required.
  • the third determination unit 410 determines whether or not an object exists in the third range by determining the influence of unwanted waves using AB and ⁇ t (step S410). As shown in FIG. 5G, the third range is specifically a range far from the pair of probes 201 and 202, and is wider than the second range.
  • Step S410 determines that there is no object in the third range, and the installation positions of the pair of probes 201 and 202 are It is judged to be good (step S410, NO).
  • a second threshold value eg, 500 ps
  • the third determination unit 410 determines that the pair of probes 201 and 202 are not installed at the location because there is a possibility that an object exists in the third range.
  • Step S410, YES As shown in (H) of FIG. 5, " ⁇ t is less than the second threshold" means that when the unwanted wave is temporally close to the desired wave, the shape of the desired wave collapses and the peak position shifts. It means that the measurement accuracy deteriorates.
  • the third determination unit 410 determines that there is no object in the third range when AB is equal to or greater than a third threshold value (eg, 20 dB), and the pair of probes 201 and 202 is good (step S410, NO). On the other hand, when AB is less than the third threshold, the third determination unit 410 may determine that an object exists in the third range. No is determined (step S410, YES).
  • a third threshold value eg, 20 dB
  • the position calculation unit 411 calculates the time difference ⁇ t, the position of the pair of antennas 210 and 210, the relative permittivity of the medium, the speed of light , based on the distance between the pair of probes 201 and 202 and the propagation delay time t pd1 , estimate the position of the obstacle (object) by calculating a set of position information where the object may exist (step S411).
  • a set of positional information where an object may exist is specifically a surface of a three-dimensional ellipse centered on the midpoint of the pair of antennas 210 and 210 .
  • FIG. 10 shows an xyz coordinate system whose origin is the midpoint of a pair of antennas.
  • the position calculation unit 411 generates an xyz coordinate system as shown in FIG. 10 with the midpoint of the pair of antennas 210 and 210 as the origin. Assume that the position coordinates of the obstacle (object) are (x, y, z), and the position coordinates of the pair of antennas 210 and 210 are F(p, 0, 0) and F'(-p, 0, 0).
  • Equation (1) The distance l of unnecessary paths is indicated by arrows A and B in the drawing and is expressed by Equation (1).
  • FIG. 11 shows an example of a three-dimensional elliptical surface that is a collection of positional information on which objects may exist.
  • FIG. Distance between probes L 30e-3 [m]
  • ⁇ t 2000e-12 [s]
  • propagation delay time t pd1 400e-12 [s]
  • p L/2 [m].
  • ⁇ t is the time difference between the peak time of the desired wave and the peak time of the unwanted wave, which is the next peak occurring after the peak time of the desired wave.
  • the determination result output unit 412 outputs to the display device 500 information indicating that the installation positions of the pair of probes 201 and 202 in the medium are favorable (step S412).
  • the display device 500 is, for example, the display of the information processing device 400, an LED light, or the like.
  • the information processing device 400 may further include an audio output device and a vibration device.
  • the display device 500 , the audio output device, and the vibration device may be devices separate from the information processing device 400 and capable of communicating with the information processing device 400 .
  • the display device 500 may be a transmissive head-mounted display. In that case, communication may be performed using a communication method such as Bluetooth (registered trademark) or LTE (registered trademark).
  • step S402 there is a possibility that an obstacle (object) exists in the first range between the pair of probes 201 and 202 (step S402, YES), and there is a possibility that an object exists in the second range in the very vicinity. (step S408, YES), and there is a possibility that an object exists in a distant third range (step S410, YES), so when it is determined that the pair of probes 201 and 202 are not installed explain.
  • the determination result output unit 412 outputs to the display device 500 information (for example, a message) indicating that the current installation positions of the pair of probes 201 and 202 in the medium are not correct (step S413).
  • the determination result output unit 412 may output to the display device 500 information indicating the predetermined range or approximate distance in which the object is determined to exist. This allows the user to easily reposition the pair of probes 201 and 202 outside the predetermined range.
  • the information indicating the predetermined range may include an image indicating the predetermined range (the first range between the pair of probes, the second range in the extreme vicinity, and the three-dimensional ellipse).
  • FIG. 12 shows an example of an image showing a predetermined range determined to contain an object.
  • an image showing a predetermined range includes a pair of probes 201 and 202 viewed from the horizontal direction, and a predetermined range (in this example, a three-dimensional elliptical trajectory, between the pair of probes) viewed from the horizontal direction. a first range where , and a second range which is a close neighbor).
  • the image showing the predetermined range includes the pair of probes 201 and 202 viewed from the vertical direction, and the predetermined range viewed from the horizontal direction (the first range between the pair of probes, the second range very close to the probes). , a three-dimensional ellipse) and objects representing .
  • An image showing the predetermined range may be displayed superimposed on the map of the installation points of the pair of probes 201 and 202 .
  • the map may be obtained via the Internet, for example, based on the position information of the information processing device 400 obtained by the information processing device 400 using the GPS receiving unit.
  • a map may be two-dimensional or three-dimensional.
  • the display device 500 is a transmissive head-mounted display
  • an image showing a predetermined range may be superimposed and displayed as augmented reality (AR) or virtual reality (VR). This allows the user to easily reposition the pair of probes 201 and 202 outside the predetermined range.
  • AR augmented reality
  • VR virtual reality
  • the determination result output unit 412 moves the pair of probes 201 and 202 out of a predetermined range in the medium (first range between the pair of probes, second range in close proximity, three-dimensional ellipse). may be output to the display device 500 to recommend installation in the .
  • the information indicating the recommendation may be a message and/or an image.
  • the image may include objects representing a pair of probes 201 and 202 and a recommended installation position. These objects may be superimposed on a map, or may be superimposed on a transmissive head-mounted display as augmented reality (AR) or virtual reality (VR). This allows the user to easily re-install the pair of probes 201 and 202 in the recommended range.
  • AR augmented reality
  • VR virtual reality
  • the determination result output unit 412 provides information ( image) and the recommended installation position (image) may be displayed at the same time.
  • These objects may be superimposed on a map, or may be superimposed on a transmissive head-mounted display as augmented reality (AR) or virtual reality (VR). This allows the user to easily reposition the pair of probes 201 and 202 outside the predetermined range.
  • AR augmented reality
  • VR virtual reality
  • FIG. 13 shows the functional configuration of an information processing device according to the first modified example.
  • An information processing apparatus 400A according to the first modification has a configuration in which the unwanted wave calculation unit 414, the third determination unit 410, and the position calculation unit 411 are removed from the information processing apparatus 400 according to the first embodiment. Although the determination accuracy is lower than that of the first embodiment, the amount of calculation can be reduced.
  • FIG. 14 shows the functional configuration of an information processing device according to the second modified example.
  • An information processing device 400B according to the second modification has a configuration in which the position calculation unit 411 is removed from the information processing device 400 according to the first embodiment. Although the determination accuracy is lower than that of the first embodiment, the amount of calculation can be reduced.
  • FIG. 15 shows the functional configuration of an information processing device according to the third modification.
  • the information processing apparatus 400C according to the third modification includes the time width calculation unit 407, the second determination unit 408, the unnecessary wave calculation unit 414, and the third determination unit 400, which are added to the information processing apparatus 400 according to the first embodiment.
  • This is a configuration in which the order of processing with the unit 410 is reversed.
  • the determination accuracy and the amount of calculation are the same as in the first embodiment.
  • FIG. 16 shows the functional configuration of an information processing device according to the fourth modification.
  • An information processing device 400D according to the fourth modification has a configuration in which the position calculation unit 411 is removed from the information processing device 400C according to the third modification. Although the determination accuracy is lower than that of the third modified example, the amount of calculation can be reduced.
  • FIG. 17 shows the functional configuration of an information processing device according to the fifth modified example.
  • An information processing apparatus 400E according to the fifth modification has a configuration in which the duration calculation unit 407 and the second determination unit 408 are removed from the information processing apparatus 400 according to the first embodiment. Although the determination accuracy is lower than that of the first embodiment, the amount of calculation can be reduced.
  • FIG. 18 shows the functional configuration of an information processing device according to the sixth modification.
  • An information processing device 400F according to the sixth modification has a configuration in which the position calculation unit 411 is removed from the information processing device 400E according to the fifth modification. Although the determination accuracy is lower than that of the fifth modified example, the amount of calculation can be reduced.
  • two pairs of probes may be provided instead of one pair.
  • the determination unit 415 determines whether or not an object exists at a predetermined position in the medium with respect to the two pairs of probes 201 and 202, so that the position where the object exists is It can be specified on the line without Also, three pairs of probes may be provided instead of one pair. In this case, the determination unit 415 determines whether or not an object exists at a predetermined position in the medium with respect to the three pairs of probes 201 and 202, so that the position where the object exists is can be identified as one point. Note that four or more pairs of probes may be provided.
  • the display device 500 may be installed in the sensor device 110.
  • the installation results may be displayed and represented by LEDs, displays, sounds and/or vibrations.
  • the color of the LED may be changed.
  • the determination result output unit 412 may transmit the determination result to another display device 500, which is another device, by wire.
  • the determination results of the determination unit 415 may be stored in a memory or the like. It may be transmitted to a signal processing device such as a microcomputer. The determination result may be used for correcting the desired peak. The judgment result may be utilized as reliability information of installation. Locations with good/bad conditions for sensor installation may be displayed on a map by combining the installation quality determination results of a plurality of times and location positioning using GPS or the like.
  • the unwanted wave calculator 414 may correct the influence of unwanted waves. Since the shape of the unwanted wave function is known, it is also possible to eliminate the influence of the unwanted wave on the desired wave. For example, the determination unit 415 may determine whether the installation is good after removing the influence of unnecessary waves.
  • the first embodiment can be used not only to determine the presence of obstacles in soil, but also to actively detect useful objects in soil.
  • a soil moisture sensor is a device that measures the amount of moisture in media such as soil, and is used in the fields of agriculture and soil environment surveys. For example, in the field of agriculture, soil moisture sensors can be used to optimally irrigate crops and are used to improve the added value of products.
  • the determination unit 415 determines the influence of obstacles on the measurement results.
  • the position calculator 411 calculates the position of the obstacle (object).
  • the determination result output unit 412 displays the installation quality determination result on the display device 500 .
  • the user can estimate the obstacle (object) and exclude the installation position. Since the sensor can be installed while reducing the influence of multipath (two paths of desired wave and unwanted wave) due to obstacles, measurement accuracy can be ensured.
  • the information processing device 400 determines whether an object exists within a predetermined range in the medium, determines whether the installation is good or bad, and presents it to the user.
  • the water content distribution of a medium such as soil, in particular, in the depth direction is measured and presented to the user.
  • FIG. 19 schematically shows a measuring device according to this embodiment and a comparative example.
  • the antennas 210, 210 are provided at the second ends 204, 204 of the probes 201 and 202, which are insertion tips into the medium M (FIG. 2).
  • the antennas 210 , 210 are provided at pinpoints in the axial direction Z of the probes 201 and 202 rather than widely provided in the axial direction Z.
  • FIG. Therefore, the antennas 210, 210 have a narrow water content measurement area A1 in the axial direction Z and high spatial resolution. That is, the antennas 210, 210 according to the present embodiment can measure the water content of a pinpoint area in the axial direction Z rather than the overall water content in the axial direction Z of the medium M.
  • the depths of the antennas 210 and 210 in the medium M continue to dynamically change during the insertion/removal period.
  • the moisture content of the medium M is continuously measured.
  • the antennas 210, 210 are located at different positions in the medium M in the depth direction, it is possible to continuously measure the water content at different positions in the depth direction.
  • the continuously measured water content at different positions in the depth direction can be presented to the user as the water distribution of the medium M in the depth direction.
  • the antennas 210, 210 are provided at the second ends 204, 204, which are the insertion tips of the probes 201, 202, so that when the probes 201, 202 are inserted into and extracted from the medium M, a wider range in the axial direction Z can be obtained.
  • the water content of the medium M can be measured over a period of time.
  • "insertion and withdrawal” refers to the movement of continuously inserting the probes 201 and 202 into the medium M in the depth direction, or the movement of continuously withdrawing the probes 201 and 202 embedded in the medium M from the medium M. , or
  • FIG. 20 shows the functional configuration of an information processing device according to the second embodiment.
  • the information processing device 400G according to the second embodiment has, in addition to the functional configuration (FIG. 3) of the information processing device 400 according to the first embodiment, a water content conversion unit 416, a memory 417, and a water content output 418.
  • the information processing apparatus 400G according to the second embodiment includes a duration calculation unit 407, a second determination unit 408, an unnecessary wave calculation unit 414, a third determination unit 410, a position calculation unit 411, and a determination result output unit. Since 412 is not used, these functional units 419 may not be included.
  • FIG. 21 shows the operation flow of the information processing device.
  • the user inserts the pair of probes 201 and 202 into the medium M in the axial direction Z from the antennas 210 and 210 provided at the second ends 204 and 204 .
  • This keeps the depth of the antennas 210, 210 in the medium M in the axial direction Z dynamically changing.
  • a period during which the probes 201 and 202 are inserted into and removed from the medium M and the depth of the antennas 210 and 210 in the axial direction Z in the medium M continues to change dynamically is referred to as an "insertion/removal period.”
  • the information processing device 400G executes a propagation delay time calculation routine (step S420).
  • the propagation delay time calculation routine is the same as the operation (steps S400, S401, S403, S404, S405 and S406) of the first embodiment.
  • the electrical signal transmission control section 413 transmits a command for the transmitter 320 of the measurement unit 300 to transmit an electrical signal including an incident wave. output to the machine 320 (step S400).
  • the transmission coefficient calculator 401 calculates a transmission coefficient from the time waveform of the transmitted wave received by the transmitted wave receiver 350 (step S401).
  • the reflection coefficient calculator 403 calculates the reflection coefficient from the time waveform of the reflected wave received by the reflected wave receiver 340 (the reflected wave of the incident wave reflected by the probe 201) (step S403).
  • the propagation time calculator 404 calculates the propagation time and signal intensity of the transmitted wave, and calculates the peak signal intensity A and time t1m_S21 of the desired wave (step S404).
  • the round-trip time calculator 405 calculates the round-trip time and signal intensity of the reflected wave, and calculates the peak signal intensity and time t1m_S11 of the reflected wave (step S405).
  • Propagation delay time is the time it takes for an electromagnetic wave to propagate through the medium between probes 201 and 202 .
  • the water content conversion unit 416 converts the propagation delay time t pd1 into the water content of the medium using a coefficient indicating the relationship between the water content and the propagation delay time t pd1 (step S406) (step S421).
  • the water content converter 416 continuously obtains the water content of the medium M during the insertion/removal period at regular time intervals.
  • the water content converter 416 records the water content in the insertion/removal period in the memory 417 in chronological order as FIFO (First In, First Out) (step S422).
  • FIG. 22 shows an example of display by the moisture content output unit.
  • the moisture content output unit 418 displays the history of the moisture content within the insertion/extraction period chronologically recorded in the memory 417 on the display device 500 in chronological order, for example, in the form of a graph (step S423).
  • the water content output unit 418 corresponds to the history of the water content (volume water content, volumetric water content) recorded in time series in the memory 417 and time series A graph having elapsed time and two axes is displayed on the display device 500 .
  • FIFO First In, First Out
  • only the most recent moisture content history stored in the memory 417 is displayed in the graph.
  • the user can intuitively display the amount of water in the medium corresponding to the depth of the antennas 210 and 210, which is approximately proportional to the elapsed time when the probes 201 and 202 are inserted and removed.
  • the water content output unit 418 can display the history of the water content recorded in time series in the memory 417 and the depth that changes in time series instead of the elapsed time corresponding to time series on two axes. may be displayed on the display device 500.
  • the moisture amount output unit 418 based on the total length of the probes 201 and 202 (that is, the maximum insertion depth) and the elapsed time from the start to the end of the insertion/removal period, at each elapsed time measurement point, the antenna 210, 210 estimates each depth point that is displaced in time series.
  • the water content output unit 418 may estimate each depth point that is chronologically displaced during the insertion/removal period in substantially proportion to the elapsed time from the start of the insertion/removal period.
  • the water content output unit 418 may display a graph of the history of propagation delay times corresponding to the water content instead of the history of the water content. Since the water content is calculated from the propagation delay time t pd1 using a coefficient, the graph of the propagation delay time t pd1 has similar characteristics to the water content graph. Therefore, even if the propagation delay time is displayed on the graph instead of the moisture content, the user can grasp the characteristics of the moisture distribution in the depth direction. If the history of propagation delay time is displayed on the graph instead of the history of water content, the process of step S421 may be omitted.
  • the vertical and horizontal axes of the graph (A) are reversed, and a graph is displayed on the display device 500 in which the history of the water content is displayed on the horizontal axis and the elapsed time is displayed on the vertical axis.
  • the depth of the antennas 210, 210 approximately proportional to the elapsed time can be intuitively displayed for the user.
  • FIG. 23 schematically shows a graph of the water content and the relationship of the displacement of the depth of the antenna with respect to the graph of the water content according to the first example.
  • the water content output unit 418 creates a graph 601 having two axes, the history of the water content recorded in the memory 417 in chronological order and each depth point that changes in chronological order during the insertion/removal period. , is displayed on the display device 500 .
  • the water content of the medium M at the depth point where the antennas 210 and 210 provided at the insertion tips of the probes 201 and 202 are located is pinpointed. is displayed graphically.
  • the water content output unit 418 displays a time-series GUI 602 showing the progress of inserting the probes 201 and 202 into the medium M, and a GUI 603 when the probes 201 and 202 are completely inserted into the medium M. You can also display more.
  • the water content output unit 418 preferably displays a GUI 605 in which the vertical axis (depth) of the graph 601 and the insertion depth of the antennas 210 and 210 of the GUI 602 or 603 are arranged side by side so as to be visually compatible. .
  • the graph 601 of the first example shows a moisture distribution in which the deeper the medium M, the greater the amount of moisture.
  • FIG. 24 schematically shows a graph of the water content and the relationship of the displacement of the depth of the antenna with respect to the graph of the water content according to the second example.
  • a graph 611 of the second example shows a moisture distribution in which the deeper the medium M, the greater the amount of moisture, as in the first example.
  • the water content is greatly reduced. This means that an obstacle (object) such as a stone may exist near the depth point where the antennas 210, 210 are located when the probes 201 and 202 are fully inserted into the medium M (GUI 613).
  • the water content output unit 418 displays a time-series GUI 612 showing the progress of inserting the probes 201 and 202 into the medium M, and a GUI 613 when the probes 201 and 202 are completely inserted into the medium M. You can also display more.
  • the water content output unit 418 may display information indicating the depth of the object existing in the medium M, which is estimated based on the change in the water content with respect to the depth, on the display device 500 . Specifically, at this time, the water content output unit 418 outputs the vertical axis (depth) of the graph 611, the insertion depth of the antennas 210 and 210 of the GUI 612 or 613, and the depth at which the object 614 may exist.
  • the GUI 615 it is preferable to display the GUI 615 in which the locations are arranged side by side so as to be visually correspondable.
  • the user can determine the depth points of the antennas 210 and 210 in the medium M, the depth points where the object 614 may exist, and the water content for the depth points of the antennas 210 and 210 during the insertion/removal period. Intuitive to understand.
  • the user may insert the probes 201 and 202 at different points so as not to be affected by the object 614, or install the probes 201 and 202 in a state where they protrude slightly from the medium M without inserting all of them. It is possible to take action.
  • FIG. 25 schematically shows a graph of the water content and the relationship of the displacement of the depth of the antenna with respect to the graph of the water content according to the third example.
  • a graph 621 of the third example shows a moisture distribution in which the deeper the medium M, the greater the amount of moisture, as in the first example.
  • the water content increases significantly. This is due to the possibility that a non-uniform medium 624 with a significantly high water content exists near the depth point where the antennas 210, 210 are located when the probes 201 and 202 are inserted into the medium M to a depth of about 2/5.
  • the water content output unit 418 displays a time-series GUI 622 showing the progress of inserting the probes 201 and 202 into the medium M, and a GUI 623 when the probes 201 and 202 are completely inserted into the medium M. You can also display more. At this time, the water content output unit 418 uses the vertical axis (depth) of the graph 621, the insertion depth of the antennas 210 and 210 of the GUI 622 or 623, and the depth point where the non-uniform medium 624 may exist. are displayed side by side in a visually responsive manner.
  • the depth point in the medium M of the antennas 210, 210 within the insertion/removal period, the depth point where the non-uniform medium 624 may exist, and the water content at the depth point of the antennas 210, 210 can be intuitively understood by the user.
  • the user may insert probes 201 and 202 at different points to avoid being affected by non-uniform medium 624, or insert probes 201 and 202 about 1 ⁇ 5 deep into medium M without fully inserting probes 201 and 202. It is possible to take measures such as installing in a state where it is inserted up to.
  • FIG. 26 schematically shows a graph of the water content and the relationship of the displacement of the depth of the antenna with respect to the graph of the water content according to the fourth example.
  • a graph 631 of the fourth example shows a moisture distribution in which the deeper the medium M, the greater the amount of moisture, as in the first example.
  • the water content increases significantly. This means that there may be a heterogeneous medium 634 with a significantly high water content near the depth point where the antennas 210, 210 are located when the probes 201 and 202 are fully inserted into the medium M (GUI 633). do.
  • the water content output unit 418 displays a time-series GUI 632 showing the progress of inserting the probes 201 and 202 into the medium M, and a GUI 633 when the probes 201 and 202 are completely inserted into the medium M. You can also display more. At this time, the water content output unit 418 uses the vertical axis (depth) of the graph 631, the insertion depth of the antennas 210 and 210 of the GUI 632 or 633, and the depth point where the non-uniform medium 634 may exist. are displayed side by side in a visually responsive manner.
  • the depth point in the medium M of the antennas 210, 210 within the insertion/removal period, the depth point where the non-uniform medium 634 may exist, and the water content at the depth point of the antennas 210, 210 can be intuitively understood by the user.
  • the user may insert the probes 201 and 202 at different points so as not to be affected by the nonuniform medium 634, or install the probes 201 and 202 in a state where they protrude slightly from the medium M without inserting all of the probes 201 and 202. It is possible to take measures such as
  • the antennas 210, 210 are not provided widely over the axial direction Z of the probes 201 and 202, but are provided at pinpoints in the axial direction Z. Therefore, the antennas 210, 210 according to the present embodiment have a narrow water content measurement area in the axial direction Z and high spatial resolution compared to a case in which the antenna is provided widely over the axial direction Z of the probe. In other words, the antennas 210, 210 according to this embodiment can measure the water content of a pinpoint area in the axial direction Z rather than the overall water content in the axial direction Z of the medium.
  • the probes 201 and 202 according to the present embodiment are inserted into and removed from the medium, during the insertion/removal period during which the depth of the antennas 210 and 210 in the medium continues to change dynamically, Continuously measure the moisture content of the medium.
  • the antennas 210, 210 are located at different positions in the medium in the depth direction, the water content at different positions in the depth direction can be continuously measured.
  • the continuously measured water content at different positions in the depth direction can be presented to the user as the water distribution in the depth direction of the medium.
  • FIG. 27 shows a moisture sensor according to a comparative example.
  • the antenna is widely provided over the axial direction Z of the probe.
  • the spatial resolution is low because the rod-shaped probe periphery is collectively measured. Therefore, since average measurement is performed, the influence of an object such as a foreign object is relatively small, and conversely, an object such as a foreign object cannot be detected.
  • the spatial resolution in the axial direction Z is low, it is not possible to accurately obtain the moisture distribution in the depth direction.
  • the antenna is provided widely in the axial direction Z of the probe, the measurement range in the axial direction Z is large. Therefore, it is not possible to measure the moisture distribution in the depth direction of the medium. Therefore, in a sensor with an antenna widely provided over the axial direction Z of the probe, it is less necessary to measure water content at high speed and display it in chronological order in the process of inserting the sensor into the medium.
  • FIG. 28 shows the functional configuration of an information processing device according to the eighth modified example.
  • An information processing device 400H according to the eighth modification has a configuration in which an insertion amount conversion unit 420 is added to the information processing device 400G according to the second embodiment. Furthermore, a distance measuring sensor 370 is provided in the measuring unit 300 .
  • a ranging sensor 370 measures the distance from the measuring unit 300 to the surface of the medium.
  • the ranging sensor 370 may be a laser positioning meter, a ToF sensor, a stereo camera, an ultrasonic sensor, a non-contact sensor such as radar, or a mechanical sensor such as a contact displacement meter. Using the ranging sensor 370 makes it possible to determine the depth of the medium more accurately than in the second embodiment.
  • FIG. 29 shows the operation flow of the information processing device.
  • the user inserts the pair of probes 201 and 202 into the medium M in the axial direction Z from the antennas 210 and 210 provided at the second ends 204 and 204 .
  • This keeps the depth of the antennas 210, 210 in the medium M in the axial direction Z dynamically changing.
  • the distance from the measurement unit 300 to the surface of the medium M keeps changing dynamically.
  • Distance sensor 370 measures the distance from measurement unit 300 to the surface of medium M (step S424).
  • the insertion amount conversion unit 420 converts the distance measured by the ranging sensor 370, which dynamically changes according to the insertion amounts of the pair of probes 201 and 202, into the depth of the antennas 210 and 210 in the medium M (probes 201 and 202). 202 insertion amount) (step S425).
  • the information processing device 400H executes a propagation delay time calculation routine (step S420).
  • the propagation delay time calculation routine is the same as the operation (steps S400, S401, S403, S404, S405 and S406) of the second embodiment.
  • the water content conversion unit 416 converts the propagation delay time t pd1 into the water content of the medium using a coefficient indicating the relationship between the water content and the propagation delay time t pd1 (step S406) (step S421).
  • the water content converter 416 continuously obtains the water content of the medium M during the insertion/removal period at regular time intervals.
  • the water content conversion unit 416 associates the water content within the insertion/removal period with the depth of the antennas 210, 210 in the medium M (step S425), and stores the data in the memory 417 in chronological order as FIFO (First In, First Out). ) (step S422).
  • FIFO First In, First Out
  • FIG. 30 schematically shows a graph of the water content and the relationship of the displacement of the depth of the antenna with respect to the graph of the water content.
  • the moisture content output unit 418 displays the history of the moisture content within the insertion/extraction period chronologically recorded in the memory 417 on the display device 500 in chronological order, for example, in the form of a graph (step S423). Specifically, the water content output unit 418 uses the history of the water content (volume water content) recorded in time series in the memory 417 and the depth that changes in time series as two axes. A graph 651 is displayed on the display device 500 . According to the figure, while the probes 201 and 202 are being inserted into the medium M, the water content of the medium M at the depth point where the antennas 210 and 210 provided at the insertion tips of the probes 201 and 202 are located is pinpointed. is displayed graphically.
  • the water content output unit 418 displays a time-series GUI 652 showing the progress of inserting the probes 201 and 202 into the medium M, and a GUI 653 when the probes 201 and 202 are completely inserted into the medium M. You can also display more.
  • the chronological GUI 652 showing the progress of inserting the probes 201 and 202 into the medium M may further include a ranging sensor 370 and a laser 371 when the ranging sensor 370 is a laser positioning meter.
  • the water content output unit 418 preferably displays a GUI 655 in which the vertical axis (depth) of the graph 651 and the insertion depth of the antennas 210 and 210 of the GUI 652 or 653 are arranged side by side so as to be visually compatible. .
  • This allows the user to intuitively understand the depth points of the antennas 210 and 210 in the medium M during the insertion/removal period and the water content at the depth points of the antennas 210 and 210 .
  • the graph 651 shows a moisture distribution in which the deeper the medium M, the greater the amount of moisture.
  • FIG. 31 shows a ninth modification.
  • the moisture content output unit 418 displays the history of the desired wave propagation delay time corresponding to the moisture content, which is the propagation delay time of the desired wave that changes in chronological order, as a graph. may be displayed in At this time, the moisture amount output unit 418 may further display the history of the propagation delay time of the unwanted wave on the graph.
  • the propagation delay time is the difference between the peak time t1m_S21 of the transmitted wave and the peak time t1m_S11 of the reflected wave. Since no unnecessary wave is generated when an object does not exist within the predetermined range, only the peak of the desired wave is detected. Therefore, when the object does not exist within the predetermined range, only the desired wave propagation delay time 606, which is the propagation delay time of the desired wave (direct wave), is displayed as shown in (A).
  • the information processing device 400G or 400H executes steps S420 to S423, steps S404 and S406 corresponding to multiple peaks of the desired wave and the unwanted wave.
  • the water content output unit 418 further displays the unwanted wave propagation delay time 607 in a graph in addition to the desired wave propagation delay time 606 .
  • the propagation delay time 607 is not displayed and only the desired wave propagation delay time 606 is displayed, the user can intuitively understand that the installation location is desirable because there is no object within the predetermined range.
  • the propagation delay time 607 is displayed in addition to the desired wave propagation delay time 606, the user can intuitively understand that it is better to change the installation location because the object exists within the predetermined range.
  • the water content output unit 418 in addition to the graph 661, displays a chronological GUI 662 showing the progress of inserting the probes 201 and 202 into the medium M, and the probes 201 and 202.
  • GUI 663 when fully inserted into medium M may also be displayed.
  • the water content output unit 418 may display information indicating the depth of the object existing in the medium M, which is estimated based on the change in the water content with respect to the depth, on the display device 500 .
  • the water content output unit 418 outputs the vertical axis (depth) of the graph 661, the insertion depth of the antennas 210 and 210 of the GUI 662 or 663, and the depth at which the object 664 may exist. It is preferable to display the GUI 665 in which the points are arranged side by side so as to be visually correspondable. As a result, the user can determine the depth point of the antennas 210, 210 in the medium M, the depth point where the object 664 may exist, and the water content for the depth point of the antennas 210, 210 during the insertion/removal period. Intuitive to understand.
  • the user may insert the probes 201 and 202 at different points so as not to be affected by the object 664, or install the probes 201 and 202 in a state where they protrude slightly from the medium M without inserting all of them. It is possible to take action.
  • FIG. 32 shows a tenth modification
  • the tenth modification is an application of the ninth modification.
  • the moisture content output unit 418 plots the graph based on the desired wave propagation delay time 606 to indicate that an object exists within a predetermined range in the medium with respect to the pair of probes 201 and 202 and may affect the calculation of the desired wave propagation delay time. You may also display a range of potential.
  • Graphs (A), (B), and (C) in FIG. 32 are graphs (A), (B), and (C) in FIG. 31 with the desired wave propagation delay time 606 as a reference. Lines 608 and 609 indicating the range (NG area) that can affect the time 606 are also displayed.
  • Lines 608 and 609 express the range of propagation delay time values centered on the desired wave propagation delay time 606 with the desired wave propagation delay time 606 as a reference.
  • the range (NG area) between the lines 608 and 609 there is a possibility that an object exists within a predetermined range in the medium with respect to the pair of probes 201 and 202. It means that there is a gender. If at least part of the propagation delay time 607 is included in the range (NG area) between the lines 608 and 609, the user intuitively understands that the object exists in the predetermined range and the installation location should be changed. can.
  • the water content output unit 418 includes, in addition to the graph 671, a time-series GUI 672 showing the progress of inserting the probes 201 and 202 into the medium M,
  • the GUI 673 when fully inserted into M may also be displayed.
  • the water content output unit 418 may display information indicating the depth of the object existing in the medium M, which is estimated based on the change in the water content with respect to the depth, on the display device 500 .
  • the water content output unit 418 uses the vertical axis (depth) of the graph 671, the insertion depth of the antennas 210 and 210 of the GUI 672 or 673, and the depth at which the object 674 may exist.
  • the GUI 675 it is preferable to display the GUI 675 in which the points are arranged side by side so as to be visually correspondable.
  • the user can determine the depth points of the antennas 210, 210 in the medium M, the depth points where the object 674 may exist, and the water content for the depth points of the antennas 210, 210 during the insertion/removal period. Intuitive to understand.
  • the user may insert the probes 201 and 202 at different points so as not to be affected by the object 674, or install the probes 201 and 202 in a state where they protrude slightly from the medium M without inserting all of them. It is possible to take action.
  • FIG. 33 shows the operation flow of the eleventh modification.
  • the information processing device 400G measures the moisture content frequently (high-speed mode) while the pair of probes 201 and 202 is inserted and removed, and measures the moisture content frequently when the pair of probes 201 and 202 is non-dynamic. may be measured less frequently (normal mode).
  • the normal mode is for normal measurement with emphasis on accuracy, and is used when the position is stable with little dynamic positional change, and is a mode in which the moisture content is calculated based on more measurement results (the number of averaging is large).
  • the high-speed mode is for measurements within the insertion/removal period where speed is important, and is used to see transient characteristics. less) mode.
  • the information processing device 400G has a mode switching unit (not shown).
  • the mode switching unit may automatically switch the mode based on the output of the distance measurement sensor 370, the output of an acceleration sensor (not shown) provided in the measurement unit 300, or the like. Alternatively, the user may manually perform an operation for mode switching, and the mode switching unit may detect the operation and switch the mode. By switching between modes, optimal measurements can be made depending on whether the probes 201 and 202 are dynamic or non-dynamic. At the time of insertion/removal, unless the results are displayed at high speed and high frequency, changes cannot be followed. Conversely, at the time of installation, display at low speed and low frequency is sufficient because there is little change. In general, averaging is performed to improve measurement accuracy, but at high speeds, the number of samples to be averaged is reduced to display results more frequently. At low speed, results are displayed less frequently by increasing the number of samples to be averaged.
  • the information processing device 400G determines whether it is within the insertion/removal period of the pair of probes 201 and 202 based on the output of the distance measurement sensor 370, the output of the acceleration sensor, or the like, or the user's operation (step S426). If it is within the insertion/removal period (step S426, YES), the information processing device 400G starts the high speed mode (step S427). In the high-speed mode, the information processing device 400G measures the moisture content at high frequency, and continues to display the history of the moisture content within the insertion/removal period on the display device 500 in chronological order, for example, in the form of a graph (step S420 to step S423). The information processing device 400G measures the moisture content at high frequency until it determines that the mode switching unit is in a stable installation state and not during the insertion/removal period (step S430, NO). Keep displaying history in chronological order.
  • the information processing device 400G executes a propagation delay time calculation routine (step S420) at predetermined time intervals (step S428, YES).
  • the propagation delay time is converted into a water content (step S421), and the water content is displayed on the display device 500 or transmitted to a server (not shown) (step S429).
  • the moisture content is recorded in the memory 417 in time series as in the insertion/removal period (step S422), and the history of the moisture content is displayed in the display device 500 in time series. It is not necessary to display the graph (step S423).
  • FIG. 34 shows a twelfth modification
  • a vertical hole may be dug in the medium M with an excavator such as a shovel, and the probes 201 and 202 may be inserted into the medium M from the inner peripheral wall surface of the vertical hole.
  • the axial direction Z of probes 201 and 202 (that is, the direction of depth of insertion) is horizontal (horizontal) rather than vertical (longitudinal).
  • the display device 500 may display a graph in which the vertical axis indicates the history of the water content and the horizontal axis indicates the insertion amount (antenna depth).
  • the axial direction Z that is, depth of insertion
  • the amount of insertion (antenna depth) in the graph match in the horizontal direction (horizontal direction) and the horizontal axis, the user can move in the horizontal direction ( It is easy to intuitively understand the moisture distribution in the horizontal direction.
  • FIG. 35 shows the functional configuration of an information processing device according to the thirteenth modification.
  • An information processing device 400I according to the thirteenth modification has a configuration in which a fourth determination unit 421 is added to the information processing device 400G according to the second embodiment.
  • FIG. 36 shows the operation flow of the information processing device.
  • Propagation delay time calculation routine (step S420), conversion of propagation delay time to medium water content (step S421), time series recording of water content in memory 417 (step S422), and time series display of water content history (Step S423) is the same as in the second embodiment.
  • the fourth determination unit 421 determines whether or not an object exists within a predetermined range in the medium with respect to the pair of probes 201 and 202 based on the history of water content recorded in the memory 417 in chronological order. (Step S424). For example, the fourth determination unit 421 may determine whether the installation is good or bad based on how the water content and the propagation delay time change.
  • the fourth determination unit 421 when there is a sudden change, when the assumption is greatly deviated, or when the propagation delay time of the unwanted wave is close to the propagation delay time of the desired wave (NG area), the fourth determination unit 421 , that an object exists within a predetermined range in the medium with respect to the pair of probes 201 and 202 .
  • the determination result output unit 412 outputs the determination result of the fourth determination unit 421 (step S432). For example, when the fourth determination unit 421 determines that an object exists within a predetermined range in the medium with respect to the pair of probes 201 and 202, the determination result output unit 412 outputs information (for example, a message) indicating that the installation position of is not acceptable to the display device 500 .
  • the determination result output unit 412 determines that there is no object within the predetermined range in the medium for the pair of probes 201 and 202 by the fourth determination unit 421, the determination result output unit 412 information (for example, a message) indicating that the installation position is good is output to the display device 500 .
  • the fourth determination unit 421 outputs at least the determination result, it may or may not display the water content chronologically recorded in the memory 417 .
  • FIG. 37 shows the functional configuration of an information processing device according to the fourteenth modification.
  • An information processing device 400J according to the thirteenth modification has a configuration in which a fourth determination unit 421 is added to the information processing device 400H according to the eighth modification.
  • the operation of the fourth determination unit 421 is the same as that of the thirteenth modification.
  • the fourth determination unit 421 determines the depth of the object existing within a predetermined range in the medium based on the depth obtained by the insertion amount conversion unit 420 .
  • the determination result output unit 412 determines the depth of the probes 201 and 202. Information indicating that the amount of insertion into the medium is recommended may be output to the display device.
  • the determination result output unit 412 outputs a message such as "more shallow” or “more deep” based on the determination result, thereby notifying the user of the insertion amount. You can recommend.
  • FIG. 38 shows the functional configuration of an information processing device according to the fifteenth modification.
  • An information processing device 400K according to the fifteenth modification has a configuration in which a guide unit 422 is added to the information processing device 400I according to the thirteenth modification.
  • the guide unit 422 outputs information indicating that the installation position of the pair of probes 201 and 202 in the medium is not correct, or voice or information indicating that a better installation is recommended, through the audio output device 600 or the display device 500.
  • output to The audio output device 600 is typically a speaker or the like built into the information processing device 400I such as a smart phone or connected to the information processing device 400I.
  • the guide unit 422 may provide guidance by voice or display based on the determination situation and determination result.
  • the insertion speed is too fast for the judgment speed, instruct to insert at a slower speed, if there is an object nearby, instruct to change the installation location, announce the mode change, instruct according to the mode ( For example, an instruction not to move when shifting to normal mode, an instruction to move slowly when shifting to high speed mode, etc. may be mentioned.
  • FIG. 39 shows the functional configuration of an information processing device according to the sixteenth modification.
  • An information processing device 400L according to the 16th modification has a configuration in which a guide unit 422 is added to the information processing device 400J according to the 13th modification. That is, the information processing device 400L according to the 16th modification includes the multiple modes of the 11th modification (FIG. 33), the insertion amount converter 420 and the distance measuring sensor 370 (FIG. 28) of the 8th modification, and the The fourth determination part 421 (FIG. 37) of the 14th modification and the guide part 422 (FIG. 38) of the 15th modification are all included. The operation of the guide portion 422 is the same as that of the fifteenth modification. In addition, the guide unit 422 may output to the audio output device 600 or the display device 500 audio or information for guiding or recommending the amount of insertion of the probes 201 and 202 into the medium.
  • FIG. 40 shows the operation flow of the information processing device.
  • the operation flow of FIG. 40 is a combination of the operation flow of the eighth modification (FIG. 29), the operation flow of the eleventh modification (FIG. 33), and the operation flow of the fourteenth modification (FIG. 36). - It has a configuration with S436 added.
  • the guide unit 422 When the high speed mode is started (step S427), the guide unit 422 outputs guidance indicating that the high speed mode has been started (step S433).
  • the guide unit 422 is slower when the insertion speed is too fast relative to the measurement speed.
  • a guidance for instructing insertion at a high speed is output (step S434).
  • the guide unit 422 outputs guidance according to the determination result of the presence or absence of the object (step S432) of the fourth determination unit 421, that is, guidance for instructing to change the installation location when the object is nearby. (Step S435).
  • the guide section 422 outputs guidance indicating that the high speed mode has returned to the normal mode (step S436).
  • a water content sensor with high spatial resolution is used, the water content (permittivity, delay time) is continuously measured when inserting and removing from the medium, and the measurement results are obtained. Display continuously.
  • the transient characteristics it can be determined whether or not the installation position is appropriate, and the moisture distribution in the insertion direction can be determined.
  • the relationship between the amount of insertion (depth) and the amount of water can be expressed more accurately in moisture distribution measurement.
  • the propagation delay time of not only the desired wave (direct wave) but also other peaks (unwanted waves) can be obtained and displayed at the same time. etc.) can be known.
  • the insertion direction is not limited to the depth direction and may be the horizontal direction or the like, it is possible to know the water distribution in the horizontal direction. Furthermore, in judging whether the installation is good or bad, the user can make an objective judgment rather than subjectively by judging whether or not the installation is good or bad based on the moisture change or moisture distribution or by giving the insertion instruction to the user. Furthermore, by providing guidance based on the measurement conditions and measurement results, it becomes easier for the user to recognize the conditions.
  • the present invention can be related to Goal 2 "Zero Hunger” and Goal 6 "Clean Water and Sanitation” of the SDGs (Sustainable Development Goals) adopted at the United Nations Summit in 2015.
  • the present invention it is possible to measure the soil moisture content with high accuracy, and by controlling watering to crops according to the measurement results of the moisture sensor, it is possible to use water more efficiently.
  • the present disclosure may have the following configurations.
  • a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; a transmission coefficient calculator that calculates a transmission coefficient from the time waveform of the received transmitted wave; a determination unit that determines whether an object exists within a predetermined range in the medium with respect to the pair of probes based on the transmission coefficient;
  • An information processing device comprising: (2) The information processing device according to (1) above, An information processing apparatus, further comprising: a determination result output unit that outputs a determination result of the determination unit to a display device.
  • the determination result output unit When it is determined that an object exists within a predetermined range in the medium with respect to the pair of probes, the determination result output unit provides information indicating that the installation positions of the pair of probes in the medium are incorrect. to a display device. (4) The information processing device according to (2) or (3) above, When it is determined that an object exists within a predetermined range in the medium with respect to the pair of probes, the determination result output unit outputs information indicating the predetermined range in which the object is determined to exist to a display device. Information processing equipment.
  • the determination result output unit recommends that the pair of probes be installed outside the predetermined range in the medium.
  • An information processing device that outputs information indicating to a display device.
  • An information processing apparatus further comprising: an electric signal transmission control unit that outputs a command for the transmitter to transmit the electric signal to the transmitter when a predetermined trigger occurs.
  • the predetermined trigger includes installation of the pair of probes, fixed periodic timing, variable periodic timing and/or weather changes.
  • the information processing device according to any one of (1) to (8) above, The information processing apparatus, wherein the determination unit determines whether or not an object exists at a predetermined position in the medium with respect to two or more pairs of probes.
  • the information processing device according to any one of (1) to (10) above, further comprising a propagation time calculator that calculates the propagation time and signal strength of the transmitted wave, and calculates the peak signal strength A and time t1m_S21 of the desired wave
  • the determination unit is a time width calculation unit that calculates a time width F of the wave when the peak signal strength A of the desired wave becomes a predetermined signal strength less than the peak signal strength A; When the time width F is greater than or equal to the first threshold, it is determined that an object exists in a second range from the pair of probes, and when the time width F is less than the first threshold, the pair of probes a second determination unit that determines that an object does not exist in the second range from An information processing device.
  • the information processing device according to any one of (1) to (11) above, further comprising a propagation time calculator that calculates the propagation time and signal strength of the transmitted wave, and calculates the peak signal strength A and time t1m_S21 of the desired wave,
  • a third determination unit that determines that there is a An information processing device (13) The information processing device according to (12) above, The unnecessary wave calculation unit calculates a signal strength B when + ⁇ t time has elapsed from the time t 2m_S21 of the peak of the unnecessary wave, The third determination unit determines that there is no object in the third range when AB is greater than or equal to a third threshold, and determines that there is no object in the third range when AB is less than the third threshold. An information processing device that determines that an object exists in a third range.
  • the third determination unit determines that an object exists in the third range, the time difference ⁇ t, the position of the pair of antennas, the dielectric constant of the medium, the speed of light, the distance and propagation delay between the pair of probes a position calculation unit that calculates a set of position information
  • An information processing device further comprising: (16) The information processing device according to (15) above, Each of the pair of probes has a first end connected to the transmitter or the receiver, and is spaced apart from the first end in an axial direction orthogonal to the separation direction of the pair of antennas. a second end; The information processing apparatus, wherein the antenna is provided at a position of the probe spaced apart from the first end in the axial direction. (17) The information processing device according to (16) above, The information processing device, wherein the antenna is provided at the second end of the probe.
  • the moisture content conversion unit is configured to operate during an insertion/extraction period in which the pair of probes are inserted into and extracted from the medium from the second end in the axial direction, and the depth of the antenna in the medium continues to change dynamically. , continuously obtaining the moisture content of the medium, and recording the moisture content within the insertion/removal period in the memory in chronological order; The information processing device, wherein the moisture content output unit displays the moisture content within the insertion/removal period recorded in the memory in time series on the display device in time series.
  • the moisture content output unit creates a graph with two axes, the history of the moisture content recorded in the memory in time series and the elapsed time corresponding to the time series or the depth that changes in the time series, An information processing device displayed on the display device.
  • Insertion amount conversion for converting the distance that dynamically changes according to the insertion amount of the pair of probes measured by a ranging sensor that measures the distance to the surface of the medium into the depth of the antenna in the medium. further comprising a part,
  • the moisture content output unit displays on the display device a graph having two axes, the history of the moisture content recorded in the memory in time series and the depth that changes in time series. .
  • the information processing device according to any one of (18) to (20) above, The information processing device, wherein the water content output unit displays information indicating the depth of the object existing in the medium, which is estimated based on the change in the water content with respect to the depth, on the display device.
  • the water content output unit displays, in place of the water content history, the history of the desired wave propagation delay time corresponding to the water content, which is the propagation delay time of the desired wave that changes in time series, on the graph.
  • Information processing equipment (23) The information processing device according to (22) above, The information processing device, wherein the moisture content output unit further displays a history of propagation delay times of unnecessary waves on the graph.
  • the water content output unit may display the graph on the basis of the desired wave propagation delay time, and may indicate that an object exists within a predetermined range in the medium with respect to the pair of probes and may affect the calculation of the desired wave propagation delay time.
  • An information processing device that further displays a range of possible properties.
  • the moisture content conversion unit measures the moisture content frequently during insertion and removal of the pair of probes, and measures the moisture content less frequently than the high frequency when the pair of probes is non-dynamic. information processing equipment.
  • a fourth determination unit that determines the depth of the object; Information indicating that the installation positions of the pair of probes in the medium are incorrect when the fourth determination unit determines that an object exists within the predetermined range in the medium with respect to the pair of probes to the display device; and
  • An information processing device further comprising: (27) The information processing device according to (26) above, a ranging sensor that measures the distance to the surface of the medium; an insertion amount conversion unit that converts the distance measured by the range sensor, which dynamically changes according to the insertion amount of the pair of probes, into the depth of the antenna in the medium, The determination result output unit, based on the depth of the object determined by the fourth determination unit and the depth of the antenna in the medium converted by the insertion amount conversion unit, Information processing device for outputting information indicating recommendation of an amount to be inserted into the display device to the display device.
  • An information processing device comprising: (30) a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; calculating a transmission coefficient from the time waveform of the received transmitted wave; An information processing method for determining whether or not an object exists within a predetermined range in the medium with respect to the pair of probes based on the transmission coefficient.
  • the processor of the information processing device a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; a transmission coefficient calculator that calculates a transmission coefficient from the time waveform of the received transmitted wave;
  • An information processing program that operates as a determination unit that determines whether or not an object exists within a predetermined range in the medium with respect to the pair of probes based on the transmission coefficient.
  • An information processing program that operates as a moisture amount output unit that displays the history of the moisture amount recorded in the memory in time series on a display device in time series.
  • the processor of the information processing device a receiver that receives a transmitted wave transmitted through a medium between the pair of probes, among the incident waves transmitted from a transmitter that transmits an electrical signal including an incident wave to one of a pair of probes each having an antenna; a transmission coefficient calculator that calculates a transmission coefficient from the time waveform of the received transmitted wave;
  • REFERENCE SIGNS LIST 100 measurement device 110 sensor device 200 sensor head 201 probe 202 probe 210 antenna 300 measurement unit 308 cable and/or wiring on board 310 directional coupler 320 transmitter 330 incident wave receiver 340 reflected wave receiver 350 transmitted wave receiver 360 communication unit 400 information processing device 401 transmission coefficient calculation unit 402 first determination unit 403 reflection coefficient calculation unit 404 propagation time calculation unit 405 round trip time calculation unit 406 propagation delay time calculation unit 407 duration calculation unit 408 second determination unit 409 signal 410 third determination unit 411 position calculation unit 412 determination result output unit 413 electric signal transmission control unit 414 unnecessary wave calculation unit 415 determination unit 500 display device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】物体の影響が発生しない位置にセンサ装置を設置して測定精度を上げることにある。 【解決手段】情報処理装置は、各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記第1の範囲の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部と、を具備する。水分センサの測定結果に応じて、作物への潅水制御を行うことも可能とする。これにより、農業における水使用の効率化に貢献しうる。

Description

情報処理装置、情報処理方法及び情報処理プログラム
 本開示は、土壌等の媒質に関する判定を行う情報処理装置、情報処理方法及び情報処理プログラムに関する。
 土壌水分センサは、土壌などの媒質中の水分量を測定する装置であり、農業や土壌環境調査の分野において利用されている。例えば、農業分野では、土壌水分センサを利用することで、作物への最適な灌水を行うことができ、商品の付加価値向上に利用されている。
国際公開第2018/221051号 特開2020-187120号公報 米国特許出願公開第2018/0224382号明細書 特開2014-74601号公報
 土壌水分センサを使うにあたり、適切な設置位置を知りたい(例えば、異物の影響が無い位置か、代表的な値が取れる位置か等)、また、土壌内における深さ方向の水分分布を測定したい、というニーズがある。特許文献1-3の土壌水分センサの設置時にアンテナ周囲に障害物(物体)がある場合は、測定精度が劣化する可能性がある。従来センサではアンテナ間の電波の伝搬遅延時間を測定するが、アンテナ周囲に障害物(物体)がある場合は、不要な伝搬パスが生じ、伝搬遅延時間に誤差が生じる可能性がある。しかしながら、ユーザは正しくセンサを設置できているか判断できない。典型的な水分センサはロッド周辺を全体的に測定しているため空間解像度が低いので、媒質の深さ方向の水分分布を測定することが難しい。また、空間解像度が低いため平均的な測定を行うことで異物の影響を減らすことを図れるものの、異物が存在する場所に水分センサが設置された場合には、異物の影響を完全に取り除くことが難しい。
 以上のような事情に鑑み、本開示の目的は、土壌水分センサ装置の測定精度を上げることにある。より具体的には、本開示の目的は、障害物(物体)の影響が発生しない位置にセンサ装置を設置して測定精度を上げ、また、媒質の深さ方向の水分分布を測定して測定精度を上げることにある。
 本開示の一形態に係る情報処理装置は、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部と、
 を具備する。
 設置時にアンテナ周囲に存在する物体の有無を判定することが出来る。障害物の存在の判定のみならず、有益な物体を積極的に検出するときにも使用可能である。
 情報処理装置は、
 前記判定部の判定結果を、表示装置に出力する判定結果出力部
 をさらに具備してもよい。
 これにより、ユーザは測定結果における障害物(物体)の影響の有無を知ることができる。
 前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブの前記媒質中での設置位置が否であることを示す情報を、表示装置に出力してもよい。
 これにより、ユーザは一対のプローブを異なる位置に設置し直すことができる。
 前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記物体が存在すると判定された前記所定範囲を示す情報を、表示装置に出力してもよい。
 これにより、ユーザは容易に、所定範囲の外に一対のプローブを設置し直すことができる。
 前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブを前記媒質中の前記所定範囲の外に設置することをリコメンドすることを示す情報を、表示装置に出力してもよい。
 これにより、ユーザは容易に、リコメンドされる範囲に一対のプローブを設置し直すことができる。
 前記所定範囲を示す情報は、前記所定範囲を示す画像を含んでもよい。
 所定範囲を示す画像を見ることで、ユーザは容易に、所定範囲の外に一対のプローブを設置し直すことができる。
 情報処理装置は、
 所定のトリガが発生すると、前記送信機が前記電気信号を送信するための命令を、前記送信機に出力する電気信号送信制御部
 をさらに具備してもよい。
 これにより、適切なタイミングで送信機が電気信号を送信することができる。
 前記所定のトリガは、前記一対のプローブの設置時、不変の周期的なタイミング、可変の周期的なタイミング及び/又は天候の変化、を含んでもよい。
 不変の周期的なタイミングは、例えば、1日毎、1週毎、1か月毎等のタイミングを意味する。可変の周期的なタイミングは、例えば、悪天候時や、植物の根が成長しやすい季節等に周期を上げる(タイミングが頻繁に発生する)ことを意味する。天候の変化は、悪天候時や雨天時、悪天候や雨天の後、等、土壌中の石や岩が移動しやすい状態を意味する。
 前記判定部は、2組以上の前記一対のプローブに対して前記媒質中の所定位置に物体が存在するか否かを判定してもよい。
 物体の存在する位置を幅のある範囲ではなく1点に特定することが出来る。
 前記判定部は、前記媒質に含まれる第1の媒質の伝搬時間をtAとし、前記媒質に含まれる前記第1の媒質と異なる第2の媒質の伝搬時間をtBとしたとき、伝搬時間の範囲tA~tBの間において、t=0に最も近い前記透過係数のピークの信号強度が最大値となる場合は、前記一対のプローブの間である第1の範囲に物体が存在しないと判定し、最大値とならない場合は、前記第1の範囲に物体が存在すると判定する、第1の判定部を有してもよい。
 一対のプローブの間に物体が存在すると判定することができる。
 情報処理装置は、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部をさらに具備し、
 前記判定部は、
  前記所望波のピークの信号強度A未満の所定の信号強度となるときの波の時間幅Fを算出する時間幅算出部と、
  前記時間幅Fが第1の閾値以上である場合、前記一対のプローブから第2の範囲に物体が存在すると判定し、前記時間幅Fが前記第1の閾値未満である場合、前記一対のプローブから前記第2の範囲に物体が存在しないすると判定する、第2の判定部と、
 を有してもよい。
 一対のプローブから極近傍の第2の範囲に物体が存在するか否かを判定することが出来る。
 情報処理装置は、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部をさらに具備し、
 前記判定部は、
  前記所望波のピークの時間t1m_S21と、前記所望波のピークの時間t1m_S21の後に発生した次のピークである不要波のピークの時間t2m_S21、との時間差Δt=t2m_S21-t1m_S21を算出する、不要波算出部と、
  Δtが第2の閾値以上である場合、前記第2の範囲より広い第3の範囲に物体が存在しないと判定し、Δtが前記第2の閾値未満である場合、前記第3の範囲に物体が存在すると判定する、第3の判定部と、
 を有してもよい。
 一対のプローブから遠方の第3の範囲に物体が存在するか否かを判定することが出来る。
 前記不要波算出部は、前記不要波のピークの時間t2m_S21から+Δt時間経過したときの信号強度Bを算出し、
 前記第3の判定部は、A-Bが第3の閾値以上である場合、前記第3の範囲に物体が存在しないと判定し、A-Bが前記第3の閾値未満である場合、前記第3の範囲に物体が存在すると判定してもよい。
 一対のプローブから遠方の第3の範囲に物体が存在するか否かを判定することが出来る。
 情報処理装置は、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 前記第3の判定部が前記第3の範囲に物体が存在すると判定すると、前記時間差Δt、前記一対のアンテナの位置、前記媒質の比誘電率、光速、前記一対のプローブ間の距離及び伝搬遅延時間tpd1に基づき、前記物体が存在する可能性がある位置情報の集合を算出する位置算出部と、
 をさらに具備してもよい。
 一対のプローブから遠方の第3の範囲に物体が存在する場合、物体が存在する可能性がある位置情報の集合を算出することが出来る。
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部と、
 をさらに具備してもよい。
 本実施形態によれば、媒質の水分分布を測定し、ユーザに提示することができる。
 前記一対のプローブは、それぞれ、前記送信機又は前記受信機と接続する第1の端部と、一対の前記アンテナの離間方向に直交する方向である軸方向において前記第1の端部から離間する第2の端部と、を有し、
 前記アンテナは、前記プローブの、前記軸方向において前記第1の端部から離間した位置に設けられてもよい。
 アンテナは、プローブの軸方向に亘って広く設けられるのではなく、軸方向のピンポイントに設けられる。このため、アンテナは、軸方向の水分量測定エリアが狭く、空間分解能が高い。即ち、本実施形態に係るアンテナは、媒質の軸方向の全体的な水分量ではなく、軸方向のピンポイントなエリアの水分量を測定することができる。
 前記アンテナは、前記プローブの前記第2の端部に設けられてもよい。
 アンテナがプローブの挿入先端である第2の端部に設けられることで、プローブを媒質中に挿抜するときに、軸方向のさらに広範囲に亘って、媒質の水分量を測定することができる。
 前記水分量変換部は、前記一対のプローブが前記第2の端部から前記軸方向に前記媒質に挿抜されて前記アンテナの前記媒質内での深さが動的に変化し続ける挿抜期間内の、前記媒質の水分量を継続的に得て、前記挿抜期間内の前記水分量を前記メモリに時系列的に記録し、
 前記水分量出力部は、前記メモリに時系列的に記録された前記挿抜期間内の前記水分量を、前記表示装置に時系列的に表示してもよい。
 これにより、アンテナが媒質中の深さ方向の異なる位置にある場合の、深さ方向の異なる位置の水分量を継続的に測定することができる。これにより、継続的に測定した深さ方向の異なる位置の水分量を、媒質の深さ方向の水分分布としてユーザに提示することができる。
 前記水分量出力部は、前記メモリに時系列的に記録された前記水分量の履歴と、前記時系列に対応する経過時間又は前記時系列的に変化する深さとを2軸とするグラフを、前記表示装置に表示してもよい。
 これにより、プローブの挿抜時の経過時間又は経過時間に略比例したアンテナの深さに対応する媒質の水分量を、ユーザにとって直感的に表示することが出来る。
 前記媒質の表面に対する距離を測定する測距センサにより測定される前記一対のプローブの挿入量に応じて動的に変化する距離を、前記アンテナの前記媒質内での深さに変換する挿入量変換部をさらに具備し、
 前記水分量出力部は、前記メモリに時系列的に記録された前記水分量の履歴と、前記時系列的に変化する深さとを2軸とするグラフを、前記表示装置に表示してもよい。
 測距センサを使うことで、さらに正確に媒質の深さを求めることが可能になる。
 前記水分量出力部は、前記深さに対する前記水分量の変化に基づき推定される、前記媒質中に存在する物体の深さを示す情報を、前記表示装置に表示してもよい。
 ユーザは、物体の影響を受けないように、プローブを別の地点に挿入したり、プローブを全て挿入せずに媒質Mからややはみ出た状態で設置するなどの対応を取ることが可能となる。
 前記水分量出力部は、前記水分量の履歴に代えて、前記水分量に対応する、所望波の伝搬遅延時間である所望波伝搬遅延時間の履歴を、前記グラフに表示してもよい。
 前記水分量出力部は、前記グラフに、不要波の伝搬遅延時間の履歴をさらに表示してもよい。
 所望波伝搬遅延時間に加えて不要波の伝搬遅延時間が表示されれば、物体が所定範囲に存在するため設置場所を変更した方がよいとユーザは直感的に理解できる。
 前記水分量出力部は、前記グラフに、前記所望波伝搬遅延時間を基準として、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在し所望波伝搬遅延時間の算出に影響する可能性のある範囲をさらに表示してもよい。
 不要波の伝搬遅延時間の少なくとも一部が、前記所望波伝搬遅延時間の算出に影響する可能性のある範囲に含まれるとき、一対のプローブに対して媒質中の所定範囲に物体が存在する可能性があることを意味する。不要波の伝搬遅延時間の少なくとも一部が、所望波伝搬遅延時間の算出に影響する可能性のある範囲に含まれれば、物体が所定範囲に存在するため設置場所を変更した方がよいとユーザは直感的に理解できる。
 前記水分量変換部は、前記一対のプローブの挿抜中は、前記水分量を高頻度で測定し、前記一対のプローブが非動的であるときは、前記水分量を前記高頻度よりも低頻度で測定してもよい。
 これにより、プローブの動的又は非動的な状況に応じて、最適な測定が行える。
 情報処理装置は、
 前記メモリに時系列的に記録された前記水分量や前記伝搬遅延時間の履歴に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定し、存在する場合、前記物体の深さを判定する第4の判定部と、
 前記第4の判定部により前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブの前記媒質中での設置位置が否であることを示す情報を、前記表示装置に出力する判定結果出力部と、
 をさらに具備してもよい。
 これにより、ユーザは一対のプローブを異なる位置に設置し直すことができる。
 情報処理装置は、
 前記媒質の表面に対する距離を測定する測距センサと、
 前記一対のプローブの挿入量に応じて動的に変化する前記測距センサが測定する距離を、前記アンテナの前記媒質内での深さに変換する挿入量変換部と、をさらに具備し、
 前記判定結果出力部は、前記第4の判定部により判定された前記物体の深さと、前記挿入量変換部により変換された前記アンテナの前記媒質内での深さとに基づき、前記プローブの前記媒質への挿入量をリコメンドすることを示す情報を、前記表示装置に出力してもよい。
 例えば、挿入量と設置良否の関係が分かることから、判定結果出力部は、判定結果を基に、「もっと浅く」、「もっと深く」等のメッセージを出力することで、挿入量をユーザにリコメンドすることができる。
 情報処理装置は、
 前記一対のプローブの前記媒質中での設置位置が否であることを示す情報及び/又は前記プローブの前記媒質への挿入量をリコメンドすることを示す情報を示す音声を、音声出力装置に出力するガイド部
 をさらに具備してもよい。
 ガイド部は、判定状況や判定結果を基に音声や表示によるガイダンスを行っても良い。例えば、判定速度に対して挿入速度が速過ぎる場合はより遅い速度で挿入することを指示、物体が近くにある場合は設置場所を変えるように指示、モード変更のアナウンス、モードに沿った指示(例えば、通常モードに移行した際は動かさないように指示、高速モードに移行した際はゆっくり動かすように指示)等が挙げられる。
 本開示の一形態に係る情報処理装置は、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部と、
 を具備する。
 本実施形態によれば、媒質の水分分布を測定し、ユーザに提示することができる。
 本開示の一形態に係る情報処理方法は、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出し、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する。
 本開示の一形態に係る情報処理方法は、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出し、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出し、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出し、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出し、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出し、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録し、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する。
 本開示の一形態に係る情報処理プログラムは、
 情報処理装置のプロセッサを、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部
 として動作させる。
 本開示の一形態に係る情報処理プログラムは、
 情報処理装置のプロセッサを、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部
 として動作させる。
測定装置の一構成例を示す。 測定ユニットの一構成例を示す。 第1の実施形態に係る情報処理装置の機能的構成を示す。 情報処理装置の動作フローを示す。 マルチパスの発生を説明するための図である。 所望波のピークの時間及び反射波のピークの時間を説明するための図である。 不要波算出部の処理を説明するための図である。 所望波のピークの時間及び不要波のピークの時間を説明するための図である。 Xの例1-9GHz、カイザー窓β=6.0のグラフである。 一対のアンテナの中点を原点とするxyz座標系を示す。 物体が存在する可能性がある位置情報の集合である3次元の楕円の表面の一例を示す。 物体が存在すると判定された所定範囲を示す画像の一例を示す。 第1の変形例に係る情報処理装置の機能的構成を示す。 第2の変形例に係る情報処理装置の機能的構成を示す。 第3の変形例に係る情報処理装置の機能的構成を示す。 第4の変形例に係る情報処理装置の機能的構成を示す。 第5の変形例に係る情報処理装置の機能的構成を示す。 第6の変形例に係る情報処理装置の機能的構成を示す。 本実施形態に係る測定装置及び比較例を模式的に示す。 第2の実施形態に係る情報処理装置の機能的構成を示す。 情報処理装置の動作フローを示す。 水分量出力部による表示例を示す。 第1の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。 第2の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。 第3の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。 第4の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。 比較例に係る水分センサを示す。 第8の変形例に係る情報処理装置の機能的構成を示す。 情報処理装置の動作フローを示す。 水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。 第9の変形例を示す。 第10の変形例を示す。 第11の変形例の動作フローを示す。 第12の変形例を示す。 第13の変形例に係る情報処理装置の機能的構成を示す。 情報処理装置の動作フローを示す。 第14の変形例に係る情報処理装置の機能的構成を示す。 第15の変形例に係る情報処理装置の機能的構成を示す。 第16の変形例に係る情報処理装置の機能的構成を示す。 情報処理装置の動作フローを示す。
 以下、図面を参照しながら、本開示の実施形態を説明する。
 I.第1の実施形態
 1.測定装置の構成例
 図1は、測定装置の一構成例を示す。
 測定装置100は、媒質Mに含まれる水分量を測定するものであり、センサ装置110を有する。媒質Mとしては、例えば、農作物を育成するための土壌が想定される。
 センサ装置110は、水分量の測定に必要なデータを測定データとして取得する。センサ装置110は、測定データを信号409を介して情報処理装置400へ送信する。
 情報処理装置400は、センサ装置110と通信可能であり、例えば、エンドユーザ(農作業者、農作業管理者等)が使用する端末装置(例えば、スマートフォン、タブレットコンピュータ、パーソナルコンピュータ等)である。この場合、センサ装置110から情報処理装置400への信号409は、無線通信により伝送される。あるいは、情報処理装置400は、センサ装置110の本体に内蔵されてもよい。この場合、センサ装置110から情報処理装置400への信号409は、有線通信により伝送されてもよいし、無線通信により伝送されてもよい。情報処理装置400は、測定データを用いて水分量を測定する。
 センサ装置110は、センサヘッド200と測定ユニット300とを有する。センサヘッド200は、一対のプローブ201及び202からなる部品である。これらのプローブ201及び202は、ケーブル及び/又は基板上の配線308及び309を介して測定ユニット300に接続される。ケーブル及び/又は基板上の配線308及び309として、例えば、同軸ケーブルが用いられる。これらのケーブル及び/又は基板上の配線308及び309は、それぞれの先端をプローブ201及び202の内部に埋め込むことにより、プローブ201及び202に接続されている。測定ユニット300は、プローブ201及び202の一方に電磁波EWを送信させ、その電磁波EWを他方に受信させて測定データを生成する。
 センサヘッド200は、プローブ201及び202を有する。プローブ201及び202のそれぞれの長さは、例えば、75乃至150ミリメートル(mm)である。プローブ201及び202のそれぞれの太さ(直径、あるいは、プローブ断面の幅)は、例えば、3乃至30ミリメートル(mm)である。これらのプローブ201及び202は、土壌等の媒質の中に配置され、プローブ201及び202の間で所定周波数の電磁波を送受信することが可能なアンテナ210をそれぞれ有する。一対のプローブ201及び202は、細長いロッド状であり、それぞれ、第1の端部203、203と、第2の端部204、204とを有する。プローブ201及び202の第1の端部203、203は、測定ユニット300の送信機320又は透過波受信機350(図2)と接続する。プローブ201及び202の第2の端部204、204は、プローブ201及び202の軸方向Zにおいて第1の端部203、203から離間し、媒質Mに対する挿入先端である。即ち、プローブ201及び202の軸方向Zは、媒質Mへの挿入方向である。プローブ201及び202の軸方向Zは、一対のアンテナ210、210の離間方向Xに直交する方向である。アンテナ210、210は、プローブ201及び202の、軸方向Zにおいて第1の端部203、203から離間した位置に設けられる。具体的には、アンテナ210、210は、プローブ201及び202の第2の端部204、204に設けられる。言い換えれば、アンテナ210、210は、プローブ201及び202の軸方向Zに亘って広く設けられるのではなく、軸方向Zのピンポイントに設けられる。このため、アンテナがプローブの軸方向Zに亘って広く設けられるケースに比べて、アンテナ210、210は、軸方向Zの水分量測定エリアが狭く、軸方向Zの空間分解能が高い。
 プローブ201及び202は、それぞれのアンテナ210の間の離間方向Xの距離が所定値Dとなるように媒質中に軸方向Zに埋め込まれる。例えば、これらのプローブ201及び202は、媒質M中に概ね垂直な姿勢で軸方向Zに埋め込まれる。なお、アンテナ210の間の距離がDとなるのであれば、それらの姿勢は、垂直な姿勢に限定されない。また、果樹園等において、ショベル等の掘削機で媒質Mに縦穴を掘り、縦穴の内周壁面からプローブ201及び202を媒質Mに挿入するケースも考えられる。この場合には、プローブ201及び202の軸方向Z(即ち、挿入の深さ方向)は垂直方向(縦方向)ではなく水平方向(横方向)となる。本実施形態はこの様なユースケースにも適用可能である。
 アンテナ210の間の距離Dの大きさは特に限定されない。距離Dが大きすぎると、媒質Mを伝搬する電磁波EWの減衰が大きくなり、十分な受信強度が得られなくなるおそれがある。一方、距離Dが小さすぎると、技術的に観測が難しくなるおそれがある。これらを考慮して、距離Dは適切な値に設定される。例えば、距離Dは、25乃至75ミリメートル(mm)である。
 2.測定ユニット
 図2は、測定ユニットの一構成例を示す。
 測定ユニット300は、方向性結合器310、送信機320、通信部360、入射波受信機330、反射波受信機340及び透過波受信機350を有する。測定ユニット300として、例えば、ベクトルネットワークアナライザが用いられる。
 方向性結合器310は、ケーブル及び/又は基板上の配線308を伝送する電気信号を入射波と反射波とに分離する。入射波は、送信機320により送信された電気信号の波であり、反射波は、プローブ201の終端で入射波が反射した波である。この方向性結合器310は、入射波を入射波受信機330に供給し、反射波を反射波受信機340に供給する。
 送信機320は、所定周波数の電気信号を電気信号として方向性結合器310及びケーブル及び/又は基板上の配線308を介して、プローブ201に送信する。電気信号内の入射波として、例えば、CW(Continuous Wave)波が用いられる。この送信機320は、例えば、1乃至9ギガヘルツ(GHz)の周波数帯域内において、50メガヘルツ(MHz)のステップで周波数を順に切り替えて電気信号を送信する。
 入射波受信機330は、方向性結合器310からの入射波を受信する。反射波受信機340は、方向性結合器310からの反射波を受信する。透過波受信機350は、プローブ202からの透過波を受信する。ここで、透過波は、プローブ201及び202の間の媒質を透過した電磁波をプローブ202が電気信号に変換したものである。
 入射波受信機330、反射波受信機340及び透過波受信機350は、受信した入射波、反射波及び透過波に対して、直交検波とAD(Analog to Digital)変換とを行って測定データとして信号409を介して情報処理装置400に送信する。
 3.情報処理装置の機能的構成
 図3は、第1の実施形態に係る情報処理装置の機能的構成を示す。
 情報処理装置400は、ROMが記憶する情報処理プログラムをCPU等のプロセッサがRAMにロードして実行することにより、電気信号送信制御部413、透過係数算出部401、第1の判定部402、反射係数算出部403、伝搬時間算出部404、往復時間算出部405、伝搬遅延時間算出部406、時間幅算出部407、第2の判定部408、不要波算出部414、第3の判定部410、位置算出部411及び判定結果出力部412として動作する。
 第1の判定部402、時間幅算出部407、第2の判定部408、不要波算出部414、第3の判定部410は、判定部415を構成する。判定部415は、一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在するか否かを判定する。
 情報処理装置400は、さらに、水分量変換部(第2の実施形態で説明)を有する。水分量変換部は、往復時間(後述)、伝搬時間(後述)及び伝搬遅延時間(後述)に基づいて水分量を測定する。水分量変換部は、まず、往復時間及び伝搬時間から伝搬遅延時間を算出する。水分量変換部は、水分量と伝搬遅延時間との間の関係を示す係数を読み出す。水分量変換部は、係数を用いて、算出した伝搬遅延時間を水分量に変換する。水分量変換部は、得られた水分量を、必要に応じた外部の装置や機器へ出力する。
 4.情報処理装置
 図4は、情報処理装置の動作フローを示す。
 電気信号送信制御部413は、所定のトリガが発生すると、測定ユニット300の送信機320が入射波を含む電気信号を送信するための命令を、送信機320に出力する(ステップS400)。所定のトリガは、一対のプローブ201及び202の設置時、不変の周期的なタイミング、可変の周期的なタイミング及び/又は天候の変化、を含む。不変の周期的なタイミングは、例えば、1日毎、1週毎、1か月毎等のタイミングを意味する。可変の周期的なタイミングは、例えば、悪天候時や、植物の根が成長しやすい季節等に周期を上げる(タイミングが頻繁に発生する)ことを意味する。天候の変化は、悪天候時や雨天時、悪天候や雨天の後、等、土壌中の石や岩が移動しやすい状態を意味する。送信機320は、命令を受けて入射波を含む電気信号を送信する。
 透過係数算出部401は、透過波受信機350が受信した透過波の時間波形から透過係数を算出する(ステップS401)。
 第1の判定部402は、伝搬時間の範囲tA~tBの間において、t=0に最も近い透過係数のピークの信号強度を判定する(ステップS402)。tAは、媒質に含まれる第1の媒質(例えば、空気)の伝搬時間である。tBは、媒質に含まれる第1の媒質と異なる第2の媒質(例えば、水)の伝搬時間である。第1の判定部402は、tA~tBの間において、t=0に最も近い透過係数のピークの信号強度が最大値となる場合は、このピークを所望波と判定し、一対のプローブ201及び202の間である第1の範囲に物体が存在しないと判定する(ステップS402、NO)。一方、第1の判定部402は、tA~tBの間において、t=0に最も近い透過係数のピークの信号強度が最大値とならない場合は、一対のプローブ201及び202の間である第1の範囲に障害物(物体)が存在する可能性があるため、一対のプローブ201及び202の設置場所が否と判定する(ステップS402、YES)。障害物(物体)は、例えば、植物の根や枝、石や岩等である。
 図5は、マルチパス(所望波及び不要波の2つのパス)の発生を説明するための図である。
 (A)の様に一対のプローブ201及び202の間である第1の範囲に障害物(物体)が存在しない場合(ステップS402、NO)、時間軸波形には一対のプローブ201及び202の間の伝搬時間を表す所望波が存在する(B)。
 一方、(C)の様に一対のプローブ201及び202の間である第1の範囲に障害物(物体)が存在する場合(ステップS402、YES)、障害物(物体)に反射した波が不要なパスとなり(マルチパスが発生し)、時間軸波形に不要波が発生する(D)。具体的には、時間tA~tBの、t=0に最も近いピークが最大にならない。
 一方、反射係数算出部403は、反射波受信機340が受信した反射波(プローブ201で入射波が反射した反射波)の時間波形から反射係数を算出する(ステップS403)。
 図6は、所望波のピークの時間及び反射波のピークの時間を説明するための図である。
 第1の判定部402が一対のプローブ201及び202の間である第1の範囲に物体が存在しないと判定すると(ステップS402、NO)、伝搬時間算出部404は、透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する(ステップS404)。図6の(A)に示す様に、伝搬時間とその信号強度を与える所望波のピークは、強度の最大値を与える時間をt1_S21とし、その前後の時間の数ポイントの信号強度から求める。例えば、二次関数でフィッティグしてその最大値の点をt1m_S21とする。二次関数以外でフィッティングしてもよい。また、フィッティングせずt1m_S21 =t1_S21としてもよい。
 往復時間算出部405は、反射波の往復時間及び信号強度を算出し、反射波のピークの信号強度及び時間t1m_S11を算出する(ステップS405)。図6の(B)に示す様に、往復時間とその信号強度を与える所望波のピークは、強度の最大値を与える時間をt1_S11とし、その前後の時間の数ポイントの信号強度から求める。例えば、二次関数でフィッティグしてその最大値の点をt1m_S11とする。二次関数以外でフィッティングしてもよい。また、フィッティングせずt1m_S11=t1_S11としてもよい。
 伝搬遅延時間算出部406は、所望波のピークの時間t1m_S21と反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する(ステップS406)。伝搬遅延時間は、プローブ201及び202の間の媒質を電磁波が伝搬する時間である。
 時間幅算出部407は、所望波のピークの信号強度A(ステップS404の信号強度A)未満の所定の信号強度となるときの波の時間幅Fを算出する(ステップS407)。所望波のピークの信号強度A未満の所定の信号強度とは、例えば、所望波のピークの信号強度Aの半分以下の信号強度、である。この所定の信号強度となるときの波の時間幅Fを、以下、半値幅Fと称することがある。例えば、所望波のピークの信号強度Aが6dBである場合、信号強度Aの半分以下の信号強度は、3dB以下である。Fは必ずしも半値幅である必要はなく、所望波のピークの信号強度のXdB以下の時間幅としてもよい。
 第2の判定部408は、時間幅Fが第1の閾値以上であるか否かを判定することにより、第2の範囲に物体が存在するか否かを判定する(ステップS408)。図5の(E)に示す様に、第2の範囲とは、具体的には、一対のプローブ201及び202の少なくともいずれか一方の極近傍範囲である。第2の判定部408は、時間幅Fが第1の閾値以上である場合、一対のプローブ201及び202から第2の範囲に物体が存在する可能性があるため、一対のプローブ201及び202の設置場所が否と判定する(ステップS408、YES)。図5の(F)に示す様に、「時間幅Fが第1の閾値以上である」とは、2個のピークが重なり半値幅が太いことを意味する。一方、第2の判定部408は、時間幅Fが第1の閾値未満である場合、一対のプローブ201及び202から第2の範囲に物体が存在しないすると判定する(ステップS408、NO)。
 図7は、不要波算出部の処理を説明するための図である。
 不要波算出部414は、所望波のピークの時間t1m_S21と、所望波のピークの時間t1m_S21の後に発生した次のピークである不要波のピークの時間t2m_S21、との時間差Δt=t2m_S21-t1m_S21を算出する。さらに、不要波算出部414は、不要波のピークの時間t2m_S21から+Δt時間経過したときの信号強度Bを算出する(ステップS409)。
 図8は、所望波のピークの時間及び不要波のピークの時間を説明するための図である。
 具体的には、不要波算出部414は、所望波のピークの時間t1m_S21から+の時間軸方向の信号強度(即ち、時間t1m_S21より時間的に後の、透過波の信号強度)を確認する。不要波算出部414は、前の振幅から増加し減少に転じた個所の振幅を2つ目の最大値を与える時間を、不要波のピークの時間t2m_S21とする。このときの信号強度A'とする。
 例えば、t1m_S21と同様に、二次関数でフィッティングしてその最大値をt2m_S21とする。二次関数以外でフィッティングしてもよい。また、フィッティングせずt2m_S21=t2_S21としてもよい。
 次に、不要波算出部414は、不要波ピークから+Δt時間経過したときの不要波の信号強度Bを算出する。信号強度Bは、不要波の包絡線の関数g(T)(Tは時間)を用いて算出する。g(Δt)が既知であれば、Bは求まる。この関数g(T,win,Fr)は窓関数や、掃引周波数範囲によって異なる。例えば、ある掃引周波数範囲Fr、窓関数をwin、この周波数範囲Frにおける逆高速フーリエ変換をIFFTとすると、
 g(T)=X(T),X=|IFFT(win)|
 の関係がある。g(T)は窓関数、掃引周波数範囲に依存する。窓関数は例えばカイザー窓や、ハミング窓がある。窓関数が無くてもよい。
 図9は、Xの例1-9GHz、カイザー窓β=6.0のグラフである。
 よって、信号強度B[dB]は下記式で表される。
 B=A'+g(Δt)[dB]
 第3の判定部410は、A-BとΔtを用いて不要波の影響を判定することにより、第3の範囲に物体が存在するか否かを判定する(ステップS410)。図5の(G)に示す様に、第3の範囲とは、具体的には、一対のプローブ201及び202から遠方の範囲であり、第2の範囲より広い。
 一例として、第3の判定部410は、Δtが第2の閾値(例えば、500ps)以上である場合、第3の範囲に物体が存在しないと判定し、一対のプローブ201及び202の設置位置が良好であると判定する(ステップS410、NO)。一方、第3の判定部410は、Δtが第2の閾値未満である場合、第3の範囲に物体が存在する可能性があるため、一対のプローブ201及び202の設置場所が否と判定する(ステップS410、YES)。図5の(H)に示す様に、「Δtが第2の閾値未満である」とは、不要波が所望波に時間的に近い場合、所望波の形状が崩れ、ピーク位置がシフトして測定精度が劣化することを意味する。
 別の例として、第3の判定部410は、A-Bが第3の閾値(例えば、20dB)以上である場合、第3の範囲に物体が存在しないと判定し、一対のプローブ201及び202の設置位置が良好であると判定する(ステップS410、NO)。一方、第3の判定部410は、A-Bが第3の閾値未満である場合、第3の範囲に物体が存在すると判定する可能性があるため、一対のプローブ201及び202の設置場所が否と判定する(ステップS410、YES)。
 第3の判定部410が第3の範囲に物体が存在すると判定すると(ステップS410、YES)、位置算出部411は、時間差Δt、一対のアンテナ210及び210の位置、媒質の比誘電率、光速、一対のプローブ201及び202の間の距離及び伝搬遅延時間tpd1に基づき、物体が存在する可能性がある位置情報の集合を算出することにより、障害物(物体)の位置を推定する(ステップS411)。物体が存在する可能性がある位置情報の集合とは、具体的には、一対のアンテナ210及び210の中点を中心とした3次元の楕円の表面、である。
 図10は、一対のアンテナの中点を原点とするxyz座標系を示す。
 具体的には、位置算出部411は、一対のアンテナ210及び210の中点を原点として、図10のようなxyz座標系を生成する。障害物(物体)の位置座標を(x,y,z)とし、一対のアンテナ210及び210の位置座標をF(p,0,0),F'(-p,0,0)とする。
 不要なパスの距離lは、図中矢印A及びBであり、数1の式で示される。
Figure JPOXMLDOC01-appb-M000001
 まず、媒質の比誘電率εr,光速c,プローブ間距離L,伝搬遅延時間をtpd1=t1m_S21-t1m_S11とすると、√εrは、数2の式で示される。
Figure JPOXMLDOC01-appb-M000002
 lは、不要なパスの伝搬遅延時間tpd2=t2m_S21-t1m_S11を用いると、数3の式で示される。
Figure JPOXMLDOC01-appb-M000003
 ここで、Δt=t2m_S21-t1m_S21であるから、tpd2=Δt+t1m_S21-t1m_S11=Δt+tpd1であり、数4の式になる。
Figure JPOXMLDOC01-appb-M000004
 よって、数5の式を満たす3次元の楕円関数上に、障害物(物体)の位置を与える解が存在する。
Figure JPOXMLDOC01-appb-M000005
 ここで、数6に示す様に、数5の式をαとする。
Figure JPOXMLDOC01-appb-M000006
 この場合、数7の式を満たす3次元の楕円関数上に、障害物(物体)の位置を与える解が存在する。
Figure JPOXMLDOC01-appb-M000007
 図11は、物体が存在する可能性がある位置情報の集合である3次元の楕円の表面の一例を示す。
 図中、2個のドットは、一対のアンテナ210及び210の位置(-p,0,0),(p,0,0)を示す。プローブ間距離L=30e-3[m]、Δt=2000e-12[s]、伝搬遅延時間tpd1=400e-12[s]、p=L/2[m]である。Δtは、所望波のピークの時間と、所望波のピークの時間の後に発生した次のピークである不要波のピークの時間との時間差である。
 第3の判定部410が、第3の範囲に物体が存在しないと判定し、一対のプローブ201及び202の設置位置が良好であると判定する(ステップS410、NO)と、判定結果出力部412は、一対のプローブ201及び202の媒質中での設置位置が良好であることを示す情報を、表示装置500に出力する(ステップS412)。表示装置500は、例えば、情報処理装置400のディスプレイやLEDライト等である。情報処理装置400は、音声出力装置や振動装置をさらに有してもよい。表示装置500、音声出力装置及び振動装置は、情報処理装置400と通信可能な、情報処理装置400とは別個の装置でもよい。例えば、表示装置500は、透過型ヘッドマウントディスプレイでもよい。その場合、Bluetooth(登録商標)やLTE(登録商標)などの通信方式により、通信してもよい。
 一方、一対のプローブ201及び202の間である第1の範囲に障害物(物体)が存在する可能性があり(ステップS402、YES)、極近傍の第2の範囲に物体が存在する可能性があり(ステップS408、YES)、及び、遠方の第3の範囲に物体が存在する可能性がある(ステップS410、YES)ため、一対のプローブ201及び202の設置場所が否と判定された場合を説明する。この場合、判定結果出力部412は、一対のプローブ201及び202の媒質中での現在の設置位置が否であることを示す情報(例えば、メッセージ)を、表示装置500に出力する(ステップS413)。
 さらに、判定結果出力部412は、物体が存在すると判定された所定範囲やおおよその距離を示す情報を、表示装置500に出力してもよい。これにより、ユーザは容易に、所定範囲の外に一対のプローブ201及び202を設置し直すことができる。所定範囲を示す情報は、所定範囲(一対のプローブの間である第1の範囲、極近傍である第2の範囲、3次元の楕円)を示す画像を含んでもよい。
 図12は、物体が存在すると判定された所定範囲を示す画像の一例を示す。
 同図に示す様に、所定範囲を示す画像は、水平方向から見た一対のプローブ201及び202と、水平方向から見た所定範囲(本例では3次元の楕円の軌跡。一対のプローブの間である第1の範囲、極近傍である第2の範囲でもよい)と、を表現するオブジェクトを含んでもよい。あるいは、所定範囲を示す画像は、垂直方向から見た一対のプローブ201及び202と、水平方向から見た所定範囲(一対のプローブの間である第1の範囲、極近傍である第2の範囲、3次元の楕円)と、を表現するオブジェクトを含んでもよい。所定範囲を示す画像は、一対のプローブ201及び202の設置地点のマップ上に重畳表示されてもよい。マップは、例えば、情報処理装置400がGPS受信ユニットを用いて取得した情報処理装置400の位置情報に基づきインターネットを介して取得されたものでよい。マップは、2次元でもよいし3次元でもよい。あるいは、表示装置500が透過型ヘッドマウントディスプレイである場合、所定範囲を示す画像を拡張現実(AR)や仮想現実(VR)として重畳表示してもよい。これにより、ユーザは容易に、所定範囲の外に一対のプローブ201及び202を設置し直すことができる。
 さらに、判定結果出力部412は、一対のプローブ201及び202を媒質中の所定範囲(一対のプローブの間である第1の範囲、極近傍である第2の範囲、3次元の楕円)の外に設置することをリコメンドすることを示す情報を、表示装置500に出力してもよい。リコメンドすることを示す情報は、メッセージ及び/又は画像でよい。画像は、一対のプローブ201及び202と、リコメンドする設置位置とを表現するオブジェクトを含んでよい。これらのオブジェクトは、上記と同様に、マップに重畳されてもよいし、透過型ヘッドマウントディスプレイに拡張現実(AR)や仮想現実(VR)として重畳表示してもよい。これにより、ユーザは容易に、リコメンドされる範囲に一対のプローブ201及び202を設置し直すことができる。
 さらに、判定結果出力部412は、複数の異なる設置地点に一対のプローブ201及び202を設置した場合には、複数の異なる設置地点を基準として、物体が存在すると判定された所定範囲を示す情報(画像)や、リコメンドする設置位置(画像)を、同時に表示してもよい。これらのオブジェクトは、上記と同様に、マップに重畳されてもよいし、透過型ヘッドマウントディスプレイに拡張現実(AR)や仮想現実(VR)として重畳表示してもよい。これにより、ユーザは容易に、所定範囲の外に一対のプローブ201及び202を設置し直すことができる。
 5.変形例
 図13は、第1の変形例に係る情報処理装置の機能的構成を示す。
 第1の変形例に係る情報処理装置400Aは、第1の実施形態に係る情報処理装置400から、不要波算出部414、第3の判定部410及び位置算出部411を除いた構成である。第1の実施形態に比べて判定確度は下がるが、計算量を削減可能である。
 図14は、第2の変形例に係る情報処理装置の機能的構成を示す。
 第2の変形例に係る情報処理装置400Bは、第1の実施形態に係る情報処理装置400から、位置算出部411を除いた構成である。第1の実施形態に比べて判定確度は下がるが、計算量を削減可能である。
 図15は、第3の変形例に係る情報処理装置の機能的構成を示す。
 第3の変形例に係る情報処理装置400Cは、第1の実施形態に係る情報処理装置400から、時間幅算出部407及び第2の判定部408と、不要波算出部414及び第3の判定部410との処理の順序を逆にした構成である。第1の実施形態と同様の判定確度及び計算量である。
 図16は、第4の変形例に係る情報処理装置の機能的構成を示す。
 第4の変形例に係る情報処理装置400Dは、第3の変形例に係る情報処理装置400Cから、位置算出部411を除いた構成である。第3の変形例に比べて判定確度は下がるが、計算量を削減可能である。
 図17は、第5の変形例に係る情報処理装置の機能的構成を示す。
 第5の変形例に係る情報処理装置400Eは、第1の実施形態に係る情報処理装置400から、時間幅算出部407及び第2の判定部408を除いた構成である。第1の実施形態に比べて判定確度は下がるが、計算量を削減可能である。
 図18は、第6の変形例に係る情報処理装置の機能的構成を示す。
 第6の変形例に係る情報処理装置400Fは、第5の変形例に係る情報処理装置400Eから、位置算出部411を除いた構成である。第5の変形例に比べて判定確度は下がるが、計算量を削減可能である。
 第7の変形例(不図示)によれば、一対のプローブが1組ではなく、2組設けられてもよい。この場合、判定部415は、2組の一対のプローブ201及び202に対して媒質中の所定位置に物体が存在するか否かを判定することで、物体の存在する位置を幅のある範囲ではなく線上に特定することが出来る。また、一対のプローブが1組ではなく、3組設けられてもよい。この場合、判定部415は、3組の一対のプローブ201及び202に対して媒質中の所定位置に物体が存在するか否かを判定することで、物体の存在する位置を幅のある範囲ではなく1点に特定することが出来る。なお、一対のプローブが4組以上設けられてもよい。
 表示装置500は、センサ装置110に設置してもよい。例えば、LEDやディスプレイ、音及び/又は振動によって、設置結果を表示及び表現してもよい。設置結果によって、LEDの色などを変えてもよい。判定結果出力部412は、有線で、他のデバイスである他の表示装置500に判定結果を送信してもよい。
 判定結果の保存及び活用のため、判定部415での判定結果をメモリなどに保存してもよい。マイコンなどの信号処理装置に送信してもよい。判定結果を所望ピークの補正に用いてもよい。判定結果を設置の信頼性情報として活用しもよい。複数回の設置良否判定結果とGPS等による位置測位を組み合わせて、センサ設置の条件が良い/悪い場所を地図上に表示してもよい。
 不要波算出部414は、不要波の影響を補正してもよい。不要波の関数の形は既知であるため、不要波が所望波に及ぼす影響を除去することもできる。例えば、判定部415は、不要波の影響を除去したうえで、設置良を判定してもよい。
 第1の実施形態は、土壌中の障害物の存在の判定のみならず、土壌中の有益な物体を積極的に検出するときにも使用可能である。
 6.小括
 土壌水分センサは、土壌などの媒質中の水分量を測定する装置であり、農業や土壌環境調査の分野において利用されている。例えば、農業分野では、土壌水分センサを利用することで、作物への最適な灌水を行うことができ、商品の付加価値向上に利用されている。
 土壌水分センサの設置時にアンテナ周囲に障害物(物体)がある場合は、測定精度が劣化する可能性がある。従来センサではアンテナ間の電波の伝搬遅延時間を測定するが、アンテナ周囲に障害物(物体)がある場合は、不要な伝搬パスが生じ、伝搬遅延時間に誤差が生じる可能性がある。しかしながら、ユーザは正しくセンサを設置できているか判断できない。
 これに対して、第1の実施形態によれば、判定部415は、測定結果における障害物の影響を判定する。位置算出部411は、障害物(物体)の位置を計算する。判定結果出力部412は、表示装置500に、設置の良否判定結果を表示する。
 これにより、ユーザは測定結果における障害物(物体)の影響の有無を知ることができる。表示装置500に障害物の位置を表示することで、ユーザは障害物(物体)を推定し、設置位置を除外できる。障害物によるマルチパス(所望波及び不要波の2つのパス)の影響を低減して、センサを設置できるため、測定精度を担保できる。
 II.第2の実施形態
 1.概要
 第1の実施形態では、情報処理装置400は、媒質中の所定範囲に物体が存在するか否かを判定し、設置の良否を判定し、ユーザに提示する。一方、第2の実施形態では、土壌等の媒質の特に深さ方向の水分分布を測定し、ユーザに提示することを図る。以下の説明において、既に説明した実施形態及び変形例と同様の構成及び動作は図示及び説明を省略し差異点を主に図示及び説明する。
 図19は、本実施形態に係る測定装置及び比較例を模式的に示す。
 (B)及び(C)に示すように、アンテナがプローブの軸方向Zに亘って広く設けられる比較例では、軸方向Zの水分量測定エリアA2、A3が広く、空間分解能が低い。一方、(A)に示すように、アンテナ210、210は、プローブ201及び202の、媒質Mに対する挿入先端である第2の端部204、204に設けられる(図2)。言い換えれば、アンテナ210、210は、プローブ201及び202の軸方向Zに亘って広く設けられるのではなく、軸方向Zのピンポイントに設けられる。このため、アンテナ210、210は、軸方向Zの水分量測定エリアA1が狭く、空間分解能が高い。即ち、本実施形態に係るアンテナ210、210は、媒質Mの軸方向Zの全体的な水分量ではなく、軸方向Zのピンポイントなエリアの水分量を測定することができる。
 そこで、第2の実施形態では、本実施形態に係るプローブ201及び202を媒質M中に挿抜するときに、アンテナ210、210の媒質M内での深さが動的に変化し続ける挿抜期間内の、媒質Mの水分量を継続的に測定する。これにより、アンテナ210、210が媒質M中の深さ方向の異なる位置にある場合の、深さ方向の異なる位置の水分量を継続的に測定することができる。これにより、継続的に測定した深さ方向の異なる位置の水分量を、媒質Mの深さ方向の水分分布としてユーザに提示することができる。特に、アンテナ210、210がプローブ201及び202の挿入先端である第2の端部204、204に設けられることで、プローブ201及び202を媒質M中に挿抜するときに、軸方向Zのさらに広範囲に亘って、媒質Mの水分量を測定することができる。なお、本実施形態において「挿抜」とは、プローブ201及び202を媒質M中に深さ方向に挿入し続ける動き、又は、媒質M中に埋め込まれたプローブ201及び202を媒質Mから引き抜き続ける動き、の何れかを意味する。
 2.情報処理装置の機能的構成
 図20は、第2の実施形態に係る情報処理装置の機能的構成を示す。
 第2の実施形態に係る情報処理装置400Gは、第1の実施形態に係る情報処理装置400の機能的構成(図3)に加えて、水分量変換部416と、メモリ417と、水分量出力部418とを有する。なお、第2の実施形態に係る情報処理装置400Gは、時間幅算出部407、第2の判定部408、不要波算出部414、第3の判定部410、位置算出部411及び判定結果出力部412は使用しないため、これらの機能部419を有さなくてもよい。
 3.情報処理装置の動作フロー
 図21は、情報処理装置の動作フローを示す。
 前提として、ユーザは、一対のプローブ201及び202を、第2の端部204,204に設けられたアンテナ210,210から、軸方向Zに媒質Mに挿入する。これにより、アンテナ210,210の媒質M内での軸方向Zの深さが動的に変化し続ける。プローブ201及び202が媒質Mに対して挿抜されてアンテナ210,210の媒質M内での軸方向Zの深さが動的に変化し続ける期間を、「挿抜期間」と称する。
 情報処理装置400Gは、伝搬遅延時間算出ルーチンを実行する(ステップS420)。伝搬遅延時間算出ルーチンは、第1の実施形態の動作(ステップS400、S401、S403、S404、S405及びS406)と同様である。具体的には、電気信号送信制御部413は、所定のトリガが発生すると(例えば一定時間毎に)、測定ユニット300の送信機320が入射波を含む電気信号を送信するための命令を、送信機320に出力する(ステップS400)。透過係数算出部401は、透過波受信機350が受信した透過波の時間波形から透過係数を算出する(ステップS401)。反射係数算出部403は、反射波受信機340が受信した反射波(プローブ201で入射波が反射した反射波)の時間波形から反射係数を算出する(ステップS403)。伝搬時間算出部404は、透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する(ステップS404)。往復時間算出部405は、反射波の往復時間及び信号強度を算出し、反射波のピークの信号強度及び時間t1m_S11を算出する(ステップS405)。伝搬遅延時間算出部406は、所望波のピークの時間t1m_S21と反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する(ステップS406)。伝搬遅延時間は、プローブ201及び202の間の媒質を電磁波が伝搬する時間である。
 水分量変換部416は、水分量と伝搬遅延時間tpd1(ステップS406)との間の関係を示す係数を用いて、伝搬遅延時間tpd1を媒質の水分量に変換する(ステップS421)。水分量変換部416は、挿抜期間内の媒質Mの水分量を一定時間毎に継続的に得続ける。水分量変換部416は、挿抜期間内の水分量を、メモリ417に時系列的にFIFO(First In, First Out)で記録する(ステップS422)。
 図22は、水分量出力部による表示例を示す。
 水分量出力部418は、メモリ417に時系列的に記録された挿抜期間内の水分量の履歴を、例えばグラフの形式で、表示装置500に時系列的に表示する(ステップS423)。具体的には、(A)に示す様に、水分量出力部418は、メモリ417に時系列的に記録された水分量(volume water content、体積含水率)の履歴と、時系列に対応する経過時間とを2軸とするグラフを、表示装置500に表示する。なお、水分量は、メモリ417に時系列的にFIFO(First In, First Out)で記録されるため、メモリ417に記憶されている直近の水分量の履歴のみがグラフに表示される。これにより、プローブ201及び202の挿抜時の経過時間に略比例したアンテナ210、210の深さに対応する媒質の水分量を、ユーザにとって直感的に表示することが出来る。
 変形例として、水分量出力部418は、メモリ417に時系列的に記録された前記水分量の履歴と、時系列に対応する経過時間に代えて、時系列的に変化する深さとを2軸とするグラフを、表示装置500に表示してもよい。例えば、水分量出力部418は、プローブ201及び202の全長(即ち、最大の挿入深さ)と、挿抜期間の開始から終了までの経過時間とに基づき、各経過時間測定点における、アンテナ210、210が時系列的に変位する各深さ地点を推定すればよい。言い換えれば、水分量出力部418は、挿抜期間の開始からの経過時間に略比例して、挿抜期間内に時系列的に変位する各深さ地点を推定すればよい。
 変形例として、(B)に示す様に、水分量出力部418は、水分量の履歴に代えて、水分量に対応する伝搬遅延時間の履歴をグラフに表示してもよい。水分量は、係数を用いて伝搬遅延時間tpd1から算出されるので、伝搬遅延時間tpd1のグラフは水分量のグラフと類似の特徴を有する。従って、水分量に代えて伝搬遅延時間をグラフに表示しても、ユーザは深さ方向の水分分布の特徴を把握することが可能である。なお、水分量の履歴に代えて伝搬遅延時間の履歴をグラフに表示する場合、ステップS421の処理は省略してもよい。
 あるいは、(C)に示す様に、(A)のグラフの縦軸と横軸を逆にして、横軸に水分量の履歴、縦軸に経過時間を表示するグラフを、表示装置500に表示してもよい。また、(D)に示す様に、(B)のグラフの縦軸と横軸を逆にして、横軸に伝搬遅延時間tpd1の履歴、縦軸に経過時間を表示するグラフを、表示装置500に表示してもよい。これらのグラフの様に、縦軸に経過時間を表示することで、経過時間に略比例したアンテナ210、210の深さをユーザにとって直感的に表示することが出来る。
 4.実施例
 図23は、第1の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。
 本例では、水分量出力部418は、メモリ417に時系列的に記録された水分量の履歴と、挿抜期間内に時系列的に変位する各深さ地点とを2軸とするグラフ601を、表示装置500に表示する。同図によれば、プローブ201及び202を媒質Mに挿入される最中にプローブ201及び202の挿入先端に設けられたアンテナ210、210が位置する深さ地点の媒質Mの水分量がピンポイントにグラフで表示される。水分量出力部418は、グラフ601に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI602や、プローブ201及び202を媒質Mに完全に挿入したときのGUI603を、さらに表示してもよい。このとき、水分量出力部418は、グラフ601の縦軸(深さ)と、GUI602又は603のアンテナ210、210の挿入深さとを視覚的に対応可能に横並びにしたGUI605を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。なお、第1の例のグラフ601は、媒質Mが深くなるに従って水分量が多いという水分分布を示す。
 図24は、第2の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。
 第2の例のグラフ611は、第1の例と同様に、媒質Mが深くなるに従って水分量が多いという水分分布を示す。一方、プローブ201及び202を媒質Mに完全に挿入したとき(GUI613)のアンテナ210、210が位置する深さ地点付近で、水分量が大きく減少する。これは、プローブ201及び202を媒質Mに完全に挿入したとき(GUI613)のアンテナ210、210が位置する深さ地点付近に、石などの障害物(物体)が存在する可能性を意味する。水分量出力部418は、グラフ611に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI612や、プローブ201及び202を媒質Mに完全に挿入したときのGUI613を、さらに表示してもよい。このとき、水分量出力部418は、深さに対する水分量の変化に基づき推定される、媒質M中に存在する物体の深さを示す情報を、表示装置500に表示してもよい。具体的には、このとき、水分量出力部418は、グラフ611の縦軸(深さ)と、GUI612又は613のアンテナ210、210の挿入深さと、物体614が存在する可能性のある深さ地点とを視覚的に対応可能に横並びにしたGUI615を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、物体614が存在する可能性のある深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。また、ユーザは、物体614の影響を受けないように、プローブ201及び202を別の地点に挿入したり、プローブ201及び202を全て挿入せずに媒質Mからややはみ出た状態で設置するなどの対応を取ることが可能となる。
 図25は、第3の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。
 第3の例のグラフ621は、第1の例と同様に、媒質Mが深くなるに従って水分量が多いという水分分布を示す。一方、プローブ201及び202を媒質Mに約2/5の深さまで挿入したときのアンテナ210、210が位置する深さ地点付近で、水分量が大きく増加する。これは、プローブ201及び202を媒質Mに約2/5の深さまで挿入したときのアンテナ210、210が位置する深さ地点付近に、水分量が著しく多い不均一な媒質624が存在する可能性を意味する。水分量出力部418は、グラフ621に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI622や、プローブ201及び202を媒質Mに完全に挿入したときのGUI623を、さらに表示してもよい。このとき、水分量出力部418は、グラフ621の縦軸(深さ)と、GUI622又は623のアンテナ210、210の挿入深さと、不均一な媒質624が存在する可能性のある深さ地点とを視覚的に対応可能に横並びにしたGUI625を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、不均一な媒質624が存在する可能性のある深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。また、ユーザは、不均一な媒質624の影響を受けないように、プローブ201及び202を別の地点に挿入したり、プローブ201及び202を全て挿入せずに媒質Mに約1/5の深さまで挿入した状態で設置するなどの対応を取ることが可能となる。
 図26は、第4の例に係る、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。
 第4の例のグラフ631は、第1の例と同様に、媒質Mが深くなるに従って水分量が多いという水分分布を示す。一方、プローブ201及び202を媒質Mに完全に挿入したとき(GUI633)のアンテナ210、210が位置する深さ地点付近で、水分量が大きく増加する。これは、プローブ201及び202を媒質Mに完全に挿入したとき(GUI633)のアンテナ210、210が位置する深さ地点付近に、水分量が著しく多い不均一な媒質634が存在する可能性を意味する。水分量出力部418は、グラフ631に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI632や、プローブ201及び202を媒質Mに完全に挿入したときのGUI633を、さらに表示してもよい。このとき、水分量出力部418は、グラフ631の縦軸(深さ)と、GUI632又は633のアンテナ210、210の挿入深さと、不均一な媒質634が存在する可能性のある深さ地点とを視覚的に対応可能に横並びにしたGUI635を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、不均一な媒質634が存在する可能性のある深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。また、ユーザは、不均一な媒質634の影響を受けないように、プローブ201及び202を別の地点に挿入したり、プローブ201及び202を全て挿入せずに媒質Mからややはみ出た状態で設置するなどの対応を取ることが可能となる。
 5.小括
 アンテナ210、210は、プローブ201及び202の軸方向Zに亘って広く設けられるのではなく、軸方向Zのピンポイントに設けられる。このため、アンテナがプローブの軸方向Zに亘って広く設けられるケースに比べて、本実施形態に係るアンテナ210、210は、軸方向Zの水分量測定エリアが狭く、空間分解能が高い。言い換えれば、本実施形態に係るアンテナ210、210は、媒質の軸方向Zの全体的な水分量ではなく、軸方向Zのピンポイントなエリアの水分量を測定することができる。そこで、第2の実施形態では、本実施形態に係るプローブ201及び202を媒質中に挿抜するときに、アンテナ210、210の媒質内での深さが動的に変化し続ける挿抜期間内の、媒質の水分量を継続的に測定する。これにより、アンテナ210、210が媒質中の深さ方向の異なる位置にある場合の、深さ方向の異なる位置の水分量を継続的に測定することができる。これにより、継続的に測定した深さ方向の異なる位置の水分量を、媒質の深さ方向の水分分布としてユーザに提示することができる。
 図27は、比較例に係る水分センサを示す。
 これに対して、典型的な水分センサは、アンテナがプローブの軸方向Zに亘って広く設けられる。このため、ロッド状のプローブ周辺をまとめて測定しているため空間解像度が低い。そのため平均的な測定を行うことから異物等の物体の影響は比較的少なく、逆に言えば、異物等の物体を検知することができない。また、軸方向Zの空間解像度が低いので、深さ方向の水分分布を正確に取得することができない。アンテナがプローブの軸方向Zに亘って広く設けられるケースでは、軸方向Zの測定範囲が大きいため、仮に挿抜期間内の媒質の水分量を継続的に測定しても、深さ方向の異なる位置の水分量を測定することができず、このため、媒質の深さ方向の水分分布を測定することができない。そのため、アンテナがプローブの軸方向Zに亘って広く設けられるセンサでは、センサを媒質に挿入する過程で、高速に水分測定を行い時系列に表示する必要性が低い。
 6.変形例
 6-1.第8の変形例
 図28は、第8の変形例に係る情報処理装置の機能的構成を示す。
 第8の変形例に係る情報処理装置400Hは、第2の実施形態に係る情報処理装置400Gに、挿入量変換部420を付加した構成である。さらに、測定ユニット300に測距センサ370が設けられる。
 測距センサ370は、測定ユニット300から媒質の表面に対する距離を測定する。測距センサ370は、レーザー測位計、ToFセンサ、ステレオカメラ、超音波センサ、レーダー等の非接触センサ、接触式変位計等の機械式センサでよい。測距センサ370を使うことで、第2の実施形態よりさらに正確に媒質の深さを求めることが可能になる。
 図29は、情報処理装置の動作フローを示す。
 前提として、ユーザは、一対のプローブ201及び202を、第2の端部204,204に設けられたアンテナ210,210から、軸方向Zに媒質Mに挿入する。これにより、アンテナ210,210の媒質M内での軸方向Zの深さが動的に変化し続ける。言い換えれば、測定ユニット300から媒質Mの表面に対する距離が動的に変化し続ける。測距センサ370は、測定ユニット300から媒質Mの表面に対する距離を測定する(ステップS424)。
 挿入量変換部420は、一対のプローブ201及び202の挿入量に応じて動的に変化する測距センサ370が測定する距離を、アンテナ210、210の媒質M内での深さ(プローブ201及び202の挿入量)に変換する(ステップS425)。
 一方、情報処理装置400Hは、伝搬遅延時間算出ルーチンを実行する(ステップS420)。伝搬遅延時間算出ルーチンは、第2の実施形態の動作(ステップS400、S401、S403、S404、S405及びS406)と同様である。水分量変換部416は、水分量と伝搬遅延時間tpd1(ステップS406)との間の関係を示す係数を用いて、伝搬遅延時間tpd1を媒質の水分量に変換する(ステップS421)。水分量変換部416は、挿抜期間内の媒質Mの水分量を一定時間毎に継続的に得続ける。水分量変換部416は、挿抜期間内の水分量を、アンテナ210、210の媒質M内での深さ(ステップS425)と対応付けて、メモリ417に時系列的にFIFO(First In, First Out)で記録する(ステップS422)。
 図30は、水分量のグラフと、水分量のグラフに対するアンテナの深さの変位の関係とを模式的に示す。
 水分量出力部418は、メモリ417に時系列的に記録された挿抜期間内の水分量の履歴を、例えばグラフの形式で、表示装置500に時系列的に表示する(ステップS423)。具体的には、水分量出力部418は、メモリ417に時系列的に記録された水分量(volume water content、体積含水率)の履歴と、時系列的に変化する深さとを2軸とするグラフ651を、表示装置500に表示する。同図によれば、プローブ201及び202を媒質Mに挿入される最中にプローブ201及び202の挿入先端に設けられたアンテナ210、210が位置する深さ地点の媒質Mの水分量がピンポイントにグラフで表示される。水分量出力部418は、グラフ651に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI652や、プローブ201及び202を媒質Mに完全に挿入したときのGUI653を、さらに表示してもよい。プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI652は、測距センサ370と、測距センサ370がレーザー測位計である場合のレーザー371をさらに含んでもよい。このとき、水分量出力部418は、グラフ651の縦軸(深さ)と、GUI652又は653のアンテナ210、210の挿入深さとを視覚的に対応可能に横並びにしたGUI655を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。なお、グラフ651は、媒質Mが深くなるに従って水分量が多いという水分分布を示す。
 6-2.第9の変形例
 図31は、第9の変形例を示す。
 上述の様に、水分量出力部418は、水分量の履歴に代えて、水分量に対応する、所望波の時系列的に変化する伝搬遅延時間である所望波伝搬遅延時間の履歴を、グラフに表示してもよい。このとき、水分量出力部418は、グラフに、不要波の伝搬遅延時間の履歴をさらに表示してもよい。
 伝搬遅延時間とは、透過波のピークの時間t1m_S21と反射波のピークの時間t1m_S11との差分である。物体が所定範囲に存在しない場合は不要波が発生しないため、所望波のピークだけが検出される。このため、物体が所定範囲に存在しない場合は、(A)に示す様に、所望波(直接波)の伝搬遅延時間である所望波伝搬遅延時間606のみが表示される。
 一方、物体が所定範囲に存在する場合は不要波が検出されるため、所望波のピーク及び不要波のピークが検出される。不要波の伝搬遅延時間は、所望波の伝搬遅延時間である所望波伝搬遅延時間606とは異なる。この場合、情報処理装置400G又は400Hは、所望波及び不要波の複数ピークに対応して、ステップS420乃至ステップS423、ステップS404及びステップS406を実行する。(B)及び(C)に示す様に、水分量出力部418は、所望波伝搬遅延時間606に加えて、不要波の伝搬遅延時間607をさらにグラフに表示する。伝搬遅延時間607が表示されず所望波伝搬遅延時間606のみ表示されれば、物体が所定範囲に存在しないため望ましい設置場所であるとユーザは直感的に理解できる。一方、所望波伝搬遅延時間606に加えて伝搬遅延時間607が表示されれば、物体が所定範囲に存在するため設置場所を変更した方がよいとユーザは直感的に理解できる。
 本変形例でも、図24等と同様に、水分量出力部418は、グラフ661に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI662や、プローブ201及び202を媒質Mに完全に挿入したときのGUI663を、さらに表示してもよい。このとき、水分量出力部418は、深さに対する水分量の変化に基づき推定される、媒質M中に存在する物体の深さを示す情報を、表示装置500に表示してもよい。具体的には、このとき、水分量出力部418は、グラフ661の縦軸(深さ)と、GUI662又は663のアンテナ210、210の挿入深さと、物体664が存在する可能性のある深さ地点とを視覚的に対応可能に横並びにしたGUI665を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、物体664が存在する可能性のある深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。また、ユーザは、物体664の影響を受けないように、プローブ201及び202を別の地点に挿入したり、プローブ201及び202を全て挿入せずに媒質Mからややはみ出た状態で設置するなどの対応を取ることが可能となる。
 6-3.第10の変形例
 図32は、第10の変形例を示す。
 第10の変形例は、第9の変形例の応用である。水分量出力部418は、グラフに、所望波伝搬遅延時間606を基準として、一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在し所望波伝搬遅延時間の算出に影響する可能性のある範囲をさらに表示してもよい。図32の各グラフ(A)、(B)、(C)は、図31の各グラフ(A)、(B)、(C)において、所望波伝搬遅延時間606を基準として、所望波伝搬遅延時間606に影響が及び得る範囲(NGエリア)を示す線608、609をさらに表示する。線608、609は、所望波伝搬遅延時間606を基準として、所望波伝搬遅延時間606を中心に持つ伝搬遅延時間の値の範囲を表現する。不要波の伝搬遅延時間607の少なくとも一部が、線608、609の間の範囲(NGエリア)に含まれるとき、一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在する可能性があることを意味する。伝搬遅延時間607の少なくとも一部が、線608、609の間の範囲(NGエリア)に含まれれば、物体が所定範囲に存在するため設置場所を変更した方がよいとユーザは直感的に理解できる。
 本変形例でも、図24と同様に、水分量出力部418は、グラフ671に加えて、プローブ201及び202を媒質Mに挿入する経過を示す時系列的なGUI672や、プローブ201及び202を媒質Mに完全に挿入したときのGUI673を、さらに表示してもよい。このとき、水分量出力部418は、深さに対する水分量の変化に基づき推定される、媒質M中に存在する物体の深さを示す情報を、表示装置500に表示してもよい。具体的には、このとき、水分量出力部418は、グラフ671の縦軸(深さ)と、GUI672又は673のアンテナ210、210の挿入深さと、物体674が存在する可能性のある深さ地点とを視覚的に対応可能に横並びにしたGUI675を表示するのがよい。これにより、挿抜期間内のアンテナ210、210の媒質M中での深さ地点と、物体674が存在する可能性のある深さ地点と、アンテナ210、210の深さ地点に対する水分量をユーザが直感的に理解できる。また、ユーザは、物体674の影響を受けないように、プローブ201及び202を別の地点に挿入したり、プローブ201及び202を全て挿入せずに媒質Mからややはみ出た状態で設置するなどの対応を取ることが可能となる。
 6-4.第11の変形例
 図33は、第11の変形例の動作フローを示す。
 情報処理装置400Gは、一対のプローブ201及び202の挿抜中は、水分量を高頻度で測定し(高速モード)、一対のプローブ201及び202が非動的であるときは、水分量を高頻度よりも低頻度で測定してもよい(通常モード)。通常モードは、精度重視の通常測定用であり、動的な位置変化の少ない安定時に使用し、より多くの測定結果を基に水分量を算出する(平均化数が多い)モードである。高速モードは、速度重視の挿抜期間内の測定用であり、過渡的な特性を見るために使用し、多少精度を犠牲にして、少ない測定結果を基に水分量を算出する(平均化数が少ない)モードである。情報処理装置400Gは、モード切替部(不図示)を有する。モード切替部は、測距センサ370の出力や、測定ユニット300に設けた加速度センサ(不図示)等の出力を基に自動でモードを切り替えても良い。あるいは、ユーザが手動でモード切替のための操作を行い、モード切替部はその操作を検出してモードを切り替えてもよい。モードを切り替えることにより、プローブ201及び202の動的又は非動的な状況に応じて、最適な測定が行える。挿抜時は、高速に高頻度で結果を表示しないと、変化に追従できない。逆に設置時は、変化が少ないので低速に低頻度の表示で十分である。一般に測定精度を上げるために平均化処理をしているが、高速時は平均化するサンプル数を減らすことで、高頻度に結果を表示する。低速時は、平均化するサンプル数を増やすことで、低頻度に結果を表示する。
 情報処理装置400Gは、測距センサ370の出力、加速度センサ等の出力又はユーザ操作等に基づき、一対のプローブ201及び202の挿抜期間内であるか否かを判定する(ステップS426)。挿抜期間内であれば(ステップS426、YES)、情報処理装置400Gは、高速モードを開始する(ステップS427)。高速モードにおいて、情報処理装置400Gは、水分量を高頻度で測定して、挿抜期間内内の水分量の履歴を、例えばグラフの形式で、表示装置500に時系列的に表示し続ける(ステップS420乃至ステップS423)。情報処理装置400Gは、モード切替部が挿抜期間内でなく安定的な設置状態であると判断するまで(ステップS430、NO)、水分量を高頻度で測定して、挿抜期間内の水分量の履歴を時系列的に表示し続ける。
 一方、挿抜期間内でなく安定的な設置状態であれば(ステップS426、NO)、情報処理装置400Gは、所定時間毎に(ステップS428、YES)伝搬遅延時間算出ルーチンを実行し(ステップS420)、伝搬遅延時間を水分量に変換し(ステップS421)、水分量を表示装置500に表示又はサーバ(不図示)に送信する(ステップS429)。なお、安定的な設置状態の水分量を測定する場合、挿抜期間の様に水分量をメモリ417に時系列的に記録し(ステップS422)、水分量の履歴を表示装置500に時系列的にグラフ表示(ステップS423)しなくてもよい。
 6-5.第12の変形例
 図34は、第12の変形例を示す。
 果樹園等において、ショベル等の掘削機で媒質Mに縦穴を掘り、縦穴の内周壁面からプローブ201及び202を媒質Mに挿入するケースも考えられる。この場合には、プローブ201及び202の軸方向Z(即ち、挿入の深さ方向)は垂直方向(縦方向)ではなく水平方向(横方向)となる。この場合、縦軸に水分量の履歴、横軸に挿入量(アンテナの深さ)を表示するグラフを、表示装置500に表示してもよい。プローブ201及び202の軸方向Z(即ち、挿入の深さ方向)及びグラフの挿入量(アンテナの深さ)が、水平方向(横方向)及び横軸で一致するため、ユーザは、水平方向(横方向)の水分分布を直感的に理解しやすい。
 6-6.第13の変形例
 図35は、第13の変形例に係る情報処理装置の機能的構成を示す。
 第13の変形例に係る情報処理装置400Iは、第2の実施形態に係る情報処理装置400Gに、第4の判定部421を付加した構成である。
 図36は、情報処理装置の動作フローを示す。
 伝搬遅延時間算出ルーチン(ステップS420)、伝搬遅延時間を媒質の水分量に変換(ステップS421)水分量をメモリ417に時系列的に記録(ステップS422)及び水分量の履歴を時系列的に表示(ステップS423)は第2の実施形態と同様である。第4の判定部421は、メモリ417に時系列的に記録された水分量の履歴に基づき、一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在するか否かを判定する(ステップS424)。例えば、第4の判定部421は、水分量や伝搬遅延時間の変化の様子を基に設置良否を判定すればよい。具体的には、第4の判定部421は、急激な変化がある場合や、想定から大きく外れている場合、あるいは不要波の伝搬遅延時間が所望波伝搬遅延時間に近づいてる(NGエリア)場合、一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在すると判定すればよい。判定結果出力部412は、第4の判定部421の判定結果を出力する(ステップS432)。例えば、判定結果出力部412は、第4の判定部421により一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在すると判定されると、一対のプローブ201及び202の媒質中での設置位置が否であることを示す情報(例えば、メッセージ)を、表示装置500に出力する。一方、判定結果出力部412は、第4の判定部421により一対のプローブ201及び202に対して媒質中の所定範囲に物体が存在しないと判定されると、一対のプローブ201及び202の媒質中での設置位置が良好であることを示す情報(例えば、メッセージ)を、表示装置500に出力する。第4の判定部421は、少なくとも判定結果を出力すれば、メモリ417に時系列的に記録された水分量を表示してもしなくてもよい。
 6-7.第14の変形例
 図37は、第14の変形例に係る情報処理装置の機能的構成を示す。
 第13の変形例に係る情報処理装置400Jは、第8の変形例に係る情報処理装置400Hに、第4の判定部421を付加した構成である。第4の判定部421の動作は第13の変形例と同様である。加えて、第4の判定部421は、媒質中の所定範囲に存在する物体の深さを、挿入量変換部420が得た深さに基づき判定する。判定結果出力部412は、第4の判定部421により判定された物体の深さと、挿入量変換部420により変換されたアンテナ210、210の媒質内での深さとに基づき、プローブ201及び202の媒質への挿入量をリコメンドすることを示す情報を、表示装置に出力してもよい。例えば、挿入量と設置良否の関係が分かることから、判定結果出力部412は、判定結果を基に、「もっと浅く」、「もっと深く」等のメッセージを出力することで、挿入量をユーザにリコメンドしてもよい。
 6-8.第15の変形例
 図38は、第15の変形例に係る情報処理装置の機能的構成を示す。
 第15の変形例に係る情報処理装置400Kは、第13の変形例に係る情報処理装置400Iに、ガイド部422を付加した構成である。ガイド部422は、一対のプローブ201及び202の媒質中での設置位置が否であることを示す情報や、より良い設置をリコメンドすることを示す音声や情報を、音声出力装置600や表示装置500に出力する。音声出力装置600は、典型的には、スマートフォン等の情報処理装置400Iに内蔵された又は情報処理装置400Iに接続されたスピーカ等である。ガイド部422は、判定状況や判定結果を基に音声や表示によるガイダンスを行っても良い。例えば、判定速度に対して挿入速度が速過ぎる場合はより遅い速度で挿入することを指示、物体が近くにある場合は設置場所を変えるように指示、モード変更のアナウンス、モードに沿った指示(例えば、通常モードに移行した際は動かさないように指示、高速モードに移行した際はゆっくり動かすように指示)等が挙げられる。
 6-9.第16の変形例
 図39は、第16の変形例に係る情報処理装置の機能的構成を示す。
 第16の変形例に係る情報処理装置400Lは、第13の変形例に係る情報処理装置400Jに、ガイド部422を付加した構成である。即ち、第16の変形例に係る情報処理装置400Lは、第11の変形例の複数モード(図33)、第8の変形例の挿入量変換部420及び測距センサ370(図28)、第14の変形例の第4の判定部421(図37)及び第15の変形例のガイド部422(図38)を全て含む。ガイド部422の動作は第15の変形例と同様である。加えて、ガイド部422は、プローブ201及び202の媒質への挿入量をガイドやリコメンドする音声や情報を、音声出力装置600や表示装置500に出力してもよい。
 図40は、情報処理装置の動作フローを示す。
 図40の動作フローは、第8の変形例の動作フロー(図29)、第11の変形例の動作フロー(図33)及び第14の変形例の動作フロー(図36)の組み合わせにステップS433-S436を付加した構成を有する。ガイド部422は、高速モードが開始されると(ステップS427)、高速モードが開始されたことを示すガイダンスを出力する(ステップS433)。ガイド部422は、アンテナ210、210の媒質M内での深さ(プローブ201及び202の挿入量)(ステップS425)が大きく変化した場合、測定速度に対して挿入速度が速過ぎる場合はより遅い速度で挿入することを指示するためのガイダンスを出力する(ステップS434)。ガイド部422は、第4の判定部421の物体の有無の判定結果(ステップS432)に応じたガイダンス、即ち、物体が近くにある場合は設置場所を変えるように指示するためのガイダンスを出力する(ステップS435)。ガイド部422は、挿抜期間内でなく安定的な設置状態であると判断されると(ステップS430、NO)、高速モードから通常モードに戻ったことを示すガイダンスを出力する(ステップS436)。
 7.結語
 第2の実施形態及び各変形例によれば、空間分解能の高い水分センサを使用し、媒質に対して挿抜する際、水分量(誘電率、遅延時間)を連続的に測定し、測定結果を連続的に表示する。これにより、過渡的な特性を基に、設置位置が適切かどうか分かり、また、挿入方向の水分分布が分かる。さらに、測距センサを用いて挿入量を測定することにより、水分分布測定において、挿入量(深さ)と水分量の関係をより正確に表すことができる。さらに、所望波(直接波)だけではなく、他のピーク(不要波)の伝搬遅延時間を同時に求めて表示することにより、設置良否判定において、より具体的に設置位置の適切さ(物体の影響など)を知ることが出来る。さらに、複数の測定モードを持つことにより、例えば挿抜時の測定は高速モードで測定するなど、状況に応じて、最適な測定を行うことができ、1種のセンサで複数の状況に対応できる。さらに、挿入方向は深さ方向に限定されず水平方向等であっても良いので、水平方向の水分分布を知ることが出来る。さらに、設置良否判定において、水分変化や水分分布を基に設置良否を判定したり、挿入指示をユーザに与えることにより、ユーザが主観的でなく客観的に判断することが可能になる。さらに、測定状況や測定結果を基にガイダンスを与えることにより、ユーザが状況を認識しやすくなる。
 なお本発明は2015年に国連サミットで採択されたSDGs(Sustainable Development Goals)のゴール2「Zero Hunger」およびゴール6「Clean Water and Sanitation」に関連しうる。
 本発明により、高精度な土壌水分量測定が可能となり、水分センサの測定結果に応じて、作物への潅水制御を行うことで、より効率の良い水の使用が可能となる。
 また、本発明を農業分野に活用することで、農業における水の無駄な使用や廃水を減らすことが可能となり、環境に優しくエネルギー効率の高い農業が実現可能となる。
本開示は、以下の各構成を有してもよい。
 (1)
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部と、
 を具備する情報処理装置。
 (2)
 上記(1)に記載の情報処理装置であって、
 前記判定部の判定結果を、表示装置に出力する判定結果出力部
 をさらに具備する情報処理装置。
 (3)
 上記(2)に記載の情報処理装置であって、
 前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブの前記媒質中での設置位置が否であることを示す情報を、表示装置に出力する
 情報処理装置。
 (4)
 上記(2)又は(3)に記載の情報処理装置であって、
 前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記物体が存在すると判定された前記所定範囲を示す情報を、表示装置に出力する
 情報処理装置。
 (5)
 上記(2)乃至(4)の何れか一項に記載の情報処理装置であって、
 前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブを前記媒質中の前記所定範囲の外に設置することをリコメンドすることを示す情報を、表示装置に出力する
 情報処理装置。
 (6)
 上記(4)又は(5)に記載の情報処理装置であって、
 前記所定範囲を示す情報は、前記所定範囲を示す画像を含む
 情報処理装置。
 (7)
 上記(1)乃至(6)の何れか一項に記載の情報処理装置であって、
 所定のトリガが発生すると、前記送信機が前記電気信号を送信するための命令を、前記送信機に出力する電気信号送信制御部
 をさらに具備する情報処理装置。
 (8)
 上記(7)に記載の情報処理装置であって、
 前記所定のトリガは、前記一対のプローブの設置時、不変の周期的なタイミング、可変の周期的なタイミング及び/又は天候の変化、を含む
 情報処理装置。
 (9)
 上記(1)乃至(8)の何れか一項に記載の情報処理装置であって、
 前記判定部は、2組以上の前記一対のプローブに対して前記媒質中の所定位置に物体が存在するか否かを判定する
 を具備する情報処理装置。
 (10)
 上記(1)乃至(9)の何れか一項に記載の情報処理装置であって、
 前記判定部は、前記媒質に含まれる第1の媒質の伝搬時間をtAとし、前記媒質に含まれる前記第1の媒質と異なる第2の媒質の伝搬時間をtBとしたとき、伝搬時間の範囲tA~tBの間において、t=0に最も近い前記透過係数のピークの信号強度が最大値となる場合は、前記一対のプローブの間である第1の範囲に物体が存在しないと判定し、最大値とならない場合は、前記第1の範囲に物体が存在すると判定する、第1の判定部を有する
 情報処理装置。
 (11)
 上記(1)乃至(10)の何れか一項に記載の情報処理装置であって、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部をさらに具備し、
 前記判定部は、
  前記所望波のピークの信号強度A未満の所定の信号強度となるときの波の時間幅Fを算出する時間幅算出部と、
  前記時間幅Fが第1の閾値以上である場合、前記一対のプローブから第2の範囲に物体が存在すると判定し、前記時間幅Fが前記第1の閾値未満である場合、前記一対のプローブから前記第2の範囲に物体が存在しないすると判定する、第2の判定部と、
 を有する
 情報処理装置。
 (12)
 上記(1)乃至(11)の何れか一項に記載の情報処理装置であって、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部をさらに具備し、
 前記判定部は、
  前記所望波のピークの時間t1m_S21と、前記所望波のピークの時間t1m_S21の後に発生した次のピークである不要波のピークの時間t2m_S21、との時間差Δt=t2m_S21-t1m_S21を算出する、不要波算出部と、
  Δtが第2の閾値以上である場合、前記第2の範囲より広い第3の範囲に物体が存在しないと判定し、Δtが前記第2の閾値未満である場合、前記第3の範囲に物体が存在すると判定する、第3の判定部と、
 を有する
 情報処理装置。
 (13)
 上記(12)に記載の情報処理装置であって、
 前記不要波算出部は、前記不要波のピークの時間t2m_S21から+Δt時間経過したときの信号強度Bを算出し、
 前記第3の判定部は、A-Bが第3の閾値以上である場合、前記第3の範囲に物体が存在しないと判定し、A-Bが前記第3の閾値未満である場合、前記第3の範囲に物体が存在すると判定する
 情報処理装置。
 (14)
 上記(12)又は(13)に記載の情報処理装置であって、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 前記第3の判定部が前記第3の範囲に物体が存在すると判定すると、前記時間差Δt、前記一対のアンテナの位置、前記媒質の比誘電率、光速、前記一対のプローブ間の距離及び伝搬遅延時間tpd1に基づき、前記物体が存在する可能性がある位置情報の集合を算出する位置算出部と、
 をさらに具備する情報処理装置。
 (15)
 上記(1)乃至(14)の何れか一項に記載の情報処理装置であって、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部と、
 をさらに具備する情報処理装置。
 (16)
 上記(15)に記載の情報処理装置であって、
 前記一対のプローブは、それぞれ、前記送信機又は前記受信機と接続する第1の端部と、一対の前記アンテナの離間方向に直交する方向である軸方向において前記第1の端部から離間する第2の端部と、を有し、
 前記アンテナは、前記プローブの、前記軸方向において前記第1の端部から離間した位置に設けられる
 情報処理装置。
 (17)
 上記(16)に記載の情報処理装置であって、
 前記アンテナは、前記プローブの前記第2の端部に設けられる
 情報処理装置。
 (18)
 上記(16)又は(17)に記載の情報処理装置であって、
 前記水分量変換部は、前記一対のプローブが前記第2の端部から前記軸方向に前記媒質に挿抜されて前記アンテナの前記媒質内での深さが動的に変化し続ける挿抜期間内の、前記媒質の水分量を継続的に得て、前記挿抜期間内の前記水分量を前記メモリに時系列的に記録し、
 前記水分量出力部は、前記メモリに時系列的に記録された前記挿抜期間内の前記水分量を、前記表示装置に時系列的に表示する
 情報処理装置。
 (19)
 上記(18)に記載の情報処理装置であって、
 前記水分量出力部は、前記メモリに時系列的に記録された前記水分量の履歴と、前記時系列に対応する経過時間又は前記時系列的に変化する深さとを2軸とするグラフを、前記表示装置に表示する
 情報処理装置。
 (20)
 上記(18)又は(19)に記載の情報処理装置であって、
 前記媒質の表面に対する距離を測定する測距センサにより測定される前記一対のプローブの挿入量に応じて動的に変化する距離を、前記アンテナの前記媒質内での深さに変換する挿入量変換部をさらに具備し、
 前記水分量出力部は、前記メモリに時系列的に記録された前記水分量の履歴と、前記時系列的に変化する深さとを2軸とするグラフを、前記表示装置に表示する
 情報処理装置。
 (21)
 上記(18)乃至(20)の何れか一項に記載の情報処理装置であって、
 前記水分量出力部は、前記深さに対する前記水分量の変化に基づき推定される、前記媒質中に存在する物体の深さを示す情報を、前記表示装置に表示する
 情報処理装置。
 (22)
 上記(19)又は(20)に記載の情報処理装置であって、
 前記水分量出力部は、前記水分量の履歴に代えて、前記水分量に対応する、所望波の時系列的に変化する伝搬遅延時間である所望波伝搬遅延時間の履歴を、前記グラフに表示する
 情報処理装置。
 (23)
 上記(22)に記載の情報処理装置であって、
 前記水分量出力部は、前記グラフに、不要波の伝搬遅延時間の履歴をさらに表示する
 情報処理装置。
 (24)
 上記(23)に記載の情報処理装置であって、
 前記水分量出力部は、前記グラフに、前記所望波伝搬遅延時間を基準として、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在し所望波伝搬遅延時間の算出に影響する可能性のある範囲をさらに表示する
 情報処理装置。
 (25)
 上記(15)乃至(24)の何れか一項に記載の情報処理装置であって、
 前記水分量変換部は、前記一対のプローブの挿抜中は、前記水分量を高頻度で測定し、前記一対のプローブが非動的であるときは、前記水分量を前記高頻度よりも低頻度で測定する
 情報処理装置。
 (26)
 上記(15)乃至(25)の何れか一項に記載の情報処理装置であって、
 前記メモリに時系列的に記録された前記水分量や前記伝搬遅延時間の履歴に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定し、存在する場合、前記物体の深さを判定する第4の判定部と、
 前記第4の判定部により前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブの前記媒質中での設置位置が否であることを示す情報を、前記表示装置に出力する判定結果出力部と、
 をさらに具備する情報処理装置。
 (27)
 上記(26)に記載の情報処理装置であって、
 前記媒質の表面に対する距離を測定する測距センサと、
 前記一対のプローブの挿入量に応じて動的に変化する前記測距センサが測定する距離を、前記アンテナの前記媒質内での深さに変換する挿入量変換部と、をさらに具備し、
 前記判定結果出力部は、前記第4の判定部により判定された前記物体の深さと、前記挿入量変換部により変換された前記アンテナの前記媒質内での深さとに基づき、前記プローブの前記媒質への挿入量をリコメンドすることを示す情報を、前記表示装置に出力する
 情報処理装置。
 (28)
 上記(27)に記載の情報処理装置であって、
 前記一対のプローブの前記媒質中での設置位置が否であることを示す情報及び/又は前記プローブの前記媒質への挿入量をリコメンドすることを示す情報を示す音声を、音声出力装置に出力するガイド部
 をさらに具備する情報処理装置。
 (29)
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部と、
 を具備する情報処理装置。
 (30)
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出し、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する
 情報処理方法。
 (31)
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出し、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出し、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出し、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出し、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出し、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録し、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する
 情報処理方法。
 (32)
 情報処理装置のプロセッサを、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部
 として動作させる情報処理プログラム。
 (33)
 情報処理装置のプロセッサを、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部
 として動作させる情報処理プログラム。
 (34)
 情報処理装置のプロセッサを、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部
 として動作させる情報処理プログラム
 を記録する非一過性のコンピュータ読み取り可能な記録媒体。
 (35)
 情報処理装置のプロセッサを、
 各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
 前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
 前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
 前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
 前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
 水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
 前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部
 として動作させる情報処理プログラム
 を記録する非一過性のコンピュータ読み取り可能な記録媒体。
本技術の各実施形態及び各変形例について上に説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 100 測定装置
 110 センサ装置
 200 センサヘッド
 201 プローブ
 202 プローブ
 210 アンテナ
 300 測定ユニット
 308 ケーブル及び/又は基板上の配線
 310 方向性結合器
 320 送信機
 330 入射波受信機
 340 反射波受信機
 350 透過波受信機
 360 通信部
 400 情報処理装置
 401 透過係数算出部
 402 第1の判定部
 403 反射係数算出部
 404 伝搬時間算出部
 405 往復時間算出部
 406 伝搬遅延時間算出部
 407 時間幅算出部
 408 第2の判定部
 409 信号
 410 第3の判定部
 411 位置算出部
 412 判定結果出力部
 413 電気信号送信制御部
 414 不要波算出部
 415 判定部
 500 表示装置

Claims (33)

  1.  各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
     前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部と、
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     前記判定部の判定結果を、表示装置に出力する判定結果出力部
     をさらに具備する情報処理装置。
  3.  請求項2に記載の情報処理装置であって、
     前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブの前記媒質中での設置位置が否であることを示す情報を、表示装置に出力する
     情報処理装置。
  4.  請求項2に記載の情報処理装置であって、
     前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記物体が存在すると判定された前記所定範囲を示す情報を、表示装置に出力する
     情報処理装置。
  5.  請求項2に記載の情報処理装置であって、
     前記判定結果出力部は、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブを前記媒質中の前記所定範囲の外に設置することをリコメンドすることを示す情報を、表示装置に出力する
     情報処理装置。
  6.  請求項4に記載の情報処理装置であって、
     前記所定範囲を示す情報は、前記所定範囲を示す画像を含む
     情報処理装置。
  7.  請求項1に記載の情報処理装置であって、
     所定のトリガが発生すると、前記送信機が前記電気信号を送信するための命令を、前記送信機に出力する電気信号送信制御部
     をさらに具備する情報処理装置。
  8.  請求項7に記載の情報処理装置であって、
     前記所定のトリガは、前記一対のプローブの設置時、不変の周期的なタイミング、可変の周期的なタイミング及び/又は天候の変化、を含む
     情報処理装置。
  9.  請求項1に記載の情報処理装置であって、
     前記判定部は、2組以上の前記一対のプローブに対して前記媒質中の所定位置に物体が存在するか否かを判定する
     情報処理装置。
  10.  請求項1に記載の情報処理装置であって、
     前記判定部は、前記媒質に含まれる第1の媒質の伝搬時間をtAとし、前記媒質に含まれる前記第1の媒質と異なる第2の媒質の伝搬時間をtBとしたとき、伝搬時間の範囲tA~tBの間において、t=0に最も近い前記透過係数のピークの信号強度が最大値となる場合は、前記一対のプローブの間である第1の範囲に物体が存在しないと判定し、最大値とならない場合は、前記第1の範囲に物体が存在すると判定する、第1の判定部を有する
     情報処理装置。
  11.  請求項1に記載の情報処理装置であって、
     前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部をさらに具備し、
     前記判定部は、
      前記所望波のピークの信号強度A未満の所定の信号強度となるときの波の時間幅Fを算出する時間幅算出部と、
      前記時間幅Fが第1の閾値以上である場合、前記一対のプローブから第2の範囲に物体が存在すると判定し、前記時間幅Fが前記第1の閾値未満である場合、前記一対のプローブから前記第2の範囲に物体が存在しないすると判定する、第2の判定部と、
     を有する
     情報処理装置。
  12.  請求項1に記載の情報処理装置であって、
     前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部をさらに具備し、
     前記判定部は、
      前記所望波のピークの時間t1m_S21と、前記所望波のピークの時間t1m_S21の後に発生した次のピークである不要波のピークの時間t2m_S21、との時間差Δt=t2m_S21-t1m_S21を算出する、不要波算出部と、
      Δtが第2の閾値以上である場合、前記第2の範囲より広い第3の範囲に物体が存在しないと判定し、Δtが前記第2の閾値未満である場合、前記第3の範囲に物体が存在すると判定する、第3の判定部と、
     を有する
     情報処理装置。
  13.  請求項12に記載の情報処理装置であって、
     前記不要波算出部は、前記不要波のピークの時間t2m_S21から+Δt時間経過したときの信号強度Bを算出し、
     前記第3の判定部は、A-Bが第3の閾値以上である場合、前記第3の範囲に物体が存在しないと判定し、A-Bが前記第3の閾値未満である場合、前記第3の範囲に物体が存在すると判定する
     情報処理装置。
  14.  請求項12に記載の情報処理装置であって、
     前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
     前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
     前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
     前記第3の判定部が前記第3の範囲に物体が存在すると判定すると、前記時間差Δt、前記一対のアンテナの位置、前記媒質の比誘電率、光速、前記一対のプローブ間の距離及び伝搬遅延時間tpd1に基づき、前記物体が存在する可能性がある位置情報の集合を算出する位置算出部と、
     をさらに具備する情報処理装置。
  15.  請求項1に記載の情報処理装置であって、
     前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
     前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
     前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
     前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
     水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
     前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部と、
     をさらに具備する情報処理装置。
  16.  請求項15に記載の情報処理装置であって、
     前記一対のプローブは、それぞれ、前記送信機又は前記受信機と接続する第1の端部と、一対の前記アンテナの離間方向に直交する方向である軸方向において前記第1の端部から離間する第2の端部と、を有し、
     前記アンテナは、前記プローブの、前記軸方向において前記第1の端部から離間した位置に設けられる
     情報処理装置。
  17.  請求項16に記載の情報処理装置であって、
     前記アンテナは、前記プローブの前記第2の端部に設けられる
     情報処理装置。
  18.  請求項16に記載の情報処理装置であって、
     前記水分量変換部は、前記一対のプローブが前記第2の端部から前記軸方向に前記媒質に挿抜されて前記アンテナの前記媒質内での深さが動的に変化し続ける挿抜期間内の、前記媒質の水分量を継続的に得て、前記挿抜期間内の前記水分量を前記メモリに時系列的に記録し、
     前記水分量出力部は、前記メモリに時系列的に記録された前記挿抜期間内の前記水分量を、前記表示装置に時系列的に表示する
     情報処理装置。
  19.  請求項18に記載の情報処理装置であって、
     前記水分量出力部は、前記メモリに時系列的に記録された前記水分量の履歴と、前記時系列に対応する経過時間又は前記時系列的に変化する深さとを2軸とするグラフを、前記表示装置に表示する
     情報処理装置。
  20.  請求項18に記載の情報処理装置であって、
     前記媒質の表面に対する距離を測定する測距センサにより測定される前記一対のプローブの挿入量に応じて動的に変化する距離を、前記アンテナの前記媒質内での深さに変換する挿入量変換部をさらに具備し、
     前記水分量出力部は、前記メモリに時系列的に記録された前記水分量の履歴と、前記時系列的に変化する深さとを2軸とするグラフを、前記表示装置に表示する
     情報処理装置。
  21.  請求項18に記載の情報処理装置であって、
     前記水分量出力部は、前記深さに対する前記水分量の変化に基づき推定される、前記媒質中に存在する物体の深さを示す情報を、前記表示装置に表示する
     情報処理装置。
  22.  請求項19に記載の情報処理装置であって、
     前記水分量出力部は、前記水分量の履歴に代えて、前記水分量に対応する、所望波の時系列的に変化する伝搬遅延時間である所望波伝搬遅延時間の履歴を、前記グラフに表示する
     情報処理装置。
  23.  請求項22に記載の情報処理装置であって、
     前記水分量出力部は、前記グラフに、不要波の伝搬遅延時間の履歴をさらに表示する
     情報処理装置。
  24.  請求項23に記載の情報処理装置であって、
     前記水分量出力部は、前記グラフに、前記所望波伝搬遅延時間を基準として、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在し所望波伝搬遅延時間の算出に影響する可能性のある範囲をさらに表示する
     情報処理装置。
  25.  請求項15に記載の情報処理装置であって、
     前記水分量変換部は、前記一対のプローブの挿抜中は、前記水分量を高頻度で測定し、前記一対のプローブが非動的であるときは、前記水分量を前記高頻度よりも低頻度で測定する
     情報処理装置。
  26.  請求項15に記載の情報処理装置であって、
     前記メモリに時系列的に記録された前記水分量や前記伝搬遅延時間の履歴に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定し、存在する場合、前記物体の深さを判定する第4の判定部と、
     前記第4の判定部により前記一対のプローブに対して前記媒質中の所定範囲に物体が存在すると判定されると、前記一対のプローブの前記媒質中での設置位置が否であることを示す情報を、前記表示装置に出力する判定結果出力部と、
     をさらに具備する情報処理装置。
  27.  請求項26に記載の情報処理装置であって、
     前記媒質の表面に対する距離を測定する測距センサと、
     前記一対のプローブの挿入量に応じて動的に変化する前記測距センサが測定する距離を、前記アンテナの前記媒質内での深さに変換する挿入量変換部と、をさらに具備し、
     前記判定結果出力部は、前記第4の判定部により判定された前記物体の深さと、前記挿入量変換部により変換された前記アンテナの前記媒質内での深さとに基づき、前記プローブの前記媒質への挿入量をリコメンドすることを示す情報を、前記表示装置に出力する
     情報処理装置。
  28.  請求項27に記載の情報処理装置であって、
     前記一対のプローブの前記媒質中での設置位置が否であることを示す情報及び/又は前記プローブの前記媒質への挿入量をリコメンドすることを示す情報を示す音声を、音声出力装置に出力するガイド部
     をさらに具備する情報処理装置。
  29.  各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
     前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
     前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
     前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
     前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
     水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
     前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部と、
     を具備する情報処理装置。
  30.  各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出し、
     前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する
     情報処理方法。
  31.  各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出し、
     前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出し、
     前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出し、
     前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出し、
     前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出し、
     水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録し、
     前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する
     情報処理方法。
  32.  情報処理装置のプロセッサを、
     各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
     前記透過係数に基づき、前記一対のプローブに対して前記媒質中の所定範囲に物体が存在するか否かを判定する判定部
     として動作させる情報処理プログラム。
  33.  情報処理装置のプロセッサを、
     各々アンテナを有する一対のプローブの一方へ入射波を含む電気信号を送信する送信機から送信された前記入射波のうち、前記一対のプローブの間の媒質を透過した透過波を受信する受信機が受信した前記透過波の時間波形から透過係数を算出する透過係数算出部と、
     前記透過波の伝搬時間及び信号強度を算出し、所望波のピークの信号強度A及び時間t1m_S21を算出する、伝搬時間算出部と、
     前記受信機が受信した前記一対のプローブの前記一方で前記入射波が反射した反射波の時間波形から反射係数を算出する反射係数算出部と、
     前記反射波の往復時間及び信号強度を算出し、前記反射波のピークの信号強度及び時間t1m_S11を算出する、往復時間算出部と、
     前記所望波のピークの時間t1m_S21と前記反射波のピークの時間t1m_S11との差分である伝搬遅延時間tpd1=t1m_S21-t1m_S11を算出する伝搬遅延時間算出部と、
     水分量と前記伝搬遅延時間との間の関係を示す係数を用いて、前記伝搬遅延時間tpd1を前記媒質の水分量に変換し、得られた前記水分量をメモリに時系列的に記録する水分量変換部と、
     前記メモリに時系列的に記録された前記水分量の履歴を、表示装置に時系列的に表示する水分量出力部
     として動作させる情報処理プログラム。
PCT/JP2022/047893 2022-01-05 2022-12-26 情報処理装置、情報処理方法及び情報処理プログラム WO2023132288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022000629 2022-01-05
JP2022-000629 2022-01-05

Publications (1)

Publication Number Publication Date
WO2023132288A1 true WO2023132288A1 (ja) 2023-07-13

Family

ID=87073662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047893 WO2023132288A1 (ja) 2022-01-05 2022-12-26 情報処理装置、情報処理方法及び情報処理プログラム

Country Status (1)

Country Link
WO (1) WO2023132288A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08501881A (ja) * 1993-06-09 1996-02-27 株式会社ユニオン・エンジニアリング タイム・ドメイン反射測定システムにおいて明瞭な大きい振幅のタイミング・マーカーを発生させるための装置及び方法
JPH11511254A (ja) * 1995-08-18 1999-09-28 ロンドン エレクトリシティ ピーエルシー 媒体における物体の位置を決定するためのシステムおよび方法
US6111415A (en) * 1998-01-09 2000-08-29 Malcam Ltd. Device and method for determining the moisture content of a bulk material
JP2008039422A (ja) * 2006-08-01 2008-02-21 Nissan Motor Co Ltd 物体識別方法と物体識別装置
US20100013497A1 (en) * 2008-07-18 2010-01-21 Evans James A Remote sensor system for monitoring the condition of earthen structure and method of its use
JP2010014588A (ja) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd 物体識別装置及び物体識別方法
US8742768B1 (en) * 2010-08-23 2014-06-03 The United States Of America As Represented By The Secretary Of Agriculture Interrogation measurement system and method providing accurate permittivity measurements via ultra-wideband removal of spurious reflectors
US20150268218A1 (en) * 2013-03-14 2015-09-24 Robert Ernest Troxler Systems and methods for asphalt density and soil moisture measurements using ground penetrating radar
US20180188211A1 (en) * 2016-08-31 2018-07-05 The Board Of Regents Of The University Of Texas System Non-invasive sample-interrogation device
WO2018221051A1 (ja) * 2017-06-02 2018-12-06 ソニー株式会社 センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法
JP2019128224A (ja) * 2018-01-24 2019-08-01 応用地質株式会社 樹木診断装置及び樹木診断方法
WO2020230478A1 (ja) * 2019-05-13 2020-11-19 ソニー株式会社 測定装置、測定システム、および、測定方法
JP2021503593A (ja) * 2018-10-26 2021-02-12 浙江大学Zhejiang University 全偏波レーダーに基づく氷床の内部組織構造と氷流れ場の分布特徴の識別方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08501881A (ja) * 1993-06-09 1996-02-27 株式会社ユニオン・エンジニアリング タイム・ドメイン反射測定システムにおいて明瞭な大きい振幅のタイミング・マーカーを発生させるための装置及び方法
JPH11511254A (ja) * 1995-08-18 1999-09-28 ロンドン エレクトリシティ ピーエルシー 媒体における物体の位置を決定するためのシステムおよび方法
US6111415A (en) * 1998-01-09 2000-08-29 Malcam Ltd. Device and method for determining the moisture content of a bulk material
JP2008039422A (ja) * 2006-08-01 2008-02-21 Nissan Motor Co Ltd 物体識別方法と物体識別装置
JP2010014588A (ja) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd 物体識別装置及び物体識別方法
US20100013497A1 (en) * 2008-07-18 2010-01-21 Evans James A Remote sensor system for monitoring the condition of earthen structure and method of its use
US8742768B1 (en) * 2010-08-23 2014-06-03 The United States Of America As Represented By The Secretary Of Agriculture Interrogation measurement system and method providing accurate permittivity measurements via ultra-wideband removal of spurious reflectors
US20150268218A1 (en) * 2013-03-14 2015-09-24 Robert Ernest Troxler Systems and methods for asphalt density and soil moisture measurements using ground penetrating radar
US20180188211A1 (en) * 2016-08-31 2018-07-05 The Board Of Regents Of The University Of Texas System Non-invasive sample-interrogation device
WO2018221051A1 (ja) * 2017-06-02 2018-12-06 ソニー株式会社 センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法
JP2019128224A (ja) * 2018-01-24 2019-08-01 応用地質株式会社 樹木診断装置及び樹木診断方法
JP2021503593A (ja) * 2018-10-26 2021-02-12 浙江大学Zhejiang University 全偏波レーダーに基づく氷床の内部組織構造と氷流れ場の分布特徴の識別方法
WO2020230478A1 (ja) * 2019-05-13 2020-11-19 ソニー株式会社 測定装置、測定システム、および、測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOUTO, F.J. ; DAFONTE, J. ; ESCARIZ, M.: "Design and air-water calibration of a waveguide connector for TDR measurements of soil electric permittivity in stony soils", BIOSYSTEMS ENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 101, no. 4, 1 December 2008 (2008-12-01), AMSTERDAM, NL, pages 463 - 471, XP025691779, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2008.09.015 *

Similar Documents

Publication Publication Date Title
US20220057435A1 (en) Sensor device, water amount measurement device, water amount measurement method, information processing device, and information processing method
CN204188224U (zh) 单导体探头雷达物位计系统以及罐布置
EP2902799B1 (en) Doppler radar test system
EP1093588A1 (en) Radar apparatus
KR20110005254A (ko) 주기적으로 배열된 기준 임피던스 트랜지션을 갖는 웨이브가이딩 구조를 이용한 레이더 레벨 게이지 시스템
KR20110012584A (ko) 초음파 기반 3차원 위치 추정 장치 및 방법
US8421622B2 (en) Monitoring system for moving object
WO2023132288A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
EP3330700B1 (en) Water vapor observation device
JP2006133088A (ja) 土壌中の水分分布測定方法及び水分分布測定システム
EP3260880B1 (en) Signal-processing device and processing method, recording medium, and target detection device and detection method
KR100979286B1 (ko) 수중 거리 및 방위를 측정하는 장치 및 방법
CN102608353B (zh) 一种基于超声调制多频声波的加速度测量方法与装置
KR101903880B1 (ko) 지중 매설물 탐지 장치 및 방법
KR20160062681A (ko) 지하 매질 변화 감지 장치
CN204439168U (zh) 雷达物位计系统
EP3405757B1 (en) Radar level gauge system and method with signal propagation path modeling
US20230003668A1 (en) Sensor apparatus and water amount measurement apparatus
CN202853585U (zh) 抽油机用的载荷位移一体化无线传感装置
CN215575663U (zh) 一种基于参量阵的海底埋藏电缆探测系统
CN114486008A (zh) 柔性微带线、反向散射触觉感知系统及其测量方法
JP5536494B2 (ja) シールド部材の異常検出装置及びシールド部材の異常検出方法
KR200360668Y1 (ko) 선박속도 측정장치
CN112284493A (zh) 一种液位测量方法及装置
TW201723500A (zh) 時域反射導波器結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918872

Country of ref document: EP

Kind code of ref document: A1