WO2023132079A1 - 第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法 - Google Patents

第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法 Download PDF

Info

Publication number
WO2023132079A1
WO2023132079A1 PCT/JP2022/000423 JP2022000423W WO2023132079A1 WO 2023132079 A1 WO2023132079 A1 WO 2023132079A1 JP 2022000423 W JP2022000423 W JP 2022000423W WO 2023132079 A1 WO2023132079 A1 WO 2023132079A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
survival time
wireless
radio
Prior art date
Application number
PCT/JP2022/000423
Other languages
English (en)
French (fr)
Inventor
太田好明
河▲崎▼義博
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2022/000423 priority Critical patent/WO2023132079A1/ja
Priority to JP2023572334A priority patent/JPWO2023132079A1/ja
Publication of WO2023132079A1 publication Critical patent/WO2023132079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a first wireless communication device, a second wireless communication device, a wireless communication system, and a wireless communication method.
  • Wireless communication systems using radio have been used.
  • Wireless communication systems are also used within facilities such as factories, for example.
  • IoT Internet of Things
  • IIoT Industry
  • the communication device In a factory, if a control signal is not received, for example, the production line of the factory may stall or stop, causing a serious error. Delay and error conditions may be required. Therefore, in the IIoT, on the premise that a predetermined condition is satisfied, the communication device is required to receive data within the packet arrival time limit (hereinafter sometimes referred to as survival time) that the system allows (hereinafter referred to as survival time). , survival time mode (STM)) to improve the probability of data arrival.
  • survival time the packet arrival time limit
  • survival time survival time mode
  • 3GPP TS36.133 LTE-A Radio Measurement Specifications 3GPP TS36.300 LTE-A Outline specifications 3GPP TS36.211 LTE-A PHY Channel Specification 3GPP TS36.212 LTE-A PHY Coding Specification 3GPP TS36.213 LTE-A PHY Procedure Specification 3GPP TS36.214 LTE-A PHY measurement specification 3GPP TS36.321 LTE-A MAC specification 3GPP TS36.322 LTE-A RLC specification 3GPP TS36.323 LTE-A PDCP specification 3GPP TS36.331 LTE-A RRC specification 3GPP TS36.413 LTE-A S1 specification 3GPP TS36.423 LTE-A X2 specification 3GPP TS36.425 LTE-A Xn specification 3GPP TR36.912 NR Radio Access Overview 3GPP TR38.913 NR Requirements 3GPP TR38.913 NR Requirements 3GPP TR38
  • one disclosure provides a first wireless communication device, a second wireless communication device, a wireless communication system, and a wireless communication method that improve the probability of data arrival in the IIoT survival time mode.
  • a communication unit that is a first wireless communication device in a wireless communication system and that communicates with a second wireless communication device having a survival time in which data transmission is enhanced; Setting of the radio measurement interval according to information on radio measurement intervals in which radio measurements are performed in the second radio communication device, and the survival time, which can control allocation of radio resources for enhancing data transmission in the frequency band and time domain. and a control unit that can control the
  • One disclosure can improve the probability of data arrival in the survival time mode of the IIoT.
  • FIG. 1 is a diagram showing a configuration example of a radio communication system 1.
  • FIG. 2 is a diagram showing an example of a wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of the base station apparatus 200.
  • FIG. 4 is a diagram showing a configuration example of the terminal device 100.
  • FIG. 5 is a diagram showing an example of survival mode.
  • FIG. 6 is a diagram illustrating an example of enhancing radio resources in the frequency domain.
  • FIG. 7 is a diagram illustrating an example (pattern 1) of increasing radio resources in the time domain.
  • FIG. 8 is a diagram showing an example (pattern 2) of increasing radio resources in the time domain.
  • FIG. 9 is a diagram showing an example (pattern 3) of increasing radio resources in the time domain.
  • FIG. 10 is a diagram showing an example of whether or not MG is performed when the MG period is longer than the transmission interval.
  • FIG. 11 is a diagram showing an example of whether or not MG is performed when the MG period is shorter than the transmission interval.
  • FIG. 12 is a diagram illustrating an example of MG implementation when the MG period is shorter than the transmission interval.
  • the wireless communication system 1 is a communication system that supports survival time.
  • a section (period) corresponding to the survival time may be called a survival time mode (section).
  • the radio communication system 1 has a first radio communication device 2 and a second radio communication device 7 .
  • the first radio communication device 2 and the second radio communication device 7 correspond to the survival time and perform radio communication.
  • the first wireless communication device 2 is a communication device having a control unit 3 and a communication unit 4.
  • the control unit 3 and the communication unit 4 are constructed by, for example, executing a program loaded in the memory by the processor (computer) of the first wireless communication device 2 .
  • the control unit 3 can perform allocation control of radio resources for the second radio communication device 7 to transmit data to the first radio communication device 2 .
  • the control unit 3 enhances data transmission by adding or changing allocation of wireless resources in the frequency band and time domain (S1).
  • the control unit 3 allows the second wireless communication device 7 to use radio resources in a different frequency band or different time domain from radio resources normally used (intervals other than the survival time mode (interval)) for data transmission. Allocate as a radio resource to be used. For example, control to increase transmission power or control to make it easier for data to reach the wireless communication device 2 is performed.
  • the control unit 3 controls the setting of the wireless measurement section in the second wireless communication device 7 (S2).
  • the second radio communication device 7 performs radio measurement at predetermined timings.
  • a section (period) during which the wireless measurement is performed is called a wireless measurement section.
  • Radio measurement is, for example, a process of searching for a communication device (or frequency band) other than the first radio communication device 2 (or serving frequency band) with which the second radio communication device 7 is communicating.
  • the second wireless communication device 7 may not be able to transmit/receive data to/from the first wireless communication device 2 during the wireless measurement interval.
  • the control unit 3 controls, for example, the second wireless communication device 7 not to perform wireless measurement in the survival time mode (section). Note that the control unit 3 controls the setting of the wireless measurement section according to the information 5 on the wireless measurement section and the survival time 6 (for example, the required time until data arrival).
  • the second wireless communication device 7 is a communication device having a second control unit 8 and a second communication unit 9.
  • the second control unit 8 and the second communication unit 9 are constructed, for example, by a processor (computer) of the second wireless communication device 7 executing a program loaded in the memory.
  • the second control unit 8 controls wireless communication according to the control of the first wireless communication device 2 . For example, when the second control unit 8 recognizes that the data has not arrived N times (N is an integer equal to or greater than 1), it shifts to survival time mode (interval).
  • the communication unit 4 and the second communication unit 9 perform wireless communication.
  • the communication unit 4 performs wireless communication according to the control unit 3 .
  • the second communication section 9 performs wireless communication according to the second control section 8 .
  • the first wireless communication device 2 improves the probability of data arrival by controlling allocation of wireless resources that enhance data transmission in the frequency band and time domain in the survival time mode (section) of the second wireless communication device 7. can be made Furthermore, the first wireless communication device 2 controls the setting of the wireless measurement interval according to the information on the wireless measurement interval and the survival time, thereby controlling the data transmission in the survival time mode (interval) so as not to interfere. be able to.
  • FIG. 2 is a diagram showing a configuration example of the radio communication system 10.
  • a radio communication system 10 has a base station apparatus 200 and a terminal apparatus 100 .
  • the wireless communication system 10 is, for example, a wireless communication system installed within a system.
  • a wireless communication system with IIoT capabilities for example, a wireless communication system with IIoT capabilities.
  • the terminal device 100 is a communication device attached to equipment (devices) within the system.
  • the base station device 200 is a communication device installed within the system.
  • the base station device 200 supports various communication generations (eg, 5G, Beyond 5G, etc.). Also, the base station apparatus 200 may be composed of one unit, or may be composed of a plurality of units such as a CU (Central Unit) and a DU (Distributed Unit).
  • CU Central Unit
  • DU Distributed Unit
  • the base station device 200 and the terminal device 100 communicate using IIoT. Also, the terminal device 100 and the base station device 200 are assumed to support survival time.
  • FIG. 3 is a diagram showing a configuration example of the base station apparatus 200.
  • the base station apparatus 200 has a CPU (Central Processing Unit) 210 , a storage 220 , a memory 230 , a wireless communication circuit 250 and an antenna 251 .
  • CPU Central Processing Unit
  • the storage 220 is an auxiliary storage device such as flash memory, HDD (Hard Disk Drive), or SSD (Solid State Drive) that stores programs and data.
  • the storage 220 stores a communication program 221 and a control program 222 .
  • the memory 230 is an area into which programs stored in the storage 220 are loaded.
  • the memory 230 may also be used as an area where programs store data.
  • the wireless communication circuit 250 is a device that performs wireless communication with the terminal device 100 .
  • the wireless communication circuit 250 has an antenna 251 .
  • Antenna 251 includes, for example, a directional antenna capable of controlling the direction of transmission and reception of radio waves.
  • the CPU 210 is a processor that loads a program stored in the storage 220 into the memory 230, executes the loaded program, constructs each part, and realizes each process.
  • the communication process is a process of performing wireless communication with the terminal device 100 .
  • the base station apparatus 200 wirelessly connects to the terminal apparatus 100, transmits data and control signals to the terminal apparatus 100, and receives data from the terminal apparatus 100.
  • the CPU 210 By executing the control program 222, the CPU 210 builds a control unit and performs control processing.
  • the control processing is processing for controlling wireless communication with the terminal device 100 .
  • the base station apparatus 200 performs allocation control of radio resources used by the terminal apparatus 100 in the survival time mode (section) (for example, allocation of enhancement resources, instruction to cancel radio resources used in normal times, transmission power improvement, control to make it easier for data to arrive, etc.).
  • the base station apparatus 200 controls the implementation of wireless section measurement (for example, Measurement Gap, hereinafter sometimes referred to as MG) performed by the terminal apparatus 100 (execution/non-implementation, instruction of implementation timing, etc.). I do.
  • wireless section measurement for example, Measurement Gap, hereinafter sometimes referred to as MG
  • the survival time mode allocation control process is a process of controlling allocation of radio resources used by the terminal device 100 in the survival time mode.
  • the base station apparatus 200 enhances radio resources (data transmission) in at least one of the frequency band and the time domain, for example. For example, control to increase transmission power and control to make it easier for data to reach the base station apparatus 200 are performed.
  • MG control processing is processing for controlling whether or not to execute Measurement Gap in the terminal device 100 .
  • Base station apparatus 200 does not perform Measurement Gap in MG control processing, for example, in survival time mode.
  • FIG. 4 is a diagram showing a configuration example of the terminal device 100. As shown in FIG. The terminal device 100 has a CPU 110 , a storage 120 , a memory 130 , a wireless communication circuit 150 and an antenna 151 .
  • the storage 120 is an auxiliary storage device such as flash memory, HDD, or SSD that stores programs and data.
  • the storage 120 stores a terminal communication program 121 and a terminal control program 122 .
  • the memory 130 is an area into which programs stored in the storage 120 are loaded.
  • the memory 130 may also be used as an area where programs store data.
  • the wireless communication circuit 150 is a device that performs wireless communication with the base station device 200 .
  • the wireless communication circuit 150 has an antenna 151 .
  • Antenna 151 includes, for example, a directional antenna capable of controlling the direction of transmission and reception of radio waves.
  • the CPU 110 is a processor that loads a program stored in the storage 120 into the memory 130, executes the loaded program, constructs each part, and realizes each process.
  • Terminal communication processing is processing for performing wireless communication with the base station apparatus 200 .
  • survival time mode processing is processing for communication in the survival time mode.
  • the terminal device 100 uses radio resources (including enhanced radio resources) allocated to the base station device 200, and controls the given data to easily reach the base station device 200 (data transmission power , etc.) and transmits data.
  • Terminal control processing is, for example, processing in which communication is controlled by the base station apparatus 200 .
  • MG processing is processing executed (or not executed) by MG according to instructions from base station apparatus 200 .
  • the terminal device 100 does not execute (or postpones or suspends) MG according to instructions from the base station device 200 during the survival time mode.
  • FIG. 5 is a diagram showing an example of survival mode.
  • the terminal device 100 in the wireless communication system 10 of FIG. 5 transmits data to the base station device 200 .
  • the terminal device 100 for example, transmits data at intervals of 0.5 ms (or acquires an opportunity to transmit data). In FIG. 5, transmission intervals are indicated by black squares.
  • N is an integer equal to or greater than 1.
  • NACK Non Acknowledgment
  • NACK is used here for convenience, it is more specifically a physical layer (L1) control signal. In 5G, this corresponds to a UL grant that prompts retransmission. However, it is not limited to this. Any control signal for transitioning to the survival mode may be used.
  • the terminal device 100 transmits data D1 to the base station device 200 (S10).
  • the base station apparatus 200 successfully receives the data D1 and transmits an ACK (acknowledgment) indicating that the data D1 has been successfully received to the terminal apparatus 100 (S11).
  • ACK acknowledgeledgment
  • the terminal device 100 recognizes that data transmission has succeeded, for example, by not receiving a NACK for a predetermined period of time.
  • the terminal device 100 transmits data D2 to the base station device 200 (S12).
  • the base station apparatus 200 fails to receive the data D2, and transmits NACK indicating failure to receive the data D2 to the terminal apparatus 100 (S13). Since the terminal device 100 has received NACKs and has received NACKs a predetermined number of times, it transitions to the survival time mode.
  • survival time mode ends at a predetermined time.
  • the survival time mode may end according to the number of transmissions or the number of successes of data transmission.
  • the survival time mode may end when the radio conditions become better than a predetermined level.
  • the terminal device 100 increases the wireless resources it uses.
  • the radio resource reinforced in survival mode may be referred to as reinforced radio resource.
  • the pattern of enhancement is shown below.
  • FIG. 6 is a diagram illustrating an example of enhancing radio resources in the frequency domain.
  • CC1 and CC2 are assumed to have different frequency bands.
  • CC2 is, for example, a radio resource agreed in advance (or allocated by an RRC control signal) between the terminal device 100 and the base station device 200 .
  • the terminal device 100 uses the radio resource of CC1 to transmit data to the base station device 200 (S20).
  • the base station device 200 transmits NACK indicating that the data reception has failed to the terminal device 100 (S21). Since the terminal device 100 has received NACKs and has received NACKs a predetermined number of times, it transitions to the survival time mode.
  • the terminal device 100 uses radio resources R21, R22, and R23 on the same time axis as the radio resources of CC2 that transmit data (or/and are scheduled to transmit in the future) as enhanced radio resources. .
  • the terminal device 100 retransmits data and transmits new data using radio resources that are also used in modes other than the survival time mode and the enhanced radio resource R21 (S22, S23).
  • the data transmitted here may be, for example, a retransmission of the data targeted for NACK, or may be other data.
  • the same data or different data may be transmitted on the radio resource of CC1 and the radio resource of CC2.
  • FIG. 7 is a diagram illustrating an example (pattern 1) of increasing radio resources in the time domain.
  • the terminal device 100 uses the radio resource of CC1 to transmit data to the base station device 200 (S30).
  • the base station device 200 transmits NACK indicating that the data reception has failed to the terminal device 100 (S31). Since the terminal device 100 has received NACKs and has received NACKs a predetermined number of times, it transitions to the survival time mode.
  • the terminal device 100 reinforces radio resources R31 on the same time axis as radio resources for transmitting data (or/and to be transmitted in the future) and R32 and R33 on different time axes, which are radio resources of CC2. Used as a radio resource.
  • the terminal device 100 retransmits data and transmits new data using radio resources that are also used in modes other than the survival time mode and enhanced radio resources R31, R32, and R33 (S32, S33, S34, and S35).
  • repetition Type A/Type B can be applied to PUSCH.
  • Repetition Type A is a technique for repeatedly transmitting data in slot units
  • Repetition Type B is a technique for repeatedly transmitting data within one slot.
  • TBOMS presetting As a means of increasing radio resources in the time domain, for example, there is TBOMS presetting.
  • TBOMS function for example, one TB corresponding to data to be transmitted can be transmitted across multiple slots.
  • the terminal device 100 allocates enhanced radio resources R32 and R33 to CC2 having different frequency bands, but may allocate enhanced radio resources R32 and R33 to CC1 having the same frequency.
  • the base station apparatus 200 controls a plurality of terminal apparatuses 100, CC1 may also be used by other terminal apparatuses 100, for example.
  • the base station apparatus 200 controls the terminal apparatus 100 so that the enhanced radio resources R32 and R33 of CC1 can be occupied by the terminal apparatus 100 by restricting or canceling the use of CC1 by other terminal apparatuses 100 .
  • the number of enhanced radio resources is three, R31, R32, and R33, but it may be less or more.
  • the number of enhanced radio resources is indicated by the base station apparatus 200, for example.
  • the maximum number of times is specified in advance using an RRC message, broadcast information, or the like.
  • the terminal device 100 allocates the enhanced radio resource within the specified maximum number of times.
  • the base station apparatus 200 within the maximum number of times specified in advance, for example, includes the number of enhanced radio resources in this NACK, etc., at the timing of transition to the survival time mode (for each survival time mode), the terminal The number of enhanced radio resources may be indicated to the apparatus 100 .
  • FIG. 8 is a diagram showing an example (pattern 2) of increasing radio resources in the time domain.
  • data transmission on enhanced radio resources is omitted.
  • the transmission timings of the normal radio resource and the enhanced radio resource R31 may overlap as in pattern 1.
  • the transmission power of the terminal device 100 has no spare capacity, if the transmission timings of the normal radio resource and the enhanced radio resource R31 overlap as in pattern 1, the transmission power of at least one of them becomes low, and the base station device 200 It may not arrive with enough power. Therefore, in pattern 2, the terminal device 100 prevents the time domains of the normal radio resource and the enhanced radio resource from overlapping.
  • the terminal device 100 uses the radio resource of CC1 to transmit data to the base station device 200 (S40).
  • the base station apparatus 200 fails to receive data, it transmits a NACK indicating failure to receive data to the terminal apparatus 100 (S41). Since the terminal device 100 has received NACKs and has received NACKs a predetermined number of times, it transitions to the survival time mode.
  • the terminal device 100 does not use the radio resource R41 on the same time axis as the radio resource for transmitting data (or/and to be transmitted in the future), which is the radio resource for CC2, as an enhanced radio resource.
  • the terminal device 100 uses R42 and R43, which have different time axes from the radio resource that transmitted data (or/and is scheduled to transmit in the future), as enhanced radio resources.
  • the terminal device 100 allocates radio resources whose time domains do not overlap as enhanced radio resources.
  • FIG. 9 is a diagram showing an example (pattern 3) of increasing radio resources in the time domain.
  • pattern 3 data transmission on enhanced radio resources is omitted.
  • the terminal device 100 does not allocate enhanced radio resources that overlap in the time domain with the normal radio resources, but in pattern 3, allocates enhanced radio resources that overlap in the time domain with the normal radio resources, Cancel normal radio resources.
  • the terminal device 100 uses the radio resource of CC1 to transmit data to the base station device 200 (S50).
  • the base station device 200 transmits NACK indicating that the data reception has failed to the terminal device 100 (S51). Since the terminal device 100 has received NACKs and has received NACKs a predetermined number of times, it transitions to the survival time mode.
  • the terminal device 100 reinforces radio resources R51 on the same time axis as radio resources for transmitting data (or/and to be transmitted in the future) and R52 and R53 on different time axes, which are radio resources of CC2. Used as a radio resource.
  • the terminal device 100 cancels (does not use) normal radio resources.
  • the normal radio resource is the radio resource of CC1, which is the radio resource of the frequency band in which NACK has been received in advance. Therefore, using CC2 may improve the probability of data arrival.
  • the measurement gap is the radio signal reception quality in a band different from the current band with the same serving frequency, and from other frequency bands and different RATs. to measure the radio signal reception quality of the radio, or to indicate the measurement period or control.
  • the wireless communication circuit (RF system) used for MG and the wireless communication circuit (RF system) used for communication are the same, the terminal device 100 exchanges data with the currently communicating base station device 200 during MG. Cannot send or receive. Therefore, in the radio communication system 10, it is necessary to control the MG including whether or not the survival time mode is implemented.
  • FIG. 10 is a diagram showing an example of whether or not MG is performed when the MG period is longer than the transmission interval.
  • the MG period is 1.5 ms and the transmission cycle is 0.5 ms. Note that the transmission cycle is assumed to have the same value as the survival time.
  • the terminal device 100 when the terminal device 100 performs MG during the survival time mode, it cannot transmit data to the base station device 200 during the MG period of 1.5 ms. Therefore, the terminal device 100 does not perform MG when the MG period is longer than the survival time (transmission period).
  • FIG. 11 is a diagram showing an example of whether or not MG is performed when the MG period is shorter than the transmission interval.
  • the MG period is 1.5 ms and the transmission period is 2.0 ms.
  • the terminal device 100 performs MG when the MG period is shorter than the survival time (transmission cycle). Further, whether or not to perform MG when the MG period is shorter than the survival time may follow an instruction from the base station apparatus 200 or be optional, for example.
  • FIG. 12 is a diagram showing an example of MG implementation when the MG period is shorter than the transmission interval.
  • the MG period is 1.5 ms and the transmission period is 2.0 ms.
  • the terminal device 100 transmits data to the base station device 200 (S60).
  • the base station device 200 transmits NACK indicating that the data reception has failed to the terminal device 100 (S61). Since the terminal device 100 has received NACKs and has received NACKs a predetermined number of times, it transitions to the survival time mode.
  • the period T60 during which data can be transmitted after the terminal device 100 receives a NACK is 0.5 ms at maximum (transmission interval - MG period).
  • the time of T60 is shorter than a predetermined time (first time) (or there is no time condition)
  • MG may be canceled or shifted.
  • the timing for executing MG later is, for example, the timing according to an instruction from the base station device 200, the timing when the survival time mode ends, or the like.
  • the terminal device 100 may terminate the survival time mode at the timing of receiving the ACK and execute the shifted (cancelled) MG.
  • the terminal device 100 that supports survival time may be set in advance so that MG is not implemented or not executed.
  • Such a terminal device may use the RRC control signal to notify the base station device 200 that the terminal device supports the survival time.
  • the requirements described in the first, second, and other embodiments are as follows when defined as standardized specifications in 3GPP, for example.
  • ⁇ 3GPP TS38.331 states that time-domain repetition is set only for boosted (enhanced) CG (configured grant-based) resources.
  • 3GPP TS38.306 states that MG is not set (MG is not implemented) for UEs (terminal devices) that support 0.5ms/1ms survival time.
  • the survival time is set to "0.5 ms/1 ms" because it is assumed that the survival time is shorter than the minimum MG time of "1.5 ms".
  • a UE that does not set MG may be a UE that supports only a survival time that is shorter than the MG period.
  • 3GPP TS38.306 (UE capability) describes, for example, "shall not support measurement gap” or "is not required to support measurement gap” for applicable UEs.
  • 3GPP TS38.306 states that UEs that support a survival time of 2.0 ms (if the survival time is longer than the MG period) can support MG.
  • 3GPP TS38.306 (UE capability) describes, for example, "can support measurement gap" for a UE that supports a survival time of 2.0 ms.
  • 3GPP TS38.306 may state that MG is not set for UEs that support survival time. In this case, 3GPP TS38.306 (UE capability) may state that "shall not support measurement gap” or “is not required to support measurement gap” for UEs that support survival time.
  • 3GPP TS38.321 (MAC specification) describes that PUSCH transmission is allowed even during MG in survival time mode.
  • 3GPP TS38.321 (MAC specification) describes, for example, "MAC entity shall transmit PUSCH regardless of the possible occurrence of a measurement gap”.
  • Radio communication system 2 First radio communication device 3: Control unit 4: Communication unit 7: Second radio communication device 8: Second control unit 9: Second communication unit 10: Radio communication system 100: Terminal device 110: CPU 120: Storage 121: Terminal communication program 1211: Survival time mode module 122: Terminal control program 1221: MG module 130: Memory 150: Wireless communication circuit 151: Antenna 200: Base station device 210: CPU 220: Storage 221: Communication program 222: Control program 2221: Survival time mode allocation control module 2222: MG control module 230: Memory 250: Wireless communication circuit 251: Antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムにおける第1無線通信装置であって、データ伝送が増強されるサバイバルタイムを有する第2無線通信装置と通信を行う通信部と、前記サバイバルタイム適用中のサバイバルタイム区間において、周波数帯域および時間領域においてデータ伝送を増強する無線リソースの割当を制御でき、前記第2無線通信装置において無線測定を行う無線測定区間に関する情報、及び前記サバイバルタイムに応じて、前記無線測定区間の設定を制御できる、制御部とを有する。

Description

第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法
 本発明は、第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法に関する。
 近年、無線を利用した無線通信システムが使用されている。無線通信システムは、例えば、工場などの施設内においても使用される。
 工場内では、例えば、製造機器や装置と制御監視システムとを無線接続し、IoT(Internet of Things)を使用してデータや制御信号を送受信する。工場内で使用されるIoTを、特にIIoT(Industrial IoT)と呼ぶ場合がある。
 工場内において、制御信号の受信漏れなどが発生すると、例えば、工場の生産ラインが停滞したり、止まってしまったりという重大なエラーが発生することがあるため、IIoTは、通常のIoTよりも厳しい遅延条件やエラー条件が求められる場合がある。そのため、通信装置は、IIoTにおいて、所定条件を満たすことを前提として、システムが許容できるパケット到着期限(以降、サバイバルタイムと呼ぶ場合がある)内にデータを到達させることが要求される状態(以下、サバイバルタイムモード(STM)と呼ぶ場合がある)に遷移し、データの到達確率を向上させる。
 IIoTに関する技術としては、以下の先行技術文献に記載されている。
3GPP TS36.133 LTE-A 無線測定仕様 3GPP TS36.300 LTE-A 概要仕様 3GPP TS36.211 LTE-A PHYチャネル仕様 3GPP TS36.212 LTE-A PHY符号化仕様 3GPP TS36.213 LTE-A PHY手順仕様 3GPP TS36.214 LTE-A PHY測定仕様 3GPP TS36.321 LTE-A MAC仕様 3GPP TS36.322 LTE-A RLC仕様 3GPP TS36.323 LTE-A PDCP仕様 3GPP TS36.331 LTE-A RRC仕様 3GPP TS36.413 LTE-A S1仕様 3GPP TS36.423 LTE-A X2仕様 3GPP TS36.425 LTE-A Xn仕様 3GPP TR36.912 NR 無線アクセス概要 3GPP TR38.913 NR 要求条件 3GPP TR38.913 NR 要求条件 3GPP TR38.801 NR ネットワークアーキテクチャ概要 3GPP TR38.802 NR PHY概要 3GPP TR38.803 NR RF概要 3GPP TR38.804 NR L2概要 3GPP TR38.900 NR 高周波概要 3GPP TS38.300 NR 概要仕様 3GPP TS37.340 NR 多元接続概要仕様 3GPP TS38.201 NR PHY仕様概要仕様 3GPP TS38.202 NR PHYサービス概要仕様 3GPP TS38.211 NR PHYチャネル仕様 3GPP TS38.212 NR PHY符号化仕様 3GPP TS38.213 NR PHYデータチャネル手順仕様 3GPP TS38.214 NR PHYコントロールチャネル手順仕様 3GPP TS38.215 NR PHY測定仕様 3GPP TS38.321 NR MAC仕様 3GPP TS38.322 NR RLC仕様 3GPP TS38.323 NR PDCP仕様 3GPP TS37.324 NR SDAP仕様 3GPP TS38.331 NR RRC仕様 3GPP TS38.401 NR アーキテクチャ概要仕様 3GPP TS38.410 NR コアネットワーク概要仕様 3GPP TS38.413 NR コアネットワークAP仕様 3GPP TS38.420 NR Xnインタフェース概要仕様 3GPP TS38.423 NR XnAP仕様 3GPP TS38.470 NR F1インタフェース概要仕様 3GPP TS38.473 NR F1AP仕様 3GPP TSG RAN meeting #92e Electronic Meeting, June 14 - 18, 2021 RP-211566
 しかし、サバイバルモードの通信装置において、サバイバルタイム内にデータを到達させる確率を向上させる手段、方法については、現在議論されている段階であり、決定していない。
 そこで、一開示は、IIoTのサバイバルタイムモードにおいて、データの到達確率を向上させる第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法を提供する。
 無線通信システムにおける第1無線通信装置であって、データ伝送が増強されるサバイバルタイムを有する第2無線通信装置と通信を行う通信部と、前記サバイバルタイム適用中のサバイバルタイムモード(区間)において、周波数帯域および時間領域においてデータ伝送を増強する無線リソースの割当を制御でき、前記第2無線通信装置において無線測定を行う無線測定区間に関する情報、及び前記サバイバルタイムに応じて、前記無線測定区間の設定を制御できる、制御部とを有する。
 一開示は、IIoTのサバイバルタイムモードにおいて、データの到達確率を向上させることができる。
図1は、無線通信システム1の構成例を示す図である。 図2は、無線通信システム10の例を示す図である。 図3は、基地局装置200の構成例を表す図である。 図4は、端末装置100の構成例を表す図である。 図5は、サバイバルモードの例を示す図である。 図6は、周波数領域で無線リソースを増強させる例を示す図である。 図7は、時間領域で無線リソースを増強させる例(パターン1)を示す図である。 図8は、時間領域で無線リソースを増強させる例(パターン2)を示す図である。 図9は、時間領域で無線リソースを増強させる例(パターン3)を示す図である。 図10は、MG期間が送信間隔よりも長い場合のMGの実施有無の例を示す図である。 図11は、MG期間が送信間隔よりも短い場合のMGの実施有無の例を示す図である。 図12は、MG期間が送信間隔よりも短い場合のMG実施の例を示す図である。
 [第1の実施の形態]
 第1の実施の形態について説明する。
 無線通信システム1は、サバイバルタイムに対応する通信システムである。サバイバルタイムに対応する区間(期間)を、サバイバルタイムモード(区間)と呼ぶ場合がある。無線通信システム1は、第1無線通信装置2と、第2無線通信装置7を有する。第1無線通信装置2と第2無線通信装置7は、互いにサバイバルタイムに対応し、無線通信を行う。
 第1無線通信装置2は、制御部3と通信部4を有する通信装置である。制御部3及び通信部4は、例えば、第1無線通信装置2が有するプロセッサ(コンピュータ)が、メモリにロードされたプログラムを実行することで、構築される。
 制御部3は、第2無線通信装置7が第1無線通信装置2にデータを送信するための無線リソースの割当制御を行うことができる。制御部3は、第2無線通信装置7がサバイバルタイムモード(区間)に移行したとき、周波数帯域および時間領域において無線リソースの割当を追加、変更することで、データ伝送を増強する(S1)。制御部3は、例えば、通常時(サバイバルタイムモード(区間)以外の区間)において使用する無線リソースと、異なる周波数帯域や異なる時間領域の無線リソースを、第2無線通信装置7がデータ伝送に使用する無線リソースとして割り当てる。例えば、送信電力を上げる制御や、よりデータが無線通信装置2に届きやすくするための制御を行う。
 また、制御部3は、第2無線通信装置7における無線測定区間の設定制御を行う(S2)。第2無線通信装置7は、所定タイミングにおいて無線測定を行う。当該無線測定を行っている区間(期間)を無線測定区間という。無線測定は、例えば、第2無線通信装置7が通信中である第1無線通信装置2(あるいはサービング周波数帯)以外の通信装置(あるいは周波数帯)を探索する処理である。第2無線通信装置7は、無線測定区間において、第1無線通信装置2と、データの送受信ができない場合がある。制御部3は、例えば、サバイバルタイムモード(区間)において、第2無線通信装置7が無線測定を実施しないように制御する。なお、制御部3は、無線測定区間に関する情報5及びサバイバルタイム6(例えば、データ到達までの要求時間)に応じて、無線測定区間の設定制御を行う。
 第2無線通信装置7は、第2制御部8と第2通信部9を有する通信装置である。第2制御部8及び第2通信部9は、例えば、第2無線通信装置7が有するプロセッサ(コンピュータ)が、メモリにロードされたプログラムを実行することで、構築される。
 第2制御部8は、第1無線通信装置2の制御に従い、無線通信を制御する。また、第2制御部8は、例えば、データがN(Nは1以上の整数)回到達しなかったことを認識すると、サバイバルタイムモード(区間)に移行する。
 通信部4と第2通信部9は、無線通信を行う。通信部4は、制御部3に従い、無線通信を行う。第2通信部9は、第2制御部8に従い、無線通信を行う。
 第1無線通信装置2は、第2無線通信装置7のサバイバルタイムモード(区間)において、周波数帯域および時間領域においてデータ伝送を増強する無線リソースの割当を制御することで、データ到達の確率を向上させることができる。さらに、第1無線通信装置2は、無線測定区間に関する情報及びサバイバルタイムに応じて、無線測定区間の設定を制御することで、サバイバルタイムモード(区間)におけるデータの伝送を妨げないように制御することができる。
 [第2の実施の形態] 
 第2の実施の形態について説明する。
 <無線通信システム10について>
 図2は、無線通信システム10の構成例を示す図である。無線通信システム10は、基地局装置200及び端末装置100を有する。無線通信システム10は、例えば、システム内に設置された無線通信システムである。例えば、IIoT機能を有する無線通信システムである。
 端末装置100は、システム内の機器(装置)に取り付けられた通信装置である。基地局装置200は、システム内に設置される通信装置である。
 基地局装置200は、例えば、様々な通信世代(例えば、5GやBeyond5Gなど)に対応する。また、基地局装置200は、1台で構成されてもよいし、CU(Central Unit)とDU(Distributed Unit)などの複数台で構成されてもよい。
 無線通信システム10において、基地局装置200と端末装置100は、IIoTを用いて通信を行う。また、端末装置100及び基地局装置200は、サバイバルタイムに対応するものとする。
 <基地局装置200の構成例>
 図3は、基地局装置200の構成例を表す図である。基地局装置200は、CPU(Central Processing Unit)210、ストレージ220、メモリ230、無線通信回路250、及びアンテナ251を有する。
 ストレージ220は、プログラムやデータを記憶する、フラッシュメモリ、HDD(Hard Disk Drive)、又はSSD(Solid State Drive)などの補助記憶装置である。ストレージ220は、通信プログラム221、制御プログラム222を記憶する。
 メモリ230は、ストレージ220に記憶されているプログラムをロードする領域である。また、メモリ230は、プログラムがデータを記憶する領域としても使用されてもよい。
 無線通信回路250は、端末装置100と無線通信を行う装置である。無線通信回路250は、無線通信回路250は、アンテナ251を有する。アンテナ251は、例えば、電波の送受信の方向を制御可能である指向性アンテナを含む。
 CPU210は、ストレージ220に記憶されているプログラムを、メモリ230にロードし、ロードしたプログラムを実行し、各部を構築し、各処理を実現するプロセッサである。
 CPU210は、通信プログラム221を実行することで、通信部を構築し、通信処理を行う。通信処理は、端末装置100と無線通信を行う処理である。基地局装置200は、通信処理において、端末装置100と無線接続し、端末装置100にデータや制御信号を送信したり、端末装置100からデータを受信したりする。
 CPU210は、制御プログラム222を実行することで、制御部を構築し、制御処理を行う。制御処理は、端末装置100との無線通信を制御する処理である。基地局装置200は、制御処理において、サバイバルタイムモード(区間)中の端末装置100が使用する無線リソースの割当制御(例えば、増強リソースの割当、通常時に使用する無線リソースのキャンセル指示、送信電力の向上、データが届きやすくする制御など)を行う。また、基地局装置200は、制御処理において、端末装置100が実施する無線区間の測定(例えばMeasurement Gap。以降、MGと呼ぶ場合がある)の実施制御(実施の有無、実施タイミングの指示など)を行う。
 CPU210は、制御プログラム222のサバイバルタイムモード割当制御モジュール2221を実行することで、制御部を構築し、サバイバルタイムモード割当制御処理を行う。サバイバルタイムモード割当制御処理は、端末装置100がサバイバルタイムモードにおいて使用する無線リソースの割当を制御する処理である。基地局装置200は、サバイバルタイムモード割当制御処理において、例えば、周波数帯域および時間領域の少なくとも一方において、無線リソース(データ伝送)を増強する。例えば、送信電力を上げる制御や、よりデータが基地局装置200に届きやすくするための制御を行う。
 CPU210は、制御プログラム222のMG制御モジュール2222を実行することで、制御部を構築し、MG御処理を行う。MG制御処理は、端末装置100において、Measurement Gapの実行の有無などを制御する処理である。基地局装置200は、MG制御処理において、例えば、サバイバルタイムモードにおいて、Measurement Gapを行わないようにする。
 <端末装置100の構成例>
 図4は、端末装置100の構成例を表す図である。端末装置100は、CPU110、ストレージ120、メモリ130、無線通信回路150、及びアンテナ151を有する。
 ストレージ120は、プログラムやデータを記憶する、フラッシュメモリ、HDD、又はSSDなどの補助記憶装置である。ストレージ120は、端末通信プログラム121、端末制御プログラム122を記憶する。
 メモリ130は、ストレージ120に記憶されているプログラムをロードする領域である。また、メモリ130は、プログラムがデータを記憶する領域としても使用されてもよい。
 無線通信回路150は、基地局装置200と無線通信を行う装置である。無線通信回路150は、無線通信回路150は、アンテナ151を有する。アンテナ151は、例えば、電波の送受信の方向を制御可能である指向性アンテナを含む。
 CPU110は、ストレージ120に記憶されているプログラムを、メモリ130にロードし、ロードしたプログラムを実行し、各部を構築し、各処理を実現するプロセッサである。
 CPU110は、端末通信プログラム121を実行することで、第2通信部を構築し、端末通信処理を行う。端末通信処理は、基地局装置200と無線通信を行う処理である。
 CPU110は、端末通信プログラム121が有するサバイバルタイムモードモジュール1211を実行することで、第2通信部及び第2制御部を構築し、サバイバルタイムモード処理を行う。サバイバルタイムモード処理は、サバイバルタイムモードにおける通信を行う処理である。端末装置100は、サバイバルタイムモードにおいて、基地局装置200に割り当てられた無線リソース(増強無線リソースを含む)を使用し、与えられたデータが基地局装置200に届きやすくなる制御(データの送信パワーの増加など)を受けてデータを伝送する。
 CPU110は、端末制御プログラム122を実行することで、第2制御部を構築し、端末制御処理を行う。端末制御処理は、例えば、基地局装置200から通信を制御される処理である。
 CPU110は、端末制御プログラム122の有するMGモジュール1221を実行することで、第2制御部を構築し、MG処理を行う。MG処理は、基地局装置200からの指示に従い、MGの実行する(あるいは実行しない)処理である。端末装置100は、例えば、MG処理において、サバイバルタイムモード中は、基地局装置200からの指示に従い、MGを実行しない(あるいは延期、ペンディングする)。
 <サバイバルタイムモード>
 図5は、サバイバルモードの例を示す図である。図5の無線通信システム10における端末装置100は、基地局装置200にデータを送信する。端末装置100は、例えば、0.5ms間隔でデータを送信する(あるいはデータを送信する契機を取得する)。図5において、送信間隔を黒四角で示す。
 端末装置100は、データの送信にN(Nは1以上の整数)回失敗したことを認識すると、サバイバルタイムモードに遷移する。なお、図5において、Nは1であり、端末装置100は、データ送信に失敗したことを、NACK(Non Acknowledgement:否定応答)を受信したことで認識するものとする。ここでは便宜上「NACK」という用語を用いているが、より具体的には物理レイヤ(L1)の制御信号である。5Gでは再送を促すULグラントに相当する。しかし、これには限らない。サバイバルモードに遷移するための制御信号であればよい。
 端末装置100は、データD1を基地局装置200に送信する(S10)。基地局装置200は、データD1の受信に成功し、データD1の受信に成功したことを示すACK(Acknowledgement:肯定応答)を端末装置100に送信する(S11)。なお、無線通信システムによっては、ACKを返信しない場合もある。この場合、端末装置100は、例えば、所定時間NACKを受信しないことで、データ送信に成功したことを認識する。
 端末装置100は、データD2を基地局装置200に送信する(S12)。基地局装置200は、データD2の受信に失敗し、データD2の受信に失敗したことを示すNACKを端末装置100に送信する(S13)。端末装置100は、NACKを受信し、所定回数のNACKを受信したため、サバイバルタイムモードに遷移する。
 サバイバルタイムモードは、例えば、所定時間で終了する。また、サバイバルタイムモードは、データ送信の送信回数や成功回数に応じて終了してもよい。さらに、サバイバルタイムモードは、無線状態が所定以上に良好になったことに伴い、終了してもよい。
 サバイバルタイムモードにおいて、端末装置100は、使用する無線リソースを増強する。以降、サバイバルモードにおいて増強した無線リソースを、増強無線リソースと呼ぶ場合がある。増強のパターンについて以下に示す。
 <周波数領域での増強>
 図6は、周波数領域で無線リソースを増強させる例を示す図である。図6において、CC1とCC2は、それぞれ周波数帯域が異なるものとする。なお、CC2は、例えば、端末装置100及び基地局装置200間で、事前に合意した(あるいは、RRC制御信号によって割当られた)無線リソースである。
 端末装置100は、CC1の無線リソースを使用し、データを基地局装置200に送信する(S20)。基地局装置200は、データの受信に失敗すると、データの受信に失敗したことを示すNACKを端末装置100に送信する(S21)。端末装置100は、NACKを受信し、所定回数のNACKを受信したため、サバイバルタイムモードに遷移する。
 端末装置100は、CC2の無線リソースであって、データを送信した(又は/かつ、今後送信する予定の)無線リソースと同時間軸の無線リソースR21、R22、R23を、増強無線リソースとして使用する。
 端末装置100は、サバイバルタイムモード以外でも使用する無線リソース、及び増強無線リソースR21を使用し、データの再送や新たなデータを送信する(S22、S23)。なお、ここで送信されるデータは、例えば、NACKの対象となったデータの再送であってもよいし、別のデータであってもよい。さらに、CC1の無線リソース及びCC2の無線リソース上では、それぞれ同じデータが送信されてもよいし、異なるデータが送信されてもよい。
 <時間領域での増強 パターン1>
 図7は、時間領域で無線リソースを増強させる例(パターン1)を示す図である。
 端末装置100は、CC1の無線リソースを使用し、データを基地局装置200に送信する(S30)。基地局装置200は、データの受信に失敗すると、データの受信に失敗したことを示すNACKを端末装置100に送信する(S31)。端末装置100は、NACKを受信し、所定回数のNACKを受信したため、サバイバルタイムモードに遷移する。
 端末装置100は、CC2の無線リソースであって、データを送信した(又は/かつ、今後送信する予定の)無線リソースと同時間軸の無線リソースR31と、時間軸が異なるR32、R33を、増強無線リソースとして使用する。
 端末装置100は、サバイバルタイムモード以外でも使用する無線リソース、及び増強無線リソースR31、R32、R33を使用し、データの再送や新たなデータを送信する(S32、S33、S34、S35)。
 時間領域で無線リソースを増強させる手段としては、例えば、repetition Type A/Type BをPUSCHに適応する。repetition Type Aは、スロット単位でデータを繰り返し送信する技術であり、repetition Type Bは、1スロット内でデータを繰り返し送信する技術である。
 また、時間領域で無線リソースを増強させる手段としては、例えば、TBOMSの事前設定がある。TBOMS機能を活用すれば、例えば、送信するデータに対応する一つのTBを、複数のスロットにまたがって伝送することができる。
 なお、図7において、端末装置100は、周波数帯域が異なるCC2で増強無線リソースR32、R33を割り当てているが、周波数が同じCC1で増強無線リソースR32、R33を割り当ててもよい。ただし、基地局装置200は複数の端末装置100を制御していることが想定されるため、例えば、CC1を他の端末装置100でも使用している場合がある。この場合、基地局装置200は、他の端末装置100におけるCC1の使用の制限やキャンセルを行うなど、CC1の増強無線リソースR32、R33を端末装置100が占有できるよう制御する。
 また、図7においては、増強無線リソースの数は、R31、R32、R33の3リソースであるが、もっと少なくても、多くてもよい。増強無線リソースの数は、例えば、基地局装置200が指示する。例えば、RRCメッセージや報知情報などを使用し、事前に最大回数を指定する。端末装置100は、指定された最大回数内で増強無線リソースを割り当てる。また、基地局装置200は、事前に指定した最大回数内で、例えば、NACKなどに今回の増強無線リソースの数を含めるなど、サバイバルタイムモードに遷移するタイミングで(サバイバルタイムモードごとに)、端末装置100に増強無線リソースの数を指示してもよい。
 <時間領域での増強 パターン2>
 図8は、時間領域で無線リソースを増強させる例(パターン2)を示す図である。図8において、増強無線リソースでのデータ送信については省略する。端末装置100の送信電力に余力がある場合は、パターン1のように通常の無線リソースと増強無線リソースR31の送信タイミングが重複してもよい。しかし、端末装置100の送信電力に余力がない場合は、パターン1のように通常の無線リソースと増強無線リソースR31の送信タイミングが重複すると、少なくとも一方の送信出力が低くなり、基地局装置200に十分な電力量で到達しない場合がある。そこで、パターン2において、端末装置100は、通常の無線リソースと増強無線リソースの時間領域が重複しないようにする。
 端末装置100は、CC1の無線リソースを使用し、データを基地局装置200に送信する(S40)。基地局装置200は、データの受信に失敗すると、データの受信に失敗したことを示すNACKを端末装置100に送信する(S41)。端末装置100は、NACKを受信し、所定回数のNACKを受信したため、サバイバルタイムモードに遷移する。
 端末装置100は、CC2の無線リソースであって、データを送信した(又は/かつ、今後送信する予定の)無線リソースと同時間軸の無線リソースR41を、増強無線リソースとして使用しない。
 そして、端末装置100は、データを送信した(又は/かつ、今後送信する予定の)無線リソースと時間軸が異なるR42及びR43を、増強無線リソースとして使用する。
 このように、端末装置100は、時間領域が重複しない無線リソースを、増強無線リソースとして割り当てる。
 <時間領域での増強 パターン3>
 図9は、時間領域で無線リソースを増強させる例(パターン3)を示す図である。図9において、増強無線リソースでのデータ送信については省略する。端末装置100は、パターン2においては、通常の無線リソースと時間領域が重複する増強無線リソースを割り当てなかったが、パターン3においては、通常の無線リソースと時間領域が重複する増強無線リソースを割り当て、通常の無線リソースをキャンセルする。
 端末装置100は、CC1の無線リソースを使用し、データを基地局装置200に送信する(S50)。基地局装置200は、データの受信に失敗すると、データの受信に失敗したことを示すNACKを端末装置100に送信する(S51)。端末装置100は、NACKを受信し、所定回数のNACKを受信したため、サバイバルタイムモードに遷移する。
 端末装置100は、CC2の無線リソースであって、データを送信した(又は/かつ、今後送信する予定の)無線リソースと同時間軸の無線リソースR51と、時間軸が異なるR52、R53を、増強無線リソースとして使用する。
 一方、端末装置100は、通常の無線リソースをキャンセルする(使用しない)。通常の無線リソースは、CC1の無線リソースであり、事前にNACKを受信した周波数帯域の無線リソースであるため、CC2を使用したほうがデータの到達確率が向上する場合がある。
  <Measurement Gapとの関連について>
 Measurement Gapは、現在通信中のセル(基地局装置)からの受信品質に加え、サービング周波数は同じであるが現在の帯域とは異なる帯域の無線信号受信品質や、他の周波数帯域や異なるRATからの無線信号受信品質を測定すること、あるいは測定期間や制御を示す。端末装置100は、MGに使用する無線通信回路(RF系統)と通信に使用する無線通信回路(RF系統)が同じである場合、MG中においては、現在通信中の基地局装置200とデータの送受信を行うことができない。そのため、無線通信システム10では、サバイバルタイムモードにおける実施の有無を含め、MGを制御する必要がある。
 図10は、MG期間が送信間隔よりも長い場合のMGの実施有無の例を示す図である。図10において、MG期間は、1.5msであり、送信周期は0.5msである。なお、送信周期は、サバイバルタイムと同値であるものとする。
 図10に示すように、端末装置100は、サバイバルタイムモード中にMGを実施すると、MG期間である1.5msの間、データを基地局装置200に送信することができない。そこで、端末装置100は、サバイバルタイム(送信周期)よりもMG期間が長い場合、MGを実施しない。
 なお、MGを実施しない場合、例えば、Inter-BWP/Inter-F/Inter-RAT向けのRF系統を、別途用意する。
 図11は、MG期間が送信間隔よりも短い場合のMGの実施有無の例を示す図である。図10において、MG期間は、1.5msであり、送信周期は2.0msである。
 図11に示すように、端末装置100は、サバイバルタイムモード中にMGを実施しても、MG期間である1.5msの間はデータ送信ができないものの、MG未実施時間に基地局装置200にデータを送信することができる。そこで、端末装置100は、サバイバルタイム(送信周期)よりもMG期間が短い場合、MGを実施する。また、サバイバルタイムよりもMG期間が短い場合のMG実施の有無は、例えば、基地局装置200からの指示に従ったり、オプションとしたりしてもよい。
 図12は、MG期間が送信間隔よりも短い場合のMG実施の例を示す図である。図12において、MG期間は、1.5msであり、送信周期は2.0msである。
 端末装置100は、データを基地局装置200に送信する(S60)。基地局装置200は、データの受信に失敗すると、データの受信に失敗したことを示すNACKを端末装置100に送信する(S61)。端末装置100は、NACKを受信し、所定回数のNACKを受信したため、サバイバルタイムモードに遷移する。
 図12に示すように、サバイバルタイムとMG期間の差異が小さい場合、端末装置100がNACKを受信してからデータの送信が可能な期間T60は、最大でも0.5ms(送信間隔-MG期間)しかなく、データを送信できない、あるいは、十分な回数の再送ができない場合がある。そこで、T60の時間が所定時間(第1時間)より短い場合(あるいは時間的な条件なしで)、MGをキャンセル、あるいはシフトしてもよい。シフトする場合、後にMGを実行するタイミングは、例えば、基地局装置200からの指示に応じたタイミングや、サバイバルタイムモードを終了したタイミングなどである。
 また、ACKを送信する無線通信システムの場合、端末装置100は、ACKを受信したタイミングでサバイバルタイムモードを終了し、シフトしていた(キャンセルしていた)MGを実行してもよい。
 さらに、サバイバルタイムに対応する端末装置100は、MGを未実装、あるいは実行しないように事前に設定されていてもよい。そのような端末装置は、RRC制御信号を用いて、自端末がサバイバルタイムをサポートしていることを基地局装置200に通知してもよい。
 [その他の実施の形態]
 第1、第2の実施の形態、及びその他の実施の形態に記載された要件は、それぞれ組み合わせてもよい。また、第1、第2の実施の形態、及びその他の実施の形態に記載された要件は、例えば、無線状態、システム要件などに応じて、使い分けてもよい。
 第1、第2の実施の形態、及びその他の実施の形態に記載された要件は、例えば、3GPPにおいて標準化仕様として定義される場合、以下のようになる。
 ・3GPP TS38.331(RRC)に、ブーストする(増強する)CG(configured grant-based)リソースにのみ、時間領域のrepetitionを設定することを記載する。
 ・3GPP TS38.306(UE capability)に、サバイバルタイムが0.5ms/1msをサポートするUE(端末装置)に対してMGは設定しない(MGを実施しない設定とする)ことを記載する。サバイバルタイムを「0.5ms/1ms」としたのは、MGの最低時間である「1.5ms」よりも小さい場合を想定しているためである。実際には、MGを設定しないUEは、MG期間よりも短い時間のサバイバルタイムにのみ対応するUEであればよい。3GPP TS38.306(UE capability)には、例えば、該当するUEに対して、「shall not support measurement gap」や「is not required to support measurement gap」と記載する。
 一方、3GPP TS38.306(UE capability)に、サバイバルタイムが2.0msをサポートするUEの場合(サバイバルタイムがMG期間よりも長い場合)、MGをサポートできることを記載する。3GPP TS38.306(UE capability)には、例えば、サバイバルタイムが2.0msをサポートするUEに対して、「can support measurement gap」と記載する。
 さらに、3GPP TS38.306(UE capability)に、サバイバルタイムをサポートするUEに対して、MGは設定しないことを記載してもよい。この場合、3GPP TS38.306(UE capability)に、サバイバルタイムをサポートするUEに対して、「shall not support measurement gap」や「is not required to support measurement gap」と記載してもよい。
 ・3GPP TS38.321(MAC specification)に、サバイバルタイムモードの場合、MG中であってもPUSCHの送信を許容することを記載する。3GPP TS38.321(MAC specification)に、例えば、「MAC entity shall transmit PUSCH regardless of the possible occurrence of a measurement gap」と記載する。
1    :無線通信システム
2    :第1無線通信装置
3    :制御部
4    :通信部
7    :第2無線通信装置
8    :第2制御部
9    :第2通信部
10   :無線通信システム
100  :端末装置
110  :CPU
120  :ストレージ
121  :端末通信プログラム
1211 :サバイバルタイムモードモジュール
122  :端末制御プログラム
1221 :MGモジュール
130  :メモリ
150  :無線通信回路
151  :アンテナ
200  :基地局装置
210  :CPU
220  :ストレージ
221  :通信プログラム
222  :制御プログラム
2221 :サバイバルタイムモード割当制御モジュール
2222 :MG制御モジュール
230  :メモリ
250  :無線通信回路
251  :アンテナ

Claims (14)

  1.  無線通信システムにおける第1無線通信装置であって、 
     データ伝送が増強されるサバイバルタイムを有する第2無線通信装置と通信を行う通信部と、
     前記サバイバルタイム適用中のサバイバルタイムモードにおいて、周波数帯域および時間領域においてデータ伝送を増強する無線リソースの割当を制御でき、
     前記第2無線通信装置において無線測定を行う無線測定区間に関する情報、及び前記サバイバルタイムに応じて、前記無線測定区間の設定を制御できる、制御部と
     を有する第1無線通信装置。
  2.  前記無線測定区間は、前記第2無線通信装置と通信を行う必要がない区間である
     請求項1記載の第1無線通信装置。
  3.  前記制御部は、前記無線測定区間が前記サバイバルタイムと同じ又は短い場合、前記第2無線通信装置が前記無線測定を行わないよう制御する
     請求項2記載の第1無線通信装置。
  4.  前記制御部は、前記無線測定区間が前記サバイバルタイムより長い場合、前記第2無線通信装置が前記無線測定を行うように制御する
     請求項3記載の第1無線通信装置。
  5.  前記制御部は、前記無線測定区間が前記サバイバルタイムより長い場合であって、前記無線測定区間が前記サバイバルタイムとの差異が第1時間以下である場合、前記第2無線通信装置が前記無線測定を行わないよう制御する
     請求項3記載の第1無線通信装置。
  6.  前記制御部は、前記第2無線通信装置からのデータ受信に失敗したとき、前記第2無線通信装置に前記データ受信の失敗を前記第2無線通信装置が認識できる信号を送信し、
     前記第2無線通信装置は、前記信号をN(Nは1以上の整数)回受信したとき、前記サバイバルタイム区間に遷移する
     請求項1記載の第1無線通信装置。
  7.  前記制御部は、前記サバイバルタイム区間において増強する無線リソースとして、前記サバイバルタイム区間以外で使用する無線リソースと時間領域が重複する無線リソースを割り当てない
     請求項1記載の第1無線通信装置。
  8.  前記制御部は、送信電力に応じて、前記サバイバルタイムモードにおいて増強する無線リソースとして、前記サバイバルタイムモード以外で使用する無線リソースと時間領域が重複する無線リソースを割り当てるか否かを決定する
     請求項1記載の第1無線通信装置。
  9.  前記制御部は、前記サバイバルタイム区間において、前記サバイバルタイム区間以外で使用する無線リソースをデータ伝送に使用しない
     請求項1記載の第1無線通信装置。
  10.  前記無線測定区間は、Mesurement Gapである
     請求項1記載の第1無線通信装置。
  11.  前記サバイバルタイムは、前記第2無線通信装置のデータ送信間隔である
     請求項1記載の第1無線通信装置。
  12.  無線通信システムの第1無線通信装置における無線通信方法であって、 
     データ伝送が増強されるサバイバルタイムを有する第2無線通信装置と通信を行う通信工程と、
     前記サバイバルタイム適用中のサバイバルタイムモードにおいて、周波数帯域および時間領域においてデータ伝送を増強する無線リソースの割当を制御でき、前記第2無線通信装置において無線測定を行う無線測定区間に関する情報、及び前記サバイバルタイムに応じて、前記無線測定区間の設定を制御する制御工程と、
     を有する無線通信方法。
  13.  無線通信システムにおける、データ伝送が増強されるサバイバルタイムを有する第2無線通信装置であって、
     第1無線通信装置と通信を行う第2通信部と、
     前記サバイバルタイム適用中のサバイバルタイムモードにおいて、周波数帯域および時間領域においてデータ伝送を増強する無線リソースを、前記第1無線通信装置から割り当てられ、
     無線測定を行う無線測定区間に関する情報及び前記サバイバルタイムに応じて、前記第1無線通信装置から前記無線測定区間の設定を制御される第2制御部と
    を有する第2無線通信装置。
  14.  第1無線通信装置と、データ伝送が増強されるサバイバルタイムを有する第2無線通信装置とを有する無線通信システムであって、
     前記第1無線通信装置は、
      前記第2無線通信装置と通信を行う通信部と、
      前記サバイバルタイム適用中のサバイバルタイムモードにおいて、周波数帯域および時間領域においてデータ伝送を増強する増強無線リソースの割当を制御でき、
      前記第2無線通信装置において無線測定を行う無線測定区間に関する情報、及び前記サバイバルタイムに応じて、前記無線測定区間の設定を制御できる制御部と、
     を有し、
     前記第2無線通信装置は、
      前記第1無線通信装置と通信を行う第2通信部と、
      前記サバイバルタイムモードにおいて、
       前記第1無線通信装置から割り当てられた前記増強無線リソースを前記通信に使用し、
       前記第1無線通信装置からの制御に従い、前記無線測定を実行する第2制御部と、
      を有する
     無線通信システム。
PCT/JP2022/000423 2022-01-07 2022-01-07 第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法 WO2023132079A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/000423 WO2023132079A1 (ja) 2022-01-07 2022-01-07 第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法
JP2023572334A JPWO2023132079A1 (ja) 2022-01-07 2022-01-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000423 WO2023132079A1 (ja) 2022-01-07 2022-01-07 第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/761,401 Continuation US20240357408A1 (en) 2024-07-02 First wireless communication device, second wireless communication device, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2023132079A1 true WO2023132079A1 (ja) 2023-07-13

Family

ID=87073542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000423 WO2023132079A1 (ja) 2022-01-07 2022-01-07 第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法

Country Status (2)

Country Link
JP (1) JPWO2023132079A1 (ja)
WO (1) WO2023132079A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON (RAPPORTEUR): "Summary of [Post115-e][513][IIoT] QoS survival time", 3GPP DRAFT; R2-2109602, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066081 *
LENOVO, MOTOROLA MOBILITY: "Remaining issues on the support of survival time", 3GPP DRAFT; R2-2110227, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101 - 20211112, 21 October 2021 (2021-10-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066673 *

Also Published As

Publication number Publication date
JPWO2023132079A1 (ja) 2023-07-13

Similar Documents

Publication Publication Date Title
US11357017B2 (en) Method and apparatus for transmitting a high priority uplink transmission
JP6159672B2 (ja) 基地局、送信方法、移動局及び再送制御方法
JP5401324B2 (ja) 通信システムにおけるアイドルギャップコマンドの処理
CN116889075A (zh) 用于侧行链路通信的方法和终端设备
EP2664095B1 (en) Error control in a communication system
US20220078813A1 (en) Information configuration method, data transmission method, and apparatus
CN111800869B (zh) 物理上行控制信道pucch传输方法、终端设备和网络设备
WO2018137664A1 (zh) 传输方法、网络设备和终端设备
US9843420B2 (en) Cross carrier scheduling method and apparatus
JP2014525690A (ja) Fddscellの肯定/否定応答伝送のためのpdsch割当て標示情報
CN113785643A (zh) Ue功率节省中的动态调度参数适配
WO2016158087A1 (ja) ユーザ装置及び基地局
WO2021147823A1 (zh) 上行传输的方法、移动终端和网络设备
EP4224734A1 (en) Wave beam indication method and apparatus, network side device, and terminal
US20220052796A1 (en) Harq information feedback method and device
EP2647153B1 (en) Methods and devices for component carrier aggregation control
WO2023000275A1 (en) Method, device and computer readable medium for communication
US20220141720A1 (en) Method and multi sim ue for managing data session in wireless network
US20210400640A1 (en) Communications with preconfigured uplink resources
WO2023152992A1 (ja) 第1無線通信装置及び第2無線通信装置
WO2023132079A1 (ja) 第1無線通信装置、第2無線通信装置、無線通信システム、及び無線通信方法
JP2023537309A (ja) 上りリンクデータの送信方法、装置及びシステム
US20120054573A1 (en) Communication device and data retransmission method
CN111436056A (zh) 一种上行免调度配置重配方法、装置、终端及基站
WO2019159274A1 (ja) 基地局装置、端末装置、無線通信システム、及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023572334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE