WO2023132030A1 - Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system - Google Patents

Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system Download PDF

Info

Publication number
WO2023132030A1
WO2023132030A1 PCT/JP2022/000216 JP2022000216W WO2023132030A1 WO 2023132030 A1 WO2023132030 A1 WO 2023132030A1 JP 2022000216 W JP2022000216 W JP 2022000216W WO 2023132030 A1 WO2023132030 A1 WO 2023132030A1
Authority
WO
WIPO (PCT)
Prior art keywords
determination
communication
base station
cloud data
point cloud
Prior art date
Application number
PCT/JP2022/000216
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 坪井
和人 後藤
秀紀 俊長
直樹 北
武 鬼沢
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/000216 priority Critical patent/WO2023132030A1/en
Publication of WO2023132030A1 publication Critical patent/WO2023132030A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication availability determination method, a communication availability determination device, and a communication area design support system.
  • the station placement design here refers to determining the installation positions of base stations that accommodate mobile terminals (hereinafter referred to as "terminal stations"), and the communication area design refers to the areas covered by the installed base stations. designing and managing the communicable areas of terminal stations.
  • terminal stations mobile terminals
  • communication area design refers to the areas covered by the installed base stations. designing and managing the communicable areas of terminal stations.
  • station placement design and communication area design are collectively referred to as "communication area design”.
  • the evaluation target range (hereinafter referred to as the "evaluation target area") in which terminal stations can exist with respect to fixed installation candidate positions of base stations is For example, it is divided into squares on the map. Therefore, the evaluation target area includes at least candidate installation positions of base stations and positions where terminal stations may exist. In addition, each square becomes an evaluation unit in determining whether or not communication is possible. Then, for example, for each position representing each square (hereinafter referred to as "representative point"), the base station when positioned at the installation candidate position and the terminal station when positioned at the representative point. Communication area design is performed by determining whether or not communication is possible between the terminals. This makes it possible to visually indicate on the map the range in which communication between the base station and the terminal station is possible.
  • the easiest line-of-sight determination method is a line-of-sight determination method based on communication distance.
  • the line-of-sight determination method based on the communication distance when the distance between the candidate installation position of the base station and the representative point is within a predetermined distance at which communication is possible, it is determined that there is line-of-sight, and communication is possible. It is determined that there is no line of sight if the distance is greater than
  • the visibility determination method based on map information is also a relatively easy method.
  • the map information includes information indicating outlines such as outer walls of buildings existing in the evaluation target area.
  • a visibility determination method that uses three-dimensional point cloud data obtained by imaging the space.
  • This visibility determination method first acquires three-dimensional point cloud data by driving a mobile object such as a vehicle equipped with MMS (Mobile Mapping System) along a road in an evaluation target area such as a residential area. do.
  • MMS Mobile Mapping System
  • line-of-sight determination method line-of-sight determination is performed based on the presence or absence of point cloud data in the space between the candidate installation position of the base station and the representative point.
  • this line-of-sight determination method assumes a Fresnel zone formed when a base station located at an installation candidate position and a terminal station located at a representative point communicate with each other. Then, this line-of-sight determination method determines the presence or absence of line-of-sight according to the amount of point cloud data indicating shielding objects included in the spatial range of the Fresnel zone (see, for example, Patent Document 2).
  • shielding rate is an index indicating how much a shielding object affects wireless communication between a base station and a terminal station.
  • Shielding objects include not only objects that strongly affect wireless communication, such as buildings, but also objects that affect wireless communication relatively weakly, such as trees. This is because, for example, in a tree, point cloud data does not exist between leaves.
  • this line-of-sight determination method calculates the amount of propagation loss of radio waves based on the shielding rate calculated from the point cloud data, and based on the calculated amount of loss, wireless communication between the base station and the terminal station. The line of sight is determined by designing the line. (For example, see Non-Patent Document 1).
  • the visibility determination method based on the communication distance and the visibility determination method based on the map information described above can relatively easily determine the visibility, but there is a problem that the determination accuracy is not very high.
  • the outlook determination method using three-dimensional point cloud data described above has high determination accuracy, but the calculation process is complicated and the amount of data used is large.
  • the As described above conventionally, there is a trade-off relationship between determination accuracy and computational load in determining visibility, and there has been the problem that it is difficult to perform highly accurate determination of visibility while suppressing an increase in computational load.
  • information indicating a base station position indicating a candidate installation position of a radio base station and a mobile station position indicating a position where a mobile station communicating with the radio base station may exist; and the base station.
  • a communication propriety determination method comprising: be.
  • information indicating a base station position indicating a candidate installation position of a radio base station and a mobile station position indicating a position where a mobile station communicating with the radio base station may exist; an acquisition unit that acquires point cloud data measured between a base station position and the mobile station position; a distance determination unit that determines a distance based on a distance to a mobile station; a communication feasibility determination unit that performs a shielding rate determination based on a radio wave propagation loss estimated based on a shielding rate indicating a ratio of the point cloud data in a space between the station position and the position of the station. It is a device.
  • a base station candidate position acquisition unit acquires information indicating candidate installation positions of a wireless base station in a target area; a division unit that divides the area into a shape and determines a representative point that represents a position where a mobile station can exist in each square; a point cloud data acquisition unit that acquires point cloud data measured in the target area; a communication feasibility determination control unit that determines feasibility of communication between the candidate position of the base station and each of the representative points for each of the squares by selectively using a plurality of communication feasibility determination methods according to a predetermined rule; an output unit for outputting information indicating a result of determination by the determination control unit, wherein the communication availability determination control unit outputs communication availability between the installation candidate position and the representative point to the installation candidate position.
  • a communication area design support comprising: a shielding rate determination unit that determines a shielding rate based on a radio wave propagation loss estimated based on a shielding rate indicating a ratio of the point cloud data in a space between the points.
  • FIG. 1 is a block diagram showing the functional configuration of a communication area design support system 1 according to the first embodiment of the present invention
  • FIG. It is a flowchart which shows the flow of a process by the conventional line-of-sight detection apparatus.
  • FIG. 10 is a diagram showing how communication availability is determined in consideration of the Fresnel zone;
  • FIG. 4 is a schematic diagram showing how the visibility is determined by regarding the Fresnel zone as a cylinder.
  • FIG. 4 is a diagram of a cylindrical Fresnel zone superimposed on a Fresnel zone;
  • FIG. 4 is a diagram for explaining a line-of-sight determination process by the communication area design support system 1 according to the first embodiment of the present invention
  • 4 is a flow chart showing the operation of the visibility determination control unit 40 according to the first embodiment of the present invention
  • FIG. 11 is a diagram for explaining a line-of-sight determination process by the communication area design support system 1 according to the second embodiment of the present invention
  • 9 is a flow chart showing the operation of a visibility determination control unit 40 according to the second embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a line-of-sight determination process by the communication area design support system 1 in a modified example of the second embodiment of the present invention. It is a flowchart which shows operation
  • a communication availability determination method, a communication availability determination device, and a communication area design support system according to the embodiment will be described below with reference to the drawings.
  • the communication area design support system 1 of the present embodiment allows a user of the communication area design support system 1 (hereinafter referred to as "user") to set the installation position of a base station that accommodates a terminal station existing within an evaluation target area. ) is a system that supports decision making.
  • the communication area design support system 1 when a base station is installed at a base station installation candidate position derived by communication area design (hereinafter referred to as "base station installation candidate position"), This is a system that assists a user in designing a communicable area that indicates the range of positions of terminal stations that can be connected to each other.
  • a base station is a wireless base station installed in outdoor equipment such as a high-rise building or a utility pole
  • a terminal station is a mobile wireless terminal such as a smart phone or a tablet terminal.
  • unlicensed band millimeter wave radio is used for communication between the base station and the terminal station.
  • the communication area design support system 1 first acquires map information indicating a two-dimensional map.
  • the communication area design support system 1 divides the map into squares based on the acquired map information.
  • the communication area design support system 1 performs determination (line-of-sight determination) regarding whether or not communication is possible between a base station and a terminal station when a terminal station exists in each square of a map divided into squares. .
  • the communication area design support system 1 outputs communication area design result information indicating at least one base station installation candidate position and a communicable area when the base station is installed at the base station installation candidate position.
  • the communication area design support system 1 of the present embodiment uses at least one base station installation candidate position in an evaluation target area and a communicable area based on the base station installation candidate position as a candidate for communication area design. It is a system presented as
  • the communication area design result information output from the communication area design support system 1 is used in the subsequent communication area design.
  • a communication area designing device (not shown) that designs a communication area, among candidates for base station installation candidate positions and communicable areas indicated by the communication area design result information output from the communication area design support system 1
  • the actual installation position of the base station is selected (determined) manually or automatically.
  • FIG. 1 is a block diagram showing the functional configuration of a communication area design support system 1 according to the first embodiment of the present invention.
  • the communication area design support system 1 includes a facility information acquisition unit 11, a base station installation candidate position extraction unit 12, a map information acquisition unit 13, an area division unit 14, and a point cloud data acquisition unit. It includes a unit 15 , a data matching unit 16 , a communication parameter information acquisition unit 17 , an operation input unit 20 , a storage unit 30 , a visibility determination control unit 40 and an output unit 50 .
  • the communication area design support system 1 includes an information processing device such as a general-purpose computer.
  • each functional unit of the communication area design support system 1 shown in FIG. 1 may be distributed among a plurality of devices.
  • the visibility determination control unit 40 and other functional units may be provided in separate devices.
  • the storage unit 30 may be provided in an external device of the communication area design support system 1 .
  • the facility information acquisition unit 11 acquires facility information from, for example, an external device.
  • the equipment information here is information that includes at least information indicating the planar position of the outdoor equipment on which the base station can be installed, for example. Outdoor facilities where base stations can be installed are, for example, high-rise buildings and utility poles.
  • the plane position here refers to two-dimensional coordinates that do not include coordinates in the height direction (vertical direction). Also, in the following description, the planar position may be simply referred to as "position".
  • the facility information may further include information or coordinates indicating the height of the outdoor facility or the height of the portion of the outdoor facility where the base station can be installed.
  • the facility information acquisition unit 11 outputs the acquired facility information to the base station installation candidate position extraction unit 12 .
  • the facility information acquisition unit 11 may acquire facility information from a storage medium such as a recording medium, or from an external device via a communication network.
  • the facility information may be stored in the storage section 30 in advance, and the facility information acquisition section 11 may acquire the facility information from the storage section 30 .
  • the base station installation candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11 .
  • the base station installation candidate position extraction unit 12 extracts base station installation candidate positions based on the acquired equipment information. For example, the base station installation candidate position extracting unit 12 extracts information indicating the position of a utility pole or the position of a wall surface of a building above a predetermined height from the acquired equipment information, and extracts the position of the utility pole or the predetermined height. The position of the wall surface of a building with a height of at least 10 mm is set as the base station installation candidate position.
  • the base station installation candidate position extraction unit 12 stores information indicating the extracted base station installation candidate positions in the storage unit 30 as the base station installation candidate position information 301 .
  • the map information acquisition unit 13 acquires map information from, for example, an external device.
  • the map information here is, for example, information indicating a two-dimensional map.
  • the map information includes at least information indicating the planar position of the outline of the building.
  • the building is, for example, a house, a building, etc.
  • the planar position of the outer shell is, for example, the planar position of an outer wall, a fence, or the like.
  • the map information may include information about the position in the height direction, such as the altitude and the height of objects existing in the map.
  • the map information acquisition section 13 outputs the acquired map information to the area dividing section 14 and the data matching section 16 .
  • the map information acquisition unit 13 may acquire map information from a storage medium such as a recording medium, or from an external device via a communication network.
  • the map information may be stored in the storage unit 30 in advance, and the map information acquisition unit 13 may acquire the map information from the storage unit 30 .
  • the map information in the present embodiment is not a map generated based on point cloud data obtained by MMS, for example, but a general map such as a residential map created by a map creator (for example, by surveying). information based on a typical two-dimensional map. Therefore, the map information in this embodiment includes, for example, information indicating outlines of buildings, but may not include information regarding the positions of objects other than buildings. Objects other than buildings include, for example, plants such as roadside trees and garden trees, structures such as road signs and billboards, structures such as elevated roads, and raised ground.
  • the map information in this embodiment may be a map generated based on point cloud data obtained by MMS or the like.
  • the data should have a smaller amount of information than the three-dimensional point cloud data obtained by .
  • the calculation amount of the visibility determination process between a certain base station installation candidate position and the representative point, which is performed using the map information is the same as the visibility determination process performed using the three-dimensional point cloud data.
  • the amount of calculation must be small compared to the calculation amount of the rate determination process.
  • the base station installation candidate positions may be extracted based on the positions of, for example, building outlines included in the map information.
  • the user of the communication area design support system 1 may visually set the base station installation candidate positions while referring to a map based on the map information.
  • the area division unit 14 acquires the map information output from the map information acquisition unit 13.
  • the area division unit 14 divides the map based on the acquired map information into squares of a predetermined size.
  • the area dividing unit 14 associates the acquired map information with the size and position of the divided squares, and stores them in the storage unit 30 .
  • Each of these squares is an evaluation unit, and processing for determining whether communication between the base station and the terminal station is possible is performed for each square.
  • the area dividing unit 14 acquires the map information output from the map information acquiring unit 13, the acquired map information may be stored in the storage unit 30 as it is for the time being. Then, the area dividing unit 14 selects (by the evaluation target area designating unit 201 described later) a specific range to be the evaluation target area from the entire range of the map based on the map information stored in the storage unit 30. After that, the map of only the range of the evaluation target area may be divided into squares of a predetermined size.
  • the point cloud data acquisition unit 15 acquires point cloud data, for example, from an external device or the like.
  • the point cloud data referred to here is three-dimensional point cloud data obtained by imaging a space.
  • the point cloud data is obtained by driving a mobile object such as a vehicle equipped with an MMS along a road around a residential area to be evaluated.
  • the point cloud data acquisition unit 15 outputs the acquired point cloud data to the data matching unit 16 .
  • the point cloud data acquisition unit 15 may acquire the point cloud data from a large-capacity storage medium or from an external device via a communication network.
  • point cloud data may be stored in the storage unit 30 in advance, and the point cloud data acquisition unit 15 may acquire the point cloud data from the storage unit 30 .
  • the point cloud data is data with a relatively large amount of information, and in the present embodiment, as described above, it is three-dimensional point cloud data obtained, for example, by MMS or the like.
  • the point cloud data includes not only buildings but also objects other than buildings that are not included in the above-mentioned map information (for example, objects such as road signs and billboards, plants such as roadside trees and garden trees). It contains information indicating the 3D positions of all objects that can be occluders. Therefore, the point cloud data is data with a much larger amount of information than the above map information. Determination of whether or not communication is possible using point cloud data has relatively high determination accuracy, but the amount of calculation required for determination processing per case is relatively large.
  • the data matching unit 16 acquires the map information output from the map information acquisition unit 13. Also, the data matching unit 16 acquires the point cloud data output from the point cloud data acquiring unit 15 . The data matching unit 16 attempts to match the coordinate system of the map information and the coordinate system of the point cloud data, and if necessary, changes the positions (coordinates) included in the point cloud data to the positions (coordinates) included in the map information. coordinates). The data matching unit 16 causes the storage unit 30 to store the point cloud data matched with the map information as the point cloud data 303 .
  • the data matching unit 16 matches the base station installation candidate positions included in the base station installation candidate position information 301 stored in the storage unit 30 and the map information included in the map/area information 302 to Correction may be made so that the position is based on the coordinate system of the point cloud data.
  • a common coordinate system such as the world geodetic system is often used for the coordinate system of the map information and the coordinate system of the point cloud data. It is considered that there are many cases in which no treatment is required.
  • the communication parameter information acquisition unit 17 acquires information indicating communication parameters, for example, from an external device.
  • the information indicating the communication parameter here is information used in calculation of the shielding rate, which will be described later.
  • the communication parameter information acquisition unit 17 causes the storage unit 30 to store information indicating the acquired communication parameters as communication parameter information 304 .
  • the operation input unit 20 accepts input operations by the user.
  • the operation input unit 20 includes input interfaces such as input buttons, a keyboard, a mouse, and a touch panel. As shown in FIG. 1, the operation input unit 20 includes an evaluation target area designation unit 201 and a base station installation candidate position selection unit 202 .
  • the evaluation target area designation unit 201 accepts an input operation by the user for designating an evaluation target area for which communication area design is to be performed, from among the entire range of the map based on the map information.
  • the evaluation target area specifying unit 201 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation. Note that the evaluation target area designation unit 201 adds information designating the evaluation target area to the map information acquired by the map information acquisition unit 13 and stored in the storage unit 30 as the map/area information 302. may
  • the user When specifying the evaluation target area, the user specifies the evaluation target area while looking at a map displayed on a display device (not shown) such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display.
  • a display device such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display.
  • LCD liquid crystal display
  • organic EL Electrode
  • the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
  • the base station installation candidate position selection unit 202 selects at least one specific base station to be evaluated from the base station installation candidate positions (extracted by the base station installation candidate position extraction unit 12) included in the evaluation target area. An input operation by a user for selecting station installation candidate positions is accepted. Base station installation candidate position selection section 202 causes storage section 30 to store information indicating the base station installation candidate position indicated by the accepted input operation.
  • Base station installation candidate position selection section 202 selects base station installation candidate position information 301 which is information indicating a plurality of base station installation candidate positions extracted by base station installation candidate position extraction section 12 and stored in storage section 30 . may be updated. Specifically, base station installation candidate position selection section 202 identifies a base station installation candidate position selected by the user in information indicating a plurality of base station installation candidate positions included in base station installation candidate position information 301. A flag may be added so that the
  • the user selects a plurality of base station installation candidates included in the map of the evaluation target area displayed on a display device (not shown) such as a liquid crystal display or an organic EL display. While looking at the positions, at least one specific base station installation candidate position is selected.
  • a display device such as a liquid crystal display or an organic EL display. While looking at the positions, at least one specific base station installation candidate position is selected.
  • the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
  • the storage unit 30 stores base station installation candidate position information 301 , map/area information 302 , point cloud data 303 , communication parameter information 304 , judgment availability list 305 , and communication area design result information 306 .
  • the storage unit 30 includes, for example, a HDD (Hard Disk Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write Memory), ROM (Read Only Memory). memory), or any combination of these storage media.
  • the base station installation candidate position information 301 is information indicating at least one base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and stored in the storage unit 30 .
  • the base station candidate positions included in the base station candidate position information 301 the base station candidate positions selected by the user by the base station candidate position selector 202 are flagged.
  • the information indicating the base station candidate positions not selected by the user by the base station candidate position selector 202 is deleted. may
  • the map/area information 302 includes the map information acquired by the map information acquisition unit 13, and the size and position of each square (for example, the position of the representative point) when the map information is divided into squares by the area division unit 14. ) is the associated information.
  • the point cloud data 303 is information based on the three-dimensional point cloud data acquired by the point cloud data acquiring unit 15.
  • the range on the map indicated by the point cloud data 303 overlaps with the range on the map based on the map information acquired by the map information acquisition unit 13 .
  • the point cloud data 303 is matched between the coordinate system of the map information and the coordinate system of the point cloud data by the data matching unit 16, and is matched with the position (coordinates) included in the map information as necessary. It is corrected point cloud data.
  • the storage unit 30 does not need to store all the base station installation candidate position information 301 and all the point cloud data 303 in the evaluation target area. It is only necessary to store the base station installation candidate position information 301 and the point cloud data 303 including at least the range required for the communication area design process within the range on the map that can be selected as the .
  • the communication parameter information 304 is information indicating communication parameters acquired by the communication parameter information acquisition unit 17 .
  • the communication parameter information 304 is, as described above, information used in calculation of the shielding rate, which will be described later. Details of information included in the communication parameter information 304 will be described later.
  • the judgment availability list 305 is a list of combinations of base station installation candidate positions and terminal station candidate positions (that is, representative points). Each of the combinations of base station installation candidate positions and terminal station candidate positions included in the determination availability list 305 contains the results of the (for example, two-dimensional) outlook determination based on the map information determined by the map information outlook determination unit 402. and information indicating the result of view determination or the result of shielding rate determination based on the three-dimensional point cloud data determined by the point cloud data view determination unit 403 are associated.
  • the communication area design result information 306 is information indicating the result of communication area design processing generated by the visibility determination control by the visibility determination control unit 40, which will be described later.
  • the line-of-sight determination control unit 40 performs line-of-sight determination processing for each combination of the installation candidate position of the base station and the representative point.
  • the outlook determination control unit 40 includes a communication distance outlook determination unit 401 , a map information outlook determination unit 402 , and a point cloud data outlook determination unit 403 .
  • the point cloud data outlook determination unit 403 includes a shielding rate outlook determination unit 404 .
  • the visibility determination control unit 40 performs visibility determination processing by the communication distance outlook determination unit 401, the map information outlook determination unit 402, the point cloud data outlook determination unit 403, and the shielding rate outlook determination unit 404 based on predetermined visibility determination rules.
  • Line-of-sight determination is performed by controlling execution. The details of the predetermined line-of-sight determination rule will be described later.
  • the communication distance outlook determination unit 401 performs outlook determination based on the communication distance for each square in the evaluation target area range of the map divided into squares based on the map/area information 302 stored in the storage unit 30 .
  • the communication distance outlook determination unit 401 extracts by the base station installation candidate position extraction unit 12, and when the base station is installed in the base station installation candidate position selected by the base station installation candidate position selection unit 202, each base station A line-of-sight decision is made based on the communication distance between the station and the terminal station when the terminal station is located at a representative point, which is a representative position of each square.
  • the communication distance and outlook determination unit 401 causes the storage unit 30 to store information indicating the results of the outlook determination processing based on the communication distance as the communication area design result information 306 .
  • the communication distance outlook determining unit 401 determines that there is a line of sight. determines that there is no visibility.
  • the predetermined distance referred to here is the distance at which communication is possible. The distance is set based on, for example, values of received power at both stations, which are estimated by simulation or the like in advance.
  • the communication distance outlook determination unit 401 identifies the distance between the base station installation candidate position and the representative point based on the map/area information 302 stored in the storage unit 30, for example.
  • the method is not limited to this method, and communication distance outlook determining section 401 may specify the distance between the base station installation candidate position and the representative point by other methods.
  • information indicating the distance between the base station installation candidate position and the representative point is stored in advance in the storage unit 30, and the communication distance outlook determination unit 401 acquires the information indicating the distance from the storage unit 30. can be
  • the representative point is, for example, the center of the grid. That is, the communication distance outlook determination unit 401 performs the outlook determination on the assumption that the terminal station is located at the center of each square when determining the visibility for each square. In other words, when the communication distance/visibility determination unit 401 performs line-of-sight determination for each square, it is assumed that the presence/absence of visibility at an arbitrary position in the square is the same as the presence/absence of visibility at the center position of the square. and determine the line of sight.
  • the position of the representative point is not limited to the position in the center of the grid, but may be another position such as the position of the corner of the grid.
  • the position of the corner of the grid is the representative point, there is a position far away from the representative point within the grid, such as another corner position on the diagonal line of the grid, so the error in determining whether or not communication is possible increases. It is expected that. Therefore, it is desirable that the representative point be the central position of the grid.
  • the map information outlook determination unit 402 performs outlook determination based on the map information for each square with respect to the evaluation target area range of the map divided into squares based on the map/area information 302 stored in the storage unit 30 .
  • a map information outlook determination unit 402 determines whether or not communication is possible between a base station when installed at a base station installation candidate position and a terminal station located at a representative point based on map information. Perform judgment processing.
  • the map information outlook determination unit 402 causes the storage unit 30 to store information indicating the result of the outlook determination process based on the map information as the communication area design result information 306 .
  • the line-of-sight judgment is performed based on the map information.
  • the map information outlook determination unit 402 determines the outlook between the base station installation candidate position and the representative point based on the position of the outline of an object such as a building included in the map information. For example, if the line segment connecting the base station installation candidate position and the representative point on the two-dimensional map does not intersect any building outline in the evaluation target area, the map information outlook determining unit 402 If it intersects with the outline of any building, it is determined that there is no line of sight.
  • the presence or absence of visibility in the visibility judgment based on the map information by the map information visibility judging section 402 means that the base station and the terminal station are located at the base station installation candidate position and the representative point of each square, respectively. In this case, it can also be said that it indicates whether or not there is a shield that blocks the propagation of the radio wave on the propagation path of the radio wave transmitted and received between the base station and the terminal station. In other words, if there is no shielding object that shields the radio wave in the propagation path of the radio wave that is transmitted and received between the base station and the terminal station, there is a line of sight, and there is a shielding object that shields the radio wave. It can also be said that there is no prospect in some cases.
  • determining that there is line of sight means determining that communication is possible, and determining that there is no line of sight means determining that communication is impossible.
  • the shielding object here is an object that may block the propagation of radio waves transmitted and received between the base station and the terminal station.
  • shields include buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, structures such as road signs and signboards, plants such as roadside trees and garden trees, and raised ground. All objects that can block the propagation of radio waves are included.
  • the map information does not include information about some obstructions, such as road signs and billboards, street trees, garden trees, and the like.
  • FIG. 2 is a flow chart showing the flow of processing by the line-of-sight detection device described in Patent Literature 1. As shown in FIG.
  • processing by the line-of-sight detection device includes four processing stages.
  • the four processing stages are respectively a detection range specification and preparation stage (step S11), a line-of-sight detection line processing stage (step S12), a line-of-sight range detection processing stage (step S13), and a processing result output stage (step S14).
  • the detection range specification and preparatory stage processing in step S11 are performed by the target range selection unit and the connection provision unit.
  • the line-of-sight detection line processing stage of step S12 is performed by the line-of-sight detection line rotating section.
  • the line-of-sight range detection processing stage of step S13 is performed by the line-of-sight intersection detection unit and the line-of-sight range detection unit.
  • the process result output stage of step S14 is performed by the result output unit.
  • the target range selection part takes in the map information.
  • the target range selection unit selects a detection target area in the map information area in response to an operation by the user of the outlook detection device (step S11-1).
  • the connection providing unit detects a narrow area between buildings in which the interval between adjacent buildings is less than a predetermined length in the detection target area of the map information output by the target range selection unit.
  • the connection giving unit gives, for example, a mark to the open portion of the detected narrow area, and gives a connection connecting the buildings to the position of the given mark (step S11-2). By attaching a wire connection to the location of the mark, it is indicated that the location is regarded as the wall of the building and that radio waves do not propagate any further.
  • the line-of-sight detection line rotation unit selects one of the utility poles that will be the starting point of the line-of-sight detection line in response to a utility pole designation operation by the user of the line-of-sight detection device.
  • the line-of-sight detection line rotating unit sets a straight line, starting from the selected utility pole, along the road, for example, along the traveling direction of the vehicle on the road in the detection target area (step S12-1).
  • the line-of-sight intersection detection unit determines whether or not there is an intersection point where the line-of-sight detection line intersects with the outline of the building or the connecting line (step S13-1).
  • the line-of-sight detection line rotation unit rotates around the utility pole. Then, the line-of-sight detection line is rotated counterclockwise by a predetermined rotation angle (step S12-2). The line-of-sight detection line rotating unit determines whether the line-of-sight detection line has returned to its original direction. (Step S12-3).
  • steps S13-1, S12-2, and steps S13-2 and after Step S13-4 is repeatedly performed, and the line-of-sight detection line rotating section rotates the line-of-sight detection line to the position of the line-of-sight detection line.
  • the line-of-sight intersection detection unit determines that there is an intersection point where the line-of-sight detection line and the outline of the building intersect (step S13-1, YES)
  • the line-of-sight detection line is at the shortest distance from the utility pole and the outline or connection line of the building. Intersecting intersections are detected as line-of-sight intersections (step S13-2).
  • the line-of-sight range detection unit determines whether the building to which the line-of-sight intersection belongs and the building to which the line-of-sight intersection detected by the previous line of sight detection line belongs are the same building. Determine (step S13-3).
  • step S12 is performed again.
  • step S12-3 is performed, and the line-of-sight detection line rotating unit rotates the line-of-sight detection line to the position of the line-of-sight detection line.
  • step S13-3 If the line-of-sight range detection unit determines that the building to which the line-of-sight intersection belongs and the building to which the line-of-sight intersection detected by the previous line-of-sight detection line belongs are the same building (step S13-3, YES), the line-of-sight intersection and the immediately preceding Between the line of sight intersections obtained by the line of sight detection lines, a line of sight range line is given to the map information along the outline of the building (step S13-4).
  • steps S12-2, S12-3, and the above-described steps S13-1 to S13-3 are repeated.
  • the line-of-sight detection line rotation unit determines that the line-of-sight detection line has returned to the original direction (step S12 ⁇ 3, NO), and outputs information indicating the end to the result output unit.
  • the result output unit receives the information indicating the end from the line-of-sight detection line rotating unit, it outputs all line-of-sight range lines added by the line-of-sight range detection unit as lines indicating walls with line of sight (step S14-1).
  • the point cloud data outlook determination unit 403 performs the outlook determination based on the point cloud data 303 for each grid in the range of the evaluation target area divided into squares based on the map/area information 302 stored in the storage unit 30 . .
  • the point cloud data prospect determination unit 403 determines whether the base station is installed at the base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and selected by the base station installation candidate position selection unit 202. The line of sight is determined based on the three-dimensional point cloud data between the base station in each case and the terminal station in the case where the terminal station is located at a representative point that is a representative position of each square. .
  • the point cloud data outlook determination unit 403 causes the storage unit 30 to store information indicating the result of the outlook determination process based on the three-dimensional point cloud data as the communication area design result information 306 .
  • the presence or absence of the line-of-sight is determined by the base station installation candidate position and the representative point of each square, respectively. It can also be said that it indicates whether or not there is an obstruction blocking the propagation of the radio waves on the propagation path of the radio waves transmitted and received between the base station and the terminal station when the is located.
  • a shielding object is an object that exists between a base station and a terminal station and may block the propagation of radio waves transmitted and received between the base station and the terminal station.
  • the point cloud data outlook determination unit 403 determines whether the number of obtained three-dimensional point cloud data between the base station installation candidate position and the representative point, which is the object of the visibility determination, is greater than a predetermined threshold. determine whether or not The point cloud data visibility determination unit 403 determines that there is visibility when the number of acquired three-dimensional point cloud data is equal to or less than a predetermined threshold.
  • the point cloud data prospect determination unit 403 determines a Fresnel zone formed when a base station located at a base station installation candidate position and a terminal station located at a representative point communicate with each other. Suppose. Then, the point cloud data outlook determining unit 403 may determine the outlook according to the amount of point cloud data included in the range of the Fresnel zone.
  • the point cloud data outlook determination unit 403 determines the Fresnel zone formed between the base station and the terminal station (that is, between the base station installation candidate position and the representative point of each square). Make a line-of-sight judgment (if a Fresnel zone is formed). For example, if the number of point cloud data included in the range of the Fresnel zone is equal to or less than a predetermined threshold value, the point cloud data visibility determination unit 403 determines that there is visibility (communication is possible), and determines that there is visibility (communication is possible). If the number is greater than the threshold, it is determined that there is no line of sight (communication is impossible).
  • the radius of the Fresnel zone in the millimeter wave band is, for example, about 25 [cm] at maximum when transmitting a distance of 50 [m] using electromagnetic waves in the 60 [GHz] band.
  • the communication area design support system 1 can present a wider communicable area.
  • FIG. 3 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz.
  • FIG. 3 shows a base station bs installed on a utility pole p and a terminal station ts.
  • FIG. 3 also shows a Fresnel zone fz formed between the base station bs and the terminal station ts.
  • FIG. 3 also shows three cross-sections (cross-section cs1, cross-section cs2, and cross-section cs3) of the Fresnel zone fz.
  • the cross section cs1, the cross section cs2, and the cross section cs3 are planes orthogonal to the straight line connecting the base station bs and the terminal station ts. In this case, as shown in FIG. 3, the cross section cs1, the cross section cs2, and the cross section cs3 are circular.
  • the radii of cross-section cs1, cs2 and cs3 are r 1 , r 2
  • the cross section cs1 has an area sh1-1, which is an area where point cloud data exists. Also, in the cross section cs2, there are an area sh1-2 where the above-mentioned area sh1-1 is projected and an area sh2-2 where point cloud data exists. In addition, on the cross section cs3, an area sh1-3 in which the above-described area sh1-2 is further projected, an area sh2-3 in which the above-described area sh2-2 is further projected, and an area where point cloud data exists There is a region sh3-3.
  • buildings such as dwelling units and buildings, structures such as residential walls and elevated roads, road signs and signboards, etc.
  • buildings such as dwelling units and buildings, structures such as residential walls and elevated roads, road signs and signboards, etc.
  • obstacles that can block the propagation of radio waves, such as objects, plants such as roadside trees and garden trees, and raised ground, and the shielding rate in the entire range of the Fresnel zone fz is calculated.
  • the terminal station ts is installed in a building in FIG. 3, the same applies even if the terminal station is a mobile terminal as in the present embodiment.
  • the point cloud data outlook determining unit 403 counts, for example, the total number of point cloud data included in a plurality of cross sections of the Fresnel zone fz. That is, the point cloud data outlook determining unit 403 counts, for example, the total number of point cloud data of the cross section closest to the terminal station ts (cross section cs3 in the figure) projected as described above. Then, the point cloud data prospect determination unit 403 determines whether communication between the base station bs and the terminal station ts is possible by comparing the calculated number of pieces of point cloud data with a predetermined threshold value.
  • any number of cross sections may be used to count the number of point cloud data. As the number of cross-sections used to calculate these shielding rates increases, more accurate visibility determination becomes possible, but the calculation load increases.
  • the point cloud data outlook determining unit 403 determines the distance between the base station bs and the terminal station ts based on the occupancy rate of the area where the point cloud data exists in the cross section of the Fresnel zone instead of the number of the point cloud data. You may make it determine whether communication is possible. For example, the point cloud data visibility determining unit 403 determines that there is visibility (communication is possible) if the occupancy rate is equal to or less than a predetermined threshold, and that there is no visibility (communication is possible) if the occupancy rate is higher than the predetermined threshold value. is impossible).
  • the point cloud data outlook determination unit 403 for example, superimposes a plurality of cross sections of the Fresnel zone fz. Then, the point cloud data outlook determination unit 403 calculates the ratio of the area of the point cloud data to the area of the superimposed cross sections as the occupancy rate.
  • the point cloud data prospect determination unit 403 may determine whether communication between the base station bs and the terminal station ts is possible by comparing the calculated occupancy rate with a predetermined threshold.
  • the point cloud data outlook determination unit 403 includes a shielding rate outlook determination unit 404 . If the number of pieces of point cloud data counted by the point cloud data outlook determination unit 403 is greater than a predetermined threshold, the shielding rate outlook determination unit 404 determines the outlook based on the three-dimensional point cloud data in consideration of the shielding rate. conduct.
  • the shielding rate outlook determination unit 404 determines that even if the number of pieces of point cloud data exceeding the threshold exists between the base station installation candidate position and the representative point (that is, when there are a large number of shielding Even if the object is large), instead of simply determining that there is no line of sight, the line of sight is determined by further considering the shielding rate. As a result, the shielding rate outlook determination unit 404 can obtain a more accurate result of the visibility determination. This is because shields include not only objects that strongly affect wireless communication, such as buildings, but also trees with sparsely grown leaves, which interfere with wireless communication. This is because some objects have a relatively weak effect.
  • the shielding rate outlook determining unit 404 calculates, for example, the amount of propagation loss of radio waves based on the shielding rate, and based on the calculated loss amount, wireless communication between the base station and the terminal station is performed. The presence or absence of the line of sight is determined by designing the line.
  • the following formula (1) can be used as a calculation formula used in the visibility determination by the shielding rate outlook determination unit 404.
  • the shielding rate outlook determination unit 404 determines whether the base station installation candidate position and the representative point Determine that there is a line of sight between them. On the other hand, when the above formula (1) is not satisfied, that is, when the received power P R at the terminal station is lower than the required reception sensitivity P RS , the shielding rate outlook determination unit 404 determines the base station installation candidate position and the representative point. Determine that there is no line of sight between
  • the value of the above propagation loss amount L can be obtained by the following formula (2).
  • the value of the wavelength ⁇ above can be obtained by the following formula (3).
  • the value of the amount of loss S due to the above shielding rate can be obtained by the following formula (4).
  • the shielding rate outlook determination unit 404 performs the visibility determination based on whether or not formula (1) is satisfied by the above parameters and the numerical values given by formulas (2) to (4). be able to.
  • the point cloud data outlook determination unit 403 causes the storage unit 30 to store information indicating the result of the visibility determination process based on the shielding rate as the communication area design result information 306 .
  • FIG. 4 is a schematic diagram showing how the visibility determination is performed by regarding the Fresnel zone as a cylinder.
  • FIG. 4 shows a base station bs, a terminal station ts (corresponding to a representative point), and a cylindrical Fresnel zone (hereinafter referred to as “cylindrical Fresnel zone Cz”).
  • the length of the cylindrical Fresnel zone Cz (i.e. the distance between the base station bs and the terminal station ts) is d and the circular cross section which is the vertical cross section of the cylindrical Fresnel zone Cz is r.
  • the radius r may be a predetermined value, or may be the maximum radius of the circular cross section of the Fresnel zone of the spheroid originally formed between the base station bs and the terminal station ts. There may be.
  • the wavelength ⁇ is expressed as a function related to the speed of light c and the frequency f of radio waves used for wireless communication, as in the following equation (7). Therefore, it can be said that it makes sense to change the radius of the cylindrical Fresnel zone Cz according to the frequency f, such as in the millimeter wave band.
  • the user using the communication area design support system 1 in this embodiment may set the radius r of the circular cross section in the cylindrical Fresnel zone Cz according to the wavelength ⁇ .
  • the Fresnel zone fz which is a spheroid, as a cylindrical Fresnel zone Cz as shown in FIG. 4, the Fresnel zone This greatly simplifies the process of extracting point cloud data that exists inside (that is, becomes a factor that blocks the line of sight).
  • the Fresnel zone fz which is a spheroid
  • the size of the circular cross section differs depending on the location.
  • the overlapping process is complicated.
  • the Fresnel zone fz as a cylindrical Fresnel zone Cz
  • the above complicated processing can be replaced with a simple processing of simply counting the number of point cloud data existing within the cylinder. That is, rather than using a method of determining whether the area of the shielded portion of the superimposed circular cross section exceeds a predetermined threshold, the number of point cloud data in the cylinder exceeds the threshold.
  • the use of the method of determining whether or not there is a line of sight determination process is far simpler.
  • map information does not include information on the location of trees, road signs, etc., so even if there are obstructions other than buildings such as this, it is assumed that there is a line of sight. It may be misjudged.
  • ⁇ Prospect judgment processing based on the presence or absence of point cloud data In the prospect judgment processing based on point cloud data, which has higher judgment accuracy than the prospect judgment processing based on communication distance and the prospect judgment processing based on map information, the processing is Relatively easy. Disadvantages: The visibility is determined based on the number of point cloud data counted within the range to be evaluated (for example, within the range of the cylindrical pseudo-Fresnel zone as described above). Therefore, for example, even if there is an object that does not serve as a shield because radio waves pass between the base station installation candidate position and the representative point, it may be erroneously determined that there is no line of sight. An object through which radio waves pass is, for example, a tree with sparse leaves.
  • each of the above four line-of-sight determination processes has advantages and disadvantages.
  • the visibility determination control unit 40 in the present embodiment performs visibility determination using a combination of these plurality of visibility determination processes according to a predetermined visibility determination rule.
  • the output unit 50 acquires the communication area design result information 306 from the storage unit 30 .
  • the output unit 50 outputs the communication area design result information 306 to an external device (for example, a communication area design device or a display device (not shown)) that performs subsequent processing.
  • an external device for example, a communication area design device or a display device (not shown)
  • the output unit 50 includes, for example, a communication interface for outputting the communication area design result information 306 to an external device.
  • the output unit 50 may be a functional unit that functions as a display unit that displays the communication area design result information 306 .
  • the output unit 50 includes a display device such as a liquid crystal display or an organic EL display. Note that the output unit 50 may display various types of information to be presented to the user.
  • the base station installation candidate position extraction unit 12, the area division unit 14, the data matching unit 16, and the line-of-sight determination control unit 40 may be configured as components of one control unit (not shown).
  • the controller is implemented by a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • the control unit may have a configuration realized by cooperation of software and hardware.
  • the program read by the CPU may be stored in advance in a storage medium such as the storage unit 30 provided in the communication area design support system 1, for example.
  • FIG. 6 is a diagram for explaining the line-of-sight determination processing by the communication area design support system 1 according to the first embodiment of the present invention.
  • the visibility determination control unit 40 in this embodiment performs visibility determination control by selectively using a plurality of visibility determination processes according to a predetermined visibility determination rule.
  • FIG. 6 shows predetermined visibility determination rules that the visibility determination control unit 40 uses when controlling visibility determination processing.
  • the outlook determination control unit 40 appropriately performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401 and point cloud data forecast determination by the point cloud data outlook determination unit 403 based on predetermined visibility determination rules.
  • the visibility determination processing based on the presence or absence of the group data and the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 are executed.
  • the outlook determination control unit 40 controls execution of the above three outlook determination processes, the map information outlook determination process based on the map information by the map information outlook determination unit 402 is not performed. do not have. Note that the outlook determination processing based on the map information by the map information outlook determination unit 402 is used in a second embodiment described later.
  • the visibility determination control unit 40 in the present embodiment first performs A line-of-sight determination process based on the communication distance is executed.
  • the line of sight determination control unit 40 When it is determined that there is no line of sight by the line of sight determination processing based on the communication distance, the line of sight determination control unit 40 outputs a determination result indicating that there is no line of sight as the final determination result. This is because if the distance between the base station installation candidate position and the representative point is longer than the communicable distance, communication between the base station and the terminal station is almost impossible regardless of the presence or absence of obstructions. It is from.
  • the line of sight determination control unit 40 uses the determination result of the line of sight as a provisional determination result. This is because even if the distance between the base station installation candidate position and the representative point is within the communicable distance, the presence of a shielding object between them may cause the distance between the base station and the terminal station. This is because communication may not be possible.
  • the line-of-sight determination control unit 40 When it is determined that there is a line of sight by the line-of-sight determination processing based on the communication distance, the line-of-sight determination control unit 40 generates point cloud data by the point cloud data line-of-sight determination unit 403 for a combination of the same base station installation candidate position and a representative point. The visibility determination process based on the presence or absence of is executed.
  • the line of sight determination control unit 40 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data, the line of sight determination control unit 40 outputs a determination result indicating that there is a line of sight as the final determination result. This is because there is a high possibility that there is no obstruction between the base station installation candidate position and the representative point.
  • the visibility determination control unit 40 uses the determination result of no visibility as the provisional determination result. This is because even if an object exists between the base station installation candidate position and the representative point, it is an object such as a tree with sparse leaves that does not become a shield because radio waves pass through it. Because it is possible.
  • the line of sight determination control unit 40 blocks the combination of the same base station installation candidate position and the representative point by the blocking rate line of sight determination unit 404. Execute the visibility determination process based on the rate.
  • the visibility determination control unit 40 When it is determined that there is visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is visibility as the final determination result. This is a pattern in which the line of sight determination processing based on the presence or absence of point cloud data determines that there is no line of sight, but the line of sight determination processing based on the shielding rate overrules the determination that line of sight exists. On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result.
  • FIG. 7 is a flow chart showing the operation of the visibility determination control unit 40 according to the first embodiment of the present invention. The operation of the visibility determination control section 40 shown in the flowchart of FIG.
  • the visibility determination control unit 40 controls the communication distance visibility determination unit 401 to execute the visibility determination process based on the communication distance for the combination of the base station installation candidate position and the representative point based on the input information (step S101).
  • the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as a final determination result (step S108). ).
  • the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
  • step S102 if it is determined that there is a line of sight by the line-of-sight determination processing based on the communication distance (step S102: YES), the line-of-sight determination control unit 40 generates point cloud data for the same combination of the base station installation candidate position and the representative point.
  • the visibility determination processing based on the presence or absence of point cloud data is executed by the visibility determination unit 403 (step S103).
  • the line of sight determination control unit 40 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S104, YES), the line of sight determination control unit 40 outputs a determination result indicating that line of sight exists as a final determination result. (Step S107). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
  • the shielding rate line of sight determination unit 404 determines the combination of the same base station installation candidate position and representative point. A visibility determination process based on the shielding rate is executed (step S105).
  • the line of sight determination control unit 40 When it is determined that there is a line of sight by the line of sight determination processing based on the shielding rate (step S106, YES), the line of sight determination control unit 40 outputs a determination result indicating that line of sight is present as a final determination result (step S107). ). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
  • the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result (step S108). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
  • the communication area design support system 1 first performs the line-of-sight determination process based on the communication distance, which is the line-of-sight determination process with a relatively small amount of calculation. It is determined that there is no line of sight for a combination of a base station installation candidate position and a representative point whose distance exceeds the distance at which communication is possible. Next, the communication area design support system 1 according to the present embodiment considers the presence of a shield for a combination of a base station installation candidate position and a representative point where the distance between both stations is within the distance at which communication is possible.
  • the communication area design support system 1 performs outlook determination processing considering the shielding rate for combinations of base station installation candidate positions and representative points where the number of point cloud data between both stations is larger than the threshold.
  • the communication area design support system 1 is able to perform more accurate line-of-sight determination while suppressing an increase in computational load.
  • the communication area design support system 1 according to the first embodiment of the present invention performs line-of-sight determination processing in consideration of the shielding rate as necessary.
  • the communication area design support system 1 according to the present embodiment even if there is an object between the base station installation candidate position and the representative point, and the number of point cloud data that is equal to or greater than the threshold exists, for example, leaves In the case of an object such as a sparsely grown tree that transmits radio waves and does not become a shielding object, it can be correctly determined that there is a line of sight.
  • the communication area design support system 1 performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, and outlook determination based on the presence or absence of point cloud data by the point cloud data outlook determination unit 403. processing, and the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404, the outlook between the base station installation candidate position and the representative point is determined. That is, the communication area design support system 1 according to the first embodiment is configured so that the map information outlook determination unit 402 does not perform the outlook determination process based on the map information.
  • the communication distance outlook determination unit 401 performs outlook determination processing based on the communication distance
  • the map information outlook determination unit 402 performs outlook determination based on map information. processing
  • the point cloud data outlook determination unit 403 based on the presence or absence of point cloud data is performed as necessary. That is, in the second embodiment, the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 is not performed.
  • the functional configuration of the communication area design support system 1 according to the second embodiment is the same as the functional configuration of the communication area design support system 1 according to the first embodiment described with reference to FIG. 1, so description thereof will be omitted. .
  • FIG. 8 is a diagram for explaining the line-of-sight determination processing by the communication area design support system 1 according to the second embodiment of the present invention.
  • the visibility determination control unit 40 in this embodiment performs visibility determination control by selectively using a plurality of visibility determination processes according to a predetermined visibility determination rule.
  • FIG. 8 shows predetermined visibility determination rules used by the visibility determination control unit 40 when controlling the visibility determination process.
  • the outlook determination control unit 40 appropriately performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, map information by the map information outlook determination unit 402, and and the point cloud data outlook determination unit 403 based on the presence or absence of point cloud data are executed.
  • the visibility determination control unit 40 controls the execution of the above three visibility determination processes, the visibility determination process based on the shielding rate by the shielding rate outlook determining unit 404 is not performed. do not have. Note that the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 is used in a modified example of the second embodiment described later.
  • the visibility determination control unit 40 in this embodiment first performs A line-of-sight determination process based on the communication distance is executed.
  • the line of sight determination control unit 40 When it is determined that there is no line of sight by the line of sight determination processing based on the communication distance, the line of sight determination control unit 40 outputs a determination result indicating that there is no line of sight as the final determination result. This is because if the distance between the base station installation candidate position and the representative point is longer than the communicable distance, communication between the base station and the terminal station is almost impossible regardless of the presence or absence of obstructions. It is from.
  • the line of sight determination control unit 40 uses the determination result of the line of sight as a provisional determination result. This is because even if the distance between the base station installation candidate position and the representative point is within the communicable distance, communication between the base station and the terminal station is impossible due to the presence of obstructions. This is because there is a possibility that When it is determined that there is a line of sight by the line-of-sight determination processing based on the communication distance, the line-of-sight determination control unit 40 determines the combination of the same base station installation candidate position and representative point based on the map information by the map information line-of-sight determination unit 402. Execute the line of sight determination process.
  • the visibility determination control unit 40 When it is determined that there is no visibility by the visibility determination process based on the map information, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result. This is because the line of sight connecting the base station installation candidate position and the representative point intersects with the outline of the building, etc. indicated in the map information, so there is a high possibility that the line of sight is blocked by the building, etc. .
  • the visibility determination control unit 40 uses the determination result that there is visibility as a provisional determination result. This is because even if there is an object between the base station installation candidate position and the representative point, there is a possibility that there is an obstacle that is not included in the map information, such as a tree or a traffic sign. be.
  • the line-of-sight determination control unit 40 generates point cloud data by the point cloud data line-of-sight determination unit 403 for a combination of the same base station installation candidate position and a representative point. The visibility determination process based on the presence or absence of is executed.
  • the line of sight determination control unit 40 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data, the line of sight determination control unit 40 outputs a determination result indicating that there is a line of sight as the final determination result. On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as a final determination result.
  • FIG. 9 is a flow chart showing the operation of the visibility determination control section 40 according to the second embodiment of the present invention.
  • the visibility determination control unit 40 controls the communication distance visibility determination unit 401 to execute the visibility determination process based on the communication distance for the combination of the base station installation candidate position and the representative point based on the input information (step S201).
  • the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result (step S208). ). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
  • the line of sight determination control unit 40 determines the map information line of sight for the same combination of the base station installation candidate position and the representative point.
  • the determination unit 402 executes the outlook determination process based on the map information (step S203).
  • the visibility determination control unit 40 When it is determined that there is no visibility by the visibility determination processing based on the map information (step S204, NO), the visibility determination control unit 40 outputs the determination result indicating that there is no visibility as the final determination result (step S208). ). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
  • step S204 if it is determined that there is a line of sight by the line of sight determination processing based on the map information (step S204: YES), the point cloud data line of sight determination unit 403 determines the combination of the same base station installation candidate position and the representative point. The outlook determination process based on the presence or absence of data is executed (step S205).
  • the line of sight determination control unit 40 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S206, YES), the line of sight determination control unit 40 outputs a determination result indicating that line of sight exists as a final determination result. (Step S207). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
  • the visibility determination control unit 40 uses the determination result indicating that there is no visibility as the final determination result. Output (step S208). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
  • the communication area design support system 1 first performs the line-of-sight determination process based on the communication distance, which is the line-of-sight determination process with a relatively small amount of calculation. It is determined that there is no line of sight for a combination of a base station installation candidate position and a representative point whose distance exceeds the distance at which communication is possible.
  • the communication area design support system 1 according to the present embodiment performs outlook determination processing based on map information for combinations of base station installation candidate positions and representative points where the distance between the two stations is within the communicable distance.
  • the communication area design support system 1 As a result, it is determined that there is no line of sight for the combination of the base station installation candidate position and the representative point where the line of sight intersects the outline of a building or the like included in the map information.
  • the communication area design support system 1 generates three-dimensional point cloud data for combinations of base station installation candidate positions and representative points that do not intersect the line of sight with the outline of a building or the like included in the map information.
  • the communication area design support system 1 of the present embodiment more accurately determines whether or not there is line of sight according to the number of point cloud data between both stations.
  • the communication area design support system 1 is able to perform more accurate line-of-sight determination while suppressing an increase in computational load.
  • the result of visibility determination based on map information is N.M. G. Even if it becomes (no line of sight), there may actually be a line of sight. For example, this is the case when the outlook is determined based on old map information. In such a case, for example, even if the building does not actually exist due to being demolished, etc., if the building still remains on the map, it is erroneously determined as having no line of sight (NG). be.
  • this erroneous determination may be corrected to the line-of-sight (OK) determination.
  • the result of the visibility determination based on the map information is no visibility (NG) in a partial range (an area that is somewhat old and has not been updated for a while), , and then further determination of visibility based on the presence or absence of point cloud data may be performed.
  • an object existing between the base station installation candidate position and the representative point such as a tree with sparse leaves, If the object is transparent to radio waves and does not act as a shield, it may be erroneously determined that there is no line of sight.
  • a modified example of the second embodiment described below is an embodiment that solves such problems.
  • the communication area design support system 1 performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, outlook determination processing based on map information by the map information outlook determination unit 402, and point determination processing based on the map information.
  • the line-of-sight between the base station installation candidate position and the representative point is determined by performing line-of-sight determination processing based on the presence or absence of point cloud data by the group data line-of-sight determination unit 403 .
  • the communication area design support system 1 according to the second embodiment is configured so that the shielding rate prospect determination unit 404 does not perform the visibility determination process based on the shielding rate.
  • the communication area design support system 1 according to the modification of the second embodiment described below in addition to the above three line-of-sight determination processes performed by the communication area design support system 1 according to the second embodiment, This is a configuration in which the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 is performed as necessary.
  • the functional configuration of the communication area design support system 1 in the modified example of the second embodiment is the same as the functional configuration of the communication area design support system 1 in the first embodiment described with reference to FIG. , the description is omitted.
  • FIG. 10 is a diagram for explaining the line-of-sight determination processing by the communication area design support system 1 in the modified example of the second embodiment of the present invention.
  • the visibility determination control unit 40 in this modification performs visibility determination control by selectively using a plurality of visibility determination processes according to a predetermined visibility determination rule.
  • FIG. 10 shows a predetermined visibility determination rule used by the visibility determination control unit 40 when controlling the visibility determination process.
  • the outlook determination control unit 40 appropriately performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401 and map information by the map information outlook determination unit 402 based on predetermined visibility determination rules.
  • the point cloud data outlook determination unit 403 based on the presence or absence of point cloud data
  • the shielding rate outlook determination unit 404 based on the shielding rate are executed.
  • the difference from the determination process is the process when it is determined that there is no line of sight by the line of sight determination process based on the presence or absence of the point cloud data by the point cloud data line of sight determination unit 403 .
  • the description of the processing until it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data will be omitted.
  • the visibility determination control unit 40 treats the determination result that there is no visibility as a provisional determination result. do. This is because even if an object exists between the base station installation candidate position and the representative point, it is an object such as a tree with sparse leaves that does not become a shield because radio waves pass through it. Because it is possible.
  • the line of sight determination control unit 40 blocks the combination of the same base station installation candidate position and the representative point by the blocking rate line of sight determination unit 404. Execute the visibility determination process based on the rate.
  • the visibility determination control unit 40 When it is determined that there is visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is visibility as the final determination result. This is a pattern in which the line of sight determination processing based on the presence or absence of point cloud data determines that there is no line of sight, but the line of sight determination processing based on the shielding rate overrules the determination that line of sight exists. On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result.
  • FIG. 11 is a flow chart showing the operation of the visibility determination control section 40 in the modified example of the second embodiment of the present invention.
  • the difference between the operation of the visibility determination control unit 40 in the modification of the second embodiment shown in FIG. 11 and the operation of the visibility determination control unit 40 in the second embodiment shown in FIG. This is the process when the data outlook determination unit 403 determines that there is no visibility by the outlook determination process based on the presence or absence of the point cloud data (the process when the determination process in step S306 is NO).
  • step S301 to step S305 shown in FIG. 11 and the operation when the determination process at step S306 is YES are the operations from step S201 to step S205 shown in FIG. 9 and the determination process at step S206. Since the operations are the same as those in the case of YES, description thereof is omitted.
  • step S306 when it is determined that there is no line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S306, NO), the combination of the same base station installation candidate position and representative point is blocked.
  • the visibility determination processing based on the shielding rate is executed by the visibility determination unit 404 (step S307).
  • the visibility determination control unit 40 When it is determined that there is visibility by the visibility determination processing based on the shielding rate (step S308, YES), the visibility determination control unit 40 outputs a determination result indicating that there is visibility as a final determination result (step S309). ). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 11 is completed.
  • the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result (step S310). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 11 is completed.
  • the communication area design support system 1 in the modified example of the second embodiment of the present invention first performs the outlook determination process based on the communication distance, which is the outlook determination process with a relatively small amount of calculation. It is determined that there is no line of sight for combinations of base station installation candidate positions and representative points where the distance between stations exceeds the distance at which communication is possible.
  • the communication area design support system 1 in this modification performs prospect determination processing based on map information for combinations of base station installation candidate positions and representative points where the distance between the two stations is within the distance at which communication is possible. As a result, it is determined that there is no line of sight for the combination of the base station installation candidate position and the representative point where the line of sight intersects the outline of a building or the like included in the map information.
  • the communication area design support system 1 in this modified example considers the presence of a shield for the combination of the base station installation candidate position and the representative point where the line of sight does not intersect with the outline of a building or the like included in the map information.
  • the line-of-sight determination processing it is determined that there is line-of-sight for combinations of base station installation candidate positions and representative points for which the number of point cloud data between both stations is equal to or less than the threshold.
  • the communication area design support system 1 in this modified example more accurately determines whether or not there is a line of sight according to the number of point cloud data between both stations.
  • the communication area design support system 1 in this modified example performs outlook determination processing considering the shielding rate for combinations of base station installation candidate positions and representative points where the number of point cloud data between both stations is larger than the threshold. Then, based on the amount of propagation loss of radio waves calculated based on the shielding rate, the circuit design for wireless communication between the base station and the terminal station is performed. In this manner, the communication area design support system 1 in this modified example determines the presence or absence of line of sight with higher accuracy.
  • the communication area design support system 1 can perform visibility determination with higher accuracy while suppressing an increase in calculation load.
  • the communication area design support system 1 according to the modified example of the second embodiment of the present invention performs line-of-sight determination processing that takes into account the shielding rate as necessary.
  • the communication area design support system 1 according to the present modification even if there is an object between the base station installation candidate position and the representative point, and the number of point cloud data equal to or greater than the threshold exists, for example, leaves In the case of an object such as a sparsely grown tree that transmits radio waves and does not become a shielding object, it can be correctly determined that there is a line of sight.
  • the result of visibility determination based on map information is N.M. G. Even if it becomes (no line of sight), there may actually be a line of sight. For example, this is the case when the outlook is determined based on old map information. In such a case, for example, even if the building does not actually exist due to being demolished, etc., if the building still remains on the map, it is erroneously determined as having no line of sight (NG). be.
  • such a case can be dealt with by the configuration of the first embodiment described above (the configuration in which the visibility is determined based on the point cloud data without performing the visibility determination based on the map information). good.
  • the result of the visibility determination based on the map information is N.M. G.
  • this erroneous judgment will be corrected to the judgment that there is line of sight (OK).
  • the communication availability determination device includes an acquisition unit, a distance determination unit, and a shielding rate determination unit.
  • the communication availability determination device and the acquisition unit are the visibility determination control unit 40 in the embodiment
  • the distance determination unit is the communication distance outlook determination unit 401 in the embodiment
  • the shielding rate determination unit is the shielding rate in the embodiment. It is the line of sight determination unit 404 .
  • the acquisition unit obtains information indicating a base station position indicating a candidate installation position of a radio base station, a mobile station position indicating a position where a mobile station communicating with the radio base station may exist, and a base station position.
  • Acquire point cloud data measured between the mobile station position.
  • the radio base station is the base station in the embodiment
  • the base station location is the base station installation candidate location in the embodiment
  • the mobile station is the terminal station in the embodiment
  • the mobile station location is the , and the point cloud data is the point cloud data 303 in the embodiment.
  • the above distance determination unit performs distance determination to determine whether or not communication is possible between the base station position and the mobile station position according to the distance between the base station position and the mobile station position.
  • the distance determination is visibility determination based on the communication distance by the communication distance visibility determination unit 401 in the embodiment.
  • the above shielding rate determination unit determines the shielding rate indicating the ratio of the point cloud data in the space between the base station position and the mobile station position calculated from the point cloud data. Shielding rate determination is performed based on the radio wave propagation loss estimated based on. For example, the shielding rate determination is visibility determination based on the shielding rate by the shielding rate outlook determining unit 404 in the embodiment.
  • the above communication availability determination device may further include a point cloud data determination unit.
  • the point cloud data determination unit is the point cloud data outlook determination unit 403 in the embodiment.
  • the point cloud data determination unit determines whether or not communication is possible between the base station position and the mobile station position according to the number of point cloud data existing in the above space when it is determined that communication is possible by distance determination. Perform point cloud data judgment.
  • point cloud data determination is visibility determination based on three-dimensional point cloud data by the point cloud data visibility determining unit 403 in the embodiment.
  • the shielding rate determination unit performs the shielding rate determination when the point cloud data determination determines that communication is impossible.
  • the above communication availability determination device may further include a map determination unit.
  • the map determination unit is the map information outlook determination unit 402 in the embodiment.
  • the map determination unit when it is determined that communication is possible by distance determination, stores whether or not communication between the base station position and the mobile station position is possible in map information indicating a map between the base station position and the mobile station position. Map determination is performed based on the map.
  • the map information is the map/area information 302 in the embodiment
  • the map determination is the outlook determination based on the map information by the map information outlook determination unit 402 in the embodiment.
  • the acquisition unit further acquires the map information, and the point cloud data determination is performed when the map determination determines that communication is possible.
  • the shielding rate determination unit designs the wireless communication channel between the wireless base station and the mobile station based on the loss amount of the propagation loss, and the received power at the mobile station is set to the required reception power. It may be determined that communication is possible when the sensitivity is equal to or higher than the sensitivity.
  • the above space may be a Fresnel zone formed between the radio base station and the mobile station.
  • the Fresnel zone here is the Fresnel zone fz in the embodiment.
  • the above space may be a cylindrical space approximated to a Fresnel zone formed between the radio base station and the mobile station.
  • the cylindrical space approximated to the Fresnel zone here is the cylindrical Fresnel zone Cz in the embodiment.
  • the communication area design support system includes a base station candidate position acquisition unit, a division unit, a point cloud data acquisition unit, a communication availability determination control unit, and an output unit.
  • the communication area design support system is the communication area design support system 1 in the embodiment
  • the base station candidate position acquisition unit is the base station installation candidate position extraction unit 12 in the embodiment
  • the dividing unit is The area division unit 14
  • the point cloud data acquisition unit is the point cloud data acquisition unit 15 in the embodiment
  • the communication availability determination control unit is the visibility determination control unit 40 in the embodiment
  • the output unit is the is the output unit 50 in .
  • the above-mentioned base station candidate position acquisition unit acquires information indicating candidate installation positions of wireless base stations in the target area.
  • the target area is the evaluation target area in the embodiment.
  • the division unit acquires map information indicating a map of a target area, divides the map into squares, and determines representative points representing possible positions of mobile stations in each square.
  • the point cloud data acquisition unit acquires point cloud data measured within the target area.
  • the above-mentioned communication feasibility determination control unit determines the feasibility of communication between the candidate position of the wireless base station and each of the representative points for each square using a plurality of communication feasibility determination methods according to a predetermined rule.
  • the plurality of judgment methods are the outlook judgment based on the communication distance by the communication distance outlook judgment unit 401, the outlook judgment based on the map information by the map information outlook judgment unit 402, and the point cloud data outlook judgment unit 403.
  • One is visibility determination based on dimensional point cloud data
  • the other is visibility determination based on the shielding rate by the shielding rate outlook determining unit 404 .
  • the output unit outputs information indicating the result of determination by the communication availability determination control unit.
  • the information indicating the determination result is the communication area design result information 306 in the embodiment.
  • the communication availability determination control unit includes a distance determination unit and a shielding rate determination unit.
  • the distance determination unit performs distance determination to determine whether or not communication between the candidate installation position and the representative point is possible according to the distance between the candidate installation position and the representative point. If it is determined that communication is possible based on the distance determination, the shielding rate determination unit is based on the shielding rate that indicates the ratio of the point cloud data in the space between the installation candidate position calculated from the point cloud data and the representative point. Shielding rate determination is performed based on the estimated propagation loss of radio waves.
  • a part of the communication area design support system 1 in each of the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This communication feasibility determination method includes: an acquisition step for acquiring information indicating a base station position indicating an installation candidate position for a wireless base station and a mobile station position indicating a position at which a mobile station that communicates with the wireless base station could be present, and for acquiring point group data measured between the base station position and the mobile station position; a distance determination step for performing a distance determination which determines the feasibility of communication between the base station position and the mobile station position, such determination being performed according to the distance between the base station position and the mobile station position; and a shielding rate determination step for, if it was determined according to the distance determination that communication is possible, performing a shielding rate determination which makes a determination on the basis of a radio wave propagation loss estimated on the basis of a shielding rate, calculated from the point group data, indicating the ratio of the space between the base station position and the mobile station position accounted for by the point group data.

Description

通信可否判定方法、通信可否判定装置、及び通信エリア設計支援システムCOMMUNICATION POSSIBLE DETERMINATION METHOD, COMMUNICATION POSSIBLE DETERMINATION DEVICE, AND COMMUNICATION AREA DESIGN SUPPORT SYSTEM
 本発明は、通信可否判定方法、通信可否判定装置、及び通信エリア設計支援システムに関する。 The present invention relates to a communication availability determination method, a communication availability determination device, and a communication area design support system.
 昨今、屋外でも利用可能なスマートフォンやタブレット端末等の移動端末が広く普及している。このような移動端末による無線通信を実現する際に、置局設計及び通信エリア設計を適切に行うことが、サービスの利便性及び通信効率等の面において大変重要とされている。ここでいう置局設計とは、移動端末(以下、「端末局」という。)を収容する基地局の設置位置を決定することであり、通信エリア設計とは、設置された基地局によってカバーされる端末局の通信可能エリアを設計及び管理することである。以下、置局設計と通信エリア設計とを総称して「通信エリア設計」という。 Recently, mobile terminals such as smartphones and tablet terminals that can be used outdoors have become widespread. In realizing wireless communication by such mobile terminals, it is very important to appropriately design station locations and communication areas in terms of service convenience and communication efficiency. The station placement design here refers to determining the installation positions of base stations that accommodate mobile terminals (hereinafter referred to as "terminal stations"), and the communication area design refers to the areas covered by the installed base stations. designing and managing the communicable areas of terminal stations. Hereinafter, station placement design and communication area design are collectively referred to as "communication area design".
 とくに高周波数帯の無線通信における通信エリア設計では、基地局の固定的な設置候補位置に対して、端末局が存在しうる評価対象となる範囲(以下、「評価対象エリア」という。)が、地図上において例えば升目状に区切られる。よって、評価対象エリアには、少なくとも、基地局の設置候補位置と端末局が存在しうる位置とが含まれる。また、それぞれの升目が通信可否判定における評価単位となる。そして、例えば、それぞれの升目を代表する位置(以下、「代表点」という。)ごとに、設置候補位置に置局された場合の基地局と代表点に位置している場合の端末局との間の通信可否の判定が行われることによって、通信エリア設計が行われる。これにより、基地局と端末局とが通信可能になる範囲を、地図上で視覚的に示すことが可能になる。 Especially in designing communication areas in high-frequency band wireless communication, the evaluation target range (hereinafter referred to as the "evaluation target area") in which terminal stations can exist with respect to fixed installation candidate positions of base stations is For example, it is divided into squares on the map. Therefore, the evaluation target area includes at least candidate installation positions of base stations and positions where terminal stations may exist. In addition, each square becomes an evaluation unit in determining whether or not communication is possible. Then, for example, for each position representing each square (hereinafter referred to as "representative point"), the base station when positioned at the installation candidate position and the terminal station when positioned at the representative point. Communication area design is performed by determining whether or not communication is possible between the terminals. This makes it possible to visually indicate on the map the range in which communication between the base station and the terminal station is possible.
 以下の説明において、基地局の設置候補位置に基地局が設置され、代表点に端末局が位置している場合に、基地局と端末局との間で、通信が可能であると推測される場合を「見通しがある」と言い、通信が可能でないと推測される場合を「見通しがない」という。また、以下の説明において、見通しの有無を判定することを「見通し判定」という。 In the following explanation, it is assumed that communication is possible between the base station and the terminal station when the base station is installed at the candidate installation position of the base station and the terminal station is located at the representative point. The case is called "line-of-sight", and the case where it is assumed that communication is not possible is called "no line-of-sight". Further, in the following description, determining whether or not there is a line of sight is referred to as "line of sight determination".
 通信エリア設計に用いられる見通し判定方法には、複数の方法がある。例えば、最も容易な見通し判定方法として、通信距離に基づく見通し判定方法がある。通信距離に基づく見通し判定方法では、基地局の設置候補位置と代表点との間の距離が、予め定められた通信可能とされる距離以内である場合に見通しがあると判定され、通信可能とされる距離より長い場合に見通しがないと判定される。  There are multiple methods for determining visibility used in communication area design. For example, the easiest line-of-sight determination method is a line-of-sight determination method based on communication distance. In the line-of-sight determination method based on the communication distance, when the distance between the candidate installation position of the base station and the representative point is within a predetermined distance at which communication is possible, it is determined that there is line-of-sight, and communication is possible. It is determined that there is no line of sight if the distance is greater than
 また、地図情報に基づく見通し判定方法も、比較的容易な方法である。地図情報には、評価対象エリア内に存在する建物の、例えば外壁等の外郭を示す情報が含まれている。地図情報に基づく見通し判定方法では、2次元の地図上において、基地局の設置候補位置と代表点とを結ぶ線分が、建物の外郭と交差していない場合に見通しがあると判定され、建物の外郭と交差している場合に見通しがないと判定される(例えば、特許文献1参照)。 In addition, the visibility determination method based on map information is also a relatively easy method. The map information includes information indicating outlines such as outer walls of buildings existing in the evaluation target area. In the method of determining visibility based on map information, it is determined that there is visibility on a two-dimensional map when a line segment connecting a candidate installation position of a base station and a representative point does not intersect the outline of a building. It is determined that there is no line of sight when the line of sight intersects with the outline of the line (see, for example, Patent Document 1).
 また、より精度高く見通しを判定する方法として、空間を撮像することによって得られた3次元の点群データを用いる見通し判定方法がある。この見通し判定方法は、まず、例えばMMS(Mobile Mapping System)を搭載した車両等の移動体を住宅エリア等の評価対象エリア内の道路に沿って走行させることによって、3次元の点群データを取得する。そして、この見通し判定方法は、基地局の設置候補位置と代表点との間の空間における点群データの有無に基づいて、見通し判定を行う。 In addition, as a method for determining visibility with higher accuracy, there is a visibility determination method that uses three-dimensional point cloud data obtained by imaging the space. This visibility determination method first acquires three-dimensional point cloud data by driving a mobile object such as a vehicle equipped with MMS (Mobile Mapping System) along a road in an evaluation target area such as a residential area. do. In this line-of-sight determination method, line-of-sight determination is performed based on the presence or absence of point cloud data in the space between the candidate installation position of the base station and the representative point.
 以下、基地局の設置候補位置と代表点との間の空間に存在し、電波の往来を遮る物体を「遮蔽物」という。例えば、この見通し判定方法は、設置候補位置に置局された場合の基地局と代表点に位置している場合の端末局とが通信を行う場合に形成されるフレネルゾーンを想定する。そして、この見通し判定方法は、当該フレネルゾーンの空間の範囲内に含まれる、遮蔽物を示す点群データの量に応じて見通しの有無を判定する(例えば、特許文献2参照)。 Hereinafter, an object that exists in the space between the candidate installation position of the base station and the representative point and blocks the traffic of radio waves is called a "blocking object". For example, this line-of-sight determination method assumes a Fresnel zone formed when a base station located at an installation candidate position and a terminal station located at a representative point communicate with each other. Then, this line-of-sight determination method determines the presence or absence of line-of-sight according to the amount of point cloud data indicating shielding objects included in the spatial range of the Fresnel zone (see, for example, Patent Document 2).
 また、3次元の点群データを用いて、さらに精度高く見通しを判定する方法として、遮蔽率を考慮した見通し判定方法がある。ここでいう「遮蔽率」とは、基地局と端末局との間の無線通信に対して、遮蔽物がどの程度影響を及ぼすかを示す指標となる。遮蔽物には、例えば建物等のように無線通信に強く影響を及ぼす物体だけでなく、例えば樹木等のように無線通信に比較的弱く影響を及ぼす物体もある。なぜならば、例えば樹木では葉と葉の間には点群データ存在しないためである。この見通し判定方法は、例えば、点群データから算出される遮蔽率に基づいて電波の伝搬損失の損失量を算出し、算出された損失量に基づいて基地局と端末局との間の無線通信の回線設計を行うことで、見通し判定を行う。(例えば、非特許文献1参照)。 In addition, there is a visibility determination method that considers the shielding rate as a method of determining visibility with higher accuracy using 3D point cloud data. The "shielding rate" here is an index indicating how much a shielding object affects wireless communication between a base station and a terminal station. Shielding objects include not only objects that strongly affect wireless communication, such as buildings, but also objects that affect wireless communication relatively weakly, such as trees. This is because, for example, in a tree, point cloud data does not exist between leaves. For example, this line-of-sight determination method calculates the amount of propagation loss of radio waves based on the shielding rate calculated from the point cloud data, and based on the calculated amount of loss, wireless communication between the base station and the terminal station. The line of sight is determined by designing the line. (For example, see Non-Patent Document 1).
 このように、より精度の高い見通し判定を3次元の点群データに基づいて行うためには、評価対象エリアに存在する遮蔽物の位置を示す点群データが予め十分に得られている必要がある。 In this way, in order to perform more accurate line-of-sight determination based on 3D point cloud data, it is necessary to obtain sufficient point cloud data indicating the positions of obstructions existing in the evaluation target area in advance. be.
特開2020-113933号公報JP 2020-113933 A 特開2020-107955号公報JP 2020-107955 A
 例えば前述の、通信距離に基づく見通し判定方法、及び地図情報に基づく見通し判定方法は、比較的容易に見通し判定が行えるものの、判定精度があまり高くないという課題がある。一方、例えば前述の、3次元の点群データを用いる見通し判定方法は、判定精度は高いものの、計算処理が複雑であり、かつ、用いられるデータのデータ量も多いため、見通し判定に係る計算負荷が高くなるという課題がある。このように、従来、見通し判定における判定精度と計算負荷とはトレードオフの関係にあり、計算負荷の増大を抑えつつ精度の高い見通し判定を行うことが難しいという課題があった。 For example, the visibility determination method based on the communication distance and the visibility determination method based on the map information described above can relatively easily determine the visibility, but there is a problem that the determination accuracy is not very high. On the other hand, for example, the outlook determination method using three-dimensional point cloud data described above has high determination accuracy, but the calculation process is complicated and the amount of data used is large. There is a problem that the As described above, conventionally, there is a trade-off relationship between determination accuracy and computational load in determining visibility, and there has been the problem that it is difficult to perform highly accurate determination of visibility while suppressing an increase in computational load.
 上記事情に鑑み、本発明は、計算負荷の増大を抑えつつ、より精度高く見通し判定を行うことができる技術を提供することを目的としている。 In view of the above circumstances, it is an object of the present invention to provide a technology that can determine visibility with higher accuracy while suppressing an increase in computational load.
 本発明の一態様は、無線基地局の設置候補位置を示す基地局位置と前記無線基地局との通信を行う移動局が存在しうる位置を示す移動局位置とを示す情報と、前記基地局位置と前記移動局位置との間で計測された点群データと、を取得する取得ステップと、前記基地局位置と前記移動局位置との間における通信可否を、前記基地局位置と前記移動局位置との間の距離に応じて判定する距離判定を行う距離判定ステップと、前記距離判定によって通信が可能と判定された場合、前記点群データから算出される前記基地局位置と前記移動局位置との間の空間において前記点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う遮蔽率判定ステップと、を有する通信可否判定方法である。 According to one aspect of the present invention, information indicating a base station position indicating a candidate installation position of a radio base station and a mobile station position indicating a position where a mobile station communicating with the radio base station may exist; and the base station. an obtaining step of obtaining point cloud data measured between a position and the position of the mobile station; a distance determination step of performing a distance determination according to a distance between the base station and the mobile station; and if the distance determination determines that communication is possible, the base station position and the mobile station position calculated from the point cloud data. A communication propriety determination method comprising: be.
 また、本発明の一態様は、無線基地局の設置候補位置を示す基地局位置と前記無線基地局との通信を行う移動局が存在しうる位置を示す移動局位置とを示す情報と、前記基地局位置と前記移動局位置との間で計測された点群データと、を取得する取得部と、前記基地局位置と前記移動局位置との間における通信可否を、前記基地局位置と前記移動局位置との間の距離に応じて判定する距離判定を行う距離判定部と、前記距離判定によって通信が可能と判定された場合、前記点群データから算出される前記基地局位置と前記移動局位置との間の空間において前記点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う遮蔽率判定部と、を備える通信可否判定装置である。 In one aspect of the present invention, information indicating a base station position indicating a candidate installation position of a radio base station and a mobile station position indicating a position where a mobile station communicating with the radio base station may exist; an acquisition unit that acquires point cloud data measured between a base station position and the mobile station position; a distance determination unit that determines a distance based on a distance to a mobile station; a communication feasibility determination unit that performs a shielding rate determination based on a radio wave propagation loss estimated based on a shielding rate indicating a ratio of the point cloud data in a space between the station position and the position of the station. It is a device.
 また、本発明の一態様は、対象エリアにおける無線基地局の設置候補位置を示す情報を取得する基地局候補位置取得部と、前記対象エリアの地図を示す地図情報を取得して前記地図を升目状に分割し、各升目において移動局が存在しうる位置を代表する代表点を決定する分割部と、前記対象エリア内で計測された点群データを取得する点群データ取得部と、前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、複数の通信可否判定方法を所定のルールに応じて使い分けて前記升目ごとに判定する通信可否判定制御部と、前記通信可否判定制御部による判定の結果を示す情報を出力する出力部と、を有し、前記通信可否判定制御部は、前記設置候補位置と前記代表点との間における通信可否を、前記設置候補位置と前記代表点との間の距離に応じて判定する距離判定を行う距離判定部と、前記距離判定によって通信が可能と判定された場合、前記点群データから算出される前記設置候補位置と前記代表点との間の空間において前記点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う遮蔽率判定部と、を備える通信エリア設計支援システムである。 According to another aspect of the present invention, a base station candidate position acquisition unit acquires information indicating candidate installation positions of a wireless base station in a target area; a division unit that divides the area into a shape and determines a representative point that represents a position where a mobile station can exist in each square; a point cloud data acquisition unit that acquires point cloud data measured in the target area; a communication feasibility determination control unit that determines feasibility of communication between the candidate position of the base station and each of the representative points for each of the squares by selectively using a plurality of communication feasibility determination methods according to a predetermined rule; an output unit for outputting information indicating a result of determination by the determination control unit, wherein the communication availability determination control unit outputs communication availability between the installation candidate position and the representative point to the installation candidate position. a distance determination unit that determines a distance based on the distance to the representative point; and the installation candidate position calculated from the point cloud data and the representative point when communication is determined to be possible by the distance determination. A communication area design support comprising: a shielding rate determination unit that determines a shielding rate based on a radio wave propagation loss estimated based on a shielding rate indicating a ratio of the point cloud data in a space between the points. System.
 本発明により、計算負荷の増大を抑えつつ、より精度高く見通し判定を行うことが可能になる。 With the present invention, it is possible to determine visibility with higher accuracy while suppressing an increase in computational load.
本発明の第1の実施形態における通信エリア設計支援システム1の機能構成を示すブロック図である。1 is a block diagram showing the functional configuration of a communication area design support system 1 according to the first embodiment of the present invention; FIG. 従来の見通し検出装置による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process by the conventional line-of-sight detection apparatus. フレネルゾーンを考慮した通信可否の判定の様子を示す図である。FIG. 10 is a diagram showing how communication availability is determined in consideration of the Fresnel zone; フレネルゾーンを円筒形と見なして見通し判定を行う様子を示す模式図である。FIG. 4 is a schematic diagram showing how the visibility is determined by regarding the Fresnel zone as a cylinder. フレネルゾーンに対し円筒形フレネルゾーンを重ね合わせた図である。FIG. 4 is a diagram of a cylindrical Fresnel zone superimposed on a Fresnel zone; 本発明の第1の実施形態における通信エリア設計支援システム1による見通し判定処理を説明するための図である。FIG. 4 is a diagram for explaining a line-of-sight determination process by the communication area design support system 1 according to the first embodiment of the present invention; 本発明の第1の実施形態における見通し判定制御部40の動作を示すフローチャートである。4 is a flow chart showing the operation of the visibility determination control unit 40 according to the first embodiment of the present invention; 本発明の第2の実施形態における通信エリア設計支援システム1による見通し判定処理を説明するための図である。FIG. 11 is a diagram for explaining a line-of-sight determination process by the communication area design support system 1 according to the second embodiment of the present invention; 本発明の第2の実施形態における見通し判定制御部40の動作を示すフローチャートである。9 is a flow chart showing the operation of a visibility determination control unit 40 according to the second embodiment of the present invention; 本発明の第2の実施形態の変形例における通信エリア設計支援システム1による見通し判定処理を説明するための図である。FIG. 12 is a diagram for explaining a line-of-sight determination process by the communication area design support system 1 in a modified example of the second embodiment of the present invention; 本発明の第2の実施形態の変形例における見通し判定制御部40の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the visibility determination control part 40 in the modification of the 2nd Embodiment of this invention.
 以下、実施形態における通信可否判定方法、通信可否判定装置、及び通信エリア設計支援システムについて、図面を参照しながら説明する。 A communication availability determination method, a communication availability determination device, and a communication area design support system according to the embodiment will be described below with reference to the drawings.
<第1の実施形態>
 以下、本発明の第1の実施形態について説明する。以下に説明する本実施形態の通信エリア設計支援システム1は、評価対象エリア内に存在する端末局を収容する基地局の設置位置を、通信エリア設計支援システム1の使用者(以下、「ユーザ」という。)が決定することを支援するシステムである。また、通信エリア設計支援システム1は、通信エリア設計によって導出された基地局の設置候補位置(以下、「基地局設置候補位置」という。)に基地局が設置された場合に、当該基地局との通信接続が可能な端末局の位置の範囲を示す通信可能エリアをユーザが設計することを支援するシステムである。
<First embodiment>
A first embodiment of the present invention will be described below. The communication area design support system 1 of the present embodiment, which will be described below, allows a user of the communication area design support system 1 (hereinafter referred to as "user") to set the installation position of a base station that accommodates a terminal station existing within an evaluation target area. ) is a system that supports decision making. In addition, the communication area design support system 1, when a base station is installed at a base station installation candidate position derived by communication area design (hereinafter referred to as "base station installation candidate position"), This is a system that assists a user in designing a communicable area that indicates the range of positions of terminal stations that can be connected to each other.
 本実施形態において、基地局は、例えば高層の建物や電柱等の屋外設備に設置される無線基地局であり、端末局は、例えばスマートフォン及びタブレット端末等の移動可能な無線端末である。基地局と端末局との間の通信には、例えばアンライセンス帯のミリ波無線が用いられる。 In this embodiment, a base station is a wireless base station installed in outdoor equipment such as a high-rise building or a utility pole, and a terminal station is a mobile wireless terminal such as a smart phone or a tablet terminal. For example, unlicensed band millimeter wave radio is used for communication between the base station and the terminal station.
 通信エリア設計支援システム1は、まず、2次元の地図を示す地図情報を取得する。通信エリア設計支援システム1は、取得された地図情報に基づく地図を升目状に区切るエリア分割を行う。通信エリア設計支援システム1は、升目状に区切られた地図の升目ごとに、当該升目に端末局が存在する場合における、基地局と端末局との間の通信可否に関する判定(見通し判定)を行う。通信エリア設計支援システム1は、少なくとも1つの基地局設置候補位置と、当該基地局設置候補位置に基地局が設置された場合の通信可能エリアと、を示す通信エリア設計結果情報を出力する。このように、本実施形態の通信エリア設計支援システム1は、評価対象エリアにおける、少なくとも1つの基地局設置候補位置と、当該基地局設置候補位置に基づく通信可能エリアとを、通信エリア設計の候補として提示するシステムである。 The communication area design support system 1 first acquires map information indicating a two-dimensional map. The communication area design support system 1 divides the map into squares based on the acquired map information. The communication area design support system 1 performs determination (line-of-sight determination) regarding whether or not communication is possible between a base station and a terminal station when a terminal station exists in each square of a map divided into squares. . The communication area design support system 1 outputs communication area design result information indicating at least one base station installation candidate position and a communicable area when the base station is installed at the base station installation candidate position. As described above, the communication area design support system 1 of the present embodiment uses at least one base station installation candidate position in an evaluation target area and a communicable area based on the base station installation candidate position as a candidate for communication area design. It is a system presented as
 なお、通信エリア設計支援システム1から出力された通信エリア設計結果情報は、後段の通信エリア設計において用いられる。例えば、通信エリア設計を行う通信エリア設計装置(不図示)において、通信エリア設計支援システム1から出力された通信エリア設計結果情報が示す基地局設置候補位置と通信可能エリアとの候補の中から、基地局の実際の設置位置が、手等または自動で選択(決定)される。 The communication area design result information output from the communication area design support system 1 is used in the subsequent communication area design. For example, in a communication area designing device (not shown) that designs a communication area, among candidates for base station installation candidate positions and communicable areas indicated by the communication area design result information output from the communication area design support system 1, The actual installation position of the base station is selected (determined) manually or automatically.
[通信エリア設計支援システムの機能構成]
 以下、通信エリア設計支援システム1の機能構成について説明する。図1は、本発明の第1の実施形態における通信エリア設計支援システム1の機能構成を示すブロック図である。
[Functional configuration of communication area design support system]
The functional configuration of the communication area design support system 1 will be described below. FIG. 1 is a block diagram showing the functional configuration of a communication area design support system 1 according to the first embodiment of the present invention.
 図1に示されるように、通信エリア設計支援システム1は、設備情報取得部11と、基地局設置候補位置抽出部12と、地図情報取得部13と、エリア分割部14と、点群データ取得部15と、データ整合部16と、通信パラメータ情報取得部17と、操作入力部20と、記憶部30と、見通し判定制御部40と、出力部50と、を含んで構成される。通信エリア設計支援システム1は、例えば汎用コンピュータ等の情報処理装置を含んで構成される。 As shown in FIG. 1, the communication area design support system 1 includes a facility information acquisition unit 11, a base station installation candidate position extraction unit 12, a map information acquisition unit 13, an area division unit 14, and a point cloud data acquisition unit. It includes a unit 15 , a data matching unit 16 , a communication parameter information acquisition unit 17 , an operation input unit 20 , a storage unit 30 , a visibility determination control unit 40 and an output unit 50 . The communication area design support system 1 includes an information processing device such as a general-purpose computer.
 なお、図1に示される通信エリア設計支援システム1の各機能部は、複数の装置に分散して備えられていてもよい。例えば、見通し判定制御部40とその他の機能部とは、それぞれ別々の装置に備えられていてもよい。なお、記憶部30は、通信エリア設計支援システム1の外部の装置に備えられていてもよい。 It should be noted that each functional unit of the communication area design support system 1 shown in FIG. 1 may be distributed among a plurality of devices. For example, the visibility determination control unit 40 and other functional units may be provided in separate devices. Note that the storage unit 30 may be provided in an external device of the communication area design support system 1 .
 設備情報取得部11は、例えば外部の装置等から設備情報を取得する。ここでいう設備情報とは、例えば基地局を設置可能な屋外設備の平面位置を示す情報が少なくとも含まれる情報である。基地局を設置可能な屋外設備とは、例えば高層の建物や電柱等である。なお、ここでいう平面位置とは、高さ方向(垂直方向)の座標を含まない、2次元の座標のことをいう。また、以下の説明では、平面位置を単に「位置」ということがある。 The facility information acquisition unit 11 acquires facility information from, for example, an external device. The equipment information here is information that includes at least information indicating the planar position of the outdoor equipment on which the base station can be installed, for example. Outdoor facilities where base stations can be installed are, for example, high-rise buildings and utility poles. Note that the plane position here refers to two-dimensional coordinates that do not include coordinates in the height direction (vertical direction). Also, in the following description, the planar position may be simply referred to as "position".
 なお、設備情報に、屋外設備の高さ、あるいは、屋外設備において基地局を設置可能な部分の高さを示す情報または座標等がさらに含まれていてもよい。設備情報取得部11は、取得された設備情報を基地局設置候補位置抽出部12へ出力する。 The facility information may further include information or coordinates indicating the height of the outdoor facility or the height of the portion of the outdoor facility where the base station can be installed. The facility information acquisition unit 11 outputs the acquired facility information to the base station installation candidate position extraction unit 12 .
 なお、設備情報取得部11は、設備情報を、記録メディア等の記憶媒体から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、設備情報が記憶部30に予め記憶されており、設備情報取得部11は、記憶部30から設備情報を取得する構成であってもよい。 The facility information acquisition unit 11 may acquire facility information from a storage medium such as a recording medium, or from an external device via a communication network. Alternatively, the facility information may be stored in the storage section 30 in advance, and the facility information acquisition section 11 may acquire the facility information from the storage section 30 .
 なお、後述される地図情報取得部13によって取得される地図情報から、基地局を設置可能な高層の建物等の屋外設備の平面位置を特定することが可能である場合には、上記の設備情報取得部11による設備情報の取得は省略されてもよい。 Note that if it is possible to specify the planar position of an outdoor facility such as a high-rise building in which a base station can be installed from the map information acquired by the map information acquisition unit 13, which will be described later, the above facility information Acquisition of equipment information by the acquisition unit 11 may be omitted.
 基地局設置候補位置抽出部12は、設備情報取得部11から出力された設備情報を取得する。基地局設置候補位置抽出部12は、取得された設備情報に基づいて、基地局設置候補位置を抽出する。例えば、基地局設置候補位置抽出部12は、取得された設備情報から、電柱の位置あるいは所定の高さ以上の建物の壁面の位置等を示す情報を抽出し、当該電柱の位置あるいは所定の高さ以上の建物の壁面の位置等を基地局設置候補位置とする。基地局設置候補位置抽出部12は、抽出された基地局設置候補位置を示す情報を、基地局設置候補位置情報301として記憶部30に記憶させる。 The base station installation candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11 . The base station installation candidate position extraction unit 12 extracts base station installation candidate positions based on the acquired equipment information. For example, the base station installation candidate position extracting unit 12 extracts information indicating the position of a utility pole or the position of a wall surface of a building above a predetermined height from the acquired equipment information, and extracts the position of the utility pole or the predetermined height. The position of the wall surface of a building with a height of at least 10 mm is set as the base station installation candidate position. The base station installation candidate position extraction unit 12 stores information indicating the extracted base station installation candidate positions in the storage unit 30 as the base station installation candidate position information 301 .
 地図情報取得部13は、例えば外部の装置等から地図情報を取得する。ここでいう地図情報とは、例えば、2次元の地図を示す情報である。地図情報には、建物の外郭の平面位置を示す情報が少なくとも含まれている。なお、建物とは、例えば住宅及びビル等であり、外郭の平面位置とは、例えば外壁及び塀等の平面位置である。なお、地図情報には、標高及び地図内に存在する物体の高さ等の、高さ方向の位置に関する情報が含まれていてもよい。地図情報取得部13は、取得された地図情報を、エリア分割部14及びデータ整合部16へ出力する。 The map information acquisition unit 13 acquires map information from, for example, an external device. The map information here is, for example, information indicating a two-dimensional map. The map information includes at least information indicating the planar position of the outline of the building. Note that the building is, for example, a house, a building, etc., and the planar position of the outer shell is, for example, the planar position of an outer wall, a fence, or the like. Note that the map information may include information about the position in the height direction, such as the altitude and the height of objects existing in the map. The map information acquisition section 13 outputs the acquired map information to the area dividing section 14 and the data matching section 16 .
 なお、地図情報取得部13は、地図情報を、記録メディア等の記憶媒体から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、地図情報が記憶部30に予め記憶されており、地図情報取得部13は、記憶部30から地図情報を取得する構成であってもよい。 Note that the map information acquisition unit 13 may acquire map information from a storage medium such as a recording medium, or from an external device via a communication network. Alternatively, the map information may be stored in the storage unit 30 in advance, and the map information acquisition unit 13 may acquire the map information from the storage unit 30 .
 なお、本実施形態における地図情報は、例えば、MMS等によって得られた点群データに基づいて生成された地図ではなく、例えば地図制作業者によって(例えば測量等によって)制作された住宅地図等の一般的な2次元の地図に基づく情報である。したがって、本実施形態における地図情報には、例えば、建物の外郭を示す情報は含まれているが、建物以外の物体の位置に関する情報は含まれていないことがある。建物以外の物体とは、例えば、街路樹及び庭木等の植物、道路標識及び看板等の工作物、高架道路等の構造物、及び隆起した地面等である。 Note that the map information in the present embodiment is not a map generated based on point cloud data obtained by MMS, for example, but a general map such as a residential map created by a map creator (for example, by surveying). information based on a typical two-dimensional map. Therefore, the map information in this embodiment includes, for example, information indicating outlines of buildings, but may not include information regarding the positions of objects other than buildings. Objects other than buildings include, for example, plants such as roadside trees and garden trees, structures such as road signs and billboards, structures such as elevated roads, and raised ground.
 なお、本実施形態における地図情報は、MMS等によって得られた点群データに基づいて生成された地図であっても構わないが、この場合、地図情報は、後述される点群データ取得部15によって取得される3次元の点群データと比べて情報量がより少ないデータである必要がある。また、この場合、地図情報を用いて行われる、ある基地局設置候補位置と代表点との間に対する見通し判定処理の計算量は、3次元の点群データを用いて行われる見通し判定処理及び遮蔽率判定処理の計算量と比べて少ないものである必要がある。 Note that the map information in this embodiment may be a map generated based on point cloud data obtained by MMS or the like. The data should have a smaller amount of information than the three-dimensional point cloud data obtained by . In this case, the calculation amount of the visibility determination process between a certain base station installation candidate position and the representative point, which is performed using the map information, is the same as the visibility determination process performed using the three-dimensional point cloud data. The amount of calculation must be small compared to the calculation amount of the rate determination process.
 なお、基地局設置候補位置は、地図情報に含まれる、例えば建物の外郭等の位置に基づいて抽出されるようにしてもよい。この場合、通信エリア設計支援システム1のユーザが、地図情報に基づく地図を参照しながら、目視で基地局設置候補位置を設定するような構成であってもよい。 It should be noted that the base station installation candidate positions may be extracted based on the positions of, for example, building outlines included in the map information. In this case, the user of the communication area design support system 1 may visually set the base station installation candidate positions while referring to a map based on the map information.
 エリア分割部14は、地図情報取得部13から出力された地図情報を取得する。エリア分割部14は、取得された地図情報に基づく地図を所定の大きさの升目状に区切る。エリア分割部14は、取得された地図情報と、区切られた升目の大きさ及び位置とを対応付けて、記憶部30に記憶させる。この升目の各々は評価単位となる1画地であり、この升目ごとに基地局と端末局との通信可否の判定処理が行われる。 The area division unit 14 acquires the map information output from the map information acquisition unit 13. The area division unit 14 divides the map based on the acquired map information into squares of a predetermined size. The area dividing unit 14 associates the acquired map information with the size and position of the divided squares, and stores them in the storage unit 30 . Each of these squares is an evaluation unit, and processing for determining whether communication between the base station and the terminal station is possible is performed for each square.
 なお、エリア分割部14は、地図情報取得部13から出力された地図情報を取得した場合、取得された地図情報を、ひとまずそのまま記憶部30に記憶させるようにしてもよい。そして、エリア分割部14は、記憶部30に記憶された地図情報に基づく地図の全体範囲のうち、評価対象エリアとされる特定の範囲が(後述される評価対象エリア指定部201によって)選択された後に、評価対象エリアの範囲のみの地図を所定の大きさの升目状に区切るようにしてもよい。 Note that when the area dividing unit 14 acquires the map information output from the map information acquiring unit 13, the acquired map information may be stored in the storage unit 30 as it is for the time being. Then, the area dividing unit 14 selects (by the evaluation target area designating unit 201 described later) a specific range to be the evaluation target area from the entire range of the map based on the map information stored in the storage unit 30. After that, the map of only the range of the evaluation target area may be divided into squares of a predetermined size.
 点群データ取得部15は、例えば外部の装置等から点群データを取得する。ここでいう点群データとは、空間を撮像することによって得られる3次元の点群データである。例えば、点群データは、MMSを搭載した車両等の移動体を評価対象の住宅エリア周辺の道路に沿って走行させることによって得られたものである。点群データ取得部15は、取得された点群データをデータ整合部16へ出力する。 The point cloud data acquisition unit 15 acquires point cloud data, for example, from an external device or the like. The point cloud data referred to here is three-dimensional point cloud data obtained by imaging a space. For example, the point cloud data is obtained by driving a mobile object such as a vehicle equipped with an MMS along a road around a residential area to be evaluated. The point cloud data acquisition unit 15 outputs the acquired point cloud data to the data matching unit 16 .
 なお、点群データ取得部15は、点群データを、大容量の記憶媒体から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、点群データが記憶部30に予め記憶されており、点群データ取得部15は、記憶部30から点群データを取得する構成であってもよい。 Note that the point cloud data acquisition unit 15 may acquire the point cloud data from a large-capacity storage medium or from an external device via a communication network. Alternatively, point cloud data may be stored in the storage unit 30 in advance, and the point cloud data acquisition unit 15 may acquire the point cloud data from the storage unit 30 .
 なお、点群データは、相対的に情報量の多いデータであり、本実施形態では前述の通り、例えばMMS等によって得られた3次元の点群データである。点群データには、建物だけでなく、前述の地図情報には含まれていない建物以外の物体(例えば、道路標識及び看板等の工作物、街路樹及び庭木等の植物等)を含んだ、遮蔽物となりうる全ての物体の3次元の位置を示す情報が含まれている。したがって、点群データは、上記の地図情報と比べて、はるかに情報量の多いデータである。点群データを用いた通信可否の判定では、判定精度は相対的に高いが、1件当たりの判定処理にかかる計算量は相対的に多い。 Note that the point cloud data is data with a relatively large amount of information, and in the present embodiment, as described above, it is three-dimensional point cloud data obtained, for example, by MMS or the like. The point cloud data includes not only buildings but also objects other than buildings that are not included in the above-mentioned map information (for example, objects such as road signs and billboards, plants such as roadside trees and garden trees). It contains information indicating the 3D positions of all objects that can be occluders. Therefore, the point cloud data is data with a much larger amount of information than the above map information. Determination of whether or not communication is possible using point cloud data has relatively high determination accuracy, but the amount of calculation required for determination processing per case is relatively large.
 データ整合部16は、地図情報取得部13から出力された地図情報を取得する。また、データ整合部16は、点群データ取得部15から出力された点群データを取得する。データ整合部16は、地図情報の座標系と点群データの座標系との間の整合を図り、必要に応じて、点群データに含まれる位置(座標)を、地図情報に含まれる位置(座標)に対して整合させるように補正する。データ整合部16は、地図情報との整合が図られた点群データを、点群データ303として記憶部30に記憶させる。 The data matching unit 16 acquires the map information output from the map information acquisition unit 13. Also, the data matching unit 16 acquires the point cloud data output from the point cloud data acquiring unit 15 . The data matching unit 16 attempts to match the coordinate system of the map information and the coordinate system of the point cloud data, and if necessary, changes the positions (coordinates) included in the point cloud data to the positions (coordinates) included in the map information. coordinates). The data matching unit 16 causes the storage unit 30 to store the point cloud data matched with the map information as the point cloud data 303 .
 なお、データ整合部16は、必要に応じて、記憶部30に記憶された基地局設置候補位置情報301に含まれる基地局設置候補位置、及び、地図・エリア情報302に含まれる地図情報を、点群データの座標系に基づく位置となるように補正するようにしてもよい。なお、一般的には、地図情報の座標系及び点群データの座標系には、例えば世界測地系等の共通の座標系が用いられている場合が多いため、データ整合部16による座標の整合処理を必要としない場合が多いと考えられる。 In addition, the data matching unit 16, if necessary, matches the base station installation candidate positions included in the base station installation candidate position information 301 stored in the storage unit 30 and the map information included in the map/area information 302 to Correction may be made so that the position is based on the coordinate system of the point cloud data. Note that, in general, a common coordinate system such as the world geodetic system is often used for the coordinate system of the map information and the coordinate system of the point cloud data. It is considered that there are many cases in which no treatment is required.
 通信パラメータ情報取得部17は、例えば外部の装置等から通信パラメータを示す情報を取得する。ここでいう通信パラメータを示す情報とは、後に説明する遮蔽率の計算において用いられる情報である。通信パラメータ情報取得部17は、取得された通信パラメータを示す情報を、通信パラメータ情報304として記憶部30に記憶させる。 The communication parameter information acquisition unit 17 acquires information indicating communication parameters, for example, from an external device. The information indicating the communication parameter here is information used in calculation of the shielding rate, which will be described later. The communication parameter information acquisition unit 17 causes the storage unit 30 to store information indicating the acquired communication parameters as communication parameter information 304 .
 操作入力部20は、ユーザによる入力操作を受け付ける。操作入力部20は、例えば、入力ボタン、キーボード、マウス、及びタッチパネル等の入力インターフェースを含んで構成される。図1に示されるように、操作入力部20は、評価対象エリア指定部201と、基地局設置候補位置選択部202と、を含んで構成される。 The operation input unit 20 accepts input operations by the user. The operation input unit 20 includes input interfaces such as input buttons, a keyboard, a mouse, and a touch panel. As shown in FIG. 1, the operation input unit 20 includes an evaluation target area designation unit 201 and a base station installation candidate position selection unit 202 .
 評価対象エリア指定部201は、地図情報に基づく地図の全体範囲のうち、通信エリア設計を行う対象とする評価対象エリアを指定するための、ユーザによる入力操作を受け付ける。評価対象エリア指定部201は、受け付けられた入力操作が示す評価対象エリアを示す情報を、記憶部30に記憶させる。なお、評価対象エリア指定部201は、地図情報取得部13によって取得され、地図・エリア情報302として記憶部30に記憶された地図情報に対して、評価対象エリアを指定する情報を付与するようにしてもよい。 The evaluation target area designation unit 201 accepts an input operation by the user for designating an evaluation target area for which communication area design is to be performed, from among the entire range of the map based on the map information. The evaluation target area specifying unit 201 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation. Note that the evaluation target area designation unit 201 adds information designating the evaluation target area to the map information acquired by the map information acquisition unit 13 and stored in the storage unit 30 as the map/area information 302. may
 なお、ユーザは、評価対象エリアを指定する際に、例えば、液晶ディスプレイ(LCD)又は有機EL(Electroluminescence)ディスプレイ等の表示装置(不図示)に表示された地図を見ながら評価対象エリアを指定する。なお、ここでいう表示装置は、後述される出力部50を構成する部材の1つであってもよい。 When specifying the evaluation target area, the user specifies the evaluation target area while looking at a map displayed on a display device (not shown) such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display. . It should be noted that the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
 基地局設置候補位置選択部202は、評価対象エリアに含まれる、(基地局設置候補位置抽出部12によって抽出された)基地局設置候補位置の中から、評価対象とする少なくとも1つの特定の基地局設置候補位置を選択するための、ユーザによる入力操作を受け付ける。基地局設置候補位置選択部202は、受け付けられた入力操作が示す基地局設置候補位置を示す情報を、記憶部30に記憶させる。 The base station installation candidate position selection unit 202 selects at least one specific base station to be evaluated from the base station installation candidate positions (extracted by the base station installation candidate position extraction unit 12) included in the evaluation target area. An input operation by a user for selecting station installation candidate positions is accepted. Base station installation candidate position selection section 202 causes storage section 30 to store information indicating the base station installation candidate position indicated by the accepted input operation.
 なお、基地局設置候補位置選択部202は、基地局設置候補位置抽出部12によって抽出され、記憶部30に記憶された複数の基地局設置候補位置を示す情報である基地局設置候補位置情報301を更新するようにしてもよい。具体的には、基地局設置候補位置選択部202は、基地局設置候補位置情報301に含まれる複数の基地局設置候補位置を示す情報において、ユーザによって選択された基地局設置候補位置を特定することができるように、フラグを付与するようにしてもよい。 Base station installation candidate position selection section 202 selects base station installation candidate position information 301 which is information indicating a plurality of base station installation candidate positions extracted by base station installation candidate position extraction section 12 and stored in storage section 30 . may be updated. Specifically, base station installation candidate position selection section 202 identifies a base station installation candidate position selected by the user in information indicating a plurality of base station installation candidate positions included in base station installation candidate position information 301. A flag may be added so that the
 なお、ユーザは、基地局設置候補位置を選択する際に、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置(不図示)に表示された、評価対象エリアの地図に含まれる複数の基地局設置候補位置を見ながら、少なくとも1つの特定の基地局設置候補位置を選択する。なお、ここでいう表示装置は、後述される出力部50を構成する部材の1つであってもよい。 When selecting a candidate base station installation position, the user selects a plurality of base station installation candidates included in the map of the evaluation target area displayed on a display device (not shown) such as a liquid crystal display or an organic EL display. While looking at the positions, at least one specific base station installation candidate position is selected. It should be noted that the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
 記憶部30は、基地局設置候補位置情報301と、地図・エリア情報302と、点群データ303と、通信パラメータ情報304と、判定可否リスト305と、通信エリア設計結果情報306とを記憶する。記憶部30は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory;読み書き可能なメモリ)、ROM(Read Only Memory;読み出し専用メモリ)等の記憶媒体、又は、これらの記憶媒体の任意の組み合わせによって構成される。 The storage unit 30 stores base station installation candidate position information 301 , map/area information 302 , point cloud data 303 , communication parameter information 304 , judgment availability list 305 , and communication area design result information 306 . The storage unit 30 includes, for example, a HDD (Hard Disk Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write Memory), ROM (Read Only Memory). memory), or any combination of these storage media.
 基地局設置候補位置情報301は、基地局設置候補位置抽出部12によって抽出されて、記憶部30に格納された少なくとも1つの基地局設置候補位置を示す情報である。基地局設置候補位置情報301に含まれる基地局設置候補位置のうち、基地局設置候補位置選択部202によってユーザにより選択された基地局設置候補位置には、フラグ付けがなされる。または、基地局設置候補位置情報301に含まれる基地局設置候補位置のうち、基地局設置候補位置選択部202によってユーザにより選択されなかった基地局設置候補位置を示す情報は、削除されるようにしてもよい。 The base station installation candidate position information 301 is information indicating at least one base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and stored in the storage unit 30 . Of the base station candidate positions included in the base station candidate position information 301, the base station candidate positions selected by the user by the base station candidate position selector 202 are flagged. Alternatively, among the base station candidate positions included in the base station candidate position information 301, the information indicating the base station candidate positions not selected by the user by the base station candidate position selector 202 is deleted. may
 地図・エリア情報302は、地図情報取得部13によって取得された地図情報と、エリア分割部14によって当該地図情報が升目状に区切られた際の升目の大きさ及び位置(例えば、代表点の位置)を示す情報とが、対応付けられた情報である。 The map/area information 302 includes the map information acquired by the map information acquisition unit 13, and the size and position of each square (for example, the position of the representative point) when the map information is divided into squares by the area division unit 14. ) is the associated information.
 点群データ303は、点群データ取得部15によって取得された3次元の点群データに基づく情報である。点群データ303が示す地図上の範囲は、地図情報取得部13によって取得される地図情報に基づく地図の範囲と重複している。点群データ303は、データ整合部16によって地図情報の座標系と点群データの座標系との間の整合が図られ、必要に応じて地図情報に含まれる位置(座標)と整合するように補正された点群データである。 The point cloud data 303 is information based on the three-dimensional point cloud data acquired by the point cloud data acquiring unit 15. The range on the map indicated by the point cloud data 303 overlaps with the range on the map based on the map information acquired by the map information acquisition unit 13 . The point cloud data 303 is matched between the coordinate system of the map information and the coordinate system of the point cloud data by the data matching unit 16, and is matched with the position (coordinates) included in the map information as necessary. It is corrected point cloud data.
 なお、記憶部30は、評価対象エリア内の、全ての基地局設置候補位置情報301、及び、全ての点群データ303を記憶している必要はなく、評価対象エリア指定部201によって評価対象エリアとして選択されうる地図上の範囲内において、少なくとも通信エリア設計処理に必要となる範囲を含む基地局設置候補位置情報301と点群データ303とを記憶していればよい。 Note that the storage unit 30 does not need to store all the base station installation candidate position information 301 and all the point cloud data 303 in the evaluation target area. It is only necessary to store the base station installation candidate position information 301 and the point cloud data 303 including at least the range required for the communication area design process within the range on the map that can be selected as the .
 通信パラメータ情報304は、通信パラメータ情報取得部17によって取得された、通信パラメータを示す情報である。通信パラメータ情報304は、前述の通り、後に説明する遮蔽率の計算において用いられる情報である。通信パラメータ情報304に含まれる情報の詳細については後に説明する。 The communication parameter information 304 is information indicating communication parameters acquired by the communication parameter information acquisition unit 17 . The communication parameter information 304 is, as described above, information used in calculation of the shielding rate, which will be described later. Details of information included in the communication parameter information 304 will be described later.
 判定可否リスト305は、基地局設置候補位置と端末局の候補位置(すなわち、代表点)との組み合わせがリスト化されたものである。判定可否リスト305に含まれる基地局設置候補位置と端末局の候補位置との組み合わせの各々には、地図情報見通し判定部402によって判定された地図情報に基づく(例えば2次元の)見通し判定の結果を示す情報、及び、点群データ見通し判定部403によって判定された3次元の点群データに基づく、見通し判定の結果又は遮蔽率判定の結果を示す情報等が対応付けられる。 The judgment availability list 305 is a list of combinations of base station installation candidate positions and terminal station candidate positions (that is, representative points). Each of the combinations of base station installation candidate positions and terminal station candidate positions included in the determination availability list 305 contains the results of the (for example, two-dimensional) outlook determination based on the map information determined by the map information outlook determination unit 402. and information indicating the result of view determination or the result of shielding rate determination based on the three-dimensional point cloud data determined by the point cloud data view determination unit 403 are associated.
 通信エリア設計結果情報306は、後述される見通し判定制御部40による見通し判定制御によって生成された、通信エリア設計処理の結果を示す情報である。 The communication area design result information 306 is information indicating the result of communication area design processing generated by the visibility determination control by the visibility determination control unit 40, which will be described later.
 見通し判定制御部40は、基地局の設置候補位置と代表点との組み合わせごとに見通し判定処理を行う。図1に示されるように、見通し判定制御部40は、通信距離見通し判定部401と、地図情報見通し判定部402と、点群データ見通し判定部403と、を含んで構成される。また、図1に示されるように、点群データ見通し判定部403は、遮蔽率見通し判定部404を含んで構成される。 The line-of-sight determination control unit 40 performs line-of-sight determination processing for each combination of the installation candidate position of the base station and the representative point. As shown in FIG. 1 , the outlook determination control unit 40 includes a communication distance outlook determination unit 401 , a map information outlook determination unit 402 , and a point cloud data outlook determination unit 403 . Further, as shown in FIG. 1 , the point cloud data outlook determination unit 403 includes a shielding rate outlook determination unit 404 .
 見通し判定制御部40は、所定の見通し判定ルールに基づいて、通信距離見通し判定部401、地図情報見通し判定部402、点群データ見通し判定部403、及び遮蔽率見通し判定部404による見通し判定処理の実行を制御することにより、見通し判定を行う。上記の所定の見通し判定ルールの詳細については後に説明する。 The visibility determination control unit 40 performs visibility determination processing by the communication distance outlook determination unit 401, the map information outlook determination unit 402, the point cloud data outlook determination unit 403, and the shielding rate outlook determination unit 404 based on predetermined visibility determination rules. Line-of-sight determination is performed by controlling execution. The details of the predetermined line-of-sight determination rule will be described later.
 通信距離見通し判定部401は、記憶部30に記憶された地図・エリア情報302に基づく升目状に区切られた地図の評価対象エリアの範囲について、升目ごとに、通信距離に基づく見通し判定を行う。通信距離見通し判定部401は、基地局設置候補位置抽出部12によって抽出され、基地局設置候補位置選択部202によって選択された基地局設置候補位置に基地局が設置された場合の各々の当該基地局と、各升目の代表となる位置である代表点に端末局が位置している場合の当該端末局との間について、通信距離に基づく見通し判定を行う。通信距離見通し判定部401は、通信距離に基づく見通し判定処理の結果を示す情報を、通信エリア設計結果情報306として記憶部30に記憶させる。 The communication distance outlook determination unit 401 performs outlook determination based on the communication distance for each square in the evaluation target area range of the map divided into squares based on the map/area information 302 stored in the storage unit 30 . The communication distance outlook determination unit 401 extracts by the base station installation candidate position extraction unit 12, and when the base station is installed in the base station installation candidate position selected by the base station installation candidate position selection unit 202, each base station A line-of-sight decision is made based on the communication distance between the station and the terminal station when the terminal station is located at a representative point, which is a representative position of each square. The communication distance and outlook determination unit 401 causes the storage unit 30 to store information indicating the results of the outlook determination processing based on the communication distance as the communication area design result information 306 .
 具体的には、通信距離見通し判定部401は、基地局設置候補位置と代表点との間の距離が所定の距離以内である場合には見通しがあると判定し、所定の距離より長い場合には見通しがないと判定する。ここでいう所定の距離とは、通信可能とされる距離である。当該距離は、例えば予めシミュレーション等によって推定される、両局での受信電力の値等に基づいて設定される。 Specifically, when the distance between the base station installation candidate position and the representative point is within a predetermined distance, the communication distance outlook determining unit 401 determines that there is a line of sight. determines that there is no visibility. The predetermined distance referred to here is the distance at which communication is possible. The distance is set based on, for example, values of received power at both stations, which are estimated by simulation or the like in advance.
 通信距離見通し判定部401は、例えば、記憶部30に記憶された地図・エリア情報302に基づいて、基地局設置候補位置と代表点との間の距離を特定する。但し、この方法に限られるものではなく、通信距離見通し判定部401は、その他の方法によって基地局設置候補位置と代表点との間の距離を特定するようにしてもよい。例えば、基地局設置候補位置と代表点との間の距離を示す情報が予め記憶部30に記憶されており、通信距離見通し判定部401は、記憶部30から当該距離を示す情報を取得するようにしてもよい。 The communication distance outlook determination unit 401 identifies the distance between the base station installation candidate position and the representative point based on the map/area information 302 stored in the storage unit 30, for example. However, the method is not limited to this method, and communication distance outlook determining section 401 may specify the distance between the base station installation candidate position and the representative point by other methods. For example, information indicating the distance between the base station installation candidate position and the representative point is stored in advance in the storage unit 30, and the communication distance outlook determination unit 401 acquires the information indicating the distance from the storage unit 30. can be
 前述の通り、本実施形態において、代表点は、例えば升目の中央にあたる位置である。すなわち、通信距離見通し判定部401は、各升目について見通し判定を行う場合、升目の中央の位置に端末局が存在するものと仮定して見通し判定を行う。言い換えると、通信距離見通し判定部401は、各升目について見通し判定を行う場合、升目の中の任意の位置における見通しの有無は、当該升目の中央の位置における見通しの有無と同様であるものと仮定して見通し判定を行う。 As described above, in this embodiment, the representative point is, for example, the center of the grid. That is, the communication distance outlook determination unit 401 performs the outlook determination on the assumption that the terminal station is located at the center of each square when determining the visibility for each square. In other words, when the communication distance/visibility determination unit 401 performs line-of-sight determination for each square, it is assumed that the presence/absence of visibility at an arbitrary position in the square is the same as the presence/absence of visibility at the center position of the square. and determine the line of sight.
 なお、代表点の位置は、升目の中央の位置に限られるものではなく、例えば升目の角の位置等の他の位置であっても構わない。しかしながら、升目の角の位置が代表点である場合、升目の対角線上にある別の角の位置等、升目内に代表点から遠く離れた位置ができるため、通信可否の判定の誤差が大きくなることが予想される。したがって、代表点は、升目の中央の位置であることが望ましい。 It should be noted that the position of the representative point is not limited to the position in the center of the grid, but may be another position such as the position of the corner of the grid. However, when the position of the corner of the grid is the representative point, there is a position far away from the representative point within the grid, such as another corner position on the diagonal line of the grid, so the error in determining whether or not communication is possible increases. It is expected that. Therefore, it is desirable that the representative point be the central position of the grid.
 地図情報見通し判定部402は、記憶部30に記憶された地図・エリア情報302に基づく升目状に区切られた地図の評価対象エリアの範囲について、升目ごとに、地図情報に基づく見通し判定を行う。地図情報見通し判定部402は、地図情報に基づいて、基地局設置候補位置に設置された場合の基地局と代表点に位置している場合の端末局との間における通信の可否を判定する見通し判定処理を行う。地図情報見通し判定部402は、地図情報に基づく見通し判定処理の結果を示す情報を、通信エリア設計結果情報306として記憶部30に記憶させる。 The map information outlook determination unit 402 performs outlook determination based on the map information for each square with respect to the evaluation target area range of the map divided into squares based on the map/area information 302 stored in the storage unit 30 . A map information outlook determination unit 402 determines whether or not communication is possible between a base station when installed at a base station installation candidate position and a terminal station located at a representative point based on map information. Perform judgment processing. The map information outlook determination unit 402 causes the storage unit 30 to store information indicating the result of the outlook determination process based on the map information as the communication area design result information 306 .
 具体的には、地図情報見通し判定部402は、基地局設置候補位置抽出部12によって抽出され、基地局設置候補位置選択部202によって選択された基地局設置候補位置に基地局が設置された場合の各々の当該基地局と、各升目の代表となる位置である代表点に端末局が位置している場合の当該端末局との間について、地図情報に基づく見通し判定を行う。 Specifically, when a base station is installed at a base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and selected by the base station installation candidate position selection unit 202, the map information outlook determination unit 402 and the terminal station located at the representative point representing the position of each square, the line-of-sight judgment is performed based on the map information.
 具体的には、地図情報見通し判定部402は、地図情報に含まれる建造物等の物体の外郭の位置に基づいて、基地局設置候補位置と代表点との間の見通し判定を行う。例えば、地図情報見通し判定部402は、2次元の地図上において、基地局設置候補位置と代表点とを結ぶ線分が、評価対象エリア内のどの建物の外郭とも交差していない場合には見通しがあると判定し、いずれかの建物の外郭と交差している場合には見通しがないと判定する。 Specifically, the map information outlook determination unit 402 determines the outlook between the base station installation candidate position and the representative point based on the position of the outline of an object such as a building included in the map information. For example, if the line segment connecting the base station installation candidate position and the representative point on the two-dimensional map does not intersect any building outline in the evaluation target area, the map information outlook determining unit 402 If it intersects with the outline of any building, it is determined that there is no line of sight.
 なお、地図情報見通し判定部402による地図情報に基づく見通し判定における見通しの有無とは、基地局設置候補位置と各升目の代表点とにそれぞれ基地局と端末局とが位置していることとした場合に、基地局と端末局との間で送受信される電波の伝搬経路に当該電波の伝搬を遮る遮蔽物が存在するか否かを表すものともいえる。すなわち、基地局と端末局との間で送受信される電波の伝搬経路に、当該電波を遮蔽する遮蔽物が存在しない場合には見通しがある状態であり、当該電波を遮蔽する遮蔽物が存在する場合には見通しがない状態である、と言い換えることもできる。 The presence or absence of visibility in the visibility judgment based on the map information by the map information visibility judging section 402 means that the base station and the terminal station are located at the base station installation candidate position and the representative point of each square, respectively. In this case, it can also be said that it indicates whether or not there is a shield that blocks the propagation of the radio wave on the propagation path of the radio wave transmitted and received between the base station and the terminal station. In other words, if there is no shielding object that shields the radio wave in the propagation path of the radio wave that is transmitted and received between the base station and the terminal station, there is a line of sight, and there is a shielding object that shields the radio wave. It can also be said that there is no prospect in some cases.
 なお前述の通り、ここでは、見通し判定と通信可否の判定とは同義である。すなわち、見通しがあると判定されることとは、通信可能と判定されることを意味し、見通しがないと判定されることとは、通信不可能と判定されることを意味する。 As mentioned above, the determination of line of sight and the determination of whether or not communication is possible are synonymous here. That is, determining that there is line of sight means determining that communication is possible, and determining that there is no line of sight means determining that communication is impossible.
 なお、ここでいう遮蔽物とは、基地局と端末局との間で送受信される電波の伝搬を遮る可能性がある物体である。遮蔽物には、例えば、住戸及びビル等の建物(建築物)、住宅の塀及び高架道路等の構造物、道路標識及び看板等の工作物、街路樹及び庭木等の植物、及び隆起した地面等の、電波の伝搬を遮断しうる全ての物体が含まれる。但し、前述の通り、本実施形態において地図情報には、例えば道路標識及び看板等の工作物、街路樹及び庭木等の、一部の遮蔽物についての情報は含まれない。  The shielding object here is an object that may block the propagation of radio waves transmitted and received between the base station and the terminal station. Examples of shields include buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, structures such as road signs and signboards, plants such as roadside trees and garden trees, and raised ground. All objects that can block the propagation of radio waves are included. However, as described above, in the present embodiment, the map information does not include information about some obstructions, such as road signs and billboards, street trees, garden trees, and the like.
 なお、地図情報見通し判定部402による地図情報に基づく見通し判定処理は、例えば以下のような特許文献1に記載の見通し検出方法が用いられてもよい(なお、当該見通し検出方法の詳細については特許文献1を参照)。図2は、特許文献1に記載の見通し検出装置による処理の流れを示すフローチャートである。 For the outlook determination processing based on the map information by the map information outlook determination unit 402, for example, the outlook detection method described in Patent Document 1 below may be used (details of the outlook detection method are described in Patent Document 1). See reference 1). FIG. 2 is a flow chart showing the flow of processing by the line-of-sight detection device described in Patent Literature 1. As shown in FIG.
 図2に示されるように、見通し検出装置による処理は、4つの処理段階を含んでいる。4つの処理段階は、それぞれ、検出範囲指定と準備段階(ステップS11)、見通し検出線の処理段階(ステップS12)、見通し範囲の検出処理段階(ステップS13)、処理結果の出力段階(ステップS14)である。ステップS11の検出範囲指定と準備段階の処理は、対象範囲選択部と結線付与部によって行われる。ステップS12の見通し検出線の処理段階の処理は、見通し検出線回転部によって行われる。ステップS13の見通し範囲の検出処理段階の処理は、見通し交点検出部と見通し範囲検出部によって行われる。ステップS14の処理結果の出力段階は、結果出力部によって行われる。 As shown in FIG. 2, processing by the line-of-sight detection device includes four processing stages. The four processing stages are respectively a detection range specification and preparation stage (step S11), a line-of-sight detection line processing stage (step S12), a line-of-sight range detection processing stage (step S13), and a processing result output stage (step S14). is. The detection range specification and preparatory stage processing in step S11 are performed by the target range selection unit and the connection provision unit. The line-of-sight detection line processing stage of step S12 is performed by the line-of-sight detection line rotating section. The line-of-sight range detection processing stage of step S13 is performed by the line-of-sight intersection detection unit and the line-of-sight range detection unit. The process result output stage of step S14 is performed by the result output unit.
 対象範囲選択部は、地図情報を取り込む。対象範囲選択部は、見通し検出装置の使用者の操作を受けて、地図情報の領域において、検出対象領域を選択する(ステップS11-1)。結線付与部は、対象範囲選択部が出力する地図情報の検出対象領域において、隣接する建物の間隔が、所定長未満になっている建物間の狭隘領域を検出する。結線付与部は、検出した狭隘領域の開放部分に、例えばマークを付与し、付与したマークの位置に建物間を結合する結線を付与する(ステップS11-2)。当該マークの箇所に結線が付与されることにより、当該箇所を建物の壁とみなして、無線電波がそれ以上伝播しないことが示されることになる。 The target range selection part takes in the map information. The target range selection unit selects a detection target area in the map information area in response to an operation by the user of the outlook detection device (step S11-1). The connection providing unit detects a narrow area between buildings in which the interval between adjacent buildings is less than a predetermined length in the detection target area of the map information output by the target range selection unit. The connection giving unit gives, for example, a mark to the open portion of the detected narrow area, and gives a connection connecting the buildings to the position of the given mark (step S11-2). By attaching a wire connection to the location of the mark, it is indicated that the location is regarded as the wall of the building and that radio waves do not propagate any further.
 見通し検出線回転部は、見通し検出装置の利用者による電柱の指定操作を受けて、見通し検出線の起点となるいずれか1つの電柱を選択する。見通し検出線回転部は、選択した電柱を起点として、検出対象領域において、道路に沿って、例えば道路の車両の進行方向に沿って直線を設定する(ステップS12-1)。見通し交点検出部は、見通し検出線と、建物の輪郭線または結線とが交差する交点が存在するか否かを判定する(ステップS13-1)。 The line-of-sight detection line rotation unit selects one of the utility poles that will be the starting point of the line-of-sight detection line in response to a utility pole designation operation by the user of the line-of-sight detection device. The line-of-sight detection line rotating unit sets a straight line, starting from the selected utility pole, along the road, for example, along the traveling direction of the vehicle on the road in the detection target area (step S12-1). The line-of-sight intersection detection unit determines whether or not there is an intersection point where the line-of-sight detection line intersects with the outline of the building or the connecting line (step S13-1).
 見通し交点検出部が、見通し検出線と、建物の輪郭線または結線とが交差する交点が存在していないと判定した場合(ステップS13-1、NO)、見通し検出線回転部は、電柱を中心に、見通し検出線を予め定められる所定の回転角で反時計回りの方向に回転させる(ステップS12-2)。見通し検出線回転部は、見通し検出線が元の方向に戻っていないかを判定する。(ステップS12-3)。見通し検出線回転部は、見通し検出線の方向が、元の方向に戻っていないと判定した場合(ステップS12-3、YES)、ステップS13-1、ステップS12-2、及びステップS13-2~ステップS13-4が繰り返し行われ、見通し検出線回転部が見通し検出線の位置まで見通し検出線を回転させる。 When the line-of-sight intersection detection unit determines that there is no intersection point where the line-of-sight detection line and the contour line of the building or the connection line intersects (step S13-1, NO), the line-of-sight detection line rotation unit rotates around the utility pole. Then, the line-of-sight detection line is rotated counterclockwise by a predetermined rotation angle (step S12-2). The line-of-sight detection line rotating unit determines whether the line-of-sight detection line has returned to its original direction. (Step S12-3). When the line-of-sight detection line rotation unit determines that the direction of the line-of-sight detection line has not returned to the original direction (step S12-3, YES), steps S13-1, S12-2, and steps S13-2 and after Step S13-4 is repeatedly performed, and the line-of-sight detection line rotating section rotates the line-of-sight detection line to the position of the line-of-sight detection line.
 見通し交点検出部は、見通し検出線と建物の輪郭線とが交差する交点が存在すると判定した場合(ステップS13-1、YES)、見通し検出線が電柱から最短距離で建物の輪郭線または結線と交差する交点を見通し交点として検出する(ステップS13-2)。見通し範囲検出部は、見通し交点検出部が建物における見通し交点を検出すると、見通し交点が属する建物と、直前の見通し検出線によって検出された見通し交点が属する建物とが同じ建物であるか否かを判定する(ステップS13-3)。 If the line-of-sight intersection detection unit determines that there is an intersection point where the line-of-sight detection line and the outline of the building intersect (step S13-1, YES), the line-of-sight detection line is at the shortest distance from the utility pole and the outline or connection line of the building. Intersecting intersections are detected as line-of-sight intersections (step S13-2). When the line-of-sight intersection detection unit detects a line-of-sight intersection on a building, the line-of-sight range detection unit determines whether the building to which the line-of-sight intersection belongs and the building to which the line-of-sight intersection detected by the previous line of sight detection line belongs are the same building. Determine (step S13-3).
 見通し範囲検出部は、見通し交点が属する建物と、直前の見通し検出線によって検出された見通し交点が属する建物とが同じ建物ではないと判定した場合(ステップS13-3、NO)、再び、ステップS12-2、ステップS12-3が行われ、見通し検出線回転部は、見通し検出線の位置まで見通し検出線を回転させる。見通し範囲検出部は、見通し交点が属する建物と、直前の見通し検出線によって検出された見通し交点が属する建物とが同じ建物であると判定した場合(ステップS13-3、YES)、見通し交点と直前の見通し検出線によって得られた見通し交点の間に、建物の輪郭線に沿って見通し範囲線を地図情報に付与する(ステップS13-4)。 If the line-of-sight range detection unit determines that the building to which the line-of-sight intersection belongs and the building to which the line-of-sight intersection detected by the previous line of sight detection line belongs are not the same building (step S13-3, NO), step S12 is performed again. -2, Step S12-3 is performed, and the line-of-sight detection line rotating unit rotates the line-of-sight detection line to the position of the line-of-sight detection line. If the line-of-sight range detection unit determines that the building to which the line-of-sight intersection belongs and the building to which the line-of-sight intersection detected by the previous line-of-sight detection line belongs are the same building (step S13-3, YES), the line-of-sight intersection and the immediately preceding Between the line of sight intersections obtained by the line of sight detection lines, a line of sight range line is given to the map information along the outline of the building (step S13-4).
 その後、ステップS12-2、ステップS12-3、及び上述したステップS13-1~ステップS13-3の処理が繰り返し行われる。見通し検出線回転部は、ステップS12-2の処理により、見通し検出線を、最初の見通し検出線の位置まで回転させた場合、見通し検出線が元の方向に戻っていると判定し(ステップS12-3、NO)、結果出力部に対して終了を示す情報を出力する。結果出力部は、見通し検出線回転部から終了を示す情報を受けると、見通し範囲検出部が付与した全ての見通し範囲線を見通しのある壁を示す線として出力する(ステップS14-1)。以上で、図2のフローチャートが示す見通し検出装置による処理が終了する。 After that, steps S12-2, S12-3, and the above-described steps S13-1 to S13-3 are repeated. When the line-of-sight detection line is rotated to the position of the first line-of-sight detection line by the processing of step S12-2, the line-of-sight detection line rotation unit determines that the line-of-sight detection line has returned to the original direction (step S12 −3, NO), and outputs information indicating the end to the result output unit. When the result output unit receives the information indicating the end from the line-of-sight detection line rotating unit, it outputs all line-of-sight range lines added by the line-of-sight range detection unit as lines indicating walls with line of sight (step S14-1). Thus, the processing by the line-of-sight detection device shown in the flowchart of FIG. 2 ends.
 再び図1に戻って説明する。点群データ見通し判定部403は、記憶部30に記憶された地図・エリア情報302に基づく升目状に区切られた評価対象エリアの範囲について、升目ごとに、点群データ303に基づく見通し判定を行う。 Let's go back to Figure 1 and explain. The point cloud data outlook determination unit 403 performs the outlook determination based on the point cloud data 303 for each grid in the range of the evaluation target area divided into squares based on the map/area information 302 stored in the storage unit 30 . .
 具体的には、点群データ見通し判定部403は、基地局設置候補位置抽出部12によって抽出され、基地局設置候補位置選択部202によって選択された基地局設置候補位置に基地局が設置された場合の各々の当該基地局と、各升目の代表となる位置である代表点に端末局が位置している場合の当該端末局との間について、3次元の点群データに基づく見通し判定を行う。点群データ見通し判定部403は、3次元の点群データに基づく見通し判定処理の結果を示す情報を、通信エリア設計結果情報306として記憶部30に記憶させる。 Specifically, the point cloud data prospect determination unit 403 determines whether the base station is installed at the base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and selected by the base station installation candidate position selection unit 202. The line of sight is determined based on the three-dimensional point cloud data between the base station in each case and the terminal station in the case where the terminal station is located at a representative point that is a representative position of each square. . The point cloud data outlook determination unit 403 causes the storage unit 30 to store information indicating the result of the outlook determination process based on the three-dimensional point cloud data as the communication area design result information 306 .
 なお、点群データ見通し判定部403による点群データに基づく見通し判定において、見通しの有無とは、上記と同様に、基地局設置候補位置と各升目の代表点とにそれぞれ基地局と端末局とが位置している場合に、基地局と端末局との間で送受信される電波の伝搬経路に当該電波の伝搬を遮る遮蔽物が存在するか否かを表すものともいえる。また、遮蔽物とは、基地局と端末局との間に存在し、基地局と端末局との間で送受信される電波の伝搬を遮る可能性がある物体である。 In addition, in the line-of-sight judgment by the point cloud data line-of-sight judging unit 403 based on the point cloud data, the presence or absence of the line-of-sight is determined by the base station installation candidate position and the representative point of each square, respectively. It can also be said that it indicates whether or not there is an obstruction blocking the propagation of the radio waves on the propagation path of the radio waves transmitted and received between the base station and the terminal station when the is located. A shielding object is an object that exists between a base station and a terminal station and may block the propagation of radio waves transmitted and received between the base station and the terminal station.
 例えば、点群データ見通し判定部403は、見通し判定の対象である基地局設置候補位置と代表点との間について、取得されている3次元の点群データとなる個数が所定の閾値より多いか否かを判定する。点群データ見通し判定部403は、取得されている3次元の点群データとなる個数が所定の閾値以下である場合には、見通しがあると判定する。 For example, the point cloud data outlook determination unit 403 determines whether the number of obtained three-dimensional point cloud data between the base station installation candidate position and the representative point, which is the object of the visibility determination, is greater than a predetermined threshold. determine whether or not The point cloud data visibility determination unit 403 determines that there is visibility when the number of acquired three-dimensional point cloud data is equal to or less than a predetermined threshold.
 例えば、点群データ見通し判定部403は、基地局設置候補位置に置局された場合の基地局と代表点に位置している場合の端末局とが通信を行う場合に形成されるフレネルゾーンを想定する。そして、点群データ見通し判定部403は、当該フレネルゾーンの範囲内に含まれる点群データの量に応じて見通し判定を行うようにしてもよい。 For example, the point cloud data prospect determination unit 403 determines a Fresnel zone formed when a base station located at a base station installation candidate position and a terminal station located at a representative point communicate with each other. Suppose. Then, the point cloud data outlook determining unit 403 may determine the outlook according to the amount of point cloud data included in the range of the Fresnel zone.
 以下、フレネルゾーンを想定した見通し判定方法の一例について説明する。点群データ見通し判定部403は、点群データ303に基づいて、基地局と端末局との間で形成されるフレネルゾーンの(すなわち、基地局設置候補位置と各升目の代表点との間にフレネルゾーンが形成された場合における)見通し判定を行う。点群データ見通し判定部403は、例えば、フレネルゾーンの範囲内に含まれる点群データの個数が、所定の閾値以下であるならば見通しがある(通信が可能である)と判定し、所定の閾値より多いならば見通しがない(通信が不可能である)と判定する。 An example of the line-of-sight determination method assuming the Fresnel zone will be described below. Based on the point cloud data 303, the point cloud data outlook determination unit 403 determines the Fresnel zone formed between the base station and the terminal station (that is, between the base station installation candidate position and the representative point of each square). Make a line-of-sight judgment (if a Fresnel zone is formed). For example, if the number of point cloud data included in the range of the Fresnel zone is equal to or less than a predetermined threshold value, the point cloud data visibility determination unit 403 determines that there is visibility (communication is possible), and determines that there is visibility (communication is possible). If the number is greater than the threshold, it is determined that there is no line of sight (communication is impossible).
 なお、実際の電磁波は、対向する2つの無線局間を結ぶ直線的な経路のみを伝搬していくのではなく、フレネルゾーンと呼ばれる楕円形の経路領域内を伝搬していく。そのため、対向する2つの無線局間の見通し判定をより精度高く行うためには、フレネルゾーン内に存在する遮蔽物による影響を考慮した上で、見通しの判定を行う必要がある。ミリ波帯でのフレネルゾーンの半径は、例えば、60[GHz]帯の電磁波を用いて50[m]の距離を伝送する場合において、最大で25[cm]程度である。 It should be noted that actual electromagnetic waves do not propagate only along a straight path connecting two opposing radio stations, but propagate within an elliptical path area called the Fresnel zone. Therefore, in order to more accurately determine the line-of-sight between two radio stations facing each other, it is necessary to determine the line-of-sight after taking into consideration the influence of obstacles existing in the Fresnel zone. The radius of the Fresnel zone in the millimeter wave band is, for example, about 25 [cm] at maximum when transmitting a distance of 50 [m] using electromagnetic waves in the 60 [GHz] band.
 基地局設置候補位置と代表点とを結ぶ一直線上の見通しがない場合であっても、さらにフレネルゾーン内の遮蔽率を考慮して見通しの有無を判定することによって、より正確に見通し判定を行うことができる。これにより、通信エリア設計支援システム1は、より広い通信可能エリアを提示することができる。 Even if there is no direct line of sight connecting the base station installation candidate position and the representative point, the line of sight is judged more accurately by further considering the shielding rate in the Fresnel zone. be able to. Thereby, the communication area design support system 1 can present a wider communicable area.
 図3は、フレネルゾーンfzを考慮した通信可否の判定の様子を示す図である。図3には、電柱pに設置された基地局bsと、端末局tsとが示されている。また、図3には、基地局bsと端末局tsとの間で形成されるフレネルゾーンfzが示されている。また、図3には、フレネルゾーンfzの3つの断面(断面cs1、断面cs2、及び断面cs3)が示されている。断面cs1、断面cs2、及び断面cs3は、基地局bsと端末局tsとを結ぶ直線に対して直交する面である。この場合、図3に示されるように、断面cs1、断面cs2、及び断面cs3の形状は、円形となる。断面cs1、断面cs2、及び断面cs3の半径は、それぞれr、r、及びrである。 FIG. 3 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz. FIG. 3 shows a base station bs installed on a utility pole p and a terminal station ts. FIG. 3 also shows a Fresnel zone fz formed between the base station bs and the terminal station ts. FIG. 3 also shows three cross-sections (cross-section cs1, cross-section cs2, and cross-section cs3) of the Fresnel zone fz. The cross section cs1, the cross section cs2, and the cross section cs3 are planes orthogonal to the straight line connecting the base station bs and the terminal station ts. In this case, as shown in FIG. 3, the cross section cs1, the cross section cs2, and the cross section cs3 are circular. The radii of cross-section cs1, cs2 and cs3 are r 1 , r 2 and r 3 respectively.
 フレネルゾーンfzの範囲内に遮蔽物が存在する場合、フレネルゾーンfzの断面には点群データが存在する。例えば、図3に示されるように、断面cs1には、点群データが存在する領域である領域sh1-1が存在する。また、断面cs2には、前述した領域sh1-1が投影された領域sh1-2、及び点群データが存在する領域である領域sh2-2が存在する。また、断面cs3には、前述した領域sh1-2が更に投影された領域sh1-3、同様に前述した領域sh2-2が更に投影された領域sh2-3、及び点群データが存在する領域である領域sh3-3が存在する。 When a shield exists within the Fresnel zone fz, point cloud data exists in the cross section of the Fresnel zone fz. For example, as shown in FIG. 3, the cross section cs1 has an area sh1-1, which is an area where point cloud data exists. Also, in the cross section cs2, there are an area sh1-2 where the above-mentioned area sh1-1 is projected and an area sh2-2 where point cloud data exists. In addition, on the cross section cs3, an area sh1-3 in which the above-described area sh1-2 is further projected, an area sh2-3 in which the above-described area sh2-2 is further projected, and an area where point cloud data exists There is a region sh3-3.
 このようにして、図3に示されるフレネルゾーンfzの範囲内に存在する、例えば、住戸及びビル等の建物(建築物)、住宅の塀及び高架道路等の構造物、道路標識及び看板等の工作物、街路樹及び庭木等の植物、及び隆起した地面等の、電波の伝搬を遮断しうる遮蔽物の認識が可能になり、フレネルゾーンfzの範囲内全体での遮蔽率が算出される。なお、端末局tsは、図3においては建物に設置されているが、本実施形態のように端末局が移動端末であっても同様である。 In this way, for example, buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, road signs and signboards, etc., existing within the range of the Fresnel zone fz shown in FIG. It becomes possible to recognize obstacles that can block the propagation of radio waves, such as objects, plants such as roadside trees and garden trees, and raised ground, and the shielding rate in the entire range of the Fresnel zone fz is calculated. In addition, although the terminal station ts is installed in a building in FIG. 3, the same applies even if the terminal station is a mobile terminal as in the present embodiment.
 点群データ見通し判定部403は、例えば、フレネルゾーンfzの複数の断面に含まれる点群データの総数をカウントする。すなわち、点群データ見通し判定部403は、例えば、上記の投影がなされた、最も端末局ts側の断面(図における断面cs3)の点群データの総数をカウントする。そして、点群データ見通し判定部403は、算出された点群データの個数を所定の閾値と比較することにより、基地局bsと端末局tsとの間の通信可否を判定する。 The point cloud data outlook determining unit 403 counts, for example, the total number of point cloud data included in a plurality of cross sections of the Fresnel zone fz. That is, the point cloud data outlook determining unit 403 counts, for example, the total number of point cloud data of the cross section closest to the terminal station ts (cross section cs3 in the figure) projected as described above. Then, the point cloud data prospect determination unit 403 determines whether communication between the base station bs and the terminal station ts is possible by comparing the calculated number of pieces of point cloud data with a predetermined threshold value.
 なお図3には、3つの断面のみを例示しているが、点群データの個数をカウントするために用いられる断面の数は任意の数で構わない。なお、これらの遮蔽率の計算に用いられる断面の数が多いほど、より正確な見通し判定が可能になるが、計算負荷はより高くなる。 Although only three cross sections are illustrated in FIG. 3, any number of cross sections may be used to count the number of point cloud data. As the number of cross-sections used to calculate these shielding rates increases, more accurate visibility determination becomes possible, but the calculation load increases.
 なお、点群データ見通し判定部403は、点群データの個数の代わりに、フレネルゾーンの断面における点群データが存在する領域の占有率に基づいて、基地局bsと端末局tsとの間の通信可否を判定するようにしてもよい。点群データ見通し判定部403は、例えば、占有率が所定の閾値以下であるならば見通しがある(通信が可能である)と判定し、占有率が所定の閾値より高ければ見通しがない(通信が不可能である)と判定するようにしてもよい。 Note that the point cloud data outlook determining unit 403 determines the distance between the base station bs and the terminal station ts based on the occupancy rate of the area where the point cloud data exists in the cross section of the Fresnel zone instead of the number of the point cloud data. You may make it determine whether communication is possible. For example, the point cloud data visibility determining unit 403 determines that there is visibility (communication is possible) if the occupancy rate is equal to or less than a predetermined threshold, and that there is no visibility (communication is possible) if the occupancy rate is higher than the predetermined threshold value. is impossible).
 具体的には、点群データ見通し判定部403は、例えば、フレネルゾーンfzの複数の断面を重ね合わせる。そして、点群データ見通し判定部403は、重ね合わされた断面の面積のうち、点群データの領域が示す割合を占有率として算出する。点群データ見通し判定部403は、算出された占有率を所定の閾値と比較することにより、基地局bsと端末局tsとの間の通信可否を判定するようにしてもよい。 Specifically, the point cloud data outlook determination unit 403, for example, superimposes a plurality of cross sections of the Fresnel zone fz. Then, the point cloud data outlook determination unit 403 calculates the ratio of the area of the point cloud data to the area of the superimposed cross sections as the occupancy rate. The point cloud data prospect determination unit 403 may determine whether communication between the base station bs and the terminal station ts is possible by comparing the calculated occupancy rate with a predetermined threshold.
 再び図1に戻って説明する。図1に示されるように、点群データ見通し判定部403は、遮蔽率見通し判定部404を含んで構成される。遮蔽率見通し判定部404は、点群データ見通し判定部403によってカウントされた点群データの個数が所定の閾値より多い場合には、遮蔽率を考慮して3次元の点群データによる見通し判定を行う。 Let's go back to Figure 1 and explain. As shown in FIG. 1 , the point cloud data outlook determination unit 403 includes a shielding rate outlook determination unit 404 . If the number of pieces of point cloud data counted by the point cloud data outlook determination unit 403 is greater than a predetermined threshold, the shielding rate outlook determination unit 404 determines the outlook based on the three-dimensional point cloud data in consideration of the shielding rate. conduct.
 言い換えると、遮蔽率見通し判定部404は、基地局設置候補位置と代表点との間に閾値を超える個数の点群データが存在していたとしても(すなわち、遮蔽物が多数存在する場合又は遮蔽物が大きい場合であっても)、単に見通しがないとの判定を下すのではなく、さらに遮蔽率を考慮して見通し判定を行う。これにより、遮蔽率見通し判定部404は、より精度の高い見通し判定の結果を得ることができる。なぜならば、遮蔽物には、例えば建物等のように、無線通信に対して強く影響を及ぼす物体だけでなく、例えば葉がまばらに茂っているような樹木等のように、無線通信に対して比較的弱く影響を及ぼす物体もあるからである。 In other words, the shielding rate outlook determination unit 404 determines that even if the number of pieces of point cloud data exceeding the threshold exists between the base station installation candidate position and the representative point (that is, when there are a large number of shielding Even if the object is large), instead of simply determining that there is no line of sight, the line of sight is determined by further considering the shielding rate. As a result, the shielding rate outlook determination unit 404 can obtain a more accurate result of the visibility determination. This is because shields include not only objects that strongly affect wireless communication, such as buildings, but also trees with sparsely grown leaves, which interfere with wireless communication. This is because some objects have a relatively weak effect.
 具体的には、遮蔽率見通し判定部404は、例えば、遮蔽率に基づいて電波の伝搬損失の損失量を算出し、算出された損失量に基づいて基地局と端末局との間の無線通信の回線設計を行うことで、見通しの有無を判定する。遮蔽率見通し判定部404による見通し判定において用いられる計算式として、例えば、以下の(1)式を用いることができる。 Specifically, the shielding rate outlook determining unit 404 calculates, for example, the amount of propagation loss of radio waves based on the shielding rate, and based on the calculated loss amount, wireless communication between the base station and the terminal station is performed. The presence or absence of the line of sight is determined by designing the line. As a calculation formula used in the visibility determination by the shielding rate outlook determination unit 404, for example, the following formula (1) can be used.
 P=P+G-L-S+G≧PRS ・・・(1) P R =P r +G T −L−S+G R ≧P RS (1)
 上記(1)式における各パラメータの意味は以下の通りである。
 P:端末局における受信電力(単位[dBm])
 P:基地局における送信電力(単位[dBm])
 G:基地局における最大送信アンテナ利得(単位[dBi])
 L:伝搬損失量(単位[dB])
 S:遮蔽率による損失量(単位[dB])
 G:端末局における受信アンテナ利得(単位[dBi])
 PRS:端末局における所要受信感度(単位[dBm])
The meaning of each parameter in the above equation (1) is as follows.
P R : received power at the terminal station (unit [dBm])
P r : Transmission power at the base station (unit [dBm])
G T : Maximum transmit antenna gain at the base station (unit [dBi])
L: Propagation loss amount (unit [dB])
S: Amount of loss due to shielding rate (unit [dB])
G R : Receiving antenna gain at the terminal station (unit [dBi])
P RS : Required reception sensitivity at the terminal station (unit [dBm])
 遮蔽率見通し判定部404は、上記の(1)式が満たされる場合、すなわち、端末局における受信電力Pが所要受信感度PRS以上である場合に、基地局設置候補位置と代表点との間に見通しがあると判定する。一方、遮蔽率見通し判定部404は、上記の(1)式が満たされない場合、すなわち、端末局における受信電力Pが所要受信感度PRSより低い場合に、基地局設置候補位置と代表点との間に見通しがないと判定する。 When the above formula (1) is satisfied, that is, when the received power P R at the terminal station is equal to or greater than the required reception sensitivity P RS , the shielding rate outlook determination unit 404 determines whether the base station installation candidate position and the representative point Determine that there is a line of sight between them. On the other hand, when the above formula (1) is not satisfied, that is, when the received power P R at the terminal station is lower than the required reception sensitivity P RS , the shielding rate outlook determination unit 404 determines the base station installation candidate position and the representative point. Determine that there is no line of sight between
 上記の伝搬損失量Lの値は、以下の(2)式によって得ることができる。 The value of the above propagation loss amount L can be obtained by the following formula (2).
 L=20log10(4πd/λ) ・・・(2) L=20log 10 (4πd/λ) (2)
 上記(2)式における各パラメータの意味は以下の通りである。
 d:送受信間の距離(単位[m])
 λ:無線通信に用いられる電波の波長(単位[m])
The meaning of each parameter in the above equation (2) is as follows.
d: distance between transmission and reception (unit [m])
λ: Wavelength of radio wave used for wireless communication (unit [m])
 上記の波長λの値は、以下の(3)式によって得ることができる。 The value of the wavelength λ above can be obtained by the following formula (3).
 λ=c/(f×10) ・・・(3) λ=c/(f×10 9 ) (3)
 上記(3)式における各パラメータの意味は以下の通りである。
 c:光速(すなわち、c≒299,792,458[m/s])
 f:無線通信に用いられる電波の周波数(単位[GHz]
The meaning of each parameter in the above equation (3) is as follows.
c: speed of light (that is, c≈299,792,458 [m/s])
f: Frequency of radio wave used for wireless communication (unit [GHz]
 上記の遮蔽率による損失量Sの値は、以下の(4)式によって得ることができる。 The value of the amount of loss S due to the above shielding rate can be obtained by the following formula (4).
 S=α×Sh ・・・(4)  S=α×Sh・・・(4)
 上記(4)式における各パラメータの意味は以下の通りである。
 Sh:遮蔽率(値の範囲:0.0000~1.0000)
 α:係数(周波数fと遮蔽率Shにより、任意の値に設定することができる。)
The meaning of each parameter in the above equation (4) is as follows.
Sh: Shielding rate (value range: 0.0000 to 1.0000)
α: Coefficient (can be set to any value depending on frequency f and shielding rate Sh)
 このように、遮蔽率見通し判定部404は、上記の複数のパラメータと、(2)~(4)式で与えられる数値によって(1)式が満たされるか否かに基づいて、見通し判定を行うことができる。点群データ見通し判定部403は、遮蔽率に基づく見通し判定処理の結果を示す情報を、通信エリア設計結果情報306として記憶部30に記憶させる。 In this way, the shielding rate outlook determination unit 404 performs the visibility determination based on whether or not formula (1) is satisfied by the above parameters and the numerical values given by formulas (2) to (4). be able to. The point cloud data outlook determination unit 403 causes the storage unit 30 to store information indicating the result of the visibility determination process based on the shielding rate as the communication area design result information 306 .
 なお、見通し判定処理に係る計算量を削減するため、回転楕円体であるフレネルゾーンをより単純な形状である円筒形と見なすことによって、より簡単に見通し判定を行うようにしてもよい。図4は、フレネルゾーンを円筒形と見なして見通し判定を行う様子を示す模式図である。図4には、基地局bsと、端末局ts(代表点に相当)と、円筒形と見なしたフレネルゾーン(以下、「円筒形フレネルゾーンCz」という。)と、が記載されている。 In addition, in order to reduce the amount of calculation related to the visibility determination process, the visibility determination may be performed more easily by regarding the Fresnel zone, which is a spheroid, as a simpler cylindrical shape. FIG. 4 is a schematic diagram showing how the visibility determination is performed by regarding the Fresnel zone as a cylinder. FIG. 4 shows a base station bs, a terminal station ts (corresponding to a representative point), and a cylindrical Fresnel zone (hereinafter referred to as “cylindrical Fresnel zone Cz”).
 図4に示されるように、円筒形フレネルゾーンCzの長さ(すなわち、基地局bsと端末局tsとの間の距離)はdであり、円筒形フレネルゾーンCzの垂直断面である円形状断面の半径はrである。なお、半径rは、予め定められた値であってもよいし、基地局bsと端末局tsとの間で本来形成される回転楕円体のフレネルゾーンの円形状断面の最大半径の値等であってもよい。 As shown in FIG. 4, the length of the cylindrical Fresnel zone Cz (i.e. the distance between the base station bs and the terminal station ts) is d and the circular cross section which is the vertical cross section of the cylindrical Fresnel zone Cz is r. The radius r may be a predetermined value, or may be the maximum radius of the circular cross section of the Fresnel zone of the spheroid originally formed between the base station bs and the terminal station ts. There may be.
 図5は、フレネルゾーンfzに対し円筒形フレネルゾーンCzを重ね合わせた図である。フレネルゾーンfzのある円形状断面までの、基地局bsからの距離及び端末局tsからの距離をそれぞれd及びdとすると、d=d+dと表すことができる。また、第nフレネルゾーン半径r(n)は、無線通信に用いられる電波の波長λの関数であり、以下の(5)式によって表される。 FIG. 5 is a diagram in which the cylindrical Fresnel zone Cz is superimposed on the Fresnel zone fz. Assuming that the distance from the base station bs and the distance from the terminal station ts to the circular cross section with the Fresnel zone fz are d1 and d2 , respectively, d= d1 + d2 can be expressed. Also, the n-th Fresnel zone radius r(n) is a function of the wavelength λ of radio waves used for wireless communication, and is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、第1フレネルゾーンでの中央(d=d)に当たる断面、すなわち最も大きい円形状断面の半径rは、以下の(6)式のように、より簡単な数式によって表すことができる。 Here, the cross section corresponding to the center (d 1 =d 2 ) in the first Fresnel zone, that is, the radius r of the largest circular cross section can be expressed by a simpler formula, such as the following formula (6). .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、波長λは、以下の(7)式のように、光速cと、無線通信に用いられる電波の周波数fに関わる関数として表される。そのため、ミリ波帯等、周波数fに応じて円筒形フレネルゾーンCzの半径を変えることは理にかなっていると言える。 Then, the wavelength λ is expressed as a function related to the speed of light c and the frequency f of radio waves used for wireless communication, as in the following equation (7). Therefore, it can be said that it makes sense to change the radius of the cylindrical Fresnel zone Cz according to the frequency f, such as in the millimeter wave band.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、本実施形態における通信エリア設計支援システム1を使用するユーザが、円筒形フレネルゾーンCzでの円形状断面の半径rを、波長λに応じて設定するようにしてもよい。 It should be noted that the user using the communication area design support system 1 in this embodiment may set the radius r of the circular cross section in the cylindrical Fresnel zone Cz according to the wavelength λ.
 このように、回転楕円体であるフレネルゾーンfzを、図4に示されるような円筒形の円筒形フレネルゾーンCzと見なすことで、評価対象エリア内に存在する全ての点群データから、フレネルゾーン内に存在する(すなわち、見通しを遮蔽する要因となる)点群データを切り出す処理が大幅に簡易化される。 In this way, by regarding the Fresnel zone fz, which is a spheroid, as a cylindrical Fresnel zone Cz as shown in FIG. 4, the Fresnel zone This greatly simplifies the process of extracting point cloud data that exists inside (that is, becomes a factor that blocks the line of sight).
 また、図5に示されるように、回転楕円体であるフレネルゾーンfzでは場所によって円形状断面のサイズがそれぞれ異なるため、これらサイズの異なる円形状断面の遮蔽部分を(上記のように順に投影して)重ねる処理は複雑である。一方、フレネルゾーンfzを円筒形フレネルゾーンCzと見なすことによって、上記の複雑な処理を、円筒形内に存在する点群データの数を単にカウントするだけの簡単な処理に置き換えることができる。すなわち、重ね合わされた円形状断面の遮蔽部分の面積が予め定められた閾値を超えているか否かを判定する手法が用いられるよりも、円筒形内にある点群データの数が閾値を超えているか否かを判定する手法が用いられるほうが、はるかに簡単な見通し判定処理となる。 In addition, as shown in FIG. 5, in the Fresnel zone fz, which is a spheroid, the size of the circular cross section differs depending on the location. ) The overlapping process is complicated. On the other hand, by regarding the Fresnel zone fz as a cylindrical Fresnel zone Cz, the above complicated processing can be replaced with a simple processing of simply counting the number of point cloud data existing within the cylinder. That is, rather than using a method of determining whether the area of the shielded portion of the superimposed circular cross section exceeds a predetermined threshold, the number of point cloud data in the cylinder exceeds the threshold. The use of the method of determining whether or not there is a line of sight determination process is far simpler.
 なお、上記説明した、通信距離見通し判定部401による通信距離に基づく見通し判定処理、地図情報見通し判定部402による地図情報に基づく見通し判定処理、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理、及び遮蔽率見通し判定部による遮蔽率に基づく見通し判定処理の4種類の見通し判定処理の各々を実行する際のメリット及びデメリットをまとめると、以下の通りとなる。 Note that the above-described outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, the outlook determination processing based on map information by the map information outlook determination unit 402, and the presence or absence of point cloud data by the point cloud data outlook determination unit 403 Advantages and disadvantages in executing each of the four types of outlook determination processing, that is, the outlook determination processing based on the shading rate and the visibility determination processing based on the shielding rate by the shielding rate outlook determination unit, are summarized as follows.
・通信距離に基づく見通し判定処理
 メリット:上記4つの見通し判定処理の中で、最も処理が簡単である。そのため、処理に係るシステム負荷が低く、高速に処理を実行することができる。例えば、広範な評価対象エリアにおける通信エリア設計、及び基地局設置候補位置が多数である場合の通信エリア設計等において、前処理として、より詳細な見通し判定処理を行う対象とする代表点を絞り込む場合等に活用することができる。
 デメリット:基地局設置候補位置と代表点との間における遮蔽物の存在にかかわらず通信距離のみに基づいて見通し判定処理を行うため、上記4つの見通し判定処理の中で、最も判定精度が低い。
- Line-of-sight determination processing based on communication distance Merit: Among the four line-of-sight determination processing described above, the processing is the simplest. Therefore, the system load related to processing is low, and processing can be executed at high speed. For example, when designing a communication area in a wide evaluation target area or designing a communication area when there are many base station installation candidate positions, narrowing down the representative points to be subjected to more detailed visibility determination processing as preprocessing. etc. can be utilized.
Disadvantages: Since the visibility determination process is performed based only on the communication distance regardless of the presence of obstructions between the base station installation candidate position and the representative point, the determination accuracy is the lowest among the above four visibility determination processes.
・地図情報に基づく見通し判定処理
 メリット:上記4つの見通し判定処理の中で、通信距離に基づく見通し判定処理に次いで、処理が簡単である。
 デメリット:一般的に、地図情報には樹木や道路標識等の位置に関する情報は含まれていないことから、実際にはこのような建物以外の遮蔽物が存在していても、見通しがあるものとして誤判定されてしまうことがある。
- Outlook judgment processing based on map information Merit: Among the above-mentioned four kinds of outlook judgment processing, the processing is simple next to the outlook judgment processing based on the communication distance.
Disadvantages: In general, map information does not include information on the location of trees, road signs, etc., so even if there are obstructions other than buildings such as this, it is assumed that there is a line of sight. It may be misjudged.
・点群データの有無に基づく見通し判定処理
 メリット:通信距離に基づく見通し判定処理及び地図情報に基づく見通し判定処理と比べて判定精度がより高い点群データに基づく見通し判定処理の中では、処理が比較的簡単である。
 デメリット:評価対象となる範囲内(例えば、上記のような円筒形の疑似的なフレネルゾーンの範囲内)でカウントされた点群データの個数によって見通し判定が行われる。そのため、例えば、基地局設置候補位置と代表点との間に、電波が透過するため遮蔽物とはならない物体が存在する場合であっても、見通しがないと誤判定されることがある。電波が透過する物体とは、例えば、葉がまばらに茂っている樹木等である。
・Prospect judgment processing based on the presence or absence of point cloud data Advantage: In the prospect judgment processing based on point cloud data, which has higher judgment accuracy than the prospect judgment processing based on communication distance and the prospect judgment processing based on map information, the processing is Relatively easy.
Disadvantages: The visibility is determined based on the number of point cloud data counted within the range to be evaluated (for example, within the range of the cylindrical pseudo-Fresnel zone as described above). Therefore, for example, even if there is an object that does not serve as a shield because radio waves pass between the base station installation candidate position and the representative point, it may be erroneously determined that there is no line of sight. An object through which radio waves pass is, for example, a tree with sparse leaves.
・遮蔽率に基づく見通し判定処理
 メリット:上記4つの見通し判定処理の中で、最も判定精度が高く、実際の通信可否により近い見通し判定がなされる。
 デメリット:上記4つの見通し判定処理の中で、最も処理が複雑である。そのため、処理にかかるシステム負荷が高く、高速に処理を実行することが困難である。
・Prospect judgment processing based on shielding rate Merit: Among the above four prospect judgment processes, the judgment accuracy is the highest, and the prospect judgment is closer to the actual communication availability.
Disadvantage: This is the most complicated processing among the above four visibility determination processing. Therefore, the system load on the processing is high, and it is difficult to execute the processing at high speed.
 このように,上記4つの見通し判定処理には,それぞれメリットとデメリットがある。また、見通し判定の制度と、処理にかかるシステム負荷とは、トレードオフの関係にある。そのため、これら複数種類の見通し判定処理を必要に応じて使い分けられ、組み合わせて用いられることが望ましい。本実施形態における見通し判定制御部40は、所定の見通し判定ルールに従って、これら複数の見通し判定処理を組み合わせて用いる見通し判定を行う。 In this way, each of the above four line-of-sight determination processes has advantages and disadvantages. In addition, there is a trade-off relationship between the visibility determination system and the system load for processing. Therefore, it is desirable to selectively use these multiple types of outlook determination processing as needed, and to use them in combination. The visibility determination control unit 40 in the present embodiment performs visibility determination using a combination of these plurality of visibility determination processes according to a predetermined visibility determination rule.
 再び図1に戻って説明する。出力部50は、通信エリア設計結果情報306を記憶部30から取得する。出力部50は、通信エリア設計結果情報306を、後段の処理を行う外部の装置(例えば、不図示の通信エリア設計装置あるいは表示装置等)へ出力する。 Let's go back to Figure 1 and explain. The output unit 50 acquires the communication area design result information 306 from the storage unit 30 . The output unit 50 outputs the communication area design result information 306 to an external device (for example, a communication area design device or a display device (not shown)) that performs subsequent processing.
 出力部50は、例えば、通信エリア設計結果情報306を外部の装置へ出力するための通信インターフェースを含んで構成される。なお、出力部50は、通信エリア設計結果情報306を表示させる表示部として機能する機能部であってもよい。この場合、出力部50は、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置を含んで構成される。なお、出力部50は、ユーザに対して提示する各種の情報を表示するようにしてもよい。 The output unit 50 includes, for example, a communication interface for outputting the communication area design result information 306 to an external device. Note that the output unit 50 may be a functional unit that functions as a display unit that displays the communication area design result information 306 . In this case, the output unit 50 includes a display device such as a liquid crystal display or an organic EL display. Note that the output unit 50 may display various types of information to be presented to the user.
 なお、例えば、基地局設置候補位置抽出部12、エリア分割部14、データ整合部16、及び見通し判定制御部40は、1つの制御部(不図示)の構成要素として構成されてもよい。この場合、制御部は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。あるいは、制御部は、ソフトウェアとハードウェアの協働によって実現される構成であってもよい。CPUによって読み出されるプログラムは、例えば通信エリア設計支援システム1が備える記憶部30等の記憶媒体に、予め格納されていてもよい。 Note that, for example, the base station installation candidate position extraction unit 12, the area division unit 14, the data matching unit 16, and the line-of-sight determination control unit 40 may be configured as components of one control unit (not shown). In this case, the controller is implemented by a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Alternatively, the control unit may have a configuration realized by cooperation of software and hardware. The program read by the CPU may be stored in advance in a storage medium such as the storage unit 30 provided in the communication area design support system 1, for example.
[見通し判定処理]
 以下、本実施形態における見通し判定処理の詳細について説明する。図6は、本発明の第1の実施形態における通信エリア設計支援システム1による見通し判定処理を説明するための図である。前述のとおり、本実施形態における見通し判定制御部40は、所定の見通し判定ルールに従って、複数の見通し判定処理を使い分ける見通し判定制御を行う。
[Line-of-sight judgment processing]
The details of the outlook determination process in this embodiment will be described below. FIG. 6 is a diagram for explaining the line-of-sight determination processing by the communication area design support system 1 according to the first embodiment of the present invention. As described above, the visibility determination control unit 40 in this embodiment performs visibility determination control by selectively using a plurality of visibility determination processes according to a predetermined visibility determination rule.
 図6には、見通し判定制御部40が見通し判定処理の制御の際に用いる所定の見通し判定ルールが示されている。図6に示されるように、見通し判定制御部40は、所定の見通し判定ルールに基づいて、適宜、通信距離見通し判定部401による通信距離に基づく見通し判定処理、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理、及び遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を実行させる。 FIG. 6 shows predetermined visibility determination rules that the visibility determination control unit 40 uses when controlling visibility determination processing. As shown in FIG. 6 , the outlook determination control unit 40 appropriately performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401 and point cloud data forecast determination by the point cloud data outlook determination unit 403 based on predetermined visibility determination rules. The visibility determination processing based on the presence or absence of the group data and the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 are executed.
 図6に示されるように、本実施形態では、見通し判定制御部40は上記3つの見通し判定処理の実行を制御することから、地図情報見通し判定部402による地図情報に基づく見通し判定処理は行われない。なお、地図情報見通し判定部402による地図情報に基づく見通し判定処理は、後に説明する第2の実施形態において用いられる。 As shown in FIG. 6, in the present embodiment, since the outlook determination control unit 40 controls execution of the above three outlook determination processes, the map information outlook determination process based on the map information by the map information outlook determination unit 402 is not performed. do not have. Note that the outlook determination processing based on the map information by the map information outlook determination unit 402 is used in a second embodiment described later.
 図6に示されるように、本実施形態における見通し判定制御部40は、基地局設置候補位置と代表点との組み合わせを示す情報が与えられた場合、まず始めに、通信距離見通し判定部401による通信距離に基づく見通し判定処理を実行させる。 As shown in FIG. 6, the visibility determination control unit 40 in the present embodiment first performs A line-of-sight determination process based on the communication distance is executed.
 通信距離に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する。なぜならば、基地局設置候補位置と代表点との間の距離が通信可能な距離より長い場合には、遮蔽物の有無に関わらず基地局と端末局との間の通信がほぼ不可能であるからである。 When it is determined that there is no line of sight by the line of sight determination processing based on the communication distance, the line of sight determination control unit 40 outputs a determination result indicating that there is no line of sight as the final determination result. This is because if the distance between the base station installation candidate position and the representative point is longer than the communicable distance, communication between the base station and the terminal station is almost impossible regardless of the presence or absence of obstructions. It is from.
 一方、通信距離に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあるとの判定結果を暫定の判定結果とする。なぜならば、基地局設置候補位置と代表点との間の距離が通信可能な距離以内であったとしても、これらの間に遮蔽物が存在していることによって基地局と端末局との間の通信が不可能である可能性があるからである。見通し判定制御部40は、通信距離に基づく見通し判定処理によって見通しがあると判定された場合、同一の基地局設置候補位置と代表点との組み合わせについて、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を実行させる。 On the other hand, when it is determined that there is a line of sight by the line of sight determination processing based on the communication distance, the line of sight determination control unit 40 uses the determination result of the line of sight as a provisional determination result. This is because even if the distance between the base station installation candidate position and the representative point is within the communicable distance, the presence of a shielding object between them may cause the distance between the base station and the terminal station. This is because communication may not be possible. When it is determined that there is a line of sight by the line-of-sight determination processing based on the communication distance, the line-of-sight determination control unit 40 generates point cloud data by the point cloud data line-of-sight determination unit 403 for a combination of the same base station installation candidate position and a representative point. The visibility determination process based on the presence or absence of is executed.
 点群データの有無に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する。なぜならば、基地局設置候補位置と代表点との間には遮蔽物が存在しない可能性が高いからである。 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data, the line of sight determination control unit 40 outputs a determination result indicating that there is a line of sight as the final determination result. This is because there is a high possibility that there is no obstruction between the base station installation candidate position and the representative point.
 一方、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないとの判定結果を暫定の判定結果とする。なぜならば、基地局設置候補位置と代表点との間に物体が存在していたとしても、例えば葉がまばらに茂った樹木等のように、電波が透過するため遮蔽物とはならない物体である可能性があるからである。見通し判定制御部40は、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合、同一の基地局設置候補位置と代表点との組み合わせについて、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を実行させる。 On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data, the visibility determination control unit 40 uses the determination result of no visibility as the provisional determination result. This is because even if an object exists between the base station installation candidate position and the representative point, it is an object such as a tree with sparse leaves that does not become a shield because radio waves pass through it. Because it is possible. When it is determined that there is no line of sight by the line of sight determination processing based on the presence or absence of point cloud data, the line of sight determination control unit 40 blocks the combination of the same base station installation candidate position and the representative point by the blocking rate line of sight determination unit 404. Execute the visibility determination process based on the rate.
 遮蔽率に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する。これは、点群データの有無に基づく見通し判定処理では見通しがないと判定されたものの、遮蔽率に基づく見通し判定処理によって見通しがあるとして判定が覆るパターンである。一方、遮蔽率に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する。 When it is determined that there is visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is visibility as the final determination result. This is a pattern in which the line of sight determination processing based on the presence or absence of point cloud data determines that there is no line of sight, but the line of sight determination processing based on the shielding rate overrules the determination that line of sight exists. On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result.
[見通し判定制御部の動作]
 以下、本実施形態における見通し判定制御部40の動作について説明する。図7は、本発明の第1の実施形態における見通し判定制御部40の動作を示すフローチャートである。図7のフローチャートが示す見通し判定制御部40の動作は、当該見通し判定制御部40に、基地局設置候補位置と代表点との組み合わせを示す情報が入力された際に開始される。
[Operation of line-of-sight determination control unit]
The operation of the visibility determination control unit 40 in this embodiment will be described below. FIG. 7 is a flow chart showing the operation of the visibility determination control unit 40 according to the first embodiment of the present invention. The operation of the visibility determination control section 40 shown in the flowchart of FIG.
 まず、見通し判定制御部40は、通信距離見通し判定部401を制御し、入力された情報に基づく基地局設置候補位置と代表点との組み合わせについて、通信距離に基づく見通し判定処理を実行させる(ステップS101)。通信距離に基づく見通し判定処理によって見通しがないと判定された場合(ステップS102・NO)、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する(ステップS108)。以上で、図7のフローチャートが示す見通し判定制御部40の動作が終了する。 First, the visibility determination control unit 40 controls the communication distance visibility determination unit 401 to execute the visibility determination process based on the communication distance for the combination of the base station installation candidate position and the representative point based on the input information (step S101). When it is determined that there is no visibility by the visibility determination processing based on the communication distance (step S102, NO), the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as a final determination result (step S108). ). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
 一方、通信距離に基づく見通し判定処理によって見通しがあると判定された場合(ステップS102・YES)、見通し判定制御部40は、同一の基地局設置候補位置と代表点との組み合わせについて、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を実行させる(ステップS103)。 On the other hand, if it is determined that there is a line of sight by the line-of-sight determination processing based on the communication distance (step S102: YES), the line-of-sight determination control unit 40 generates point cloud data for the same combination of the base station installation candidate position and the representative point. The visibility determination processing based on the presence or absence of point cloud data is executed by the visibility determination unit 403 (step S103).
 点群データの有無に基づく見通し判定処理によって見通しがあると判定された場合(ステップS104・YES)、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する(ステップS107)。以上で、図7のフローチャートが示す見通し判定制御部40の動作が終了する。 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S104, YES), the line of sight determination control unit 40 outputs a determination result indicating that line of sight exists as a final determination result. (Step S107). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
 一方、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合(ステップS104・NO)、同一の基地局設置候補位置と代表点との組み合わせについて、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を実行させる(ステップS105)。 On the other hand, if it is determined that there is no line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S104, NO), the shielding rate line of sight determination unit 404 determines the combination of the same base station installation candidate position and representative point. A visibility determination process based on the shielding rate is executed (step S105).
 遮蔽率に基づく見通し判定処理によって見通しがあると判定された場合(ステップS106・YES)、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する(ステップS107)。以上で、図7のフローチャートが示す見通し判定制御部40の動作が終了する。 When it is determined that there is a line of sight by the line of sight determination processing based on the shielding rate (step S106, YES), the line of sight determination control unit 40 outputs a determination result indicating that line of sight is present as a final determination result (step S107). ). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
 一方、遮蔽率に基づく見通し判定処理によって見通しがないと判定された場合(ステップS106・NO)、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する(ステップS108)。以上で、図7のフローチャートが示す見通し判定制御部40の動作が終了する。 On the other hand, if it is determined that there is no visibility by the visibility determination processing based on the shielding rate (step S106, NO), the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result ( step S108). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 7 is completed.
 以上説明したように、本発明の第1の実施形態における通信エリア設計支援システム1は、まず、相対的に計算量が少ない見通し判定処理である通信距離に基づく見通し判定処理により、両局の間の距離が通信可能となる距離を超えている基地局設置候補位置と代表点との組み合わせについて見通しがないと判定する。次に、本実施形態における通信エリア設計支援システム1は、両局の間の距離が通信可能となる距離以内である基地局設置候補位置と代表点との組み合わせについて、遮蔽物の存在を考慮した見通し判定処理により、両局間における点群データの個数が閾値以下である基地局設置候補位置と代表点との組み合わせについて見通しがあると判定する。次に、本実施形態における通信エリア設計支援システム1は、両局間における点群データの個数が閾値より多い基地局設置候補位置と代表点との組み合わせについて、遮蔽率を考慮した見通し判定処理により、当該遮蔽率に基づいて算出された電波の伝搬損失の損失量に基づいて基地局と端末局との間の無線通信の回線設計を行うことで、見通しの有無をより精度高く判定する。 As described above, the communication area design support system 1 according to the first embodiment of the present invention first performs the line-of-sight determination process based on the communication distance, which is the line-of-sight determination process with a relatively small amount of calculation. It is determined that there is no line of sight for a combination of a base station installation candidate position and a representative point whose distance exceeds the distance at which communication is possible. Next, the communication area design support system 1 according to the present embodiment considers the presence of a shield for a combination of a base station installation candidate position and a representative point where the distance between both stations is within the distance at which communication is possible. Through the line-of-sight determination processing, it is determined that there is line-of-sight for combinations of base station installation candidate positions and representative points for which the number of point cloud data between both stations is equal to or less than a threshold. Next, the communication area design support system 1 according to the present embodiment performs outlook determination processing considering the shielding rate for combinations of base station installation candidate positions and representative points where the number of point cloud data between both stations is larger than the threshold. By designing a wireless communication line between the base station and the terminal station based on the amount of propagation loss of radio waves calculated based on the shielding rate, the presence or absence of line of sight can be determined with higher accuracy.
 このような構成を備えることで、本発明の第1の実施形態における通信エリア設計支援システム1は、計算負荷の増大を抑えつつ、より精度高く見通し判定を行うことができる。 With such a configuration, the communication area design support system 1 according to the first embodiment of the present invention is able to perform more accurate line-of-sight determination while suppressing an increase in computational load.
 また、以上説明したように、本発明の第1の実施形態における通信エリア設計支援システム1は、必要に応じて、遮蔽率を考慮した見通し判定処理を行う。これにより、本実施形態における通信エリア設計支援システム1は、基地局設置候補位置と代表点との間に物体が存在し、閾値以上の個数の点群データが存在していたとしても、例えば葉がまばらに茂った樹木等のように電波が透過するため遮蔽物とはならない物体である場合には、見通しがあると正しく判定することができる。 In addition, as described above, the communication area design support system 1 according to the first embodiment of the present invention performs line-of-sight determination processing in consideration of the shielding rate as necessary. As a result, the communication area design support system 1 according to the present embodiment, even if there is an object between the base station installation candidate position and the representative point, and the number of point cloud data that is equal to or greater than the threshold exists, for example, leaves In the case of an object such as a sparsely grown tree that transmits radio waves and does not become a shielding object, it can be correctly determined that there is a line of sight.
<第2の実施形態>
 前述の通り、第1の実施形態における通信エリア設計支援システム1は、通信距離見通し判定部401による通信距離に基づく見通し判定処理、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理、及び遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を行うことによって、基地局設置候補位置と代表点との間の見通しを判定する構成であった。すなわち、第1の実施形態における通信エリア設計支援システム1は、地図情報見通し判定部402による地図情報に基づく見通し判定処理は行わない構成であった。
<Second embodiment>
As described above, the communication area design support system 1 according to the first embodiment performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, and outlook determination based on the presence or absence of point cloud data by the point cloud data outlook determination unit 403. processing, and the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404, the outlook between the base station installation candidate position and the representative point is determined. That is, the communication area design support system 1 according to the first embodiment is configured so that the map information outlook determination unit 402 does not perform the outlook determination process based on the map information.
 これに対し、以下に説明する第2の実施形態における通信エリア設計支援システム1は、通信距離見通し判定部401による通信距離に基づく見通し判定処理、地図情報見通し判定部402による地図情報に基づく見通し判定処理、及び点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を必要に応じて行う構成である。すなわち、第2の実施形態では、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理は行われない。 On the other hand, in the communication area design support system 1 according to the second embodiment described below, the communication distance outlook determination unit 401 performs outlook determination processing based on the communication distance, and the map information outlook determination unit 402 performs outlook determination based on map information. processing, and the point cloud data outlook determination unit 403 based on the presence or absence of point cloud data is performed as necessary. That is, in the second embodiment, the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 is not performed.
 第2の実施形態における通信エリア設計支援システム1の機能構成は、図1を参照しながら説明した第1の実施形態における通信エリア設計支援システム1の機能構成と同様であるため、説明を省略する。 The functional configuration of the communication area design support system 1 according to the second embodiment is the same as the functional configuration of the communication area design support system 1 according to the first embodiment described with reference to FIG. 1, so description thereof will be omitted. .
[見通し判定処理]
 以下、本実施形態における見通し判定処理の詳細について説明する。図8は、本発明の第2の実施形態における通信エリア設計支援システム1による見通し判定処理を説明するための図である。第1の実施形態と同様に、本実施形態における見通し判定制御部40は、所定の見通し判定ルールに従って、複数の見通し判定処理を使い分ける見通し判定制御を行う。
[Line-of-sight judgment processing]
The details of the outlook determination process in this embodiment will be described below. FIG. 8 is a diagram for explaining the line-of-sight determination processing by the communication area design support system 1 according to the second embodiment of the present invention. As in the first embodiment, the visibility determination control unit 40 in this embodiment performs visibility determination control by selectively using a plurality of visibility determination processes according to a predetermined visibility determination rule.
 図8には、見通し判定制御部40が見通し判定処理の制御の際に用いる所定の見通し判定ルールが示されている。図8に示されるように、見通し判定制御部40は、所定の見通し判定ルールに基づいて、適宜、通信距離見通し判定部401による通信距離に基づく見通し判定処理、地図情報見通し判定部402による地図情報に基づく見通し判定処理、及び点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を実行させる。 FIG. 8 shows predetermined visibility determination rules used by the visibility determination control unit 40 when controlling the visibility determination process. As shown in FIG. 8, the outlook determination control unit 40 appropriately performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, map information by the map information outlook determination unit 402, and and the point cloud data outlook determination unit 403 based on the presence or absence of point cloud data are executed.
 図8に示されるように、本実施形態では、見通し判定制御部40は上記3つの見通し判定処理の実行を制御することから、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理は行われない。なお、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理は、後に説明する第2の実施形態の変形例で用いられる。 As shown in FIG. 8, in the present embodiment, since the visibility determination control unit 40 controls the execution of the above three visibility determination processes, the visibility determination process based on the shielding rate by the shielding rate outlook determining unit 404 is not performed. do not have. Note that the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 is used in a modified example of the second embodiment described later.
 図8に示されるように、本実施形態における見通し判定制御部40は、基地局設置候補位置と代表点との組み合わせを示す情報が与えられた場合、まず始めに、通信距離見通し判定部401による通信距離に基づく見通し判定処理を実行させる。 As shown in FIG. 8, when information indicating a combination of base station installation candidate positions and representative points is given, the visibility determination control unit 40 in this embodiment first performs A line-of-sight determination process based on the communication distance is executed.
 通信距離に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する。なぜならば、基地局設置候補位置と代表点との間の距離が通信可能な距離より長い場合には、遮蔽物の有無に関わらず基地局と端末局との間の通信がほぼ不可能であるからである。 When it is determined that there is no line of sight by the line of sight determination processing based on the communication distance, the line of sight determination control unit 40 outputs a determination result indicating that there is no line of sight as the final determination result. This is because if the distance between the base station installation candidate position and the representative point is longer than the communicable distance, communication between the base station and the terminal station is almost impossible regardless of the presence or absence of obstructions. It is from.
 一方、通信距離に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあるとの判定結果を暫定の判定結果とする。なぜならば、基地局設置候補位置と代表点との間の距離が通信可能な距離以内であったとしても、遮蔽物が存在していることによって基地局と端末局との間の通信が不可能である可能性があるからである。見通し判定制御部40は、通信距離に基づく見通し判定処理によって見通しがあると判定された場合、同一の基地局設置候補位置と代表点との組み合わせについて、地図情報見通し判定部402による地図情報に基づく見通し判定処理を実行させる。 On the other hand, when it is determined that there is a line of sight by the line of sight determination processing based on the communication distance, the line of sight determination control unit 40 uses the determination result of the line of sight as a provisional determination result. This is because even if the distance between the base station installation candidate position and the representative point is within the communicable distance, communication between the base station and the terminal station is impossible due to the presence of obstructions. This is because there is a possibility that When it is determined that there is a line of sight by the line-of-sight determination processing based on the communication distance, the line-of-sight determination control unit 40 determines the combination of the same base station installation candidate position and representative point based on the map information by the map information line-of-sight determination unit 402. Execute the line of sight determination process.
 地図情報に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する。なぜならば、基地局設置候補位置と代表点とを結ぶ見通し線と地図情報に示される建物等の外郭とが交差しているため、建物等によって見通しが遮られている可能性が高いからである。 When it is determined that there is no visibility by the visibility determination process based on the map information, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result. This is because the line of sight connecting the base station installation candidate position and the representative point intersects with the outline of the building, etc. indicated in the map information, so there is a high possibility that the line of sight is blocked by the building, etc. .
 一方、地図情報に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあるとの判定結果を暫定の判定結果とする。なぜならば、基地局設置候補位置と代表点との間に物体が存在していたとしても、例えば樹木や交通標識等のように地図情報に含まれない遮蔽物が存在する可能性があるからである。見通し判定制御部40は、地図情報に基づく見通し判定処理によって見通しがあると判定された場合、同一の基地局設置候補位置と代表点との組み合わせについて、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を実行させる。 On the other hand, when it is determined that there is visibility by the visibility determination processing based on the map information, the visibility determination control unit 40 uses the determination result that there is visibility as a provisional determination result. This is because even if there is an object between the base station installation candidate position and the representative point, there is a possibility that there is an obstacle that is not included in the map information, such as a tree or a traffic sign. be. When it is determined that there is a line of sight by the line-of-sight determination processing based on the map information, the line-of-sight determination control unit 40 generates point cloud data by the point cloud data line-of-sight determination unit 403 for a combination of the same base station installation candidate position and a representative point. The visibility determination process based on the presence or absence of is executed.
 点群データの有無に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する。一方、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する。 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data, the line of sight determination control unit 40 outputs a determination result indicating that there is a line of sight as the final determination result. On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as a final determination result.
[見通し判定制御部の動作]
 以下、本実施形態における見通し判定制御部40の動作について説明する。図9は、本発明の第2の実施形態における見通し判定制御部40の動作を示すフローチャートである。図9のフローチャートが示す見通し判定制御部40の動作は、当該見通し判定制御部40に、基地局設置候補位置と代表点との組み合わせを示す情報が入力された際に開始される。
[Operation of line-of-sight determination control unit]
The operation of the visibility determination control unit 40 in this embodiment will be described below. FIG. 9 is a flow chart showing the operation of the visibility determination control section 40 according to the second embodiment of the present invention. The operation of the visibility judgment control unit 40 shown in the flowchart of FIG.
 まず、見通し判定制御部40は、通信距離見通し判定部401を制御し、入力された情報に基づく基地局設置候補位置と代表点との組み合わせについて、通信距離に基づく見通し判定処理を実行させる(ステップS201)。通信距離に基づく見通し判定処理によって見通しがないと判定された場合(ステップS202・NO)、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する(ステップS208)。以上で、図9のフローチャートが示す見通し判定制御部40の動作が終了する。 First, the visibility determination control unit 40 controls the communication distance visibility determination unit 401 to execute the visibility determination process based on the communication distance for the combination of the base station installation candidate position and the representative point based on the input information (step S201). When it is determined that there is no visibility by the visibility determination processing based on the communication distance (step S202, NO), the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result (step S208). ). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
 一方、通信距離に基づく見通し判定処理によって見通しがあると判定された場合(ステップS202・YES)、見通し判定制御部40は、同一の基地局設置候補位置と代表点との組み合わせについて、地図情報見通し判定部402による地図情報に基づく見通し判定処理を実行させる(ステップS203)。 On the other hand, if it is determined that there is a line of sight by the line of sight determination processing based on the communication distance (step S202: YES), the line of sight determination control unit 40 determines the map information line of sight for the same combination of the base station installation candidate position and the representative point. The determination unit 402 executes the outlook determination process based on the map information (step S203).
 地図情報に基づく見通し判定処理によって見通しがないと判定された場合(ステップS204・NO)、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する(ステップS208)。以上で、図9のフローチャートが示す見通し判定制御部40の動作が終了する。 When it is determined that there is no visibility by the visibility determination processing based on the map information (step S204, NO), the visibility determination control unit 40 outputs the determination result indicating that there is no visibility as the final determination result (step S208). ). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
 一方、地図情報に基づく見通し判定処理によって見通しがあると判定された場合(ステップS204・YES)、同一の基地局設置候補位置と代表点との組み合わせについて、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を実行させる(ステップS205)。 On the other hand, if it is determined that there is a line of sight by the line of sight determination processing based on the map information (step S204: YES), the point cloud data line of sight determination unit 403 determines the combination of the same base station installation candidate position and the representative point. The outlook determination process based on the presence or absence of data is executed (step S205).
 点群データの有無に基づく見通し判定処理によって見通しがあると判定された場合(ステップS206・YES)、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する(ステップS207)。以上で、図9のフローチャートが示す見通し判定制御部40の動作が終了する。 When it is determined that there is a line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S206, YES), the line of sight determination control unit 40 outputs a determination result indicating that line of sight exists as a final determination result. (Step S207). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
 一方、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合(ステップS206・NO)、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する(ステップS208)。以上で、図9のフローチャートが示す見通し判定制御部40の動作が終了する。 On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data (step S206, NO), the visibility determination control unit 40 uses the determination result indicating that there is no visibility as the final determination result. Output (step S208). With this, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 9 is completed.
 以上説明したように、本発明の第2の実施形態における通信エリア設計支援システム1は、まず、相対的に計算量が少ない見通し判定処理である通信距離に基づく見通し判定処理により、両局の間の距離が通信可能となる距離を超えている基地局設置候補位置と代表点との組み合わせについて見通しがないと判定する。次に、本実施形態における通信エリア設計支援システム1は、両局の間の距離が通信可能となる距離以内である基地局設置候補位置と代表点との組み合わせについて、地図情報に基づく見通し判定処理により、地図情報に含まれる建物等の外郭と見通し線とが交差する基地局設置候補位置と代表点との組み合わせについて見通しがないと判定する。次に、本実施形態における通信エリア設計支援システム1は、地図情報に含まれる建物等の外郭と見通し線とが交差しない基地局設置候補位置と代表点との組み合わせについて、3次元の点群データの有無に基づく見通し判定処理により、両局間における点群データの個数が閾値以下である基地局設置候補位置と代表点との組み合わせについて見通しがあると判定する。このように、本実施形態における通信エリア設計支援システム1は、両局間の点群データの個数に応じて、見通しの有無をより精度高く判定する。 As described above, the communication area design support system 1 according to the second embodiment of the present invention first performs the line-of-sight determination process based on the communication distance, which is the line-of-sight determination process with a relatively small amount of calculation. It is determined that there is no line of sight for a combination of a base station installation candidate position and a representative point whose distance exceeds the distance at which communication is possible. Next, the communication area design support system 1 according to the present embodiment performs outlook determination processing based on map information for combinations of base station installation candidate positions and representative points where the distance between the two stations is within the communicable distance. As a result, it is determined that there is no line of sight for the combination of the base station installation candidate position and the representative point where the line of sight intersects the outline of a building or the like included in the map information. Next, the communication area design support system 1 according to the present embodiment generates three-dimensional point cloud data for combinations of base station installation candidate positions and representative points that do not intersect the line of sight with the outline of a building or the like included in the map information. By the line-of-sight determination processing based on the presence/absence of , it is determined that there is line-of-sight for combinations of base station installation candidate positions and representative points for which the number of point cloud data between both stations is equal to or less than a threshold. In this manner, the communication area design support system 1 of the present embodiment more accurately determines whether or not there is line of sight according to the number of point cloud data between both stations.
 このような構成を備えることで、本発明の第2の実施形態における通信エリア設計支援システム1は、計算負荷の増大を抑えつつ、より精度高く見通し判定を行うことができる。 With such a configuration, the communication area design support system 1 according to the second embodiment of the present invention is able to perform more accurate line-of-sight determination while suppressing an increase in computational load.
 なお、この第2の実施形態にて、地図情報に基づく見通し判定の結果がN.G.(見通しなし)になったとしても、実際には見通しがあるような場合も考えられる。例えば、古い地図情報に基づく見通し判定が行われた場合等である。このような場合、例えば、建物が壊されること等によって実際には既に存在しなくても、地図上でまだ建物が残っているならば、見通しがない(N.G.)と誤って判定される。 It should be noted that in the second embodiment, the result of visibility determination based on map information is N.M. G. Even if it becomes (no line of sight), there may actually be a line of sight. For example, this is the case when the outlook is determined based on old map information. In such a case, for example, even if the building does not actually exist due to being demolished, etc., if the building still remains on the map, it is erroneously determined as having no line of sight (NG). be.
 しかしながら、もし点群データの有無に基づく見通し判定がさらに行われるならば、この誤った判定が、見通しがある(O.K.)との判定に正されることがある。例えばこのようなケースに対しては、部分的な範囲(多少古い地図情報で暫く更新されていない領域)において地図情報に基づく見通し判定の結果が見通しなし(N.G.)であったとしても、続けて点群データの有無に基づく見通し判定をさらに実施するようにしてもよい。 However, if line-of-sight determination based on the presence or absence of point cloud data is further performed, this erroneous determination may be corrected to the line-of-sight (OK) determination. For example, in such a case, even if the result of the visibility determination based on the map information is no visibility (NG) in a partial range (an area that is somewhat old and has not been updated for a while), , and then further determination of visibility based on the presence or absence of point cloud data may be performed.
 但し、上記の第2の実施形態における通信エリア設計支援システム1によれば、基地局設置候補位置と代表点との間に存在する物体が、例えば葉がまばらに茂った樹木等のように、電波が透過するため遮蔽物とはならない物体である場合に、見通しがないと誤判定される場合がある。以下に説明する第2の実施形態の変形例は、このような課題を解決する実施形態である。 However, according to the communication area design support system 1 in the second embodiment, an object existing between the base station installation candidate position and the representative point, such as a tree with sparse leaves, If the object is transparent to radio waves and does not act as a shield, it may be erroneously determined that there is no line of sight. A modified example of the second embodiment described below is an embodiment that solves such problems.
<第2の実施形態の変形例>
 前述の通り、第2の実施形態における通信エリア設計支援システム1は、通信距離見通し判定部401による通信距離に基づく見通し判定処理、地図情報見通し判定部402による地図情報に基づく見通し判定処理、及び点群データ見通し判定部403による点群データの有無に基づく見通し判定処理を行うことによって、基地局設置候補位置と代表点との間の見通しを判定する構成であった。すなわち、第2の実施形態における通信エリア設計支援システム1は、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理は行わない構成であった。
<Modification of Second Embodiment>
As described above, the communication area design support system 1 according to the second embodiment performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401, outlook determination processing based on map information by the map information outlook determination unit 402, and point determination processing based on the map information. The line-of-sight between the base station installation candidate position and the representative point is determined by performing line-of-sight determination processing based on the presence or absence of point cloud data by the group data line-of-sight determination unit 403 . In other words, the communication area design support system 1 according to the second embodiment is configured so that the shielding rate prospect determination unit 404 does not perform the visibility determination process based on the shielding rate.
 これに対し、以下に説明する第2の実施形態の変形例における通信エリア設計支援システム1は、第2の実施形態における通信エリア設計支援システム1が行う上記3つの見通し判定処理に加えて、さらに遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を必要に応じて行う構成である。なお、第2の実施形態の変形例における通信エリア設計支援システム1の機能構成は、図1を参照しながら説明した第1の実施形態における通信エリア設計支援システム1の機能構成と同様であるため、説明を省略する。 On the other hand, the communication area design support system 1 according to the modification of the second embodiment described below, in addition to the above three line-of-sight determination processes performed by the communication area design support system 1 according to the second embodiment, This is a configuration in which the visibility determination processing based on the shielding rate by the shielding rate outlook determining unit 404 is performed as necessary. Note that the functional configuration of the communication area design support system 1 in the modified example of the second embodiment is the same as the functional configuration of the communication area design support system 1 in the first embodiment described with reference to FIG. , the description is omitted.
[見通し判定処理]
 以下、本変形例における見通し判定処理の詳細について説明する。図10は、本発明の第2の実施形態の変形例における通信エリア設計支援システム1による見通し判定処理を説明するための図である。第1の実施形態及び第2の実施形態と同様に、本変形例における見通し判定制御部40は、所定の見通し判定ルールに従って、複数の見通し判定処理を使い分ける見通し判定制御を行う。
[Line-of-sight judgment processing]
The details of the outlook determination process in this modified example will be described below. FIG. 10 is a diagram for explaining the line-of-sight determination processing by the communication area design support system 1 in the modified example of the second embodiment of the present invention. As in the first embodiment and the second embodiment, the visibility determination control unit 40 in this modification performs visibility determination control by selectively using a plurality of visibility determination processes according to a predetermined visibility determination rule.
 図10には、見通し判定制御部40が見通し判定処理の制御の際に用いる所定の見通し判定ルールが示されている。図10に示されるように、見通し判定制御部40は、所定の見通し判定ルールに基づいて、適宜、通信距離見通し判定部401による通信距離に基づく見通し判定処理、地図情報見通し判定部402による地図情報に基づく見通し判定処理、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理、及び遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を実行させる。 FIG. 10 shows a predetermined visibility determination rule used by the visibility determination control unit 40 when controlling the visibility determination process. As shown in FIG. 10 , the outlook determination control unit 40 appropriately performs outlook determination processing based on the communication distance by the communication distance outlook determination unit 401 and map information by the map information outlook determination unit 402 based on predetermined visibility determination rules. , the point cloud data outlook determination unit 403 based on the presence or absence of point cloud data, and the shielding rate outlook determination unit 404 based on the shielding rate are executed.
 図10に示されるように、第2の実施形態の変形例における通信エリア設計支援システム1による見通し判定処理と、前述の図8に示される第2の実施形態における通信エリア設計支援システム1による見通し判定処理との違いは、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合の処理である。以下、点群データの有無に基づく見通し判定処理によって見通しがないと判定されるまでの処理については説明を省略する。 As shown in FIG. 10, the line-of-sight determination process by the communication area design support system 1 in the modification of the second embodiment and the line-of-sight determination by the communication area design support system 1 in the second embodiment shown in FIG. The difference from the determination process is the process when it is determined that there is no line of sight by the line of sight determination process based on the presence or absence of the point cloud data by the point cloud data line of sight determination unit 403 . Hereinafter, the description of the processing until it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data will be omitted.
 図10に示されるように、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないとの判定結果を暫定の判定結果とする。なぜならば、基地局設置候補位置と代表点との間に物体が存在していたとしても、例えば葉がまばらに茂った樹木等のように、電波が透過するため遮蔽物とはならない物体である可能性があるからである。見通し判定制御部40は、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合、同一の基地局設置候補位置と代表点との組み合わせについて、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を実行させる。 As shown in FIG. 10, when it is determined that there is no visibility by the visibility determination processing based on the presence or absence of point cloud data, the visibility determination control unit 40 treats the determination result that there is no visibility as a provisional determination result. do. This is because even if an object exists between the base station installation candidate position and the representative point, it is an object such as a tree with sparse leaves that does not become a shield because radio waves pass through it. Because it is possible. When it is determined that there is no line of sight by the line of sight determination processing based on the presence or absence of point cloud data, the line of sight determination control unit 40 blocks the combination of the same base station installation candidate position and the representative point by the blocking rate line of sight determination unit 404. Execute the visibility determination process based on the rate.
 遮蔽率に基づく見通し判定処理によって見通しがあると判定された場合には、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する。これは、点群データの有無に基づく見通し判定処理では見通しがないと判定されたものの、遮蔽率に基づく見通し判定処理によって見通しがあるとして判定が覆るパターンである。一方、遮蔽率に基づく見通し判定処理によって見通しがないと判定された場合には、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する。 When it is determined that there is visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is visibility as the final determination result. This is a pattern in which the line of sight determination processing based on the presence or absence of point cloud data determines that there is no line of sight, but the line of sight determination processing based on the shielding rate overrules the determination that line of sight exists. On the other hand, when it is determined that there is no visibility by the visibility determination processing based on the shielding rate, the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result.
[見通し判定制御部の動作]
 以下、本変形例における見通し判定制御部40の動作について説明する。図11は、本発明の第2の実施形態の変形例における見通し判定制御部40の動作を示すフローチャートである。
[Operation of line-of-sight determination control unit]
The operation of the visibility determination control unit 40 in this modified example will be described below. FIG. 11 is a flow chart showing the operation of the visibility determination control section 40 in the modified example of the second embodiment of the present invention.
 図11に示される第2の実施形態の変形例における見通し判定制御部40の動作と、前述の図9に示される第2の実施形態における見通し判定制御部40の動作との違いは、点群データ見通し判定部403による点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合の処理(ステップS306における判定処理がNOである場合の処理)である。 The difference between the operation of the visibility determination control unit 40 in the modification of the second embodiment shown in FIG. 11 and the operation of the visibility determination control unit 40 in the second embodiment shown in FIG. This is the process when the data outlook determination unit 403 determines that there is no visibility by the outlook determination process based on the presence or absence of the point cloud data (the process when the determination process in step S306 is NO).
 すなわち、図11に示されるステップS301からステップS305までの動作及びステップS306における判定処理がYESである場合の動作は、図9に示されるステップS201からステップS205までの動作及びステップS206における判定処理がYESである場合の動作とそれぞれ同様であるため、説明を省略する。 That is, the operation from step S301 to step S305 shown in FIG. 11 and the operation when the determination process at step S306 is YES are the operations from step S201 to step S205 shown in FIG. 9 and the determination process at step S206. Since the operations are the same as those in the case of YES, description thereof is omitted.
 図11に示されるように、点群データの有無に基づく見通し判定処理によって見通しがないと判定された場合(ステップS306・NO)、同一の基地局設置候補位置と代表点との組み合わせについて、遮蔽率見通し判定部404による遮蔽率に基づく見通し判定処理を実行させる(ステップS307)。 As shown in FIG. 11, when it is determined that there is no line of sight by the line of sight determination processing based on the presence or absence of point cloud data (step S306, NO), the combination of the same base station installation candidate position and representative point is blocked. The visibility determination processing based on the shielding rate is executed by the visibility determination unit 404 (step S307).
 遮蔽率に基づく見通し判定処理によって見通しがあると判定された場合(ステップS308・YES)、見通し判定制御部40は、見通しがあることを示す判定結果を最終的な判定結果として出力する(ステップS309)。以上で、図11のフローチャートが示す見通し判定制御部40の動作が終了する。 When it is determined that there is visibility by the visibility determination processing based on the shielding rate (step S308, YES), the visibility determination control unit 40 outputs a determination result indicating that there is visibility as a final determination result (step S309). ). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 11 is completed.
 一方、遮蔽率に基づく見通し判定処理によって見通しがないと判定された場合(ステップS308・NO)、見通し判定制御部40は、見通しがないことを示す判定結果を最終的な判定結果として出力する(ステップS310)。以上で、図11のフローチャートが示す見通し判定制御部40の動作が終了する。 On the other hand, if it is determined that there is no visibility by the visibility determination processing based on the shielding rate (step S308, NO), the visibility determination control unit 40 outputs a determination result indicating that there is no visibility as the final determination result ( step S310). Thus, the operation of the visibility determination control unit 40 shown in the flowchart of FIG. 11 is completed.
 以上説明したように、本発明の第2の実施形態の変形例における通信エリア設計支援システム1は、まず、相対的に計算量が少ない見通し判定処理である通信距離に基づく見通し判定処理により、両局の間の距離が通信可能となる距離を超えている基地局設置候補位置と代表点との組み合わせについて見通しがないと判定する。次に、本変形例における通信エリア設計支援システム1は、両局の間の距離が通信可能となる距離以内である基地局設置候補位置と代表点との組み合わせについて、地図情報に基づく見通し判定処理により、地図情報に含まれる建物等の外郭と見通し線とが交差する基地局設置候補位置と代表点との組み合わせについて見通しがないと判定する。次に、本変形例における通信エリア設計支援システム1は、地図情報に含まれる建物等の外郭と見通し線とが交差しない基地局設置候補位置と代表点との組み合わせについて、遮蔽物の存在を考慮した見通し判定処理により、両局間における点群データの個数が閾値以下である基地局設置候補位置と代表点との組み合わせについて見通しがあると判定する。このように、本変形例における通信エリア設計支援システム1は、両局間の点群データの個数応じて、見通しの有無をより精度高く判定する。次に、本変形例における通信エリア設計支援システム1は、両局間における点群データの個数が閾値より多い基地局設置候補位置と代表点との組み合わせについて、遮蔽率を考慮した見通し判定処理により、当該遮蔽率に基づいて算出された電波の伝搬損失の損失量に基づいて基地局と端末局との間の無線通信の回線設計を行う。このように、本変形例における通信エリア設計支援システム1は、見通しの有無をより精度高く判定する。 As described above, the communication area design support system 1 in the modified example of the second embodiment of the present invention first performs the outlook determination process based on the communication distance, which is the outlook determination process with a relatively small amount of calculation. It is determined that there is no line of sight for combinations of base station installation candidate positions and representative points where the distance between stations exceeds the distance at which communication is possible. Next, the communication area design support system 1 in this modification performs prospect determination processing based on map information for combinations of base station installation candidate positions and representative points where the distance between the two stations is within the distance at which communication is possible. As a result, it is determined that there is no line of sight for the combination of the base station installation candidate position and the representative point where the line of sight intersects the outline of a building or the like included in the map information. Next, the communication area design support system 1 in this modified example considers the presence of a shield for the combination of the base station installation candidate position and the representative point where the line of sight does not intersect with the outline of a building or the like included in the map information. By the line-of-sight determination processing, it is determined that there is line-of-sight for combinations of base station installation candidate positions and representative points for which the number of point cloud data between both stations is equal to or less than the threshold. In this manner, the communication area design support system 1 in this modified example more accurately determines whether or not there is a line of sight according to the number of point cloud data between both stations. Next, the communication area design support system 1 in this modified example performs outlook determination processing considering the shielding rate for combinations of base station installation candidate positions and representative points where the number of point cloud data between both stations is larger than the threshold. Then, based on the amount of propagation loss of radio waves calculated based on the shielding rate, the circuit design for wireless communication between the base station and the terminal station is performed. In this manner, the communication area design support system 1 in this modified example determines the presence or absence of line of sight with higher accuracy.
 このような構成を備えることで、本発明の第2の実施形態の変形例における通信エリア設計支援システム1は、計算負荷の増大を抑えつつ、より精度高く見通し判定を行うことができる。 With such a configuration, the communication area design support system 1 according to the modified example of the second embodiment of the present invention can perform visibility determination with higher accuracy while suppressing an increase in calculation load.
 また、以上説明したように、本発明の第2の実施形態の変形例における通信エリア設計支援システム1は、必要に応じて、遮蔽率を考慮した見通し判定処理を行う。これにより、本変形例における通信エリア設計支援システム1は、基地局設置候補位置と代表点との間に物体が存在し、閾値以上の個数の点群データが存在していたとしても、例えば葉がまばらに茂った樹木等のように電波が透過するため遮蔽物とはならない物体である場合には、見通しがあると正しく判定することができる。 Also, as described above, the communication area design support system 1 according to the modified example of the second embodiment of the present invention performs line-of-sight determination processing that takes into account the shielding rate as necessary. As a result, the communication area design support system 1 according to the present modification, even if there is an object between the base station installation candidate position and the representative point, and the number of point cloud data equal to or greater than the threshold exists, for example, leaves In the case of an object such as a sparsely grown tree that transmits radio waves and does not become a shielding object, it can be correctly determined that there is a line of sight.
 なお、前述の第2の実施形態においても述べたように、この第2の実施形態の変形例でも、地図情報に基づく見通し判定の結果がN.G.(見通しなし)になったとしても、実際には見通しがあるような場合も考えられる。例えば、古い地図情報に基づく見通し判定が行われた場合等である。このような場合、例えば、建物が壊されること等によって実際には既に存在しなくても、地図上でまだ建物が残っているならば、見通しがない(N.G.)と誤って判定される。 It should be noted that, as described in the above-described second embodiment, even in the modified example of the second embodiment, the result of visibility determination based on map information is N.M. G. Even if it becomes (no line of sight), there may actually be a line of sight. For example, this is the case when the outlook is determined based on old map information. In such a case, for example, even if the building does not actually exist due to being demolished, etc., if the building still remains on the map, it is erroneously determined as having no line of sight (NG). be.
 例えばこのようなケースに対しては、前述の第1の実施形態の構成(地図情報に基づく見通し判定を行わずに、点群データに基づいて見通し判定を行う構成)で対応するようにしてもよい。あるいは、前述の第2の実施形態においても述べたように、地図情報に基づく見通し判定の結果がN.G.(見通しなし)になった場合に、もし点群データの有無に基づく見通し判定がさらに行われるならば、この誤った判定が、見通しがある(O.K.)との判定に正されることがある。そのため、部分的な範囲(多少古い地図情報で暫く更新されていない領域)において地図情報に基づく見通し判定の結果が見通しなし(N.G.)であったとしても、続けて点群データの有無に基づく見通し判定をさらに実施するような構成としてもよい。 For example, such a case can be dealt with by the configuration of the first embodiment described above (the configuration in which the visibility is determined based on the point cloud data without performing the visibility determination based on the map information). good. Alternatively, as described in the second embodiment, the result of the visibility determination based on the map information is N.M. G. In the case of (no line of sight), if the line of sight judgment based on the presence or absence of point cloud data is further performed, this erroneous judgment will be corrected to the judgment that there is line of sight (OK). There is Therefore, even if the result of visibility determination based on the map information is no visibility (NG) in a partial range (an area that has not been updated for a while with somewhat old map information), the presence or absence of point cloud data will continue to be determined. It is good also as a structure which further implements the line-of-sight determination based on.
 前述の実施形態によれば、通信可否判定装置は、取得部と、距離判定部と、遮蔽率判定部とを備える。例えば、通信可否判定装置及び取得部は、実施形態における見通し判定制御部40であり、距離判定部は、実施形態における通信距離見通し判定部401であり、遮蔽率判定部は、実施形態における遮蔽率見通し判定部404である。 According to the above-described embodiment, the communication availability determination device includes an acquisition unit, a distance determination unit, and a shielding rate determination unit. For example, the communication availability determination device and the acquisition unit are the visibility determination control unit 40 in the embodiment, the distance determination unit is the communication distance outlook determination unit 401 in the embodiment, and the shielding rate determination unit is the shielding rate in the embodiment. It is the line of sight determination unit 404 .
 上記の取得部は、無線基地局の設置候補位置を示す基地局位置と、無線基地局との通信を行う移動局が存在しうる位置を示す移動局位置とを示す情報と、基地局位置と移動局位置との間で計測された点群データとを取得する。例えば、無線基地局は、実施形態における基地局であり、基地局位置は、実施形態における基地局設置候補位置であり、移動局は、実施形態における端末局であり、移動局位置は、実施形態における代表点であり、点群データは、実施形態における点群データ303である。 The acquisition unit obtains information indicating a base station position indicating a candidate installation position of a radio base station, a mobile station position indicating a position where a mobile station communicating with the radio base station may exist, and a base station position. Acquire point cloud data measured between the mobile station position. For example, the radio base station is the base station in the embodiment, the base station location is the base station installation candidate location in the embodiment, the mobile station is the terminal station in the embodiment, and the mobile station location is the , and the point cloud data is the point cloud data 303 in the embodiment.
 上記の距離判定部は、基地局位置と移動局位置との間における通信可否を、基地局位置と移動局位置との間の距離に応じて判定する距離判定を行う。例えば、距離判定は、実施形態における通信距離見通し判定部401による通信距離に基づく見通し判定である。 The above distance determination unit performs distance determination to determine whether or not communication is possible between the base station position and the mobile station position according to the distance between the base station position and the mobile station position. For example, the distance determination is visibility determination based on the communication distance by the communication distance visibility determination unit 401 in the embodiment.
 上記の遮蔽率判定部は、距離判定によって通信が可能と判定された場合、点群データから算出される基地局位置と移動局位置との間の空間において点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う。例えば、遮蔽率判定は、実施形態における遮蔽率見通し判定部404による遮蔽率に基づく見通し判定である。 When it is determined that communication is possible by the distance determination, the above shielding rate determination unit determines the shielding rate indicating the ratio of the point cloud data in the space between the base station position and the mobile station position calculated from the point cloud data. Shielding rate determination is performed based on the radio wave propagation loss estimated based on. For example, the shielding rate determination is visibility determination based on the shielding rate by the shielding rate outlook determining unit 404 in the embodiment.
 上記の通信可否判定装置は、点群データ判定部をさらに有していてもよい。例えば、点群データ判定部は、実施形態における点群データ見通し判定部403である。点群データ判定部は、距離判定によって通信が可能と判定された場合に、基地局位置と移動局位置との間における通信可否を、上記の空間に存在する点群データの個数に応じて判定する点群データ判定を行う。例えば、点群データ判定は、実施形態における点群データ見通し判定部403による3次元の点群データに基づく見通し判定である。この場合、遮蔽率判定部は、点群データ判定によって通信が不可能と判定された場合に遮蔽率判定を行う。 The above communication availability determination device may further include a point cloud data determination unit. For example, the point cloud data determination unit is the point cloud data outlook determination unit 403 in the embodiment. The point cloud data determination unit determines whether or not communication is possible between the base station position and the mobile station position according to the number of point cloud data existing in the above space when it is determined that communication is possible by distance determination. Perform point cloud data judgment. For example, point cloud data determination is visibility determination based on three-dimensional point cloud data by the point cloud data visibility determining unit 403 in the embodiment. In this case, the shielding rate determination unit performs the shielding rate determination when the point cloud data determination determines that communication is impossible.
 なお、上記の通信可否判定装置は、地図判定部をさらに有していてもよい。例えば、地図判定部は、実施形態における地図情報見通し判定部402である。地図判定部は、距離判定によって通信が可能と判定された場合に、基地局位置と移動局位置との間における通信可否を、基地局位置と移動局位置との間の地図を示す地図情報に基づいて判定する地図判定を行う。例えば、地図情報は、実施形態における地図・エリア情報302であり、地図判定は、実施形態における地図情報見通し判定部402による地図情報に基づく見通し判定である。この場合、取得部は、地図情報をさらに取得し、点群データ判定は、地図判定によって通信が可能と判定された場合に点群データ判定を行う。 It should be noted that the above communication availability determination device may further include a map determination unit. For example, the map determination unit is the map information outlook determination unit 402 in the embodiment. The map determination unit, when it is determined that communication is possible by distance determination, stores whether or not communication between the base station position and the mobile station position is possible in map information indicating a map between the base station position and the mobile station position. Map determination is performed based on the map. For example, the map information is the map/area information 302 in the embodiment, and the map determination is the outlook determination based on the map information by the map information outlook determination unit 402 in the embodiment. In this case, the acquisition unit further acquires the map information, and the point cloud data determination is performed when the map determination determines that communication is possible.
 なお、上記の通信可否判定装置において、遮蔽率判定部は、伝搬損失の損失量に基づいて無線基地局と移動局との間の無線通信の回線設計を行い、移動局における受信電力が所要受信感度以上である場合に通信可能と判定するようにしてもよい。 In the above communication availability determination device, the shielding rate determination unit designs the wireless communication channel between the wireless base station and the mobile station based on the loss amount of the propagation loss, and the received power at the mobile station is set to the required reception power. It may be determined that communication is possible when the sensitivity is equal to or higher than the sensitivity.
 なお、上記の通信可否判定装置において、上記の空間は、無線基地局と前記移動局との間で形成されるフレネルゾーンであってもよい。例えば、ここでいうフレネルゾーンは、実施形態におけるフレネルゾーンfzである。 It should be noted that in the above communication possibility determination device, the above space may be a Fresnel zone formed between the radio base station and the mobile station. For example, the Fresnel zone here is the Fresnel zone fz in the embodiment.
 なお、上記の通信可否判定装置において、上記の空間は、無線基地局と前記移動局との間で形成されるフレネルゾーンに近似させた円筒形状の空間であってもよい。例えば、ここでいうフレネルゾーンに近似させた円筒形状の空間は、実施形態における円筒形フレネルゾーンCzである。 It should be noted that, in the above communication possibility determination device, the above space may be a cylindrical space approximated to a Fresnel zone formed between the radio base station and the mobile station. For example, the cylindrical space approximated to the Fresnel zone here is the cylindrical Fresnel zone Cz in the embodiment.
 前述の実施形態によれば、通信エリア設計支援システムは、基地局候補位置取得部と、分割部と、点群データ取得部と、通信可否判定制御部と、出力部とを有する。たとえば、通信エリア設計支援システムは、実施形態における通信エリア設計支援システム1であり、基地局候補位置取得部は、実施形態における基地局設置候補位置抽出部12であり、分割部は、実施形態におけるエリア分割部14であり、点群データ取得部は、実施形態における点群データ取得部15であり、通信可否判定制御部は、実施形態における見通し判定制御部40であり、出力部は、実施形態における出力部50である。 According to the above-described embodiment, the communication area design support system includes a base station candidate position acquisition unit, a division unit, a point cloud data acquisition unit, a communication availability determination control unit, and an output unit. For example, the communication area design support system is the communication area design support system 1 in the embodiment, the base station candidate position acquisition unit is the base station installation candidate position extraction unit 12 in the embodiment, and the dividing unit is The area division unit 14, the point cloud data acquisition unit is the point cloud data acquisition unit 15 in the embodiment, the communication availability determination control unit is the visibility determination control unit 40 in the embodiment, and the output unit is the is the output unit 50 in .
 上記の基地局候補位置取得部は、対象エリアにおける無線基地局の設置候補位置を示す情報を取得する。例えば、対象エリアは、実施形態にける評価対象エリアである。上記の分割部は、対象エリアの地図を示す地図情報を取得して地図を升目状に分割し、各升目において移動局が存在しうる位置を代表する代表点を決定する。上記の点群データ取得部は、対象エリア内で計測された点群データを取得する。 The above-mentioned base station candidate position acquisition unit acquires information indicating candidate installation positions of wireless base stations in the target area. For example, the target area is the evaluation target area in the embodiment. The division unit acquires map information indicating a map of a target area, divides the map into squares, and determines representative points representing possible positions of mobile stations in each square. The point cloud data acquisition unit acquires point cloud data measured within the target area.
 上記の通信可否判定制御部は、無線基地局の候補位置と代表点の各々との間の通信可否を、複数の通信可否判定方法を所定のルールに応じて使い分けて升目ごとに判定する。例えば、複数の判定可否方法は、実施形態における、通信距離見通し判定部401による通信距離に基づく見通し判定、地図情報見通し判定部402による地図情報に基づく見通し判定、点群データ見通し判定部403による3次元の点群データに基づく見通し判定、及び遮蔽率見通し判定部404による遮蔽率に基づく見通し判定である。上記の出力部は、通信可否判定制御部による判定の結果を示す情報を出力する。例えば、判定の結果を示す情報は、実施形態における通信エリア設計結果情報306である。 The above-mentioned communication feasibility determination control unit determines the feasibility of communication between the candidate position of the wireless base station and each of the representative points for each square using a plurality of communication feasibility determination methods according to a predetermined rule. For example, the plurality of judgment methods are the outlook judgment based on the communication distance by the communication distance outlook judgment unit 401, the outlook judgment based on the map information by the map information outlook judgment unit 402, and the point cloud data outlook judgment unit 403. One is visibility determination based on dimensional point cloud data, and the other is visibility determination based on the shielding rate by the shielding rate outlook determining unit 404 . The output unit outputs information indicating the result of determination by the communication availability determination control unit. For example, the information indicating the determination result is the communication area design result information 306 in the embodiment.
 また、上記の通信可否判定制御部は、距離判定部と、遮蔽率判定部とを備える。距離判定部は、設置候補位置と代表点との間における通信可否を、設置候補位置と代表点との間の距離に応じて判定する距離判定を行う。遮蔽率判定部は、距離判定によって通信が可能と判定された場合、点群データから算出される設置候補位置と代表点との間の空間において点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う。 In addition, the communication availability determination control unit includes a distance determination unit and a shielding rate determination unit. The distance determination unit performs distance determination to determine whether or not communication between the candidate installation position and the representative point is possible according to the distance between the candidate installation position and the representative point. If it is determined that communication is possible based on the distance determination, the shielding rate determination unit is based on the shielding rate that indicates the ratio of the point cloud data in the space between the installation candidate position calculated from the point cloud data and the representative point. Shielding rate determination is performed based on the estimated propagation loss of radio waves.
 上述した各実施形態における通信エリア設計支援システム1の一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 A part of the communication area design support system 1 in each of the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
1…通信エリア設計支援システム、11…設備情報取得部、12…基地局設置候補位置抽出部、13…地図情報取得部、14…エリア分割部、15…点群データ取得部、16…データ整合部、17…通信パラメータ情報取得部、20…操作入力部、30…記憶部、40…見通し判定制御部、50…出力部、201…評価対象エリア指定部、202…基地局設置候補位置選択部、301…基地局設置候補位置情報、302…地図・エリア情報、303…点群データ、304…通信パラメータ情報、305…判定可否リスト、306…通信エリア設計結果情報、401…通信距離見通し判定部、402…地図情報見通し判定部、403…点群データ見通し判定部、404…遮蔽率見通し判定部 DESCRIPTION OF SYMBOLS 1... Communication area design support system 11... Equipment information acquisition part 12... Base station installation candidate position extraction part 13... Map information acquisition part 14... Area division part 15... Point cloud data acquisition part 16... Data matching Unit 17 Communication parameter information acquisition unit 20 Operation input unit 30 Storage unit 40 Line-of-sight determination control unit 50 Output unit 201 Evaluation target area designation unit 202 Base station installation candidate position selection unit , 301... Base station installation candidate position information, 302... Map/area information, 303... Point cloud data, 304... Communication parameter information, 305... Judgment availability list, 306... Communication area design result information, 401... Communication distance prospect determination unit , 402 ... Map information outlook determination unit 403 ... Point cloud data outlook determination unit 404 ... Shielding rate outlook determination unit

Claims (8)

  1.  無線基地局の設置候補位置を示す基地局位置と前記無線基地局との通信を行う移動局が存在しうる位置を示す移動局位置とを示す情報と、前記基地局位置と前記移動局位置との間で計測された点群データと、を取得する取得ステップと、
     前記基地局位置と前記移動局位置との間における通信可否を、前記基地局位置と前記移動局位置との間の距離に応じて判定する距離判定を行う距離判定ステップと、
     前記距離判定によって通信が可能と判定された場合、前記点群データから算出される前記基地局位置と前記移動局位置との間の空間において前記点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う遮蔽率判定ステップと、
     を有する通信可否判定方法。
    Information indicating a base station position indicating a candidate installation position of a radio base station and a mobile station position indicating a position where a mobile station communicating with the radio base station may exist; and the base station position and the mobile station position. an acquisition step of acquiring point cloud data measured between
    a distance determination step of determining whether communication between the base station position and the mobile station position is possible according to the distance between the base station position and the mobile station position;
    When it is determined that communication is possible by the distance determination, based on the shielding rate indicating the ratio of the point cloud data in the space between the base station position and the mobile station position calculated from the point cloud data a shielding rate determination step of performing a shielding rate determination based on an estimated propagation loss of radio waves;
    A communication propriety determination method having
  2.  前記距離判定によって通信が可能と判定された場合に、前記基地局位置と前記移動局位置との間における通信可否を、前記空間に存在する前記点群データの個数に応じて判定する点群データ判定を行う点群データ判定ステップ
     をさらに有し、
     前記遮蔽率判定ステップでは、前記点群データ判定によって通信が不可能と判定された場合に前記遮蔽率判定を行う
     請求項1に記載の通信可否判定方法。
    Point cloud data for determining whether or not communication is possible between the base station position and the mobile station position according to the number of the point cloud data existing in the space when the distance determination determines that communication is possible. It further has a point cloud data judgment step for making a judgment,
    2. The method of determining whether communication is possible or not according to claim 1, wherein in said shielding rate determination step, said shielding rate determination is performed when said point cloud data determination determines that communication is impossible.
  3.  前記距離判定によって通信が可能と判定された場合に、前記基地局位置と前記移動局位置との間における通信可否を、前記基地局位置と前記移動局位置との間の地図を示す地図情報に基づいて判定する地図判定を行う地図判定ステップ
     をさらに有し、
     前記取得ステップでは、前記地図情報をさらに取得し、
     前記点群データ判定ステップでは、前記地図判定によって通信が可能と判定された場合に前記点群データ判定を行う
     請求項2に記載の通信可否判定方法。
    If the distance determination determines that communication is possible, whether or not communication is possible between the base station position and the mobile station position is stored in map information indicating a map between the base station position and the mobile station position. further comprising a map determination step of performing map determination based on
    The obtaining step further obtains the map information,
    3. The method according to claim 2, wherein in said point cloud data determination step, said point cloud data determination is performed when said map determination determines that communication is possible.
  4.  前記遮蔽率判定ステップでは、前記伝搬損失の損失量に基づいて前記無線基地局と前記移動局との間の無線通信の回線設計を行い、前記移動局における受信電力が所要受信感度以上である場合に通信可能と判定する
     請求項1から3のうちいずれか一項に記載の通信可否判定方法。
    In the shielding rate determining step, a circuit for wireless communication between the wireless base station and the mobile station is designed based on the loss amount of the propagation loss, and when the reception power at the mobile station is equal to or higher than the required reception sensitivity. 4. The method of determining whether communication is possible according to any one of claims 1 to 3.
  5.  前記空間は、前記無線基地局と前記移動局との間で形成されるフレネルゾーンである
     請求項1から4のうちいずれか一項に記載の通信可否判定方法。
    The communication propriety determination method according to any one of claims 1 to 4, wherein the space is a Fresnel zone formed between the radio base station and the mobile station.
  6.  前記空間は、前記無線基地局と前記移動局との間で形成されるフレネルゾーンに近似させた円筒形状の空間である
     請求項1から4のうちいずれか一項に記載の通信可否判定方法。
    5. The communication propriety determination method according to any one of claims 1 to 4, wherein the space is a cylindrical space that approximates a Fresnel zone formed between the radio base station and the mobile station.
  7.  無線基地局の設置候補位置を示す基地局位置と前記無線基地局との通信を行う移動局が存在しうる位置を示す移動局位置とを示す情報と、前記基地局位置と前記移動局位置との間で計測された点群データと、を取得する取得部と、
     前記基地局位置と前記移動局位置との間における通信可否を、前記基地局位置と前記移動局位置との間の距離に応じて判定する距離判定を行う距離判定部と、
     前記距離判定によって通信が可能と判定された場合、前記点群データから算出される前記基地局位置と前記移動局位置との間の空間において前記点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う遮蔽率判定部と、
     を備える通信可否判定装置。
    Information indicating a base station position indicating a candidate installation position of a radio base station and a mobile station position indicating a position where a mobile station communicating with the radio base station may exist; and the base station position and the mobile station position. an acquisition unit that acquires point cloud data measured between
    a distance determination unit that determines whether communication between the base station position and the mobile station position is possible according to the distance between the base station position and the mobile station position;
    When it is determined that communication is possible by the distance determination, based on the shielding rate indicating the ratio of the point cloud data in the space between the base station position and the mobile station position calculated from the point cloud data A shielding rate determination unit that determines a shielding rate based on an estimated propagation loss of radio waves;
    A communication availability determination device.
  8.  対象エリアにおける無線基地局の設置候補位置を示す情報を取得する基地局候補位置取得部と、
     前記対象エリアの地図を示す地図情報を取得して前記地図を升目状に分割し、各升目において移動局が存在しうる位置を代表する代表点を決定する分割部と、
     前記対象エリア内で計測された点群データを取得する点群データ取得部と、
     前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、複数の通信可否判定方法を所定のルールに応じて使い分けて前記升目ごとに判定する通信可否判定制御部と、
     前記通信可否判定制御部による判定の結果を示す情報を出力する出力部と、
     を有し、
     前記通信可否判定制御部は、
     前記設置候補位置と前記代表点との間における通信可否を、前記設置候補位置と前記代表点との間の距離に応じて判定する距離判定を行う距離判定部と、
     前記距離判定によって通信が可能と判定された場合、前記点群データから算出される前記設置候補位置と前記代表点との間の空間において前記点群データが占める割合を示す遮蔽率に基づいて推測される電波の伝搬損失に基づいて判定する遮蔽率判定を行う遮蔽率判定部と、
     を備える通信エリア設計支援システム。
    a base station candidate position acquisition unit that acquires information indicating candidate installation positions of wireless base stations in a target area;
    a dividing unit that acquires map information indicating a map of the target area, divides the map into squares, and determines representative points that represent possible positions of mobile stations in each square;
    a point cloud data acquisition unit that acquires point cloud data measured within the target area;
    a communication feasibility determination control unit that determines feasibility of communication between the candidate position of the radio base station and each of the representative points for each of the squares by selectively using a plurality of communication feasibility determination methods according to a predetermined rule;
    an output unit that outputs information indicating a result of determination by the communication availability determination control unit;
    has
    The communication enable/disable determination control unit
    a distance determination unit that determines whether or not communication between the candidate installation position and the representative point is possible according to the distance between the candidate installation position and the representative point;
    When it is determined that communication is possible by the distance determination, estimation based on the shielding rate indicating the ratio of the point cloud data in the space between the installation candidate position calculated from the point cloud data and the representative point A shielding rate determination unit that determines the shielding rate based on the propagation loss of the radio wave that is received;
    Communication area design support system.
PCT/JP2022/000216 2022-01-06 2022-01-06 Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system WO2023132030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000216 WO2023132030A1 (en) 2022-01-06 2022-01-06 Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000216 WO2023132030A1 (en) 2022-01-06 2022-01-06 Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system

Publications (1)

Publication Number Publication Date
WO2023132030A1 true WO2023132030A1 (en) 2023-07-13

Family

ID=87073589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000216 WO2023132030A1 (en) 2022-01-06 2022-01-06 Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system

Country Status (1)

Country Link
WO (1) WO2023132030A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248521A1 (en) * 2002-05-24 2004-12-09 Carter Moursund Method and system for automatically determining lines of sight beween nodes
WO2021005646A1 (en) * 2019-07-05 2021-01-14 日本電信電話株式会社 Shielding rate calculation device, shielding rate calculation method and program
WO2021124484A1 (en) * 2019-12-18 2021-06-24 日本電信電話株式会社 Line-of-sight determination method, line-of-sight determination apparatus, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248521A1 (en) * 2002-05-24 2004-12-09 Carter Moursund Method and system for automatically determining lines of sight beween nodes
WO2021005646A1 (en) * 2019-07-05 2021-01-14 日本電信電話株式会社 Shielding rate calculation device, shielding rate calculation method and program
WO2021124484A1 (en) * 2019-12-18 2021-06-24 日本電信電話株式会社 Line-of-sight determination method, line-of-sight determination apparatus, and program

Similar Documents

Publication Publication Date Title
US20220070683A1 (en) Installation candidate presentation method, installation candidate presentation apparatus and program
WO2012011147A1 (en) Communication characteristic analyzing system, communication characteristic analyzing method, and communication characteristic analyzing program
US20070099608A1 (en) Method and Apparatus For Network Planning
US10880755B2 (en) Method and system for radio communication network planning
JP2010187140A (en) Communication characteristics analysis system, communication characteristics analysis method, and communicating characteristics analysis program
JP2003501728A (en) Method and system for managing material specifications in real time
JP5493447B2 (en) Radio wave propagation characteristic estimation apparatus and method, and computer program
EP3462764B1 (en) Radio frequency propagation simulation tool
KR101924792B1 (en) Radar site positioning apparatus for optimal weather radar network and method thereof
US20220295293A1 (en) Station placement designing method and station placement designing apparatus
WO2023132030A1 (en) Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system
CN117171288B (en) Grid map analysis method, device, equipment and medium
JP7260837B2 (en) Station setting support method, station setting support device, and station setting support program
CN112867052B (en) Method and system for determining coverage range blind area of communication equipment in plateau area
US11979850B2 (en) Apparatus and method for determining a preferred location for installation of a radio transceiver
US20220312223A1 (en) Station placement assistance method
US7006038B2 (en) System and method for determining optimal broadcast area of an antenna
JP2013008310A (en) Three-dimensional map creation device and its window area detection device
JP7280536B2 (en) Outlook determination method, visibility determination device, and program
JP2005072667A (en) Apparatus and method of estimating reception characteristic
WO2022239215A1 (en) Station placement design assisting method and station placement design assisting device
JP7307389B2 (en) Station setting support method, station setting support device, and station setting support program
WO2023037534A1 (en) Station placement design support method and station placement design support device
WO2023032223A1 (en) Station installation design supporting method and station installation design supporting apparatus
WO2022219669A1 (en) Station site design assisting device and station site design assisting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023572293

Country of ref document: JP

Kind code of ref document: A