WO2023037534A1 - Station placement design support method and station placement design support device - Google Patents

Station placement design support method and station placement design support device Download PDF

Info

Publication number
WO2023037534A1
WO2023037534A1 PCT/JP2021/033473 JP2021033473W WO2023037534A1 WO 2023037534 A1 WO2023037534 A1 WO 2023037534A1 JP 2021033473 W JP2021033473 W JP 2021033473W WO 2023037534 A1 WO2023037534 A1 WO 2023037534A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
sight
line
determination
representative points
Prior art date
Application number
PCT/JP2021/033473
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 坪井
秀紀 俊長
和人 後藤
直樹 北
武 鬼沢
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/033473 priority Critical patent/WO2023037534A1/en
Priority to JP2023546702A priority patent/JPWO2023037534A1/ja
Publication of WO2023037534A1 publication Critical patent/WO2023037534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a station placement design support method and a station placement design support device.
  • the station placement design here refers to determining the installation positions of base stations that accommodate mobile terminals (hereinafter referred to as "terminal stations"), and the area design refers to the number of terminals covered by the installed base stations. It is to design and manage the coverage area of a station.
  • This method As a method for station placement design and area design, there is a method using three-dimensional point cloud data obtained by imaging the space. This method first acquires 3D point cloud data by driving a mobile object such as a vehicle equipped with MMS (Mobile Mapping System) along roads around an evaluation target area such as a residential area. . Then, this method utilizes the obtained point cloud data to evaluate whether or not wireless communication is possible between the base station and the terminal station.
  • MMS Mobile Mapping System
  • Non-Patent Document 1 by utilizing point cloud data collected by MMS, communication between the base station and the terminal station becomes possible if a base station in the millimeter wave band is installed at any point.
  • a millimeter-wave band station design support tool that can confirm whether the Further, for example, Patent Document 1 describes a station placement design apparatus capable of generating a list of terminal stations that can be accommodated for each combination of a plurality of base stations placed within an evaluation target area. ing.
  • Non-Patent Document 2 it is possible to acquire three-dimensional point cloud data of outdoor communication equipment by MMS, and by remotely diagnosing the deterioration status of equipment from the acquired data at a centralized center, detailed inspection on site A technique for narrowing down the equipment that requires and reducing the amount of work related to equipment inspection is described.
  • the shielding rate refers to the extent to which an object that blocks the movement of radio waves (hereinafter referred to as “shielding object”) that exists between a base station and a terminal station affects wireless communication. It is an index that shows From the opposite point of view, this index can be replaced by "transmittance".
  • the evaluation target area here includes at least candidate installation positions of base stations and positions where terminal stations may exist.
  • Evaluation of whether wireless communication between a base station and a terminal station is possible based on the shielding rate is, for example, point cloud data indicating shielding objects existing within the range of the Fresnel zone formed between the base station and the terminal station. based on the amount of For example, conventionally, there is a technique for determining whether communication between a base station and a terminal station is possible based on whether the amount of point cloud data existing within the Fresnel zone is greater than a predetermined threshold. A station placement design is performed based on the result of such determination of whether or not communication is possible.
  • the range of the evaluation target area on the map is, for example, divided into a fine mesh. Then, for example, for each representative position of each network, area design is performed by determining whether or not communication with the base station placed at the position determined by the above station placement design is possible. This makes it possible to visually indicate on the map the range in which communication between the base station and the terminal station is possible.
  • wireless communication carriers are required, for example, to cover several hundred meters square.
  • station placement design and area design may have to be performed with a wide area of . If such a wide area to be evaluated is divided into fine meshes as described above, the total number of meshes will be enormous. If three-dimensional point cloud data is used for all of these meshes to determine whether communication between the base station and the terminal station is possible, the computational complexity required for the determination is become enormous. Therefore, there is a problem that it is necessary to reduce the amount of calculation so that the arithmetic processing necessary for determining whether or not communication is possible can be completed within a realistic calculation time.
  • the present invention aims to provide a technology that can reduce the amount of computation required for communication feasibility determination while suppressing deterioration in determination accuracy in communication feasibility determination.
  • An aspect of the present invention is an acquisition step of acquiring a candidate position of a radio base station in a target area and a representative point representing a possible position of a mobile station in each mesh of the target area divided into meshes.
  • a first estimation step of estimating whether or not communication between the candidate position of the radio base station and each of the representative points is possible based on first information indicating the position of an object existing in the target area; further performing a process of estimating whether or not communication is possible based on second information having a larger amount of information than the first information among combinations of the candidate positions of the radio base stations estimated to be communicable in the first estimation step and the representative points; a decision step of deciding a combination; a second estimation step of estimating, based on the second information, whether or not communication between the candidate positions of the radio base station that are the combination determined by the determination step and each of the representative points is possible; and a termination step of terminating the estimation process by the second estimation step according to a rule determined for each station placement design method.
  • candidate positions of a radio base station in a target area and representative points representing possible positions of a mobile station in each mesh of the target area divided into meshes are acquired.
  • an obtaining unit a first estimating unit for estimating availability of communication between the candidate position of the radio base station and each of the representative points based on first information indicating the position of an object existing in the target area; further estimating communication feasibility based on second information having a larger amount of information than the first information among the combinations of the candidate positions of the radio base stations estimated to be communicable by the first estimation unit and the representative points; a determining unit that determines the combination to be performed; and estimating, based on the second information, availability of communication between the candidate positions of the radio base station and each of the representative points that are the combinations determined by the determining unit. and a termination control unit for terminating estimation processing by the second estimation unit according to a rule defined for each designated station placement design method.
  • the present invention it is possible to reduce the amount of arithmetic processing required for determining whether communication is possible or not while suppressing deterioration in determination accuracy in determining whether communication is possible or not.
  • FIG. 1 is a block diagram showing a functional configuration of a station placement/area design support device 1 according to a first embodiment of the present invention
  • FIG. 4 is a flow chart showing the operation of the station placement/area design support device 1 according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of results of line-of-sight determination for each base station installation candidate position and mesh within an evaluation target area; 4 is a flow chart showing operations in area maximization of the station placement/area design support apparatus 1 according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area.
  • FIG. 10 is a diagram showing an example of update of the judgment availability
  • FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency.
  • FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency.
  • FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency.
  • FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency.
  • FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency.
  • FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency.
  • FIG. 4 is a flow chart showing operations in a line-of-sight determination process of the station placement/area design support device 1 according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz; 4 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the first embodiment of the present invention in view determination prioritizing processing load reduction. 10 is a flow chart showing operations in accuracy-prioritized outlook determination of the station placement/area design support device 1 according to the first embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area.
  • FIG. 10 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz; 4 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the first embodiment of the present invention in view determination prioritizing processing load reduction.
  • FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area.
  • FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area.
  • FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area.
  • FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area.
  • FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area.
  • FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency.
  • FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency.
  • FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency.
  • FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency.
  • FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency.
  • FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency.
  • FIG. 4 is a schematic diagram showing how the visibility is determined by regarding the Fresnel zone as a cylinder.
  • FIG. 10 is a diagram in which a cylindrical Fresnel zone Cz is superimposed on a Fresnel zone fz;
  • FIG. 10 is a diagram for explaining conditions for terminating prospect determination processing based on point cloud data for a certain base station installation candidate position;
  • FIG. 11 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the third embodiment of the present invention in view determination prioritizing processing load reduction.
  • FIG. 13 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the fourth embodiment of the present invention in view determination prioritizing processing load reduction.
  • FIG. FIG. 20 is a diagram for explaining station placement/area design in the fifth embodiment of the present invention.
  • FIG. 20 is a diagram for explaining station placement/area design in the fifth embodiment of the present invention.
  • the station placement/area design support device 1 of the present embodiment is a device for supporting station placement design for determining installation positions of base stations that accommodate terminal stations existing within an area.
  • base station installation candidate position a base station installation candidate position derived by station placement design
  • the station placement/area design support apparatus 1 This is a device for supporting area design for designing and managing a communicable area indicating the range of positions of terminal stations that can be communicatively connected to a station.
  • the base station is a wireless base station installed in, for example, a high-rise building or an outdoor facility such as a utility pole
  • the terminal station is, for example, a mobile wireless terminal.
  • unlicensed band millimeter wave radio is used for communication between the base station and the terminal station.
  • the station location/area design support device 1 first acquires map information indicating a two-dimensional map based on the map information.
  • the station placement/area design support device 1 divides the map into mesh-like areas based on the acquired map information.
  • the station placement/area design support apparatus 1 determines (estimates) whether or not communication between a base station and a terminal station is possible in each mesh of a map divided into meshes when a terminal station exists in the mesh. conduct.
  • a station placement/area design support apparatus 1 outputs station placement/area design result information indicating at least one candidate installation position of a base station and a communicable area when the base station is installed at the installation candidate position. do.
  • the station placement/area design result information output from the station placement/area design support device 1 is used in the subsequent station placement design.
  • a station placement design device (not shown) that performs station placement design selects a base station installation candidate position and a communicable area indicated by the station placement/area design result information output from the station placement/area design support device 1. Based on this, the installation position of the base station is determined.
  • FIG. 1 is a block diagram showing the functional configuration of a station placement/area design support apparatus 1 according to the first embodiment of the present invention.
  • the station placement/area design support device 1 includes a facility information acquisition unit 11, a base station installation candidate position extraction unit 12, a map information acquisition unit 13, an area division unit 14, a point group Data acquisition unit 15 , data matching unit 16 , operation input unit 20 , storage unit 30 , map outlook determination unit 41 , 3D outlook determination unit 42 , 3D determination evaluation unit 43 , and output unit 50 and
  • the station placement/area design support device 1 is, for example, an information processing device such as a general-purpose computer.
  • the facility information acquisition unit 11 acquires facility information from, for example, an external device.
  • the equipment information here includes at least information indicating the planar position of outdoor equipment such as a high-rise building in which a base station can be installed or a utility pole.
  • the “planar position” here means two-dimensional coordinates that do not include coordinates in the height direction (vertical direction). Also, in the following description, the planar position may be simply referred to as "position”.
  • the facility information may further include information indicating the height of the outdoor facility or the height at which the base station can be installed in the outdoor facility.
  • the facility information acquisition unit 11 outputs the acquired facility information to the base station installation candidate position extraction unit 12 .
  • the facility information acquisition unit 11 may acquire facility information from an external storage device or from an external device via a communication network.
  • the facility information may be stored in the storage section 30 in advance, and the facility information acquisition section 11 may acquire the facility information from the storage section 30 .
  • the base station installation candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11 .
  • the base station installation candidate position extraction unit 12 extracts installation candidate positions of the base station based on the acquired equipment information. For example, the base station installation candidate position extracting unit 12 extracts information indicating the position of a utility pole or the position of a wall surface of a building above a predetermined height from the acquired equipment information, and extracts the position of the utility pole or the predetermined height.
  • the position of the wall surface of a building with a height of 3.5 m or higher is set as a candidate position for installing a base station.
  • the base station installation candidate position extraction unit 12 causes the storage unit 30 to store base station installation candidate position information 301 indicating the extracted installation candidate positions of the base stations.
  • the map information acquisition unit 13 acquires map information from, for example, an external device.
  • the map information here is, for example, information indicating a two-dimensional map.
  • the map information includes at least information indicating the planar position of outlines of buildings such as houses and buildings. Note that the map information may include information indicating the position in the height direction, such as the altitude and the height of an object existing in the map.
  • the map information acquisition section 13 outputs the acquired map information to the area dividing section 14 and the data matching section 16 .
  • the map information acquisition unit 13 may acquire map information from an external storage device, or may acquire map information from an external device via a communication network.
  • the map information may be stored in the storage unit 30 in advance, and the map information acquisition unit 13 may acquire the map information from the storage unit 30 .
  • the map information in the present embodiment is not a map generated based on point cloud data obtained by MMS, for example, but a general map such as a residential map produced by a map production company (for example, by surveying). information based on a typical two-dimensional map. Therefore, the map information in this embodiment may include, for example, information indicating outlines of buildings, but may not include information regarding the positions of objects other than buildings. Objects other than buildings include, for example, structures such as road signs and billboards, plants such as roadside trees and garden trees, structures such as residential walls and elevated roads, and raised ground.
  • the map information in this embodiment may be a map generated based on point cloud data obtained by MMS or the like.
  • the data should have a smaller amount of information than the three-dimensional point cloud data obtained by .
  • the computational complexity of the outlook determination process between the candidate positions of a certain base station and the terminal station, which is performed using the map information is the same as that of the forecast determination process performed using the three-dimensional point cloud data. It is small compared to the amount of calculation of the shielding rate determination process.
  • the base station installation candidate positions may be extracted based on the positions of, for example, building outlines included in the map information.
  • the user of the station placement/area design support apparatus 1 (hereinafter referred to as "user") is configured to visually extract base station installation candidate positions while referring to a map based on map information.
  • the area division unit 14 acquires the map information output from the map information acquisition unit 13.
  • the area dividing unit 14 divides the map based on the acquired map information into meshes of a predetermined size.
  • the area dividing unit 14 associates the acquired map information with the size and position of the divided meshes, and stores them in the storage unit 30 .
  • Each of these meshes is one plot as an evaluation unit, and processing for judging whether communication between the base station and the terminal station is possible is performed for each mesh.
  • the area dividing unit 14 acquires the map information output from the map information acquiring unit 13
  • the acquired map information may first be stored in the storage unit 30 as it is. Then, the area dividing unit 14 selects (by the evaluation area selection unit 201 described later) a specific range as an evaluation target area from the entire range of the map based on the map information stored in the storage unit 30. Later, the map of only the range of the evaluation target area may be divided into meshes of a predetermined size.
  • the point cloud data acquisition unit 15 acquires point cloud data, for example, from an external device or the like.
  • the point cloud data referred to here is three-dimensional point cloud data obtained by imaging a space.
  • the point cloud data is obtained by driving a mobile object such as a vehicle equipped with an MMS along a road around a residential area to be evaluated.
  • the point cloud data acquisition unit 15 outputs the acquired point cloud data to the data matching unit 16 .
  • the point cloud data acquisition unit 15 may acquire the point cloud data from an external storage device or from an external device via a communication network.
  • point cloud data may be stored in the storage unit 30 in advance, and the point cloud data acquisition unit 15 may acquire the point cloud data from the storage unit 30 .
  • the point cloud data is data with a relatively large amount of information, and in the present embodiment, as described above, it is three-dimensional point cloud data obtained, for example, by MMS or the like.
  • the point cloud data includes not only buildings but also objects other than buildings that are not included in the above-mentioned map information (for example, objects such as road signs and billboards, plants such as roadside trees and garden trees). It contains information indicating the 3D positions of all objects that can be occluders. Therefore, the point cloud data has much more information than the above map information. Determination of whether or not communication is possible using point cloud data has relatively high determination accuracy, but the amount of calculation required for determination processing per case is relatively large.
  • the data matching unit 16 acquires the map information output from the map information acquisition unit 13. Also, the data matching unit 16 acquires the point cloud data output from the point cloud data acquiring unit 15 . The data matching unit 16 attempts to match the coordinate system of the map information and the coordinate system of the point cloud data, and if necessary, changes the positions (coordinates) included in the point cloud data to the positions (coordinates) included in the map information. coordinates). The data matching unit 16 causes the storage unit 30 to store the point cloud data 303 that has been matched with the map information.
  • the data matching unit 16 matches the base station installation candidate positions included in the base station installation candidate position information 301 stored in the storage unit 30 and the map information included in the map/area information 302. , the position may be corrected based on the coordinate system of the point cloud data.
  • a common coordinate system such as the world geodetic system is often used for the coordinate system of the map information and the coordinate system of the point cloud data. It is considered that there are many cases in which no treatment is required.
  • the operation input unit 20 accepts input operations by the user.
  • the operation input unit 20 includes input interfaces such as input buttons, a keyboard, a mouse, and a touch panel. As shown in FIG. 1, the operation input unit 20 includes an evaluation area selection unit 201, a base station candidate position selection unit 202, a design method designation unit 203, and a processing mode designation unit 204. .
  • the evaluation area selection unit 201 accepts an input operation by the user for designating an evaluation target area for station placement/area design within the entire range of the map based on the map information.
  • the evaluation area selection unit 201 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation. Note that the evaluation area selection unit 201 may add information designating an evaluation target area to the map information acquired by the map information acquisition unit 13 and stored in the storage unit 30 as the map/area information 302. good.
  • the user When specifying the evaluation target area, the user specifies the evaluation target area while looking at a map displayed on a display device (not shown) such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display.
  • a display device such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display.
  • LCD liquid crystal display
  • organic EL Electrode
  • the base station candidate position selection unit 202 selects at least one specific base station to be evaluated from base station candidate positions (extracted by the base station candidate position extraction unit 12) included in the evaluation target area. An input operation by a user for selecting an installation candidate position is accepted.
  • the base station candidate position selection unit 202 causes the storage unit 30 to store information indicating the base station installation candidate positions indicated by the received input operation.
  • Base station candidate position selection section 202 selects base station candidate position information 301, which is information indicating a plurality of base station candidate positions extracted by base station candidate position extraction section 12 and stored in storage section 30. It may be updated. Specifically, the base station candidate position selection section 202 selects a flag that can specify the base station candidate position selected by the user among a plurality of base station candidate positions included in the base station candidate position information 301. may be added.
  • the user selects a plurality of base station installation candidates included in the map of the evaluation target area displayed on a display device (not shown) such as a liquid crystal display or an organic EL display. While looking at the positions, at least one specific base station installation candidate position is selected.
  • a display device such as a liquid crystal display or an organic EL display. While looking at the positions, at least one specific base station installation candidate position is selected.
  • the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
  • the design method designation unit 203 accepts an input operation by the user for designating a station placement/area design method (hereinafter referred to as "design method").
  • the design method designation unit 203 causes the storage unit 30 to store information indicating the design method indicated by the received input operation.
  • the design method here includes at least the following two methods.
  • the first design method is a method of placing stations and designing areas so as to maximize an area (communication area) that can accommodate terminal stations (hereinafter referred to as "area maximization”).
  • the second design method is a method for efficient station placement and area design by relatively widening the area that can accommodate terminal stations with a smaller number of base stations (hereinafter referred to as "accommodation efficiency improvement"). ).
  • accommodation efficiency improvement a method for efficient station placement and area design by relatively widening the area that can accommodate terminal stations with a smaller number of base stations.
  • the user may specify at least two design methods displayed on a display device (not shown) such as a liquid crystal display or an organic EL display (e.g., "maximize area” and “Efficient accommodation”) and images to select one design method.
  • a display device such as a liquid crystal display or an organic EL display (e.g., "maximize area” and "Efficient accommodation") and images to select one design method.
  • the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
  • the processing mode specifying unit 204 accepts an input operation by the user for specifying a processing mode when performing station placement/area design processing.
  • the processing mode specifying unit 204 causes the storage unit 30 to store information indicating the processing mode indicated by the received input operation.
  • the processing mode here includes at least the following two modes.
  • the first processing mode is a mode in which priority is given to reducing the processing load in station placement/area design processing (hereinafter referred to as “processing load reduction priority mode”).
  • the second processing mode is a mode (hereinafter referred to as “accuracy priority mode”) in which priority is given to increasing the processing accuracy in station placement/area design processing. Details of the above two processing modes will be described later.
  • the user may specify at least two processing modes displayed on a display device (not shown) such as a liquid crystal display or an organic EL display (for example, "processing load reduction priority mode and "Accuracy Priority Mode") or look at the image and select one processing mode.
  • a display device such as a liquid crystal display or an organic EL display (for example, "processing load reduction priority mode and "Accuracy Priority Mode") or look at the image and select one processing mode.
  • a display device such as a liquid crystal display or an organic EL display (for example, "processing load reduction priority mode and "Accuracy Priority Mode") or look at the image and select one processing mode.
  • the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
  • the storage unit 30 stores base station installation candidate position information 301 , map/area information 302 , point cloud data 303 , judgment availability list 304 , and station placement/area design result information 305 .
  • the storage unit 30 includes, for example, a HDD (Hard Disk Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write Memory), ROM (Read Only Memory). memory), or any combination of these storage media.
  • the base station installation candidate position information 301 is information indicating at least one base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and stored in the storage unit 30 .
  • the base station candidate positions included in the base station candidate position information 301 are flagged.
  • the information indicating the base station candidate positions not selected by the user by the base station candidate position selector 202 is deleted. good too.
  • the map/area information 302 is a correspondence between the map information acquired by the map information acquisition unit 13 and information indicating the mesh size and position when the map information is divided into meshes by the area division unit 14. attached information.
  • the point cloud data 303 is information based on the three-dimensional point cloud data acquired by the point cloud data acquiring unit 15.
  • the range on the map indicated by the point cloud data 303 overlaps with the range on the map based on the map information acquired by the map information acquisition unit 13 .
  • the point cloud data 303 is matched between the coordinate system of the map information and the coordinate system of the point cloud data by the data matching unit 16, and is matched with the position (coordinates) included in the map information as necessary. It is corrected point cloud data.
  • the storage unit 30 does not need to store all the base station installation candidate position information 301 and all the point cloud data 303 in the evaluation target area.
  • the base station installation candidate position information 301 and the point cloud data 303 including at least the range necessary for the station placement/area design process should be stored within the range on the map that can be selected.
  • the judgment availability list 304 is a list of combinations of base station installation candidate positions and terminal station candidate positions. For each combination of the candidate installation position of the base station and the candidate position of the terminal station included in the judgment availability list 304, the result of (for example, two-dimensional) visibility judgment based on the map information judged by the map visibility judgment unit 41 is displayed. and information indicating the result of visibility determination or the result of shielding ratio determination based on the three-dimensional point cloud data determined by the three-dimensional visibility determination unit 42 are associated.
  • the station position/area design result information 305 is information indicating the result of the station position/area design process generated by the determination by the map outlook determination unit 41 and the three-dimensional outlook determination unit 42, which will be described later.
  • the map outlook determination unit 41 performs outlook determination based on the map information for each mesh with respect to the range of the evaluation target area of the map divided into meshes based on the map/area information 302 stored in the storage unit 30 .
  • the map prospect determination unit 41 determines whether a base station is installed at a base station candidate position extracted by the base station candidate position extractor 12 and selected by the base station candidate position selector 202. between the relevant base station and the relevant terminal station when the terminal station is located at a representative position of each grid (hereinafter referred to as "representative point"), the line of sight is determined based on the map information. For example, the map visibility determining unit 41 determines the visibility between the base station installation candidate position and the representative point based on the position of the contour of an object such as a building included in the map information.
  • the representative point is, for example, the position in the center of the mesh.
  • the map visibility determining unit 41 performs visibility determination on the assumption that a terminal station exists at the center of each mesh when determining the visibility for each mesh.
  • the position of the representative point is not limited to the position in the center of the mesh, and may be another position such as the position of the corner of the mesh.
  • the position of the corner of the mesh is the representative point, there is a position far away from the representative point in the mesh, such as another corner position on the diagonal line of the mesh, so the error in determining whether communication is possible becomes large. It is expected that. Therefore, it is desirable that the representative point be the central position of the mesh.
  • the presence or absence of line of sight refers to the transmission and reception between the base station and the terminal station, assuming that the base station and the terminal station are located at the candidate installation position of the base station and the representative point of each mesh. It indicates whether or not there is a shield that blocks the propagation of the radio wave on the propagation path of the radio wave. If there is no obstruction that blocks the radio waves on the radio wave propagation path between the base station and the terminal station, it is said to be "line-of-sight", and the radio wave propagation path between the base station and the terminal station is said to be “line-of-sight.” If there is a shield that shields the radio waves, it is said to be "no line of sight".
  • determination of visibility and estimation of availability of communication represent the same thing. That is, determining that there is line of sight is equivalent to presuming that communication is possible, and determining that there is no line of sight is equivalent to presuming that communication is impossible.
  • the shielding object here is an object that may block the propagation of radio waves transmitted and received between the base station and the terminal station.
  • shields include buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, structures such as road signs and signboards, plants such as roadside trees and garden trees, and raised ground. All objects that can block the propagation of radio waves are included.
  • the three-dimensional outlook determination unit 42 determines the outlook based on the point cloud data 303 for each mesh with respect to the range of the evaluation target area of the map divided into meshes based on the map/area information 302 stored in the storage unit 30. I do.
  • the three-dimensional outlook determination unit 42 selects a base station candidate position selected by the base station candidate position selection unit 202 and determines that there is a line of sight by the map outlook determination unit 41 based on the map information.
  • the line-of-sight judgment is performed based on three-dimensional point cloud data between each base station when the base station is installed and the terminal station when the terminal station is located at a representative point of each mesh. .
  • the presence or absence of line-of-sight refers to transmission and reception between the base station and the terminal station when the base station and the terminal station are located at the candidate installation position of the base station and the representative point of each mesh. It indicates whether or not there is a shield that blocks the propagation of the radio wave in the propagation path of the radio wave.
  • a shielding object is an object that may block the propagation of radio waves transmitted and received between a base station and a terminal station.
  • the three-dimensional line-of-sight determination unit 42 selects a three-dimensional point group from among the combinations of the candidate installation positions of the base stations determined to have line-of-sight by the map line-of-sight determination unit 41 and the representative points of each mesh.
  • the visibility determination is performed for the combination determined to require the visibility determination based on the data.
  • Which combination is determined by the map outlook determination unit 41 to be determined based on the three-dimensional point cloud data depends on the station location/area design design method designated by the design method designation unit 203. . Details of each design method will be described later.
  • the three-dimensional view determination unit 42 determines whether or not the number of acquired three-dimensional point cloud data between the base station installation candidate position and the representative point, which is the target of view determination, is greater than a predetermined threshold. .
  • the three-dimensional determination propriety evaluation unit 43 determines that there is visibility when the number of pieces of acquired three-dimensional point cloud data is equal to or less than a predetermined threshold.
  • the 3D determination propriety evaluation unit 43 performs visibility determination using the 3D point cloud data in consideration of the shielding rate.
  • the three-dimensional outlook determination unit 42 determines that even if there is a lot of point cloud data between the base station installation candidate position and the representative point (that is, even if there are many or large obstructions) , the result of the visibility determination is obtained with higher accuracy by further considering the shielding rate and performing the determination of the visibility instead of making the determination immediately when there is no visibility.
  • the base station installation candidate position extraction unit 12, the area division unit 14, the data matching unit 16, the map visibility determination unit 41, and the three-dimensional visibility determination unit 42 are components of one control unit (not shown).
  • the controller is implemented by a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • the control unit may have a configuration realized by cooperation of software and hardware.
  • the program read by the CPU may be stored in advance in a storage medium such as the storage unit 30 provided in the station placement/area design support device 1, for example.
  • the three-dimensional judgment propriety evaluation unit 43 evaluates the range of meshes on the map including the base station installation candidate positions included in the judgment propriety list 304 and the range in the vicinity thereof, and the representative points contained in the representative point judgment propriety list 304. Check whether the ratio of collected three-dimensional point cloud data has reached a ratio that enables visibility determination for the range of meshes on the map that includes it and the range in the vicinity thereof.
  • the three-dimensional decision propriety evaluation unit 43 determines base station installation candidate positions and representative points existing within a mesh range in which the ratio of the collected three-dimensional point cloud data does not reach the ratio at which line-of-sight judgment is possible. Excluded from targets for visibility determination processing based on group data. This is because, for areas where 3D data has not been collected to the necessary and sufficient extent, even if visibility judgment is performed based on 3D point cloud data, the results of visibility judgment with sufficient reliability cannot be obtained. because it cannot The three-dimensional judgment propriety evaluation unit 43, for example, updates the judgment propriety list 304, thereby excluding the corresponding base station installation candidate positions and representative points from targets of the visibility judgment processing.
  • the output unit 50 acquires the station placement/area design result information 305 from the storage unit 30 .
  • the output unit 50 outputs the station placement/area design result information 305 to an external device (for example, a station placement design device or the like) that performs subsequent processing.
  • an external device for example, a station placement design device or the like
  • the output unit 50 includes, for example, a communication interface for outputting the station placement/area design result information 305 to an external device.
  • the output unit 50 may be a functional unit that functions as a display unit that displays the station placement/area design result information 305 .
  • the output unit 50 includes a display device such as a liquid crystal display or an organic EL display. Note that the output unit 50 may display various types of information to be presented to the user.
  • the reliability referred to here includes, for example, the standard reliability corresponding to the evaluation using (preferentially) two-dimensional map information including information such as the location of the outer shell of the building, and the reliability collected by MMS. and a higher degree of confidence corresponding to when evaluated using (preferentially) the 3D point cloud data.
  • the determination is made based on, for example, the collection status of three-dimensional point cloud data that is influenced by the MMS travel route or the like.
  • FIG. 2 is a flow chart showing the operation of the station placement/area design support device 1 according to the first embodiment of the present invention.
  • the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 2 is started, for example, when the power of the station placement/area design support device 1 is turned on.
  • the map information acquisition unit 13 acquires map information from, for example, an external device (step S01).
  • the map information here is, for example, information indicating a two-dimensional map.
  • the map information includes at least information indicating the planar position of the outline of buildings such as houses and buildings.
  • Map information is data with a smaller amount of information than three-dimensional point cloud data. Therefore, the outlook determination process performed using the map information has a smaller amount of calculation than the outlook determination process performed using the three-dimensional point cloud data.
  • the evaluation area selection unit 201 receives an input operation by the user for selecting an evaluation target area for station placement/area design from the entire range of the map based on the map information (step S02). For example, the user selects an evaluation target area by performing an input operation to enclose a desired range on a map displayed on a display device (not shown).
  • the evaluation area selection unit 201 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation. Based on the map information output from the map information acquisition unit 13 and the information indicating the evaluation target area selected by the evaluation area selection unit 201, the area dividing unit 14 divides the map of the range of the evaluation target area into a predetermined size. Separate into meshes of thickness.
  • the facility information acquisition unit 11 acquires facility information, for example, from an external device (step S03).
  • the equipment information here includes at least information indicating the planar position of outdoor equipment such as a high-rise building where a base station can be installed or a utility pole.
  • the base station installation candidate position extraction unit 12 extracts the installation candidate position of the base station based on the acquired facility information (step S04).
  • the base station installation candidate position extraction unit 12 causes the storage unit 30 to store base station installation candidate position information 301 indicating the extracted installation candidate positions of the base stations.
  • the map information contains information indicating the position in the height direction such as altitude and the height of objects existing on the map, points exceeding the predetermined height and buildings exceeding the predetermined height Such positions may be automatically extracted as base station installation candidate positions.
  • the base station candidate position selection unit 202 selects at least one specific base station candidate position to be evaluated from among the base station candidate positions extracted by the base station candidate position extractor 12.
  • An input operation by the user for the purpose is accepted (step S05). For example, a map of the evaluation target area may be displayed on a display device (not shown) or the like, and the user may select a desired position as a base station installation candidate position using the operation input unit 20. .
  • the base station candidate position selection unit 202 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation.
  • the base station candidate position selection unit 202 sends a data file such as a CSV (Comma Separated Value) format indicating a list of base station installation candidate positions (for example, the latitude and longitude of each base station installation candidate position) to an external device.
  • the configuration may be such that the base station installation candidate positions are selected by reading from the device.
  • the map outlook determination unit 41 determines the outlook based on the map information for each mesh with respect to the range of the evaluation target area of the map divided into meshes based on the map/area information 302 stored in the storage unit 30. (step S06).
  • the map outlook determination unit 41 determines the distance between each base station when the base station is installed at the selected base station installation candidate position and the terminal station when the terminal station is located at each representative point. , the visibility is determined based on the map information.
  • the representative point is, for example, the central position of the mesh.
  • the map outlook determining unit 41 determines the outlook based on the position of the outline of an object such as a building included in the map information.
  • the display device (not shown) provided in the output unit 50 or the station placement/area design support device 1 displays information indicating the result of outlook determination based on the map information by the map outlook determination unit 41 so that the user can refer to it. (step S07).
  • the point cloud data acquisition unit 15 acquires point cloud data, for example, from an external device (step S08).
  • the point cloud data is obtained, for example, by causing a mobile object such as a vehicle equipped with an MMS to travel along a road around an evaluation target area such as a residential area.
  • the point cloud data acquisition unit 15 acquires the 3D point cloud data limited to a necessary and sufficient range for determining the outlook, instead of acquiring all the 3D point cloud data of the map based on the map information. You may do so. Specifically, for example, the point cloud data acquisition unit 15 obtains an outlook for a combination of a candidate installation position of a base station determined to have a line of sight by the line of sight determination based on the map information by the map line of sight determining unit 41 and the position of the representative point. Only the three-dimensional point cloud data within the range required for determination may be obtained.
  • the point cloud data acquisition unit 15 obtains the installation candidate positions of the base stations determined to require line-of-sight determination based on the three-dimensional point cloud data according to the designated station placement/area design design method and the representative location. Only the three-dimensional point cloud data in the range required to determine the visibility for the combination with the position of the points may be acquired.
  • the data matching unit 16 acquires the map information of the evaluation target area included in the map/area information 302 . Also, the data matching unit 16 acquires the point cloud data output from the point cloud data acquiring unit 15 . The data matching unit 16 attempts to match the coordinate system of the map information and the coordinate system of the point cloud data, and if necessary, changes the positions (coordinates) included in the point cloud data to the positions (coordinates) included in the map information. coordinates) are corrected (step S09). The data matching unit 16 causes the storage unit 30 to store the point cloud data 303 that has been matched with the map information. Note that if it is known that the coordinate system of the map information and the coordinate system of the point cloud data match, the process of step S09 can be omitted.
  • the three-dimensional outlook determination unit 42 determines whether it is necessary to determine the outlook based on the three-dimensional point cloud data for each base station installation candidate position based on the result of the outlook determination based on the map information by the map outlook determination unit 41.
  • a judgment availability list 304 indicating whether or not there is is created (step S10).
  • the three-dimensional outlook determination unit 42 determines whether it is necessary to determine the outlook based on the three-dimensional point cloud data for each representative point.
  • a judgment availability list 304 indicating whether or not is created (step S11).
  • the representative point is a position (for example, the central position of the mesh) that represents each mesh of the meshed map.
  • the outlook is determined assuming that a terminal station exists at a representative point.
  • the three-dimensional judgment propriety evaluation unit 43 determines the mesh range on the map including the base station installation candidate positions included in the judgment propriety list 304 and the mesh on the map containing the representative points included in the judgment propriety list 304. In the range of , it is confirmed whether the ratio of the collected three-dimensional point cloud data has reached a ratio that enables visibility determination (step S12). The three-dimensional decision propriety evaluation unit 43 evaluates base station installation candidate positions and representative points existing within a mesh range in which the ratio of the collected three-dimensional point cloud data does not reach the ratio that enables visibility judgment. By updating the permission/rejection list 304, it is excluded from the visibility determination target.
  • the user may visually check whether the ratio of the collected 3D point cloud data has reached the ratio that enables visibility determination.
  • the ratio of collected three-dimensional point cloud data for each mesh may be displayed on a display device (not shown) included in the station placement/area design support apparatus 1 . Then, the user may confirm the ratio, determine whether or not to exclude each mesh from the prospect determination target, and specify the mesh through an input operation.
  • the design method designation unit 203 receives an input operation by the user for designating the design method (step S13).
  • the design method includes two design methods of "maximization of area” and "improvement of accommodation efficiency".
  • Area maximization is a method of designing stations and areas so as to maximize the area that can accommodate terminal stations.
  • Improving accommodation efficiency is a method of efficiently designing station placement and areas by widening the area in which terminal stations can be accommodated with a smaller number of base stations.
  • step S13 when "maximize area” is specified by the design method specifying unit 203 (step S13, YES), the map outlook determining unit 41 executes the processing of step S14 below.
  • step S13: NO if the design method designating unit 203 designates "storage efficiency" (step S13: NO), the map outlook determining unit 41 omits execution of the processing of step S14 below.
  • the map outlook determining unit 41 determines the meshes on the map of the evaluation target area divided into meshes in the case where the base station is installed at each of the base station installation candidate positions selected in step S05. , determines visibility based on map information.
  • the map visibility determination unit 41 determines that the base station installed at a certain base station installation candidate position covers the area as a communicable area (that is, determines that there is visibility) by the visibility determination based on the map information.
  • the representative points (mesh) there are representative points (mesh) that have been determined not to be covered as a communicable area by base stations installed at any other base station installation candidate positions (i.e., determined to have no line of sight).
  • the map prospect determination unit 41 selects a base station installation candidate position that covers the identified representative point (mesh) as a communicable area (step S14). The details of this step S14 will be described in detail later with specific examples.
  • the processing mode designating unit 204 receives an input operation by the user for designating the processing mode when performing station placement/area design processing (step S15).
  • the processing mode includes two modes of "processing load reduction priority mode" and "accuracy priority mode".
  • the processing load reduction priority mode is a mode in which priority is given to reducing the processing load in station placement/area design processing.
  • the accuracy priority mode is a mode in which priority is given to increasing the processing accuracy in station placement/area design processing.
  • step S15 when the "processing load reduction priority mode" is specified by the processing mode specifying unit 204 (step S15: YES), the map outlook determination unit 41 and the three-dimensional view determination unit 42 give priority to reducing the processing load. Then, line-of-sight determination is performed (step S16). On the other hand, when the "precision priority mode" is designated by the processing mode designation unit 204 (step S15: NO), the map outlook determination unit 41 and the three-dimensional outlook determination unit 42 give priority to increasing the processing accuracy. A determination is made (step S17).
  • the visibility determination that gives priority to reducing the processing load is, for example, a determination method that prioritizes the result of visibility determination based on (for example, two-dimensional) map information and determines the final result of visibility determination. be. According to this determination method, it is possible to obtain the result of the visibility determination more quickly than the visibility determination that gives priority to increasing the determination accuracy.
  • visibility determination that prioritizes higher determination accuracy is a determination method that prioritizes the results of visibility determination based on (for example, three-dimensional) point cloud data to determine the final results of visibility determination. According to this determination method, it is possible to obtain a result of the outlook determination with higher accuracy than the outlook determination that prioritizes the reduction of the processing load.
  • the output unit 50 selects the designated design method (i.e., “area maximization” or “accommodation efficiency”) and the designated processing mode (i.e., “processing load reduction priority mode” or “accuracy priority mode”). ) is displayed (step S18).
  • the designated design method i.e., “area maximization” or “accommodation efficiency”
  • the designated processing mode i.e., “processing load reduction priority mode” or “accuracy priority mode”.
  • FIG. 3 is a diagram showing an example of the result of line-of-sight determination for each base station installation candidate position and mesh in the evaluation target area.
  • a grid of 7 rows ⁇ 8 columns is drawn in FIG. 3, and this represents a part of the evaluation target area of the map based on the map information divided in a mesh pattern.
  • the black dots assigned the symbols “A” to “E” represent base station installation candidate positions selected by the base station candidate position selection section 202 .
  • the six meshes surrounded by bold solid lines is a mesh determined to have a line of sight with the base station installation candidate position A by the line of sight determination based on the map information by the map line of sight determination unit 41 . That is, the base stations installed at the base station installation candidate position A are divided into six meshes with numerals (1), (2), (3), (4), (5) and (6) respectively. It means that communication with a terminal station existing within range is possible.
  • the five meshes enclosed by dotted lines are map perspectives.
  • This mesh is determined to have a line of sight with the base station installation candidate position B by line of sight determination based on the map information by the determining unit 41 . That is, the base stations installed at the base station installation candidate position B are present within the range of five meshes labeled with numbers (2), (3), (4), (5) and (7) respectively. It means that it is possible to communicate with a terminal station that
  • the four meshes enclosed by the dashed-dotted lines are the map visibility determination unit 41.
  • This mesh is determined to have a line of sight with the base station installation candidate position C by the line of sight determination based on the map information. That is, the base station installed at the base station installation candidate position C is the terminal station existing within the range of the four meshes numbered (6), (8), (10) and (12) respectively. communication is possible.
  • the five meshes enclosed by the dashed lines are map perspectives.
  • This mesh is determined to have a line of sight with the base station installation candidate position D by line of sight determination based on the map information by the determining unit 41 . That is, the base station installed at the base station installation candidate position D exists within the range of five meshes labeled with numbers (8), (9), (10), (11) and (13). It means that it is possible to communicate with a terminal station that
  • two meshes surrounded by two-dot chain lines (that is, meshes with numbers (13) and (14) respectively) indicate the visibility determined by the map visibility determination unit 41 based on the map information. It is determined that there is a line of sight between the base station installation candidate position E and the base station installation candidate position E. That is, the base station installed at the base station installation candidate position E indicates that it is possible to communicate with the terminal station existing within the range of the two meshes marked with numbers (13) and (14) respectively. means.
  • blank meshes without symbols such as "(1)" to "(14)" are line-of-sight to any base station installation candidate position from A to E by line-of-sight determination based on map information.
  • the base station is installed at any of the base station installation candidate positions from A to E, it means that the base station cannot communicate with terminal stations existing within the range of the blank meshes. . Therefore, it is not necessary to perform the visibility determination processing based on the point group data by the three-dimensional visibility determination unit 42 in the latter stage for representative points of such blank meshes.
  • the visibility determination based on the map information is performed based on, for example, whether or not there is an obstacle such as a building on the straight line connecting the base station installation candidate position and the representative point of the mesh on the map. Any conventional technology can be used for the visibility determination based on the map information.
  • area maximization is a method of setting stations and designing areas so as to maximize the area that can accommodate terminal stations.
  • the map outlook determination unit 41 determines the line of sight between at least one base station installation candidate position and the representative point determined by the visibility determination based on the map information. Among them, a representative point determined to have a line of sight with only one base station installation candidate position is specified.
  • representative points determined to have line of sight between only one base station installation candidate position by line of sight determination based on map information are (1), (7), ( 9), (11), (12) and (14) are representative points.
  • the representative points marked with (1) are the representative points determined to have line of sight only to base station installation candidate position A by line of sight determination based on map information. .
  • the representative points marked with (7) are the representative points determined to have line of sight only to the base station installation candidate position B by the line of sight determination based on the map information.
  • the representative points indicated by the symbols (9) and (11) are the representative points determined to have line of sight only to the base station installation candidate position D by the line of sight determination based on the map information.
  • a representative point with a reference number (12) is a representative point determined to have a line of sight only to the base station installation candidate position C by the line of sight determination based on the map information.
  • a representative point indicated by the code (14) is a representative point determined to have a line of sight only to the base station installation candidate position E by the line of sight determination based on the map information.
  • the map outlook determining unit 41 puts the base station installation candidate positions determined to have a line of sight between the specified representative points into the following three-dimensional It is selected preferentially (first) as a base station installation candidate position used in the outlook determination process based on the point cloud data.
  • the specified representative point is, as described above, a representative point determined to have a line of sight with only one base station installation candidate position.
  • the map outlook determination unit 41 determines the coverage as a communicable area by a base station installed at a certain base station installation candidate position based on the outlook determination based on the map information. (i.e., determined to have line of sight), it is determined that none of the other base station installation candidate positions covers the communicable area. Identify the representative points (mesh) that have been delineated (i.e., determined to have no line of sight). The map prospect determination unit 41 preferentially (firstly) selects a base station installation candidate position that covers the specified representative point (mesh) as a communicable area.
  • line-of-sight judgment based on map information enables line-of-sight between only one base station installation candidate position. is determined to be present, and base station installation candidate positions determined to have line-of-sight between the representative point and the base station used in the line-of-sight determination process based on three-dimensional point cloud data in the latter stage It is necessary to select them with priority as station installation candidate positions.
  • accommodation efficiency improvement is a method of efficiently designing stations and areas by relatively widening areas that can accommodate terminal stations with a smaller number of base stations.
  • the map outlook determination unit 41 sequentially determines base station installation candidate positions that have a greater number of representative points that have been determined to have visibility based on the visibility determination based on the map information. They are preferentially selected as base station installation candidate positions used in the visibility determination processing based on the three-dimensional point cloud data in the latter stage.
  • the map outlook determination unit 41 determines that there is a line of sight between at least one base station installation candidate position by the visibility determination based on the map information.
  • the ratio of selected representative points among the representative points (mesh) reaches a predetermined ratio
  • base station installation candidate positions to be used in the subsequent process of determining visibility based on three-dimensional point cloud data are determined. Terminate the above process of selection.
  • the predetermined percentage is, for example, 80[%].
  • base station installation candidate position A has the largest number of representative points determined to have visibility by visibility determination based on map information.
  • the base station installation candidate position A has a line of sight between six representative points labeled with (1), (2), (3), (4), (5) and (6).
  • base station installation candidate positions B and D have the second largest number of representative points determined to have visibility by visibility determination based on map information.
  • the base station installation candidate position B has a line of sight between each of the five representative points marked with (2), (3), (4), (5), and (7).
  • Position D has line of sight to each of the five representative points labeled (8), (9), (10), (11) and (13).
  • base station installation candidate position C has the third largest number of representative points determined to have visibility by visibility determination based on map information.
  • the base station installation candidate position C has a line of sight between each of the four representative points marked with (6), (8), (10) and (12).
  • base station installation candidate position E has the fewest representative points determined to have visibility by visibility determination based on map information.
  • the base station installation candidate position E has a line of sight between two representative points marked with (13) and (14).
  • the map outlook determination unit 41 determines base station installation candidate positions having the largest number of representative points that are determined to have visibility by visibility determination based on map information. A is selected as a base station installation candidate position used in the visibility determination process based on the three-dimensional point cloud data in the latter stage.
  • base station installation candidate positions B and D initially had the second largest number of representative points determined to have visibility based on visibility determination based on map information. However, for example, it is assumed that base station installation candidate position B has a line of sight between five representative points indicated by symbols (2), (3), (4), (5), and (7). Among these, the four representative points indicated by the symbols (2), (3), (4) and (5) are between the selected base station installation candidate position A and is also judged to have prospects.
  • base station installation candidate position B is selected after base station installation candidate position A is selected, it will not be newly added as a representative point that has a line of sight between any of the base station installation candidate positions. is only the representative point with the code of (7). Therefore, if the base station installation candidate position B is selected after the base station installation candidate position A is selected, the purpose of improving accommodation efficiency is not met.
  • the map outlook determination unit 41 determines that there is a line of sight after excluding the representative points that have been determined to have line of sight with the base station installation candidate positions that have already been selected by the line of sight determination based on the map information.
  • a candidate base station installation position having the largest number of representative points is selected as a candidate base station installation position to be used in the visibility determination process based on the three-dimensional point cloud data in the latter stage.
  • the base station candidate position B is (7 )
  • the base station installation candidate position C is three representative points respectively marked with codes (8), (10), and (12).
  • the base station installation candidate position D is between five representative points indicated by the symbols (8), (9), (10), (11) and (13) respectively.
  • the base station installation candidate position E has a line of sight between each of the two representative points indicated by the symbols (13) and (14).
  • the point having the largest number of representative points determined to have visibility by visibility determination based on map information is between five representative points.
  • the base station installation candidate position D has a line of sight.
  • the map outlook determination unit 41 additionally selects the base station installation candidate position D as a base station installation candidate position to be used in the subsequent outlook determination processing based on the three-dimensional point cloud data. .
  • the base station installation candidate position B has a line of sight to one representative point marked with the code of (7)
  • the base station installation candidate position C has line of sight to one representative point marked with the code of (12).
  • the base station installation candidate position E is in a state where there is a line of sight between one representative point indicated by the code of (14).
  • each of the base station installation candidate positions B, C, and E has one representative point determined to have a line of sight by the line of sight determination based on the map information.
  • one of the remaining base station installation candidate positions (here, for example, the base station installation candidate position B) is selected in the visibility judgment processing based on the three-dimensional point cloud data in the latter stage. It is additionally selected as a base station installation candidate position to be used.
  • the points (netting) are 14 representative points marked with symbols (1) to (14), and the total number is 14. Therefore, by selecting base station installation candidate positions A, D, and B, 12 representative points out of 14 are covered as a communicable area.
  • the ratio of 12 out of 14 is about 86[%], for example, it has reached the predetermined ratio of 80[%].
  • D and C in this order, the above process of selecting base station candidate positions to be used in the subsequent line-of-sight determination process based on the three-dimensional point cloud data ends.
  • the map outlook determination unit 41 determines the base station installed at a certain base station installation candidate position by the outlook determination based on the map information. Communicate with a base station installed at any other base station installation candidate position within a representative point (mesh) determined to be covered as a communicable area by a station (i.e., determined to have line of sight) A representative point (mesh) determined not to be covered as a possible area (that is, determined to have no line of sight) is specified, and base station installation candidate positions that cover the specified representative point (mesh) as a communicable area are determined. It was a configuration that was selected with priority. Even in station placement/area design when "maximize area" is specified, in subsequent selection of base station installation candidate positions, the map prospect determination unit 41 The same processing as station placement/area design in the case may be performed.
  • the map visibility determination unit 41 first identifies a representative point determined to have visibility with only one base station installation candidate position by the visibility determination based on the map information. All of the base station installation candidate positions determined to have line of sight between and are selected as base station installation candidate positions used in the subsequent line of sight determination processing based on the three-dimensional point cloud data. Then, after that, the map outlook determination unit 41 sequentially determines the three-dimensional point cloud data in the latter stage from the base station installation candidate position having more representative points determined to have visibility by the outlook determination based on the map information. are selected preferentially as base station installation candidate positions to be used in the line-of-sight determination process based on the above.
  • the map visibility determining unit 41 determines, based on the point cloud data, among the representative points determined to have visibility with at least one of the base station installation candidate positions by the visibility determination based on the map information.
  • the percentage of representative points targeted for visibility determination reaches a predetermined percentage
  • base station installation candidate positions to be used in the subsequent visibility determination processing based on the three-dimensional point cloud data are selected. You may make it complete
  • FIG. 4 is a flow chart showing operations in area maximization of the station placement/area design support apparatus 1 according to the first embodiment of the present invention.
  • the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 4 is a detailed version of the operation of step S14 shown in FIG.
  • step S142 the processing from step S142 to step S144 is repeated the number of times corresponding to the number of combinations determined to have visibility by visibility determination based on map information (step S141).
  • the map visibility determination unit 41 determines, by the visibility determination based on the map information, that a certain representative point among the representative points included in the combinations of the candidate installation positions of the base stations determined to have visibility and the representative points of the mesh: It is checked whether or not there are a plurality of installation candidate positions for the base station determined to have visibility (step S142).
  • step S142 If there are a plurality of base station installation candidate positions determined to have line of sight for a certain representative point (step S142, YES), the map line of sight determination unit 41 does not perform the subsequent steps S143 and S144, and proceeds to the next step.
  • the processing of step S142 is performed for the representative points of .
  • step S142 determines that line of sight exists with the representative point.
  • a line-of-sight determination process based on the point cloud data is performed between the determined single base station installation candidate position and the base station (step S143).
  • the three-dimensional outlook determination unit 42 records the determination result of the outlook determination based on the point cloud data by updating the determination availability list 304 stored in the storage unit 30 (step S144).
  • the three-dimensional visibility determination unit 42 determines that there is visibility by the visibility determination based on the map information, based on the combination of the base station installation candidate position and the representative point recorded in the determination result of the visibility determination based on the point cloud data. You may make it delete from the list of combination.
  • 5 to 11 are diagrams showing an example of update of the judgment availability list 304 in the case of station placement/area design for maximizing the area.
  • FIG. 5 shows a list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information.
  • the representative points determined to have line-of-sight with the base station installation candidate position A by line-of-sight determination based on the map information are (1), (2), (3), ( 4), (5) and (6) are the six representative points, respectively.
  • the representative points determined to have line-of-sight with the base station installation candidate position B by the line-of-sight determination based on the map information are denoted by (2), (3), (4), (5) and (7). 5 representative points each noted.
  • the representative points determined to have line of sight with the base station installation candidate position C by the line of sight determination based on the map information are indicated with symbols (6), (8), (10) and (12) respectively. There are four representative points. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by the line-of-sight determination based on the map information are denoted by (8), (9), (10), (11) and (13). 5 representative points each noted. Also, the representative points determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information are the two representative points marked with symbols (13) and (14), respectively.
  • the map outlook determination unit 41 determines that there is a line of sight between at least one base station installation candidate position by the visibility determination based on the map information.
  • a representative point determined to have a line of sight with only one base station installation candidate position is specified.
  • representative points determined to have line of sight between only one base station installation candidate position by line of sight determination based on map information are (1), (7), ( 9), (11), (12) and (14) are representative points.
  • the map visibility determination unit 41 records in a list the combinations of these six representative points, each representative point, and base station installation candidate positions determined to have visibility (by visibility determination based on map information). Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 6 shows the representative points determined to have line of sight between only one base station installation candidate position in the station placement/area design for maximizing the area, and the respective representative points (in the map information).
  • a list of combinations of base station installation candidate positions determined to have line of sight (based on line of sight determination) is shown.
  • the list first includes combinations of representative points marked with the code (1) and base station installation candidate positions A, (7 ) and the base station installation candidate position B, the combination of the representative point with the code (9) and the base station installation candidate position D, and the code (11).
  • a combination of the representative point and base station installation candidate position D, a combination of the representative point with the code of (12) and the base station installation candidate position C, and the representative point with the code of (14) and the base A combination with the station installation candidate position E is recorded.
  • the list exemplified in FIG. 6 shows the results of the outlook determination based on the point cloud data for the above combinations.
  • the combination of the representative points marked with the code (1) and the base station installation candidate position A, and the combination of the representative points marked with the code (9) and the base station installation candidate position D are shown in FIG.
  • the result of the line-of-sight determination based on the point cloud data performed for each of the combinations and the combination of the representative points marked with the symbols (11) and the base station installation candidate positions D is "with line-of-sight".
  • the map outlook determining unit 41 determines that there is a line of sight for a combination of the base station installation candidate position and the representative point for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. deleted from the list of combinations of base station installation candidate positions and representative points.
  • FIG. 7 shows the base station installation determined to have a line of sight by the line of sight determination based on the map information after deleting the combination of the base station installation candidate position and the representative point for which the line of sight determination based on the point cloud data has been completed.
  • a list of combinations of candidate locations and representative points is shown. That is, the list shown in FIG. 5 is updated like the list shown in FIG.
  • the updated list it is determined that there is a line of sight between only one base station installation candidate position by line of sight determination based on map information, (1) and (7). , (9), (11), (12) and (14) are deleted.
  • the representative points determined to have line-of-sight with the base station installation candidate position A by line-of-sight determination based on the map information are (2), (3), (4), (5) and ( 6) are five representative points respectively described.
  • the representative points determined to have line-of-sight with the base station installation candidate position B by the line-of-sight determination based on the map information are indicated with symbols (2), (3), (4) and (5), respectively. There are four representative points.
  • the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are three representative points marked with symbols (6), (8) and (10), respectively. is.
  • the representative points determined to have line-of-sight with the base station installation candidate position D by line-of-sight determination based on the map information are three representative points marked with symbols (8), (10) and (13), respectively. is.
  • the representative point determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information is one representative point indicated by the code (13).
  • the map outlook determination unit 41 first determines the outlook based on the map information as described above, and selects only one base station installation candidate position. Identify representative points determined to have line-of-sight only between .
  • the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination processing based on the point cloud data between the base station installation candidate position and the identified representative point.
  • the map outlook determination unit 41 sequentially selects base station installation candidate positions in descending order of the number of representative points determined to have visibility by the visibility determination based on the map information.
  • the three-dimensional line-of-sight determination unit 42 determines between the selected base station installation candidate position and a representative point determined to have line-of-sight between the selected base station installation candidate position (by line-of-sight determination based on map information). , the line-of-sight determination process is performed based on the point cloud data.
  • base station installation candidate positions having more representative points determined to have line of sight by line of sight determination based on map information were determined to have line of sight between five representative points. This is the base station installation candidate position A.
  • the map prospect determination unit 41 selects the base station installation candidate position A.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position A and the five representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 8 shows a list to which information indicating the combination of the base station installation candidate position A and the five representative points and information indicating the result of visibility determination based on the point cloud data for each combination are newly added. It is
  • the newly added combination of the representative point indicated by the symbol (2) and the base station installation candidate position A, the representative point indicated by the symbol (3) and the base station A combination with the installation candidate position A, a combination of the representative point indicated by the code of (5) and the base station installation candidate position A, and a combination of the representative point indicated by the code of (6) and the base station installation candidate position A The result of the line-of-sight determination based on the point cloud data performed for each of the combinations is "with line-of-sight". On the other hand, the result of the line-of-sight determination based on the point cloud data for the combination of the representative point with the symbol (4) and the base station installation candidate position A is "no line-of-sight".
  • the map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position A and each representative point for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
  • FIG. 9 shows a base station determined to have a line of sight by the line of sight determination based on the map information after the combination of the base station installation candidate position A and the representative point for which the line of sight determination based on the point cloud data has been completed is deleted.
  • a list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 7 is updated like the list shown in FIG.
  • the combination of the base station installation candidate position A and the representative point is deleted from the updated list.
  • the representative point with the code (6) is deleted.
  • all the representative points determined to have a line of sight to the base station installation candidate position B by line of sight determination based on the map information are removed.
  • the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the two representative points marked with symbols (8) and (10), respectively.
  • the representative points determined to have line-of-sight with the base station installation candidate position D by line-of-sight determination based on the map information are three representative points marked with symbols (8), (10) and (13), respectively. remains Also, the representative point determined to have a line of sight with the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (13).
  • base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information are three representative points and base station installation positions determined to have line-of-sight.
  • Candidate position D Therefore, next, the map outlook determination unit 41 selects a base station installation candidate position D.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the three representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 10 shows a list to which information indicating combinations of base station installation candidate positions D and the above three representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
  • the newly added combination of the representative point indicated by the symbol (8) and the base station installation candidate position D, the representative point indicated by the symbol (10) and the base station The result of line-of-sight determination based on the point cloud data for the combination with the installation candidate position D and the combination of the representative point marked with the symbol (13) and the base station installation candidate position D is "with line-of-sight". be.
  • the map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
  • FIG. 11 shows the base stations determined to have visibility by the visibility determination based on the map information after the combinations of the base station installation candidate positions D and the representative points for which the visibility determination based on the point cloud data has been completed are deleted.
  • a list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 9 is updated like the list shown in FIG.
  • the combination of the base station installation candidate position D and the representative point is deleted from the updated list.
  • the codes (8), (10), and (13), which are determined to have a line of sight to the base station installation candidate position D by the line of sight determination based on the map information are described.
  • representative points are deleted.
  • all the representative points determined to have line of sight with the base station installation candidate position C by line of sight determination based on the map information are all gone.
  • all the representative points determined to have line of sight with the base station installation candidate position E by line of sight determination based on the map information are also gone.
  • all combinations of base station installation candidate positions and representative points are deleted from the updated list.
  • all the representative points determined to have line of sight with at least one base station candidate position by the line of sight determination based on the map information are subjected to the line of sight determination processing based on the point cloud data.
  • Station placement/area design result information 305 is obtained, which indicates that a mesh range having each of the 10 representative points described can be used as a communicable area of the terminal station.
  • FIGS. 5 to 11 Three-dimensional point cloud An example of a situation in which data-based visibility determination was performed is shown (Figs. 6, 8, and 10). However, in the visibility determination with speed priority (step S16) and the visibility determination with accuracy priority (step S17) in the flowchart shown in FIG. You can also run In this case, it is possible to cope with this problem even if the columns for the visibility determination result based on the three-dimensional point cloud data in FIGS.
  • 12 to 17 are diagrams showing an example of update of the judgment availability list 304 in the case of station placement/area design for improving accommodation efficiency.
  • FIG. 5 shows a list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information.
  • the map outlook determination unit 41 sequentially selects base station installation candidate positions in descending order of representative points determined to have visibility based on map information. continue.
  • the three-dimensional line-of-sight determination unit 42 determines between the selected base station installation candidate position and a representative point determined to have line-of-sight between the selected base station installation candidate position (by line-of-sight determination based on map information). , the line-of-sight determination process is performed based on the point cloud data.
  • the map outlook determination unit 41 selects, by the outlook determination based on the map information, among the representative points determined to have a line of sight with at least one base station installation candidate position, the target of the outlook determination based on the point cloud data.
  • the ratio of the representative points selected as has reached a predetermined ratio the above process of selecting base station installation candidate positions to be used in the subsequent line-of-sight determination process based on the three-dimensional point cloud data ends. do.
  • base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information are six representative points and base station installation positions determined to have line-of-sight.
  • the map outlook determination unit 41 records information indicating combinations of base station installation candidate positions A and the six representative points in a list. Then, the three-dimensional view determination unit 42 performs view determination based on the point cloud data for combinations of base station installation candidate positions and representative points recorded in the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 12 shows a list in which information indicating combinations of base station installation candidate positions A and the above six representative points and information indicating results of visibility determination based on point cloud data for each combination are recorded.
  • the result of line-of-sight determination based on the point cloud data, which is performed for each combination of the representative points marked with , and the base station installation candidate position A, is "line-of-sight available".
  • the result of the line-of-sight determination based on the point cloud data for the combination of the representative point with the symbol (4) and the base station installation candidate position A is "no line-of-sight".
  • the map visibility determination unit 41 determines that there is a visibility by determining the visibility based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
  • FIG. 13 shows a base station determined to have a line of sight by the line of sight determination based on the map information after the combination of the base station installation candidate position A and the representative point for which the line of sight determination based on the point cloud data has been completed is deleted.
  • a list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 5 is updated like the list shown in FIG.
  • the combination of base station installation candidate position A and the representative point is deleted. Further, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position A and (1), (2), (3), (4), The representative points marked with (5) and (6) are deleted. As a result, in the updated list, the representative point determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information is one representative point marked with the code (7). be. Also, the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the three representative points marked with symbols (8), (10) and (12), respectively. is.
  • the representative points determined to have line-of-sight with the base station installation candidate position D by the line-of-sight determination based on the map information are denoted by (8), (9), (10), (11) and (13). Remaining 5 representative points each listed. Also, the representative points determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information are still the two representative points marked with symbols (13) and (14). .
  • base station installation candidate positions that have more representative points determined to have visibility by visibility determination based on map information are five representative points and base station installation locations determined to have visibility.
  • Candidate position D Therefore, the map outlook determination unit 41 selects the base station installation candidate position D.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the five representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 14 shows a list to which information indicating combinations of base station installation candidate positions D and the five representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
  • the result of the line-of-sight determination based on the point cloud data performed for each of the combination and the combination of the representative point with the symbol (13) and the base station installation candidate position D is "with line-of-sight".
  • the map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
  • FIG. 15 shows the base stations determined to have visibility by the visibility determination based on the map information after the combinations of the base station installation candidate positions D and the representative points for which the visibility determination based on the point cloud data has been completed are deleted.
  • a list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 13 is updated like the list shown in FIG.
  • the combination of base station installation candidate positions D and representative points is deleted from the updated list.
  • the representative point determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information is one representative point marked with the code (7). be.
  • the representative point determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information is one representative point indicated by the code (12).
  • a representative point determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information is one representative point indicated by the code (14).
  • base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information are These are station installation candidate positions B, C and E. Therefore, the map prospect determination unit 41 arbitrarily selects one candidate base station installation position. Here, it is assumed that the map outlook determination unit 41 selects the base station installation candidate position B. FIG. Note that the map prospect determination unit 41 may select the base station installation candidate position C or E. FIG.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position B and the one representative point to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 16 shows a list to which information indicating the combination of the base station installation candidate position B and the one representative point and information indicating the result of visibility judgment based on the point cloud data for each combination are newly added. It is
  • the result of the visibility determination based on the point cloud data for the combination of the newly added representative point marked with the symbol (7) and the base station installation candidate position B is There is no line of sight.
  • the map outlook determining unit 41 converts the combination of the base station installation candidate position B, for which the outlook determination based on the point cloud data has been completed, and the representative point indicated by the code (7) into the map information shown in FIG. base station installation candidate positions and representative points that are determined to have a line of sight by the line of sight determination based on the base station.
  • FIG. 17 after deleting the combination of the base station installation candidate position B for which the visibility determination based on the point cloud data has been completed and the representative point with the code (7), the visibility determination based on the map information A list of combinations of base station installation candidate positions determined to have visibility and representative points is shown. That is, the list shown in FIG. 15 is updated like the list shown in FIG.
  • the combination of base station installation candidate position B and the representative point with the code (7) is deleted.
  • the representative point determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information remains as one representative point marked with the code (12).
  • the representative point determined to have a line of sight to the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (14).
  • representative points for which line-of-sight determination is made based on point cloud data with any of the base station candidate positions are shown in FIG. 16 ( 1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) and (13) are respectively It is the representative point described and the number is 12 pieces. Also, a representative determined to have a line of sight with at least one of all base station installation candidate positions (that is, base station installation candidate positions A to E) in the evaluation target area by line of sight determination based on map information. The total number of points is 14 as shown in FIG.
  • the predetermined ratio is 80[%]
  • the above ratio has reached the predetermined ratio. and B are selected, the above process of selecting base station installation candidate positions to be used in the visibility determination process based on the three-dimensional point cloud data ends.
  • FIGS. 12 and 16 An example of a situation in which up to is carried out is shown.
  • the line-of-sight determination is made based on the three-dimensional point cloud data in the subsequent processing in the flow chart (FIG. 2) of the overall operation of the station placement/area design support device 1 .
  • FIG. 18 is a flow chart showing an example of operations in the line-of-sight determination process of the station placement/area design support apparatus 1 according to the first embodiment of the present invention.
  • the three-dimensional outlook determining unit 42 acquires the number of points of point cloud data acquired between the base station installation candidate position and the representative point, which are targets of visibility determination based on the point cloud data (step S1431). .
  • step S1431 If the number of pieces of point cloud data acquired in step S1431 is equal to or less than the predetermined threshold (step S1432: YES), it is considered that there is no shielding object between the base station installation candidate position and the representative point. , the three-dimensional view determination unit 42 determines that the result of the view determination based on the point cloud data is "with view” (step S1436).
  • step S1432 determines that the area between the base station installation candidate position and the representative point is blocked.
  • the outlook is determined in consideration of the rate (step S1433).
  • the line-of-sight determination considering the shielding rate referred to here means the shielding rate of the Fresnel zone formed between the two stations. It is a visibility determination based on A method of calculating the shielding rate of the Fresnel zone will be described later.
  • step S1434 If the shielding rate calculated in the line-of-sight determination considering the shielding rate in step S1434 is equal to or less than the predetermined threshold (step S1434, YES), there are few shielding objects between the base station installation candidate position and the representative point ( or small), the three-dimensional outlook determining unit 42 determines that the result of the visibility determination based on the point cloud data is "with visibility" (step S1436).
  • step S1434 when the shielding rate calculated in the visibility determination considering the shielding rate in step S1433 is higher than the predetermined threshold value (step S1434, NO), the three-dimensional outlook determination unit 42 determines the result of the visibility determination based on the point cloud data. "No line of sight" (step S1435). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 18 is completed.
  • the visibility is determined based on the three-dimensional point cloud data collected by MMS or the like, but the present invention is not limited to this.
  • Other data indicating the position of a shield may be used as long as the data contains more information than the map information. In this case, it is possible to determine the line of sight considering the shielding rate even in city data that does not include the travel traces of MMS vehicles or the like.
  • the three-dimensional line-of-sight determination unit 42 determines the frequency of the Fresnel zone formed between the base station and the terminal station (that is, when the Fresnel zone is formed between the base station installation candidate position and the representative point of each mesh).
  • the point cloud data 303 is used to determine whether or not communication is possible. For example, the three-dimensional outlook determination unit 42 determines that communication is impossible if the shielding rate is higher than a predetermined threshold, and determines that communication is possible if the shielding rate is equal to or less than the predetermined threshold.
  • Fresnel zone radius of the Fresnel zone in the millimeter wave band is, for example, about 25 [cm] at maximum when transmitting a distance of 50 [m] using electromagnetic waves in the 60 [GHz] band.
  • the station placement/area design support device 1 can present a wider communicable area.
  • FIG. 19 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz.
  • FIG. 19 shows a base station bs installed on a utility pole p and a terminal station ts.
  • FIG. 19 also shows a Fresnel zone fz formed between the base station bs and the terminal station ts.
  • FIG. 19 also shows three cross sections (cross section cs1, cross section cs2, and cross section cs3) of the Fresnel zone fz.
  • the cross section cs1, the cross section cs2, and the cross section cs3 are planes orthogonal to the straight line connecting the base station bs and the terminal station ts. In this case, as shown in FIG. 19, the cross section cs1, the cross section cs2, and the cross section cs3 are circular.
  • the radii of cross-section cs1, cs2 and cs3 are r 1 , r 2 and r 3 respectively
  • a cross section cs1 has an area sh1-1, which is a point cloud data area. Also, in the cross section cs2, there are an area sh1-2 where the above-mentioned area sh1-1 is projected and an area sh2-2 which is an area of the point cloud data. Further, on the cross section cs3, an area sh1-3 obtained by further projecting the above-described area sh1-2, an area sh2-3 obtained by further projecting the above-described area sh2-2, and an area sh2-3 which is an area of the point cloud data sh3-3 is present.
  • the terminal station ts is installed in a building in FIG. 19, the same applies even if the terminal station is a mobile terminal as in this embodiment.
  • the three-dimensional view determination unit 42 for example, superimposes a plurality of cross sections of the Fresnel zone fz. Then, the three-dimensional outlook determination unit 42 calculates, as the shielding rate, the ratio of the area of the point cloud data to the area of the superimposed cross sections. The three-dimensional view determination unit 42 determines whether communication between the base station bs and the terminal station ts is possible by comparing the calculated shielding rate with a predetermined threshold. Alternatively, the three-dimensional line-of-sight determination unit 42 determines whether or not there is line-of-sight between the base station bs and the terminal station ts based on the superimposed cross sections, thereby enabling communication between the base station bs and the terminal station ts. Judge whether or not it is possible.
  • the station placement/area design support device 1 of the present embodiment it is possible to selectively use the station placement/area design for maximizing the area and the station placement/area design for improving accommodation efficiency. become.
  • the station placement/area design support device 1 in this embodiment can be applied to station placement design of a radio communication system (especially a mobile communication system) that mainly uses millimeter waves and covers an urban area as a service area.
  • a radio communication system especially a mobile communication system
  • the base station is installed in a position where communication can be established in urban areas. The idea has been taken.
  • the station placement/area design support device 1 performs station placement/area design for maximizing the area by performing "by determining the outlook based on the map information, A representative point determined to have a line of sight between only one base station installation candidate position is specified, and the combination of the base station installation candidate position and the representative point is converted to three-dimensional point cloud data in the latter stage. According to the needs of the user, it is only a minor algorithm change that prioritizes the process of "targeting the outlook judgment process based on the forecast" and omits this process when station placement / area design is performed to improve accommodation efficiency. station placement and area design.
  • the processing modes include, for example, a processing mode of "view determination prioritizing processing load reduction” and a processing mode of "view determination prioritizing accuracy", as shown in steps S16 and S17 of the flowchart of FIG.
  • FIG. 20 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the first embodiment of the present invention in view determination prioritizing processing load reduction.
  • the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 20 is a detailed version of the operation of step S16 shown in FIG.
  • step S162 the processing from step S162 to step S163 is repeated the number of times corresponding to the number of base station installation candidate positions (step S161).
  • the map visibility determining unit 41 identifies the base station installation candidate position that has the largest number of representative points that are determined to have visibility by visibility determination based on the map information (step S162).
  • step S164 to step S166 is repeated the number of times corresponding to the number of representative points (step S163). That is, the loop processing of step S163 is repeatedly performed for each candidate base station installation position.
  • step S164 the three-dimensional view determination unit 42 performs view determination processing based on the point cloud data between the base station installation candidate position and the representative point (step S164).
  • the process of step S164 corresponds to the line-of-sight determination process of the station placement/area design support apparatus 1 shown in FIG. 18, for example.
  • the three-dimensional outlook determination unit 42 records the determination result of the outlook determination based on the point cloud data by updating the determination availability list 304 stored in the storage unit 30 (step S165).
  • the three-dimensional visibility determining unit 42 determines that the combination of the base station installation candidate position and the representative point recorded the determination result of the visibility determination based on the point cloud data has visibility by the visibility determination based on the map information. Remove from list of combinations.
  • the map outlook determination unit 41 predetermines the ratio of representative points for which outlook determination based on the point cloud data has been performed, among the representative points determined to have visibility by the outlook determination based on the map information. It is determined whether or not it is equal to or greater than the threshold (step S166). In addition, in the outlook determination process with priority on reducing the processing load (unlike the outlook determination process with priority on accuracy, which will be described later), the map outlook determination unit 41 determines the above-mentioned ratio to be compared with the above-described threshold value. It is not considered whether the result of the visibility determination based on the data was "with visibility" or "no visibility".
  • step S163 If the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is less than the predetermined threshold value (step S166, NO), step S163. Alternatively, returning to step S161, the three-dimensional view determination unit 42 further performs view determination based on the point cloud data for other base station installation candidate positions and other representative points.
  • step S166, YES if the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is equal to or greater than the predetermined threshold value (step S166, YES), The map outlook determination unit 41 terminates the outlook determination process with priority given to reducing the processing load. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 20 is completed.
  • the judgment availability list 304 updated by the priority outlook judgment processing is as shown in FIGS. 5 to 11.
  • FIG. when the percentage of representative points for which visibility determination based on point cloud data is further performed out of the representative points determined to have visibility by visibility determination based on map information reaches or exceeds a predetermined threshold, The updating of the judgment availability list 304 ends.
  • the determination availability list 304 updated by the priority outlook determination process is as shown in FIGS. 5 and 12 to 17.
  • FIG. when the percentage of representative points for which visibility determination based on point cloud data is further performed out of the representative points determined to have visibility by visibility determination based on map information reaches or exceeds a predetermined threshold, The updating of the judgment availability list 304 ends.
  • FIG. 21 is a flow chart showing the operation of the station placement/area design support apparatus 1 in the accuracy-prioritized outlook determination according to the first embodiment of the present invention.
  • the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 21 is a detailed version of the operation of step S17 shown in FIG.
  • step S172 to step S173 that is, step S174 to step S177
  • step S171 the loop processing from step S172 to step S173 (that is, step S174 to step S177) is repeated the number of times corresponding to the number of base station installation candidate positions (step S171).
  • the map visibility determining unit 41 identifies the base station installation candidate position that has the largest number of representative points that are determined to have visibility by visibility determination based on the map information (step S172).
  • step S173 the processing from step S174 to step S177 is repeated the number of times corresponding to the number of representative points. That is, the loop processing of step S173 is repeatedly performed for each candidate base station installation position.
  • step S174 the three-dimensional view determination unit 42 performs view determination processing based on the point cloud data between the base station installation candidate positions and the representative points. Note that the process of step S174 corresponds to, for example, the outlook determination process of the station placement/area design support apparatus 1 shown in FIG. 18 described above.
  • step S174 if the result of the visibility determination based on the point cloud data is "with visibility" (step S175: YES), the three-dimensional visibility determination unit 42 stores the determination result of the visibility determination based on the point cloud data in the storage unit. 30 is recorded by updating the decision acceptance/rejection list 304 (step S176). In addition, the three-dimensional visibility determining unit 42 determines that the combination of the base station installation candidate position and the representative point recorded the determination result of the visibility determination based on the point cloud data has visibility by the visibility determination based on the map information. Remove from list of combinations.
  • step S174 if the result of the visibility determination based on the point cloud data is "no visibility" (step S175, NO), the 3D visibility determination unit 42 omits the processing of step S176.
  • the map outlook determination unit 41 determines, among the representative points determined to have visibility by the visibility determination based on the map information, the representative points determined to have visibility by the visibility determination based on the point cloud data as well. is greater than or equal to a predetermined threshold value (step S177).
  • step S177 NO
  • the process returns to step S173 or step S171, and the three-dimensional visibility determination unit 42 further performs visibility determination based on the point cloud data for other base station installation candidate positions and other representative points.
  • the map outlook determination unit 41 terminates the accuracy-prioritized outlook determination process.
  • the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 21 is completed.
  • the judgment availability list 304 updated by the process is as follows. However, out of the representative points determined to have a line of sight by the line of sight determination based on the map information, the ratio of the representative points similarly determined to have line of sight by the line of sight determination based on the point cloud data is a predetermined threshold. Updating of the judgment availability list 304 ends when the above is reached.
  • the determination availability list 304 which is updated by the outlook determination process with priority given to accuracy and with area maximization specified, is the determination availability list 304 with area maximization specified and updated by the above-described outlook determination process with priority given to reducing the processing load; 5 to 7 are the same.
  • FIGS. 22 to 26 are diagrams showing an example of update of the judgment availability list 304 in the case of carrying out accuracy-prioritized station placement/area design for maximizing the area.
  • FIG. 22 shows a list to which information indicating the combination of the base station installation candidate position A and the above four representative points and information indicating the result of visibility determination based on the point cloud data for each combination are newly added. It is
  • the result of the visibility determination based on the point cloud data for the combination of the representative point with the sign of (4) and the base station installation candidate position A has not been added. That is, it means that the result of visibility determination based on the point cloud data for the combination of the representative points marked with the code of 4) and the base station installation candidate position A was "no visibility".
  • the map visibility determining unit 41 selects the representative points included in the combinations for which the determination result is "with visibility" among the combinations of the base station installation candidate position A and each representative point for which the visibility determination based on the point cloud data has been completed. , are deleted from the list of combinations of base station installation candidate positions and representative points determined to have visibility by the visibility determination based on the map information shown in FIG.
  • FIG. 23 shows a base station installation candidate position A for which line-of-sight determination based on point cloud data has been completed, and after the combination of the base station installation candidate position A and the representative point determined to have line-of-sight is deleted.
  • a list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information is shown. That is, the list shown in FIG. 7 is updated like the list shown in FIG.
  • the combination of the base station installation candidate position A and the representative point is deleted from the updated list.
  • the list after updating it is determined that there is a line of sight between the base station installation candidate position A and (2), (3), (5), and (6) by the line of sight determination based on the map information.
  • Representative points with symbols are deleted.
  • the representative point determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information is one representative point marked with the code (4). be.
  • the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the two representative points marked with symbols (8) and (10), respectively.
  • the representative points determined to have line-of-sight with the base station installation candidate position D by line-of-sight determination based on the map information are three representative points marked with symbols (8), (10) and (13), respectively. remains Also, the representative point determined to have a line of sight with the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (13).
  • the representative points marked with (4) were determined to have visibility based on the visibility determination based on the map information, but were determined to have no visibility based on the point cloud data, so they were left without being deleted. there is Therefore, in subsequent processing, there remains a possibility that line-of-sight determination processing based on the point cloud data will be performed between the base station installation candidate position B and the representative point indicated by the code (4). That is, in the accuracy-prioritized outlook determination process, the outlook determination process may be performed on one representative point based on point cloud data of a plurality of base station installation candidate positions. As a result, in the outlook determination process with priority given to accuracy, the determination accuracy is further improved as compared with the outlook determination process with priority given to reducing the processing load.
  • base station installation candidate positions that have more representative points determined to have visibility by visibility determination based on map information are three representative points and base station installation locations determined to have visibility.
  • Candidate position D Therefore, next, the map outlook determination unit 41 selects a base station installation candidate position D.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the three representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 24 shows a list to which information indicating combinations of base station installation candidate positions D and the above three representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
  • the newly added combination of the representative point indicated by the symbol (8) and the base station installation candidate position D, the representative point indicated by the symbol (10) and the base station The result of line-of-sight determination based on the point cloud data for the combination with the installation candidate position D and the combination of the representative point marked with the symbol (13) and the base station installation candidate position D is "with line-of-sight". be.
  • the map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
  • FIG. 25 shows the base stations determined to have visibility by the visibility determination based on the map information after the combinations of the base station installation candidate positions D and the representative points for which the visibility determination based on the point cloud data has been completed are deleted.
  • a list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 23 is updated like the list shown in FIG.
  • the combination of the base station installation candidate position D and the representative point is deleted.
  • the codes (8), (10), and (13), which are determined to have a line of sight to the base station installation candidate position D by the line of sight determination based on the map information are described.
  • representative points are deleted.
  • the representative points determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information are one representative point marked with the code (4). remain. All of the representative points determined to have line of sight with the base station installation candidate position C have disappeared.
  • all the representative points determined to have line of sight with the base station installation candidate position E by line of sight determination based on the map information are also gone.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position B and the one representative point to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 26 shows information indicating the combination of the base station installation candidate position B and the above one representative point (that is, the representative point with the code (4)), and outlook determination based on the point cloud data of the combination. A list with newly added information indicating the results of the is shown.
  • the result of the visibility determination based on the point cloud data for the combination of the newly added representative point marked with the symbol (4) and the base station installation candidate position B is It is "with prospect”.
  • the map outlook determination unit 41 determines that there is a line of sight for the combination of the base station installation candidate position B and the representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. deleted from the list of combinations of base station installation candidate positions and representative points. After deleting the combination of the candidate base station installation position B and the representative point for which the visibility determination based on the point cloud data has been completed, the candidate base station installation position determined to have a line of sight by the visibility determination based on the map information and the representative point
  • the list of combinations with points is similar to the list in FIG. 11 described above.
  • all combinations of base station installation candidate positions and representative points are deleted from the updated list.
  • all the representative points determined to have line of sight with at least one base station candidate position by the line of sight determination based on the map information are subjected to the line of sight determination processing based on the point cloud data.
  • the ratio of the representative points similarly determined to have line of sight by the line of sight determination based on the point cloud data is a predetermined threshold. Updating of the judgment availability list 304 ends when the above is reached.
  • the determination availability list 304 updated by the outlook determination process is as follows. However, among the representative points determined to have visibility by the visibility determination based on the map information, the ratio of the representative points determined to have visibility similarly by the visibility determination based on the point cloud data is equal to or greater than a predetermined threshold. Updating of the judgment availability list 304 ends at the point in time.
  • the result of the station placement/area design with priority given to processing load reduction for maximizing the area (FIG. 10) and the result of the station placement/area design with priority given to accuracy for maximizing the area (FIG. 26).
  • the result of station placement/area design with priority on accuracy (Fig. 26) differs from the result of station placement/area design with priority on reducing the processing load (Fig. 10). It can be seen that there is a case where a combination of a base station installation candidate position determined to exist and a representative point (for example, a representative point labeled with (4)) is selected.
  • FIGS. 27 to 31 are diagrams showing an example of updating the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for improving accommodation efficiency.
  • FIG. 27 shows a list to which information indicating combinations of base station installation candidate positions A and five representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. ing.
  • the result of line-of-sight determination based on the point cloud data, which is performed for each combination of the representative points marked with , and the base station installation candidate position A, is "line-of-sight available".
  • the result of the visibility determination based on the point cloud data for the combination of the representative point with the sign of (4) and the base station installation candidate position A has not been added. That is, it means that the result of visibility determination based on the point cloud data for the combination of the representative points marked with the code of 4) and the base station installation candidate position A was "no visibility".
  • the map visibility determining unit 41 selects the representative points included in the combinations for which the determination result is "with visibility" among the combinations of the base station installation candidate position A and each representative point for which the visibility determination based on the point cloud data has been completed. , are deleted from the list of combinations of base station installation candidate positions and representative points determined to have visibility by the visibility determination based on the map information shown in FIG.
  • FIG. 28 shows a base station installation candidate position A for which line-of-sight determination based on point cloud data has been completed, and a combination of the base station installation candidate position A and a representative point determined to have line-of-sight, after deletion.
  • a list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information is shown. That is, the list shown in FIG. 5 is updated like the list shown in FIG.
  • the combination of base station installation candidate position A and the representative point is deleted.
  • Representative points with symbols are deleted.
  • the representative points determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information are marked with symbols (4) and (7), respectively. There are two representative points.
  • the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the three representative points marked with symbols (8), (10) and (12), respectively. is. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by the line-of-sight determination based on the map information are denoted by (8), (9), (10), (11) and (13). Remaining 5 representative points each listed. Also, the representative points determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information remain the two representative points marked with (13) and (14).
  • the representative points marked with (4) were determined to have visibility based on the visibility determination based on the map information, but were determined to have no visibility based on the point cloud data, so they were left without being deleted. there is Therefore, in subsequent processing, there remains a possibility that line-of-sight determination processing based on the point cloud data will be performed between the base station installation candidate position B and the representative point indicated by the code (4). That is, in the accuracy-prioritized outlook determination process, the outlook determination process may be performed on one representative point based on point cloud data of a plurality of base station installation candidate positions. As a result, in the outlook determination process with priority given to accuracy, the determination accuracy is further improved as compared with the outlook determination process with priority given to reducing the processing load.
  • base station installation candidate positions having more representative points determined to have visibility by visibility determination based on map information are five representative points and base station installation locations determined to have visibility.
  • Candidate position D Therefore, next, the map outlook determination unit 41 selects a base station installation candidate position D.
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the five representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 29 shows a list to which information indicating combinations of base station installation candidate positions D and the five representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
  • the result of the line-of-sight determination based on the point cloud data, which is performed for the combination and the combination of the representative point with the symbol (13) and the base station installation candidate position D, is "with line-of-sight".
  • the map outlook determination unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
  • FIG. 30 shows a base station determined to have a line of sight by the line of sight determination based on the map information after the combination of the base station installation candidate position D and the representative point for which the line of sight determination based on the point cloud data has been completed is deleted.
  • a list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 28 is updated like the list shown in FIG.
  • the combination of base station installation candidate positions D and representative points is deleted from the updated list.
  • the list after updating it is determined that there is a line of sight between the base station installation candidate position D and (8), (9), (10), (11) and The representative point with the code (13) is deleted.
  • the representative points determined to have line-of-sight with the base station installation candidate position B by the line-of-sight determination based on the map information are indicated by the symbols (4) and (7). remains one representative point.
  • the representative point determined to have line of sight with the base station installation candidate position C is one representative point indicated by the code (12).
  • the map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position B and the above two representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
  • FIG. 31 shows information indicating the combination of the base station installation candidate position B and the two representative points (that is, the representative points marked with the symbols (4) and (7)), and the point cloud data of the combination. A newly added list of information indicating the result of the line-of-sight determination based on is shown.
  • the result of the visibility determination based on the point cloud data performed for the combination of the newly added representative point marked with the symbol (4) and the base station installation candidate position B is It is "with prospect”. Also, the result of visibility determination based on the point cloud data for the combination of the representative point with the code (7) and the base station installation candidate position B is "no visibility”.
  • the map outlook determination unit 41 determines that there is a line of sight for the combination of the base station installation candidate position B and the representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. deleted from the list of combinations of base station installation candidate positions and representative points. After deleting the combination of the candidate base station installation position B and the representative point for which the visibility determination based on the point cloud data has been completed, the candidate base station installation position determined to have a line of sight by the visibility determination based on the map information and the representative point A list of combinations with points is similar to the list in FIG. 17 described above.
  • the combination of the base station installation candidate position B and the representative points with the codes (4) and (7) are deleted.
  • the representative point determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information remains as one representative point marked with the code (12).
  • the representative point determined to have a line of sight to the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (14).
  • representative points for which line-of-sight determination is made based on point cloud data with any of the base station candidate positions are shown in FIG. 1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) and (13) are respectively It is the representative point described and the number is 12 pieces. Also, a representative determined to have a line of sight with at least one of all base station installation candidate positions (that is, base station installation candidate positions A to E) in the evaluation target area by line of sight determination based on map information. The total number of points is 14 as shown in FIG.
  • the predetermined ratio is 80[%]
  • the above ratio has reached the predetermined ratio. and B are selected, the above process of selecting base station installation candidate positions to be used in the visibility determination process based on the three-dimensional point cloud data ends.
  • the result of the station placement/area design with priority given to processing load reduction for improving accommodation efficiency (FIG. 16) and the result of station placement/area design with priority given to accuracy for improving accommodation efficiency (FIG. 31).
  • the result of station placement and area design with priority on accuracy (Fig. 31) differs from the result of station placement and area design with priority on reducing the processing load (Fig. 16). It can be seen that there are more combinations of base station installation candidate positions and representative points (for example, representative points marked with (4)) that are determined to exist.
  • the map view view determination unit 41 determines the representative points for which the view determination based on the point cloud data has been performed with one of the base station installation candidate positions. does not perform visibility determination based on point cloud data with other base station installation candidate positions. Further, in the outlook determination process with priority on reducing the processing load, the map outlook determination unit 41 further performs outlook determination based on the point cloud data among the representative points determined to have visibility by the outlook determination based on the map information. If the ratio of representative points obtained is equal to or greater than a predetermined threshold value, the outlook determination process based on the point cloud data is ended.
  • the map outlook determination unit 41 can further reduce the processing load in the station placement/area design process in the outlook determination process with priority given to reducing the processing load, compared to the outlook determination process with priority given to accuracy. be able to.
  • the map outlook determination unit 41 determines the outlook with one of the base station installation candidate positions based on the point cloud data, and For representative points with "no line-of-sight", line-of-sight determination may be further performed based on point cloud data with other base station installation candidate positions. That is, in the accuracy-prioritized outlook determination process, the outlook determination process may be performed on one representative point based on point cloud data of a plurality of base station installation candidate positions.
  • the map outlook determination unit 41 further performs outlook determination based on point cloud data among the representative points determined to have visibility by the outlook determination based on the map information, and , and when the ratio of representative points for which the determination result is "with visibility" is equal to or greater than a predetermined threshold value, the visibility determination processing based on the point cloud data is ended.
  • the map outlook determination unit 41 increases the processing accuracy in the station placement/area design process compared to the outlook determination process with priority on reducing the processing load. be able to.
  • FIG. 19 shows a method of determining whether or not there is a line of sight between the base station installation candidate position and the representative point in consideration of the shielding rate of the Fresnel zone formed between the two stations. explained with reference.
  • the three-dimensional outlook determination unit 42 overlaps, for example, multiple cross sections of the Fresnel zone fz. Then, the three-dimensional outlook determination unit 42 calculates, as the shielding rate, the ratio of the area of the point cloud data to the area of the superimposed cross sections.
  • the three-dimensional view determination unit 42 is configured to determine whether communication between the base station bs and the terminal station ts is possible by comparing the calculated shielding rate with a predetermined threshold value.
  • the three-dimensional line-of-sight determination unit 42 determines whether or not there is line-of-sight between the base station bs and the terminal station ts based on the superimposed cross sections, thereby enabling communication between the base station bs and the terminal station ts. This is the configuration for judging whether or not it is possible.
  • the station placement/area design support device 1 reduces the processing load of the line-of-sight determination processing by regarding the Fresnel zone as a simpler circular shape.
  • the radius of the circular cross-section of the Fresnel zone which is a spheroid, is a hundred and several tens [m] when the frequency of radio waves used for wireless communication is high (for example, in the millimeter wave band). At most, it is several tens [cm] and less than 1 [m].
  • the object to be measured is located at a distance of about several tens [m] (e.g., 50 [m] or more) from the MMS. Even so, the measurement interval of the point cloud data is about ten and several [cm]. In this way, it is possible to acquire point cloud data at sufficiently dense intervals.
  • FIG. 32 is a schematic diagram showing how visibility is determined by regarding the Fresnel zone as a cylinder.
  • FIG. 32 shows a base station bs, a mobile station ts (corresponding to a representative point), and a cylindrical Fresnel zone (hereinafter referred to as “cylindrical Fresnel zone Cz”).
  • the length of the cylindrical Fresnel zone Cz (i.e. the distance between the base station bs and the mobile station ts) is d and the circular cross section which is the vertical cross section of the cylindrical Fresnel zone Cz is r.
  • the radius r may be a predetermined value, or a value such as the maximum radius of the circular cross section of the Fresnel zone of the spheroid originally formed between the base station bs and the mobile station ts. There may be.
  • the user using the station placement/area design support device 1 in this embodiment may set the radius r of the circular cross section in the cylindrical Fresnel zone Cz according to the length.
  • the process of overlapping the shielding portions of the circular cross-sections of different sizes is complicated.
  • the Fresnel zone fz as a cylindrical Fresnel zone Cz, the above complex process can be replaced with a simple process of counting the number of point cloud data present in the cylinder.
  • the station placement/area design support device 1 has a view determination that gives priority to reducing the processing load, even during the view determination process based on the point cloud data. , when the number (or percentage) of representative points judged to have no visibility reaches a certain number, give up and terminate the process. Then, the station placement/area design support apparatus 1 terminates the process and displays a warning (alert) so that the other base station installation candidate positions are subject to the outlook determination process based on the point cloud data. prompt the user.
  • the warning display is, for example, "At this base station installation candidate position, there are many areas where there is no line of sight between the base station and the terminal station's accommodation range is narrow. Other base station installation It is recommended to re-evaluate at the candidate position.” or the like is displayed to notify the user.
  • FIG. 34 is a diagram for explaining conditions for terminating visibility determination processing based on point cloud data for a certain base station installation candidate position.
  • the horizontal axis of the graph shown in FIG. 34 represents the number Cp of representative points for which the line-of-sight determination processing based on the point cloud data has been performed for a given base station installation candidate position.
  • the vertical axis of the graph shown in FIG. 34 represents the number Co of representative points determined to have visibility among the number Cp of representative points subjected to visibility determination processing based on the point cloud data.
  • Ca is expressed as Ca ⁇ Co+Cn when the accuracy-prioritized line-of-sight determination is performed. This is because, in the case of performing the visibility determination with priority given to accuracy, the visibility determination between a plurality of base station installation candidate positions may be performed for the same representative point.
  • the total number of outlook determination processes based on point cloud data is Ca.
  • this Ca is a representative determined to have visibility by the visibility determination based on the map information when performing station placement/area design for maximizing the area and when performing visibility determination with priority on reducing the processing load.
  • the number of times the visibility determination process based on the point cloud data is performed is Cp.
  • Rp/a Cp ⁇ Ca
  • Rp/a is the rate of execution of the outlook determination process based on the point cloud data (hereinafter also referred to as the "achievement rate").
  • Rp/a 100[%].
  • Th0 be a threshold representing the rate at which a probable determination result is obtained in view determination based on point cloud data.
  • the threshold Th0 exists in the middle of the Cp value on the horizontal axis from 0 to Ca.
  • the rate (achievement rate) Rp/a at which the outlook determination process based on the point cloud data is performed is Th0 or more
  • the number of representative points determined to have visibility at the time when all the outlook determination processes are completed. is predictable.
  • the shaded range represents the point in time when the achievement rate reaches Th0 or higher.
  • Th1 be a threshold representing an allowable percentage of the representative points determined to have visibility during the processing of the visibility determination process based on the point cloud data.
  • Ro/a be the ratio of representative points determined to have a line of sight during the line of sight determination process based on the point cloud data.
  • the station placement/area design support apparatus 1 terminates the evaluation of visibility determination based on the point cloud data for the base station installation candidate position even if it is in the middle of the evaluation, and terminates the evaluation. It shifts to the line-of-sight determination process for the candidate position.
  • the map outlook determination unit 41 selects point cloud data among the representative points determined to have visibility by the outlook determination based on the map information.
  • a predetermined threshold value This threshold is hereinafter referred to as Th3.
  • the station placement/area design support apparatus 1 terminates the evaluation of visibility determination based on the point cloud data for the base station installation candidate position even if it is in the middle of the evaluation, and terminates the evaluation. It shifts to the line-of-sight determination process for the candidate position.
  • the magnitude relationship between the thresholds Th1 and Th2 is Th1 ⁇ Th2.
  • the value of the ratio Ro/p of the representative points determined to have visibility in the middle of the visibility determination process based on the point cloud data may become a larger value due to the subsequent visibility determination process.
  • this is because the value of the ratio Ro/a of the representative points determined to have visibility at the time of completion of the visibility determination processing based on the point cloud data is a fixed value. Therefore, the threshold Th1 at the midpoint of the outlook determination process is made smaller than the threshold Th2 at the completion of the outlook determination process.
  • FIG. 35 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the third embodiment of the present invention in view determination prioritizing processing load reduction.
  • the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 35 is basically the detailed operation of step S16 shown in FIG. 2 in the first embodiment.
  • step S361 to step S365 in the flowchart shown in FIG. 35 is the same as the processing from step S161 to step S165 in the flowchart shown in FIG.
  • the three-dimensional outlook determination unit 42 updates the determination availability list 304 in step S365, and performs outlook determination based on the map information on the combinations of the base station installation candidate positions and the representative points recorded in the determination result of the visibility determination based on the point cloud data. After deleting from the list of combinations determined to have prospects by , the achievement rate Rp/a is calculated (step S366).
  • step S366 If the achievement rate Rp/a is less than the value of the threshold Th0 (step S366, NO), the process returns to the loop of step S363 or step S361, and the three-dimensional visibility determination unit 42 determines other base station installation candidate positions and other representative positions. For the points, line-of-sight judgment is further performed based on the point cloud data.
  • step S366 YES
  • the three-dimensional view determination unit 42 determines the percentage of representative points that are determined to have no view by the view determination based on the point cloud data. It is checked whether or not there are many (step S367).
  • the three-dimensional outlook determination unit 42 determines that the value of Ro/p, which is the ratio of representative points determined to have no visibility in the outlook determination based on the point cloud data, is Ro/p ⁇ Th1 (that is, , the proportion of representative points determined to have no visibility is large) or Ro/p ⁇ Th1 (that is, the proportion of representative points determined to have no visibility is small).
  • step S367 If there is a large percentage of representative points that are judged to have no visibility in the visibility judgment based on the point cloud data (YES in step S367, that is, if Ro/p ⁇ Th1), the base station installation candidate position currently being evaluated. Terminates the visibility determination process for . Then, the output unit 50 performs a warning display (alert) for prompting the user to perform the visibility determination process based on the point cloud data with other base station installation candidate positions as evaluation targets (step S370). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 35 is completed.
  • step S367, NO; that is, when Ro/p ⁇ Th1) the map outlook determination unit 41 Determining whether or not a ratio of representative points for which line-of-sight determination based on point cloud data has been further performed among representative points determined to have line-of-sight by line-of-sight determination based on information is equal to or greater than a predetermined threshold value Th3. (Step S368).
  • step S368 If the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is less than the predetermined threshold Th3 (step S368, NO), step Returning to step S363 or step S361, the three-dimensional view determination unit 42 further performs view determination based on the point cloud data for other base station installation candidate positions and other representative points.
  • the three-dimensional outlook determining unit 42 confirms whether or not there is a large proportion of representative points determined to have no visibility in the outlook determination based on the point cloud data (step S369).
  • the three-dimensional outlook determination unit 42 determines that the value of Ro/p, which is the ratio of representative points determined to have no visibility in the outlook determination based on the point cloud data, is Ro/p ⁇ Th2 (that is, , the percentage of representative points determined to have no visibility is large) or Ro/p ⁇ Th2 (that is, the percentage of representative points determined to have no visibility is small).
  • step S369 If there is a large percentage of representative points that are judged to have no visibility in the visibility judgment based on the point cloud data (YES in step S369, that is, if Ro/p ⁇ Th2), the base station installation candidate position currently being evaluated. Terminates the visibility determination process for . Then, the output unit 50 performs a warning display (alert) for prompting the user to perform the visibility determination process based on the point cloud data with other base station installation candidate positions as evaluation targets (step S370). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 35 is completed.
  • step S369 if the percentage of representative points that are determined to have no visibility by the visibility determination based on the point cloud data is small (step S369: NO, that is, if Ro/p ⁇ Th2), the map outlook determination unit 41 performs the process Terminates the line-of-sight determination process with burden reduction priority. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 35 is completed.
  • the station placement/area design support device 1 performs outlook determination based on point cloud data targeting base station installation candidate positions that are unlikely to secure a wide communicable area.
  • the process can be stopped in the middle of the process without being wastefully executed to the end.
  • the station placement/area design support apparatus 1 can more quickly start the line-of-sight determination process based on the point cloud data targeting other base station installation candidate positions that are likely to secure a wide communicable area. can.
  • the above configuration of the station placement/area design support device 1 in this embodiment is considered to be a configuration suitable for performing station placement/area design for maximizing the area.
  • it is determined that there is a line of sight by the line of sight determination based on the map information.
  • a representative point for which there is only one candidate installation position for a base station is given priority, and line-of-sight determination is performed before other representative points.
  • the above-described configuration of the station placement/area design support apparatus 1 makes it possible to quickly give up on the outlook determination process based on the point cloud data targeting base station installation candidate positions that are unlikely to secure a wide communicable area. Therefore, as described above, it is considered suitable for station placement and area design for maximizing the area.
  • the station placement/area design support device 1 in the fourth embodiment described below is the opposite of the configuration of the station placement/area design support device 1 in the third embodiment described above.
  • base station node candidate positions that are likely to secure a wide communicable area (that is, have visibility with many representative points) are specified.
  • the station position/area design support apparatus 1 can switch to the accuracy-prioritized process earlier for the specified base station node position candidate position, and can start the line-of-sight determination process based on the point cloud data.
  • FIG. 36 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the fourth embodiment of the present invention in view determination prioritizing processing load reduction.
  • the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 36 is basically a detailed version of the operation of step S16 shown in FIG. 2 in the first embodiment.
  • steps S461 to S465 of the flowchart shown in FIG. 36 is the same as the processing of steps S161 to S165 of the flowchart shown in FIG.
  • the three-dimensional outlook determination unit 42 updates the determination availability list 304 in step S465, and performs outlook determination based on the map information on the combination of the base station installation candidate position and the representative point recorded in the determination result of the visibility determination based on the point cloud data. After deleting from the list of combinations determined to have prospects by , the achievement rate Rp/a is calculated (step S466).
  • step S466, NO If the achievement rate Rp/a is less than the value of the threshold Th0 (step S466, NO), the process returns to step S463 or step S461, and the three-dimensional outlook determination unit 42 determines other base station installation candidate positions and other representative points. , and further determine the line of sight based on the point cloud data.
  • step S466 YES
  • the three-dimensional view determination unit 42 determines the percentage of representative points determined to have no view by the view determination based on the point cloud data. It is checked whether or not there are many (step S467).
  • the three-dimensional outlook determination unit 42 determines that the value of Ro/p, which is the ratio of the representative points determined to have visibility by the outlook determination based on the point cloud data, is Ro/p ⁇ Th1' (That is, it is confirmed whether the proportion of representative points determined to have visibility is small) or whether Ro/p ⁇ Th1′ (that is, the proportion of representative points determined to have visibility is high).
  • the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 36 is completed.
  • the map visibility determination unit 41 Determining whether or not the proportion of representative points for which outlook determination based on point cloud data has been further performed out of the representative points determined to have visibility by visibility determination based on map information is equal to or greater than a predetermined threshold value Th3. (step S468).
  • step S468, NO If the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is less than the predetermined threshold Th3 (step S468, NO), step Returning to step S463 or step S461, the three-dimensional view determination unit 42 further performs view determination based on the point cloud data for other base station installation candidate positions and other representative points.
  • the three-dimensional view determination unit 42 checks whether or not there is a large percentage of representative points determined to have a view by the view determination based on the point cloud data (step S469).
  • the three-dimensional outlook determining unit 42 determines that the value of Ro/p, which is the ratio of representative points determined to have visibility by the outlook determination based on the point cloud data, is Ro/p ⁇ Th2′ (That is, it is confirmed whether the proportion of representative points determined to have visibility is large) or whether Ro/p ⁇ Th2' (that is, the proportion of representative points determined to have visibility is small).
  • step S469 If there is a large percentage of representative points that have been determined to have a line of sight by the line of sight determination based on the point cloud data (YES in step S469, that is, if Ro/p ⁇ Th2'), the process is switched to the line of sight determination process with priority given to accuracy. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 36 is completed.
  • step S369 when the ratio of representative points determined to have no visibility by the visibility determination based on the point cloud data is small (NO in step S369, that is, when Ro/p ⁇ Th2′), the map outlook determination unit 41 Terminates the line-of-sight determination process with processing load reduction priority. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 36 is completed.
  • thresholds Th0, Th1', Th2', and Th3 are used.
  • Th0 and Th3 which are thresholds relating to whether or not the visibility determination process has been performed
  • Th1' and Th2' which are thresholds related to the results of the outlook determination process for each representative point
  • thresholds different from those in the flowchart shown in FIG. 35 of the third embodiment are used.
  • thresholds different from those of the flowchart shown in FIG. 35 of the third embodiment may be used.
  • the station placement/area design support device 1 of the present embodiment is capable of setting a base station that is likely to secure a wide communicable area during the line-of-sight determination process based on the point cloud data. Determine whether or not it is a candidate position. Then, the station placement/area design support apparatus 1 shifts the outlook determination process based on the point cloud data for base station installation candidate positions that are likely to secure a wide communicable area from the processing load reduction priority mode to the accuracy priority mode more quickly. can be switched to
  • the station placement/area design support device 1 in the present embodiment reduces the processing load by partially omitting the outlook determination processing based on the point cloud data for a plurality of representative points existing in the same direction from the base station installation candidate position. It is possible to design stations and areas for mitigation.
  • FIGS. 37 and 38 are diagrams for explaining station placement/area design in the fifth embodiment of the present invention.
  • FIG. 37 shows a state in which the evaluation target area shown in FIG. 3 is divided into finer meshes (half the length and width each) on a two-dimensional plane. For example, a mesh having keypoints labeled (1) will have keypoints labeled (1)-1, (1)-2, (1)-3 and (1)-4. It is partitioned into four meshes each having.
  • the shape of the Fresnel zone of the spheroid is regarded as a cylinder.
  • FIG. 38 shows a view of the range determined to have a line of sight from the base station installation candidate position A in FIG.
  • FIG. 38 shows a base station A installed at a base station installation candidate position A, and the base station installation candidate position A is located in a mesh having representative points labeled (5)-1. located in For example, when viewed from base station A, a mesh having representative points labeled (1)-4, (1)-3, (2)-4, (4)-1 and (4)-2, respectively. are approximately in the same direction.
  • the station placement/area design support apparatus 1 in this embodiment first Performs line of sight determination processing based on point cloud data between In the evaluation target area exemplified in FIG. 38, the station placement/area design support device 1 first creates point cloud data between the base station installation candidate position A and the representative point labeled (1)-4. Based on the line of sight judgment processing is performed.
  • station placement/area design support The device 1 has a point group between the representative points respectively denoted by (1)-3, (2)-4, (4)-1 and (4)-2 and the base station installation candidate position A. It is determined that there is a "line of sight” without performing the line of sight determination process based on the data. This is because the representative points labeled (1)-3, (2)-4, (4)-1 and (4)-2 are (1)- This is because the representative point exists in the same direction as the representative point denoted by the code 4 and is present on the front side of the representative point denoted by the code (1)-4.
  • the result of the line-of-sight determination process based on the point cloud data between the base station installation candidate position A and the farthest representative point is "no line-of-sight". If there is, the station placement/area design support device 1 next performs outlook determination processing based on the point cloud data between the closest representative point and the base station installation candidate position. In the evaluation target area exemplified in FIG. 38, the station placement/area design support device 1 then divides the point cloud data between the representative points marked with (4)-2 and the base station installation candidate positions. Based on the line of sight judgment processing is performed.
  • station placement/area design support Apparatus 1 carries out line-of-sight determination processing based on point cloud data between the representative points respectively labeled with (1)-3, (2)-4 and (4)-1 and base station installation candidate position A. It is determined to be "no line of sight" without performing
  • the station location/area the design support device 1 performs a line-of-sight determination process based on the point cloud data between the representative points of the waypoints and the base station installation candidate positions.
  • the station placement/area design support device 1 then divides the point cloud data between the representative points marked with (2)-4 and the base station installation candidate positions. Based on the line of sight judgment processing is performed.
  • station placement/area design support determines that there is a "line of sight” between the representative point marked with (4)-1 and the base station installation candidate position A without performing the line of sight determination processing based on the point cloud data. .
  • the station placement/area design support device 1 performs line-of-sight determination processing based on the point cloud data between the representative point marked with (1)-3 and the base station installation candidate position A.
  • the station location/area The design support device 1 determines that there is "no line of sight” between the representative point marked with (1)-3 and the base station installation candidate position A without performing the line of sight determination processing based on the point cloud data. judge.
  • the station placement/area design support device 1 performs line-of-sight determination processing based on the point cloud data between the representative point marked with (4)-1 and the base station installation candidate position A.
  • the station placement/area design support apparatus 1 in this embodiment performs a binary search for a plurality of representative points existing in the same direction as viewed from a given base station installation candidate position, and A boundary position between a representative point with a line of sight and a representative point without a line of sight is specified. Then, the station placement/area design support device 1 according to the present embodiment, for the representative points for which the line-of-sight determination based on the point cloud data was not performed in the above-described search, based on the determination results for the other representative points, " It is judged as "with line of sight” or "without line of sight".
  • the station placement/area design support apparatus 1 when there are a plurality of representative points in the same direction as viewed from a certain base station installation candidate position, the station placement/area design support apparatus 1 first determines the distance between the farthest representative point and the base station installation candidate position.
  • Binary search is started by performing line-of-sight judgment processing based on the point cloud data between the base station installation candidate positions, and the boundary position between representative points with line-of-sight and no line-of-sight with the base station installation candidate positions is specified.
  • the station placement/area design support device 1 first points the points between the base station installation candidate position A and the representative point labeled (4)-2. The line of sight determination process is performed based on the group data. Then, if the result of the line-of-sight determination is "no line-of-sight", the station placement/area design support device 1 performs (1)-4, (1)-3, (2)-4 and (4)-1. It is determined that there is "no line of sight" between the respectively assigned representative points and the base station installation candidate position A without performing the line of sight determination processing based on the point cloud data.
  • the station placement/area design support device 1 can further reduce the processing load by partially omitting the outlook determination processing based on the point cloud data.
  • millimeter wave radio was used as an example of wireless communication between the base station and the terminal station. Ultra High Frequency) may also be used.
  • the station placement design support device includes the acquisition section, the first estimation section, the determination section, the second estimation section, and the end control section.
  • the station placement design support device is the station placement/area design support device 1 in the embodiment
  • the acquisition unit is the base station candidate position selection unit 202 and the area division unit 14 in the embodiment
  • the first estimation unit and The determination unit is the map outlook determination unit 41 in the embodiment
  • the second estimation unit and the end control unit are the three-dimensional outlook determination unit 42 in the embodiment.
  • the acquisition unit acquires the candidate positions of the radio base stations in the target area and the representative points representing the possible positions of the mobile station in each mesh of the target area divided into meshes.
  • the target area is the evaluation target area in the embodiment
  • the radio base station is the base station in the embodiment
  • the mobile station is the terminal station in the embodiment.
  • the first estimation unit estimates whether communication between the candidate position of the radio base station and each of the representative points is possible based on first information indicating the position of an object existing in the target area.
  • the candidate position is a base station installation candidate position in the embodiment
  • the position of the object is a shielding object such as a building in the map in the embodiment (for example, the outer shell)
  • the first information is the This is map/area information 302 .
  • the determination unit further performs a process of estimating whether or not communication is possible based on second information, which has a larger amount of information than the first information, among the combinations of the candidate positions of the wireless base stations estimated to be communicable by the first estimation unit and the representative points. Decide which combination to do.
  • the second amount of information is the point cloud data in the embodiment
  • the process of estimating whether or not communication is possible is the outlook determination process based on the point cloud data in the embodiment.
  • the second estimation unit estimates, based on the second information, whether or not communication is possible between the candidate positions of the radio base stations that are the combinations determined by the determination unit and each of the representative points.
  • the termination control unit terminates the estimation processing by the second estimation unit according to the rules defined for each designated station placement design method.
  • the station placement design method is a processing mode such as a processing load reduction mode and an accuracy priority mode in the embodiment.
  • the map outlook determination unit 41 selects processing load reduction priority.
  • a rule to end the outlook determination process for example, the determination rule in step S166 of the flowchart shown in FIG. 20
  • the point cloud data A rule (for example, 21).
  • the termination control unit may terminate the estimation process when the ratio of combinations for which communication availability is estimated in the second estimation step among the combinations determined by the determination unit reaches a predetermined ratio.
  • the predetermined ratio is a ratio corresponding to threshold Th3 in the embodiment.
  • the termination control unit terminates the estimation process when the ratio of the combinations determined to be communicable by the second estimation step reaches a predetermined ratio among the combinations determined by the determination unit.
  • the second estimation unit estimates whether or not communication is possible based on the amount of second information contained in a cylindrical space that approximates a Fresnel zone formed between the candidate position of the radio base station and each of the representative points. You may make it For example, the Fresnel zone is the Fresnel zone fz in the embodiment, and the cylindrical space is the cylindrical Fresnel zone Cz in the embodiment.
  • the ratio of combinations estimated to be communication impossible by the second estimation unit out of the combinations for which communication is estimated by the second estimation unit is Information indicating a warning may be output when a predetermined ratio is reached.
  • the predetermined ratios are the ratio corresponding to the threshold Th1 and the ratio corresponding to the threshold Th2 in the embodiment, and the information indicating the warning is the warning display (alert) in the embodiment.
  • the second estimating unit when the ratio of the combination estimated to be communicable among the combinations for which communication availability is estimated reaches a predetermined ratio, Subsequent estimation processing may be performed by switching to an estimation method with high estimation accuracy.
  • the predetermined ratio is a ratio corresponding to the threshold Th1' and a ratio corresponding to the threshold Th2' in the embodiment, and an estimation method with higher estimation accuracy is the outlook determination in the accuracy priority mode in the embodiment.
  • the second estimating unit determines that a plurality of representative points exist in the same direction from the candidate position of the radio base station, and that the candidate position of the radio base station and the position furthest from the candidate position of the radio base station among the representative points If it is estimated that communication is possible between existing representative points, it is estimated that communication is also possible between other representative points existing in the same direction and candidate positions of radio base stations. You may do so.
  • the first information may be map information indicating a two-dimensional map
  • the second information may be three-dimensional point cloud data indicating the position of the surface of an object existing in the map.
  • the station placement/area design support device 1 in each of the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This station placement design support method comprises: an acquisition step of acquiring a candidate position of a radio base station in an area of interest, and representative points representative of the positions at which a mobile station may be present in respective meshes into which the area of interest is partitioned; a first estimation step of estimating, on the basis of first information indicating the positions of objects present in the area of interest, whether a communication can be performed between the candidate position of the radio base station and each of the representative points; a determination step of determining, from among combinations of the candidate position of the radio base station and the representative points for which it has been estimated by the first estimation step that a communication can be performed, combinations for which it is to be further estimated, on the basis of second information having a larger amount of information than the first information, whether a communication can be performed; a second estimation step of estimating, on the basis of the second information, whether a communication can be performed between the candidate position of the radio base station and each of the representative points of the combinations determined by the determination step; and a termination step of terminating, in accordance with a rule defined for each of a plurality of designated station placement design methods, the estimation performed by the second estimation step.

Description

置局設計支援方法及び置局設計支援装置Station placement design support method and station placement design support device
 本発明は、置局設計支援方法及び置局設計支援装置に関する。 The present invention relates to a station placement design support method and a station placement design support device.
 昨今、屋外でも利用可能なスマートフォンやタブレット型端末等の移動端末が広く普及している。このような移動端末による無線通信において、置局設計及びエリア設計を適切に行うことは、利便性及び通信効率等の面において大変重要な課題となっている。ここでいう置局設計とは、移動端末(以下、「端末局」という。)を収容する基地局の設置位置を決めることであり、エリア設計とは、設置された基地局によってカバーされる端末局の通信可能エリアを設計及び管理することである。 Recently, mobile terminals such as smartphones and tablet terminals that can be used outdoors have become widespread. In wireless communication by such mobile terminals, appropriate station placement design and area design are very important issues in terms of convenience, communication efficiency, and the like. The station placement design here refers to determining the installation positions of base stations that accommodate mobile terminals (hereinafter referred to as "terminal stations"), and the area design refers to the number of terminals covered by the installed base stations. It is to design and manage the coverage area of a station.
 置局設計及びエリア設計を行う手法として、空間を撮像することによって得られる3次元の点群データを用いる手法がある。この手法は、まず、例えばMMS(Mobile Mapping System)を搭載した車両等の移動体を住宅エリア等の評価対象エリアの周辺の道路に沿って走行させることによって、3次元の点群データを取得する。そして、この手法は、取得された点群データを活用して、基地局と端末局との間の無線通信の可否を評価する。 As a method for station placement design and area design, there is a method using three-dimensional point cloud data obtained by imaging the space. This method first acquires 3D point cloud data by driving a mobile object such as a vehicle equipped with MMS (Mobile Mapping System) along roads around an evaluation target area such as a residential area. . Then, this method utilizes the obtained point cloud data to evaluate whether or not wireless communication is possible between the base station and the terminal station.
 例えば非特許文献1には、MMSによって収集された点群データを活用することで、どの地点にミリ波帯の基地局を設置すれば当該基地局と端末局との間の通信が可能になるかを確認することができるミリ波帯置局設計支援ツールが記載されている。また、例えば特許文献1には、評価対象エリア内に置局された複数の基地局の組み合わせの各々について、収容可能となる端末局の一覧表を生成することができる置局設計装置が記載されている。 For example, in Non-Patent Document 1, by utilizing point cloud data collected by MMS, communication between the base station and the terminal station becomes possible if a base station in the millimeter wave band is installed at any point. A millimeter-wave band station design support tool that can confirm whether the Further, for example, Patent Document 1 describes a station placement design apparatus capable of generating a list of terminal stations that can be accommodated for each combination of a plurality of base stations placed within an evaluation target area. ing.
 また、MMSによって収集された点群データを活用することで、屋外通信設備の点検作業が軽減される。例えば非特許文献2には、MMSにより屋外通信設備の3次元の点群データの取得を可能にし、取得されたデータから設備の劣化状況を集約センタで遠隔診断することによって、現地での精密検査を必要とする設備を絞り込み、設備点検に係る作業量を削減させる技術が記載されている。 In addition, by utilizing the point cloud data collected by MMS, the inspection work of outdoor communication equipment is reduced. For example, in Non-Patent Document 2, it is possible to acquire three-dimensional point cloud data of outdoor communication equipment by MMS, and by remotely diagnosing the deterioration status of equipment from the acquired data at a centralized center, detailed inspection on site A technique for narrowing down the equipment that requires and reducing the amount of work related to equipment inspection is described.
 基地局と端末局との間の無線通信の可否の評価方法として、両局間の3次元での見通し判定を行う方法、及び遮蔽率を算出する方法等がある。ここでいう、「遮蔽率」とは、基地局と端末局との間に存在し、電波の往来を遮る物体(以下、「遮蔽物」という。)が、無線通信にどの程度影響するかを示す指標である。なお、この指標は、逆の視点から、「透過率」によって代替可能である。このような評価方法を用いて無線通信の可否の評価を行うためには、評価対象エリアに存在する物体についての点群データが揃っている必要がある。ここでいう評価対象エリアには、少なくとも、基地局の設置候補位置と端末局が存在しうる位置とが含まれる。  As a method of evaluating whether wireless communication is possible between the base station and the terminal station, there are a method of determining the line of sight between the two stations in three dimensions and a method of calculating the shielding rate. Here, the "shielding rate" refers to the extent to which an object that blocks the movement of radio waves (hereinafter referred to as "shielding object") that exists between a base station and a terminal station affects wireless communication. It is an index that shows From the opposite point of view, this index can be replaced by "transmittance". In order to evaluate whether or not wireless communication is possible using such an evaluation method, it is necessary to have point cloud data of objects existing in the evaluation target area. The evaluation target area here includes at least candidate installation positions of base stations and positions where terminal stations may exist.
 基地局と端末局との間の無線通信の可否の遮蔽率による評価は、例えば、基地局と端末局との間に形成されるフレネルゾーンの範囲内に存在する、遮蔽物を示す点群データの量に基づいて行われる。例えば、従来、フレネルゾーンの範囲内に存在する点群データの量が予め定められた閾値より多いか否かに基づいて、基地局と端末局との間の通信可否を判定する技術がある。このような通信可否の判定の結果に基づいて置局設計が行われる。 Evaluation of whether wireless communication between a base station and a terminal station is possible based on the shielding rate is, for example, point cloud data indicating shielding objects existing within the range of the Fresnel zone formed between the base station and the terminal station. based on the amount of For example, conventionally, there is a technique for determining whether communication between a base station and a terminal station is possible based on whether the amount of point cloud data existing within the Fresnel zone is greater than a predetermined threshold. A station placement design is performed based on the result of such determination of whether or not communication is possible.
 また、地図上の評価対象エリアの範囲は、例えば、細かな網目状に区切られる。そして、例えば、それぞれの網目の代表となる位置ごとに、上記の置局設計によって決定された位置に置局された基地局との通信可否が判定されることによって、エリア設計が行われる。これにより、基地局と端末局とが通信可能になる範囲を、地図上で視覚的に示すことが可能になる。 Also, the range of the evaluation target area on the map is, for example, divided into a fine mesh. Then, for example, for each representative position of each network, area design is performed by determining whether or not communication with the base station placed at the position determined by the above station placement design is possible. This makes it possible to visually indicate on the map the range in which communication between the base station and the terminal station is possible.
特開2020-120161号公報Japanese Patent Application Laid-Open No. 2020-120161
 例えば電柱等に設置された基地局と様々な場所へ移動しうる端末局とが通信接続することができる通信ネットワークによって都市等をカバーしようとする場合、無線通信事業者は、例えば数百メートル四方の広範なエリアを評価対象エリアとして置局設計及びエリア設計を行わなければならないことがある。このような広範囲の評価対象エリアが前述のような細かな網目状に区切られた場合、網目の総数は膨大になる。そして、これら全ての網目に対して、3次元の点群データを用いて基地局と端末局との間の通信可否の判定を行うとするならば、当該判定に必要な演算処理における計算量が膨大になる。そのため、通信可否の判定に必要な演算処理が現実的な計算時間内で完了するように、計算量を削減させる必要があるという課題があった。 For example, when trying to cover a city by means of a communication network in which base stations installed on utility poles and terminal stations that can move to various locations can be connected for communication, wireless communication carriers are required, for example, to cover several hundred meters square. station placement design and area design may have to be performed with a wide area of . If such a wide area to be evaluated is divided into fine meshes as described above, the total number of meshes will be enormous. If three-dimensional point cloud data is used for all of these meshes to determine whether communication between the base station and the terminal station is possible, the computational complexity required for the determination is become enormous. Therefore, there is a problem that it is necessary to reduce the amount of calculation so that the arithmetic processing necessary for determining whether or not communication is possible can be completed within a realistic calculation time.
 上記事情に鑑み、本発明は、通信可否判定における判定精度の低下を抑えつつ、通信可否判定に必要な演算処理の計算量を削減することができる技術を提供することを目的としている。 In view of the above circumstances, the present invention aims to provide a technology that can reduce the amount of computation required for communication feasibility determination while suppressing deterioration in determination accuracy in communication feasibility determination.
 本発明の一態様は、対象エリアにおける無線基地局の候補位置と、網目状に区切られた前記対象エリアの各網目において移動局が存在しうる位置を代表する代表点と、を取得する取得ステップと、前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記対象エリアに存在する物体の位置を示す第1情報に基づいて推定する第1推定ステップと、前記第1推定ステップによって通信可能と推定された前記無線基地局の候補位置と前記代表点との組み合わせのうち、前記第1情報より情報量の多い第2情報に基づく通信可否の推定処理をさらに行う前記組み合わせを決定する決定ステップと、
 前記決定ステップによって決定された前記組み合わせである前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記第2情報に基づいて推定する第2推定ステップと、指定された置局設計方法ごとに定められたルールに従って、前記第2推定ステップによる推定処理を終了させる終了ステップと、を有する置局設計支援方法である。
An aspect of the present invention is an acquisition step of acquiring a candidate position of a radio base station in a target area and a representative point representing a possible position of a mobile station in each mesh of the target area divided into meshes. a first estimation step of estimating whether or not communication between the candidate position of the radio base station and each of the representative points is possible based on first information indicating the position of an object existing in the target area; further performing a process of estimating whether or not communication is possible based on second information having a larger amount of information than the first information among combinations of the candidate positions of the radio base stations estimated to be communicable in the first estimation step and the representative points; a decision step of deciding a combination;
a second estimation step of estimating, based on the second information, whether or not communication between the candidate positions of the radio base station that are the combination determined by the determination step and each of the representative points is possible; and a termination step of terminating the estimation process by the second estimation step according to a rule determined for each station placement design method.
 また、本発明の一態様は、対象エリアにおける無線基地局の候補位置と、網目状に区切られた前記対象エリアの各網目において移動局が存在しうる位置を代表する代表点と、を取得する取得部と、前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記対象エリアに存在する物体の位置を示す第1情報に基づいて推定する第1推定部と、前記第1推定部によって通信可能と推定された前記無線基地局の候補位置と前記代表点との組み合わせのうち、前記第1情報より情報量の多い第2情報に基づく通信可否の推定処理をさらに行う前記組み合わせを決定する決定部と、前記決定部によって決定された前記組み合わせである前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記第2情報に基づいて推定する第2推定部と、指定された置局設計方法ごとに定められたルールに従って、前記第2推定部による推定処理を終了させる終了制御部と、を備える置局設計支援装置である。 In addition, in one aspect of the present invention, candidate positions of a radio base station in a target area and representative points representing possible positions of a mobile station in each mesh of the target area divided into meshes are acquired. an obtaining unit, a first estimating unit for estimating availability of communication between the candidate position of the radio base station and each of the representative points based on first information indicating the position of an object existing in the target area; further estimating communication feasibility based on second information having a larger amount of information than the first information among the combinations of the candidate positions of the radio base stations estimated to be communicable by the first estimation unit and the representative points; a determining unit that determines the combination to be performed; and estimating, based on the second information, availability of communication between the candidate positions of the radio base station and each of the representative points that are the combinations determined by the determining unit. and a termination control unit for terminating estimation processing by the second estimation unit according to a rule defined for each designated station placement design method.
 本発明により、通信可否判定における判定精度の低下を抑えつつ、通信可否判定に必要な演算処理の計算量を削減することが可能になる。 According to the present invention, it is possible to reduce the amount of arithmetic processing required for determining whether communication is possible or not while suppressing deterioration in determination accuracy in determining whether communication is possible or not.
本発明の第1の実施形態における置局・エリア設計支援装置1の機能構成を示すブロック図である。1 is a block diagram showing a functional configuration of a station placement/area design support device 1 according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態における置局・エリア設計支援装置1の動作を示すフローチャートである。4 is a flow chart showing the operation of the station placement/area design support device 1 according to the first embodiment of the present invention. 評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定の結果の一例を示す図である。FIG. 10 is a diagram showing an example of results of line-of-sight determination for each base station installation candidate position and mesh within an evaluation target area; 本発明の第1の実施形態における置局・エリア設計支援装置1のエリア最大化における動作を示すフローチャートである。4 is a flow chart showing operations in area maximization of the station placement/area design support apparatus 1 according to the first embodiment of the present invention. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 10 is a diagram showing an example of update of the judgment availability list 304 when performing station placement/area design for maximizing an area. 収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency. 収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency. 収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency. 収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency. 収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency. 収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of updating the determination availability list 304 when performing station placement/area design for improving accommodation efficiency. 本発明の第1の実施形態における置局・エリア設計支援装置1の見通し判定処理における動作を示すフローチャートである。4 is a flow chart showing operations in a line-of-sight determination process of the station placement/area design support device 1 according to the first embodiment of the present invention. フレネルゾーンfzを考慮した通信可否の判定の様子を示す図である。FIG. 10 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz; 本発明の第1の実施形態における置局・エリア設計支援装置1の処理負担軽減優先の見通し判定における動作を示すフローチャートである。4 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the first embodiment of the present invention in view determination prioritizing processing load reduction. 、本発明の第1の実施形態における置局・エリア設計支援装置1の精度優先の見通し判定における動作を示すフローチャートである。10 is a flow chart showing operations in accuracy-prioritized outlook determination of the station placement/area design support device 1 according to the first embodiment of the present invention. エリア最大化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area. エリア最大化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area. エリア最大化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area. エリア最大化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area. エリア最大化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 11 is a diagram showing an example of update of the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for maximizing the area. 収容効率化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency. 収容効率化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency. 収容効率化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency. 収容効率化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency. 収容効率化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。FIG. 13 is a diagram showing an example of updating the judgment availability list 304 in a case where accuracy-prioritized station placement/area design is performed to improve accommodation efficiency. フレネルゾーンを円筒形と見なして見通し判定を行う様子を示す模式図である。FIG. 4 is a schematic diagram showing how the visibility is determined by regarding the Fresnel zone as a cylinder. フレネルゾーンfzに対し円筒形フレネルゾーンCzを重ね合わせた図である。FIG. 10 is a diagram in which a cylindrical Fresnel zone Cz is superimposed on a Fresnel zone fz; ある基地局設置候補位置に対する点群データに基づく見通し判定処理の終了条件を説明するための図である。FIG. 10 is a diagram for explaining conditions for terminating prospect determination processing based on point cloud data for a certain base station installation candidate position; 本発明の第3の実施形態における置局・エリア設計支援装置1の処理負担軽減優先の見通し判定における動作を示すフローチャートである。FIG. 11 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the third embodiment of the present invention in view determination prioritizing processing load reduction. FIG. 本発明の第4の実施形態における置局・エリア設計支援装置1の処理負担軽減優先の見通し判定における動作を示すフローチャートである。FIG. 13 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the fourth embodiment of the present invention in view determination prioritizing processing load reduction. FIG. 本発明の第5の実施形態における置局・エリア設計を説明するための図である。FIG. 20 is a diagram for explaining station placement/area design in the fifth embodiment of the present invention; 本発明の第5の実施形態における置局・エリア設計を説明するための図である。FIG. 20 is a diagram for explaining station placement/area design in the fifth embodiment of the present invention;
 以下、実施形態における置局・エリア設計支援方法及び置局・エリア設計支援装置について、図面を参照しながら説明する。 A station placement/area design support method and a station placement/area design support device according to the embodiment will be described below with reference to the drawings.
<第1の実施形態>
 以下、本発明の第1の実施形態について説明する。本実施形態の置局・エリア設計支援装置1は、エリア内に存在する端末局を収容する基地局の設置位置を決定する置局設計を支援するための装置である。また、置局・エリア設計支援装置1は、置局設計によって導出された基地局の設置候補位置(以下、「基地局設置候補位置」という。)に基地局が設置された場合に、当該基地局との通信接続が可能な端末局の位置の範囲を示す通信可能エリアを設計・管理するエリア設計を支援するための装置である。本実施形態において、基地局は、例えば高層の建物や電柱等の屋外設備に設置される無線基地局であり、端末局は、例えば移動可能な無線端末である。基地局と端末局との間の通信には、例えばアンライセンス帯のミリ波無線が用いられる。
<First embodiment>
A first embodiment of the present invention will be described below. The station placement/area design support device 1 of the present embodiment is a device for supporting station placement design for determining installation positions of base stations that accommodate terminal stations existing within an area. In addition, when a base station is installed at a base station installation candidate position (hereinafter referred to as "base station installation candidate position") derived by station placement design, the station placement/area design support apparatus 1 This is a device for supporting area design for designing and managing a communicable area indicating the range of positions of terminal stations that can be communicatively connected to a station. In this embodiment, the base station is a wireless base station installed in, for example, a high-rise building or an outdoor facility such as a utility pole, and the terminal station is, for example, a mobile wireless terminal. For example, unlicensed band millimeter wave radio is used for communication between the base station and the terminal station.
 置局・エリア設計支援装置1は、まず、地図情報に基づく2次元の地図を示す地図情報を取得する。置局・エリア設計支援装置1は、取得された地図情報に基づく地図を網目状に区切るエリア分割を行う。置局・エリア設計支援装置1は、網目状に区切られた地図の網目ごとに、当該網目に端末局が存在する場合における、基地局と端末局との間の通信可否に関する判定(推定)を行う。 The station location/area design support device 1 first acquires map information indicating a two-dimensional map based on the map information. The station placement/area design support device 1 divides the map into mesh-like areas based on the acquired map information. The station placement/area design support apparatus 1 determines (estimates) whether or not communication between a base station and a terminal station is possible in each mesh of a map divided into meshes when a terminal station exists in the mesh. conduct.
 置局・エリア設計支援装置1は、少なくとも1つの基地局の設置候補位置と、当該設置候補位置に基地局が設置された場合の通信可能エリアと、を示す置局・エリア設計結果情報を出力する。 A station placement/area design support apparatus 1 outputs station placement/area design result information indicating at least one candidate installation position of a base station and a communicable area when the base station is installed at the installation candidate position. do.
 なお、置局・エリア設計支援装置1から出力された置局・エリア設計結果情報は、後段の置局設計において用いられる。例えば、置局設計を行う置局設計装置(不図示)は、置局・エリア設計支援装置1から出力された置局・エリア設計結果情報が示す基地局の設置候補位置と通信可能エリアとに基づいて、基地局の設置位置を決定する。 It should be noted that the station placement/area design result information output from the station placement/area design support device 1 is used in the subsequent station placement design. For example, a station placement design device (not shown) that performs station placement design selects a base station installation candidate position and a communicable area indicated by the station placement/area design result information output from the station placement/area design support device 1. Based on this, the installation position of the base station is determined.
[置局・エリア設計支援装置の機能構成]
 以下、置局・エリア設計支援装置1の機能構成について説明する。図1は、本発明の第1の実施形態における置局・エリア設計支援装置1の機能構成を示すブロック図である。
[Functional configuration of station placement/area design support device]
The functional configuration of the station placement/area design support apparatus 1 will be described below. FIG. 1 is a block diagram showing the functional configuration of a station placement/area design support apparatus 1 according to the first embodiment of the present invention.
 図1に示されるように、置局・エリア設計支援装置1は、設備情報取得部11と、基地局設置候補位置抽出部12と、地図情報取得部13と、エリア分割部14と、点群データ取得部15と、データ整合部16と、操作入力部20と、記憶部30と、地図見通し判定部41と、3次元見通し判定部42と、3次元判定可否評価部43と、出力部50と、を含んで構成される。置局・エリア設計支援装置1は、例えば汎用コンピュータ等の情報処理装置である。 As shown in FIG. 1, the station placement/area design support device 1 includes a facility information acquisition unit 11, a base station installation candidate position extraction unit 12, a map information acquisition unit 13, an area division unit 14, a point group Data acquisition unit 15 , data matching unit 16 , operation input unit 20 , storage unit 30 , map outlook determination unit 41 , 3D outlook determination unit 42 , 3D determination evaluation unit 43 , and output unit 50 and The station placement/area design support device 1 is, for example, an information processing device such as a general-purpose computer.
 設備情報取得部11は、例えば外部の装置等から設備情報を取得する。ここでいう設備情報とは、例えば基地局を設置可能な高層の建物や電柱等の屋外設備の、平面位置を示す情報が少なくとも含まれる。なお、ここでいう「平面位置」とは、高さ方向(垂直方向)の座標を含まない、2次元の座標のことをいう。また、以下の説明では、平面位置を単に「位置」ということがある。 The facility information acquisition unit 11 acquires facility information from, for example, an external device. The equipment information here includes at least information indicating the planar position of outdoor equipment such as a high-rise building in which a base station can be installed or a utility pole. It should be noted that the “planar position” here means two-dimensional coordinates that do not include coordinates in the height direction (vertical direction). Also, in the following description, the planar position may be simply referred to as "position".
 なお、設備情報に、屋外設備の高さ、あるいは、屋外設備において基地局を設置可能な高さを示す情報等がさらに含まれていてもよい。設備情報取得部11は、取得された設備情報を基地局設置候補位置抽出部12へ出力する。 The facility information may further include information indicating the height of the outdoor facility or the height at which the base station can be installed in the outdoor facility. The facility information acquisition unit 11 outputs the acquired facility information to the base station installation candidate position extraction unit 12 .
 なお、設備情報取得部11は、設備情報を、外部の記憶装置から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、設備情報が記憶部30に予め記憶されており、設備情報取得部11は、記憶部30から設備情報を取得する構成であってもよい。 Note that the facility information acquisition unit 11 may acquire facility information from an external storage device or from an external device via a communication network. Alternatively, the facility information may be stored in the storage section 30 in advance, and the facility information acquisition section 11 may acquire the facility information from the storage section 30 .
 なお、後述される地図情報取得部13によって取得される地図情報から、基地局を設置可能な高層の建物等の屋外設備の平面位置を特定することが可能である場合には、上記の設備情報取得部11による設備情報の取得は省略されてもよい。 Note that if it is possible to specify the planar position of an outdoor facility such as a high-rise building in which a base station can be installed from the map information acquired by the map information acquisition unit 13, which will be described later, the above facility information Acquisition of equipment information by the acquisition unit 11 may be omitted.
 基地局設置候補位置抽出部12は、設備情報取得部11から出力された設備情報を取得する。基地局設置候補位置抽出部12は、取得された設備情報に基づいて、基地局の設置候補位置を抽出する。例えば、基地局設置候補位置抽出部12は、取得された設備情報から、電柱の位置あるいは所定の高さ以上の建物の壁面の位置等を示す情報を抽出し、当該電柱の位置あるいは所定の高さ以上の建物の壁面の位置等を基地局の設置候補位置とする。基地局設置候補位置抽出部12は、抽出された基地局の設置候補位置を示す基地局設置候補位置情報301を、記憶部30に記憶させる。 The base station installation candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11 . The base station installation candidate position extraction unit 12 extracts installation candidate positions of the base station based on the acquired equipment information. For example, the base station installation candidate position extracting unit 12 extracts information indicating the position of a utility pole or the position of a wall surface of a building above a predetermined height from the acquired equipment information, and extracts the position of the utility pole or the predetermined height. The position of the wall surface of a building with a height of 3.5 m or higher is set as a candidate position for installing a base station. The base station installation candidate position extraction unit 12 causes the storage unit 30 to store base station installation candidate position information 301 indicating the extracted installation candidate positions of the base stations.
 地図情報取得部13は、例えば外部の装置等から地図情報を取得する。ここでいう地図情報とは、例えば、2次元の地図を示す情報である。地図情報には、例えば住宅及びビル等の、建物の輪郭の平面位置を示す情報が少なくとも含まれている。なお、地図情報には、標高及び地図内に存在する物体の高さ等の高さ方向の位置を示す情報が含まれていてもよい。地図情報取得部13は、取得された地図情報を、エリア分割部14及びデータ整合部16へ出力する。 The map information acquisition unit 13 acquires map information from, for example, an external device. The map information here is, for example, information indicating a two-dimensional map. The map information includes at least information indicating the planar position of outlines of buildings such as houses and buildings. Note that the map information may include information indicating the position in the height direction, such as the altitude and the height of an object existing in the map. The map information acquisition section 13 outputs the acquired map information to the area dividing section 14 and the data matching section 16 .
 なお、地図情報取得部13は、地図情報を、外部の記憶装置から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、地図情報が記憶部30に予め記憶されており、地図情報取得部13は、記憶部30から地図情報を取得する構成であってもよい。 Note that the map information acquisition unit 13 may acquire map information from an external storage device, or may acquire map information from an external device via a communication network. Alternatively, the map information may be stored in the storage unit 30 in advance, and the map information acquisition unit 13 may acquire the map information from the storage unit 30 .
 なお、本実施形態における地図情報は、例えば、MMS等によって得られた点群データに基づいて生成された地図ではなく、例えば地図制作業者によって(例えば測量等によって)制作された住宅地図等の一般的な2次元の地図に基づく情報である。したがって、本実施形態における地図情報には、例えば、建物の輪郭を示す情報は含まれているが、建物以外の物体の位置に関する情報は含まれていないことがある。建物以外の物体とは、例えば、道路標識及び看板等の工作物、街路樹及び庭木等の植物、住宅の塀及び高架道路等の構造物、及び隆起した地面等である。 Note that the map information in the present embodiment is not a map generated based on point cloud data obtained by MMS, for example, but a general map such as a residential map produced by a map production company (for example, by surveying). information based on a typical two-dimensional map. Therefore, the map information in this embodiment may include, for example, information indicating outlines of buildings, but may not include information regarding the positions of objects other than buildings. Objects other than buildings include, for example, structures such as road signs and billboards, plants such as roadside trees and garden trees, structures such as residential walls and elevated roads, and raised ground.
 なお、本実施形態における地図情報は、MMS等によって得られた点群データに基づいて生成された地図であっても構わないが、この場合、地図情報は、後述される点群データ取得部15によって取得される3次元の点群データと比べて情報量がより少ないデータである必要がある。また、この場合、地図情報を用いて行われる、ある基地局と端末局との候補位置との間に対する見通し判定処理の計算量は、3次元の点群データを用いて行われる見通し判定処理及び遮蔽率判定処理の計算量と比べて少ない。 Note that the map information in this embodiment may be a map generated based on point cloud data obtained by MMS or the like. The data should have a smaller amount of information than the three-dimensional point cloud data obtained by . Further, in this case, the computational complexity of the outlook determination process between the candidate positions of a certain base station and the terminal station, which is performed using the map information, is the same as that of the forecast determination process performed using the three-dimensional point cloud data. It is small compared to the amount of calculation of the shielding rate determination process.
 なお、基地局設置候補位置は、地図情報に含まれる、例えば建物の外郭等の位置に基づいて抽出されるようにしてもよい。この場合、置局・エリア設計支援装置1の使用者(以下、「ユーザ」という。)が、地図情報に基づく地図を参照しながら、目視で基地局設置候補位置を抽出するような構成であってもよい。 It should be noted that the base station installation candidate positions may be extracted based on the positions of, for example, building outlines included in the map information. In this case, the user of the station placement/area design support apparatus 1 (hereinafter referred to as "user") is configured to visually extract base station installation candidate positions while referring to a map based on map information. may
 エリア分割部14は、地図情報取得部13から出力された地図情報を取得する。エリア分割部14は、取得された地図情報に基づく地図を所定の大きさの網目状に区切る。エリア分割部14は、取得された地図情報と、区切られた網目の大きさ及び位置とを対応付けて、記憶部30に記憶させる。この網目の各々は評価単位となる1画地であり、この網目ごとに基地局と端末局との通信可否の判定処理が行われる。 The area division unit 14 acquires the map information output from the map information acquisition unit 13. The area dividing unit 14 divides the map based on the acquired map information into meshes of a predetermined size. The area dividing unit 14 associates the acquired map information with the size and position of the divided meshes, and stores them in the storage unit 30 . Each of these meshes is one plot as an evaluation unit, and processing for judging whether communication between the base station and the terminal station is possible is performed for each mesh.
 なお、エリア分割部14は、地図情報取得部13から出力された地図情報を取得した場合、取得された地図情報をまずはそのまま記憶部30に記憶させるようにしてもよい。そして、エリア分割部14は、記憶部30に記憶された地図情報に基づく地図の全体範囲のうち、評価対象エリアとされる特定の範囲が(後述される評価エリア選択部201によって)選択された後に、評価対象エリアの範囲のみの地図を所定の大きさの網目状に区切るようにしてもよい。 Note that when the area dividing unit 14 acquires the map information output from the map information acquiring unit 13, the acquired map information may first be stored in the storage unit 30 as it is. Then, the area dividing unit 14 selects (by the evaluation area selection unit 201 described later) a specific range as an evaluation target area from the entire range of the map based on the map information stored in the storage unit 30. Later, the map of only the range of the evaluation target area may be divided into meshes of a predetermined size.
 点群データ取得部15は、例えば外部の装置等から点群データを取得する。ここでいう点群データとは、空間を撮像することによって得られる3次元の点群データである。例えば、点群データは、MMSを搭載した車両等の移動体を評価対象の住宅エリア周辺の道路に沿って走行させることによって得られたものである。点群データ取得部15は、取得された点群データをデータ整合部16へ出力する。 The point cloud data acquisition unit 15 acquires point cloud data, for example, from an external device or the like. The point cloud data referred to here is three-dimensional point cloud data obtained by imaging a space. For example, the point cloud data is obtained by driving a mobile object such as a vehicle equipped with an MMS along a road around a residential area to be evaluated. The point cloud data acquisition unit 15 outputs the acquired point cloud data to the data matching unit 16 .
 なお、点群データ取得部15は、点群データを、外部の記憶装置から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、点群データが記憶部30に予め記憶されており、点群データ取得部15は、記憶部30から点群データを取得する構成であってもよい。 Note that the point cloud data acquisition unit 15 may acquire the point cloud data from an external storage device or from an external device via a communication network. Alternatively, point cloud data may be stored in the storage unit 30 in advance, and the point cloud data acquisition unit 15 may acquire the point cloud data from the storage unit 30 .
 なお、点群データは、相対的に情報量の多いデータであり、本実施形態では前述の通り、例えばMMS等によって得られた3次元の点群データである。点群データには、建物だけでなく、前述の地図情報には含まれていない建物以外の物体(例えば、道路標識及び看板等の工作物、街路樹及び庭木等の植物等)を含んだ、遮蔽物となりうる全ての物体の3次元の位置を示す情報が含まれている。したがって、点群データは、上記の地図情報と比べて、はるかに情報量の多いデータである。点群データを用いた通信可否の判定では、判定精度は相対的に高いが、1件当たりの判定処理にかかる計算量は相対的に多い。 Note that the point cloud data is data with a relatively large amount of information, and in the present embodiment, as described above, it is three-dimensional point cloud data obtained, for example, by MMS or the like. The point cloud data includes not only buildings but also objects other than buildings that are not included in the above-mentioned map information (for example, objects such as road signs and billboards, plants such as roadside trees and garden trees). It contains information indicating the 3D positions of all objects that can be occluders. Therefore, the point cloud data has much more information than the above map information. Determination of whether or not communication is possible using point cloud data has relatively high determination accuracy, but the amount of calculation required for determination processing per case is relatively large.
 データ整合部16は、地図情報取得部13から出力された地図情報を取得する。また、データ整合部16は、点群データ取得部15から出力された点群データを取得する。データ整合部16は、地図情報の座標系と点群データの座標系との間の整合を図り、必要に応じて、点群データに含まれる位置(座標)を、地図情報に含まれる位置(座標)に対して整合させるように補正する。データ整合部16は、地図情報との整合が図られた点群データ303を、記憶部30に記憶させる。 The data matching unit 16 acquires the map information output from the map information acquisition unit 13. Also, the data matching unit 16 acquires the point cloud data output from the point cloud data acquiring unit 15 . The data matching unit 16 attempts to match the coordinate system of the map information and the coordinate system of the point cloud data, and if necessary, changes the positions (coordinates) included in the point cloud data to the positions (coordinates) included in the map information. coordinates). The data matching unit 16 causes the storage unit 30 to store the point cloud data 303 that has been matched with the map information.
 なお、データ整合部16は、必要に応じて、記憶部30に記憶された基地局設置候補位置情報301に含まれる基地局の設置候補位置、及び、地図・エリア情報302に含まれる地図情報を、点群データの座標系に基づく位置となるように補正するようにしてもよい。なお、一般的には、地図情報の座標系及び点群データの座標系には、例えば世界測地系等の共通の座標系が用いられている場合が多いため、データ整合部16による座標の整合処理を必要としない場合が多いと考えられる。 It should be noted that the data matching unit 16, if necessary, matches the base station installation candidate positions included in the base station installation candidate position information 301 stored in the storage unit 30 and the map information included in the map/area information 302. , the position may be corrected based on the coordinate system of the point cloud data. Note that, in general, a common coordinate system such as the world geodetic system is often used for the coordinate system of the map information and the coordinate system of the point cloud data. It is considered that there are many cases in which no treatment is required.
 操作入力部20は、ユーザによる入力操作を受け付ける。操作入力部20は、例えば、入力ボタン、キーボード、マウス、及びタッチパネル等の入力インターフェースを含んで構成される。図1に示されるように、操作入力部20は、評価エリア選択部201と、基地局候補位置選択部202と、設計方法指定部203と、処理モード指定部204と、を含んで構成される。 The operation input unit 20 accepts input operations by the user. The operation input unit 20 includes input interfaces such as input buttons, a keyboard, a mouse, and a touch panel. As shown in FIG. 1, the operation input unit 20 includes an evaluation area selection unit 201, a base station candidate position selection unit 202, a design method designation unit 203, and a processing mode designation unit 204. .
 評価エリア選択部201は、地図情報に基づく地図の全体範囲のうち、置局・エリア設計を行う対象とする評価対象エリアを指定するためのユーザによる入力操作を受け付ける。評価エリア選択部201は、受け付けた入力操作が示す評価対象エリアを示す情報を記憶部30に記憶させる。なお、評価エリア選択部201は、地図情報取得部13によって取得され、地図・エリア情報302として記憶部30に記憶された地図情報に対して評価対象エリアを指定する情報を付与するようにしてもよい。 The evaluation area selection unit 201 accepts an input operation by the user for designating an evaluation target area for station placement/area design within the entire range of the map based on the map information. The evaluation area selection unit 201 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation. Note that the evaluation area selection unit 201 may add information designating an evaluation target area to the map information acquired by the map information acquisition unit 13 and stored in the storage unit 30 as the map/area information 302. good.
 なお、ユーザは、評価対象エリアを指定する際に、例えば液晶ディスプレイ(LCD)又は有機EL(Electroluminescence)ディスプレイ等の表示装置(不図示)に表示された地図を見ながら評価対象エリアを指定する。なお、ここでいう表示装置は、後述される出力部50を構成する部材の1つであってもよい。 When specifying the evaluation target area, the user specifies the evaluation target area while looking at a map displayed on a display device (not shown) such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display. It should be noted that the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
 基地局候補位置選択部202は、評価対象エリアに含まれる、(基地局設置候補位置抽出部12によって抽出された)基地局設置候補位置の中から、評価対象とする少なくとも1つの特定の基地局設置候補位置を選択するためのユーザによる入力操作を受け付ける。基地局候補位置選択部202は、受け付けた入力操作が示す基地局設置候補位置を示す情報を記憶部30に記憶させる。 The base station candidate position selection unit 202 selects at least one specific base station to be evaluated from base station candidate positions (extracted by the base station candidate position extraction unit 12) included in the evaluation target area. An input operation by a user for selecting an installation candidate position is accepted. The base station candidate position selection unit 202 causes the storage unit 30 to store information indicating the base station installation candidate positions indicated by the received input operation.
 なお、基地局候補位置選択部202は、基地局設置候補位置抽出部12によって抽出され、記憶部30に記憶された複数の基地局設置候補位置を示す情報である基地局設置候補位置情報301を更新するようにしてもよい。具体的には、基地局候補位置選択部202は、基地局設置候補位置情報301に含まれる複数の基地局設置候補位置において、ユーザによって選択された基地局設置候補位置を特定することができるフラグを付けるようにしてもよい。 Base station candidate position selection section 202 selects base station candidate position information 301, which is information indicating a plurality of base station candidate positions extracted by base station candidate position extraction section 12 and stored in storage section 30. It may be updated. Specifically, the base station candidate position selection section 202 selects a flag that can specify the base station candidate position selected by the user among a plurality of base station candidate positions included in the base station candidate position information 301. may be added.
 なお、ユーザは、基地局設置候補位置を選択する際に、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置(不図示)に表示された、評価対象エリアの地図に含まれる複数の基地局設置候補位置を見ながら、少なくとも1つの特定の基地局設置候補位置を選択する。なお、ここでいう表示装置は、後述される出力部50を構成する部材の1つであってもよい。 When selecting a candidate base station installation position, the user selects a plurality of base station installation candidates included in the map of the evaluation target area displayed on a display device (not shown) such as a liquid crystal display or an organic EL display. While looking at the positions, at least one specific base station installation candidate position is selected. It should be noted that the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
 設計方法指定部203は、置局・エリア設計の方法(以下、「設計方法」という。)を指定するためのユーザによる入力操作を受け付ける。設計方法指定部203は、受け付けた入力操作が示す設計方法を示す情報を記憶部30に記憶させる。 The design method designation unit 203 accepts an input operation by the user for designating a station placement/area design method (hereinafter referred to as "design method"). The design method designation unit 203 causes the storage unit 30 to store information indicating the design method indicated by the received input operation.
 ここでいう設計方法には、少なくとも次の2つの方法が含まれる。1つ目の設計方法は、端末局を収容可能なエリア(通信可能エリア)を最大化させるように置局・エリア設計を行う方法(以下、「エリア最大化」という。)である。2つ目の設計方法は、より少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせることによって効率的な置局・エリア設計を行う方法(以下、「収容効率化」という。)である。なお、上記の2つの設計方法の詳細については、後述される。 The design method here includes at least the following two methods. The first design method is a method of placing stations and designing areas so as to maximize an area (communication area) that can accommodate terminal stations (hereinafter referred to as "area maximization"). The second design method is a method for efficient station placement and area design by relatively widening the area that can accommodate terminal stations with a smaller number of base stations (hereinafter referred to as "accommodation efficiency improvement"). ). The details of the above two design methods will be described later.
 なお、ユーザは、設計方法を指定する際に、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置(不図示)に表示された、少なくとも2つの設計方法をそれぞれ示す文言(例えば「エリア最大化」及び「収容効率化」)や画像を見て、1つの設計方法を選択する。なお、ここでいう表示装置は、後述される出力部50を構成する部材の1つであってもよい。 When designating a design method, the user may specify at least two design methods displayed on a display device (not shown) such as a liquid crystal display or an organic EL display (e.g., "maximize area" and "Efficient accommodation") and images to select one design method. It should be noted that the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
 処理モード指定部204は、置局・エリア設計処理を行う際の処理モードを指定するためのユーザによる入力操作を受け付ける。処理モード指定部204は、受け付けた入力操作が示す処理モードを示す情報を記憶部30に記憶させる。 The processing mode specifying unit 204 accepts an input operation by the user for specifying a processing mode when performing station placement/area design processing. The processing mode specifying unit 204 causes the storage unit 30 to store information indicating the processing mode indicated by the received input operation.
 ここでいう処理モードには、少なくとも次の2つのモードが含まれる。1つ目の処理モードは、置局・エリア設計処理において処理負担を軽減することを優先させるモード(以下、「処理負担軽減優先モード」という。)である。2つ目の処理モードは、置局・エリア設計処理において処理精度を高くすることを優先させるモード(以下、「精度優先モード」という。)である。なお、上記の2つの処理モードの詳細については、後述される。 The processing mode here includes at least the following two modes. The first processing mode is a mode in which priority is given to reducing the processing load in station placement/area design processing (hereinafter referred to as "processing load reduction priority mode"). The second processing mode is a mode (hereinafter referred to as "accuracy priority mode") in which priority is given to increasing the processing accuracy in station placement/area design processing. Details of the above two processing modes will be described later.
 なお、ユーザは、処理モードを指定する際に、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置(不図示)に表示された、少なくとも2つの処理モードをそれぞれ示す文言(例えば「処理負担軽減優先モード」及び「精度優先モード」)又は画像を見て、1つの処理モードを選択する。なお、ここでいう表示装置は、後述される出力部50を構成する部材の1つであってもよい。 When specifying the processing mode, the user may specify at least two processing modes displayed on a display device (not shown) such as a liquid crystal display or an organic EL display (for example, "processing load reduction priority mode and "Accuracy Priority Mode") or look at the image and select one processing mode. It should be noted that the display device referred to here may be one of the members constituting the output unit 50, which will be described later.
 記憶部30は、基地局設置候補位置情報301と、地図・エリア情報302と、点群データ303と、判定可否リスト304と、置局・エリア設計結果情報305とを記憶する。記憶部30は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory;読み書き可能なメモリ)、ROM(Read Only Memory;読み出し専用メモリ)等の記憶媒体、又は、これらの記憶媒体の任意の組み合わせによって構成される。 The storage unit 30 stores base station installation candidate position information 301 , map/area information 302 , point cloud data 303 , judgment availability list 304 , and station placement/area design result information 305 . The storage unit 30 includes, for example, a HDD (Hard Disk Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write Memory), ROM (Read Only Memory). memory), or any combination of these storage media.
 基地局設置候補位置情報301は、基地局設置候補位置抽出部12によって抽出されて、記憶部30に格納された少なくとも1つの基地局設置候補位置を示す情報である。基地局設置候補位置情報301に含まれる基地局設置候補位置のうち、基地局候補位置選択部202によってユーザにより選択された基地局設置候補位置には、フラグ付けがなされる。または、基地局設置候補位置情報301に含まれる基地局設置候補位置のうち、基地局候補位置選択部202によってユーザにより選択されなかった基地局設置候補位置を示す情報は、削除されるようにしてもよい。 The base station installation candidate position information 301 is information indicating at least one base station installation candidate position extracted by the base station installation candidate position extraction unit 12 and stored in the storage unit 30 . Of the base station candidate positions included in the base station candidate position information 301, the base station candidate positions selected by the user by the base station candidate position selector 202 are flagged. Alternatively, among the base station candidate positions included in the base station candidate position information 301, the information indicating the base station candidate positions not selected by the user by the base station candidate position selector 202 is deleted. good too.
 地図・エリア情報302は、地図情報取得部13によって取得された地図情報と、エリア分割部14によって当該地図情報が網目状に区切られた際の網目の大きさ及び位置を示す情報とが、対応付けられた情報である。 The map/area information 302 is a correspondence between the map information acquired by the map information acquisition unit 13 and information indicating the mesh size and position when the map information is divided into meshes by the area division unit 14. attached information.
 点群データ303は、点群データ取得部15によって取得された3次元の点群データに基づく情報である。点群データ303が示す地図上の範囲は、地図情報取得部13によって取得される地図情報に基づく地図の範囲と重複している。点群データ303は、データ整合部16によって地図情報の座標系と点群データの座標系との間の整合が図られ、必要に応じて地図情報に含まれる位置(座標)と整合するように補正された点群データである。 The point cloud data 303 is information based on the three-dimensional point cloud data acquired by the point cloud data acquiring unit 15. The range on the map indicated by the point cloud data 303 overlaps with the range on the map based on the map information acquired by the map information acquisition unit 13 . The point cloud data 303 is matched between the coordinate system of the map information and the coordinate system of the point cloud data by the data matching unit 16, and is matched with the position (coordinates) included in the map information as necessary. It is corrected point cloud data.
 なお、記憶部30は、評価対象エリア内の、全ての基地局設置候補位置情報301、及び、全ての点群データ303を記憶している必要はなく、評価エリア選択部201によって評価対象エリアとして選択されうる地図上の範囲内において、少なくとも置局・エリア設計処理に必要となる範囲を含む基地局設置候補位置情報301と点群データ303とを記憶していればよい。 Note that the storage unit 30 does not need to store all the base station installation candidate position information 301 and all the point cloud data 303 in the evaluation target area. The base station installation candidate position information 301 and the point cloud data 303 including at least the range necessary for the station placement/area design process should be stored within the range on the map that can be selected.
 判定可否リスト304は、基地局の設置候補位置と端末局の候補位置との組み合わせがリスト化されたものである。判定可否リスト304に含まれる基地局の設置候補位置と端末局の候補位置との組み合わせの各々には、地図見通し判定部41によって判定された地図情報に基づく(例えば2次元の)見通し判定の結果を示す情報、及び、3次元見通し判定部42によって判定された3次元の点群データに基づく、見通し判定の結果又は遮蔽率判定の結果を示す情報等が対応付けられる。 The judgment availability list 304 is a list of combinations of base station installation candidate positions and terminal station candidate positions. For each combination of the candidate installation position of the base station and the candidate position of the terminal station included in the judgment availability list 304, the result of (for example, two-dimensional) visibility judgment based on the map information judged by the map visibility judgment unit 41 is displayed. and information indicating the result of visibility determination or the result of shielding ratio determination based on the three-dimensional point cloud data determined by the three-dimensional visibility determination unit 42 are associated.
 置局・エリア設計結果情報305は、後述される地図見通し判定部41、及び3次元見通し判定部42による判定によって生成された、置局・エリア設計処理の結果を示す情報である。 The station position/area design result information 305 is information indicating the result of the station position/area design process generated by the determination by the map outlook determination unit 41 and the three-dimensional outlook determination unit 42, which will be described later.
 地図見通し判定部41は、記憶部30に記憶された地図・エリア情報302に基づく網目状に区切られた地図の評価対象エリアの範囲について、網目ごとに、地図情報に基づく見通し判定を行う。 The map outlook determination unit 41 performs outlook determination based on the map information for each mesh with respect to the range of the evaluation target area of the map divided into meshes based on the map/area information 302 stored in the storage unit 30 .
 具体的には、地図見通し判定部41は、基地局設置候補位置抽出部12によって抽出され、基地局候補位置選択部202によって選択された基地局設置候補位置に基地局が設置された場合の各々の当該基地局と、各網目の代表となる位置(以下、「代表点」という。)に端末局が位置している場合の当該端末局との間について、地図情報に基づく見通し判定を行う。例えば、地図見通し判定部41は、地図情報に含まれる建造物等の物体の輪郭の位置に基づいて、基地局設置候補位置と代表点との間の見通し判定を行う。 Specifically, the map prospect determination unit 41 determines whether a base station is installed at a base station candidate position extracted by the base station candidate position extractor 12 and selected by the base station candidate position selector 202. between the relevant base station and the relevant terminal station when the terminal station is located at a representative position of each grid (hereinafter referred to as "representative point"), the line of sight is determined based on the map information. For example, the map visibility determining unit 41 determines the visibility between the base station installation candidate position and the representative point based on the position of the contour of an object such as a building included in the map information.
 代表点は、例えば、網目の中央にあたる位置である。すなわち、地図見通し判定部41は、各網目について見通し判定を行う場合、網目の中央の位置に端末局が存在すると仮定して見通し判定を行う。 The representative point is, for example, the position in the center of the mesh. In other words, the map visibility determining unit 41 performs visibility determination on the assumption that a terminal station exists at the center of each mesh when determining the visibility for each mesh.
 なお、代表点の位置は、網目の中央の位置に限られるものではなく、例えば網目の角の位置等の他の位置であっても構わない。しかしながら、網目の角の位置が代表点である場合、網目の対角線上にある別の角の位置等、網目内に代表点から遠く離れた位置ができるため、通信可否の判定の誤差が大きくなることが予想される。したがって、代表点は、網目の中央の位置であることが望ましい。 It should be noted that the position of the representative point is not limited to the position in the center of the mesh, and may be another position such as the position of the corner of the mesh. However, when the position of the corner of the mesh is the representative point, there is a position far away from the representative point in the mesh, such as another corner position on the diagonal line of the mesh, so the error in determining whether communication is possible becomes large. It is expected that. Therefore, it is desirable that the representative point be the central position of the mesh.
 ここでいう見通しの有無とは、基地局の設置候補位置と各網目の代表点とにそれぞれ基地局と端末局とが位置しているとした場合に、基地局と端末局との間で送受信される電波の伝搬経路に当該電波の伝搬を遮る遮蔽物が存在するか否かを表す。基地局と端末局との間の電波の伝搬経路に当該電波を遮蔽する遮蔽物が存在しない場合には、「見通しが有る」といい、基地局と端末局との間の電波の伝搬経路に当該電波を遮蔽する遮蔽物が存在する場合には、「見通しが無い」という。 Here, the presence or absence of line of sight refers to the transmission and reception between the base station and the terminal station, assuming that the base station and the terminal station are located at the candidate installation position of the base station and the representative point of each mesh. It indicates whether or not there is a shield that blocks the propagation of the radio wave on the propagation path of the radio wave. If there is no obstruction that blocks the radio waves on the radio wave propagation path between the base station and the terminal station, it is said to be "line-of-sight", and the radio wave propagation path between the base station and the terminal station is said to be "line-of-sight." If there is a shield that shields the radio waves, it is said to be "no line of sight".
 なお、本実施形態においては、見通し判定と通信可否の推定とは、同等のことを表すものとする。すなわち、見通しが有ると判定されることは通信可能と推定されることと同等であり、見通しが無いと判定されることは通信不可能と推定されることと同等であるものとする。 It should be noted that, in the present embodiment, determination of visibility and estimation of availability of communication represent the same thing. That is, determining that there is line of sight is equivalent to presuming that communication is possible, and determining that there is no line of sight is equivalent to presuming that communication is impossible.
 なお、ここでいう遮蔽物とは、基地局と端末局との間で送受信される電波の伝搬を遮る可能性がある物体である。遮蔽物には、例えば、住戸及びビル等の建物(建築物)、住宅の塀及び高架道路等の構造物、道路標識及び看板等の工作物、街路樹及び庭木等の植物、及び隆起した地面等の、電波の伝搬を遮断しうる全ての物体が含まれる。  The shielding object here is an object that may block the propagation of radio waves transmitted and received between the base station and the terminal station. Examples of shields include buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, structures such as road signs and signboards, plants such as roadside trees and garden trees, and raised ground. All objects that can block the propagation of radio waves are included.
 3次元見通し判定部42は、記憶部30に記憶された地図・エリア情報302に基づく網目状に区切られた地図の評価対象エリアの範囲について、網目ごとに、点群データ303に基づいて見通し判定を行う。 The three-dimensional outlook determination unit 42 determines the outlook based on the point cloud data 303 for each mesh with respect to the range of the evaluation target area of the map divided into meshes based on the map/area information 302 stored in the storage unit 30. I do.
 具体的には、3次元見通し判定部42は、基地局候補位置選択部202によって選択され、地図見通し判定部41による地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置に基地局が設置された場合の各々の当該基地局と、各網目の代表点に端末局が位置している場合の当該端末局との間について、3次元の点群データに基づく見通し判定を行う。 Specifically, the three-dimensional outlook determination unit 42 selects a base station candidate position selected by the base station candidate position selection unit 202 and determines that there is a line of sight by the map outlook determination unit 41 based on the map information. The line-of-sight judgment is performed based on three-dimensional point cloud data between each base station when the base station is installed and the terminal station when the terminal station is located at a representative point of each mesh. .
 前述の通り、見通しの有無とは、基地局の設置候補位置と各網目の代表点とにそれぞれ基地局と端末局とが位置している場合において、基地局と端末局との間で送受信される電波の伝搬経路に当該電波の伝搬を遮る遮蔽物が存在するか否かを表す。また、遮蔽物とは、基地局と端末局との間で送受信される電波の伝搬を遮る可能性がある物体である。 As described above, the presence or absence of line-of-sight refers to transmission and reception between the base station and the terminal station when the base station and the terminal station are located at the candidate installation position of the base station and the representative point of each mesh. It indicates whether or not there is a shield that blocks the propagation of the radio wave in the propagation path of the radio wave. A shielding object is an object that may block the propagation of radio waves transmitted and received between a base station and a terminal station.
 3次元見通し判定部42は、地図見通し判定部41による地図情報に基づく見通し判定によって見通しが有ると判定された基地局の設置候補位置と各網目の代表点との組み合わせのうち、3次元点群データに基づく見通し判定をする必要があると判定された組み合わせについて、見通し判定を行う。地図見通し判定部41によってどの組み合わせが3次元点群データに基づく見通し判定をする必要があると判定されるかについては、設計方法指定部203によって指定される置局・エリア設計の設計方法によって異なる。各設計方法の詳細については、後述される。 The three-dimensional line-of-sight determination unit 42 selects a three-dimensional point group from among the combinations of the candidate installation positions of the base stations determined to have line-of-sight by the map line-of-sight determination unit 41 and the representative points of each mesh. The visibility determination is performed for the combination determined to require the visibility determination based on the data. Which combination is determined by the map outlook determination unit 41 to be determined based on the three-dimensional point cloud data depends on the station location/area design design method designated by the design method designation unit 203. . Details of each design method will be described later.
 3次元見通し判定部42は、見通し判定の対象である基地局設置候補位置と代表点との間について、取得されている3次元点群データの個数が所定の閾値より多いか否かを判定する。3次元判定可否評価部43は、取得されている3次元点群データの個数が所定の閾値以下である場合には、見通しが有ると判定する。 The three-dimensional view determination unit 42 determines whether or not the number of acquired three-dimensional point cloud data between the base station installation candidate position and the representative point, which is the target of view determination, is greater than a predetermined threshold. . The three-dimensional determination propriety evaluation unit 43 determines that there is visibility when the number of pieces of acquired three-dimensional point cloud data is equal to or less than a predetermined threshold.
 また、3次元判定可否評価部43は、取得されている3次元点群データの個数が所定の閾値より多い場合には、遮蔽率を考慮して3次元の点群データによる見通し判定を行う。言い換えると、3次元見通し判定部42は、基地局設置候補位置と代表点との間に多くの点群データが存在していたとしても(すなわち、遮蔽物が多い又は大きい場合であっても)、見通しが無いとすぐに判定を下すのではなく、さらに遮蔽率を考慮して見通し判定を行うことによって、より精度の高い見通し判定の結果を得る。 In addition, when the number of pieces of acquired 3D point cloud data is larger than a predetermined threshold, the 3D determination propriety evaluation unit 43 performs visibility determination using the 3D point cloud data in consideration of the shielding rate. In other words, the three-dimensional outlook determination unit 42 determines that even if there is a lot of point cloud data between the base station installation candidate position and the representative point (that is, even if there are many or large obstructions) , the result of the visibility determination is obtained with higher accuracy by further considering the shielding rate and performing the determination of the visibility instead of making the determination immediately when there is no visibility.
 なお、例えば、基地局設置候補位置抽出部12、エリア分割部14、データ整合部16、地図見通し判定部41、及び3次元見通し判定部42は、1つの制御部(不図示)の構成要素として構成されてもよい。この場合、制御部は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。あるいは、制御部は、ソフトウェアとハードウェアの協働によって実現される構成であってもよい。CPUによって読み出されるプログラムは、例えば置局・エリア設計支援装置1が備える記憶部30等の記憶媒体に、予め格納されていてもよい。 Note that, for example, the base station installation candidate position extraction unit 12, the area division unit 14, the data matching unit 16, the map visibility determination unit 41, and the three-dimensional visibility determination unit 42 are components of one control unit (not shown). may be configured. In this case, the controller is implemented by a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Alternatively, the control unit may have a configuration realized by cooperation of software and hardware. The program read by the CPU may be stored in advance in a storage medium such as the storage unit 30 provided in the station placement/area design support device 1, for example.
 3次元判定可否評価部43は、判定可否リスト304に含まれる基地局設置候補位置を含む地図上の網目の範囲及びその近傍の範囲、及び、代表点の判定可否リスト304に含まれる代表点を含む地図上の網目の範囲及びその近傍の範囲について、収集されている3次元点群データの割合が見通し判定を可能にする割合に達しているかを確認する。 The three-dimensional judgment propriety evaluation unit 43 evaluates the range of meshes on the map including the base station installation candidate positions included in the judgment propriety list 304 and the range in the vicinity thereof, and the representative points contained in the representative point judgment propriety list 304. Check whether the ratio of collected three-dimensional point cloud data has reached a ratio that enables visibility determination for the range of meshes on the map that includes it and the range in the vicinity thereof.
 3次元判定可否評価部43は、収集されている3次元点群データの割合が見通し判定を可能にする割合に達していない網目の範囲内に存在する基地局設置候補位置及び代表点を、点群データに基づく見通し判定処理の対象から除外する。なぜならば、3次元データが必要十分な程度に収集されていない領域については、3次元の点群データに基づく見通し判定が行われたとしても、十分な信頼度を有する見通し判定の結果を得ることができないからである。3次元判定可否評価部43は、例えば、判定可否リスト304を更新することにより、該当する基地局設置候補位置及び代表点を見通し判定処理の対象から除外する。 The three-dimensional decision propriety evaluation unit 43 determines base station installation candidate positions and representative points existing within a mesh range in which the ratio of the collected three-dimensional point cloud data does not reach the ratio at which line-of-sight judgment is possible. Excluded from targets for visibility determination processing based on group data. This is because, for areas where 3D data has not been collected to the necessary and sufficient extent, even if visibility judgment is performed based on 3D point cloud data, the results of visibility judgment with sufficient reliability cannot be obtained. because it cannot The three-dimensional judgment propriety evaluation unit 43, for example, updates the judgment propriety list 304, thereby excluding the corresponding base station installation candidate positions and representative points from targets of the visibility judgment processing.
 出力部50は、置局・エリア設計結果情報305を記憶部30から取得する。出力部50は、置局・エリア設計結果情報305を、後段の処理を行う外部の装置(例えば置局設計装置等)へ出力する。 The output unit 50 acquires the station placement/area design result information 305 from the storage unit 30 . The output unit 50 outputs the station placement/area design result information 305 to an external device (for example, a station placement design device or the like) that performs subsequent processing.
 出力部50は、例えば、置局・エリア設計結果情報305を外部の装置へ出力するための通信インターフェースを含んで構成される。なお、出力部50は、置局・エリア設計結果情報305を表示させる表示部として機能する機能部であってもよい。この場合、出力部50は、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置を含んで構成される。なお、出力部50は、ユーザに対して提示する各種の情報を表示するようにしてもよい。 The output unit 50 includes, for example, a communication interface for outputting the station placement/area design result information 305 to an external device. Note that the output unit 50 may be a functional unit that functions as a display unit that displays the station placement/area design result information 305 . In this case, the output unit 50 includes a display device such as a liquid crystal display or an organic EL display. Note that the output unit 50 may display various types of information to be presented to the user.
 なお、以下に説明する図2のフローチャートに示される処理によれば、以下の2点が実現可能となる。 According to the processing shown in the flowchart of FIG. 2, the following two points can be realized.
 ・推奨される基地局候補位置の組み合わせを導出すること。
 ・通信可能エリアを信頼度に応じて導出すること。
• Deriving a combination of recommended base station candidate locations.
- Deriving a communicable area according to reliability.
 ここでいう信頼度には、例えば、建物の外郭の位置等の情報を含む2次元の地図情報を(優先的に)用いて評価された場合に相当する標準的な信頼度と、MMSによって収集された3次元の点群データを(優先的に)用いて評価された場合に相当するより高い信頼度とが含まれる。 The reliability referred to here includes, for example, the standard reliability corresponding to the evaluation using (preferentially) two-dimensional map information including information such as the location of the outer shell of the building, and the reliability collected by MMS. and a higher degree of confidence corresponding to when evaluated using (preferentially) the 3D point cloud data.
 推奨される基地局の設置候補位置及び端末局の通信可能エリアを導出するために、2次元地図情報及び3次元の点群データのうち、どちらの情報(データ)を優先的に用いるかについての判断は、例えばMMSの走行ルート等によって影響される3次元の点群データの収集状況等に基づいて行われる。 Which information (data) should be preferentially used, 2D map information or 3D point cloud data, in order to derive recommended candidate locations for installing base stations and communication coverage areas for terminal stations. The determination is made based on, for example, the collection status of three-dimensional point cloud data that is influenced by the MMS travel route or the like.
[置局・エリア設計支援装置の動作]
 以下、置局・エリア設計支援装置1の動作の一例について説明する。図2は、本発明の第1の実施形態における置局・エリア設計支援装置1の動作を示すフローチャートである。図2のフローチャートが示す置局・エリア設計支援装置1の動作は、例えば、置局・エリア設計支援装置1の電源がオンにされた際に開始する。
[Operation of station placement/area design support device]
An example of the operation of the station placement/area design support apparatus 1 will be described below. FIG. 2 is a flow chart showing the operation of the station placement/area design support device 1 according to the first embodiment of the present invention. The operation of the station placement/area design support device 1 shown in the flowchart of FIG. 2 is started, for example, when the power of the station placement/area design support device 1 is turned on.
 まず、地図情報取得部13は、例えば外部の装置等から地図情報を取得する(ステップS01)。前述の通り、ここでいう地図情報とは、例えば、2次元の地図を示す情報である。地図情報には、例えば住宅及びビル等の、建物の外郭の平面位置を示す情報が少なくとも含まれる。地図情報は、3次元の点群データと比べて情報量がより少ないデータである。そのため、地図情報を用いて行われる見通し判定処理は、3次元の点群データを用いて行われる見通し判定処理と比べて、計算量はより少なくなる。 First, the map information acquisition unit 13 acquires map information from, for example, an external device (step S01). As described above, the map information here is, for example, information indicating a two-dimensional map. The map information includes at least information indicating the planar position of the outline of buildings such as houses and buildings. Map information is data with a smaller amount of information than three-dimensional point cloud data. Therefore, the outlook determination process performed using the map information has a smaller amount of calculation than the outlook determination process performed using the three-dimensional point cloud data.
 次に、評価エリア選択部201は、地図情報に基づく地図の全体範囲のうち、置局・エリア設計の評価対象エリアを選択するためのユーザによる入力操作を受け付ける(ステップS02)。例えば、ユーザは、表示装置(不図示)に表示された地図に対して所望の範囲を囲む入力操作を行うことによって評価対象エリアを選択する。 Next, the evaluation area selection unit 201 receives an input operation by the user for selecting an evaluation target area for station placement/area design from the entire range of the map based on the map information (step S02). For example, the user selects an evaluation target area by performing an input operation to enclose a desired range on a map displayed on a display device (not shown).
 評価エリア選択部201は、受け付けた入力操作が示す評価対象エリアを示す情報を記憶部30に記憶させる。エリア分割部14は、地図情報取得部13から出力された地図情報と評価エリア選択部201によって選択された評価対象エリアを示す情報とに基づいて、評価対象エリアの範囲の地図を、所定の大きさの網目状に区切る。 The evaluation area selection unit 201 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation. Based on the map information output from the map information acquisition unit 13 and the information indicating the evaluation target area selected by the evaluation area selection unit 201, the area dividing unit 14 divides the map of the range of the evaluation target area into a predetermined size. Separate into meshes of thickness.
 次に、設備情報取得部11は、例えば外部の装置等から設備情報を取得する(ステップS03)。前述の通り、ここでいう設備情報とは、例えば基地局を設置可能な高層の建物や電柱等の屋外設備の、平面位置を示す情報が少なくとも含まれる。基地局設置候補位置抽出部12は、取得された設備情報に基づいて、基地局の設置候補位置を抽出する(ステップS04)。基地局設置候補位置抽出部12は、抽出された基地局の設置候補位置を示す基地局設置候補位置情報301を、記憶部30に記憶させる。 Next, the facility information acquisition unit 11 acquires facility information, for example, from an external device (step S03). As described above, the equipment information here includes at least information indicating the planar position of outdoor equipment such as a high-rise building where a base station can be installed or a utility pole. The base station installation candidate position extraction unit 12 extracts the installation candidate position of the base station based on the acquired facility information (step S04). The base station installation candidate position extraction unit 12 causes the storage unit 30 to store base station installation candidate position information 301 indicating the extracted installation candidate positions of the base stations.
 なお、地図情報に、標高及び地図内に存在する物体の高さ等の高さ方向の位置を示す情報が含まれている場合、所定の高さを超える地点及び所定の高さを超える建築物等の位置が、基地局設置候補位置として自動的に抽出される構成であってもよい。 In addition, if the map information contains information indicating the position in the height direction such as altitude and the height of objects existing on the map, points exceeding the predetermined height and buildings exceeding the predetermined height Such positions may be automatically extracted as base station installation candidate positions.
 次に、基地局候補位置選択部202は、基地局設置候補位置抽出部12によって抽出された基地局設置候補位置の中から、評価対象とする少なくとも1つの特定の基地局設置候補位置を選択するためのユーザによる入力操作を受け付ける(ステップS05)。例えば、表示装置(不図示)等に評価対象エリアの地図が表示され、ユーザが、操作入力部20によって所望の位置を基地局設置候補位置として選択することができるような構成であってもよい。基地局候補位置選択部202は、受け付けた入力操作が示す評価対象エリアを示す情報を記憶部30に記憶させる。 Next, the base station candidate position selection unit 202 selects at least one specific base station candidate position to be evaluated from among the base station candidate positions extracted by the base station candidate position extractor 12. An input operation by the user for the purpose is accepted (step S05). For example, a map of the evaluation target area may be displayed on a display device (not shown) or the like, and the user may select a desired position as a base station installation candidate position using the operation input unit 20. . The base station candidate position selection unit 202 causes the storage unit 30 to store information indicating the evaluation target area indicated by the received input operation.
 なお、基地局候補位置選択部202が、基地局設置候補位置のリスト(例えば、基地局設置候補位置ごとの緯度及び経度等)を示す、例えばCSV(Comma Separated Value)形式のデータファイル等を外部の装置から読み込むことによって、基地局設置候補位置の選択が行われるような構成であってもよい。 Note that the base station candidate position selection unit 202 sends a data file such as a CSV (Comma Separated Value) format indicating a list of base station installation candidate positions (for example, the latitude and longitude of each base station installation candidate position) to an external device. The configuration may be such that the base station installation candidate positions are selected by reading from the device.
 次に、地図見通し判定部41は、記憶部30に記憶された地図・エリア情報302に基づく網目状に区切られた地図の評価対象エリアの範囲について、網目ごとに、地図情報に基づく見通し判定を行う(ステップS06)。地図見通し判定部41は、選択された基地局設置候補位置に基地局が設置された場合の各々の当該基地局と、各代表点に端末局が位置している場合の当該端末局との間について、地図情報に基づく見通し判定を行う。前述の通り、代表点は、例えば網目の中央の位置である。例えば、地図見通し判定部41は、地図情報に含まれる建造物等の物体の輪郭の位置に基づいて、見通しの判定を行う。 Next, the map outlook determination unit 41 determines the outlook based on the map information for each mesh with respect to the range of the evaluation target area of the map divided into meshes based on the map/area information 302 stored in the storage unit 30. (step S06). The map outlook determination unit 41 determines the distance between each base station when the base station is installed at the selected base station installation candidate position and the terminal station when the terminal station is located at each representative point. , the visibility is determined based on the map information. As described above, the representative point is, for example, the central position of the mesh. For example, the map outlook determining unit 41 determines the outlook based on the position of the outline of an object such as a building included in the map information.
 次に、出力部50あるいは置局・エリア設計支援装置1が備える表示装置(不図示)は、地図見通し判定部41による、地図情報に基づく見通し判定の結果を示す情報をユーザによって参照可能に表示する(ステップS07)。 Next, the display device (not shown) provided in the output unit 50 or the station placement/area design support device 1 displays information indicating the result of outlook determination based on the map information by the map outlook determination unit 41 so that the user can refer to it. (step S07).
 次に、点群データ取得部15は、例えば外部の装置等から点群データを取得する(ステップS08)。前述の通り、点群データは、例えば、MMSを搭載した車両等の移動体を住宅エリア等の評価対象エリア周辺の道路に沿って走行させることによって得られたものである。 Next, the point cloud data acquisition unit 15 acquires point cloud data, for example, from an external device (step S08). As described above, the point cloud data is obtained, for example, by causing a mobile object such as a vehicle equipped with an MMS to travel along a road around an evaluation target area such as a residential area.
 なお、点群データ取得部15は、地図情報に基づく地図の全ての3次元の点群データを取得する代わりに、見通し判定に必要十分な範囲に限定して3次元の点群データを取得するようにしてもよい。具体的には、例えば点群データ取得部15は、地図見通し判定部41による地図情報に基づく見通し判定によって見通しが有ると判定された基地局の設置候補位置と代表点の位置との組み合わせについて見通し判定を行うために必要となる範囲の3次元点群データのみを取得するようにしてもよい。 Note that the point cloud data acquisition unit 15 acquires the 3D point cloud data limited to a necessary and sufficient range for determining the outlook, instead of acquiring all the 3D point cloud data of the map based on the map information. You may do so. Specifically, for example, the point cloud data acquisition unit 15 obtains an outlook for a combination of a candidate installation position of a base station determined to have a line of sight by the line of sight determination based on the map information by the map line of sight determining unit 41 and the position of the representative point. Only the three-dimensional point cloud data within the range required for determination may be obtained.
 または、例えば点群データ取得部15は、指定された置局・エリア設計の設計方法に従って3次元の点群データに基づく見通し判定が必要であると判定とされた基地局の設置候補位置と代表点の位置との組み合わせについて見通し判定を行うために必要となる範囲の3次元点群データのみを取得するようにしてもよい。 Alternatively, for example, the point cloud data acquisition unit 15 obtains the installation candidate positions of the base stations determined to require line-of-sight determination based on the three-dimensional point cloud data according to the designated station placement/area design design method and the representative location. Only the three-dimensional point cloud data in the range required to determine the visibility for the combination with the position of the points may be acquired.
 次に、データ整合部16は、地図・エリア情報302に含まれる、評価対象エリアの地図情報を取得する。また、データ整合部16は、点群データ取得部15から出力された点群データを取得する。データ整合部16は、地図情報の座標系と点群データの座標系との間の整合を図り、必要に応じて、点群データに含まれる位置(座標)を、地図情報に含まれる位置(座標)に対して整合させるように補正する(ステップS09)。データ整合部16は、地図情報との整合が図られた点群データ303を、記憶部30に記憶させる。なお、地図情報の座標系と点群データの座標系とが一致していることが既知である場合には、ステップS09の処理は省略可能である。 Next, the data matching unit 16 acquires the map information of the evaluation target area included in the map/area information 302 . Also, the data matching unit 16 acquires the point cloud data output from the point cloud data acquiring unit 15 . The data matching unit 16 attempts to match the coordinate system of the map information and the coordinate system of the point cloud data, and if necessary, changes the positions (coordinates) included in the point cloud data to the positions (coordinates) included in the map information. coordinates) are corrected (step S09). The data matching unit 16 causes the storage unit 30 to store the point cloud data 303 that has been matched with the map information. Note that if it is known that the coordinate system of the map information and the coordinate system of the point cloud data match, the process of step S09 can be omitted.
 次に、3次元見通し判定部42は、地図見通し判定部41による地図情報に基づく見通し判定の結果に基づいて、基地局設置候補位置ごとに、3次元の点群データに基づく見通し判定の必要があるか否かを示す判定可否リスト304を作成する(ステップS10)。 Next, the three-dimensional outlook determination unit 42 determines whether it is necessary to determine the outlook based on the three-dimensional point cloud data for each base station installation candidate position based on the result of the outlook determination based on the map information by the map outlook determination unit 41. A judgment availability list 304 indicating whether or not there is is created (step S10).
 次に、3次元見通し判定部42は、地図見通し判定部41による地図情報に基づく見通し判定の結果に基づいて、代表点ごとに、3次元の点群データに基づく見通し判定の必要があるか否かを示す判定可否リスト304を作成する(ステップS11)。前述の通り、代表点とは、網目状に区切られた地図の各網目を代表する位置(例えば、網目の中央の位置)である。地図情報に基づく見通し判定処理、及び3次元点群データに基づく見通し判定処理では、代表点に端末局が存在するものとして見通しの判定が行われる。 Next, based on the result of the outlook determination based on the map information by the map outlook determination unit 41, the three-dimensional outlook determination unit 42 determines whether it is necessary to determine the outlook based on the three-dimensional point cloud data for each representative point. A judgment availability list 304 indicating whether or not is created (step S11). As described above, the representative point is a position (for example, the central position of the mesh) that represents each mesh of the meshed map. In the outlook determination process based on map information and the outlook determination process based on three-dimensional point cloud data, the outlook is determined assuming that a terminal station exists at a representative point.
 次に、3次元判定可否評価部43は、判定可否リスト304に含まれる基地局設置候補位置を含む地図上の網目の範囲、及び、判定可否リスト304に含まれる代表点を含む地図上の網目の範囲について、収集されている3次元点群データの割合が見通し判定を可能にする割合に達しているかを確認する(ステップS12)。3次元判定可否評価部43は、収集されている3次元点群データの割合が見通し判定を可能にする割合に達していない網目の範囲内に存在する基地局設置候補位置及び代表点について、判定可否リスト304を更新することにより、見通し判定の対象から除外する。 Next, the three-dimensional judgment propriety evaluation unit 43 determines the mesh range on the map including the base station installation candidate positions included in the judgment propriety list 304 and the mesh on the map containing the representative points included in the judgment propriety list 304. In the range of , it is confirmed whether the ratio of the collected three-dimensional point cloud data has reached a ratio that enables visibility determination (step S12). The three-dimensional decision propriety evaluation unit 43 evaluates base station installation candidate positions and representative points existing within a mesh range in which the ratio of the collected three-dimensional point cloud data does not reach the ratio that enables visibility judgment. By updating the permission/rejection list 304, it is excluded from the visibility determination target.
 なお、収集されている3次元点群データの割合が見通し判定を可能にする割合に達しているかについての確認は、ユーザによる目視によって行われるようにしてもよい。例えば、置局・エリア設計支援装置1が備える表示装置(不図示)に網目ごとの収集されている3次元点群データの割合が表示されるようにしてもよい。そして、ユーザが、当該割合を確認して、網目ごとに見通し判定の対象から除外するか否かを判断して、入力操作により指定するようにしてもよい。 It should be noted that the user may visually check whether the ratio of the collected 3D point cloud data has reached the ratio that enables visibility determination. For example, the ratio of collected three-dimensional point cloud data for each mesh may be displayed on a display device (not shown) included in the station placement/area design support apparatus 1 . Then, the user may confirm the ratio, determine whether or not to exclude each mesh from the prospect determination target, and specify the mesh through an input operation.
 次に、設計方法指定部203は、設計方法を指定するためのユーザによる入力操作を受け付ける(ステップS13)。前述の通り、設計方法には、「エリア最大化」及び「収容効率化」の2つの設計方法が含まれる。エリア最大化は、端末局を収容可能なエリアを最大化させるように置局・エリア設計を行う方法である。収容効率化は、より少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせることによって効率的な置局・エリア設計を行う方法である。 Next, the design method designation unit 203 receives an input operation by the user for designating the design method (step S13). As described above, the design method includes two design methods of "maximization of area" and "improvement of accommodation efficiency". Area maximization is a method of designing stations and areas so as to maximize the area that can accommodate terminal stations. Improving accommodation efficiency is a method of efficiently designing station placement and areas by widening the area in which terminal stations can be accommodated with a smaller number of base stations.
 次に、設計方法指定部203によって「エリア最大化」が指定された場合(ステップS13・YES)、地図見通し判定部41は、以下のステップS14の処理を実行する。一方、設計方法指定部203によって「収容効率化」が指定された場合(ステップS13・NO)、地図見通し判定部41は、以下のステップS14の処理の実行を省略する。 Next, when "maximize area" is specified by the design method specifying unit 203 (step S13, YES), the map outlook determining unit 41 executes the processing of step S14 below. On the other hand, if the design method designating unit 203 designates "storage efficiency" (step S13: NO), the map outlook determining unit 41 omits execution of the processing of step S14 below.
 次に、地図見通し判定部41は、上記のステップS05において選択された各基地局設置候補位置に基地局が設置された場合について、網目状に区分けされた評価対象エリアの地図上の網目ごとに、地図情報に基づく見通し判定を行う。 Next, the map outlook determining unit 41 determines the meshes on the map of the evaluation target area divided into meshes in the case where the base station is installed at each of the base station installation candidate positions selected in step S05. , determines visibility based on map information.
 地図見通し判定部41は、地図情報に基づく見通し判定によって、ある基地局設置候補位置に設置された基地局によって通信可能エリアとしてカバーされると判定された(すなわち、見通しが有ると判定された)代表点(網目)の中に、他のどの基地局設置候補位置に設置された基地局によっても通信可能エリアとしてカバーされないと判定された(すなわち、見通しが無いと判定された)代表点(網目)を特定する。地図見通し判定部41は、上記特定された代表点(網目)を通信可能エリアとしてカバーする基地局設置候補位置を選択する(ステップS14)。なお、このステップS14の詳細については、後に具体例を挙げながら詳しく説明する。 The map visibility determination unit 41 determines that the base station installed at a certain base station installation candidate position covers the area as a communicable area (that is, determines that there is visibility) by the visibility determination based on the map information. Among the representative points (mesh), there are representative points (mesh) that have been determined not to be covered as a communicable area by base stations installed at any other base station installation candidate positions (i.e., determined to have no line of sight). ). The map prospect determination unit 41 selects a base station installation candidate position that covers the identified representative point (mesh) as a communicable area (step S14). The details of this step S14 will be described in detail later with specific examples.
 次に、処理モード指定部204は、置局・エリア設計処理を行う際の処理モードを指定するためのユーザによる入力操作を受け付ける(ステップS15)。前述の通り、処理モードには、「処理負担軽減優先モード」及び「精度優先モード」の2つのモードが含まれる。処理負担軽減優先モードは、置局・エリア設計処理において処理負担を軽減することを優先させるモードである。精度優先モードは、置局・エリア設計処理において処理精度を高くすることを優先させるモードである。 Next, the processing mode designating unit 204 receives an input operation by the user for designating the processing mode when performing station placement/area design processing (step S15). As described above, the processing mode includes two modes of "processing load reduction priority mode" and "accuracy priority mode". The processing load reduction priority mode is a mode in which priority is given to reducing the processing load in station placement/area design processing. The accuracy priority mode is a mode in which priority is given to increasing the processing accuracy in station placement/area design processing.
 次に、処理モード指定部204によって「処理負担軽減優先モード」が指定された場合(ステップS15・YES)、地図見通し判定部41及び3次元見通し判定部42は、処理負担を軽減することを優先して見通し判定を行う(ステップS16)。一方、処理モード指定部204によって「精度優先モード」が指定された場合(ステップS15・NO)、地図見通し判定部41及び3次元見通し判定部42は、処理精度を高くすることを優先して見通し判定を行う(ステップS17)。 Next, when the "processing load reduction priority mode" is specified by the processing mode specifying unit 204 (step S15: YES), the map outlook determination unit 41 and the three-dimensional view determination unit 42 give priority to reducing the processing load. Then, line-of-sight determination is performed (step S16). On the other hand, when the "precision priority mode" is designated by the processing mode designation unit 204 (step S15: NO), the map outlook determination unit 41 and the three-dimensional outlook determination unit 42 give priority to increasing the processing accuracy. A determination is made (step S17).
 ここで、処理負担を軽減することを優先した見通し判定とは、例えば、(例えば2次元の)地図情報に基づく見通し判定の結果を優先して最終的な見通し判定の結果を決定する判定方法である。この判定方法によれば、判定精度を高くすることを優先した見通し判定と比べて、より早く見通し判定の結果を得ることが可能になる。 Here, the visibility determination that gives priority to reducing the processing load is, for example, a determination method that prioritizes the result of visibility determination based on (for example, two-dimensional) map information and determines the final result of visibility determination. be. According to this determination method, it is possible to obtain the result of the visibility determination more quickly than the visibility determination that gives priority to increasing the determination accuracy.
 一方、判定精度を高くすることを優先した見通し判定とは、(例えば3次元の)点群データに基づく見通し判定の結果を優先して最終的な見通し判定の結果を決定する判定方法である。この判定方法によれば、処理負担を軽減することを優先した見通し判定と比べて、より精度の高い見通し判定の結果を得ることが可能になる。 On the other hand, visibility determination that prioritizes higher determination accuracy is a determination method that prioritizes the results of visibility determination based on (for example, three-dimensional) point cloud data to determine the final results of visibility determination. According to this determination method, it is possible to obtain a result of the outlook determination with higher accuracy than the outlook determination that prioritizes the reduction of the processing load.
 次に、出力部50は、指定された設計方法(すなわち、「エリア最大化」又は「収容効率化」)及び指定された処理モード(すなわち、「処理負担軽減優先モード」又は「精度優先モード」)に従って(地図見通し判定部41及び3次元見通し判定部42により)行われた見通し判定の結果を示す、置局・エリア設計結果情報305を表示する(ステップS18)。以上で、図2のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 Next, the output unit 50 selects the designated design method (i.e., “area maximization” or “accommodation efficiency”) and the designated processing mode (i.e., “processing load reduction priority mode” or “accuracy priority mode”). ) is displayed (step S18). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 2 is completed.
[点群データに基づく見通し判定の実行可否]
 以下、点群データに基づく見通し判定の実行可否を決定する方法について、具体例を挙げながら詳細に説明する。
[Possibility of Execution of Line-of-sight Judgment Based on Point Cloud Data]
Hereinafter, a method for determining whether or not to perform the visibility determination based on the point cloud data will be described in detail with specific examples.
 図3は、評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定の結果の一例を示す図である。図3には7行×8列の格子が描かれているが、これは網目状に区切られた地図情報に基づく地図の評価対象エリアの一部を表している。また、図3において、「A」から「E」までの符号がそれぞれ付与された黒点は、基地局候補位置選択部202によって選択された基地局設置候補位置を表す。 FIG. 3 is a diagram showing an example of the result of line-of-sight determination for each base station installation candidate position and mesh in the evaluation target area. A grid of 7 rows×8 columns is drawn in FIG. 3, and this represents a part of the evaluation target area of the map based on the map information divided in a mesh pattern. In FIG. 3 , the black dots assigned the symbols “A” to “E” represent base station installation candidate positions selected by the base station candidate position selection section 202 .
 図3において、太字の実線によって囲まれている6つの網目(すなわち、(1),(2),(3),(4),(5)及び(6)の数字がそれぞれ付された網目)は、地図見通し判定部41による地図情報に基づく見通し判定によって基地局設置候補位置Aとの間で見通しが有ると判定された網目である。すなわち、基地局設置候補位置Aに設置される基地局は、(1),(2),(3),(4),(5)及び(6)の数字がそれぞれ付された6つの網目の範囲内に存在する端末局との通信が可能であることを意味する。 In FIG. 3, the six meshes surrounded by bold solid lines (i.e. meshes numbered (1), (2), (3), (4), (5) and (6) respectively) is a mesh determined to have a line of sight with the base station installation candidate position A by the line of sight determination based on the map information by the map line of sight determination unit 41 . That is, the base stations installed at the base station installation candidate position A are divided into six meshes with numerals (1), (2), (3), (4), (5) and (6) respectively. It means that communication with a terminal station existing within range is possible.
 また、図3において、点線によって囲まれている5つの網目(すなわち、(2),(3),(4),(5)及び(7)の数字がそれぞれ付された網目)は、地図見通し判定部41による地図情報に基づく見通し判定によって基地局設置候補位置Bとの間で見通しが有ると判定された網目である。すなわち、基地局設置候補位置Bに設置される基地局は、(2),(3),(4),(5)及び(7)の数字がそれぞれ付された5つの網目の範囲内に存在する端末局との通信が可能であることを意味する。 Also, in FIG. 3, the five meshes enclosed by dotted lines (that is, the meshes numbered (2), (3), (4), (5) and (7), respectively) are map perspectives. This mesh is determined to have a line of sight with the base station installation candidate position B by line of sight determination based on the map information by the determining unit 41 . That is, the base stations installed at the base station installation candidate position B are present within the range of five meshes labeled with numbers (2), (3), (4), (5) and (7) respectively. It means that it is possible to communicate with a terminal station that
 また、図3において、一点鎖線によって囲まれている4つの網目(すなわち、(6),(8),(10)及び(12)の数字がそれぞれ付された網目)は、地図見通し判定部41による地図情報に基づく見通し判定によって基地局設置候補位置Cとの間で見通しが有ると判定された網目である。すなわち、基地局設置候補位置Cに設置される基地局は、(6),(8),(10)及び(12)の数字がそれぞれ付された4つの網目の範囲内に存在する端末局との通信が可能であることを意味する。 Also, in FIG. 3, the four meshes enclosed by the dashed-dotted lines (that is, the meshes numbered (6), (8), (10) and (12) respectively) are the map visibility determination unit 41. This mesh is determined to have a line of sight with the base station installation candidate position C by the line of sight determination based on the map information. That is, the base station installed at the base station installation candidate position C is the terminal station existing within the range of the four meshes numbered (6), (8), (10) and (12) respectively. communication is possible.
 また、図3において、破線によって囲まれている5つの網目(すなわち、(8),(9),(10),(11)及び(13)の数字がそれぞれ付された網目)は、地図見通し判定部41による地図情報に基づく見通し判定によって基地局設置候補位置Dとの間で見通しが有ると判定された網目である。すなわち、基地局設置候補位置Dに設置される基地局は、(8),(9),(10),(11)及び(13)の数字がそれぞれ付された5つの網目の範囲内に存在する端末局との通信が可能であることを意味する。 Also, in FIG. 3, the five meshes enclosed by the dashed lines (that is, the meshes numbered (8), (9), (10), (11) and (13) respectively) are map perspectives. This mesh is determined to have a line of sight with the base station installation candidate position D by line of sight determination based on the map information by the determining unit 41 . That is, the base station installed at the base station installation candidate position D exists within the range of five meshes labeled with numbers (8), (9), (10), (11) and (13). It means that it is possible to communicate with a terminal station that
 また、図3において、二点鎖線によって囲まれている2つの網目(すなわち、(13)及び(14)の数字がそれぞれ付された網目)は、地図見通し判定部41による地図情報に基づく見通し判定によって基地局設置候補位置Eとの間で見通しが有ると判定された網目である。すなわち、基地局設置候補位置Eに設置される基地局は、(13)及び(14)の数字がそれぞれ付された2つの網目の範囲内に存在する端末局との通信が可能であることを意味する。 Also, in FIG. 3, two meshes surrounded by two-dot chain lines (that is, meshes with numbers (13) and (14) respectively) indicate the visibility determined by the map visibility determination unit 41 based on the map information. It is determined that there is a line of sight between the base station installation candidate position E and the base station installation candidate position E. That is, the base station installed at the base station installation candidate position E indicates that it is possible to communicate with the terminal station existing within the range of the two meshes marked with numbers (13) and (14) respectively. means.
 図3において、「(1)」~「(14)」等の符号が記載されていない空白の網目は、地図情報に基づく見通し判定によって、A~Eまでのどの基地局設置候補位置とも見通しが無いと判定された代表点を有する網目である。すなわち、基地局がA~Eまでのどの基地局設置候補位置に設置されたとしても、当該基地局は空白の網目の範囲内に存在する端末局との通信は不可能であることを意味する。そのため、このような空白の網目の代表点については、後段の3次元見通し判定部42による点群データに基づく見通し判定処理を行う必要がない。 In FIG. 3, blank meshes without symbols such as "(1)" to "(14)" are line-of-sight to any base station installation candidate position from A to E by line-of-sight determination based on map information. Mesh with representative points determined to be absent. In other words, even if the base station is installed at any of the base station installation candidate positions from A to E, it means that the base station cannot communicate with terminal stations existing within the range of the blank meshes. . Therefore, it is not necessary to perform the visibility determination processing based on the point group data by the three-dimensional visibility determination unit 42 in the latter stage for representative points of such blank meshes.
 なお、地図情報に基づく見通し判定は、例えば、地図上において基地局設置候補位置と網目の代表点とを結ぶ直線上に建造物等の遮蔽物が存在するか否かに基づいて行われる。なお、地図情報に基づく見通し判定には、任意の従来技術を用いることが可能である。 The visibility determination based on the map information is performed based on, for example, whether or not there is an obstacle such as a building on the straight line connecting the base station installation candidate position and the representative point of the mesh on the map. Any conventional technology can be used for the visibility determination based on the map information.
 以下、設計方法として「エリア最大化」が指定された場合における置局・エリア設計について説明する。前述の通り、エリア最大化は、端末局を収容可能なエリアを最大化させるように置局・エリア設計を行う方法である。 The station placement and area design when "area maximization" is specified as the design method will be described below. As described above, area maximization is a method of setting stations and designing areas so as to maximize the area that can accommodate terminal stations.
 エリア最大化を図る置局・エリア設計を行う場合、地図見通し判定部41は、地図情報に基づく見通し判定によって少なくとも1つの基地局設置候補位置との間で見通しが有ると判定された代表点のうち、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点を特定する。 When performing station placement/area design for maximizing the area, the map outlook determination unit 41 determines the line of sight between at least one base station installation candidate position and the representative point determined by the visibility determination based on the map information. Among them, a representative point determined to have a line of sight with only one base station installation candidate position is specified.
 図3に示される例においては、地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点は、(1),(7),(9),(11),(12)及び(14)の符号が記載された代表点である。 In the example shown in FIG. 3, representative points determined to have line of sight between only one base station installation candidate position by line of sight determination based on map information are (1), (7), ( 9), (11), (12) and (14) are representative points.
 図3に示されるように、(1)の符号が記載された代表点は、地図情報に基づく見通し判定によって、基地局設置候補位置Aとの間のみ見通しが有ると判定された代表点である。以下同様に、(7)の符号が記載された代表点は、地図情報に基づく見通し判定によって、基地局設置候補位置Bとの間のみ見通しが有ると判定された代表点である。(9)及び(11)の符号が記載された代表点は、地図情報に基づく見通し判定によって、基地局設置候補位置Dとの間のみ見通しが有ると判定された代表点である。(12)の符号が記載された代表点は、地図情報に基づく見通し判定によって、基地局設置候補位置Cとの間のみ見通しが有ると判定された代表点である。(14)の符号が記載された代表点は、地図情報に基づく見通し判定によって、基地局設置候補位置Eとの間のみ見通しが有ると判定された代表点である。 As shown in FIG. 3, the representative points marked with (1) are the representative points determined to have line of sight only to base station installation candidate position A by line of sight determination based on map information. . Likewise, the representative points marked with (7) are the representative points determined to have line of sight only to the base station installation candidate position B by the line of sight determination based on the map information. The representative points indicated by the symbols (9) and (11) are the representative points determined to have line of sight only to the base station installation candidate position D by the line of sight determination based on the map information. A representative point with a reference number (12) is a representative point determined to have a line of sight only to the base station installation candidate position C by the line of sight determination based on the map information. A representative point indicated by the code (14) is a representative point determined to have a line of sight only to the base station installation candidate position E by the line of sight determination based on the map information.
 エリア最大化を図る置局・エリア設計を行う場合、地図見通し判定部41は、上記特定された代表点との間で見通しが有ると判定された基地局設置候補位置を、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として優先して(まず始めに)選択する。なお、上記特定された代表点とは、前述の通り、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点である。 In the case of station placement/area design for maximizing the area, the map outlook determining unit 41 puts the base station installation candidate positions determined to have a line of sight between the specified representative points into the following three-dimensional It is selected preferentially (first) as a base station installation candidate position used in the outlook determination process based on the point cloud data. Note that the specified representative point is, as described above, a representative point determined to have a line of sight with only one base station installation candidate position.
 言い換えると、エリア最大化を図る置局・エリア設計を行う場合、地図見通し判定部41は、地図情報に基づく見通し判定によって、ある基地局設置候補位置に設置された基地局によって通信可能エリアとしてカバーされると判定された(すなわち、見通しが有ると判定された)代表点(網目)の中に、他のどの基地局設置候補位置に設置された基地局によっても通信可能エリアとしてカバーされないと判定された(すなわち、見通しが無いと判定された)代表点(網目)を特定する。地図見通し判定部41は、上記特定された代表点(網目)を通信可能エリアとしてカバーする基地局設置候補位置を優先して(まず始めに)選択する。 In other words, in the case of station placement/area design for maximizing the area, the map outlook determination unit 41 determines the coverage as a communicable area by a base station installed at a certain base station installation candidate position based on the outlook determination based on the map information. (i.e., determined to have line of sight), it is determined that none of the other base station installation candidate positions covers the communicable area. Identify the representative points (mesh) that have been delineated (i.e., determined to have no line of sight). The map prospect determination unit 41 preferentially (firstly) selects a base station installation candidate position that covers the specified representative point (mesh) as a communicable area.
 端末局を収容可能なエリアを最大化させるように置局・エリア設計を行うためには、このように、地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点を特定し、当該代表点との間で見通しが有ると判定された基地局設置候補位置を、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として優先して選択していくことが必要である。 In order to design stations and areas so as to maximize the area where terminal stations can be accommodated, line-of-sight judgment based on map information enables line-of-sight between only one base station installation candidate position. is determined to be present, and base station installation candidate positions determined to have line-of-sight between the representative point and the base station used in the line-of-sight determination process based on three-dimensional point cloud data in the latter stage It is necessary to select them with priority as station installation candidate positions.
 これに対し、以下、設計方法として「収容効率化」が指定された場合における置局・エリア設計について説明する。前述の通り、収容効率化は、より少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせることによって効率的な置局・エリア設計を行う方法である。 On the other hand, the station placement and area design when "improving accommodation efficiency" is specified as the design method will be described below. As described above, accommodation efficiency improvement is a method of efficiently designing stations and areas by relatively widening areas that can accommodate terminal stations with a smaller number of base stations.
 収容効率化を図る置局・エリア設計を行う場合、地図見通し判定部41は、地図情報に基づく見通し判定によって、見通しが有ると判定された代表点をより多く有する基地局設置候補位置から順に、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として優先して選択していく。 When station placement/area design is performed to improve accommodation efficiency, the map outlook determination unit 41 sequentially determines base station installation candidate positions that have a greater number of representative points that have been determined to have visibility based on the visibility determination based on the map information. They are preferentially selected as base station installation candidate positions used in the visibility determination processing based on the three-dimensional point cloud data in the latter stage.
 そして、収容効率化を図る置局・エリア設計を行う場合、地図見通し判定部41は、地図情報に基づく見通し判定によって、少なくとも1つの基地局設置候補位置との間で見通しが有ると判定された代表点(網目)のうち、選択された代表点の割合が、予め定められた割合に達した際に、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置を選択する上記の処理を終了する。所定の割合とは、例えば、80[%]等である。このような構成によって、より少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせる収容効率化が図られる。 Then, in the case of station placement/area design for improving accommodation efficiency, the map outlook determination unit 41 determines that there is a line of sight between at least one base station installation candidate position by the visibility determination based on the map information. When the ratio of selected representative points among the representative points (mesh) reaches a predetermined ratio, base station installation candidate positions to be used in the subsequent process of determining visibility based on three-dimensional point cloud data are determined. Terminate the above process of selection. The predetermined percentage is, for example, 80[%]. With such a configuration, although the number of base stations is reduced, it is possible to increase the accommodation efficiency by relatively widening the area in which the terminal stations can be accommodated.
 例えば、図3においては、基地局設置候補位置Aが、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を最も多く有する。基地局設置候補位置Aは、(1),(2),(3),(4),(5)及び(6)の符号が記載された6つの代表点との間でそれぞれ見通しが有る。次に、基地局設置候補位置B及びDが、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を2番目に多く有する。基地局設置候補位置Bは、(2),(3),(4),(5)及び(7)の符号が記載された5つの代表点との間でそれぞれ見通しが有り、基地局設置候補位置Dは、(8),(9),(10),(11)及び(13)の符号が記載された5つの代表点との間でそれぞれ見通しが有る。次に、基地局設置候補位置Cが、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を3番目に多く有する。基地局設置候補位置Cは、(6),(8),(10)及び(12)の符号が記載された4つの代表点との間でそれぞれ見通しが有る。最後に、基地局設置候補位置Eが、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を最も少なく有する。基地局設置候補位置Eは、(13)及び(14)の符号が記載された2つの代表点との間でそれぞれ見通しが有る。 For example, in FIG. 3, base station installation candidate position A has the largest number of representative points determined to have visibility by visibility determination based on map information. The base station installation candidate position A has a line of sight between six representative points labeled with (1), (2), (3), (4), (5) and (6). Next, base station installation candidate positions B and D have the second largest number of representative points determined to have visibility by visibility determination based on map information. The base station installation candidate position B has a line of sight between each of the five representative points marked with (2), (3), (4), (5), and (7). Position D has line of sight to each of the five representative points labeled (8), (9), (10), (11) and (13). Next, base station installation candidate position C has the third largest number of representative points determined to have visibility by visibility determination based on map information. The base station installation candidate position C has a line of sight between each of the four representative points marked with (6), (8), (10) and (12). Finally, base station installation candidate position E has the fewest representative points determined to have visibility by visibility determination based on map information. The base station installation candidate position E has a line of sight between two representative points marked with (13) and (14).
 収容効率化を図る置局・エリア設計を行う場合、地図見通し判定部41は、まず初めに、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を最も多く有する基地局設置候補位置Aを、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として選択する。 In the case of station placement/area design for improving accommodation efficiency, first, the map outlook determination unit 41 determines base station installation candidate positions having the largest number of representative points that are determined to have visibility by visibility determination based on map information. A is selected as a base station installation candidate position used in the visibility determination process based on the three-dimensional point cloud data in the latter stage.
 次に、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を2番目に多く有するのは、当初、基地局設置候補位置B及びDであった。しかしながら、例えば、基地局設置候補位置Bは、(2),(3),(4),(5)及び(7)の符号がそれぞれ記載された5つの代表点との間で見通しが有ると判定されており、このうち、(2),(3),(4)及び(5)の符号がそれぞれ記載された4つの代表点は、上記選択された基地局設置候補位置Aとの間についても同様に見通しが有ると判定されている。 Next, base station installation candidate positions B and D initially had the second largest number of representative points determined to have visibility based on visibility determination based on map information. However, for example, it is assumed that base station installation candidate position B has a line of sight between five representative points indicated by symbols (2), (3), (4), (5), and (7). Among these, the four representative points indicated by the symbols (2), (3), (4) and (5) are between the selected base station installation candidate position A and is also judged to have prospects.
 したがって、基地局設置候補位置Aが選択された後に基地局設置候補位置Bが選択されたとしても、いずれかの基地局設置候補位置との間で見通しがある代表点として新たに追加されるのは、(7)の符号が記載された代表点のみである。そのため、基地局設置候補位置Aが選択された後に基地局設置候補位置Bが選択されると、収容効率化を図るという目的にそぐわなくなる。 Therefore, even if base station installation candidate position B is selected after base station installation candidate position A is selected, it will not be newly added as a representative point that has a line of sight between any of the base station installation candidate positions. is only the representative point with the code of (7). Therefore, if the base station installation candidate position B is selected after the base station installation candidate position A is selected, the purpose of improving accommodation efficiency is not met.
 そこで、地図見通し判定部41は、地図情報に基づく見通し判定によって、既に選択された基地局設置候補位置との間で見通しが有ると判定された代表点を除外した上で、見通しが有ると判定された代表点を最も多く有する基地局設置候補位置を、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として選択していく。 Therefore, the map outlook determination unit 41 determines that there is a line of sight after excluding the representative points that have been determined to have line of sight with the base station installation candidate positions that have already been selected by the line of sight determination based on the map information. A candidate base station installation position having the largest number of representative points is selected as a candidate base station installation position to be used in the visibility determination process based on the three-dimensional point cloud data in the latter stage.
 そのため、基地局設置候補位置Aが選択され、当該基地局設置候補位置Aとの間で見通しが有ると判定された代表点が除かれた時点においては、基地局設置候補位置Bは、(7)の符号が記載された1つの代表点との間で見通しが有り、基地局設置候補位置Cは、(8),(10),及び(12)の符号がそれぞれ記載された3つの代表点との間でそれぞれ見通しが有り、基地局設置候補位置Dは、(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された5つの代表点との間でそれぞれ見通しが有り、基地局設置候補位置Eは、(13)及び(14)の符号がそれぞれ記載された2つの代表点との間でそれぞれ見通しが有るという状態となる。 Therefore, when the base station candidate position A is selected and the representative points determined to have line of sight with the base station candidate position A are removed, the base station candidate position B is (7 ), and the base station installation candidate position C is three representative points respectively marked with codes (8), (10), and (12). , and the base station installation candidate position D is between five representative points indicated by the symbols (8), (9), (10), (11) and (13) respectively. , and the base station installation candidate position E has a line of sight between each of the two representative points indicated by the symbols (13) and (14).
 以上の結果から、基地局設置候補位置Aが選択された後の時点では、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を最も多く有するのは、5つの代表点との間で見通しが有る基地局設置候補位置Dとなる。地図見通し判定部41は、基地局設置候補位置Aの次には基地局設置候補位置Dを、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として追加選択する。 From the above results, at the point in time after base station installation candidate position A has been selected, the point having the largest number of representative points determined to have visibility by visibility determination based on map information is between five representative points. , the base station installation candidate position D has a line of sight. After the base station installation candidate position A, the map outlook determination unit 41 additionally selects the base station installation candidate position D as a base station installation candidate position to be used in the subsequent outlook determination processing based on the three-dimensional point cloud data. .
 そして、基地局設置候補位置A及びDが選択され、当該基地局設置候補位置A又はDとの間で見通しが有ると判定された代表点が除かれた時点においては、基地局設置候補位置Bは、(7)の符号が記載された1つの代表点との間で見通しが有り、基地局設置候補位置Cは、(12)の符号が記載された1つの代表点との間で見通しが有り、基地局設置候補位置Eは、(14)の符号が記載された1つの代表点との間で見通しが有るという状態となる。 Then, when base station installation candidate positions A and D are selected, and the representative points determined to have line of sight between the base station installation candidate positions A and D are removed, the base station installation candidate position B has a line of sight to one representative point marked with the code of (7), and the base station installation candidate position C has line of sight to one representative point marked with the code of (12). There is, and the base station installation candidate position E is in a state where there is a line of sight between one representative point indicated by the code of (14).
 このとき、基地局設置候補位置B,C及びEのいずれも、地図情報に基づく見通し判定によって見通しが有ると判定された代表点を1つずつ有することから、地図見通し判定部41は、基地局設置候補位置Dの次には、残りの基地局設置候補位置の1つ(ここでは、例えば基地局設置候補位置Bとする。)を、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として追加選択する。 At this time, each of the base station installation candidate positions B, C, and E has one representative point determined to have a line of sight by the line of sight determination based on the map information. Next to the installation candidate position D, one of the remaining base station installation candidate positions (here, for example, the base station installation candidate position B) is selected in the visibility judgment processing based on the three-dimensional point cloud data in the latter stage. It is additionally selected as a base station installation candidate position to be used.
 基地局設置候補位置A,D及びBが選択されることにより、(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された12個の代表点が、選択済みのいずれかの基地局設置候補位置(すなわち、基地局設置候補位置A,D及びCのいずれか)との間で見通しが有ると判定された代表点となる。 By selecting the base station installation candidate positions A, D and B, (1), (2), (3), (4), (5), (6), (7), (8), ( 9), (10), (11) and (13) are indicated by the 12 representative points, respectively, at any of the selected base station installation candidate positions (that is, base station installation candidate positions A and D). and C).
 ここで、図3に例示された評価対象エリアにおいて、地図情報に基づく見通し判定によって当該評価対象エリアに存在する基地局設置候補位置A~Eのいずれかとの間で見通しが有ると判定された代表点(網目)は、(1)~(14)の符号が記載された14個の代表点であり、その総数は14個である。よって、基地局設置候補位置A,D及びBが選択されることによって、14個中12個の代表点が通信可能エリアとしてカバーされる。 Here, in the evaluation target area exemplified in FIG. 3, a representative determined to have a line of sight with any of the base station installation candidate positions A to E existing in the evaluation target area by line-of-sight determination based on map information. The points (netting) are 14 representative points marked with symbols (1) to (14), and the total number is 14. Therefore, by selecting base station installation candidate positions A, D, and B, 12 representative points out of 14 are covered as a communicable area.
 14個中の12個という割合は、およそ86[%]であり、例えば予め定められた割合である80[%]に達していることから、地図見通し判定部41は、基地局設置候補位置A,D及びCの順に3つの基地局設置候補位置を選択した時点で、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置を選択する上記の処理を終了する。このような構成によって、より少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせる収容効率化が図られる。 The ratio of 12 out of 14 is about 86[%], for example, it has reached the predetermined ratio of 80[%]. , D and C in this order, the above process of selecting base station candidate positions to be used in the subsequent line-of-sight determination process based on the three-dimensional point cloud data ends. With such a configuration, although the number of base stations is reduced, it is possible to increase the accommodation efficiency by relatively widening the area in which the terminal stations can be accommodated.
 前述の「エリア最大化」が指定された場合における置局・エリア設計では、まず初めに、地図見通し判定部41は、地図情報に基づく見通し判定によって、ある基地局設置候補位置に設置された基地局によって通信可能エリアとしてカバーされると判定された(すなわち、見通しが有ると判定された)代表点(網目)の中に、他のどの基地局設置候補位置に設置された基地局によっても通信可能エリアとしてカバーされないと判定された(すなわち、見通しが無いと判定された)代表点(網目)を特定し、特定された代表点(網目)を通信可能エリアとしてカバーする基地局設置候補位置を優先して選択する構成であった。「エリア最大化」が指定された場合における置局・エリア設計においても、それ以降の基地局設置候補位置の選択においては、地図見通し判定部41は、上記の「収容効率化」が指定された場合における置局・エリア設計と同様の処理を行えばよい。 In the station placement/area design when the above-described "area maximization" is specified, first, the map outlook determination unit 41 determines the base station installed at a certain base station installation candidate position by the outlook determination based on the map information. Communicate with a base station installed at any other base station installation candidate position within a representative point (mesh) determined to be covered as a communicable area by a station (i.e., determined to have line of sight) A representative point (mesh) determined not to be covered as a possible area (that is, determined to have no line of sight) is specified, and base station installation candidate positions that cover the specified representative point (mesh) as a communicable area are determined. It was a configuration that was selected with priority. Even in station placement/area design when "maximize area" is specified, in subsequent selection of base station installation candidate positions, the map prospect determination unit 41 The same processing as station placement/area design in the case may be performed.
 すなわち、地図見通し判定部41は、まず初めに、地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点を特定し、当該代表点との間で見通しが有ると判定された基地局設置候補位置を、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として全て選択する。そして、それ以降は、地図見通し判定部41は、地図情報に基づく見通し判定によって、見通しが有ると判定された代表点をより多く有する基地局設置候補位置から順に、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置として優先して選択していく。 That is, the map visibility determination unit 41 first identifies a representative point determined to have visibility with only one base station installation candidate position by the visibility determination based on the map information. All of the base station installation candidate positions determined to have line of sight between and are selected as base station installation candidate positions used in the subsequent line of sight determination processing based on the three-dimensional point cloud data. Then, after that, the map outlook determination unit 41 sequentially determines the three-dimensional point cloud data in the latter stage from the base station installation candidate position having more representative points determined to have visibility by the outlook determination based on the map information. are selected preferentially as base station installation candidate positions to be used in the line-of-sight determination process based on the above.
 ここで、地図見通し判定部41は、地図情報に基づく見通し判定によって、いずれかの少なくとも1つの基地局設置候補位置との間で見通しが有ると判定された代表点のうち、点群データに基づく見通し判定の対象となった代表点の割合が、予め定められた割合に達した際に、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置を選択する上記の処理を終了するようにしてもよい。 Here, the map visibility determining unit 41 determines, based on the point cloud data, among the representative points determined to have visibility with at least one of the base station installation candidate positions by the visibility determination based on the map information. When the percentage of representative points targeted for visibility determination reaches a predetermined percentage, base station installation candidate positions to be used in the subsequent visibility determination processing based on the three-dimensional point cloud data are selected. You may make it complete|finish a process.
 以下、エリア最大化における処理の流れについて説明する。図4は、本発明の第1の実施形態における置局・エリア設計支援装置1のエリア最大化における動作を示すフローチャートである。図4のフローチャートが示す置局・エリア設計支援装置1の動作は、前述の図2に示されるステップS14の動作を詳細化したものである。 The flow of processing in area maximization will be described below. FIG. 4 is a flow chart showing operations in area maximization of the station placement/area design support apparatus 1 according to the first embodiment of the present invention. The operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 4 is a detailed version of the operation of step S14 shown in FIG.
 なお、収容効率化における処理の場合には、図4のフローチャートが示す置局・エリア設計支援装置1の動作は省略される。収容効率化における処理の場合とは、図2のステップS13の分岐においてNOとなる場合に相当し、この場合にはステップS14の処理が省略される動作となることからも分かる。 It should be noted that, in the case of processing for improving accommodation efficiency, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 4 is omitted. The case of the processing for improving accommodation efficiency corresponds to the case where the branch of step S13 in FIG.
 図4に示されるように、ステップS142からステップS144までの処理は、地図情報に基づく見通し判定によって見通しが有ると判定された組み合わせの個数に相当する回数だけ繰り返し行われる(ステップS141)。 As shown in FIG. 4, the processing from step S142 to step S144 is repeated the number of times corresponding to the number of combinations determined to have visibility by visibility determination based on map information (step S141).
 まず、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された基地局の設置候補位置と網目の代表点との組み合わせに含まれる代表点のうち、ある代表点について、見通しが有ると判定された基地局の設置候補位置が複数あるか否かを確認する(ステップS142)。 First, the map visibility determination unit 41 determines, by the visibility determination based on the map information, that a certain representative point among the representative points included in the combinations of the candidate installation positions of the base stations determined to have visibility and the representative points of the mesh: It is checked whether or not there are a plurality of installation candidate positions for the base station determined to have visibility (step S142).
 ある代表点について、見通しが有ると判定された基地局の設置候補位置が複数ある場合(ステップS142・YES)、地図見通し判定部41は、以降のステップS143及びステップS144の処理を行わず、次の代表点について上記のステップS142の処理を行う。 If there are a plurality of base station installation candidate positions determined to have line of sight for a certain representative point (step S142, YES), the map line of sight determination unit 41 does not perform the subsequent steps S143 and S144, and proceeds to the next step. The processing of step S142 is performed for the representative points of .
 一方、ある代表点について、見通しが有ると判定された基地局の設置候補位置が1つのみである場合(ステップS142・NO)、3次元見通し判定部42は、当該代表点と見通しが有ると判定された唯一の基地局設置候補位置と、当該基地局と、の間について、点群データに基づく見通し判定処理を行う(ステップS143)。 On the other hand, if there is only one base station installation candidate position determined to have line of sight with respect to a certain representative point (step S142: NO), the three-dimensional line of sight determination unit 42 determines that line of sight exists with the representative point. A line-of-sight determination process based on the point cloud data is performed between the determined single base station installation candidate position and the base station (step S143).
 次に、3次元見通し判定部42は、点群データに基づく見通し判定の判定結果を、記憶部30に記憶された判定可否リスト304を更新することによって記録する(ステップS144)。なお、3次元見通し判定部42は、点群データに基づく見通し判定の判定結果を記録した基地局設置候補位置と代表点との組み合わせを、地図情報に基づく見通し判定によって見通しが有ると判定された組み合わせのリストから削除するようにしてもよい。 Next, the three-dimensional outlook determination unit 42 records the determination result of the outlook determination based on the point cloud data by updating the determination availability list 304 stored in the storage unit 30 (step S144). In addition, the three-dimensional visibility determination unit 42 determines that there is visibility by the visibility determination based on the map information, based on the combination of the base station installation candidate position and the representative point recorded in the determination result of the visibility determination based on the point cloud data. You may make it delete from the list of combination.
 そして、地図情報に基づく見通し判定によって見通しが有ると判定された、基地局設置候補位置と代表点との組み合わせの個数に相当する回数だけ上記ステップS142~ステップS144の処理が繰り返された場合、図4のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 Then, when the processing of steps S142 to S144 is repeated the number of times corresponding to the number of combinations of base station installation candidate positions and representative points determined to have visibility by the visibility determination based on the map information, the process shown in FIG. The operation of the station placement/area design support device 1 shown in the flowchart of 4 is completed.
 以下、エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例について説明する。図5~11は、エリア最大化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。 An example of updating the judgment availability list 304 when performing station placement/area design for maximizing the area will be described below. 5 to 11 are diagrams showing an example of update of the judgment availability list 304 in the case of station placement/area design for maximizing the area.
 以下、前述の図3に例示される評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定の結果を用いて説明する。 In the following, a description will be given using the base station installation candidate positions in the evaluation target area illustrated in FIG.
 図5には、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。図3及び図5に示されるように、地図情報に基づく見通し判定によって、基地局設置候補位置Aと見通しが有ると判定された代表点は、(1),(2),(3),(4),(5)及び(6)の符号がそれぞれ記載された6つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(2),(3),(4),(5)及び(7)の符号がそれぞれ記載された5つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(6),(8),(10)及び(12)の符号がそれぞれ記載された4つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Dと見通しが有ると判定された代表点は、(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された5つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(13)及び(14)の符号がそれぞれ記載された2つの代表点である。 FIG. 5 shows a list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information. As shown in FIGS. 3 and 5, the representative points determined to have line-of-sight with the base station installation candidate position A by line-of-sight determination based on the map information are (1), (2), (3), ( 4), (5) and (6) are the six representative points, respectively. Further, the representative points determined to have line-of-sight with the base station installation candidate position B by the line-of-sight determination based on the map information are denoted by (2), (3), (4), (5) and (7). 5 representative points each noted. Also, the representative points determined to have line of sight with the base station installation candidate position C by the line of sight determination based on the map information are indicated with symbols (6), (8), (10) and (12) respectively. There are four representative points. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by the line-of-sight determination based on the map information are denoted by (8), (9), (10), (11) and (13). 5 representative points each noted. Also, the representative points determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information are the two representative points marked with symbols (13) and (14), respectively.
 前述の通り、エリア最大化を図る置局・エリア設計を行う場合、地図見通し判定部41は、地図情報に基づく見通し判定によって少なくとも1つの基地局設置候補位置との間で見通しが有ると判定された代表点のうち、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点を特定する。 As described above, when station placement/area design is performed to maximize the area, the map outlook determination unit 41 determines that there is a line of sight between at least one base station installation candidate position by the visibility determination based on the map information. Among the representative points, a representative point determined to have a line of sight with only one base station installation candidate position is specified.
 図3に示される例においては、地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点は、(1),(7),(9),(11),(12)及び(14)の符号が記載された代表点である。 In the example shown in FIG. 3, representative points determined to have line of sight between only one base station installation candidate position by line of sight determination based on map information are (1), (7), ( 9), (11), (12) and (14) are representative points.
 地図見通し判定部41は、これら6つの代表点と、それぞれの代表点と(地図情報に基づく見通し判定によって)見通しが有ると判定された基地局設置候補位置と、の組み合わせをリストに記録する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map visibility determination unit 41 records in a list the combinations of these six representative points, each representative point, and base station installation candidate positions determined to have visibility (by visibility determination based on map information). Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図6には、エリア最大化を図る置局・エリア設計において、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点と、それぞれの代表点と(地図情報に基づく見通し判定によって)見通しが有ると判定された基地局設置候補位置と、の組み合わせのリストが示されている。 FIG. 6 shows the representative points determined to have line of sight between only one base station installation candidate position in the station placement/area design for maximizing the area, and the respective representative points (in the map information). A list of combinations of base station installation candidate positions determined to have line of sight (based on line of sight determination) is shown.
 図6に示されるように、エリア最大化を図る置局・エリア設計において、リストには、まず、(1)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(7)の符号が記載された代表点と基地局設置候補位置Bとの組み合わせ、(9)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(11)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(12)の符号が記載された代表点と基地局設置候補位置Cとの組み合わせ、及び(14)の符号が記載された代表点と基地局設置候補位置Eとの組み合わせが記録される。 As shown in FIG. 6, in the station placement/area design for maximizing the area, the list first includes combinations of representative points marked with the code (1) and base station installation candidate positions A, (7 ) and the base station installation candidate position B, the combination of the representative point with the code (9) and the base station installation candidate position D, and the code (11). A combination of the representative point and base station installation candidate position D, a combination of the representative point with the code of (12) and the base station installation candidate position C, and the representative point with the code of (14) and the base A combination with the station installation candidate position E is recorded.
 更に、図6に例示されるリストには、上記組み合わせについて行われた、点群データに基づく見通し判定の結果がそれぞれ示されている。図6に示されるように、(1)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(9)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、及び(11)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し有り」である。一方、(7)の符号が記載された代表点と基地局設置候補位置Bとの組み合わせ、(12)の符号が記載された代表点と基地局設置候補位置Cとの組み合わせ、及び(14)の符号が記載された代表点と基地局設置候補位置Eとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し無し」である。 Furthermore, the list exemplified in FIG. 6 shows the results of the outlook determination based on the point cloud data for the above combinations. As shown in FIG. 6, the combination of the representative points marked with the code (1) and the base station installation candidate position A, and the combination of the representative points marked with the code (9) and the base station installation candidate position D are shown in FIG. The result of the line-of-sight determination based on the point cloud data performed for each of the combinations and the combination of the representative points marked with the symbols (11) and the base station installation candidate positions D is "with line-of-sight". On the other hand, the combination of the representative point with the code of (7) and the base station installation candidate position B, the combination of the representative point with the code of (12) and the base station installation candidate position C, and (14) The result of line-of-sight determination based on the point cloud data is "no line-of-sight", which is performed for each combination of the representative points marked with .
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置と代表点との組み合わせを、前述の図5に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determining unit 41 determines that there is a line of sight for a combination of the base station installation candidate position and the representative point for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. deleted from the list of combinations of base station installation candidate positions and representative points.
 図7には、点群データに基づく見通し判定が完了した基地局設置候補位置と代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図5に示されるリストが、図7に示されるリストのように更新される。 FIG. 7 shows the base station installation determined to have a line of sight by the line of sight determination based on the map information after deleting the combination of the base station installation candidate position and the representative point for which the line of sight determination based on the point cloud data has been completed. A list of combinations of candidate locations and representative points is shown. That is, the list shown in FIG. 5 is updated like the list shown in FIG.
 図7に示されるように、更新後のリストでは、地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された、(1),(7),(9),(11),(12)及び(14)の符号が記載された代表点が削除されている。更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Aと見通しが有ると判定された代表点は、(2),(3),(4),(5)及び(6)の符号がそれぞれ記載された5つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(2),(3),(4)及び(5)の符号がそれぞれ記載された4つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(6),(8)及び(10)の符号がそれぞれ記載された3つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Dと見通しが有ると判定された代表点は、(8),(10)及び(13)の符号がそれぞれ記載された3つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(13)の符号が記載された1つの代表点である。 As shown in FIG. 7, in the updated list, it is determined that there is a line of sight between only one base station installation candidate position by line of sight determination based on map information, (1) and (7). , (9), (11), (12) and (14) are deleted. In the updated list, the representative points determined to have line-of-sight with the base station installation candidate position A by line-of-sight determination based on the map information are (2), (3), (4), (5) and ( 6) are five representative points respectively described. Also, the representative points determined to have line-of-sight with the base station installation candidate position B by the line-of-sight determination based on the map information are indicated with symbols (2), (3), (4) and (5), respectively. There are four representative points. Also, the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are three representative points marked with symbols (6), (8) and (10), respectively. is. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by line-of-sight determination based on the map information are three representative points marked with symbols (8), (10) and (13), respectively. is. Also, the representative point determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information is one representative point indicated by the code (13).
 前述の通り、エリア最大化を図る置局・エリア設計においては、地図見通し判定部41は、まず初めに、上記のように、地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点を特定する。3次元見通し判定部42は、当該基地局設置候補位置と特定された代表点との間について、点群データに基づく見通し判定処理を行う。そして、それ以降については、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置から順に選択していく。 As described above, in the station placement/area design for maximizing the area, the map outlook determination unit 41 first determines the outlook based on the map information as described above, and selects only one base station installation candidate position. Identify representative points determined to have line-of-sight only between . The three-dimensional line-of-sight determination unit 42 performs line-of-sight determination processing based on the point cloud data between the base station installation candidate position and the identified representative point. After that, the map outlook determination unit 41 sequentially selects base station installation candidate positions in descending order of the number of representative points determined to have visibility by the visibility determination based on the map information.
 3次元見通し判定部42は、選択された基地局設置候補位置と、当該基地局設置候補位置との間で(地図情報に基づく見通し判定によって)見通しが有ると判定された代表点との間について、点群データに基づく見通し判定処理を行う。 The three-dimensional line-of-sight determination unit 42 determines between the selected base station installation candidate position and a representative point determined to have line-of-sight between the selected base station installation candidate position (by line-of-sight determination based on map information). , the line-of-sight determination process is performed based on the point cloud data.
 図7に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、5つの代表点との間で見通しが有ると判定された基地局設置候補位置Aである。したがって、地図見通し判定部41は、基地局設置候補位置Aを選択する。 As shown in FIG. 7, base station installation candidate positions having more representative points determined to have line of sight by line of sight determination based on map information were determined to have line of sight between five representative points. This is the base station installation candidate position A. FIG. Therefore, the map prospect determination unit 41 selects the base station installation candidate position A. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Aと上記5つの代表点との組み合わせを示す情報を、図6に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position A and the five representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図8には、基地局設置候補位置Aと上記5つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 8 shows a list to which information indicating the combination of the base station installation candidate position A and the five representative points and information indicating the result of visibility determination based on the point cloud data for each combination are newly added. It is
 図8に示されるように、新たに追加された、(2)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(3)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(5)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、及び(6)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し有り」である。一方、(4)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し無し」である。 As shown in FIG. 8, the newly added combination of the representative point indicated by the symbol (2) and the base station installation candidate position A, the representative point indicated by the symbol (3) and the base station A combination with the installation candidate position A, a combination of the representative point indicated by the code of (5) and the base station installation candidate position A, and a combination of the representative point indicated by the code of (6) and the base station installation candidate position A The result of the line-of-sight determination based on the point cloud data performed for each of the combinations is "with line-of-sight". On the other hand, the result of the line-of-sight determination based on the point cloud data for the combination of the representative point with the symbol (4) and the base station installation candidate position A is "no line-of-sight".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Aと各代表点との組み合わせを、前述の図7に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position A and each representative point for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
 図9には、点群データに基づく見通し判定が完了した基地局設置候補位置Aと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図7に示されるリストが、図9に示されるリストのように更新される。 FIG. 9 shows a base station determined to have a line of sight by the line of sight determination based on the map information after the combination of the base station installation candidate position A and the representative point for which the line of sight determination based on the point cloud data has been completed is deleted. A list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 7 is updated like the list shown in FIG.
 図9に示されるように、更新後のリストでは、基地局設置候補位置Aと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Aとの間で見通しが有ると判定された、(2),(3),(4),(5)及び(6)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、全て無くなっている。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(8)及び(10)の符号がそれぞれ記載された2つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Dと見通しが有ると判定された代表点は、(8),(10)及び(13)の符号がそれぞれ記載された3つの代表点のままである。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(13)の符号が記載された1つの代表点のままである。 As shown in FIG. 9, the combination of the base station installation candidate position A and the representative point is deleted from the updated list. In addition, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position A and (2), (3), (4), (5), and (5), based on the map information. The representative point with the code (6) is deleted. As a result, in the updated list, all the representative points determined to have a line of sight to the base station installation candidate position B by line of sight determination based on the map information are removed. Also, the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the two representative points marked with symbols (8) and (10), respectively. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by line-of-sight determination based on the map information are three representative points marked with symbols (8), (10) and (13), respectively. remains Also, the representative point determined to have a line of sight with the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (13).
 図9に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、3つの代表点と見通しが有ると判定された基地局設置候補位置Dである。したがって、次に、地図見通し判定部41は、基地局設置候補位置Dを選択する。 As shown in FIG. 9, base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information are three representative points and base station installation positions determined to have line-of-sight. Candidate position D. Therefore, next, the map outlook determination unit 41 selects a base station installation candidate position D. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Dと上記3つの代表点との組み合わせを示す情報を、図8に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the three representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図10には、基地局設置候補位置Dと上記3つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 10 shows a list to which information indicating combinations of base station installation candidate positions D and the above three representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
 図10に示されるように、新たに追加された、(8)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(10)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、及び(13)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 10, the newly added combination of the representative point indicated by the symbol (8) and the base station installation candidate position D, the representative point indicated by the symbol (10) and the base station The result of line-of-sight determination based on the point cloud data for the combination with the installation candidate position D and the combination of the representative point marked with the symbol (13) and the base station installation candidate position D is "with line-of-sight". be.
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Dと各代表点との組み合わせを、前述の図9に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
 図11には、点群データに基づく見通し判定が完了した基地局設置候補位置Dと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図9に示されるリストが、図11に示されるリストのように更新される。 FIG. 11 shows the base stations determined to have visibility by the visibility determination based on the map information after the combinations of the base station installation candidate positions D and the representative points for which the visibility determination based on the point cloud data has been completed are deleted. A list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 9 is updated like the list shown in FIG.
 図11に示されるように、更新後のリストでは、基地局設置候補位置Dと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Dとの間で見通しが有ると判定された、(8),(10)及び(13)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、全て無くなっている。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点も同様に、全て無くなっている。 As shown in FIG. 11, the combination of the base station installation candidate position D and the representative point is deleted from the updated list. Also, in the updated list, the codes (8), (10), and (13), which are determined to have a line of sight to the base station installation candidate position D by the line of sight determination based on the map information, are described. representative points are deleted. As a result, in the updated list, all the representative points determined to have line of sight with the base station installation candidate position C by line of sight determination based on the map information are all gone. Likewise, all the representative points determined to have line of sight with the base station installation candidate position E by line of sight determination based on the map information are also gone.
 図11に示されるように、更新後のリストにおいては、基地局設置候補位置と代表点との全ての組み合わせが削除されている。すなわち、地図情報に基づく見通し判定により少なくとも1つの基地局候補位置との間で見通しが有ると判定された代表点の全てについて、点群データに基づく見通し判定処理が行われたことになる。 As shown in FIG. 11, all combinations of base station installation candidate positions and representative points are deleted from the updated list. In other words, all the representative points determined to have line of sight with at least one base station candidate position by the line of sight determination based on the map information are subjected to the line of sight determination processing based on the point cloud data.
 このように、図3に例示された評価対象エリアに対してエリア最大化を図る置局・エリア設計を行った場合、基地局設置候補位置A~Eの全てに基地局を設置することで、図10に示されるように、(1),(2),(3),(5),(6),(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された10個の代表点をそれぞれ有する網目の範囲を端末局の通信可能エリアとすることができる、という置局・エリア設計結果情報305が得られる。 In this way, when station placement/area design is performed to maximize the area for the evaluation target area illustrated in FIG. As shown in FIG. 10, the symbols (1), (2), (3), (5), (6), (8), (9), (10), (11) and (13) are Station placement/area design result information 305 is obtained, which indicates that a mesh range having each of the 10 representative points described can be used as a communicable area of the terminal station.
 ここまで、エリア最大化を目的とした置局・エリア設計の具体例について、図5~図11を挙げ、基地局候補位置と代表点との組み合わせの一部に対して、3次元の点群データを活用した見通し判定までを実施した状況の一例を示した(図6,図8及び図10)。しかしながら、前述の図2に示されるフローチャートにおける速度優先の見通し判定(ステップS16)や精度優先の見通し判定(ステップS17)において、3次元の点群データを活用した見通し判定を全ての組合せに対して実行することもできる。この場合、図6,図8及び図10における3次元の点群データに基づく見通し判定結果の欄を無くしても(地図情報に基づく見通し判定のみで)対処することができる。 So far, specific examples of station placement and area design for the purpose of area maximization have been described with reference to FIGS. 5 to 11. Three-dimensional point cloud An example of a situation in which data-based visibility determination was performed is shown (Figs. 6, 8, and 10). However, in the visibility determination with speed priority (step S16) and the visibility determination with accuracy priority (step S17) in the flowchart shown in FIG. You can also run In this case, it is possible to cope with this problem even if the columns for the visibility determination result based on the three-dimensional point cloud data in FIGS.
 以下、収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例について説明する。図12~17は、収容効率化を図る置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。 An example of updating the judgment availability list 304 in the case of station placement/area design for improving accommodation efficiency will be described below. 12 to 17 are diagrams showing an example of update of the judgment availability list 304 in the case of station placement/area design for improving accommodation efficiency.
 以下、前述の図3に例示される評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定の結果を用いて説明する。 In the following, a description will be given using the base station installation candidate positions in the evaluation target area illustrated in FIG.
 前述の通り、図5には、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。また、収容効率化を図る置局・エリア設計においては、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置から順に選択していく。3次元見通し判定部42は、選択された基地局設置候補位置と、当該基地局設置候補位置との間で(地図情報に基づく見通し判定によって)見通しが有ると判定された代表点との間について、点群データに基づく見通し判定処理を行う。 As described above, FIG. 5 shows a list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information. In station placement/area design for improving accommodation efficiency, the map outlook determination unit 41 sequentially selects base station installation candidate positions in descending order of representative points determined to have visibility based on map information. continue. The three-dimensional line-of-sight determination unit 42 determines between the selected base station installation candidate position and a representative point determined to have line-of-sight between the selected base station installation candidate position (by line-of-sight determination based on map information). , the line-of-sight determination process is performed based on the point cloud data.
 そして、地図見通し判定部41は、地図情報に基づく見通し判定によって、少なくとも1つの基地局設置候補位置との間で見通しが有ると判定された代表点のうち、点群データに基づく見通し判定の対象として選択された代表点の割合が、予め定められた割合に達した際に、後段の3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置を選択する上記の処理を終了する。 Then, the map outlook determination unit 41 selects, by the outlook determination based on the map information, among the representative points determined to have a line of sight with at least one base station installation candidate position, the target of the outlook determination based on the point cloud data. When the ratio of the representative points selected as has reached a predetermined ratio, the above process of selecting base station installation candidate positions to be used in the subsequent line-of-sight determination process based on the three-dimensional point cloud data ends. do.
 図5に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、6つの代表点と見通しが有ると判定された基地局設置候補位置Aである。したがって、地図見通し判定部41は、基地局設置候補位置Aを選択する。 As shown in FIG. 5, base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information are six representative points and base station installation positions determined to have line-of-sight. Candidate position A. Therefore, the map prospect determination unit 41 selects the base station installation candidate position A. FIG.
 地図見通し判定部41は、基地局設置候補位置Aと上記6つの代表点との組み合わせを示す情報をリストに記録する。そして、3次元見通し判定部42は、当該リストに記録された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 records information indicating combinations of base station installation candidate positions A and the six representative points in a list. Then, the three-dimensional view determination unit 42 performs view determination based on the point cloud data for combinations of base station installation candidate positions and representative points recorded in the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図12には、基地局設置候補位置Aと上記6つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が記録されたリストが示されている。 FIG. 12 shows a list in which information indicating combinations of base station installation candidate positions A and the above six representative points and information indicating results of visibility determination based on point cloud data for each combination are recorded. there is
 図12に示されるように、(1)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(2)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(3)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(5)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、及び(6)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し有り」である。一方、(4)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し無し」である。 As shown in FIG. 12, (1) the combination of the representative points marked with the symbols and the base station installation candidate positions A, and the combination of the representative points marked with the symbols (2) and the base station installation candidate positions A. combination, (3) a combination of a representative point indicated by the code of (3) and a base station installation candidate position A, a combination of a representative point indicated by the code of (5) and a base station installation candidate position A, and (6) The result of line-of-sight determination based on the point cloud data, which is performed for each combination of the representative points marked with , and the base station installation candidate position A, is "line-of-sight available". On the other hand, the result of the line-of-sight determination based on the point cloud data for the combination of the representative point with the symbol (4) and the base station installation candidate position A is "no line-of-sight".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Aと各代表点との組み合わせを、前述の図5に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map visibility determination unit 41 determines that there is a visibility by determining the visibility based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
 図13には、点群データに基づく見通し判定が完了した基地局設置候補位置Aと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図5に示されるリストが、図13に示されるリストのように更新される。 FIG. 13 shows a base station determined to have a line of sight by the line of sight determination based on the map information after the combination of the base station installation candidate position A and the representative point for which the line of sight determination based on the point cloud data has been completed is deleted. A list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 5 is updated like the list shown in FIG.
 図13に示されるように、更新後のリストでは、基地局設置候補位置Aと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Aとの間で見通しが有ると判定された、(1),(2),(3),(4),(5)及び(6)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(7)の符号が記載された1つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(8),(10)及び(12)の符号がそれぞれ記載された3つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Dと見通しが有ると判定された代表点は、(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された5つの代表点のままである。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(13)及び(14)の符号がそれぞれ記載された2つの代表点のままである。 As shown in FIG. 13, in the updated list, the combination of base station installation candidate position A and the representative point is deleted. Further, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position A and (1), (2), (3), (4), The representative points marked with (5) and (6) are deleted. As a result, in the updated list, the representative point determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information is one representative point marked with the code (7). be. Also, the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the three representative points marked with symbols (8), (10) and (12), respectively. is. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by the line-of-sight determination based on the map information are denoted by (8), (9), (10), (11) and (13). Remaining 5 representative points each listed. Also, the representative points determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information are still the two representative points marked with symbols (13) and (14). .
 図13に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、5つの代表点と見通しが有ると判定された基地局設置候補位置Dである。したがって、地図見通し判定部41は、基地局設置候補位置Dを選択する。 As shown in FIG. 13, base station installation candidate positions that have more representative points determined to have visibility by visibility determination based on map information are five representative points and base station installation locations determined to have visibility. Candidate position D. Therefore, the map outlook determination unit 41 selects the base station installation candidate position D. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Dと上記5つの代表点との組み合わせを示す情報を、図12に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the five representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図14には、基地局設置候補位置Dと上記5つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 14 shows a list to which information indicating combinations of base station installation candidate positions D and the five representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
 図14に示されるように、新たに追加された、(8)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(9)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(10)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(11)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、及び(13)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 14, the newly added combination of the representative point indicated by the symbol (8) and the base station installation candidate position D, the representative point indicated by the symbol (9) and the base station A combination with the installation candidate position D, a combination of the representative point with the symbol (10) and the base station installation candidate position D, and a combination of the representative point with the symbol (11) and the base station installation candidate position D. The result of the line-of-sight determination based on the point cloud data performed for each of the combination and the combination of the representative point with the symbol (13) and the base station installation candidate position D is "with line-of-sight".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Dと各代表点との組み合わせを、前述の図13に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
 図15には、点群データに基づく見通し判定が完了した基地局設置候補位置Dと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図13に示されるリストが、図15に示されるリストのように更新される。 FIG. 15 shows the base stations determined to have visibility by the visibility determination based on the map information after the combinations of the base station installation candidate positions D and the representative points for which the visibility determination based on the point cloud data has been completed are deleted. A list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 13 is updated like the list shown in FIG.
 図15に示されるように、更新後のリストでは、基地局設置候補位置Dと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Dとの間で見通しが有ると判定された、(8),(9),(10),(11)及び(13)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(7)の符号が記載された1つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(12)の符号が記載された1つの代表点である。地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(14)の符号が記載された1つの代表点である。 As shown in FIG. 15, the combination of base station installation candidate positions D and representative points is deleted from the updated list. In addition, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position D and (8), (9), (10), (11) and The representative point with the code (13) is deleted. As a result, in the updated list, the representative point determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information is one representative point marked with the code (7). be. Also, the representative point determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information is one representative point indicated by the code (12). A representative point determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information is one representative point indicated by the code (14).
 図15に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、いずれも1つの代表点と見通しが有ると判定された基地局設置候補位置B,C及びEである。したがって、地図見通し判定部41は、任意に基地局設置候補位置を1つ選択する。ここでは、地図見通し判定部41は、基地局設置候補位置Bを選択するものとする。なお、地図見通し判定部41は、基地局設置候補位置C又はEを選択してもよい。 As shown in FIG. 15, base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information are These are station installation candidate positions B, C and E. Therefore, the map prospect determination unit 41 arbitrarily selects one candidate base station installation position. Here, it is assumed that the map outlook determination unit 41 selects the base station installation candidate position B. FIG. Note that the map prospect determination unit 41 may select the base station installation candidate position C or E. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Bと上記1つの代表点との組み合わせを示す情報を、図14に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position B and the one representative point to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図16には、基地局設置候補位置Bと上記1つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 16 shows a list to which information indicating the combination of the base station installation candidate position B and the one representative point and information indicating the result of visibility judgment based on the point cloud data for each combination are newly added. It is
 図16に示されるように、新たに追加された、(7)の符号が記載された代表点と基地局設置候補位置Bとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し無し」である。 As shown in FIG. 16, the result of the visibility determination based on the point cloud data for the combination of the newly added representative point marked with the symbol (7) and the base station installation candidate position B is There is no line of sight.
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Bと(7)の符号が記載された代表点との組み合わせを、前述の図15に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determining unit 41 converts the combination of the base station installation candidate position B, for which the outlook determination based on the point cloud data has been completed, and the representative point indicated by the code (7) into the map information shown in FIG. base station installation candidate positions and representative points that are determined to have a line of sight by the line of sight determination based on the base station.
 図17には、点群データに基づく見通し判定が完了した基地局設置候補位置Bと(7)の符号が記載された代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図15に示されるリストが、図17に示されるリストのように更新される。 In FIG. 17, after deleting the combination of the base station installation candidate position B for which the visibility determination based on the point cloud data has been completed and the representative point with the code (7), the visibility determination based on the map information A list of combinations of base station installation candidate positions determined to have visibility and representative points is shown. That is, the list shown in FIG. 15 is updated like the list shown in FIG.
 図17に示されるように、更新後のリストでは、基地局設置候補位置Bと(7)の符号が記載された代表点との組み合わせが削除されている。更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(12)の符号が記載された1つの代表点のままである。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(14)の符号が記載された1つの代表点のままである。 As shown in FIG. 17, in the updated list, the combination of base station installation candidate position B and the representative point with the code (7) is deleted. In the updated list, the representative point determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information remains as one representative point marked with the code (12). . Also, the representative point determined to have a line of sight to the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (14).
 基地局設置候補位置A,D及びBが選択された時点において、いずれかの基地局候補位置との間で点群データに基づく見通し判定がなされた代表点は、図16に示されるように(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された代表点であり、その個数は12個である。また、地図情報に基づく見通し判定によって、評価対象エリア内の全ての基地局設置候補位置(すなわち、基地局設置候補位置A~E)のうち少なくとも1つとの間で見通しが有ると判定された代表点の総数は、図3に示されるように14個である。 At the time when base station installation candidate positions A, D and B are selected, representative points for which line-of-sight determination is made based on point cloud data with any of the base station candidate positions are shown in FIG. 16 ( 1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) and (13) are respectively It is the representative point described and the number is 12 pieces. Also, a representative determined to have a line of sight with at least one of all base station installation candidate positions (that is, base station installation candidate positions A to E) in the evaluation target area by line of sight determination based on map information. The total number of points is 14 as shown in FIG.
 したがって、この総数に対する、基地局設置候補位置A,D及びBのうち、いずれかの基地局候補位置との間で点群データに基づく見通し判定がなされた代表点の個数が占める割合は、およそ86[%](=12/14)となる。ここで、予め定められた割合が80[%]であるとした場合、上記の割合は予め定められた割合に達していることから、地図見通し判定部41は、基地局設置候補位置A,D及びBの3つが選択された時点で、3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置を選択する上記の処理を終了する。 Therefore, the ratio of the number of representative points for which line-of-sight determination is made based on the point cloud data with any of the base station candidate positions A, D, and B to the total number is approximately 86[%] (=12/14). Here, assuming that the predetermined ratio is 80[%], the above ratio has reached the predetermined ratio. and B are selected, the above process of selecting base station installation candidate positions to be used in the visibility determination process based on the three-dimensional point cloud data ends.
 このように、図3に例示された評価対象エリアに対して収容効率化を図る置局・エリア設計を行った場合、基地局設置候補位置A,D及びBの3箇所に基地局を設置することで、地図情報に基づく見通し判定により見通しが有ると判定された代表点を含む網目の範囲のうち、予め定められた割合である80[%]以上の範囲を点群データに基づく見通し判定の対象エリアとすることができる、という置局・エリア設計結果情報305が得られる。すなわち、エリア最大化を図る置局・エリア設計を行った場合と比べて、収容効率化を図る置局・エリア設計を行った場合には、設置される基地局数の増大を抑えつつ、通信可能エリアを比較的広くすることができる。 In this way, when the station placement/area design is performed to improve accommodation efficiency in the evaluation target area illustrated in FIG. By doing so, out of the mesh range including representative points determined to have visibility by visibility determination based on map information, a range of 80% or more, which is a predetermined ratio, is used for visibility determination based on point cloud data. Station placement/area design result information 305 indicating that the target area can be set is obtained. In other words, compared to the case of setting stations and designing areas to maximize the area, when setting stations and designing areas to improve accommodation efficiency, communication The possible area can be relatively wide.
 ここまで、収容効率化を目的とした置局・エリア設計の具体例について、図12~図17を挙げ、基地局候補位置と代表点の組み合わせについて、3次元の点群データを活用した見通し判定までを実施した状況の一例を示した。しかしながら、エリア最大化を目的とした置局・エリア設計の説明において述べたことと同様に、図12,図14及び図16における3次元の点群データに基づく見通し判定結果が無くても(地図情報による見通し判定のみで)対処することができる。その際は、置局・エリア設計支援装置1の動作全体のフローチャート(図2)における後段の処理にて、3次元の点群データに基づく見通し判定がなされる。 Up to this point, specific examples of station placement and area design aimed at improving accommodation efficiency have been shown in FIGS. An example of a situation in which up to is carried out is shown. However, as described in the explanation of the station placement and area design for the purpose of maximizing the area, even if there is no visibility determination result based on the three-dimensional point cloud data in FIGS. 12, 14 and 16 (map It can be dealt with only with informational visibility determination). In this case, the line-of-sight determination is made based on the three-dimensional point cloud data in the subsequent processing in the flow chart (FIG. 2) of the overall operation of the station placement/area design support device 1 .
 以下、図4に示されるフローチャートのステップS143の見通し判定処理を、さらに詳しく説明する。図18は、本発明の第1の実施形態における置局・エリア設計支援装置1の見通し判定処理における動作の一例を示すフローチャートである。 The outlook determination process in step S143 of the flowchart shown in FIG. 4 will be described in more detail below. FIG. 18 is a flow chart showing an example of operations in the line-of-sight determination process of the station placement/area design support apparatus 1 according to the first embodiment of the present invention.
 まず、3次元見通し判定部42は、点群データに基づく見通し判定の対象とされる基地局設置候補位置と代表点との間において取得されている点群データの個数を取得する(ステップS1431)。 First, the three-dimensional outlook determining unit 42 acquires the number of points of point cloud data acquired between the base station installation candidate position and the representative point, which are targets of visibility determination based on the point cloud data (step S1431). .
 ステップS1431において取得された点群データの個数が所定の閾値以下である場合(ステップS1432・YES)、基地局設置候補位置と代表点との間に存在する遮蔽物が存在しないと考えられることから、3次元見通し判定部42は、点群データに基づく見通し判定の結果を「見通し有り」とする(ステップS1436)。 If the number of pieces of point cloud data acquired in step S1431 is equal to or less than the predetermined threshold (step S1432: YES), it is considered that there is no shielding object between the base station installation candidate position and the representative point. , the three-dimensional view determination unit 42 determines that the result of the view determination based on the point cloud data is "with view" (step S1436).
 一方、ステップS1431において取得された点群データの個数が所定の閾値より多い場合(ステップS1432・NO)、3次元見通し判定部42は、基地局設置候補位置と代表点との間について、さらに遮蔽率を考慮した見通し判定を行う(ステップS1433)。 On the other hand, if the number of pieces of point cloud data acquired in step S1431 is greater than the predetermined threshold (step S1432: NO), the three-dimensional outlook determination unit 42 further determines that the area between the base station installation candidate position and the representative point is blocked. The outlook is determined in consideration of the rate (step S1433).
 ここでいう遮蔽率を考慮した見通し判定とは、例えば、基地局候補位置に基地局が設置され、代表点に移動局が存在する場合に、両局の間で形成されるフレネルゾーンの遮蔽率に基づく見通し判定である。フレネルゾーンの遮蔽率の算出方法については、後述される。 For example, when a base station is installed at a base station candidate position and a mobile station exists at a representative point, the line-of-sight determination considering the shielding rate referred to here means the shielding rate of the Fresnel zone formed between the two stations. It is a visibility determination based on A method of calculating the shielding rate of the Fresnel zone will be described later.
 ステップS1434の遮蔽率を考慮した見通し判定において算出された遮蔽率が所定の閾値以下である場合(ステップS1434・YES)、基地局設置候補位置と代表点との間に存在する遮蔽物は少ない(あるいは小さい)と考えられることから、3次元見通し判定部42は、点群データに基づく見通し判定の結果を「見通し有り」とする(ステップS1436)。 If the shielding rate calculated in the line-of-sight determination considering the shielding rate in step S1434 is equal to or less than the predetermined threshold (step S1434, YES), there are few shielding objects between the base station installation candidate position and the representative point ( or small), the three-dimensional outlook determining unit 42 determines that the result of the visibility determination based on the point cloud data is "with visibility" (step S1436).
 一方、ステップS1433の遮蔽率を考慮した見通し判定において算出された遮蔽率が所定の閾値より高い場合(ステップS1434・NO)、3次元見通し判定部42は、点群データに基づく見通し判定の結果を「見通し無し」とする(ステップS1435)。以上で、図18のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 On the other hand, when the shielding rate calculated in the visibility determination considering the shielding rate in step S1433 is higher than the predetermined threshold value (step S1434, NO), the three-dimensional outlook determination unit 42 determines the result of the visibility determination based on the point cloud data. "No line of sight" (step S1435). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 18 is completed.
 なお、本実施形態では、MMS等によって収集される3次元の点群データにより見通し判定が行われるものとしたが、これに限られるものではない。地図情報より情報量が多いデータであるならば、遮蔽物の位置を示すその他のデータが用いられてもよい。この場合、MMSの車両等の走行軌跡がない市中データでも、遮蔽率を考慮した見通し判定が可能である。  In addition, in the present embodiment, the visibility is determined based on the three-dimensional point cloud data collected by MMS or the like, but the present invention is not limited to this. Other data indicating the position of a shield may be used as long as the data contains more information than the map information. In this case, it is possible to determine the line of sight considering the shielding rate even in city data that does not include the travel traces of MMS vehicles or the like. 
[フレネルゾーンの遮蔽率の算出方法]
 以下、フレネルゾーンの遮蔽率の算出方法の一例について説明する。3次元見通し判定部42は、基地局と端末局との間で形成されるフレネルゾーンの(すなわち、基地局設置候補位置と各網目の代表点との間にフレネルゾーンが形成された場合における)遮蔽率を算出するため、点群データ303を活用して実行し、通信可否を判定する。3次元見通し判定部42は、例えば、遮蔽率が所定の閾値より高ければ通信が不可能であると判定し、遮蔽率が所定の閾値以下であるならば通信が可能であると判定する。
[Method for calculating the shielding rate of the Fresnel zone]
An example of a method for calculating the shielding rate of the Fresnel zone will be described below. The three-dimensional line-of-sight determination unit 42 determines the frequency of the Fresnel zone formed between the base station and the terminal station (that is, when the Fresnel zone is formed between the base station installation candidate position and the representative point of each mesh). In order to calculate the shielding rate, the point cloud data 303 is used to determine whether or not communication is possible. For example, the three-dimensional outlook determination unit 42 determines that communication is impossible if the shielding rate is higher than a predetermined threshold, and determines that communication is possible if the shielding rate is equal to or less than the predetermined threshold.
 実際の電磁波は、対向する2つの無線局間を結ぶ直線的な経路のみを伝搬していくのではなく、フレネルゾーンと呼ばれる楕円形の経路領域内を伝搬していく。そのため、対向する2つの無線局間の見通しの有無の判定をより精度高く行うためには、フレネルゾーン内に存在する遮蔽物による影響を考慮した上で、見通しの有無を判定する必要がある。ミリ波帯におけるフレネルゾーンのフレネルゾーン半径は、例えば60[GHz]帯の電磁波を用いて50[m]の距離を伝送する場合において、最大で25[cm]程度である。  Actual electromagnetic waves propagate not only in a straight path connecting two opposing radio stations, but in an elliptical path area called the Fresnel zone. Therefore, in order to determine whether or not there is line-of-sight between two opposing radio stations with higher accuracy, it is necessary to determine whether or not there is line-of-sight after considering the effects of obstructions existing in the Fresnel zone. The Fresnel zone radius of the Fresnel zone in the millimeter wave band is, for example, about 25 [cm] at maximum when transmitting a distance of 50 [m] using electromagnetic waves in the 60 [GHz] band.
 基地局設置候補位置と代表点とを結ぶ一直線上の見通しが無い場合であっても、さらにフレネルゾーンの遮蔽率を考慮して見通しの有無を判定することによって、より正確に見通し判定を行うことができる。これにより、置局・エリア設計支援装置1は、より広い通信可能エリアを提示することができる。 To more accurately determine a line of sight by determining the presence or absence of a line of sight in consideration of the shielding rate of a Fresnel zone even when there is no line of sight connecting a base station installation candidate position and a representative point. can be done. As a result, the station placement/area design support device 1 can present a wider communicable area.
 図19は、フレネルゾーンfzを考慮した通信可否の判定の様子を示す図である。図19には、電柱pに設置された基地局bsと、端末局tsとが示されている。また、図19には、基地局bsと端末局tsとの間で形成されるフレネルゾーンfzが示されている。また、図19には、フレネルゾーンfzの3つの断面(断面cs1、断面cs2、及び断面cs3)が示されている。断面cs1、断面cs2、及び断面cs3は、基地局bsと端末局tsとを結ぶ直線に対して直交する面である。この場合、図19に示されるように、断面cs1、断面cs2、及び断面cs3の形状は、円形となる。断面cs1、断面cs2、及び断面cs3の半径は、それぞれr、r、及びrである。 FIG. 19 is a diagram showing how communication availability is determined in consideration of the Fresnel zone fz. FIG. 19 shows a base station bs installed on a utility pole p and a terminal station ts. FIG. 19 also shows a Fresnel zone fz formed between the base station bs and the terminal station ts. FIG. 19 also shows three cross sections (cross section cs1, cross section cs2, and cross section cs3) of the Fresnel zone fz. The cross section cs1, the cross section cs2, and the cross section cs3 are planes orthogonal to the straight line connecting the base station bs and the terminal station ts. In this case, as shown in FIG. 19, the cross section cs1, the cross section cs2, and the cross section cs3 are circular. The radii of cross-section cs1, cs2 and cs3 are r 1 , r 2 and r 3 respectively.
 フレネルゾーンfzの範囲内に遮蔽物が存在する場合、フレネルゾーンfzの断面には点群データが存在する。例えば、図19に示されるように、断面cs1には、点群データの領域である領域sh1-1が存在する。また、断面cs2には、前述した領域sh1-1が投影された領域sh1-2、及び点群データの領域である領域sh2-2が存在する。また、断面cs3には、前述した領域sh1-2が更に投影された領域sh1-3、同様に前述した領域sh2-2が更に投影された領域sh2-3、及び点群データの領域である領域sh3-3が存在する。 When a shield exists within the Fresnel zone fz, point cloud data exists in the cross section of the Fresnel zone fz. For example, as shown in FIG. 19, a cross section cs1 has an area sh1-1, which is a point cloud data area. Also, in the cross section cs2, there are an area sh1-2 where the above-mentioned area sh1-1 is projected and an area sh2-2 which is an area of the point cloud data. Further, on the cross section cs3, an area sh1-3 obtained by further projecting the above-described area sh1-2, an area sh2-3 obtained by further projecting the above-described area sh2-2, and an area sh2-3 which is an area of the point cloud data sh3-3 is present.
 以上の点から、図19に示されるフレネルゾーンfzの範囲内には、例えば、住戸及びビル等の建物(建築物)、住宅の塀及び高架道路等の構造物、道路標識及び看板等の工作物、街路樹及び庭木等の植物、及び隆起した地面等の、電波の伝搬を遮断しうる遮蔽物が存在する可能性がある。なお、端末局tsは、図19においては建物に設置されているが、本実施形態のように端末局が移動端末であっても同様である。 From the above points, within the range of the Fresnel zone fz shown in FIG. There may be shields that can block the propagation of radio waves, such as objects, vegetation such as street trees and garden trees, and raised ground. Although the terminal station ts is installed in a building in FIG. 19, the same applies even if the terminal station is a mobile terminal as in this embodiment.
 3次元見通し判定部42は、例えば、フレネルゾーンfzの複数の断面を重ね合わせる。そして、3次元見通し判定部42は、重ね合わされた断面の面積のうち、点群データの領域が示す割合を遮蔽率として算出する。3次元見通し判定部42は、算出された遮蔽率を所定の閾値と比較することにより、基地局bsと端末局tsとの間の通信可否を判定する。あるいは、3次元見通し判定部42は、重ね合わされた断面に基づいて、基地局bsと端末局tsとの間の見通しの有無を判定することにより、基地局bsと端末局tsとの間の通信可否を判定する。 The three-dimensional view determination unit 42, for example, superimposes a plurality of cross sections of the Fresnel zone fz. Then, the three-dimensional outlook determination unit 42 calculates, as the shielding rate, the ratio of the area of the point cloud data to the area of the superimposed cross sections. The three-dimensional view determination unit 42 determines whether communication between the base station bs and the terminal station ts is possible by comparing the calculated shielding rate with a predetermined threshold. Alternatively, the three-dimensional line-of-sight determination unit 42 determines whether or not there is line-of-sight between the base station bs and the terminal station ts based on the superimposed cross sections, thereby enabling communication between the base station bs and the terminal station ts. Judge whether or not it is possible.
 以上説明したように、本実施形態における置局・エリア設計支援装置1によれば、エリア最大化を図る置局・エリア設計と収容効率化を図る置局・エリア設計とを、使い分けることが可能になる。 As described above, according to the station placement/area design support device 1 of the present embodiment, it is possible to selectively use the station placement/area design for maximizing the area and the station placement/area design for improving accommodation efficiency. become.
 本実施形態における置局・エリア設計支援装置1は、主にミリ波を用いて市街地をサービスエリアとしてカバーする無線通信システム(とくに移動通信システム)の置局設計に適用可能である。従来のミリ波帯置局設計方法においては、距離減衰及び遮蔽減衰が激しいミリ波帯の特性を考慮し、一般的に、市街地で通信を成立させることが可能な位置に基地局を設置するという考え方がとられてきた。 The station placement/area design support device 1 in this embodiment can be applied to station placement design of a radio communication system (especially a mobile communication system) that mainly uses millimeter waves and covers an urban area as a service area. In the conventional millimeter-wave band station design method, considering the characteristics of the millimeter-wave band where distance attenuation and shielding attenuation are severe, it is generally said that the base station is installed in a position where communication can be established in urban areas. The idea has been taken.
 しかしながら、基地局を設置する主体となる事業者やユーザのニーズは1つではなく、端末局を収容可能なエリアを最大化させるように置局・エリア設計を行う方法であるエリア最大化と、より少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせることによって効率的な置局・エリア設計を行う収容効率化が考えられる。 However, there are more than one needs of operators and users who install base stations. It is conceivable to increase accommodation efficiency by performing efficient station placement and area design by relatively widening the area that can accommodate terminal stations with a smaller number of base stations.
 例えば、市街地においては端末局を収容可能なエリアを最大化させたいというニーズがあったり、郊外や地方においてはより少ない基地局数でありながら端末局を収容可能なエリアを比較的広くさせたというニーズがあったりする。この2種類のニーズは類似しているものの、厳密には得るべき置局結果が異なる場合がある。そのため、ニーズと異なる置局・エリア設計の方法が用いられた場合には、基地局を設置する主体となる事業者やユーザのニーズに応えていないことになる。 For example, in urban areas, there is a need to maximize the area that can accommodate terminal stations, while in suburbs and rural areas, the number of base stations is smaller, but the area that can accommodate terminal stations is relatively wide. I have a need. Although these two types of needs are similar, strictly speaking, the results of station placement to be obtained may differ. Therefore, if a station placement/area design method different from the needs is used, it means that the needs of the operator or the user who is the subject of installing the base station are not met.
 本実施形態における置局・エリア設計支援装置1は、図3及び図4に示されるように、エリア最大化を図る置局・エリア設計を行う場合には、「地図情報に基づく見通し判定によって、ただ1つの基地局設置候補位置との間のみで見通しが有ると判定された代表点を特定し、当該基地局設置候補位置と当該代表点との組み合わせを、後段の3次元の点群データに基づく見通し判定処理の対象とする」処理を優先して行い、収容効率化を図る置局・エリア設計を行う場合には当該処理を省略する、という軽微なアルゴリズムの切り替えのみで、ユーザニーズに合わせて置局・エリア設計を行うようにすることができる。 As shown in FIGS. 3 and 4, the station placement/area design support device 1 according to the present embodiment performs station placement/area design for maximizing the area by performing "by determining the outlook based on the map information, A representative point determined to have a line of sight between only one base station installation candidate position is specified, and the combination of the base station installation candidate position and the representative point is converted to three-dimensional point cloud data in the latter stage. According to the needs of the user, it is only a minor algorithm change that prioritizes the process of "targeting the outlook judgment process based on the forecast" and omits this process when station placement / area design is performed to improve accommodation efficiency. station placement and area design.
[各処理モードによる見通し判定処理]
 以下、各処理モードによる見通し判定処理の詳細について説明する。前述の通り、処理モードには、例えば図2のフローチャートのステップS16及びステップS17に示されるように、「処理負担軽減優先の見通し判定」の処理モードと「精度優先の見通し判定」の処理モードとがある。
[Line-of-sight judgment processing in each processing mode]
Details of the outlook determination processing in each processing mode will be described below. As described above, the processing modes include, for example, a processing mode of "view determination prioritizing processing load reduction" and a processing mode of "view determination prioritizing accuracy", as shown in steps S16 and S17 of the flowchart of FIG. There is
 まず、処理負担軽減優先の見通し判定処理の流れについて説明する。図20は、本発明の第1の実施形態における置局・エリア設計支援装置1の処理負担軽減優先の見通し判定における動作を示すフローチャートである。図20のフローチャートが示す置局・エリア設計支援装置1の動作は、前述の図2に示されるステップS16の動作を詳細化したものである。 First, we will explain the flow of the outlook determination process that prioritizes processing load reduction. FIG. 20 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the first embodiment of the present invention in view determination prioritizing processing load reduction. The operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 20 is a detailed version of the operation of step S16 shown in FIG.
 図20に示されるように、ステップS162からステップS163のループ処理までの処理は、基地局設置候補位置の個数に相当する回数だけ繰り返し行われる(ステップS161)。 As shown in FIG. 20, the processing from step S162 to step S163 is repeated the number of times corresponding to the number of base station installation candidate positions (step S161).
 まず、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点の個数が最も多い基地局設置候補位置を特定する(ステップS162)。 First, the map visibility determining unit 41 identifies the base station installation candidate position that has the largest number of representative points that are determined to have visibility by visibility determination based on the map information (step S162).
 図20に示されるように、ステップS164からステップS166までの処理は、上記の代表点の個数に相当する回数だけ繰り返し行われる(ステップS163)。すなわち、ステップS163のループ処理は、上記の基地局設置候補位置ごとに繰り返し行われる。 As shown in FIG. 20, the processing from step S164 to step S166 is repeated the number of times corresponding to the number of representative points (step S163). That is, the loop processing of step S163 is repeatedly performed for each candidate base station installation position.
 次に、3次元見通し判定部42は、基地局設置候補位置と代表点との間について、点群データに基づく見通し判定処理を行う(ステップS164)。なお、このステップS164の処理は、例えば前述の図18に示される置局・エリア設計支援装置1の見通し判定処理に相当する。 Next, the three-dimensional view determination unit 42 performs view determination processing based on the point cloud data between the base station installation candidate position and the representative point (step S164). The process of step S164 corresponds to the line-of-sight determination process of the station placement/area design support apparatus 1 shown in FIG. 18, for example.
 次に、3次元見通し判定部42は、点群データに基づく見通し判定の判定結果を、記憶部30に記憶された判定可否リスト304を更新することによって記録する(ステップS165)。また、3次元見通し判定部42は、点群データに基づく見通し判定の判定結果を記録した基地局設置候補位置と代表点との組み合わせを、地図情報に基づく見通し判定によって見通しが有ると判定された組み合わせのリストから削除する。 Next, the three-dimensional outlook determination unit 42 records the determination result of the outlook determination based on the point cloud data by updating the determination availability list 304 stored in the storage unit 30 (step S165). In addition, the three-dimensional visibility determining unit 42 determines that the combination of the base station installation candidate position and the representative point recorded the determination result of the visibility determination based on the point cloud data has visibility by the visibility determination based on the map information. Remove from list of combinations.
 次に、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上であるか否かを判定する(ステップS166)。なお、地図見通し判定部41は、処理負担軽減優先の見通し判定処理においては、(後述される精度優先の見通し判定処理とは異なり)上記の閾値と比較する上記の割合を求める際に、点群データに基づく見通し判定の結果が「見通し有り」であったか、又は「見通し無し」であったかについては考慮しない。 Next, the map outlook determination unit 41 predetermines the ratio of representative points for which outlook determination based on the point cloud data has been performed, among the representative points determined to have visibility by the outlook determination based on the map information. It is determined whether or not it is equal to or greater than the threshold (step S166). In addition, in the outlook determination process with priority on reducing the processing load (unlike the outlook determination process with priority on accuracy, which will be described later), the map outlook determination unit 41 determines the above-mentioned ratio to be compared with the above-described threshold value. It is not considered whether the result of the visibility determination based on the data was "with visibility" or "no visibility".
 地図情報に基づく見通し判定が行われた代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値未満である場合(ステップS166・NO)、ステップS163あるいはステップS161に戻り、3次元見通し判定部42は、他の基地局設置候補位置及び他の代表点について、さらに点群データに基づく見通し判定を行う。 If the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is less than the predetermined threshold value (step S166, NO), step S163. Alternatively, returning to step S161, the three-dimensional view determination unit 42 further performs view determination based on the point cloud data for other base station installation candidate positions and other representative points.
 一方、地図情報に基づく見通し判定が行われた代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上である場合(ステップS166・YES)、地図見通し判定部41は、処理負担軽減優先の見通し判定処理を終了する。以上で、図20のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 On the other hand, if the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is equal to or greater than the predetermined threshold value (step S166, YES), The map outlook determination unit 41 terminates the outlook determination process with priority given to reducing the processing load. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 20 is completed.
 なお、前述の図3に例示される評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定が行われるとした場合において、エリア最大化が指定されているならば、上記の処理負担軽減優先の見通し判定処理によって更新される判定可否リスト304は、図5~図11の通りである。但し、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上となった時点で、判定可否リスト304の更新は終了する。 In the case where the line-of-sight judgment is performed for each base station installation candidate position and each mesh in the evaluation target area illustrated in FIG. The judgment availability list 304 updated by the priority outlook judgment processing is as shown in FIGS. 5 to 11. FIG. However, when the percentage of representative points for which visibility determination based on point cloud data is further performed out of the representative points determined to have visibility by visibility determination based on map information reaches or exceeds a predetermined threshold, The updating of the judgment availability list 304 ends.
 また、前述の図3に例示される評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定が行われるとした場合において、収容効率化が指定されているならば、上記の処理負担軽減優先の見通し判定処理によって更新される判定可否リスト304は、図5及び図12~図17の通りである。但し、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上となった時点で、判定可否リスト304の更新は終了する。 In addition, in the case where the line-of-sight judgment is performed for each base station installation candidate position and each mesh in the evaluation target area illustrated in FIG. The determination availability list 304 updated by the priority outlook determination process is as shown in FIGS. 5 and 12 to 17. FIG. However, when the percentage of representative points for which visibility determination based on point cloud data is further performed out of the representative points determined to have visibility by visibility determination based on map information reaches or exceeds a predetermined threshold, The updating of the judgment availability list 304 ends.
 次に、精度優先の見通し判定処理の流れについて説明する。図21は、本発明の第1の実施形態における置局・エリア設計支援装置1の精度優先の見通し判定における動作を示すフローチャートである。図21のフローチャートが示す置局・エリア設計支援装置1の動作は、前述の図2に示されるステップS17の動作を詳細化したものである。 Next, we will explain the flow of the accuracy-prioritized outlook determination process. FIG. 21 is a flow chart showing the operation of the station placement/area design support apparatus 1 in the accuracy-prioritized outlook determination according to the first embodiment of the present invention. The operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 21 is a detailed version of the operation of step S17 shown in FIG.
 図21に示されるように、ステップS172からステップS173のループ処理(すなわち、ステップS174~ステップS177)までの処理は、基地局設置候補位置の個数に相当する回数だけ繰り返し行われる(ステップS171)。 As shown in FIG. 21, the loop processing from step S172 to step S173 (that is, step S174 to step S177) is repeated the number of times corresponding to the number of base station installation candidate positions (step S171).
 まず、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点の個数が最も多い基地局設置候補位置を特定する(ステップS172)。 First, the map visibility determining unit 41 identifies the base station installation candidate position that has the largest number of representative points that are determined to have visibility by visibility determination based on the map information (step S172).
 図21に示されるように、ステップS174からステップS177までの処理は、上記の代表点の個数に相当する回数だけ繰り返し行われる(ステップS173)。すなわち、ステップS173のループ処理は、上記の基地局設置候補位置ごとに繰り返し行われる。 As shown in FIG. 21, the processing from step S174 to step S177 is repeated the number of times corresponding to the number of representative points (step S173). That is, the loop processing of step S173 is repeatedly performed for each candidate base station installation position.
 次に、3次元見通し判定部42は、基地局設置候補位置と代表点との間について、点群データに基づく見通し判定処理を行う(ステップS174)。なお、このステップS174の処理は、例えば前述の図18に示される置局・エリア設計支援装置1の見通し判定処理に相当する。 Next, the three-dimensional view determination unit 42 performs view determination processing based on the point cloud data between the base station installation candidate positions and the representative points (step S174). Note that the process of step S174 corresponds to, for example, the outlook determination process of the station placement/area design support apparatus 1 shown in FIG. 18 described above.
 ステップS174において、点群データに基づく見通し判定の結果が「見通し有り」である場合(ステップS175・YES)、3次元見通し判定部42は、点群データに基づく見通し判定の判定結果を、記憶部30に記憶された判定可否リスト304を更新することによって記録する(ステップS176)。また、3次元見通し判定部42は、点群データに基づく見通し判定の判定結果を記録した基地局設置候補位置と代表点との組み合わせを、地図情報に基づく見通し判定によって見通しが有ると判定された組み合わせのリストから削除する。 In step S174, if the result of the visibility determination based on the point cloud data is "with visibility" (step S175: YES), the three-dimensional visibility determination unit 42 stores the determination result of the visibility determination based on the point cloud data in the storage unit. 30 is recorded by updating the decision acceptance/rejection list 304 (step S176). In addition, the three-dimensional visibility determining unit 42 determines that the combination of the base station installation candidate position and the representative point recorded the determination result of the visibility determination based on the point cloud data has visibility by the visibility determination based on the map information. Remove from list of combinations.
 一方、ステップS174において、点群データに基づく見通し判定の結果が「見通し無し」である場合(ステップS175・NO)、3次元見通し判定部42は、上記のステップS176の処理を省略する。 On the other hand, in step S174, if the result of the visibility determination based on the point cloud data is "no visibility" (step S175, NO), the 3D visibility determination unit 42 omits the processing of step S176.
 次に、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有るとが判定された代表点の割合が予め定められた閾値以上であるか否かを判定する(ステップS177)。 Next, the map outlook determination unit 41 determines, among the representative points determined to have visibility by the visibility determination based on the map information, the representative points determined to have visibility by the visibility determination based on the point cloud data as well. is greater than or equal to a predetermined threshold value (step S177).
 地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有るとが判定された代表点の割合が予め定められた閾値未満である場合(ステップS177・NO)、ステップS173あるいはステップS171に戻り、3次元見通し判定部42は、他の基地局設置候補位置及び他の代表点について、さらに点群データに基づく見通し判定を行う。 Among the representative points determined to have visibility by visibility determination based on map information, the ratio of representative points similarly determined to have visibility by visibility determination based on point cloud data is less than a predetermined threshold. If there is (step S177, NO), the process returns to step S173 or step S171, and the three-dimensional visibility determination unit 42 further performs visibility determination based on the point cloud data for other base station installation candidate positions and other representative points.
 一方、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有るとが判定された代表点の割合が予め定められた閾値以上である場合(ステップS177・YES)、地図見通し判定部41は、精度優先の見通し判定処理を終了する。以上で、図21のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 On the other hand, among the representative points determined to have a line of sight by the line of sight determination based on the map information, the ratio of the representative points similarly determined to have line of sight by the line of sight determination based on the point cloud data is a predetermined threshold value. If the above is the case (step S177, YES), the map outlook determination unit 41 terminates the accuracy-prioritized outlook determination process. Thus, the operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 21 is completed.
 前述の図3に例示される評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定が行われるとした場合において、エリア最大化が指定されているならば、上記の精度優先の見通し判定処理によって更新される判定可否リスト304は、以下の通りとなる。但し、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有るとが判定された代表点の割合が予め定められた閾値以上となった時点で、判定可否リスト304の更新は終了する。 In the case where line-of-sight determination is performed for each base station installation candidate position and mesh within the evaluation target area illustrated in FIG. The judgment availability list 304 updated by the process is as follows. However, out of the representative points determined to have a line of sight by the line of sight determination based on the map information, the ratio of the representative points similarly determined to have line of sight by the line of sight determination based on the point cloud data is a predetermined threshold. Updating of the judgment availability list 304 ends when the above is reached.
 なお、エリア最大化が指定され精度優先の見通し判定処理によって更新される判定可否リスト304は、エリア最大化が指定され前述の処理負担軽減優先の見通し判定処理によって更新される判定可否リスト304と、図5から図7まで同様である。 Note that the determination availability list 304, which is updated by the outlook determination process with priority given to accuracy and with area maximization specified, is the determination availability list 304 with area maximization specified and updated by the above-described outlook determination process with priority given to reducing the processing load; 5 to 7 are the same.
 図22~図26は、エリア最大化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。 FIGS. 22 to 26 are diagrams showing an example of update of the judgment availability list 304 in the case of carrying out accuracy-prioritized station placement/area design for maximizing the area.
 図22には、基地局設置候補位置Aと上記4つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 22 shows a list to which information indicating the combination of the base station installation candidate position A and the above four representative points and information indicating the result of visibility determination based on the point cloud data for each combination are newly added. It is
 図22に示されるように、新たに追加された、(2)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(3)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(5)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、及び(6)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 22, the newly added combination of the representative point indicated by the symbol (2) and the base station installation candidate position A, the representative point indicated by the symbol (3) and the base station A combination with the installation candidate position A, a combination of the representative point indicated by the code of (5) and the base station installation candidate position A, and a combination of the representative point indicated by the code of (6) and the base station installation candidate position A The result of the line-of-sight determination based on the point cloud data performed for each of the combinations is "with line-of-sight".
 一方、(4)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについて行われた、点群データに基づく見通し判定の結果は追加されていない。すなわち、4)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し無し」であったことを意味する。 On the other hand, the result of the visibility determination based on the point cloud data for the combination of the representative point with the sign of (4) and the base station installation candidate position A has not been added. That is, it means that the result of visibility determination based on the point cloud data for the combination of the representative points marked with the code of 4) and the base station installation candidate position A was "no visibility".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Aと各代表点との組み合わせのうち、判定結果が「見通し有り」であった組み合わせに含まれる代表点を、前述の図7に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map visibility determining unit 41 selects the representative points included in the combinations for which the determination result is "with visibility" among the combinations of the base station installation candidate position A and each representative point for which the visibility determination based on the point cloud data has been completed. , are deleted from the list of combinations of base station installation candidate positions and representative points determined to have visibility by the visibility determination based on the map information shown in FIG.
 図23には、点群データに基づく見通し判定が完了した基地局設置候補位置A及び、当該基地局設置候補位置Aと見通しが有ると判定された代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図7に示されるリストが、図23に示されるリストのように更新される。 FIG. 23 shows a base station installation candidate position A for which line-of-sight determination based on point cloud data has been completed, and after the combination of the base station installation candidate position A and the representative point determined to have line-of-sight is deleted. A list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information is shown. That is, the list shown in FIG. 7 is updated like the list shown in FIG.
 図23に示されるように、更新後のリストでは、基地局設置候補位置Aと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Aとの間で見通しが有ると判定された、(2),(3),(5)及び(6)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(4)の符号が記載された1つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(8)及び(10)の符号がそれぞれ記載された2つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Dと見通しが有ると判定された代表点は、(8),(10)及び(13)の符号がそれぞれ記載された3つの代表点のままである。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(13)の符号が記載された1つの代表点のままである。 As shown in FIG. 23, the combination of the base station installation candidate position A and the representative point is deleted from the updated list. In addition, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position A and (2), (3), (5), and (6) by the line of sight determination based on the map information. Representative points with symbols are deleted. As a result, in the updated list, the representative point determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information is one representative point marked with the code (4). be. Also, the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the two representative points marked with symbols (8) and (10), respectively. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by line-of-sight determination based on the map information are three representative points marked with symbols (8), (10) and (13), respectively. remains Also, the representative point determined to have a line of sight with the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (13).
 (4)の符号が記載された代表点は、地図情報に基づく見通し判定によって見通し有りと判定されたが、点群データに基づく見通し判定によって見通し無しと判定されたため、削除されずに残されている。そのため、この後の処理において、基地局設置候補位置Bと(4)の符号が記載された代表点との間について、点群データに基づく見通し判定処理がなされる可能性が残る。すなわち、精度優先の見通し判定処理では、1つの代表点に対して、複数の基地局設置候補位置との点群データに基づく見通し判定処理が行われることがある。これにより、精度優先の見通し判定処理では、処理負担軽減優先の見通し判定処理と比べて、判定精度がより向上する。 The representative points marked with (4) were determined to have visibility based on the visibility determination based on the map information, but were determined to have no visibility based on the point cloud data, so they were left without being deleted. there is Therefore, in subsequent processing, there remains a possibility that line-of-sight determination processing based on the point cloud data will be performed between the base station installation candidate position B and the representative point indicated by the code (4). That is, in the accuracy-prioritized outlook determination process, the outlook determination process may be performed on one representative point based on point cloud data of a plurality of base station installation candidate positions. As a result, in the outlook determination process with priority given to accuracy, the determination accuracy is further improved as compared with the outlook determination process with priority given to reducing the processing load.
 図23に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、3つの代表点と見通しが有ると判定された基地局設置候補位置Dである。したがって、次に、地図見通し判定部41は、基地局設置候補位置Dを選択する。 As shown in FIG. 23, base station installation candidate positions that have more representative points determined to have visibility by visibility determination based on map information are three representative points and base station installation locations determined to have visibility. Candidate position D. Therefore, next, the map outlook determination unit 41 selects a base station installation candidate position D. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Dと上記3つの代表点との組み合わせを示す情報を、図22に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the three representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図24には、基地局設置候補位置Dと上記3つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 24 shows a list to which information indicating combinations of base station installation candidate positions D and the above three representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
 図24に示されるように、新たに追加された、(8)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(10)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、及び(13)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 24, the newly added combination of the representative point indicated by the symbol (8) and the base station installation candidate position D, the representative point indicated by the symbol (10) and the base station The result of line-of-sight determination based on the point cloud data for the combination with the installation candidate position D and the combination of the representative point marked with the symbol (13) and the base station installation candidate position D is "with line-of-sight". be.
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Dと各代表点との組み合わせを、前述の図23に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determining unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
 図25には、点群データに基づく見通し判定が完了した基地局設置候補位置Dと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図23に示されるリストが、図25に示されるリストのように更新される。 FIG. 25 shows the base stations determined to have visibility by the visibility determination based on the map information after the combinations of the base station installation candidate positions D and the representative points for which the visibility determination based on the point cloud data has been completed are deleted. A list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 23 is updated like the list shown in FIG.
 図25に示されるように、更新後のリストでは、基地局設置候補位置Dと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Dとの間で見通しが有ると判定された、(8),(10)及び(13)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(4)の符号が記載された1つの代表点のままである。基地局設置候補位置Cと見通しが有ると判定された代表点は、全て無くなっている。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点も同様に、全て無くなっている。 As shown in FIG. 25, in the updated list, the combination of the base station installation candidate position D and the representative point is deleted. Also, in the updated list, the codes (8), (10), and (13), which are determined to have a line of sight to the base station installation candidate position D by the line of sight determination based on the map information, are described. representative points are deleted. As a result, in the updated list, the representative points determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information are one representative point marked with the code (4). remain. All of the representative points determined to have line of sight with the base station installation candidate position C have disappeared. Likewise, all the representative points determined to have line of sight with the base station installation candidate position E by line of sight determination based on the map information are also gone.
 図25に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、1つの代表点と見通しが有ると判定された基地局設置候補位置Bである。したがって、次に、地図見通し判定部41は、基地局設置候補位置Bを選択する。 As shown in FIG. 25, base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information correspond to one representative point and base station installation positions determined to have line-of-sight. Candidate position B. Therefore, next, the map outlook determination unit 41 selects the base station installation candidate position B. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Bと上記1つの代表点との組み合わせを示す情報を、図24に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position B and the one representative point to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図26には、基地局設置候補位置Bと上記1つの代表点(すなわち、(4)の符号が記載された代表点)との組み合わせを示す情報、及び当該組み合わせの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 26 shows information indicating the combination of the base station installation candidate position B and the above one representative point (that is, the representative point with the code (4)), and outlook determination based on the point cloud data of the combination. A list with newly added information indicating the results of the is shown.
 図26に示されるように、新たに追加された、(4)の符号が記載された代表点と基地局設置候補位置Bとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 26, the result of the visibility determination based on the point cloud data for the combination of the newly added representative point marked with the symbol (4) and the base station installation candidate position B is It is "with prospect".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Bと代表点との組み合わせを、前述の図25に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。点群データに基づく見通し判定が完了した基地局設置候補位置Bと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストは、前述の図11のリストと同様になる。 The map outlook determination unit 41 determines that there is a line of sight for the combination of the base station installation candidate position B and the representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. deleted from the list of combinations of base station installation candidate positions and representative points. After deleting the combination of the candidate base station installation position B and the representative point for which the visibility determination based on the point cloud data has been completed, the candidate base station installation position determined to have a line of sight by the visibility determination based on the map information and the representative point The list of combinations with points is similar to the list in FIG. 11 described above.
 図11に示されるように、更新後のリストにおいては、基地局設置候補位置と代表点との全ての組み合わせが削除されている。すなわち、地図情報に基づく見通し判定により少なくとも1つの基地局候補位置との間で見通しが有ると判定された代表点の全てについて、点群データに基づく見通し判定処理が行われたことになる。但し、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有るとが判定された代表点の割合が予め定められた閾値以上となった時点で、判定可否リスト304の更新は終了する。 As shown in FIG. 11, all combinations of base station installation candidate positions and representative points are deleted from the updated list. In other words, all the representative points determined to have line of sight with at least one base station candidate position by the line of sight determination based on the map information are subjected to the line of sight determination processing based on the point cloud data. However, out of the representative points determined to have a line of sight by the line of sight determination based on the map information, the ratio of the representative points similarly determined to have line of sight by the line of sight determination based on the point cloud data is a predetermined threshold. Updating of the judgment availability list 304 ends when the above is reached.
 前述の図3に例示される評価対象エリア内の基地局設置候補位置及び網目ごとの見通し判定が行われるとした場合において、エリア最大化が指定されているならば、上記の処理負担軽減優先の見通し判定処理によって更新される判定可否リスト304は、以下の通りとなる。但し、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有ると判定された代表点の割合が予め定められた閾値以上となった時点で、判定可否リスト304の更新は終了する。 In the case where the outlook is determined for each base station installation candidate position and each mesh in the evaluation target area illustrated in FIG. The determination availability list 304 updated by the outlook determination process is as follows. However, among the representative points determined to have visibility by the visibility determination based on the map information, the ratio of the representative points determined to have visibility similarly by the visibility determination based on the point cloud data is equal to or greater than a predetermined threshold. Updating of the judgment availability list 304 ends at the point in time.
 ここで、前述のエリア最大化を図る処理負担軽減優先の置局・エリア設計の結果(図10)と、上記のエリア最大化を図る精度優先の置局・エリア設計の結果(図26)とを比べると、精度優先の置局・エリア設計の結果(図26)では、処理負担軽減優先の置局・エリア設計の結果(図10)とは異なり、点群データに基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点(例えば、(4)の符号が付された代表点)との組み合わせが選ばれる場合があることが分かる。 Here, the result of the station placement/area design with priority given to processing load reduction for maximizing the area (FIG. 10) and the result of the station placement/area design with priority given to accuracy for maximizing the area (FIG. 26). Compared to , the result of station placement/area design with priority on accuracy (Fig. 26) differs from the result of station placement/area design with priority on reducing the processing load (Fig. 10). It can be seen that there is a case where a combination of a base station installation candidate position determined to exist and a representative point (for example, a representative point labeled with (4)) is selected.
 図27~図31は、収容効率化を図る精度優先の置局・エリア設計を行う場合における判定可否リスト304の更新の一例を示す図である。  FIGS. 27 to 31 are diagrams showing an example of updating the judgment availability list 304 in the case of performing station placement/area design with priority given to accuracy for improving accommodation efficiency.
 図27には、基地局設置候補位置Aと5つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 27 shows a list to which information indicating combinations of base station installation candidate positions A and five representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. ing.
 図27に示されるように、(1)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(2)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(3)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、(5)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせ、及び(6)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについてそれぞれ行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 27, (1) the combination of the representative points marked with the code and the base station installation candidate position A, and (2) the combination of the representative point marked with the code and the base station installation candidate position A. combination, (3) a combination of a representative point indicated by the code of (3) and a base station installation candidate position A, a combination of a representative point indicated by the code of (5) and a base station installation candidate position A, and (6) The result of line-of-sight determination based on the point cloud data, which is performed for each combination of the representative points marked with , and the base station installation candidate position A, is "line-of-sight available".
 一方、(4)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについて行われた、点群データに基づく見通し判定の結果は追加されていない。すなわち、4)の符号が記載された代表点と基地局設置候補位置Aとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し無し」であったことを意味する。 On the other hand, the result of the visibility determination based on the point cloud data for the combination of the representative point with the sign of (4) and the base station installation candidate position A has not been added. That is, it means that the result of visibility determination based on the point cloud data for the combination of the representative points marked with the code of 4) and the base station installation candidate position A was "no visibility".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Aと各代表点との組み合わせのうち、判定結果が「見通し有り」であった組み合わせに含まれる代表点を、前述の図7に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map visibility determining unit 41 selects the representative points included in the combinations for which the determination result is "with visibility" among the combinations of the base station installation candidate position A and each representative point for which the visibility determination based on the point cloud data has been completed. , are deleted from the list of combinations of base station installation candidate positions and representative points determined to have visibility by the visibility determination based on the map information shown in FIG.
 図28には、点群データに基づく見通し判定が完了した基地局設置候補位置A及び、当該基地局設置候補位置Aと見通しが有ると判定された代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図5に示されるリストが、図28に示されるリストのように更新される。 FIG. 28 shows a base station installation candidate position A for which line-of-sight determination based on point cloud data has been completed, and a combination of the base station installation candidate position A and a representative point determined to have line-of-sight, after deletion. A list of combinations of base station installation candidate positions and representative points determined to have visibility by visibility determination based on map information is shown. That is, the list shown in FIG. 5 is updated like the list shown in FIG.
 図28に示されるように、更新後のリストでは、基地局設置候補位置Aと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Aとの間で見通しが有ると判定された、(2),(3),(5)及び(6)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(4)及び(7)の符号がそれぞれ記載された2つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(8),(10)及び(12)の符号がそれぞれ記載された3つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Dと見通しが有ると判定された代表点は、(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された5つの代表点のままである。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(13)及び(14)の符号が記載された2つの代表点のままである。 As shown in FIG. 28, in the updated list, the combination of base station installation candidate position A and the representative point is deleted. In addition, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position A and (2), (3), (5), and (6) by the line of sight determination based on the map information. Representative points with symbols are deleted. As a result, in the updated list, the representative points determined to have line-of-sight with the base station installation candidate position B by line-of-sight determination based on the map information are marked with symbols (4) and (7), respectively. There are two representative points. Also, the representative points determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information are the three representative points marked with symbols (8), (10) and (12), respectively. is. Also, the representative points determined to have line-of-sight with the base station installation candidate position D by the line-of-sight determination based on the map information are denoted by (8), (9), (10), (11) and (13). Remaining 5 representative points each listed. Also, the representative points determined to have line-of-sight with the base station installation candidate position E by line-of-sight determination based on the map information remain the two representative points marked with (13) and (14).
 (4)の符号が記載された代表点は、地図情報に基づく見通し判定によって見通し有りと判定されたが、点群データに基づく見通し判定によって見通し無しと判定されたため、削除されずに残されている。そのため、この後の処理において、基地局設置候補位置Bと(4)の符号が記載された代表点との間について、点群データに基づく見通し判定処理がなされる可能性が残る。すなわち、精度優先の見通し判定処理では、1つの代表点に対して、複数の基地局設置候補位置との点群データに基づく見通し判定処理が行われることがある。これにより、精度優先の見通し判定処理では、処理負担軽減優先の見通し判定処理と比べて、判定精度がより向上する。 The representative points marked with (4) were determined to have visibility based on the visibility determination based on the map information, but were determined to have no visibility based on the point cloud data, so they were left without being deleted. there is Therefore, in subsequent processing, there remains a possibility that line-of-sight determination processing based on the point cloud data will be performed between the base station installation candidate position B and the representative point indicated by the code (4). That is, in the accuracy-prioritized outlook determination process, the outlook determination process may be performed on one representative point based on point cloud data of a plurality of base station installation candidate positions. As a result, in the outlook determination process with priority given to accuracy, the determination accuracy is further improved as compared with the outlook determination process with priority given to reducing the processing load.
 図28に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、5つの代表点と見通しが有ると判定された基地局設置候補位置Dである。したがって、次に、地図見通し判定部41は、基地局設置候補位置Dを選択する。 As shown in FIG. 28, base station installation candidate positions having more representative points determined to have visibility by visibility determination based on map information are five representative points and base station installation locations determined to have visibility. Candidate position D. Therefore, next, the map outlook determination unit 41 selects a base station installation candidate position D. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Dと上記5つの代表点との組み合わせを示す情報を、図27に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position D and the five representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図29には、基地局設置候補位置Dと上記5つの代表点との組み合わせを示す情報、及び当該組み合わせごとの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 29 shows a list to which information indicating combinations of base station installation candidate positions D and the five representative points and information indicating results of visibility determination based on point cloud data for each combination are newly added. It is
 図29に示されるように、新たに追加された、(8)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(9)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(10)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、(11)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせ、及び(13)の符号が記載された代表点と基地局設置候補位置Dとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し有り」である。 As shown in FIG. 29, the newly added combination of the representative point indicated by the symbol (8) and the base station installation candidate position D, the representative point indicated by the symbol (9) and the base station A combination with the installation candidate position D, a combination of the representative point with the symbol (10) and the base station installation candidate position D, and a combination of the representative point with the symbol (11) and the base station installation candidate position D. The result of the line-of-sight determination based on the point cloud data, which is performed for the combination and the combination of the representative point with the symbol (13) and the base station installation candidate position D, is "with line-of-sight".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Dと各代表点との組み合わせを、前述の図28に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。 The map outlook determination unit 41 determines that there is a line of sight by determining the combination of the base station installation candidate position D and each representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. Delete from the list of combinations of determined base station installation candidate positions and representative points.
 図30には、点群データに基づく見通し判定が完了した基地局設置候補位置Dと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストが示されている。すなわち、図28に示されるリストが、図30に示されるリストのように更新される。 FIG. 30 shows a base station determined to have a line of sight by the line of sight determination based on the map information after the combination of the base station installation candidate position D and the representative point for which the line of sight determination based on the point cloud data has been completed is deleted. A list of combinations of installation candidate positions and representative points is shown. That is, the list shown in FIG. 28 is updated like the list shown in FIG.
 図30に示されるように、更新後のリストでは、基地局設置候補位置Dと代表点との組み合わせが削除されている。また、更新後のリストでは、地図情報に基づく見通し判定によって、基地局設置候補位置Dとの間で見通しが有ると判定された、(8),(9),(10),(11)及び(13)の符号が記載された代表点が削除されている。これにより、更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Bと見通しが有ると判定された代表点は、(4)及び(7)の符号が記載された2つの代表点のままである。基地局設置候補位置Cと見通しが有ると判定された代表点は、(12)の符号が記載された1つの代表点である。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点、(14)の符号が記載された1つの代表点である。 As shown in FIG. 30, the combination of base station installation candidate positions D and representative points is deleted from the updated list. In addition, in the list after updating, it is determined that there is a line of sight between the base station installation candidate position D and (8), (9), (10), (11) and The representative point with the code (13) is deleted. As a result, in the updated list, the representative points determined to have line-of-sight with the base station installation candidate position B by the line-of-sight determination based on the map information are indicated by the symbols (4) and (7). remains one representative point. The representative point determined to have line of sight with the base station installation candidate position C is one representative point indicated by the code (12). Also, it is a representative point determined to have a line of sight to the base station installation candidate position E by line of sight determination based on the map information, and is one representative point with the code (14).
 図30に示されるように、地図情報に基づく見通し判定によって見通しが有ると判定された代表点をより多く有する基地局設置候補位置は、2つの代表点と見通しが有ると判定された基地局設置候補位置Bである。したがって、次に、地図見通し判定部41は、基地局設置候補位置Bを選択する。 As shown in FIG. 30, base station installation candidate positions that have more representative points determined to have line-of-sight by line-of-sight determination based on map information have two representative points and base station installation positions determined to have line-of-sight. Candidate position B. Therefore, next, the map outlook determination unit 41 selects the base station installation candidate position B. FIG.
 地図見通し判定部41は、選択された基地局設置候補位置Bと上記2つの代表点との組み合わせを示す情報を、図29に示されるリストに追加する。そして、3次元見通し判定部42は、当該リストに追加された基地局設置候補位置と代表点との組み合わせについて、点群データに基づく見通し判定を行う。3次元見通し判定部42は、点群データに基づく見通し判定の結果をリストに記録する。 The map outlook determination unit 41 adds information indicating the combination of the selected base station installation candidate position B and the above two representative points to the list shown in FIG. Then, the three-dimensional line-of-sight determination unit 42 performs line-of-sight determination based on the point cloud data for the combinations of base station installation candidate positions and representative points added to the list. The three-dimensional outlook determining unit 42 records the results of the outlook determination based on the point cloud data in a list.
 図31には、基地局設置候補位置Bと上記2つの代表点(すなわち、(4)及び(7)の符号が記載された代表点)との組み合わせを示す情報、及び当該組み合わせの点群データに基づく見通し判定の結果を示す情報が新たに追加されたリストが示されている。 FIG. 31 shows information indicating the combination of the base station installation candidate position B and the two representative points (that is, the representative points marked with the symbols (4) and (7)), and the point cloud data of the combination. A newly added list of information indicating the result of the line-of-sight determination based on is shown.
 図31に示されるように、新たに追加された、(4)の符号が記載された代表点と基地局設置候補位置Bとの組み合わせついて行われた、点群データに基づく見通し判定の結果は「見通し有り」である。また、(7)の符号が記載された代表点と基地局設置候補位置Bとの組み合わせについて行われた、点群データに基づく見通し判定の結果は「見通し無し」である。 As shown in FIG. 31, the result of the visibility determination based on the point cloud data performed for the combination of the newly added representative point marked with the symbol (4) and the base station installation candidate position B is It is "with prospect". Also, the result of visibility determination based on the point cloud data for the combination of the representative point with the code (7) and the base station installation candidate position B is "no visibility".
 地図見通し判定部41は、点群データに基づく見通し判定が完了した基地局設置候補位置Bと代表点との組み合わせを、前述の図30に示される地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストから削除する。点群データに基づく見通し判定が完了した基地局設置候補位置Bと代表点との組み合わせが削除された後の、地図情報に基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点との組み合わせのリストは、前述の図17のリストと同様になる。 The map outlook determination unit 41 determines that there is a line of sight for the combination of the base station installation candidate position B and the representative point, for which the line of sight determination based on the point cloud data has been completed, by the line of sight determination based on the map information shown in FIG. deleted from the list of combinations of base station installation candidate positions and representative points. After deleting the combination of the candidate base station installation position B and the representative point for which the visibility determination based on the point cloud data has been completed, the candidate base station installation position determined to have a line of sight by the visibility determination based on the map information and the representative point A list of combinations with points is similar to the list in FIG. 17 described above.
 更新後のリストでは、基地局設置候補位置Bと(4)及び(7)の符号がそれぞれ記載された代表点との組み合わせが削除されている。更新後のリストにおいては、地図情報に基づく見通し判定によって、基地局設置候補位置Cと見通しが有ると判定された代表点は、(12)の符号が記載された1つの代表点のままである。また、地図情報に基づく見通し判定によって、基地局設置候補位置Eと見通しが有ると判定された代表点は、(14)の符号が記載された1つの代表点のままである。 In the updated list, the combination of the base station installation candidate position B and the representative points with the codes (4) and (7) are deleted. In the updated list, the representative point determined to have line-of-sight with the base station installation candidate position C by line-of-sight determination based on the map information remains as one representative point marked with the code (12). . Also, the representative point determined to have a line of sight to the base station installation candidate position E by the line of sight determination based on the map information remains one representative point with the code (14).
 基地局設置候補位置A,D及びBが選択された時点において、いずれかの基地局候補位置との間で点群データに基づく見通し判定がなされた代表点は、図31に示されるように(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11)及び(13)の符号がそれぞれ記載された代表点であり、その個数は12個である。また、地図情報に基づく見通し判定によって、評価対象エリア内の全ての基地局設置候補位置(すなわち、基地局設置候補位置A~E)のうち少なくとも1つとの間で見通しが有ると判定された代表点の総数は、図3に示されるように14個である。 At the time when base station installation candidate positions A, D and B are selected, representative points for which line-of-sight determination is made based on point cloud data with any of the base station candidate positions are shown in FIG. 1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) and (13) are respectively It is the representative point described and the number is 12 pieces. Also, a representative determined to have a line of sight with at least one of all base station installation candidate positions (that is, base station installation candidate positions A to E) in the evaluation target area by line of sight determination based on map information. The total number of points is 14 as shown in FIG.
 したがって、この総数に対する、基地局設置候補位置A,D及びBのうち、いずれかの基地局候補位置との間で点群データに基づく見通し判定がなされた代表点の個数が占める割合は、およそ86[%](=12/14)となる。ここで、予め定められた割合が80[%]であるとした場合、上記の割合は予め定められた割合に達していることから、地図見通し判定部41は、基地局設置候補位置A,D及びBの3つが選択された時点で、3次元の点群データに基づく見通し判定処理において用いられる基地局設置候補位置を選択する上記の処理を終了する。 Therefore, the ratio of the number of representative points for which line-of-sight determination is made based on the point cloud data with any of the base station candidate positions A, D, and B to the total number is approximately 86[%] (=12/14). Here, assuming that the predetermined ratio is 80[%], the above ratio has reached the predetermined ratio. and B are selected, the above process of selecting base station installation candidate positions to be used in the visibility determination process based on the three-dimensional point cloud data ends.
 ここで、前述の収容効率化を図る処理負担軽減優先の置局・エリア設計の結果(図16)と、上記の収容効率化を図る精度優先の置局・エリア設計の結果(図31)とを比べると、精度優先の置局・エリア設計の結果(図31)では、処理負担軽減優先の置局・エリア設計の結果(図16)とは異なり、点群データに基づく見通し判定によって見通しが有ると判定された基地局設置候補位置と代表点(例えば、(4)の符号が付された代表点)との組み合わせがより多くなっていることが分かる。 Here, the result of the station placement/area design with priority given to processing load reduction for improving accommodation efficiency (FIG. 16) and the result of station placement/area design with priority given to accuracy for improving accommodation efficiency (FIG. 31). Compared to , the result of station placement and area design with priority on accuracy (Fig. 31) differs from the result of station placement and area design with priority on reducing the processing load (Fig. 16). It can be seen that there are more combinations of base station installation candidate positions and representative points (for example, representative points marked with (4)) that are determined to exist.
 以上説明したように、処理負担軽減優先の見通し判定処理においては、地図見通し判定部41は、いずれかの基地局設置候補位置との間で点群データに基づく見通し判定が行われた代表点については、他の基地局設置候補位置との間での点群データに基づく見通し判定を行わない。また、処理負担軽減優先の見通し判定処理においては、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上である場合に、点群データに基づく見通し判定処理を終了する。 As described above, in the process load reduction priority view determination process, the map view view determination unit 41 determines the representative points for which the view determination based on the point cloud data has been performed with one of the base station installation candidate positions. does not perform visibility determination based on point cloud data with other base station installation candidate positions. Further, in the outlook determination process with priority on reducing the processing load, the map outlook determination unit 41 further performs outlook determination based on the point cloud data among the representative points determined to have visibility by the outlook determination based on the map information. If the ratio of representative points obtained is equal to or greater than a predetermined threshold value, the outlook determination process based on the point cloud data is ended.
 このような構成を備えることで、処理負担軽減優先の見通し判定処理においては、地図見通し判定部41は、精度優先の見通し判定処理と比べて、置局・エリア設計処理において処理負担をより軽減させることができる。 With such a configuration, the map outlook determination unit 41 can further reduce the processing load in the station placement/area design process in the outlook determination process with priority given to reducing the processing load, compared to the outlook determination process with priority given to accuracy. be able to.
 一方、以上説明したように、精度優先の見通し判定処理においては、地図見通し判定部41は、いずれかの基地局設置候補位置との間で点群データに基づく見通し判定を行い、かつ、判定結果が「見通し無し」であった代表点については、他の基地局設置候補位置との間での点群データに基づく見通し判定をさらに行うことがある。すなわち、精度優先の見通し判定処理では、1つの代表点に対して、複数の基地局設置候補位置との点群データに基づく見通し判定処理が行われることがある。また、精度優先の見通し判定処理においては、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われ、かつ、判定結果が「見通し有り」であった代表点の割合が予め定められた閾値以上である場合に、点群データに基づく見通し判定処理を終了する。 On the other hand, as described above, in the accuracy-prioritized outlook determination process, the map outlook determination unit 41 determines the outlook with one of the base station installation candidate positions based on the point cloud data, and For representative points with "no line-of-sight", line-of-sight determination may be further performed based on point cloud data with other base station installation candidate positions. That is, in the accuracy-prioritized outlook determination process, the outlook determination process may be performed on one representative point based on point cloud data of a plurality of base station installation candidate positions. Further, in the accuracy-prioritized outlook determination process, the map outlook determination unit 41 further performs outlook determination based on point cloud data among the representative points determined to have visibility by the outlook determination based on the map information, and , and when the ratio of representative points for which the determination result is "with visibility" is equal to or greater than a predetermined threshold value, the visibility determination processing based on the point cloud data is ended.
 このような構成を備えることで、精度優先の見通し判定処理においては、地図見通し判定部41は、処理負担軽減優先の見通し判定処理と比べて、置局・エリア設計処理において処理精度をより高くすることができる。 With such a configuration, in the outlook determination process with priority on accuracy, the map outlook determination unit 41 increases the processing accuracy in the station placement/area design process compared to the outlook determination process with priority on reducing the processing load. be able to.
<第2の実施形態>
 以下、本発明の第2の実施形態について説明する。前述の第1の実施形態において、基地局設置候補位置と代表点との間の見通しの有無を、両局間で形成されるフレネルゾーンの遮蔽率を考慮して判定する方法について、図19を参照しながら説明した。
<Second embodiment>
A second embodiment of the present invention will be described below. In the above-described first embodiment, FIG. 19 shows a method of determining whether or not there is a line of sight between the base station installation candidate position and the representative point in consideration of the shielding rate of the Fresnel zone formed between the two stations. explained with reference.
 前述の通り、第1の実施形態では、3次元見通し判定部42は、例えば、フレネルゾーンfzの複数の断面を重ね合わせる。そして、3次元見通し判定部42は、重ね合わされた断面の面積のうち、点群データの領域が示す割合を遮蔽率として算出する。3次元見通し判定部42は、算出された遮蔽率を所定の閾値と比較することにより、基地局bsと端末局tsとの間の通信可否を判定する構成である。あるいは、3次元見通し判定部42は、重ね合わされた断面に基づいて、基地局bsと端末局tsとの間の見通しの有無を判定することにより、基地局bsと端末局tsとの間の通信可否を判定する構成である。 As described above, in the first embodiment, the three-dimensional outlook determination unit 42 overlaps, for example, multiple cross sections of the Fresnel zone fz. Then, the three-dimensional outlook determination unit 42 calculates, as the shielding rate, the ratio of the area of the point cloud data to the area of the superimposed cross sections. The three-dimensional view determination unit 42 is configured to determine whether communication between the base station bs and the terminal station ts is possible by comparing the calculated shielding rate with a predetermined threshold value. Alternatively, the three-dimensional line-of-sight determination unit 42 determines whether or not there is line-of-sight between the base station bs and the terminal station ts based on the superimposed cross sections, thereby enabling communication between the base station bs and the terminal station ts. This is the configuration for judging whether or not it is possible.
 しかしながら、フレネルゾーンは回転楕円体であることから、対象となる点群データを切り出したり、サイズが異なる複数の円形状断面を重ね合わせたりするためには、複雑な計算を必要とする。これに対し、以下に説明する第2の実施形態における置局・エリア設計支援装置1は、フレネルゾーンをより単純な形状である円形状と見なすことで、見通し判定処理の処理負担を軽減させる。 However, since the Fresnel zone is a spheroid, complex calculations are required to extract the target point cloud data and superimpose multiple circular cross-sections of different sizes. On the other hand, the station placement/area design support device 1 according to the second embodiment described below reduces the processing load of the line-of-sight determination processing by regarding the Fresnel zone as a simpler circular shape.
 一般的に、回転楕円体であるフレネルゾーンの円形状断面の半径は、無線通信に用いる電波の周波数が高い場合(例えばミリ波帯等)には、通信距離が百数十[m]であったとしても精々数十[cm]であり、1[m]未満である。さらに、MMSの車両の一般的な走行速度(およそ時速50[km]以上)で、測定対象の物体がMMSから数十[m]程度(例えば50[m]以上)離れた位置に存在していたとしても、点群データの測定間隔は十数[cm]程度である。このように、充分に密な間隔で点群データの取得が可能である。 In general, the radius of the circular cross-section of the Fresnel zone, which is a spheroid, is a hundred and several tens [m] when the frequency of radio waves used for wireless communication is high (for example, in the millimeter wave band). At most, it is several tens [cm] and less than 1 [m]. Furthermore, at a general running speed of an MMS vehicle (approximately 50 [km] per hour or more), the object to be measured is located at a distance of about several tens [m] (e.g., 50 [m] or more) from the MMS. Even so, the measurement interval of the point cloud data is about ten and several [cm]. In this way, it is possible to acquire point cloud data at sufficiently dense intervals.
 上記のように、高い周波数帯の電波を用いた無線通信において形成されるフレネルゾーン、及びMMSによる点群データの測定間隔等の観点を考慮すると、第1の実施形態と比べてより簡易な点群データの取得方法及び見通し判定方法が用いられたとしても、十分な見通し判定の判定精度が得られると考えられる。 As described above, considering the Fresnel zone formed in wireless communication using radio waves in a high frequency band, the measurement interval of point cloud data by MMS, etc., it is simpler than the first embodiment. Even if the group data acquisition method and the outlook determination method are used, it is considered that a sufficient accuracy of the outlook determination can be obtained.
 図32は、フレネルゾーンを円筒形と見なして見通し判定を行う様子を示す模式図である。図32には、基地局bsと、移動局ts(代表点に相当)と、円筒形に見なしたフレネルゾーン(以下、「円筒形フレネルゾーンCz」という。)と、が記載されている。 FIG. 32 is a schematic diagram showing how visibility is determined by regarding the Fresnel zone as a cylinder. FIG. 32 shows a base station bs, a mobile station ts (corresponding to a representative point), and a cylindrical Fresnel zone (hereinafter referred to as “cylindrical Fresnel zone Cz”).
 図32に示されるように、円筒形フレネルゾーンCzの長さ(すなわち、基地局bsと移動局tsとの間の距離)はdであり、円筒形フレネルゾーンCzの垂直断面である円形状断面の半径はrである。なお、半径rは、予め定められた値であってもよいし、基地局bsと移動局tsとの間で本来形成される回転楕円体のフレネルゾーンの円形状断面の最大半径の値等であってもよい。 As shown in FIG. 32, the length of the cylindrical Fresnel zone Cz (i.e. the distance between the base station bs and the mobile station ts) is d and the circular cross section which is the vertical cross section of the cylindrical Fresnel zone Cz is r. Note that the radius r may be a predetermined value, or a value such as the maximum radius of the circular cross section of the Fresnel zone of the spheroid originally formed between the base station bs and the mobile station ts. There may be.
 図33は、フレネルゾーンfzに対し円筒形フレネルゾーンCzを重ね合わせた図である。フレネルゾーンfzのある円形状断面までの、基地局bsからの距離及び移動局tsからの距離をそれぞれd及びdとすると、d=d+dと表せる。また、第nフレネルゾーン半径r(n)は、無線通信に用いられる電波の波長λの関数であり、以下の(1)式によって表される。 FIG. 33 is a diagram in which the cylindrical Fresnel zone Cz is superimposed on the Fresnel zone fz. Assuming that the distance from the base station bs and the distance from the mobile station ts to the circular cross section with the Fresnel zone fz are d1 and d2 , respectively, d= d1 + d2 . Also, the n-th Fresnel zone radius r(n) is a function of the wavelength λ of radio waves used for wireless communication, and is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、第1フレネルゾーンでの中央(d=d)に当たる断面、すなわち最も大きい円形状断面の半径rは、以下の(2)式のように、より簡単な数式によって表すことができる。 Here, the cross section corresponding to the center (d 1 =d 2 ) in the first Fresnel zone, that is, the radius r of the largest circular cross section can be expressed by a simpler formula as in the following formula (2). .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、波長λは、以下の(3)式のように、光速c(=3.0×10[m])と、無線通信に用いられる電波の周波数fに関わる関数として表される。そのため、ミリ波帯等、周波数fに応じて円筒形フレネルゾーンCzの半径を変えることは理にかなっていると言える。 The wavelength λ is expressed as a function of the speed of light c (=3.0×10 8 [m]) and the frequency f of radio waves used for wireless communication, as in the following equation (3). Therefore, it can be said that it makes sense to change the radius of the cylindrical Fresnel zone Cz according to the frequency f, such as in the millimeter wave band.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、本実施形態における置局・エリア設計支援装置1を使用するユーザが、被長に応じて円筒形フレネルゾーンCzでの円形状断面の半径rを設定するようにしてもよい。 It should be noted that the user using the station placement/area design support device 1 in this embodiment may set the radius r of the circular cross section in the cylindrical Fresnel zone Cz according to the length.
 このように、回転楕円体であるフレネルゾーンfzを、図32に示されるような円筒形の円筒形フレネルゾーンCzと見なすことで、(見通しを遮蔽する要因となる)点群データを切り出す処理が大幅に簡易化される。 In this way, by regarding the Fresnel zone fz, which is a spheroid, as a cylindrical Fresnel zone Cz shown in FIG. greatly simplified.
 さらに、図33に示されるように、回転楕円体であるフレネルゾーンfzでは場所によって円形状断面のサイズがそれぞれ異なるため、これらサイズの異なる円形状断面の遮蔽部分を重ねる処理は複雑であるが、フレネルゾーンfzを円筒形フレネルゾーンCzと見なすことにより、上記の複雑な処理を、円筒形内に存在する点群データの数をカウントする単純な処理に置き換えることができる。すなわち、重ね合わされた円形状断面の遮蔽部分の面積が予め定められた閾値を超えているか否かを判定する手法を用いるより、円筒形内にある点群データの数が閾値を超えているか否かを判定する手法を用いるほうが、はるかに簡単な見通し判定処理とすることができる。 Furthermore, as shown in FIG. 33, since the size of the circular cross-section of the Fresnel zone fz, which is a spheroid, differs depending on the location, the process of overlapping the shielding portions of the circular cross-sections of different sizes is complicated. By regarding the Fresnel zone fz as a cylindrical Fresnel zone Cz, the above complex process can be replaced with a simple process of counting the number of point cloud data present in the cylinder. That is, rather than using a method of determining whether the area of the shielded portion of the superimposed circular cross section exceeds a predetermined threshold, whether the number of point cloud data in the cylinder exceeds the threshold It is possible to make the visibility determination process much simpler by using the method of determining whether or not.
<第3の実施形態>
 前述の第1の実施形態にて説明した見通し判定において、地図情報に基づく見通し判定によって見通しが有ると判定された基地局の設置候補位置が1つのみである代表点の多くが、点群データに基づく見通し判定によれば見通し無いと判断されるケースも考えられる。
<Third Embodiment>
In the visibility determination described in the first embodiment described above, most of the representative points where there is only one installation candidate position for the base station determined to have visibility by the visibility determination based on the map information are the point cloud data. There may be cases where it is judged that there is no line of sight according to the line of sight determination based on
 このような課題に対し、以下に説明する第3の実施形態における置局・エリア設計支援装置1は、処理負担軽減優先の見通し判定において、点群データに基づく見通し判定処理の途中であっても、見通しが無いと判定された代表点がある程度の数(あるいは割合)に達したら、見切りをつけて処理を終了させる。そして、置局・エリア設計支援装置1は、処理を終了させるとともに、警告表示(アラート)することによって、他の基地局設置候補位置を点群データに基づく見通し判定処理の対象とするように、ユーザに対して促す。 In order to solve such a problem, the station placement/area design support device 1 according to the third embodiment described below has a view determination that gives priority to reducing the processing load, even during the view determination process based on the point cloud data. , when the number (or percentage) of representative points judged to have no visibility reaches a certain number, give up and terminate the process. Then, the station placement/area design support apparatus 1 terminates the process and displays a warning (alert) so that the other base station installation candidate positions are subject to the outlook determination process based on the point cloud data. prompt the user.
 なお、警告表示(アラート)とは、例えば、「この基地局設置候補位置では、基地局との間で見通しが無い領域が多くなり、端末局の収容範囲が狭くなります。他の基地局設置候補位置で再評価することをお勧めします。」等の文言をユーザに対して通知する表示である。 The warning display (alert) is, for example, "At this base station installation candidate position, there are many areas where there is no line of sight between the base station and the terminal station's accommodation range is narrow. Other base station installation It is recommended to re-evaluate at the candidate position." or the like is displayed to notify the user.
 図34は、ある基地局設置候補位置に対する点群データに基づく見通し判定処理の終了条件を説明するための図である。図34に示されるグラフの横軸は、ある基地局設置候補位置について、点群データに基づく見通し判定処理が実施された代表点の個数Cpを表す。一方、図34に示されるグラフの縦軸は、点群データに基づく見通し判定処理が実施された代表点の個数Cpのうち、見通しが有ると判定された代表点の個数Coを表す。 FIG. 34 is a diagram for explaining conditions for terminating visibility determination processing based on point cloud data for a certain base station installation candidate position. The horizontal axis of the graph shown in FIG. 34 represents the number Cp of representative points for which the line-of-sight determination processing based on the point cloud data has been performed for a given base station installation candidate position. On the other hand, the vertical axis of the graph shown in FIG. 34 represents the number Co of representative points determined to have visibility among the number Cp of representative points subjected to visibility determination processing based on the point cloud data.
 また、エリア最大化を図る置局・エリア設計を行う場合、かつ、処理負担軽減優先の見通し判定を行う場合において、見通し判定の対象とする代表点の個数をCaとすれば、図34に示されるグラフの横軸であるCp(見通し判定を実施した数)は、見通し判定処理の途中の時点ならばCp<Ca、見通し判定処理の完了時点ならばCp=Caとなる。 In the case of station placement/area design for maximizing the area, and in the case of performing visibility judgment with priority on reducing the processing load, if the number of representative points targeted for visibility judgment is Ca, then the number of representative points is shown in FIG. Cp (the number of times the visibility determination is performed), which is the horizontal axis of the graph, is Cp<Ca if the visibility determination process is in progress, and Cp=Ca if the visibility determination process is completed.
 また、点群データに基づく見通し判定処理が実施された代表点の個数Cpのうち、見通しが無いと判定された代表点の個数Cnとする。処理負担軽減優先の見通し判定を行う場合、見通しが有ると判定された代表点の個数はCoであるため、見通し判定処理の完了時点において見通し判定処理が実施された数Caは、Ca=Co+Cnと表すことができる。 Also, let the number Cn of representative points determined to have no visibility out of the number Cp of representative points subjected to visibility determination processing based on point cloud data. When the outlook determination is performed with priority on reducing the processing load, the number of representative points determined to have visibility is Co. Therefore, the number Ca for which the outlook determination process is performed at the time of completion of the outlook determination process is Ca=Co+Cn. can be represented.
 なお、精度優先の見通し判定を行う場合には、Caは、Ca<Co+Cnと表される。これは、精度優先の見通し判定を行う場合では、同一の代表点に対して複数の基地局設置候補位置との間の見通し判定が実施されることがあるためである。本実施形態においては、一例として処理負担軽減優先の見通し判定を行う場合について説明することとし、すなわち、Ca=Co+Cnの関係が成り立つものとして説明する。 It should be noted that Ca is expressed as Ca<Co+Cn when the accuracy-prioritized line-of-sight determination is performed. This is because, in the case of performing the visibility determination with priority given to accuracy, the visibility determination between a plurality of base station installation candidate positions may be performed for the same representative point. In the present embodiment, as an example, a case will be described where the processing load reduction priority is given to the outlook determination, that is, the description will be made on the assumption that the relationship Ca=Co+Cn holds.
 以下、点群データに基づく見通し判定処理の途中時点で、実施される当該見通し判定処理の全体のうち、どの程度の処理が完了しているのかについて考える。前述の通り、点群データに基づく見通し判定処理の全体数はCaである。なお、このCaは、エリア最大化を図る置局・エリア設計を行う場合、かつ、処理負担軽減優先の見通し判定を行う場合においては、地図情報に基づく見通し判定によって見通しが有ると判定された代表点の総数に相当する。また、前述の通り、点群データに基づく見通し判定処理を実施した数はCpである。 In the following, we will consider how much processing has been completed out of the entire outlook determination process that is performed during the process of determining the outlook based on the point cloud data. As described above, the total number of outlook determination processes based on point cloud data is Ca. Note that this Ca is a representative determined to have visibility by the visibility determination based on the map information when performing station placement/area design for maximizing the area and when performing visibility determination with priority on reducing the processing load. Corresponds to the total number of points. In addition, as described above, the number of times the visibility determination process based on the point cloud data is performed is Cp.
 これにより、点群データに基づく見通し判定処理を実施した割合(以下、「達成率」ともいう。)をRp/aとすると、Rp/a=Cp÷Caと表される。そして、点群データに基づく見通し判定処理の完了時点では、Rp/a=100[%]となる。この達成率Rp/aに基づき、図34に示されるグラフの横軸のCpは、Cp=Rp/a×Caと表すこともできる。 As a result, Rp/a=Cp÷Ca, where Rp/a is the rate of execution of the outlook determination process based on the point cloud data (hereinafter also referred to as the "achievement rate"). At the completion of the outlook determination process based on the point cloud data, Rp/a=100[%]. Based on this achievement rate Rp/a, Cp on the horizontal axis of the graph shown in FIG. 34 can also be expressed as Cp=Rp/a×Ca.
 一般的に、点群データに基づく見通し判定処理の完了時点、すなわち、Rp/a=100[%]となる前に、見通し判定の判定処理の途中時点で、ある程度の確からしさで判定結果は予測可能である。そこで、点群データに基づく見通し判定において確からしい判定結果が得られる割合を表す閾値をTh0とする。図34に示されるグラフにおいては、横軸のCpの値が0からCaまでの間の途中に、この閾値Th0が存在する。 In general, at the time when the outlook determination process based on the point cloud data is completed, that is, before Rp / a = 100 [%], at the midpoint of the determination process of the outlook determination, the determination result is predicted with a certain degree of certainty. It is possible. Therefore, let Th0 be a threshold representing the rate at which a probable determination result is obtained in view determination based on point cloud data. In the graph shown in FIG. 34, the threshold Th0 exists in the middle of the Cp value on the horizontal axis from 0 to Ca.
 点群データに基づく見通し判定処理を実施した割合(達成率)Rp/aがTh0以上の割合となった場合、全ての見通し判定処理が完了した時点における、見通し有りと判定された代表点の個数が予測可能である。図34に示されるグラフにおいて、網掛けがなされた範囲が、達成率がTh0以上の割合となった時点を表す。 When the rate (achievement rate) Rp/a at which the outlook determination process based on the point cloud data is performed is Th0 or more, the number of representative points determined to have visibility at the time when all the outlook determination processes are completed. is predictable. In the graph shown in FIG. 34, the shaded range represents the point in time when the achievement rate reaches Th0 or higher.
 また、点群データに基づく見通し判定処理の処理途中において見通しが有ると判定された代表点の割合について、許容可能な割合を表す閾値をTh1とする。また、点群データに基づく見通し判定処理の処理途中において見通しが有ると判定された代表点の割合をRo/aとする。 Also, let Th1 be a threshold representing an allowable percentage of the representative points determined to have visibility during the processing of the visibility determination process based on the point cloud data. Also, let Ro/a be the ratio of representative points determined to have a line of sight during the line of sight determination process based on the point cloud data.
 ここで、Ro/a<Th1である場合(すなわち、図34に示されるグラフにおいて濃い網掛けがなされた範囲である場合)、見通しが無いと判定された代表点の個数が多すぎることから、評価対象としている基地局設置候補位置では通信可能エリアが広くならないことが予測される。そのため、置局・エリア設計支援装置1は、当該基地局設置候補位置についての点群データに基づく見通し判定の評価については、評価途中であっても見切りを付けて終了し、他の基地局設置候補位置についての見通し判定処理に移行する。 Here, if Ro/a<Th1 (that is, if the range is darkly shaded in the graph shown in FIG. 34), the number of representative points determined to have no visibility is too large. It is predicted that the communicable area will not be widened at the base station installation candidate positions to be evaluated. Therefore, the station placement/area design support apparatus 1 terminates the evaluation of visibility determination based on the point cloud data for the base station installation candidate position even if it is in the middle of the evaluation, and terminates the evaluation. It shifts to the line-of-sight determination process for the candidate position.
 また、前述の第1の実施形態における処理負担軽減優先の見通し判定処理においては、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上である場合に、点群データに基づく見通し判定処理を終了する構成であった。この閾値を、以下Th3とする。 In addition, in the outlook determination process with priority on reducing the processing load in the first embodiment described above, the map outlook determination unit 41 selects point cloud data among the representative points determined to have visibility by the outlook determination based on the map information. When the percentage of representative points for which the outlook determination based on the point cloud data is further performed is equal to or greater than a predetermined threshold value, the outlook determination process based on the point cloud data is terminated. This threshold is hereinafter referred to as Th3.
 また、達成率Rp/a=Th3(すなわち、点群データに基づく見通し判定処理の終了時点)における、見通しが有ると判定された代表点の割合についての、許容可能な割合を表す閾値をTh2とする。 Further, Th2 is a threshold representing an allowable ratio of representative points determined to have visibility at the achievement ratio Rp/a=Th3 (that is, at the end of the visibility determination process based on the point cloud data). do.
 Ro/a<Th2である場合についても、上記のRo/a<Th1である場合と同様に、見通しが無いと判定された代表点の個数が多すぎることから、評価対象としている基地局設置候補位置では通信可能エリアが広くならないことが分かる。そのため、置局・エリア設計支援装置1は、当該基地局設置候補位置についての点群データに基づく見通し判定の評価については、評価途中であっても見切りを付けて終了し、他の基地局設置候補位置についての見通し判定処理に移行する。 In the case of Ro/a<Th2, similarly to the case of Ro/a<Th1, the number of representative points determined to have no line of sight is too large. It can be seen that the communicable area does not widen depending on the position. Therefore, the station placement/area design support apparatus 1 terminates the evaluation of visibility determination based on the point cloud data for the base station installation candidate position even if it is in the middle of the evaluation, and terminates the evaluation. It shifts to the line-of-sight determination process for the candidate position.
 ここで、閾値Th1及びTh2の大小関係は、Th1<Th2とする。この理由は、点群データに基づく見通し判定処理の途中時点において見通しが有ると判定された代表点の割合Ro/pの値はその後の見通し判定処理によってより大きな値になる可能性があるのに対し、点群データに基づく見通し判定処理の完了時点において見通しが有ると判定された代表点の割合Ro/aの値は確定した値であるからである。よって、見通し判定処理の途中時点における閾値Th1を、見通し判定処理の完了時点における閾値Th2より小さくする。 Here, the magnitude relationship between the thresholds Th1 and Th2 is Th1<Th2. The reason for this is that the value of the ratio Ro/p of the representative points determined to have visibility in the middle of the visibility determination process based on the point cloud data may become a larger value due to the subsequent visibility determination process. On the other hand, this is because the value of the ratio Ro/a of the representative points determined to have visibility at the time of completion of the visibility determination processing based on the point cloud data is a fixed value. Therefore, the threshold Th1 at the midpoint of the outlook determination process is made smaller than the threshold Th2 at the completion of the outlook determination process.
 以下、処理負担軽減優先の見通し判定処理の流れについて説明する。図35は、本発明の第3の実施形態における置局・エリア設計支援装置1の処理負担軽減優先の見通し判定における動作を示すフローチャートである。図35のフローチャートが示す置局・エリア設計支援装置1の動作は、基本的には前述の第1の実施形態における図2に示されるステップS16の動作を詳細化したものである。 The following describes the flow of outlook determination processing with priority given to reducing the processing load. FIG. 35 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the third embodiment of the present invention in view determination prioritizing processing load reduction. The operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 35 is basically the detailed operation of step S16 shown in FIG. 2 in the first embodiment.
 図35に示されるフローチャートのステップS361~ステップS365の処理は、前述の図20に示されるフローチャートのS161~ステップS165の処理と同様であるため、説明を省略する。 The processing from step S361 to step S365 in the flowchart shown in FIG. 35 is the same as the processing from step S161 to step S165 in the flowchart shown in FIG.
 3次元見通し判定部42は、ステップS365において判定可否リスト304を更新し、点群データに基づく見通し判定の判定結果を記録した基地局設置候補位置と代表点との組み合わせを地図情報に基づく見通し判定によって見通しが有ると判定された組み合わせのリストから削除した後、達成率Rp/aを算出する(ステップS366)。 The three-dimensional outlook determination unit 42 updates the determination availability list 304 in step S365, and performs outlook determination based on the map information on the combinations of the base station installation candidate positions and the representative points recorded in the determination result of the visibility determination based on the point cloud data. After deleting from the list of combinations determined to have prospects by , the achievement rate Rp/a is calculated (step S366).
 達成率Rp/aが閾値Th0の値に満たない場合(ステップS366・NO)、ステップS363のループあるいはステップS361に戻り、3次元見通し判定部42は、他の基地局設置候補位置及び他の代表点について、さらに点群データに基づく見通し判定を行う。 If the achievement rate Rp/a is less than the value of the threshold Th0 (step S366, NO), the process returns to the loop of step S363 or step S361, and the three-dimensional visibility determination unit 42 determines other base station installation candidate positions and other representative positions. For the points, line-of-sight judgment is further performed based on the point cloud data.
 一方、達成率Rp/aが閾値Th0の値以上である場合(ステップS366・YES)、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が多いか否かを確認する(ステップS367)。 On the other hand, if the achievement rate Rp/a is equal to or greater than the threshold value Th0 (step S366: YES), the three-dimensional view determination unit 42 determines the percentage of representative points that are determined to have no view by the view determination based on the point cloud data. It is checked whether or not there are many (step S367).
 具体的には、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合であるRo/pの値が、Ro/p<Th1である(すなわち、見通しが無いと判定された代表点の割合が多い)か、Ro/p≧Th1である(すなわち、見通しが無いと判定された代表点の割合が少ない)か、を確認する。 Specifically, the three-dimensional outlook determination unit 42 determines that the value of Ro/p, which is the ratio of representative points determined to have no visibility in the outlook determination based on the point cloud data, is Ro/p<Th1 (that is, , the proportion of representative points determined to have no visibility is large) or Ro/p≧Th1 (that is, the proportion of representative points determined to have no visibility is small).
 点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が多い場合(ステップS367・YES。すなわち、Ro/p<Th1である場合)、現在評価対象としている基地局設置候補位置についての見通し判定処理を終了する。そして、出力部50は、他の基地局設置候補位置を評価対象として点群データに基づく見通し判定処理を行うようにユーザに対して促すための警告表示(アラート)を行う(ステップS370)。以上で、図35のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 If there is a large percentage of representative points that are judged to have no visibility in the visibility judgment based on the point cloud data (YES in step S367, that is, if Ro/p<Th1), the base station installation candidate position currently being evaluated. Terminates the visibility determination process for . Then, the output unit 50 performs a warning display (alert) for prompting the user to perform the visibility determination process based on the point cloud data with other base station installation candidate positions as evaluation targets (step S370). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 35 is completed.
 一方、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が少ない場合(ステップS367・NO。すなわち、Ro/p≧Th1である場合)、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値Th3以上であるか否かを判定する(ステップS368)。 On the other hand, when the percentage of representative points determined to have no visibility is small in the visibility determination based on the point cloud data (step S367, NO; that is, when Ro/p≧Th1), the map outlook determination unit 41 Determining whether or not a ratio of representative points for which line-of-sight determination based on point cloud data has been further performed among representative points determined to have line-of-sight by line-of-sight determination based on information is equal to or greater than a predetermined threshold value Th3. (Step S368).
 地図情報に基づく見通し判定が行われた代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値Th3未満である場合(ステップS368・NO)、ステップS363あるいはステップS361に戻り、3次元見通し判定部42は、他の基地局設置候補位置及び他の代表点について、さらに点群データに基づく見通し判定を行う。 If the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is less than the predetermined threshold Th3 (step S368, NO), step Returning to step S363 or step S361, the three-dimensional view determination unit 42 further performs view determination based on the point cloud data for other base station installation candidate positions and other representative points.
 一方、地図情報に基づく見通し判定が行われた代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値Th3以上である場合(ステップS368・YES)、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が多いか否かを確認する(ステップS369)。 On the other hand, when the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is equal to or greater than the predetermined threshold Th3 (step S368, YES). , the three-dimensional outlook determining unit 42 confirms whether or not there is a large proportion of representative points determined to have no visibility in the outlook determination based on the point cloud data (step S369).
 具体的には、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合であるRo/pの値が、Ro/p<Th2である(すなわち、見通しが無いと判定された代表点の割合が多い)か、Ro/p≧Th2である(すなわち、見通しが無いと判定された代表点の割合が少ない)か、を確認する。 Specifically, the three-dimensional outlook determination unit 42 determines that the value of Ro/p, which is the ratio of representative points determined to have no visibility in the outlook determination based on the point cloud data, is Ro/p<Th2 (that is, , the percentage of representative points determined to have no visibility is large) or Ro/p≧Th2 (that is, the percentage of representative points determined to have no visibility is small).
 点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が多い場合(ステップS369・YES。すなわち、Ro/p<Th2である場合)、現在評価対象としている基地局設置候補位置についての見通し判定処理を終了する。そして、出力部50は、他の基地局設置候補位置を評価対象として点群データに基づく見通し判定処理を行うようにユーザに対して促すための警告表示(アラート)を行う(ステップS370)。以上で、図35のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 If there is a large percentage of representative points that are judged to have no visibility in the visibility judgment based on the point cloud data (YES in step S369, that is, if Ro/p<Th2), the base station installation candidate position currently being evaluated. Terminates the visibility determination process for . Then, the output unit 50 performs a warning display (alert) for prompting the user to perform the visibility determination process based on the point cloud data with other base station installation candidate positions as evaluation targets (step S370). Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 35 is completed.
 一方、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が少ない場合(ステップS369・NO。すなわち、Ro/p≧Th2である場合)、地図見通し判定部41は、処理負担軽減優先の見通し判定処理を終了する。以上で、図35のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 On the other hand, if the percentage of representative points that are determined to have no visibility by the visibility determination based on the point cloud data is small (step S369: NO, that is, if Ro/p≧Th2), the map outlook determination unit 41 performs the process Terminates the line-of-sight determination process with burden reduction priority. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 35 is completed.
 上記のような構成を備えることにより、本実施形態における置局・エリア設計支援装置1は、広い通信可能エリアを確保できる見込みがない基地局設置候補位置を対象とした点群データに基づく見通し判定処理を、無駄に最後まで実行することなく、処理途中で中止させることができる。これにより、置局・エリア設計支援装置1は、広い通信可能エリアを確保できる見込みがある他の基地局設置候補位置を対象とした点群データに基づく見通し判定処理を、より早く開始することができる。 With the configuration as described above, the station placement/area design support device 1 according to the present embodiment performs outlook determination based on point cloud data targeting base station installation candidate positions that are unlikely to secure a wide communicable area. The process can be stopped in the middle of the process without being wastefully executed to the end. As a result, the station placement/area design support apparatus 1 can more quickly start the line-of-sight determination process based on the point cloud data targeting other base station installation candidate positions that are likely to secure a wide communicable area. can.
 とくに、本実施形態における置局・エリア設計支援装置1の上記の構成は、エリア最大化を図る置局・エリア設計を行う場合に適した構成であると考えられる。前述の第1の実施形態において図8等を参照しながら説明したように、エリア最大化を図る置局・エリア設計を行う場合には、地図情報に基づく見通し判定によって見通しが有ると判定された基地局の設置候補位置が1つのみである代表点が優先され、他の代表点より先に見通し判定が行われる。 In particular, the above configuration of the station placement/area design support device 1 in this embodiment is considered to be a configuration suitable for performing station placement/area design for maximizing the area. As described in the first embodiment with reference to FIG. 8, etc., when performing station placement/area design for maximizing the area, it is determined that there is a line of sight by the line of sight determination based on the map information. A representative point for which there is only one candidate installation position for a base station is given priority, and line-of-sight determination is performed before other representative points.
 見通しが有ると判定された基地局の設置候補位置が1つのみであるこれらの代表点が点群データに基づく見通し判定によって見通しが無いと判定された場合には、他の基地局設置候補位置との間においても見通しが有ると判定されることはない。そのため、早期に、当該基地局設置候補位置についての点群データに基づく見通し判定を切り上げて、他の基地局設置候補位置についての点群データに基づく見通し判定をやり直すことが賢明であると言える。 Only one base station installation candidate position determined to have line of sight If these representative points are determined to have no line of sight by line of sight determination based on point cloud data, other base station installation candidate positions It will not be determined that there is a line of sight between Therefore, it can be said that it is wise to quickly round up the line-of-sight judgment based on the point cloud data for the candidate base station installation position and redo the line-of-sight judgment based on the point cloud data for other candidate base station installation positions.
 したがって、置局・エリア設計支援装置1の上記の構成は、広い通信可能エリアを確保できる見込みがない基地局設置候補位置を対象とした点群データに基づく見通し判定処理を早期に見切りが付けられるため、前述の通り、エリア最大化を図る置局・エリア設計を行う場合において適していると考えられる。 Therefore, the above-described configuration of the station placement/area design support apparatus 1 makes it possible to quickly give up on the outlook determination process based on the point cloud data targeting base station installation candidate positions that are unlikely to secure a wide communicable area. Therefore, as described above, it is considered suitable for station placement and area design for maximizing the area.
<第4の実施形態>
 以下に説明する第4の実施形態における置局・エリア設計支援装置1は、前述の第3の実施形態における置局・エリア設計支援装置1の構成とは逆に、処理負担軽減優先の見通し判定処理の途中時点で、広い通信可能エリアを確保できる見込みがありそうな(すなわち、多くの代表点との間で見通しが有る)基地局節位候補位置を特定する。そして、置局・エリア設計支援装置1は、特定された基地局節位候補位置に対して、より早期に精度優先処理に切り替えて、点群データに基づく見通し判定処理を開始することができる。
<Fourth Embodiment>
The station placement/area design support device 1 in the fourth embodiment described below is the opposite of the configuration of the station placement/area design support device 1 in the third embodiment described above. In the middle of the process, base station node candidate positions that are likely to secure a wide communicable area (that is, have visibility with many representative points) are specified. Then, the station position/area design support apparatus 1 can switch to the accuracy-prioritized process earlier for the specified base station node position candidate position, and can start the line-of-sight determination process based on the point cloud data.
 以下、処理負担軽減優先の見通し判定処理の流れについて説明する。図36は、本発明の第4の実施形態における置局・エリア設計支援装置1の処理負担軽減優先の見通し判定における動作を示すフローチャートである。図36のフローチャートが示す置局・エリア設計支援装置1の動作は、基本的には前述の第1の実施形態における図2に示されるステップS16の動作を詳細化したものである。 The following describes the flow of outlook determination processing with priority given to reducing the processing load. FIG. 36 is a flow chart showing the operation of the station placement/area design support apparatus 1 according to the fourth embodiment of the present invention in view determination prioritizing processing load reduction. The operation of the station placement/area design support apparatus 1 shown in the flowchart of FIG. 36 is basically a detailed version of the operation of step S16 shown in FIG. 2 in the first embodiment.
 図36に示されるフローチャートのステップS461~ステップS465の処理は、前述の図20に示されるフローチャートのS161~ステップS165の処理と同様であるため、説明を省略する。 The processing of steps S461 to S465 of the flowchart shown in FIG. 36 is the same as the processing of steps S161 to S165 of the flowchart shown in FIG.
 3次元見通し判定部42は、ステップS465において判定可否リスト304を更新し、点群データに基づく見通し判定の判定結果を記録した基地局設置候補位置と代表点との組み合わせを地図情報に基づく見通し判定によって見通しが有ると判定された組み合わせのリストから削除した後、達成率Rp/aを算出する(ステップS466)。 The three-dimensional outlook determination unit 42 updates the determination availability list 304 in step S465, and performs outlook determination based on the map information on the combination of the base station installation candidate position and the representative point recorded in the determination result of the visibility determination based on the point cloud data. After deleting from the list of combinations determined to have prospects by , the achievement rate Rp/a is calculated (step S466).
 達成率Rp/aが閾値Th0の値に満たない場合(ステップS466・NO)、ステップS463あるいはステップS461に戻り、3次元見通し判定部42は、他の基地局設置候補位置及び他の代表点について、さらに点群データに基づく見通し判定を行う。 If the achievement rate Rp/a is less than the value of the threshold Th0 (step S466, NO), the process returns to step S463 or step S461, and the three-dimensional outlook determination unit 42 determines other base station installation candidate positions and other representative points. , and further determine the line of sight based on the point cloud data.
 一方、達成率Rp/aが閾値Th0の値以上である場合(ステップS466・YES)、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が多いか否かを確認する(ステップS467)。 On the other hand, if the achievement rate Rp/a is equal to or greater than the threshold value Th0 (step S466: YES), the three-dimensional view determination unit 42 determines the percentage of representative points determined to have no view by the view determination based on the point cloud data. It is checked whether or not there are many (step S467).
 具体的には、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが有ると判定された代表点の割合であるRo/pの値が、Ro/p<Th1’である(すなわち、見通しが有ると判定された代表点の割合が少ない)か、Ro/p≧Th1’である(すなわち、見通しが有ると判定された代表点の割合が多い)か、を確認する。 Specifically, the three-dimensional outlook determination unit 42 determines that the value of Ro/p, which is the ratio of the representative points determined to have visibility by the outlook determination based on the point cloud data, is Ro/p<Th1' ( That is, it is confirmed whether the proportion of representative points determined to have visibility is small) or whether Ro/p≧Th1′ (that is, the proportion of representative points determined to have visibility is high).
 点群データに基づく見通し判定によって見通しが有ると判定された代表点の割合が多い場合(ステップS467・YES。すなわち、Ro/p≧Th1’である場合)、精度優先の見通し判定処理に切り替える。以上で、図36のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 If there is a large percentage of representative points that have been determined to have a line of sight by the line of sight determination based on the point cloud data (step S467, YES; that is, if Ro/p≧Th1'), switch to precision-prioritized line of sight determination processing. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 36 is completed.
 一方、点群データに基づく見通し判定によって見通しが有ると判定された代表点の割合が少ない場合(ステップS467・NO。すなわち、Ro/p<Th1’である場合)、地図見通し判定部41は、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値Th3以上であるか否かを判定する(ステップS468)。 On the other hand, when the percentage of representative points determined to have visibility in the visibility determination based on the point cloud data is small (step S467, NO; that is, when Ro/p<Th1′), the map visibility determination unit 41 Determining whether or not the proportion of representative points for which outlook determination based on point cloud data has been further performed out of the representative points determined to have visibility by visibility determination based on map information is equal to or greater than a predetermined threshold value Th3. (step S468).
 地図情報に基づく見通し判定が行われた代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値Th3未満である場合(ステップS468・NO)、ステップS463あるいはステップS461に戻り、3次元見通し判定部42は、他の基地局設置候補位置及び他の代表点について、さらに点群データに基づく見通し判定を行う。 If the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is less than the predetermined threshold Th3 (step S468, NO), step Returning to step S463 or step S461, the three-dimensional view determination unit 42 further performs view determination based on the point cloud data for other base station installation candidate positions and other representative points.
 一方、地図情報に基づく見通し判定が行われた代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値Th3以上である場合(ステップS468・YES)、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが有ると判定された代表点の割合が多いか否かを確認する(ステップS469)。 On the other hand, when the ratio of the representative points for which the outlook determination based on the point cloud data is further performed among the representative points for which the outlook determination is performed based on the map information is equal to or greater than the predetermined threshold Th3 (step S468, YES). , the three-dimensional view determination unit 42 checks whether or not there is a large percentage of representative points determined to have a view by the view determination based on the point cloud data (step S469).
 具体的には、3次元見通し判定部42は、点群データに基づく見通し判定によって見通しが有ると判定された代表点の割合であるRo/pの値が、Ro/p≧Th2’である(すなわち、見通しが有ると判定された代表点の割合が多い)か、Ro/p<Th2’である(すなわち、見通しが有ると判定された代表点の割合が少ない)か、を確認する。 Specifically, the three-dimensional outlook determining unit 42 determines that the value of Ro/p, which is the ratio of representative points determined to have visibility by the outlook determination based on the point cloud data, is Ro/p≧Th2′ ( That is, it is confirmed whether the proportion of representative points determined to have visibility is large) or whether Ro/p<Th2' (that is, the proportion of representative points determined to have visibility is small).
 点群データに基づく見通し判定によって見通しが有ると判定された代表点の割合が多い場合(ステップS469・YES。すなわち、Ro/p<Th2’である場合)、精度優先の見通し判定処理に切り替える。以上で、図36のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 If there is a large percentage of representative points that have been determined to have a line of sight by the line of sight determination based on the point cloud data (YES in step S469, that is, if Ro/p<Th2'), the process is switched to the line of sight determination process with priority given to accuracy. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 36 is completed.
 一方、点群データに基づく見通し判定によって見通しが無いと判定された代表点の割合が少ない場合(ステップS369・NO。すなわち、Ro/p≧Th2’である場合)、地図見通し判定部41は、処理負担軽減優先の見通し判定処理を終了する。以上で、図36のフローチャートが示す置局・エリア設計支援装置1の動作が終了する。 On the other hand, when the ratio of representative points determined to have no visibility by the visibility determination based on the point cloud data is small (NO in step S369, that is, when Ro/p≧Th2′), the map outlook determination unit 41 Terminates the line-of-sight determination process with processing load reduction priority. Thus, the operation of the station placement/area design support device 1 shown in the flowchart of FIG. 36 is completed.
 図36に示されるフローチャートにおいて、Th0,Th1’,Th2’,及びTh3の4つ閾値が用いられている。ここで、見通し判定処理を実施したか否かに関する閾値であるTh0及びTh3については、前述の第3の実施形態の図35に示されるフローチャートと同じ閾値が用いられている。一方、各代表点に対する見通し判定処理の結果に関係する閾値であるTh1’及びTh2’については、前述の第3の実施形態の図35に示されるフローチャートとは異なる閾値が用いられている。但し、本実施形態における置局・エリア設計支援装置1が用いられる状況によっては、前述の第3の実施形態の図35に示されるフローチャートとは異なる閾値が用いられても構わない。 In the flowchart shown in FIG. 36, four thresholds Th0, Th1', Th2', and Th3 are used. Here, for Th0 and Th3, which are thresholds relating to whether or not the visibility determination process has been performed, the same thresholds as in the flowchart shown in FIG. 35 of the above-described third embodiment are used. On the other hand, for Th1' and Th2', which are thresholds related to the results of the outlook determination process for each representative point, thresholds different from those in the flowchart shown in FIG. 35 of the third embodiment are used. However, depending on the situation in which the station placement/area design support apparatus 1 of the present embodiment is used, thresholds different from those of the flowchart shown in FIG. 35 of the third embodiment may be used.
 以上のような構成を備えることにより、本実施形態における置局・エリア設計支援装置1は、点群データに基づく見通し判定処理の途中時点において、広い通信可能エリアを確保できる見込みがある基地局設置候補位置であるか否かを見極める。そして、置局・エリア設計支援装置1は、広い通信可能エリアを確保できる見込みがある基地局設置候補位置に対する点群データに基づく見通し判定処理を、処理負担軽減優先モードから精度優先モードへより早期に切り替えることができる。 With the configuration as described above, the station placement/area design support device 1 of the present embodiment is capable of setting a base station that is likely to secure a wide communicable area during the line-of-sight determination process based on the point cloud data. Determine whether or not it is a candidate position. Then, the station placement/area design support apparatus 1 shifts the outlook determination process based on the point cloud data for base station installation candidate positions that are likely to secure a wide communicable area from the processing load reduction priority mode to the accuracy priority mode more quickly. can be switched to
<第5の実施形態>
 前述の図3に示される評価対象エリア内において、例えば基地局設置候補位置Aから見て、(5),(8),(9)及び(13)の符号がそれぞれ付された代表点の位置は、およそ同一の方向に存在する。そのため、もし、これらの代表点のうち基地局設置候補位置Aから最も遠い(13)の符号がそれぞれ付された代表点と基地局設置候補位置Aとの間について点群データに基づく見通し判定の結果が「見通し有り」であるならば、(5),(8)及び(9)の符号がそれぞれ付された代表点と基地局設置候補位置Aとの間についても点群データに基づく見通し判定の結果が「見通し有り」であると推定される。なぜならば、(5),(8)及び(9)の符号がそれぞれ付された代表点は、基地局設置候補位置Aと(13)の符号がそれぞれ付された代表点との間に存在するためである。
<Fifth Embodiment>
In the evaluation target area shown in FIG. 3 described above, for example, when viewed from the base station installation candidate position A, the positions of the representative points respectively labeled with (5), (8), (9) and (13) are approximately in the same direction. Therefore, if, among these representative points, the representative point furthest from the base station installation candidate position A and the base station installation candidate position A, which is the farthest from the base station installation candidate position A, the line of sight judgment based on the point cloud data is performed. If the result is "with line of sight", line of sight determination based on the point cloud data also between the representative points marked with (5), (8) and (9) and the base station installation candidate position A. is presumed to be "with line of sight". This is because the representative points denoted by (5), (8) and (9) exist between the base station installation candidate position A and the representative points denoted by (13). It's for.
 本実施形態における置局・エリア設計支援装置1は、基地局設置候補位置から同じ方向に存在する複数の代表点について、点群データに基づく見通し判定処理を一部省略することによって、より処理負担軽減を図る置局・エリア設計を行うことができる。 The station placement/area design support device 1 in the present embodiment reduces the processing load by partially omitting the outlook determination processing based on the point cloud data for a plurality of representative points existing in the same direction from the base station installation candidate position. It is possible to design stations and areas for mitigation.
 図37及び図38は、本発明の第5の実施形態における置局・エリア設計を説明するための図である。図37は、図3に示される評価対象エリアが、2次元平面上において更に細かく(縦横それぞれ半分の長さの網目に)区切られた様子を表している。例えば、(1)の符号が付された代表点を有する網目は、(1)-1,(1)-2,(1)-3及び(1)-4の符号が付された代表点をそれぞれ有する4つの網目に区切られている。  FIGS. 37 and 38 are diagrams for explaining station placement/area design in the fifth embodiment of the present invention. FIG. 37 shows a state in which the evaluation target area shown in FIG. 3 is divided into finer meshes (half the length and width each) on a two-dimensional plane. For example, a mesh having keypoints labeled (1) will have keypoints labeled (1)-1, (1)-2, (1)-3 and (1)-4. It is partitioned into four meshes each having.
 なお、前述の第2の実施形態と同様に、本実施形態においても回転楕円体のフレネルゾーンの形状を円筒形と見なして考える。 As in the second embodiment described above, also in this embodiment, the shape of the Fresnel zone of the spheroid is regarded as a cylinder.
 また、図38は、図37における基地局設置候補位置Aから(地図情報に基づく見通し判定によって)見通しが有ると判定された範囲を、斜め情報から見た様子を表したものである。 Also, FIG. 38 shows a view of the range determined to have a line of sight from the base station installation candidate position A in FIG.
 図38には、基地局設置候補位置Aに設置された基地局Aが示されており、基地局設置候補位置Aは、(5)-1の符号が付された代表点を有する網目の中に位置している。例えば、基地局Aから見て、(1)-4,(1)-3,(2)-4,(4)-1及び(4)-2の符号がそれぞれ付された代表点を有する網目は、およそ同じ方向に存在している。 FIG. 38 shows a base station A installed at a base station installation candidate position A, and the base station installation candidate position A is located in a mesh having representative points labeled (5)-1. located in For example, when viewed from base station A, a mesh having representative points labeled (1)-4, (1)-3, (2)-4, (4)-1 and (4)-2, respectively. are approximately in the same direction.
 本実施形態における置局・エリア設計支援装置1は、このように、ある基地局設置候補位置から見て同じ方向に代表点が複数存在する場合、まず、最も遠い代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行う。図38に例示される評価対象エリアにおいては、置局・エリア設計支援装置1は、まず基地局設置候補位置Aと(1)-4の符号が付された代表点との間について点群データに基づく見通し判定処理を行う。 In this way, when there are a plurality of representative points in the same direction as seen from a given base station installation candidate position, the station placement/area design support apparatus 1 in this embodiment first Performs line of sight determination processing based on point cloud data between In the evaluation target area exemplified in FIG. 38, the station placement/area design support device 1 first creates point cloud data between the base station installation candidate position A and the representative point labeled (1)-4. Based on the line of sight judgment processing is performed.
 基地局設置候補位置Aと(1)-4の符号が付された代表点との間について点群データに基づく見通し判定処理の結果が「見通し有り」であるならば、置局・エリア設計支援装置1は、(1)-3,(2)-4,(4)-1及び(4)-2の符号がそれぞれ付された代表点と基地局設置候補位置Aとの間については点群データに基づく見通し判定処理を行わずに「見通し有り」であると判定する。なぜならば、(1)-3,(2)-4,(4)-1及び(4)-2の符号がそれぞれ付された代表点は、基地局設置候補位置Aから見て(1)-4の符号が付された代表点と同じ方向に存在する代表点であり、かつ、(1)-4の符号が付された代表点より手前側に存在する代表点であるからである。 If the result of line-of-sight determination processing based on point cloud data between base station installation candidate position A and the representative point labeled (1)-4 is "line-of-sight available", station placement/area design support The device 1 has a point group between the representative points respectively denoted by (1)-3, (2)-4, (4)-1 and (4)-2 and the base station installation candidate position A. It is determined that there is a "line of sight" without performing the line of sight determination process based on the data. This is because the representative points labeled (1)-3, (2)-4, (4)-1 and (4)-2 are (1)- This is because the representative point exists in the same direction as the representative point denoted by the code 4 and is present on the front side of the representative point denoted by the code (1)-4.
 一方、基地局設置候補位置Aと最も遠い代表点(すなわち、(1)-4の符号が付された代表点)との間について点群データに基づく見通し判定処理の結果が「見通し無し」であるならば、置局・エリア設計支援装置1は、次に、最も近い代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行う。図38に例示される評価対象エリアにおいては、置局・エリア設計支援装置1は、次に、(4)-2が付された代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行う。 On the other hand, the result of the line-of-sight determination process based on the point cloud data between the base station installation candidate position A and the farthest representative point (that is, the representative point with the code (1)-4) is "no line-of-sight". If there is, the station placement/area design support device 1 next performs outlook determination processing based on the point cloud data between the closest representative point and the base station installation candidate position. In the evaluation target area exemplified in FIG. 38, the station placement/area design support device 1 then divides the point cloud data between the representative points marked with (4)-2 and the base station installation candidate positions. Based on the line of sight judgment processing is performed.
 基地局設置候補位置Aと(4)-2の符号が付された代表点との間について点群データに基づく見通し判定処理の結果が「見通し無し」であるならば、置局・エリア設計支援装置1は、(1)-3,(2)-4及び(4)-1の符号がそれぞれ付された代表点と基地局設置候補位置Aとの間については点群データに基づく見通し判定処理を行わずに「見通し無し」であると判定する。 If the result of line-of-sight determination processing based on point cloud data is "no line-of-sight" between the base station installation candidate position A and the representative point labeled (4)-2, station placement/area design support Apparatus 1 carries out line-of-sight determination processing based on point cloud data between the representative points respectively labeled with (1)-3, (2)-4 and (4)-1 and base station installation candidate position A. It is determined to be "no line of sight" without performing
 一方、基地局設置候補位置Aと(4)-2の符号が付された代表点との間について点群データに基づく見通し判定処理の結果が「見通し有り」であるならば、置局・エリア設計支援装置1は、次に、中間地点の代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行う。図38に例示される評価対象エリアにおいては、置局・エリア設計支援装置1は、次に、(2)-4が付された代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行う。 On the other hand, if the result of the line-of-sight determination process based on the point cloud data between the base station installation candidate position A and the representative point labeled with (4)-2 is "with line-of-sight", the station location/area Next, the design support device 1 performs a line-of-sight determination process based on the point cloud data between the representative points of the waypoints and the base station installation candidate positions. In the evaluation target area exemplified in FIG. 38, the station placement/area design support device 1 then divides the point cloud data between the representative points marked with (2)-4 and the base station installation candidate positions. Based on the line of sight judgment processing is performed.
 基地局設置候補位置Aと(2)-4の符号が付された代表点との間について点群データに基づく見通し判定処理の結果が「見通し有り」であるならば、置局・エリア設計支援装置1は、(4)-1の符号が付された代表点と基地局設置候補位置Aとの間については点群データに基づく見通し判定処理を行わずに「見通し有り」であると判定する。また、置局・エリア設計支援装置1は、(1)-3の符号が付された代表点と基地局設置候補位置Aとの間について点群データに基づく見通し判定処理を行う。 If the result of line-of-sight judgment processing based on point cloud data between base station installation candidate position A and the representative point labeled (2)-4 is "with line-of-sight", station placement/area design support The device 1 determines that there is a "line of sight" between the representative point marked with (4)-1 and the base station installation candidate position A without performing the line of sight determination processing based on the point cloud data. . In addition, the station placement/area design support device 1 performs line-of-sight determination processing based on the point cloud data between the representative point marked with (1)-3 and the base station installation candidate position A. FIG.
 一方、基地局設置候補位置Aと(2)-4の符号が付された代表点との間について点群データに基づく見通し判定処理の結果が「見通し無し」であるならば、置局・エリア設計支援装置1は、(1)-3の符号が付された代表点と基地局設置候補位置Aとの間については点群データに基づく見通し判定処理を行わずに「見通し無し」であると判定する。また、置局・エリア設計支援装置1は、(4)-1の符号が付された代表点と基地局設置候補位置Aとの間について点群データに基づく見通し判定処理を行う。 On the other hand, if the result of the line-of-sight determination processing based on the point cloud data between the base station installation candidate position A and the representative point labeled with (2)-4 is "no line-of-sight", then the station location/area The design support device 1 determines that there is "no line of sight" between the representative point marked with (1)-3 and the base station installation candidate position A without performing the line of sight determination processing based on the point cloud data. judge. In addition, the station placement/area design support device 1 performs line-of-sight determination processing based on the point cloud data between the representative point marked with (4)-1 and the base station installation candidate position A. FIG.
 このように、本実施形態における置局・エリア設計支援装置1は、ある基地局設置候補位置から見て同一の方向に存在する複数の代表点について、二分探索しながら、基地局設置候補位置との間で見通しが有る代表点と見通しが無い代表点との境目となる位置を特定する。そして、本実施形態における置局・エリア設計支援装置1は、上記の探索において点群データに基づく見通し判定が行われなかった代表点については、他の代表点についての判定結果に基づいて、「見通し有り」又は「見通し無し」と判定する。 In this way, the station placement/area design support apparatus 1 in this embodiment performs a binary search for a plurality of representative points existing in the same direction as viewed from a given base station installation candidate position, and A boundary position between a representative point with a line of sight and a representative point without a line of sight is specified. Then, the station placement/area design support device 1 according to the present embodiment, for the representative points for which the line-of-sight determination based on the point cloud data was not performed in the above-described search, based on the determination results for the other representative points, " It is judged as "with line of sight" or "without line of sight".
 なお、本実施形態において、置局・エリア設計支援装置1は、ある基地局設置候補位置から見て同じ方向に代表点が複数存在する場合、まず、最も遠い代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行うことで二分探索を開始し、基地局設置候補位置との間で見通しが有る代表点と見通しが無い代表点との境目となる位置を特定する構成であった。但しこの構成に限られるものではなく、例えば、置局・エリア設計支援装置1は、まず、最も近い代表点と基地局設置候補位置との間で点群データに基づく見通し判定処理を行うことで二分探索を開始する構成であってもよい。 In this embodiment, when there are a plurality of representative points in the same direction as viewed from a certain base station installation candidate position, the station placement/area design support apparatus 1 first determines the distance between the farthest representative point and the base station installation candidate position. Binary search is started by performing line-of-sight judgment processing based on the point cloud data between the base station installation candidate positions, and the boundary position between representative points with line-of-sight and no line-of-sight with the base station installation candidate positions is specified. was the configuration. However, the configuration is not limited to this. It may be configured to start a binary search.
 すなわち、例えば図38に示される評価対象エリアにおいて、置局・エリア設計支援装置1は、まず,基地局設置候補位置Aと(4)-2の符号が付された代表点との間について点群データに基づく見通し判定処理を行う。そして、見通し判定の結果が「見通し無し」であるならば、置局・エリア設計支援装置1は、(1)-4,(1)-3,(2)-4及び(4)-1の符号がそれぞれ付された代表点と基地局設置候補位置Aとの間については点群データに基づく見通し判定処理を行わずに「見通し無し」であると判定する。なぜならば、同一の方向に存在する複数の代表点のうち最も近い代表点について見通しが無いならば、この最も近い代表点の先の延長線上に存在する各代表点についても見通しが無い可能性が高いことが予測されるからである。 That is, for example, in the evaluation target area shown in FIG. 38, the station placement/area design support device 1 first points the points between the base station installation candidate position A and the representative point labeled (4)-2. The line of sight determination process is performed based on the group data. Then, if the result of the line-of-sight determination is "no line-of-sight", the station placement/area design support device 1 performs (1)-4, (1)-3, (2)-4 and (4)-1. It is determined that there is "no line of sight" between the respectively assigned representative points and the base station installation candidate position A without performing the line of sight determination processing based on the point cloud data. This is because if there is no line of sight for the nearest representative point among a plurality of representative points existing in the same direction, there is a possibility that there is no line of sight for each of the representative points existing on the extension of the nearest representative point. This is because it is expected to be high.
 このような構成を備えることで、本実施形態における置局・エリア設計支援装置1は、点群データに基づく見通し判定処理を一部省略することで、より処理負担の軽減を図ることができる。 With such a configuration, the station placement/area design support device 1 according to the present embodiment can further reduce the processing load by partially omitting the outlook determination processing based on the point cloud data.
 なお、上記の各実施形態において、基地局と端末局とが行う無線通信として、ミリ波無線を一例として示していたが、ミリ波無線通信以外の地上波デジタル通信、衛星電波による通信、UHF(Ultra High Frequency)を用いた通信であってもよい。 In each of the above embodiments, millimeter wave radio was used as an example of wireless communication between the base station and the terminal station. Ultra High Frequency) may also be used.
 上述した実施形態によれば、置局設計支援装置は、取得部と、第1推定部と、決定部と、第2推定部と、終了制御部とを備える。例えば、置局設計支援装置は、実施形態における置局・エリア設計支援装置1であり、取得部は、実施形態における基地局候補位置選択部202及びエリア分割部14であり、第1推定部及び決定部は、実施形態における地図見通し判定部41であり、第2推定部及び終了制御部は、実施形態における3次元見通し判定部42である。 According to the above-described embodiment, the station placement design support device includes the acquisition section, the first estimation section, the determination section, the second estimation section, and the end control section. For example, the station placement design support device is the station placement/area design support device 1 in the embodiment, the acquisition unit is the base station candidate position selection unit 202 and the area division unit 14 in the embodiment, the first estimation unit and The determination unit is the map outlook determination unit 41 in the embodiment, and the second estimation unit and the end control unit are the three-dimensional outlook determination unit 42 in the embodiment.
 取得部は、対象エリアにおける無線基地局の候補位置と、網目状に区切られた対象エリアの各網目において移動局が存在しうる位置を代表する代表点とを取得する。例えば、対象エリアは、実施形態における評価対象エリアであり、無線基地局は、実施形態における基地局であり、移動局は、実施形態における端末局である。 The acquisition unit acquires the candidate positions of the radio base stations in the target area and the representative points representing the possible positions of the mobile station in each mesh of the target area divided into meshes. For example, the target area is the evaluation target area in the embodiment, the radio base station is the base station in the embodiment, and the mobile station is the terminal station in the embodiment.
 第1推定部は、無線基地局の候補位置と代表点の各々との間の通信可否を、対象エリアに存在する物体の位置を示す第1情報に基づいて推定する。例えば、候補位置は、実施形態における基地局設置候補位置であり、物体の位置は、実施形態における地図内の建造物等の遮蔽物(の例えば外郭)であり、第1情報は、実施形態における地図・エリア情報302である。 The first estimation unit estimates whether communication between the candidate position of the radio base station and each of the representative points is possible based on first information indicating the position of an object existing in the target area. For example, the candidate position is a base station installation candidate position in the embodiment, the position of the object is a shielding object such as a building in the map in the embodiment (for example, the outer shell), and the first information is the This is map/area information 302 .
 決定部は、第1推定部によって通信可能と推定された無線基地局の候補位置と代表点との組み合わせのうち、第1情報より情報量の多い第2情報に基づく通信可否の推定処理をさらに行う組み合わせを決定する。例えば、第2情報量は、実施形態における点群データであり、通信可否の推定処理は、実施形態における点群データに基づく見通し判定処理である。 The determination unit further performs a process of estimating whether or not communication is possible based on second information, which has a larger amount of information than the first information, among the combinations of the candidate positions of the wireless base stations estimated to be communicable by the first estimation unit and the representative points. Decide which combination to do. For example, the second amount of information is the point cloud data in the embodiment, and the process of estimating whether or not communication is possible is the outlook determination process based on the point cloud data in the embodiment.
 第2推定部は、決定部によって決定された組み合わせである無線基地局の候補位置と代表点の各々との間の通信可否を、第2情報に基づいて推定する。 The second estimation unit estimates, based on the second information, whether or not communication is possible between the candidate positions of the radio base stations that are the combinations determined by the determination unit and each of the representative points.
 終了制御部は、指定された置局設計方法ごとに定められたルールに従って、第2推定部による推定処理を終了させる。例えば、置局設計方法は、実施形態における処理負担軽減モード及び精度優先モード等の処理モードであり、置局設計方法ごとに定められたルールとは、実施形態における、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定がさらに行われた代表点の割合が予め定められた閾値以上である場合に地図見通し判定部41が処理負担軽減優先の見通し判定処理を終了するというルール(例えば、図20に示されるフローチャートのステップS166における判定ルール)、及び、地図情報に基づく見通し判定によって見通しが有ると判定された代表点のうち、点群データに基づく見通し判定によっても同様に見通しが有るとが判定された代表点の割合が予め定められた閾値以上である場合に地図見通し判定部41が精度優先の見通し判定処理を終了するというルール(例えば、図21に示されるフローチャートのステップS177における判定ルール)である。 The termination control unit terminates the estimation processing by the second estimation unit according to the rules defined for each designated station placement design method. For example, the station placement design method is a processing mode such as a processing load reduction mode and an accuracy priority mode in the embodiment. When the ratio of representative points for which outlook determination based on point cloud data has been further performed among representative points determined to have visibility is equal to or greater than a predetermined threshold value, the map outlook determination unit 41 selects processing load reduction priority. A rule to end the outlook determination process (for example, the determination rule in step S166 of the flowchart shown in FIG. 20), and among the representative points determined to have visibility by the outlook determination based on the map information, the point cloud data A rule (for example, 21).
 なお、終了制御部は、決定部によって決定された組み合わせのうち、第2推定ステップによって通信可否が推定された組み合わせの割合が所定の割合に達した場合に、推定処理を終了させるようにしてもよい。例えば、所定の割合は、実施形態における閾値Th3に相当する割合である。 Note that the termination control unit may terminate the estimation process when the ratio of combinations for which communication availability is estimated in the second estimation step among the combinations determined by the determination unit reaches a predetermined ratio. good. For example, the predetermined ratio is a ratio corresponding to threshold Th3 in the embodiment.
 なお、終了制御部は、決定部によって決定された組み合わせのうち、第2推定ステップによって通信可能であると推定された組み合わせの割合が所定の割合に達した場合に、推定処理を終了させるようにしてもよい。 Note that the termination control unit terminates the estimation process when the ratio of the combinations determined to be communicable by the second estimation step reaches a predetermined ratio among the combinations determined by the determination unit. may
 なお、第2推定部は、無線基地局の候補位置と代表点の各々との間に形成されるフレネルゾーンを近似する円筒形の空間に含まれる第2情報の量に基づいて通信可否を推定するようにしてもよい。例えば、フレネルゾーンは、実施形態におけるフレネルゾーンfzであり、円筒形の空間は、実施形態における円筒形フレネルゾーンCzである。 The second estimation unit estimates whether or not communication is possible based on the amount of second information contained in a cylindrical space that approximates a Fresnel zone formed between the candidate position of the radio base station and each of the representative points. You may make it For example, the Fresnel zone is the Fresnel zone fz in the embodiment, and the cylindrical space is the cylindrical Fresnel zone Cz in the embodiment.
 なお、第2推定部による推定処理が行われている途中で、第2推定部によって通信可否が推定された組み合わせのうち、第2推定部によって通信不可能であると推定された組み合わせの割合が所定の割合に達した場合に、警告を示す情報を出力するようにしてもよい。例えば、所定の割合は、実施形態における閾値Th1に相当する割合及び閾値Th2に相当する割合であり、警告を示す情報は、実施形態における警告表示(アラート)である。 In addition, while the estimation processing by the second estimation unit is being performed, the ratio of combinations estimated to be communication impossible by the second estimation unit out of the combinations for which communication is estimated by the second estimation unit is Information indicating a warning may be output when a predetermined ratio is reached. For example, the predetermined ratios are the ratio corresponding to the threshold Th1 and the ratio corresponding to the threshold Th2 in the embodiment, and the information indicating the warning is the warning display (alert) in the embodiment.
 なお、第2推定部は、推定処理を行っている途中において、通信可否の推定を行った組み合わせのうち、通信可能であると推定された組み合わせの割合が所定の割合に達した場合に、より推定精度の高い推定方法に切り替えて、以降の推定処理を行ってもよい。例えば、所定の割合は、実施形態における閾値Th1’に相当する割合及び閾値Th2’に相当する割合であり、より推定精度の高い推定方法は、実施形態における精度優先モードでの見通し判定である。 Note that, during the estimation process, the second estimating unit, when the ratio of the combination estimated to be communicable among the combinations for which communication availability is estimated reaches a predetermined ratio, Subsequent estimation processing may be performed by switching to an estimation method with high estimation accuracy. For example, the predetermined ratio is a ratio corresponding to the threshold Th1' and a ratio corresponding to the threshold Th2' in the embodiment, and an estimation method with higher estimation accuracy is the outlook determination in the accuracy priority mode in the embodiment.
 なお、第2推定部は、無線基地局の候補位置から同一の方向に複数の代表点が存在し、無線基地局の候補位置と、代表点のうち無線基地局の候補位置から最も遠い位置に存在する代表点と、の間が通信可能であると推定された場合には、同一の方向に存在する他の代表点と無線基地局の候補位置との間についても通信可能であると推定するようにしてもよい。 Note that the second estimating unit determines that a plurality of representative points exist in the same direction from the candidate position of the radio base station, and that the candidate position of the radio base station and the position furthest from the candidate position of the radio base station among the representative points If it is estimated that communication is possible between existing representative points, it is estimated that communication is also possible between other representative points existing in the same direction and candidate positions of radio base stations. You may do so.
 なお、第1情報は、2次元の地図を示す地図情報であってもよく、第2情報は地図内に存在する物体の表面の位置を示す3次元の点群データであってもよい。 The first information may be map information indicating a two-dimensional map, and the second information may be three-dimensional point cloud data indicating the position of the surface of an object existing in the map.
 上述した各実施形態における置局・エリア設計支援装置1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The station placement/area design support device 1 in each of the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
1…置局・エリア設計支援装置、11…設備情報取得部、12…基地局設置候補位置抽出部、13…地図情報取得部、14…エリア分割部、15…点群データ取得部、16…データ整合部、20…操作入力部、21…評価エリア選択部、30…記憶部、41…地図見通し判定部、42…3次元見通し判定部、43…3次元判定可否評価部、50…出力部、201…評価エリア選択部、202…基地局候補位置選択部、203…設計方法指定部、204…処理モード指定部、301…基地局設置候補位置情報、302…地図・エリア情報、303…点群データ、304…判定可否リスト、305…置局・エリア設計結果情報 REFERENCE SIGNS LIST 1 station placement/area design support device 11 facility information acquisition unit 12 base station installation candidate position extraction unit 13 map information acquisition unit 14 area division unit 15 point cloud data acquisition unit 16 Data matching unit 20 Operation input unit 21 Evaluation area selection unit 30 Storage unit 41 Map view determination unit 42 Three-dimensional view determination unit 43 Three-dimensional determination evaluation unit 50 Output unit 201 Evaluation area selection unit 202 Base station candidate position selection unit 203 Design method designation unit 204 Processing mode designation unit 301 Base station installation candidate position information 302 Map/area information 303 Points Group data, 304... Judgment availability list, 305... Station placement/area design result information

Claims (8)

  1.  対象エリアにおける無線基地局の候補位置と、網目状に区切られた前記対象エリアの各網目において移動局が存在しうる位置を代表する代表点と、を取得する取得ステップと、
     前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記対象エリアに存在する物体の位置を示す第1情報に基づいて推定する第1推定ステップと、
     前記第1推定ステップによって通信可能と推定された前記無線基地局の候補位置と前記代表点との組み合わせのうち、前記第1情報より情報量の多い第2情報に基づく通信可否の推定処理をさらに行う前記組み合わせを決定する決定ステップと、
     前記決定ステップによって決定された前記組み合わせである前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記第2情報に基づいて推定する第2推定ステップと、
     指定された置局設計方法ごとに定められたルールに従って、前記第2推定ステップによる推定処理を終了させる終了ステップと、
     を有する置局設計支援方法。
    an acquisition step of acquiring candidate positions of a radio base station in a target area and representative points representing possible positions of a mobile station in each mesh of the target area divided into meshes;
    a first estimation step of estimating whether or not communication between the candidate position of the radio base station and each of the representative points is possible based on first information indicating the position of an object existing in the target area;
    further estimating communication feasibility based on second information having a larger amount of information than the first information among the combinations of the candidate positions of the radio base stations estimated to be communicable in the first estimation step and the representative points; a decision step of deciding which combination to make;
    a second estimation step of estimating, based on the second information, availability of communication between the candidate position of the radio base station that is the combination determined by the determination step and each of the representative points;
    a termination step of terminating the estimation process by the second estimation step according to a rule defined for each designated station placement design method;
    station placement design support method.
  2.  前記終了ステップは、前記決定ステップによって決定された前記組み合わせのうち、前記第2推定ステップによって前記通信可否が推定された組み合わせの割合が所定の割合に達した場合に、前記推定処理を終了させる
     請求項1に記載の置局設計支援方法。
    The termination step terminates the estimation process when a ratio of the combinations for which the communication availability is estimated by the second estimation step reaches a predetermined ratio among the combinations determined by the determination step. Item 1. The station placement design support method according to Item 1.
  3.  前記終了ステップは、前記決定ステップによって決定された前記組み合わせのうち、前記第2推定ステップによって通信可能であると推定された組み合わせの割合が所定の割合に達した場合に、前記推定処理を終了させる
     請求項1に記載の置局設計支援方法。
    The termination step terminates the estimation process when a ratio of combinations estimated to be communicable by the second estimation step reaches a predetermined ratio among the combinations determined by the determination step. The station placement design support method according to claim 1.
  4.  前記第2推定ステップは、前記無線基地局の候補位置と前記代表点の各々との間に形成されるフレネルゾーンを近似する円筒形の空間に含まれる前記第2情報の量に基づいて前記通信可否を推定する
     請求項1から3のうちいずれか一項に記載の置局設計支援方法。
    The second estimation step performs the communication based on the amount of the second information contained in a cylindrical space that approximates a Fresnel zone formed between the candidate position of the radio base station and each of the representative points. The station placement design support method according to any one of claims 1 to 3, further comprising: estimating availability.
  5.  前記第2推定ステップによる前記推定処理が行われている途中で、前記第2推定ステップによって前記通信可否が推定された組み合わせのうち、前記第2推定ステップによって通信不可能であると推定された組み合わせの割合が所定の割合に達した場合に、警告を示す情報を出力する
     請求項1から4のうちいずれか一項に記載の置局設計支援方法。
    During the course of the estimation processing by the second estimation step, among the combinations estimated to be communication-possible by the second estimation step, the combination estimated to be communication-impossible by the second estimation step. 5. The station placement design support method according to any one of claims 1 to 4, wherein information indicating a warning is output when the ratio of the has reached a predetermined ratio.
  6.  前記第2推定ステップは、前記推定処理を行っている途中において、前記通信可否の推定を行った組み合わせのうち、通信可能であると推定された組み合わせの割合が所定の割合に達した場合に、より推定精度の高い推定方法に切り替えて、以降の前記推定処理を行う
     請求項1から5のうちいずれか一項に記載の置局設計支援方法。
    In the second estimation step, when a ratio of combinations estimated to be communicable among the combinations for which the communication availability is estimated reaches a predetermined ratio during the estimation process, 6. The station placement design support method according to any one of claims 1 to 5, wherein switching to an estimation method with higher estimation accuracy is performed to perform the subsequent estimation processing.
  7.  前記第2推定ステップは、前記無線基地局の候補位置から同一の方向に複数の前記代表点が存在し、前記無線基地局の候補位置と、前記代表点のうち前記無線基地局の候補位置から最も遠い位置に存在する前記代表点と、の間が通信可能であると推定された場合には、前記同一の方向に存在する他の前記代表点と前記無線基地局の候補位置との間についても通信可能であると推定する
     請求項1から6のうちいずれか一項に記載の置局設計支援方法。
    In the second estimation step, a plurality of representative points exist in the same direction from the candidate position of the radio base station, and from the candidate position of the radio base station and the candidate position of the radio base station among the representative points. When it is estimated that communication is possible between the representative point existing in the farthest position, and between the other representative point existing in the same direction and the candidate position of the radio base station 7. The station placement design support method according to any one of claims 1 to 6, wherein it is estimated that communication is possible between the two stations.
  8.  対象エリアにおける無線基地局の候補位置と、網目状に区切られた前記対象エリアの各網目において移動局が存在しうる位置を代表する代表点と、を取得する取得部と、
     前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記対象エリアに存在する物体の位置を示す第1情報に基づいて推定する第1推定部と、
     前記第1推定部によって通信可能と推定された前記無線基地局の候補位置と前記代表点との組み合わせのうち、前記第1情報より情報量の多い第2情報に基づく通信可否の推定処理をさらに行う前記組み合わせを決定する決定部と、
     前記決定部によって決定された前記組み合わせである前記無線基地局の候補位置と前記代表点の各々との間の通信可否を、前記第2情報に基づいて推定する第2推定部と、
     指定された置局設計方法ごとに定められたルールに従って、前記第2推定部による推定処理を終了させる終了制御部と、
     を備える置局設計支援装置。
    an acquisition unit for acquiring candidate positions of a radio base station in a target area and representative points representing possible positions of a mobile station in each mesh of the target area divided into meshes;
    a first estimation unit for estimating whether or not communication between the candidate position of the radio base station and each of the representative points is possible based on first information indicating the position of an object existing in the target area;
    further estimating communication feasibility based on second information having a larger amount of information than the first information among the combinations of the candidate positions of the radio base stations estimated to be communicable by the first estimation unit and the representative points; a determination unit that determines the combination to be performed;
    a second estimation unit that estimates, based on the second information, availability of communication between the candidate position of the radio base station that is the combination determined by the determination unit and each of the representative points;
    a termination control unit for terminating the estimation process by the second estimation unit according to a rule defined for each designated station placement design method;
    A station placement design support device comprising:
PCT/JP2021/033473 2021-09-13 2021-09-13 Station placement design support method and station placement design support device WO2023037534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/033473 WO2023037534A1 (en) 2021-09-13 2021-09-13 Station placement design support method and station placement design support device
JP2023546702A JPWO2023037534A1 (en) 2021-09-13 2021-09-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033473 WO2023037534A1 (en) 2021-09-13 2021-09-13 Station placement design support method and station placement design support device

Publications (1)

Publication Number Publication Date
WO2023037534A1 true WO2023037534A1 (en) 2023-03-16

Family

ID=85506268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033473 WO2023037534A1 (en) 2021-09-13 2021-09-13 Station placement design support method and station placement design support device

Country Status (2)

Country Link
JP (1) JPWO2023037534A1 (en)
WO (1) WO2023037534A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011147A1 (en) * 2010-07-21 2012-01-26 ソフトバンクBb株式会社 Communication characteristic analyzing system, communication characteristic analyzing method, and communication characteristic analyzing program
WO2021075058A1 (en) * 2019-10-18 2021-04-22 日本電信電話株式会社 Station position selection assisting method and station position selection assisting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011147A1 (en) * 2010-07-21 2012-01-26 ソフトバンクBb株式会社 Communication characteristic analyzing system, communication characteristic analyzing method, and communication characteristic analyzing program
WO2021075058A1 (en) * 2019-10-18 2021-04-22 日本電信電話株式会社 Station position selection assisting method and station position selection assisting device

Also Published As

Publication number Publication date
JPWO2023037534A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US20220070683A1 (en) Installation candidate presentation method, installation candidate presentation apparatus and program
US9008670B2 (en) Resource installation management in a wireless network
CN104619013A (en) Trapped person cellphone searching locating method
CN113268678B (en) Semantic mining method and device for vehicle stop points, storage medium and terminal
JP7144186B2 (en) Station location candidate selection system
US20220295293A1 (en) Station placement designing method and station placement designing apparatus
CN117171288B (en) Grid map analysis method, device, equipment and medium
WO2023037534A1 (en) Station placement design support method and station placement design support device
CN105191454A (en) Systems and methods for approximating geo-fencing locations
US11533633B2 (en) Frequency planning for a communication system
EP3326404B1 (en) Evaluating near range communications quality
WO2023032223A1 (en) Station installation design supporting method and station installation design supporting apparatus
US11812331B2 (en) Method and apparatus for map query and electronic device
JP2005072667A (en) Apparatus and method of estimating reception characteristic
CN115100231A (en) Method and device for determining region boundary
CN111767357B (en) Regional mining complete evaluation method and equipment, electronic equipment and storage medium
Magalhaes et al. An optimization heuristic for siting observers in huge terrains stored in external memory
CN113055239B (en) Data display method, device, equipment and medium
CN114387407A (en) Large cargo transportation trafficability assessment method based on three-dimensional channel model
CN113838078A (en) Coal mining subsidence ground crack identification and extraction method, device and storage medium
WO2023132030A1 (en) Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system
KR101292690B1 (en) Method and apparatus for sectorising indoor area for indoor position measurement
JP7494388B1 (en) Information processing device, information processing method, and program
WO2022239215A1 (en) Station placement design assisting method and station placement design assisting device
CN117870651B (en) Map high-precision acquisition method, memory and storage medium based on RTK-SLAM technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546702

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE