WO2022219669A1 - Station site design assisting device and station site design assisting method - Google Patents

Station site design assisting device and station site design assisting method Download PDF

Info

Publication number
WO2022219669A1
WO2022219669A1 PCT/JP2021/015125 JP2021015125W WO2022219669A1 WO 2022219669 A1 WO2022219669 A1 WO 2022219669A1 JP 2021015125 W JP2021015125 W JP 2021015125W WO 2022219669 A1 WO2022219669 A1 WO 2022219669A1
Authority
WO
WIPO (PCT)
Prior art keywords
sight
line
determination
candidate
station
Prior art date
Application number
PCT/JP2021/015125
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 坪井
和人 後藤
秀紀 俊長
直樹 北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/015125 priority Critical patent/WO2022219669A1/en
Priority to JP2023514182A priority patent/JPWO2022219669A1/ja
Publication of WO2022219669A1 publication Critical patent/WO2022219669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a station placement design support device and a station placement design support method.
  • Figure 40 is based on a use case proposed by mmWave Networks in TIP (Telecom Infra Project) (main members: Facebook, Deutsche Telecom, Intel, NOKIA, etc.), a consortium that promotes open specifications for communication network equipment in general. It is the figure which modified and modeled a part.
  • mmWave Networks is one of the TIP project groups, and aims to build a network that is faster and cheaper than laying optical fiber using unlicensed band millimeter-wave radio.
  • Terminal station devices are installed on the walls of buildings such as buildings 800 to 801 and houses 810 to 812 shown in FIG.
  • Base station devices (hereinafter referred to as “base stations”) are installed on utility poles 821 to 826 shown in FIG.
  • Base stations 830 to 834 and terminal stations 840 to 844 shown in FIG. 40 are devices called mmWave DNs (Distribution Nodes).
  • the base stations 830-834 are connected to communication devices provided in station buildings (Fiber PoP (Point of Presence)) 850-851 via optical fibers 900-901, respectively. These communication devices are connected to the provider's communication network. Between terminal stations 840 to 844 and base stations 830 to 834, mmWave Link, that is, millimeter wave radio is performed. In FIG. 40, a millimeter-wave radio link is indicated by a dashed line.
  • station placement design In the form of a communication network in which base stations 830 to 834 are installed on utility poles 821 to 826, terminal stations 840 to 844 are installed on the walls of buildings, respectively, and communication is performed between these stations by millimeter wave radio, the base stations 830 to 834 Selection of candidate positions for installing 834 and terminal stations 840 to 844 is called station placement design.
  • a method that uses three-dimensional point cloud data obtained by imaging the space as a method for station placement design.
  • a mobile object such as a vehicle equipped with an MMS (Mobile Mapping System) is driven along the roads around the evaluation target area such as a residential area to obtain 3D point cloud data.
  • MMS Mobile Mapping System
  • wireless communication between base stations 830-834 and terminal stations 840-844 is evaluated using the acquired point cloud data.
  • the “shielding rate” is an index indicating how much an object (shielding object) existing between the base stations 830 to 834 and the terminal stations 840 to 844 affects wireless communication. It can also be called "transmittance”.
  • point cloud data of all objects existing in the evaluation target area including the installation candidate positions of the base stations 830 to 834 and the installation candidate positions of the terminal stations 840 to 844 are prepared. must be
  • JP 2020-107955 A Japanese Patent Application Laid-Open No. 2020-113826 Japanese Patent Application Laid-Open No. 2020-120161
  • One aspect of the present invention is a first combination that is a set of combinations of a candidate installation position of a first radio station and a candidate installation position of a second radio station that communicates with the first radio station in an evaluation target area.
  • a generating unit that generates a group of candidates; and information indicating, for each of the combinations included in the first candidate combination group, the position and height on a plane of an object that is present in the evaluation target area and that can block or reflect radio waves.
  • a first determination unit that determines whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station, based on the first environment information included in the first environment information; For each combination determined to have the prospect, the installation candidate position of the first wireless station and the installation of the second wireless station are based on the second environment information having a larger amount of information than the first environment information.
  • a second determination unit that determines whether or not there is a line of sight to a candidate position; and an output unit that outputs a second combination candidate group, which is a set of combinations determined to have the line of sight by the second determination unit. It is a station placement design support device provided.
  • One aspect of the present invention is a first combination that is a set of combinations of a candidate installation position of a first radio station and a candidate installation position of a second radio station that communicates with the first radio station in an evaluation target area.
  • FIG. 1 is a block diagram showing a functional configuration of a station placement design support device 1 according to a first embodiment of the present invention
  • FIG. 4 is a flow chart showing the operation of the station placement design support device 1 according to the first embodiment of the present invention
  • 4 is a flowchart showing an example of operation of outlook determination processing by the map outlook determination unit 16 according to the first embodiment of the present invention
  • 4 is a flow chart showing an example of operation of outlook determination processing by a point cloud outlook determination unit 23 according to the first embodiment of the present invention
  • FIG. 4 is a diagram for explaining the calculation amount reduction effect of the station placement design support apparatus 1 according to the first embodiment of the present invention
  • FIG. 10 is a diagram for explaining determination of line-of-sight and reflection line-of-sight determination on a horizontal plane by the station placement design support apparatus 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining visibility determination and reflected visibility determination on a vertical section by the station placement design support device 1 according to the second embodiment of the present invention
  • 10 is a flow chart showing an example of operation of outlook determination processing by a map outlook determination unit 16 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention
  • FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention
  • FIG. 11 is a flow chart showing an example of operation of outlook determination processing by a map outlook determination unit 16 according to the third embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention
  • FIG. 31 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the fourth embodiment of this invention.
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention.
  • FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention
  • FIG. 14 is a flowchart showing an example of operation of outlook determination processing by a map outlook determination unit 16 according to the fifth embodiment of the present invention
  • FIG. FIG. 4 is a diagram for explaining four possible cases as a result of line-of-sight determination
  • FIG. 10 is a diagram showing the relationship between the result of visibility determination on a horizontal plane and the result of visibility determination on a vertical cross section, and whether or not it is an object of visibility determination based on point cloud data.
  • FIG. 10 is a diagram showing the relationship between the result of reflected visibility determination on a horizontal plane, the result of reflected visibility determination on a vertical cross section, and whether or not an object is an object of visibility determination based on point cloud data. It is a figure which shows an example of the use case which TIP proposes.
  • a station placement design support device 1 of the present embodiment is a device for supporting station placement design that determines the installation positions of base stations installed on utility poles and the installation positions of terminal stations installed in each building. be.
  • the station placement design support device 1 determines whether or not communication is possible for each combination of at least one base station candidate installation position and at least one terminal station candidate installation position. In this embodiment, the station placement design support apparatus 1 determines whether or not communication is possible by determining whether or not there is a line of sight between the candidate installation positions of the base station and the candidate installation positions of the terminal stations, or by calculating the shielding rate. .
  • the presence or absence of line of sight means that when the base station and the terminal station are installed at the candidate installation position of the base station and the candidate installation position of the terminal station, transmission and reception are performed between the base station and the terminal station. It indicates whether or not there is a shield that blocks the propagation of the radio wave on the propagation path of the radio wave. If there is no obstruction that blocks the radio waves on the radio wave propagation path between the base station and the terminal station, it is said to be "line-of-sight", and the radio wave propagation path between the base station and the terminal station is said to be “line-of-sight.” If there is a shield that shields the radio waves, it is said to be "no line of sight".
  • the station placement design support apparatus 1 provides station placement design support by presenting a set of appropriate combination candidates (hereinafter referred to as "combination candidate group") of the installation candidate positions of both stations specified by the line-of-sight determination. .
  • the station placement design device that designs the station placement evaluates the communication state of each of the combination candidates included in the combination candidate group presented by the station placement design support device 1 by performing, for example, radio wave propagation simulation.
  • the station placement design device determines the installation positions of the base stations and the installation positions of the terminal stations based on the evaluation results.
  • the station placement design support device 1 first narrows down the combination candidate group in advance by performing visibility determination using low-density data representing the positions of objects such as shields existing in the evaluation target area.
  • the shield here is an object that may block the propagation of radio waves transmitted and received between the base station and the terminal station.
  • Examples of shields include buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, structures such as road signs and signboards, plants such as roadside trees and garden trees, and raised ground. All objects that can block the propagation of radio waves are included.
  • Low-density data is data with a relatively small amount of information. It is three-dimensional map information (hereinafter simply referred to as "map information") to which the height information is added. Height information in this embodiment is information indicating the height of the highest point of each building.
  • the map information in this embodiment is not a map generated based on point cloud data (hereinafter simply referred to as "point cloud data") obtained by MMS or the like, but is generated by a map creator (for example, surveying). ) is information based on general maps such as produced residential maps. Therefore, the map information in the present embodiment includes, for example, information indicating the outline and height of buildings, but does not relate to the positions of objects other than buildings (for example, the above-mentioned structures, structures, plants, etc.). Information may not be included. In outlook determination using low-density data, determination accuracy is relatively low, but the amount of calculation required for determination processing is relatively small.
  • the station placement design support apparatus 1 After that, the station placement design support apparatus 1 generates high-density data representing the positions of objects such as shields existing in the evaluation target area for each of the combination candidates narrowed down by the visibility determination based on the low-density data. Use it to determine line of sight.
  • High-density data is data with a relatively large amount of information, and in this embodiment, is three-dimensional point cloud data obtained by MMS or the like, for example.
  • the point cloud data includes information indicating the three-dimensional positions of all objects that can be shields, including not only buildings but objects other than buildings that are not included in the above map information. Therefore, the point cloud data has much more information than the above map information. In line-of-sight determination using high-density data, determination accuracy is relatively high, but the amount of calculation required for determination processing is relatively large.
  • the station placement design support apparatus 1 of the present embodiment performs line-of-sight determination in advance using low-density data, so that combination candidates of installation candidate positions of both stations with a low possibility of being able to communicate are determined in advance. exclude. After that, the station placement design support device 1 performs detailed outlook determination using high-density data only for the narrowed-down combination candidates. As a result, the station placement design support apparatus 1 can present a group of suitable combination candidates of the candidate installation positions of the base stations and the candidate installation positions of the terminal stations with a smaller amount of calculation while suppressing deterioration in determination accuracy. can.
  • FIG. 1 is a block diagram showing the functional configuration of a station placement design support device 1 according to the first embodiment of the present invention.
  • the station placement design support apparatus 1 includes a facility information acquisition unit 11, a base station candidate position extraction unit 12, a map information acquisition unit 13, a terminal station candidate position extraction unit 14, a combination candidate A group generation unit 15, a map outlook determination unit 16, a point cloud data acquisition unit 21, a data matching unit 22, a point cloud outlook determination unit 23, a storage unit 30, and a combination candidate group output unit 40.
  • the station placement design support device 1 is, for example, an information processing device such as a general-purpose computer.
  • the facility information acquisition unit 11 acquires facility information from, for example, an external device.
  • the equipment information here includes information indicating the planar position and height of outdoor equipment such as a utility pole on which a base station can be installed.
  • the facility information acquisition unit 11 outputs the acquired facility information to the base station candidate position extraction unit 12 .
  • planar position here refers to two-dimensional coordinates that do not include coordinates in the height direction (vertical direction). Further, in the following description, unless otherwise specified, “position” refers to three-dimensional coordinates including coordinates in the height direction (vertical direction).
  • the facility information acquisition unit 11 may acquire facility information from an external storage device or from an external device via a communication network.
  • the facility information may be stored in the storage section 30 in advance, and the facility information acquisition section 11 may acquire the facility information from the storage section 30 .
  • the base station candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11.
  • the base station candidate position extraction unit 12 extracts installation candidate positions of base stations based on the acquired equipment information.
  • the base station candidate position extraction unit 12 outputs information indicating the extracted installation candidate positions of the base stations and facility information to the combination candidate group generation unit 15 .
  • the map information acquisition unit 13 acquires map information from, for example, an external device.
  • the map information here includes, for example, information indicating the planar position and height of outlines of buildings such as houses and buildings.
  • the map information acquisition unit 13 outputs the acquired map information to the terminal station candidate position extraction unit 14 and the data matching unit 22 .
  • the map information acquisition unit 13 may acquire map information from an external storage device, or may acquire map information from an external device via a communication network.
  • the map information may be stored in the storage unit 30 in advance, and the map information acquisition unit 13 may acquire the map information from the storage unit 30 .
  • the terminal station candidate position extraction unit 14 acquires map information output from the map information acquisition unit 13 .
  • the terminal station candidate position extraction unit 14 extracts installation candidate positions of the terminal station based on the acquired map information.
  • the terminal station candidate position extraction unit 14 outputs information indicating the extracted installation candidate positions of the terminal stations and map information to the combination candidate group generation unit 15 .
  • the combination candidate group generating unit 15 acquires information indicating the installation candidate positions of the base stations extracted by the base station candidate position extracting unit 12 and facility information. Further, the combination candidate group generation unit 15 acquires information indicating the installation candidate positions of the terminal stations extracted by the terminal station candidate position extraction unit 14 and map information. Based on the acquired information, the combination candidate group generation unit 15 generates installation candidates for both stations based on the candidate installation positions of the base station (first wireless station) and the candidate installation positions of the terminal station (second wireless station). A set of position combination candidates (first combination candidate group) is generated. The combination candidate group generation unit 15 causes the storage unit 30 to store information indicating the generated combination candidate group, facility information, and map information.
  • the map outlook determination unit 16 (first determination unit) acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information.
  • the map visibility determination unit 16 performs visibility determination for each of the acquired combination candidate groups.
  • the line-of-sight determination in the present embodiment is a determination of whether or not communication is possible based on the determination of the presence or absence of line-of-sight between the base station and the terminal station or the calculation of the shielding rate. The details of the outlook determination processing by the map outlook determination unit 16 will be described later.
  • the map outlook determination unit 16 extracts only combination candidates determined to be communicable.
  • the map outlook determination unit 16 overwrites and updates the combination candidate group stored in the storage unit 30 with the combination candidate group determined to be communicable by the determination using the map information.
  • the map outlook determination unit 16 provides information indicating whether or not each of the combination candidates included in the combination candidate group stored in the storage unit 30 has been determined to have a view. (For example, a visibility determination result flag) may be assigned to each.
  • the point cloud data acquisition unit 21 acquires point cloud data, for example, from an external device or the like.
  • the point cloud data referred to here is three-dimensional point cloud data obtained by imaging a space.
  • the point cloud data is obtained by driving a mobile object such as a vehicle equipped with an MMS along a road around a residential area to be evaluated.
  • the facility information acquisition unit 11 outputs the acquired point cloud data to the data matching unit 22 .
  • the point cloud data acquisition unit 21 may acquire the point cloud data from an external storage device or from an external device via a communication network.
  • point cloud data may be stored in the storage unit 30 in advance, and the point cloud data acquisition unit 21 may acquire the point cloud data from the storage unit 30 .
  • the data matching unit 22 acquires the map information output from the map information acquiring unit 13.
  • the data matching unit 22 also acquires the point cloud data output from the point cloud data acquiring unit 21 .
  • the data matching unit 22 matches the coordinate system of the map information and the coordinate system of the point cloud data, and matches the positions (coordinates) included in the map information and the positions (coordinates) included in the point cloud data.
  • the data matching unit 22 corrects the positions included in the combination candidate group stored in the storage unit 30 as necessary so that the positions are based on the coordinate system of the point cloud data.
  • the data matching unit 22 causes the storage unit 30 to store the acquired point cloud data.
  • the coordinate matching by the data matching unit 22 is performed. It is considered that there are many cases in which no treatment is required.
  • the point cloud outlook determination unit 23 acquires information indicating the combination candidate group stored in the storage unit 30 and point cloud data.
  • the point cloud view determination unit 23 performs view determination for each of the acquired combination candidates.
  • the line-of-sight determination in the present embodiment is a determination of whether or not communication is possible based on the determination of the presence or absence of line-of-sight between the base station and the terminal station or the calculation of the shielding rate. Any conventional technology can be used for the outlook determination processing by the point cloud outlook determination unit 23 .
  • the point cloud outlook determination unit 23 extracts only combination candidates determined to be communicable.
  • the map outlook determination unit 16 overwrites and updates the combination candidate group stored in the storage unit 30 with the combination candidate group determined to be communicable by the determination using the point cloud data. Note that, instead of overwriting and updating as described above, the point cloud outlook determination unit 23 provides information indicating whether or not the outlook is determined to be rational for each of the combination candidates stored in the storage unit 30 (for example, outlook determination result flag) may be updated.
  • the storage unit 30 stores the combination candidate group, facility information, map information, and point cloud data described above. Note that the storage unit 30 does not need to store all the facility information, all the map information, and all the point cloud data. At least the point cloud data necessary for the determination processing by the point cloud outlook determination unit 23 should be stored.
  • the storage unit 30 includes, for example, a HDD (Hard Disk Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write Memory), ROM (Read Only Memory). memory), or any combination of these storage media.
  • HDD Hard Disk Drive
  • flash memory EEPROM (Electrically Erasable Programmable Read Only Memory)
  • RAM Random Access read/write Memory
  • ROM Read Only Memory
  • the base station candidate position extraction unit 12, the terminal station candidate position extraction unit 14, the combination candidate group generation unit 15, the map outlook determination unit 16, the data matching unit 22, and the point cloud outlook determination unit 23 are one control unit. It may be configured as a component of a unit (not shown).
  • the controller is implemented by a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • the control unit may be realized by cooperation of software and hardware.
  • the program read by the CPU may be stored in advance in a storage medium such as the storage unit 30 provided in the station placement design support apparatus 1, for example.
  • a combination candidate group output unit 40 (output unit) is a combination candidate group generated by the combination candidate group generation unit 15, and then determined by the map outlook determination unit 16 and the point cloud outlook determination unit 23.
  • Information indicating the narrowed-down combination candidate group (second combination candidate group) is acquired from the storage unit 30 .
  • the combination candidate group output unit 40 outputs information indicating the acquired combination candidate group to an external device.
  • the combination candidate group output unit 40 includes, for example, a communication interface for outputting information indicating the combination candidate group to an external device.
  • the combination candidate group output unit 40 may function as a display unit that displays the combination candidate group.
  • the combination candidate group output unit 40 includes a display device such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display.
  • FIG. 2 is a flow chart showing the operation of the station placement design support device 1 according to the first embodiment of the present invention.
  • the facility information acquisition unit 11 acquires facility information from, for example, an external device (step S1).
  • the facility information acquisition unit 11 outputs the acquired facility information to the base station candidate position extraction unit 12 .
  • the map information acquisition unit 13 acquires map information from, for example, an external device.
  • the map information acquisition unit 13 outputs the acquired map information to the terminal station candidate position extraction unit 14 and the data matching unit 22 (step S2).
  • the base station candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11.
  • the base station candidate position extraction unit 12 extracts installation candidate positions of the base station based on the acquired equipment information (step S3).
  • the base station candidate position extraction unit 12 outputs information indicating the extracted installation candidate positions of the base stations and facility information to the combination candidate group generation unit 15 .
  • the terminal station candidate position extraction unit 14 acquires map information output from the map information acquisition unit 13 .
  • the terminal station candidate position extraction unit 14 extracts installation candidate positions of the terminal station based on the acquired map information (step S4).
  • the terminal station candidate position extraction unit 14 outputs information indicating the extracted installation candidate positions of the terminal stations and map information to the combination candidate group generation unit 15 .
  • the combination candidate group generation unit 15 acquires information indicating the installation candidate positions of the base stations extracted by the base station candidate position extraction unit 12 and facility information. Further, the combination candidate group generation unit 15 acquires information indicating the installation candidate positions of the terminal stations extracted by the terminal station candidate position extraction unit 14 and map information. A combination candidate group generation unit 15 generates a combination candidate group, which is a set of candidates for a combination of the candidate installation positions of the base station and the candidate installation positions of the terminal station, based on the acquired information. is generated (step S5). The combination candidate group generation unit 15 causes the storage unit 30 to store information indicating the generated combination candidate group, facility information, and map information.
  • the map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information.
  • the map visibility determination unit 16 performs visibility determination for each of the acquired combination candidate groups.
  • the map outlook determination unit 16 narrows down the combination candidate group by the outlook determination based on the map information by extracting only the combination candidates determined to have visibility (step S6).
  • the map outlook determination unit 16 outputs information indicating the combination candidate group narrowed down based on the map information to the storage unit 30 (step S7).
  • the combination candidate group stored in the storage unit 30 is overwritten and updated with the combination candidate group made up of the combination candidates determined to have visibility by the visibility determination using the map information.
  • the map outlook determination unit 16 may output information indicating a combination candidate group narrowed down based on the map information to an external device. Details of the operation of step S6 will be described later with reference to FIG.
  • the data matching unit 22 receives the combination candidate group narrowed down based on the map information output in step S7, and the base station installation candidate positions and the terminal station installation candidate positions included in the combination candidate group. Information indicating the coordinates is input from the storage unit 30 (step S8). Note that the information may be input to the data matching unit 22 from an external device.
  • the station placement design support device 1 may be a device that separately has a device that performs visibility determination based on the above map information and a device that performs visibility determination based on the point cloud data described below.
  • the visibility determination based on the map information and the visibility determination based on the point cloud data are performed in a series of operations.
  • the outlook determination based on the map information and the outlook determination based on the point cloud data may be performed separately.
  • the point cloud data acquisition unit 21 acquires point cloud data from, for example, an external device (step S9).
  • the point cloud data acquisition unit 21 outputs the acquired point cloud data to the data matching unit 22 .
  • the data matching unit 22 acquires the point cloud data output from the point cloud data acquisition unit 21.
  • the data matching unit 22 matches the coordinate system of the map information and the coordinate system of the point cloud data, and matches the positions (coordinates) included in the map information and the positions (coordinates) included in the point cloud data.
  • the data matching unit 22 causes the storage unit 30 to store the acquired point cloud data.
  • the point cloud outlook determining unit 23 acquires information indicating the combination candidate group stored in the storage unit 30 and point cloud data.
  • the point cloud view determination unit 23 performs view determination for each of the combination candidates included in the acquired combination candidate group.
  • the point cloud visibility determination unit 23 extracts only combination candidates determined to have visibility.
  • the map outlook determination unit 16 overwrites and updates the combination candidate group stored in the storage unit 30 with the combination candidate group consisting of the combination candidates determined to have visibility by the outlook determination using the point cloud data.
  • the candidates are narrowed down (step S10). Details of the operation of step S10 will be described later with reference to FIG.
  • the combination candidate group output unit 40 acquires from the storage unit 30 information indicating the combination candidate group narrowed down by the outlook determination by the map outlook determination unit 16 and the outlook determination by the point cloud outlook determination unit 23 .
  • the combination candidate group output unit 40 outputs information indicating the acquired combination candidate group to an external device (step S11).
  • the operation of the station placement design support device 1 shown in the flowchart of FIG. 2 is completed.
  • FIG. 3 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the first embodiment of the present invention.
  • the map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been performed from among the acquired combination candidate group (step S601).
  • the map visibility determination unit 16 performs visibility determination between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S602). When it is determined that there is no visibility as a result of the visibility determination (step S602, NO), the map outlook determination unit 16 deletes the selected combination candidate from the acquired combination candidate group (step S603).
  • the map outlook determination unit 16 repeats the operations from step S601 to step S603 until the outlook is determined for all combination candidates included in the acquired combination candidate group (step S604). If outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S604, YES), the flow proceeds to step S7 of the flowchart shown in FIG.
  • FIG. 4 is a flow chart showing an example of the operation of the outlook determination process by the point cloud outlook determination unit 23 according to the first embodiment of the present invention.
  • the point cloud outlook determining unit 23 acquires information indicating the combination candidate group stored in the storage unit 30 and point cloud data.
  • the point cloud view determination unit 23 selects one combination candidate for which view determination has not yet been performed from the acquired combination candidate group (step S1001).
  • the point cloud view determination unit 23 performs view determination between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S1002). When it is determined that there is no view as a result of the view determination (step S1002, NO), the point cloud view determination unit 23 deletes the selected combination candidate from the acquired combination candidate group (step S1003).
  • the point cloud outlook determining unit 23 repeats the operations from step S1001 to step S1003 until the outlook is determined for all combination candidates included in the acquired combination candidate group (step S1004). If outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S1004, YES), the process proceeds to step S11 of the flowchart shown in FIG.
  • FIG. 37 is a diagram for explaining four possible cases as a result of line-of-sight determination.
  • the four cases that can be considered as the result of the line-of-sight determination by the station placement design support device 1 are the case where the result of the line-of-sight determination based on the map information is "with line of sight” and the case where the result is "no line of sight”.
  • the case where the result of the visibility determination based on the map information is "with visibility” and the result of the visibility determination based on the point cloud data is "with visibility” is defined as “Case (1 )”. Further, the case where the result of the visibility determination based on the map information is also "with visibility” and the result of the visibility determination based on the point cloud data is "no visibility” is referred to as “Case (2)”. Further, the case where the result of the visibility determination based on the map information is "no visibility” and the result of the visibility determination based on the point cloud data is "with visibility” is referred to as "Case (3)”. Further, a case where the result of the visibility determination based on the map information is "no visibility” and the result of the visibility determination based on the point cloud data is also "no visibility” is referred to as “Case (4)".
  • FIG. 5 is a diagram for explaining the calculation amount reduction effect of the station placement design support apparatus 1 according to the first embodiment of the present invention.
  • FIG. 5 show the visibility determination based on the map information by the map visibility determination unit 16.
  • FIG. on the other hand, (C) and (D) of FIG. 5 show visibility determination based on point cloud data by the point cloud visibility determining unit 23 .
  • FIG. 5 all show examples of combination candidates when one wall surface of the house h1 is set as a candidate installation position for the terminal station.
  • FIG. 5 shows a case where the outlook is determined based on the map information, with the utility pole p1 as the candidate installation position for the base station.
  • the result of the line of sight determination is "no line of sight”.
  • (B) of FIG. 5 shows a case where the line-of-sight determination is performed based on the map information, with the utility pole p2 as the candidate position for installing the base station.
  • the result of the line of sight determination is "with line of sight". .
  • FIG. 5 shows a case where the line of sight determination is performed based on the point cloud data, with the utility pole p1 as the candidate position for installing the base station.
  • the result of the line of sight determination is "no line of sight”.
  • (D) of FIG. 5 shows a case where the line of sight determination is performed based on the point cloud data with the utility pole p2 as the candidate position for installing the base station.
  • the line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station may be blocked by, for example, the house h2, the wall of the house h2, roadside trees, and road signs. Therefore, the result of line-of-sight determination is "with line-of-sight".
  • the reason why the station placement design support apparatus 1 of the present embodiment has the effect of reducing the amount of calculation is that most of the situations in the actual environment are case (1) or case (4) shown in FIG. Based on expectations. For example, in a situation where it is determined that there is visibility based on the visibility determination based on the map information, as in the case of FIG. There is a high possibility that it is a situation where it is determined that there is. Similarly, for example, in a situation where it is determined that there is no visibility by the visibility determination based on the map information as in the case of FIG. There is a high possibility that it will be determined that there is no prospect for the future.
  • the station placement design support device 1 in the present embodiment performs outlook determination based on point cloud data for combination candidates that have been determined to have visibility by the outlook determination based on the map information.
  • the determination times required for visibility determination in the cases of (A), (B), (C), and (D) in FIG. 5 are represented by ta, tb, tc, and td, respectively.
  • the map information is relatively low-density data (small amount of information) compared to the point cloud data. This time is significantly shorter than the determination times tc and td for the visibility determination based on the above.
  • the determination time for the visibility determination based on the map information for each combination candidate is approximately the same length, so ta and tb have approximately the same length of determination time. .
  • the determination time for visibility determination based on point cloud data for each combination candidate is about the same length, so tc and td are about the same length. It's time.
  • M the total number of combinations of all candidate installation positions for base stations and all candidate installation positions for terminal stations in the evaluation target area.
  • n represents the number of combinations in which there is a line of sight between the candidate installation positions of the base station and the candidate installation positions of the terminal stations.
  • the station placement design support device 1 in this embodiment first narrows down the number of combination candidates included in the combination candidate group by outlook determination based on map information, and then, based on the point cloud data for each of the narrowed down combination candidates. Since the visibility determination is performed, it is possible to complete the visibility determination in approximately the determination time shown in the following equation (2).
  • the station placement design support apparatus 1 in this embodiment can shorten the determination time by about tc ⁇ (M ⁇ n). .
  • the map information in this embodiment is obtained by adding information indicating the height of each building to each piece of building position information included in the two-dimensional map data.
  • coordinate information based on two-dimensional map information is coordinate information consisting of coordinates at intervals of several meters
  • the station placement design support device 1 prepares in advance low-density data (three-dimensional map information) representing the positions of shields existing in the evaluation target area. Use to determine line of sight.
  • the station placement design support apparatus 1 can narrow down the combination candidates by excluding combinations of installation candidate positions of both stations that are presumed to have no clear line of sight.
  • the station placement design support apparatus 1 uses high-density data (three-dimensional point cloud data) representing the positions of shielding objects existing in the evaluation target area for each of the narrowed-down combination candidates to obtain more detailed information. Make a clear line of sight judgment. As a result, the station placement design support device 1 identifies prospective combination candidates.
  • the station placement design support device 1 of the present invention performs line-of-sight determination in advance using low-density data, thereby reducing the number of detailed line-of-sight determinations using high-density data. can.
  • the station placement design support apparatus 1 suppresses an increase in the amount of calculation in line-of-sight determination, and determines the candidate installation positions of the base stations and the candidate installation positions of the terminal stations. combination candidates can be presented appropriately.
  • the station placement design support apparatus 1 will be described below.
  • the propagation path of the radio waves may be secured by reflecting the radio waves on the wall of a building, for example, and communication may be possible.
  • the station placement design support device 1 of the present embodiment even if it is determined that there is no line of sight between the installation candidate position of the base station and the installation candidate position of the terminal station by line-of-sight determination based on the map information, The map information is used to further determine whether or not there is a line of sight that allows reflection of radio waves from walls and the like.
  • the station placement design support device 1 of the second embodiment presents more combination candidates including not only combination candidates determined to have a line of sight but also combination candidates determined to have a reflected line of sight. can be done.
  • the station placement design support device 1 of the present embodiment first performs visibility determination and reflected visibility determination on a horizontal plane, and then performs visibility determination and reflected visibility determination on a vertical cross section.
  • FIG. 6 is a diagram for explaining the line-of-sight determination and reflection line-of-sight determination on a horizontal plane by the station placement design support apparatus 1 according to the second embodiment of the present invention.
  • FIG. 6 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 6 also shows a wall surface position h11-1, which is the center position of one wall surface of the house h11, which is a candidate installation position of the terminal station, and a wall surface position h11-2, which is the end position of one wall surface of the house h11. , and the respective terminal stations t11 when installed at the wall surface position h11-1 and the wall surface position h11-2.
  • FIG. 6 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • the map view determination unit 16 first determines the view on the horizontal plane between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station. As shown in FIG. 6, for example, the line of sight between the utility pole p11 and the wall position h11-1 is blocked by the house h12, so it can be said that there is no line of sight between the utility pole p11 and the house h11. In this case, the map view determination unit 16 determines the reflection view on the horizontal plane between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station.
  • the position of the mirror image of the utility pole p11 when viewed from the wall surface position h11-2 is the position of the mirror image p11m.
  • the intersection of the straight line connecting the wall surface position h11-2 and the mirror image p11m and the reflection surface m11 is the reflection point r11 where radio waves are reflected.
  • the map line-of-sight determination unit 16 determines the line of sight between the utility pole p11 and the wall surface position h11-2. Between h11-2, it is determined that there is a reflection line of sight on the horizontal plane.
  • the map visibility determining unit 16 determines visibility on the vertical section between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station.
  • FIG. 7 is a diagram for explaining line-of-sight determination and reflected line-of-sight determination on a vertical section by the station placement design support device 1 according to the second embodiment of the present invention.
  • FIG. 7 shows the line-of-sight determination on the vertical section between the utility pole p11 and the wall position h11-1.
  • (B) of FIG. 7 shows reflection line-of-sight determination on a vertical section between the utility pole p11 and the wall surface position h11-2.
  • FIG. 7 show a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • 7A and 7B show a wall surface position h11-1, which is the center position of one wall surface of the house h11, which is a candidate installation position of the terminal station, and an end portion of one wall surface of the house h11.
  • the wall position h11-2 which is the position, and the terminal stations t11 when installed at the wall position h11-1 and the wall position h11-2 are shown.
  • FIG. 7A and 7B show a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11. Note that, as illustrated, the height of the house h13 is lower than the height of the house h12.
  • the line of sight between the utility pole p11 and the wall position h11-1 is blocked by the house h12, and the line of sight between the utility pole p11 and the house h11 is visible on the vertical section. It can be said that there is no
  • the map line of sight determination unit 16 determines the possibility that the line of sight is actually present by the line of sight determination on the vertical section. can recognize that there is
  • the map visibility determination unit 16 determines the installation candidate position of the base station and the installation of the terminal station. It is determined that there is a line of sight to the candidate position, and this combination candidate is included in the combination candidate group (that is, this combination candidate is not deleted from the combination candidate group).
  • the map line of sight determination unit 16 determines the candidate installation position of the base station and the candidate installation position of the terminal station. , and this combination candidate is deleted from the combination candidate group.
  • the map visibility determination unit 16 can recognize that there is no reflection visibility because there is actually no wall surface at the position of the reflection point r11 shown in FIG. 7B.
  • the map line of sight determination unit 16 determines that there is actually no reflected line of sight by the line of sight determination on the vertical cross section. can recognize.
  • the map line of sight determination unit 16 determines the candidate installation positions of the base station and the installation of the terminal station. It is determined that there is a reflected line of sight between the candidate position and this combination candidate is included in the combination candidate group (that is, this combination candidate is not deleted from the combination candidate group).
  • the map line of sight determining unit 16 determines the candidate installation position of the base station and the installation of the terminal station. It is determined that there is no reflected line of sight with the candidate position, and this combination candidate is deleted from the combination candidate group.
  • FIG. 38 is a diagram showing the relationship between the result of visibility determination on a horizontal plane and the result of visibility determination on a vertical section, and whether or not it is a target for visibility determination based on point cloud data.
  • FIG. 38 shows whether or not the combination candidate to be evaluated is subject to the visibility determination based on the point cloud data, depending on the result of the visibility determination on the horizontal plane and the result of the visibility determination on the vertical cross section. ing.
  • case (A) is a case where it is determined that there is no line of sight by the line of sight determination on the horizontal plane and that there is no line of sight by the line of sight determination on the vertical section.
  • the evaluation target combination candidate is excluded from the visibility determination based on the point cloud data.
  • Case (B) is a case where it is determined that there is no line of sight by the line of sight determination on the horizontal plane, and that there is line of sight by the line of sight determination on the vertical section.
  • the combination candidates to be evaluated are targets for visibility determination based on the point cloud data.
  • case (C) is a case where it is determined that there is a line of sight by the line of sight determination on the horizontal plane. In such a case (C), it is not necessary to determine the visibility on the vertical cross section, and the combination candidate to be evaluated is subject to the visibility determination based on the point cloud data.
  • the station placement design support device 1 of the present embodiment can efficiently determine whether or not to be the target of the visibility determination based on the point cloud data.
  • FIG. 39 is a diagram showing the relationship between the result of reflected visibility determination on a horizontal plane and the result of reflected visibility determination on a vertical cross section, and whether or not it is an object of visibility determination based on point cloud data.
  • FIG. 39 shows whether or not a combination candidate to be evaluated is subject to visibility determination based on point cloud data, depending on the result of reflection visibility determination on a horizontal plane and the result of reflection visibility determination on a vertical cross section. represents.
  • case (D) is a case where it is determined that there is no reflected line of sight by determination of the reflected line of sight on the horizontal plane.
  • case (D) there is no need to determine the reflected visibility on the vertical cross section, and the combination candidates to be evaluated are excluded from the visibility determination based on the point cloud data.
  • the station placement design support device 1 of the present embodiment can efficiently determine whether or not to be the target of the visibility determination based on the point cloud data.
  • case (E) is a case where it is determined that there is a reflected line of sight by the determination of the reflected line of sight on the horizontal plane, and that there is no reflected line of sight by the determination of the reflected line of sight on the vertical section.
  • the combination candidates to be evaluated are excluded from the visibility determination based on the point cloud data.
  • Case (F) is a case where it is determined that there is a reflected line of sight by the determination of the reflected line of sight on the horizontal plane, and that there is also the reflected line of sight by the determination of the reflected line of sight on the vertical section.
  • the combination candidates to be evaluated are targets for visibility determination based on the point cloud data.
  • step S6 in the flowchart shown in FIG. 2 is the same as the operation of the station placement design support device 1 in the first embodiment. is. Therefore, only the operation of narrowing down the combination candidate group by the visibility determination based on the map information shown in step S6 of the flowchart of FIG. 2 will be described below.
  • FIG. 8 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the second embodiment of the present invention.
  • the map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been made from among the acquired combination candidate group (step S611).
  • the map visibility determining unit 16 determines visibility on the horizontal plane between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S612). If it is determined that there is no horizontal line of sight as a result of the line of sight determination (step S612: NO), the map line of sight determination unit 16 determines the vertical direction between the candidate installation position of the base station and the candidate installation position of the terminal station. A line-of-sight determination on the cross section is performed (step S613).
  • the reason why the processing order is to determine the visibility on the vertical plane after the determination of the visibility on the horizontal plane is that, as described above, in the case (C) of FIG. This is because it is not necessary to carry out the visibility determination, so efficient visibility determination can be performed.
  • step S613 If it is determined that there is no line of sight on the vertical cross section as a result of the line of sight determination (step S613: NO), the map line of sight determination unit 16 determines the distance between the candidate installation position of the base station and the candidate installation position of the terminal station. Reflection visibility determination on the horizontal plane is performed (step S614).
  • step S614 If it is determined that there is a reflected view on the horizontal plane as a result of the reflected view determination (step S614: YES), the map view determination unit 16 determines the distance between the candidate installation position of the base station and the candidate installation position of the terminal station. , determination of reflected line of sight on the vertical section is performed (step S615).
  • the reason why the process order is to determine the reflected line of sight on the vertical plane after the determination of the reflected line of sight on the horizontal plane is that, as described above, in the case (D) of FIG. This is because it is not necessary to determine the reflected line of sight at , and thus efficient reflected line of sight determination can be performed.
  • the map view view determination unit 16 selects the selected combination candidate from the acquired combination candidate group. Delete (step S616).
  • step S615 When it is determined that there is no reflected view on the vertical section as a result of the reflected view determination (step S615: NO), the map view determination unit 16 deletes the selected combination candidate from the acquired combination candidate group. (step S616).
  • the map visibility determination unit 16 repeats the operations from steps S611 to S616 until the visibility determination and reflected visibility determination are performed for all combination candidates included in the acquired combination candidate group (step S617).
  • the process proceeds to step S7 in the flowchart shown in FIG.
  • the station placement design support apparatus 1 determines whether there is a line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station by the line of sight determination based on the map information. Even if it is determined that there is no reflection, it is further determined whether or not there is a reflection line-of-sight that allows reflection of radio waves by a reflecting surface such as a wall surface of a building. Even if it is determined that there is no line of sight, the station placement design support device 1 does not exclude combination candidates that are determined to have a reflected line of sight from the combination candidate group.
  • steps S614 and S615 relating to reflection visibility determination in the flow chart shown in FIG. 8 may be omitted as necessary. That is, the configuration may be such that only direct line-of-sight determination between the candidate installation positions of the base station and the candidate installation positions of the terminal stations is performed. Moreover, step S612 and step S613 regarding visibility determination in the flow chart shown in FIG. 8 may be omitted as necessary. In other words, the configuration may be such that only reflection outlook determination between the candidate installation positions of the base station and the candidate installation positions of the terminal stations is performed.
  • the station placement design support device 1 suppresses an increase in the amount of calculation in line-of-sight determination and reflection line-of-sight determination, while only combining candidates determined to have line-of-sight. Instead, it is possible to appropriately present a larger number of combination candidates including combination candidates determined to have a reflected line of sight.
  • the map outlook determination unit 16 regards the shape of each building as being columnar, and determines the outlook and reflection. A line of sight determination may be made.
  • the map outlook determining unit 16 may regard a building whose outline in a two-dimensional map is, for example, a rectangular shape as having a three-dimensional shape of a rectangular parallelepiped. Similarly, the map outlook determination unit 16 may regard a building having a circular shape in a two-dimensional map as having a three-dimensional shape of a cylinder.
  • FIG. 9 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
  • FIG. 9 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 9 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h11, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown.
  • FIG. 9 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • the map outlook determination unit 16 considers that the three-dimensional shape of the houses h11, h12, and h13 whose contours are rectangular in the two-dimensional map are rectangular parallelepipeds.
  • the three-dimensional shape of the house h12 is considered to be a rectangular parallelepiped indicated by broken lines in FIG. Since the view is blocked by the house h12 during -1, it is determined that there is no view. Further, for example, based on the height of the highest point of the house h12, if the three-dimensional shape of the house h12 is considered to be a rectangular parallelepiped indicated by solid lines in FIG. Since the view is not blocked by the house h12 between the positions h11-1, it is determined that there is a view.
  • the map visibility determining unit 16 may also consider information about the shape of the building to perform visibility determination and reflected visibility determination.
  • FIG. 10 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
  • FIG. 10 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 10 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h14, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown.
  • FIG. 10 also shows a house h15 and a house h16 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • the map visibility determining unit 16 determines the distance between the utility pole p11 and the wall surface position h11-1. Since the line of sight between is blocked by the house h15, it is determined that there is no line of sight. However, if information about the shape of the building is also available, the map outlook determination unit 16 can determine the outlook by taking into account the shape of the roof of the house h15, for example.
  • FIG. 11 and 12 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
  • FIG. 11 shows the positional relationship of objects on the horizontal plane in the area shown in FIG. As shown in FIG. 11, according to the visibility judgment on the horizontal plane, the visibility between the utility pole p11 and the wall position h11-1 is blocked by the houses h16 and h15, so it is determined that there is no visibility. .
  • FIG. 12 shows the positional relationship of objects on the vertical section in the area shown in FIG.
  • FIG. 12 shows the position rf15 of the roof of the house h15 on the vertical section and the position rf16 of the roof of the house h16 on the vertical section.
  • the position of the roof of the house h14 on the same vertical section is the highest position (same as the height of the house h14) in this example.
  • the straight line connecting the utility pole p11 and the wall surface position h11-1 passes through a position lower than the height of the highest point of the house h15. Since it passes through a position higher than the position rf16 of the roof of the house h16 on the vertical cross section, the map visibility determination unit 16 can recognize that this combination candidate has visibility.
  • the map outlook determination unit 16 does not simply determine the outlook based on the line of sight that connects the candidate installation positions of the base station and the candidate installation positions of the terminal station, but determines the outlook considering the shielding rate of the Fresnel zone. may be performed.
  • Fresnel zone radius of the Fresnel zone in the millimeter wave band is, for example, about 25 [cm] at maximum when transmitting a distance of 50 [m] using electromagnetic waves in the 60 [GHz] band.
  • FIG. 13 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
  • FIG. 13 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 13 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h11, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown.
  • FIG. 13 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • FIG. 13 also shows a Fresnel zone fz11 when radio waves are transmitted and received between the base station b11 and the terminal station t11.
  • FIG. 13 shows a cross section cs11 of the Fresnel zone fz11 at the position of the wall surface of the house h12 where the view is blocked.
  • the area where the view is blocked by the house h12 in the cross section cs13 is about half of the area below the cross section cs13 (that is, the blocking rate can be said to be about 50%). Therefore, although there is no straight line of sight between the utility pole p11 and the wall position h11-1, radio waves transmitted and received between the base station b11 and the terminal station t11 pass through the range above the cross section cs11 of the Fresnel zone fz11. It may be possible to communicate by passing through.
  • FIG 14 and 15 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
  • FIG. 14 shows the positional relationship of objects on the horizontal plane in the area shown in FIG.
  • the line-of-sight between the utility pole p11 and the wall surface position h11-1 is blocked by the house h12, so it is determined that there is no line-of-sight.
  • the Fresnel zone fz11 is considered, the Fresnel zone fz11 is blocked by the house h12 on the horizontal plane.
  • FIG. 15 shows the positional relationship of objects on the vertical section in the area shown in FIG.
  • the line-of-sight between the utility pole p11 and the wall surface position h11-1 is blocked by the house h12, so it is judged that there is no line-of-sight.
  • the map visibility determining unit 16 may determine that there is visibility, for example, when the shielding rate in the cross section cs11 of the Fresnel zone f11 is equal to or greater than a predetermined value.
  • the map outlook determination unit 16 further considers the shielding rate of the Fresnel zone to determine the line of sight. By determining whether or not there is a line of sight, it is possible to perform more accurate line-of-sight determination. As a result, the station placement design support device 1 can present more combination candidates.
  • 16 to 23 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
  • 16 to 23 show a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. 16 to 23 also show a wall surface position h11-1, which is the central position of one wall surface of the house h11, which is a candidate installation position of the terminal station, and a wall surface position h11, which is the end position of one wall surface of the house h11. -2, and the terminal station t11 when installed at the wall surface position h11-1 and the wall surface position h11-2, respectively.
  • 16 to 21 also show a house h12, a house h13, a house h17, and a house h18, which can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11. ing.
  • FIGS. 16 to 21 are diagrams showing the positional relationships of the above objects on the horizontal plane, and these positional relationships are common in FIGS. 16 to 21.
  • FIG. 16 to 21 a utility pole p11 as a candidate installation position for the base station b11, a house h11 having wall surface positions h11-1 and h11-2 as candidate installation positions for the terminal station t11, and a house h12 , and the house h13 is the same as the positional relationship between the utility pole p11 and each house shown in FIG.
  • the map outlook determination unit 16 performs reflection outlook determination that allows multiple reflections.
  • the map outlook determination unit 16 extracts candidates for wall surfaces that serve as reflecting surfaces.
  • FIG. 17 shows how six reflecting surface candidates (reflecting surface candidates ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ ) are extracted.
  • FIG. 17 shows areas that can serve as radio wave propagation paths from the base station b11 to each reflecting surface candidate.
  • the map outlook determining unit 16 identifies the position of the mirror image of the base station b11 by each of the extracted reflecting surface candidates.
  • the position of the mirror image of the base station b11 by the reflecting surface candidate ⁇ is the position of the mirror image A.
  • the position of the mirror image of the base station b11 by the reflecting surface candidate ⁇ is the position of the mirror image B.
  • FIG. The position of the mirror image of the base station b11 by the reflecting surface candidate ⁇ is the position of the mirror image C.
  • the position of the mirror image of the base station b11 by the reflecting surface candidate ⁇ is the position of the mirror image D.
  • the position of the mirror image of the base station b11 by the reflecting surface candidate ⁇ is the position of the mirror image E (the positional relationship between the reflecting surface candidate ⁇ and the mirror image E shown in FIGS. 18 to 20 is shown in FIG. is the same as the positional relationship between the reflecting surface m11 and the mirror image p11m).
  • the position of the mirror image of the base station b11 by the reflecting surface candidate ⁇ is the position of the mirror image F.
  • the map outlook determination unit 16 determines a position that is a mirror image of another reflecting surface candidate, which is the wall surface of the building to which the reflected wave reflected by the reflecting surface candidate reaches (that is, the mirror image of the specified mirror image). location). Specifically, as shown in FIG. 19, for example, the wall surface of the house h18 where the reflected wave reflected by the reflecting surface candidate ⁇ reaches is the reflecting surface candidate ⁇ . The position of the mirror image B of the reflecting surface candidate ⁇ is the position of the mirror image G.
  • the map visibility determining unit 16 can recognize that there is a combination candidate that has a reflection visibility with one reflection due to the reflection of the radio wave on the reflecting surface candidate ⁇ .
  • the map outlook determination unit 16 identifies the area through which the reflected wave that is re-reflected by the reflecting surface candidate ⁇ propagates. As shown in FIG. 20, the map outlook determination unit 16 identifies the reflection point C based on the route connecting the mirror image G and the wall surface position h11-1, which is the installation candidate position for the terminal station t11. The map outlook determination unit 16 identifies the mirror image reflection point c based on the reflection point C and the reflection surface candidate ⁇ . The map visibility determining unit 16 identifies the reflection point B based on the utility pole p11, which is the candidate installation position of the base station, the reflection surface candidate ⁇ , and the mirror image reflection point c. By specifying the reflection point B and the reflection point C, the map visibility determination unit 16 recognizes that there is a combination candidate with reflection visibility due to the two reflections of the radio waves at the reflection point B and the reflection point C. be able to.
  • the propagation path of the radio wave reflected at the reflection point A has a reflection line of sight with respect to the wall surface position h11-2 of the house h11, but with respect to the wall surface position h11-1 of the house h11 20 and 21 is the same as the position of the reflection point r11 shown in FIG. 6).
  • the propagation paths of the radio waves reflected at the reflection points B and C have a reflection line of sight to the wall surface position h11-1 of the house h11, but are reflected to the wall surface position h11-2 of the house h11. is an obstruction, so there is no reflected line of sight.
  • the map visibility determination unit 16 determines reflection visibility on a vertical section.
  • the upper diagram of FIG. 22 shows propagation paths of radio waves reflected at reflection points B and C on the horizontal plane. Also, the lower diagram in FIG. 22 shows how the propagation paths of the radio waves on the horizontal plane are projected on the vertical cross section.
  • FIG. 23 shows in more detail the propagation paths of radio waves on the vertical cross section shown in the lower diagram of FIG.
  • the map outlook determining unit 16 identifies that the position of the mirror image of the utility pole p11, which is the base station installation candidate position, is the position of the mirror image B (mirror image base station).
  • the map outlook determining unit 16 identifies that the position of the mirror image of the reflection point B on the reflection surface candidate ⁇ by the reflection surface candidate ⁇ is the position of the mirror image reflection point b.
  • the map outlook determination unit 16 identifies that the position of the mirror image of the reflection point C on the reflection surface candidate ⁇ by the reflection surface candidate ⁇ is the position of the mirror image reflection point c.
  • the map outlook determining unit 16 identifies that the position of the mirror image of the wall surface position h11-1 of the house h11, which is the installation candidate position of the terminal station, is the position of the mirror image terminal station.
  • the utility pole p11 which is the installation candidate position of the base station b11, the reflection point B, and the mirror image reflection point c are located immediately above the same. Further, on the vertical section, the position of the mirror image base station (mirror image B), the position of the reflection point B, the position of the reflection point C, and the position of the mirror image terminal station are located on the same straight line. On the vertical cross section, the mirror image reflection point b, the reflection point C, and the wall surface position h11-1, which is the installation candidate position for the terminal station t11, are located on the same straight line.
  • the map outlook determination unit 16 compares the height of the wall surface of the house h17 with the height of the reflection point B, and determines that the height of the wall surface of the house h17 is If the height is lower than the height of the reflection point B, it can be recognized that there is no reflection line of sight.
  • the map outlook determination unit 16 compares the height of the wall surface of the house h18 with the height of the reflection point C, and determines the height of the wall surface of the house h18. is lower than the height of the reflection point C, it can be recognized that there is no reflection line of sight.
  • the station placement design support device 1 simulates radio wave propagation using, for example, the ray tracing method (see Non-Patent Literatures 1 to 6) for each of the combination candidates narrowed down by the reflection outlook determination,
  • the combination candidates may be further narrowed down so that only combination candidates having a propagation quality value equal to or greater than a predetermined value are included.
  • the station placement design support device 1 when determining the line of sight between the candidate installation positions of the base stations and the candidate installation positions of the terminal stations, determines the line of sight on the horizontal plane, and then determines the line of sight on the vertical section. It was configured to determine the visibility of On the other hand, in the station placement design support device 1 according to the third embodiment described below, the visibility determination in the height direction can be made simpler.
  • 24 to 26 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention.
  • FIG. 24 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 24 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h11, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown.
  • FIG. 24 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • the map outlook determination unit 16 determines that there is no visibility on the horizontal plane for this combination candidate.
  • the height of the house h12 when viewed in a vertical section, is lower than the height of the straight line connecting the candidate installation position of the base station b11 and the candidate installation position of the terminal station t11. There may be line of sight on the vertical section.
  • the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height, and determines the outlook on the reference plane.
  • the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
  • FIG. 25 shows the reference plane rp11 set at the height at which the base station b11 is installed.
  • the map visibility determination unit 16 can recognize that there is visibility between the utility pole p11, which is the candidate installation position for the base station, and the wall surface position h11-1, which is the candidate installation position for the terminal station.
  • the station placement design support device 1 of the third embodiment determines the line of sight on the reference plane, which is a horizontal plane, while considering the height information by setting the reference plane. It is possible to omit the line of sight judgment above.
  • step S6 in the flowchart shown in FIG. 2 are the same as the operations of the station placement design support device 1 in the first embodiment. is. Therefore, only the operation of narrowing down the combination candidate group by the visibility determination based on the map information shown in step S6 of the flowchart of FIG. 3 will be described below.
  • FIG. 27 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the third embodiment of the present invention.
  • the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height (step S621). For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
  • the map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information.
  • the map visibility determination unit 16 selects one combination candidate for which visibility has not yet been determined from among the obtained combination candidates (step S622).
  • the map visibility determining unit 16 determines visibility on the reference plane between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S623). When it is determined that there is no visibility on the reference plane as a result of the visibility determination (step S623, NO), the map outlook determination unit 16 deletes the selected combination candidate from the acquired combination candidate group (step S624).
  • the map outlook determination unit 16 repeats the operations from step S622 to step S624 until the outlook is determined for all combination candidates included in the acquired combination candidate group (step S625).
  • the flow proceeds to step S7 in the flowchart shown in FIG.
  • the station placement design support device 1 sets a reference plane, which is a horizontal plane with a predetermined height, and determines the line of sight on the reference plane.
  • the station placement design support device 1 can perform a simple line-of-sight determination in the height direction only by determining the line-of-sight on the reference plane, which is a horizontal plane. The determination process can be omitted.
  • the station placement design support device 1 according to the third embodiment of the present invention can appropriately present combination candidates while reducing the amount of calculation, particularly in judging visibility in the height direction. can.
  • the station placement design support device 1 determines the reflection outlook between the candidate installation positions of the base station and the candidate installation positions of the terminal station. It was configured to perform reflection visibility judgment above.
  • the station placement design support device 1 according to the fourth embodiment described below can have a simpler configuration for determination of reflected visibility in the height direction.
  • FIGS. 28 to 30 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention.
  • FIG. 28 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 28 also shows a wall surface position h11-2 which is the end position of one wall surface of the house h11 which is a candidate installation position of the terminal station, a terminal station t11 when installed at the wall surface position h11-2, It is shown.
  • FIG. 28 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • a house h12 exists between the utility pole p11 and the wall surface position 11-2.
  • the map outlook determining unit 16 performs reflection outlook determination on a horizontal plane, it is possible to identify the radio wave propagation path including the reflection by the reflecting surface candidate ⁇ (the wall surface of the house h13). Regarding, it is determined that there is a reflection line of sight on the horizontal plane.
  • the wall surface is positioned as a reflection point. may not exist and there may be no reflected line-of-sight on the vertical cross-section.
  • the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height, and determines reflected outlook on the reference plane.
  • the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
  • FIG. 29 shows the reference plane rp11 set at the height at which the base station b11 is installed.
  • the house h13 whose height is less than the reference plane is a building having a wall surface to be a reflection surface by the map visibility determination unit 16. not recognized to exist.
  • the map outlook determination unit 16 determines that there is no usable reflecting surface between the utility pole p11, which is the candidate installation position of the base station, and the wall surface position h11-1, which is the candidate installation position of the terminal station. It can be recognized that there is no prospect.
  • the station placement design support apparatus 1 of the fourth embodiment performs the reflected line of sight determination on the reference plane, which is a horizontal plane, while considering the height information by setting the reference plane. It is possible to omit the determination of the reflection line of sight on the cross section.
  • FIG. 31 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the fourth embodiment of the present invention.
  • the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height (step S631). For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
  • the map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been made from the acquired combination candidate group (step S632).
  • the map line-of-sight determination unit 16 extracts, on the reference plane, reflection surfaces with line-of-sight from the installation candidate positions of the base stations based on the selected combination candidates (step S633).
  • the map visibility determination unit 16 extracts reflection surfaces with visibility from the installation candidate positions of the terminal stations based on the selected combination candidates on the reference surface (step S634).
  • the map line-of-sight determination unit 16 compares the reflective surface with line of sight from the candidate installation position of the base station extracted in step S633 with the reflective surface with line of sight from the candidate installation position of the terminal station extracted in step S634, Determine if there is a reflective surface with line of sight from both stations (step 635).
  • step S635, NO the map outlook determination unit 16 deletes the selected combination candidate from the acquired combination candidate group. (step S636).
  • the map outlook determination unit 16 repeats the above operations from step S632 to step S636 until the reflected outlook determination is performed for all combination candidates included in the acquired combination candidate group (step S637). If outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S637, YES), the flow proceeds to step S7 of the flowchart shown in FIG.
  • the station placement design support device 1 sets a reference plane, which is a horizontal plane with a predetermined height, and determines the reflection outlook on the reference plane.
  • the station placement design support apparatus 1 can simultaneously perform a simple reflected line of sight determination in the height direction only by determining the reflected line of sight on the reference plane, which is a horizontal plane. It is possible to omit the process of determining the reflected line of sight.
  • the station placement design support device 1 can appropriately present combination candidates while reducing the amount of calculation, particularly in determining the reflection outlook in the height direction. can be done.
  • the station placement design support device 1 sets a horizontal plane having a predetermined height, such as the height at which a base station is installed, as a reference plane, and determines the reflection outlook on the reference plane. It was a configuration to do.
  • the lower the height of the reference plane the greater the number of buildings having wall surfaces that serve as reflecting surfaces. Therefore, it is expected that the number of combination candidates after being narrowed down by the reflected view determination will increase.
  • a station placement design support apparatus 1 according to a fifth embodiment described below adjusts the height of the reference plane so that the number of combination candidates after being narrowed down becomes a desired number.
  • 32 to 35 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention.
  • FIG. 32 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11.
  • FIG. 32 also shows a wall surface position h11-2 which is the end position of one wall surface of the house h11 which is a candidate installation position of the terminal station, a terminal station t11 when installed at the wall surface position h11-2, It is shown.
  • FIG. 32 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
  • FIG. 32 shows reference planes with three different heights.
  • the reference plane rp11 is a horizontal plane at the height of the installation candidate position of the base station b11.
  • the reference plane rp12 is a horizontal plane having a height lower than that of the reference plane rp11.
  • the reference plane rp13 is a horizontal plane with a height lower than that of the reference plane rp12.
  • the height of the house h11 is higher than the reference plane rp11. Also, the height of the house h12 is higher than the reference plane rp12 and lower than the reference plane rp11. Also, the height of the house h13 is higher than the reference plane rp13 and lower than the reference plane rp12. Note that the wall surface position h11-2, which is the installation candidate position of the terminal station t11, is lower than the reference plane rp13.
  • FIG. 33 shows how reflected visibility is determined when the reference plane rp11 is set.
  • the houses h12 and h13, which are lower than the reference plane rp11 are not recognized as buildings having wall surfaces to be reflected. Therefore, when the reference plane rp11 is set, the wall surface of the building that serves as a reflecting surface does not exist, so the map visibility determination unit 16 determines that this combination candidate has no reflected visibility.
  • FIG. 34 shows how reflected visibility is determined when the reference plane rp12 is set.
  • the house h13 whose height is lower than the reference plane rp12 is not recognized as a building having wall surfaces to be reflected.
  • the house h12 which is taller than the reference plane rp12, is recognized as a building that can have a wall surface to be a reflection surface.
  • the utility pole p11, the wall surface position h11-2, and the house h12 there is no wall surface as a reflection surface candidate for the house h12. Determine that there is none.
  • FIG. 35 shows how reflected visibility is determined when the reference plane rp13 is set.
  • houses h12 and h13 which are taller than the reference plane rp13, are recognized as buildings that can have wall surfaces that are objects of reflective surfaces.
  • the map visibility determining unit 16 determines that this combination candidate has a reflected visibility.
  • the station placement design support device 1 of the present embodiment adjusts the height of the reference plane so that the number of combination candidates after the reflection outlook determination is the desired number.
  • FIG. 36 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the fifth embodiment of the present invention.
  • the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height (step S641).
  • the map outlook determining unit 16 sets the reference plane with the highest height among the reference planes with a plurality of heights. For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
  • the map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been made from among the acquired combination candidate group (step S642).
  • the map line-of-sight determination unit 16 extracts a reflecting surface with a line of sight from the installation candidate position of the base station based on the selected combination candidate on the reference plane (step S643).
  • the map visibility determining unit 16 extracts a reflecting surface with visibility from the installation candidate position of the terminal station based on the selected combination candidate on the reference surface (step S644).
  • the map line-of-sight determination unit 16 compares the reflective surface with line of sight from the candidate installation position of the base station extracted in step S643 with the reflective surface with line of sight from the candidate installation position of the terminal station extracted in step S644, It is determined whether there is a reflective surface with line of sight from both stations (step 645).
  • step S645, NO the map outlook determination unit 16 deletes the selected combination candidate from the obtained combination candidate group. (step S646).
  • the map outlook determination unit 16 repeats the above operations from step S642 to step S646 until the reflected outlook determination is performed for all combination candidates included in the acquired combination candidate group (step S647).
  • step S647 When the outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S647: YES), the map outlook determination unit 16 selects the combinations narrowed down by the reflection outlook determination included in the combination candidate group. Count the number of candidates. If the number of combination candidates included in the combination candidate group is less than the predetermined number (step S648, NO), the map outlook determination unit 16 deletes the combination candidate group whose combination candidates have been narrowed down by the reflected outlook determination ( step S649).
  • the map outlook determination unit 16 rereads the combination candidate group before reflection outlook determination is performed, which is stored in the storage unit 30 (step S650). That is, the map outlook determination unit 16 resets the combination candidate group.
  • the map outlook determination unit 16 resets the height of the reference plane to a height that is one step lower (step S651). At this time, the map visibility determination unit 16 regards all combination candidates stored in the storage unit 30 as having yet to determine visibility. As a result, in step S642, all combination candidates again become selection candidates.
  • the map outlook determination unit 16 repeats the operations from step S642 to step S651 until the number of combination candidates included in the combination candidate group narrowed down by the reflection probability determination reaches or exceeds a predetermined number (step S648). If the number of combination candidates included in the combination candidate group is equal to or greater than the predetermined number (step S648, YES), the process proceeds to step S7 of the flowchart shown in FIG.
  • the station placement design support device 1 sets a reference plane, which is a horizontal plane with a predetermined height, and determines the reflection outlook on the reference plane. Then, when the number of combination candidates included in the combination candidate group narrowed down by reflection view determination is less than a predetermined number, the station placement design support device 1 slightly lowers the height of the reference plane, Determines reflected line of sight on the reference surface. The station placement design support device 1 reduces the height of the reference plane little by little until the number of combination candidates included in the combination candidate group narrowed down by reflection outlook determination reaches or exceeds a predetermined number. Repeat the line of sight judgment.
  • the station placement design support device 1 can obtain a combination candidate group consisting of a desired number of combination candidates.
  • the station placement design support device 1 can perform a simple reflected line of sight determination in the height direction at the same time simply by determining the reflected line of sight on the reference plane, which is a horizontal plane, the above-mentioned reflected line of sight on the vertical section It is possible to omit the process of line-of-sight determination.
  • the station placement design support device 1 according to the fifth embodiment of the present invention can appropriately present combination candidates while reducing the amount of calculation, particularly in determining the reflection outlook in the height direction. can be done.
  • millimeter wave radio was used as an example of wireless communication between the base station and the terminal station. Ultra High Frequency) may also be used.
  • the station placement design support device includes the generation section, the first determination section, the second determination section, and the output section.
  • the station placement design support device is the station placement design support device 1 in the embodiment
  • the generation unit is the combination candidate group generation unit 15 in the embodiment
  • the first determination unit is the map outlook determination unit in the embodiment.
  • the second determination unit is the point cloud outlook determination unit 23 in the embodiment
  • the output unit is the combination candidate group output unit 40 in the embodiment.
  • the generating unit is a first combination candidate group that is a set of combinations of installation candidate positions of the first wireless station and installation candidate positions of the second wireless station that communicates with the first wireless station in the evaluation target area.
  • the first radio station is the base station b11 in the embodiment
  • the second radio station is the terminal station t11 in the embodiment
  • the first combination candidate group is stored in the storage section by the combination candidate group generation section 15 in the embodiment.
  • 30 is a combination candidate group stored in .
  • the above-described first determination unit provides, for each combination included in the first combination candidate group, a first determination section including information indicating the planar position and height of an object that is present in the evaluation target area and that can shield or reflect radio waves. Based on the environment information, it is determined whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station.
  • objects that can shield or reflect radio waves are shielding objects such as houses h11 to h18 in the embodiment
  • the first environment information is map information and facility information in the embodiment.
  • the above-mentioned second determination unit selects installation candidates for the first wireless station based on the second environment information having a larger amount of information than the first environment information for each combination determined by the first determination unit to have visibility. It is determined whether or not there is a line of sight between the position and the candidate position for installing the second radio station.
  • the second environment information is point cloud data in the embodiment.
  • the above output unit outputs the second combination candidate group, which is a set of combinations determined to have prospects by the second determination unit.
  • the second combination candidate group is a combination candidate group after the combination candidates are narrowed down by the outlook determination by the map outlook determination unit 16 and the outlook determination by the point cloud outlook determination unit 23 in the embodiment.
  • the above-mentioned first determination unit may determine whether or not there is line of sight, assuming that the above-mentioned object is a columnar object having a height based on the above-mentioned information.
  • the first environmental information may include information regarding the shape of the roof of the object.
  • the above first determination unit may determine whether or not there is visibility in consideration of the shape of the roof.
  • the above first determination unit may determine whether or not there is a line of sight including the reflection of the radio wave by the object that can reflect the radio wave.
  • the first determination unit described above may determine the presence or absence of line of sight based on the shielding rate of the Fresnel zone generated between the first wireless station and the second wireless station.
  • the Fresnel zone is Fresnel zone fz11 in the embodiment.
  • the above-described first determination unit sets a reference plane, which is a horizontal plane of a predetermined height, to the evaluation target area, and determines whether or not there is visibility based on the height of the reference plane and the height of the object. You may do so.
  • the above first determination unit may set the height of the reference plane so that the number of combinations included in the second combination candidate group is equal to or greater than a predetermined number.
  • the station placement design support device 1 in each of the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • Reference Signs List 1 Station placement design support device 11
  • Base station candidate position extraction unit 13 Map information acquisition unit 14
  • Terminal station candidate position extraction unit 15
  • combination candidate group generation unit 16
  • map outlook determination unit 21 ... point cloud data acquisition unit 22
  • data matching unit 23
  • point cloud outlook determination unit 30
  • storage unit 40 ... combination candidate group output unit .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This station site design assisting device comprises: a generation unit that generates a first combination candidate group which is a set of combinations of installation candidate positions for a first wireless station and installation candidate positions for a second wireless station, which performs communication with the first wireless station, in an assessment target area; a first determination unit that, for each of the combinations included in the first combination candidate group, determines whether there is a line-of-sight between an installation candidate position for the first wireless station and an installation candidate position for the second wireless station, on the basis of first environmental information including information indicating the plane position and the height of an object that is present in the assessment target area and that can block or reflect radio waves; a second determination unit that, for each of combinations for which the first determination unit has determined that there is the line-of-sight, determines whether there is a line-of-sight between an installation candidate position for the the first wireless station and an installation candidate position for the the second wireless station, on the basis of second environmental information including a greater amount of information than the first environmental information; and an output unit that outputs a second combination candidate group which is a set of combinations for which the second determination unit has determined that there is the line-of-sight.

Description

置局設計支援装置及び置局設計支援方法Station placement design support device and station placement design support method
 本発明は、置局設計支援装置及び置局設計支援方法に関する。 The present invention relates to a station placement design support device and a station placement design support method.
 電柱から各々の建物へ光回線を引き込むための架空用ケーブルであるドロップケーブルは、配線されてから長期間が経過しているものも少なくない。老朽化したドロップケーブルを新しいものに置き換えるためには多大な作業工数及びコストの発生が見込まれることから、昨今、ドロップケーブルの無線化が広く進められている。ドロップケーブルの無線化のためには、電柱に設置される無線基地局装置の設置位置と、各々の建物に設置される無線端末局装置の設置位置との配置を設計する、例えば以下のような置局設計が必要となる。 Many of the drop cables, which are overhead cables for drawing optical lines from utility poles to each building, have been installed for a long time. Since it is expected that a large amount of man-hours and costs will be incurred in order to replace the old drop cable with a new one, the use of wireless drop cables has been widely promoted in recent years. In order to make the drop cable wireless, design the layout of the installation positions of the wireless base station equipment installed on the utility pole and the installation positions of the wireless terminal station equipment installed in each building. Station placement design is required.
 図40は、通信ネットワーク機器全般の仕様オープン化推進を図るコンソーシアムであるTIP(Telecom Infra Project)(主要メンバ:Facebook, Deutsche Telecom, Intel, NOKIA等)において、mmWave Networksが提案するユースケースを参考に一部を修正して模式化した図である。mmWave Networksは、TIPのプロジェクトグループの1つであり、アンライセンス帯のミリ波無線を使用して、光ファイバの敷設より速く、かつ安価なネットワーク構築を目指している。 Figure 40 is based on a use case proposed by mmWave Networks in TIP (Telecom Infra Project) (main members: Facebook, Deutsche Telecom, Intel, NOKIA, etc.), a consortium that promotes open specifications for communication network equipment in general. It is the figure which modified and modeled a part. mmWave Networks is one of the TIP project groups, and aims to build a network that is faster and cheaper than laying optical fiber using unlicensed band millimeter-wave radio.
 図40に示されるビル800~801、及び住宅810~812等の建物の壁面には、端末局装置(以下、「端末局」という。)がそれぞれ設置されている。また、図40に示される電柱821~826には基地局装置(以下、「基地局」という。)がそれぞれ設置されている。図40に示される、基地局830~834、及び端末局840~844は、mmWave DN(Distribution Node)と呼ばれる装置である。 Terminal station devices (hereinafter referred to as "terminal stations") are installed on the walls of buildings such as buildings 800 to 801 and houses 810 to 812 shown in FIG. Base station devices (hereinafter referred to as “base stations”) are installed on utility poles 821 to 826 shown in FIG. Base stations 830 to 834 and terminal stations 840 to 844 shown in FIG. 40 are devices called mmWave DNs (Distribution Nodes).
 基地局830~834は、光ファイバ900~901により局舎(Fiber PoP(Point of Presence))850~851に備えられた通信装置とそれぞれ接続されている。これらの通信装置は、プロバイダーの通信ネットワークに接続されている。端末局840~844と基地局830~834との間では、mmWave Link、すなわちミリ波無線が行われる。図40では、ミリ波無線のリンクは一点鎖線で示されている。 The base stations 830-834 are connected to communication devices provided in station buildings (Fiber PoP (Point of Presence)) 850-851 via optical fibers 900-901, respectively. These communication devices are connected to the provider's communication network. Between terminal stations 840 to 844 and base stations 830 to 834, mmWave Link, that is, millimeter wave radio is performed. In FIG. 40, a millimeter-wave radio link is indicated by a dashed line.
 基地局830~834を電柱821~826にそれぞれ設置し、端末局840~844を建物の壁面にそれぞれに設置し、両局間をミリ波無線によって通信する通信ネットワークの形態において、基地局830~834及び端末局840~844を設置する候補となる位置を選定することを置局設計という。 In the form of a communication network in which base stations 830 to 834 are installed on utility poles 821 to 826, terminal stations 840 to 844 are installed on the walls of buildings, respectively, and communication is performed between these stations by millimeter wave radio, the base stations 830 to 834 Selection of candidate positions for installing 834 and terminal stations 840 to 844 is called station placement design.
 置局設計を行う手法として空間を撮像することによって得られる3次元の点群データを用いる手法がある。この手法では、例えば、最初に、MMS(Mobile Mapping System)を搭載した車両等の移動体を、住宅エリア等の評価対象エリアの周辺の道路に沿って走行させることにより、3次元の点群データを取得する。次に、取得された点群データを活用して基地局830~834と端末局840~844との間の無線通信を評価する。 There is a method that uses three-dimensional point cloud data obtained by imaging the space as a method for station placement design. In this method, for example, first, a mobile object such as a vehicle equipped with an MMS (Mobile Mapping System) is driven along the roads around the evaluation target area such as a residential area to obtain 3D point cloud data. to get Next, wireless communication between base stations 830-834 and terminal stations 840-844 is evaluated using the acquired point cloud data.
 評価手段として、両局間の3次元での見通し判定を行う手段や、遮蔽率を算出する手段がある。ここで、「遮蔽率」とは、基地局830~834と端末局840~844との間に存在する物体(遮蔽物)が無線通信にどの程度影響するかを示す指標であり、逆の視点からみれば「透過率」ということもできる。このような評価手段を実現するためには、基地局830~834の設置候補位置と端末局840~844の設置候補位置とを含む評価対象エリアに存在する全ての物体についての点群データが揃っている必要がある。 As evaluation means, there are means to determine the line of sight between the two stations in three dimensions, and means to calculate the shielding rate. Here, the “shielding rate” is an index indicating how much an object (shielding object) existing between the base stations 830 to 834 and the terminal stations 840 to 844 affects wireless communication. It can also be called "transmittance". In order to implement such an evaluation means, point cloud data of all objects existing in the evaluation target area including the installation candidate positions of the base stations 830 to 834 and the installation candidate positions of the terminal stations 840 to 844 are prepared. must be
特開2020-107955号公報JP 2020-107955 A 特開2020-113826号公報Japanese Patent Application Laid-Open No. 2020-113826 特開2020-120161号公報Japanese Patent Application Laid-Open No. 2020-120161
 上記のように、電柱に基地局が設置され、建物の壁面に端末局が設置された通信ネットワークによって都市等のエリアをカバーしようとする場合、無線通信事業者は、例えば数百メートル四方の広範囲のエリアを評価対象エリアとして置局設計を行わなければならないことがある。このような場合、もし評価対象エリア内の基地局の設置候補位置(例えば、全ての電柱の位置)と端末局の設置候補位置(例えば、全ての建物の壁面上の少なくとも一か所の位置)との全ての組合せに対して見通し判定処理や遮蔽率の算出処理を行うとするならば、計算量は膨大になる。そのため、評価対象とする両局の設置候補位置の組合せの個数を、現実的な計算時間内で評価を完了させることができる個数になるまで削減させる必要があるという課題があった。 As described above, when attempting to cover an area such as a city by means of a communication network in which base stations are installed on utility poles and terminal stations are installed on the walls of buildings, wireless communication carriers need to cover a wide area, for example, several hundred meters square. There are times when station placement design must be performed with the area of In such a case, if candidate base station installation locations (e.g., all utility pole locations) and terminal station installation candidate locations (e.g., at least one location on the walls of all buildings) within the evaluation target area If the visibility determination process and the shielding rate calculation process are performed for all combinations of , the amount of calculation becomes enormous. Therefore, there is a problem that it is necessary to reduce the number of combinations of installation candidate positions of both stations to be evaluated to a number that allows the evaluation to be completed within a realistic calculation time.
 上記事情に鑑み、本発明は、計算量の増大を抑えつつ、通信局の設置候補位置の組合せを適切に提示することができる技術を提供することを目的としている。 In view of the above circumstances, it is an object of the present invention to provide a technology capable of appropriately presenting a combination of installation candidate positions for communication stations while suppressing an increase in the amount of calculation.
 本発明の一態様は、評価対象エリアにおける、第1無線局の設置候補位置と、前記第1無線局と通信を行う第2無線局の設置候補位置と、の組合せの集合である第1組合せ候補群を生成する生成部と、前記第1組合せ候補群に含まれる前記組合せごとに、前記評価対象エリアに存在する電波を遮蔽又は反射しうる物体の平面上の位置と高さを示す情報を含む第1の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第1判定部と、前記第1判定部によって前記見通しが有ると判定された組合せごとに、前記第1の環境情報より情報量の多い第2の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第2判定部と、前記第2判定部によって前記見通しが有ると判定された組合せの集合である第2組合せ候補群を出力する出力部と、を備える置局設計支援装置である。 One aspect of the present invention is a first combination that is a set of combinations of a candidate installation position of a first radio station and a candidate installation position of a second radio station that communicates with the first radio station in an evaluation target area. a generating unit that generates a group of candidates; and information indicating, for each of the combinations included in the first candidate combination group, the position and height on a plane of an object that is present in the evaluation target area and that can block or reflect radio waves. a first determination unit that determines whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station, based on the first environment information included in the first environment information; For each combination determined to have the prospect, the installation candidate position of the first wireless station and the installation of the second wireless station are based on the second environment information having a larger amount of information than the first environment information. a second determination unit that determines whether or not there is a line of sight to a candidate position; and an output unit that outputs a second combination candidate group, which is a set of combinations determined to have the line of sight by the second determination unit. It is a station placement design support device provided.
 本発明の一態様は、評価対象エリアにおける、第1無線局の設置候補位置と、前記第1無線局と通信を行う第2無線局の設置候補位置と、の組合せの集合である第1組合せ候補群を生成する生成ステップと、前記第1組合せ候補群に含まれる前記組合せごとに、前記評価対象エリアに存在する電波を遮蔽又は反射しうる物体の平面上の位置と高さを示す情報を含む第1の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第1判定ステップと、前記第1判定ステップにおいて前記見通しが有ると判定された組合せごとに、前記第1の環境情報より情報量の多い第2の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第2判定ステップと、前記第2判定ステップにおいて前記見通しが有ると判定された組合せの集合である第2組合せ候補群を出力する出力ステップと、を有する置局設計支援方法である。 One aspect of the present invention is a first combination that is a set of combinations of a candidate installation position of a first radio station and a candidate installation position of a second radio station that communicates with the first radio station in an evaluation target area. a generation step of generating a group of candidates; and information indicating the planar position and height of an object that can block or reflect radio waves existing in the evaluation target area for each of the combinations included in the first combination candidate group. a first determination step of determining whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station, based on the first environmental information included in the first environment information; for each combination determined to have a line of sight, based on the second environment information having a larger amount of information than the first environment information, the installation candidate position of the first wireless station and the installation of the second wireless station a second determination step of determining whether there is a line of sight between the candidate position and an output step of outputting a second combination candidate group, which is a set of combinations determined to have the line of sight in the second determination step; It is a station placement design support method.
 本発明により、計算量の増大を抑えつつ、通信局の設置候補位置の組合せを適切に提示することが可能になる。 According to the present invention, it is possible to appropriately present combinations of candidate installation positions for communication stations while suppressing an increase in the amount of calculation.
本発明の第1の実施形態における置局設計支援装置1の機能構成を示すブロック図である。1 is a block diagram showing a functional configuration of a station placement design support device 1 according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態における置局設計支援装置1の動作を示すフローチャートである。4 is a flow chart showing the operation of the station placement design support device 1 according to the first embodiment of the present invention; 本発明の第1の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。4 is a flowchart showing an example of operation of outlook determination processing by the map outlook determination unit 16 according to the first embodiment of the present invention; 本発明の第1の実施形態の点群見通し判定部23による見通し判定処理の動作の一例を示すフローチャートである。4 is a flow chart showing an example of operation of outlook determination processing by a point cloud outlook determination unit 23 according to the first embodiment of the present invention; 本発明の第1の実施形態における置局設計支援装置1による計算量の削減効果を説明するための図である。FIG. 4 is a diagram for explaining the calculation amount reduction effect of the station placement design support apparatus 1 according to the first embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による水平面上での見通し判定及び反射見通し判定を説明するための図である。FIG. 10 is a diagram for explaining determination of line-of-sight and reflection line-of-sight determination on a horizontal plane by the station placement design support apparatus 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による垂直断面上での見通し判定及び反射見通し判定を説明するための図である。FIG. 11 is a diagram for explaining visibility determination and reflected visibility determination on a vertical section by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。10 is a flow chart showing an example of operation of outlook determination processing by a map outlook determination unit 16 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention; 本発明の第3の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention; 本発明の第3の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention; 本発明の第3の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention; 本発明の第3の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。FIG. 11 is a flow chart showing an example of operation of outlook determination processing by a map outlook determination unit 16 according to the third embodiment of the present invention; FIG. 本発明の第4の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention; 本発明の第4の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention; 本発明の第4の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention; 図31は、本発明の第4の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。FIG. 31 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the fourth embodiment of this invention. 本発明の第5の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention; 本発明の第5の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention; 本発明の第5の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention; 本発明の第5の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention; 本発明の第5の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of operation of outlook determination processing by a map outlook determination unit 16 according to the fifth embodiment of the present invention; FIG. 見通し判定の結果として考えられる4つのケースを説明するための図である。FIG. 4 is a diagram for explaining four possible cases as a result of line-of-sight determination; 水平面上での見通し判定の結果及び垂直断面上での見通し判定の結果と、点群データに基づく見通し判定の対象であるか否かと、の関係を示す図である。FIG. 10 is a diagram showing the relationship between the result of visibility determination on a horizontal plane and the result of visibility determination on a vertical cross section, and whether or not it is an object of visibility determination based on point cloud data. 水平面上での反射見通し判定の結果及び垂直断面上での反射見通し判定の結果と、点群データに基づく見通し判定の対象であるか否かと、の関係を示す図である。FIG. 10 is a diagram showing the relationship between the result of reflected visibility determination on a horizontal plane, the result of reflected visibility determination on a vertical cross section, and whether or not an object is an object of visibility determination based on point cloud data. TIPが提案するユースケースの一例を示す図である。It is a figure which shows an example of the use case which TIP proposes.
 以下、実施形態の置局設計支援装置及び置局設計支援方法について、図面を参照しながら説明する。 The station placement design support device and station placement design support method of the embodiment will be described below with reference to the drawings.
<第1の実施形態>
 以下、第1の実施形態における置局設計支援装置1について説明する。本実施形態の置局設計支援装置1は、電柱に設置される基地局の設置位置と、各々の建物に設置される端末局の設置位置とを決定する置局設計を支援するための装置である。
<First embodiment>
The station placement design support device 1 according to the first embodiment will be described below. A station placement design support device 1 of the present embodiment is a device for supporting station placement design that determines the installation positions of base stations installed on utility poles and the installation positions of terminal stations installed in each building. be.
 置局設計支援装置1は、少なくとも1つの基地局の設置候補位置と少なくとも1つの端末局の設置候補位置との組合せについて、それぞれ通信の可否に関する判定を行う。本実施形態では、置局設計支援装置1は、基地局の設置候補位置と端末局の設置候補位置との間の、見通しの有無の判定又は遮蔽率の算出によって、通信の可否に関する判定を行う。 The station placement design support device 1 determines whether or not communication is possible for each combination of at least one base station candidate installation position and at least one terminal station candidate installation position. In this embodiment, the station placement design support apparatus 1 determines whether or not communication is possible by determining whether or not there is a line of sight between the candidate installation positions of the base station and the candidate installation positions of the terminal stations, or by calculating the shielding rate. .
 ここでいう見通しの有無とは、基地局の設置候補位置と端末局の設置候補位置とにそれぞれ基地局と端末局とが設置された場合において、基地局と端末局との間で送受信される電波の伝搬経路に当該電波の伝搬を遮る遮蔽物が存在するか否かを表す。基地局と端末局との間の電波の伝搬経路に当該電波を遮蔽する遮蔽物が存在しない場合には、「見通しが有る」といい、基地局と端末局との間の電波の伝搬経路に当該電波を遮蔽する遮蔽物が存在する場合には、「見通しが無い」という。 Here, the presence or absence of line of sight means that when the base station and the terminal station are installed at the candidate installation position of the base station and the candidate installation position of the terminal station, transmission and reception are performed between the base station and the terminal station. It indicates whether or not there is a shield that blocks the propagation of the radio wave on the propagation path of the radio wave. If there is no obstruction that blocks the radio waves on the radio wave propagation path between the base station and the terminal station, it is said to be "line-of-sight", and the radio wave propagation path between the base station and the terminal station is said to be "line-of-sight." If there is a shield that shields the radio waves, it is said to be "no line of sight".
 以下、見通しの有無の判定及び遮蔽率の算出による通信の可否の判定を総称して、「見通し判定」という。置局設計支援装置1は、見通し判定によって特定された両局の設置候補位置の適切な組合せ候補の集合(以下、「組合せ候補群」という。)を提示することにより、置局設計支援を行う。  Hereinafter, the determination of whether or not there is a line of sight and the determination of whether or not communication is possible based on the calculation of the shielding rate are collectively referred to as "line of sight determination". The station placement design support apparatus 1 provides station placement design support by presenting a set of appropriate combination candidates (hereinafter referred to as "combination candidate group") of the installation candidate positions of both stations specified by the line-of-sight determination. .
 なお、置局設計支援装置1による置局設計支援によって提示された組合せ候補群は、後段の置局設計において用いられる。置局設計を行う置局設計装置は、置局設計支援装置1によって提示された組合せ候補群に含まれる組合せ候補の各々について、例えば電波伝搬シミュレーション等を行うことによって通信状態の評価を行う。置局設計装置は、評価結果に基づいて、基地局の設置位置と端末局の設置位置とを決定する。 It should be noted that the combination candidate group presented by station placement design support by the station placement design support device 1 is used in the subsequent station placement design. The station placement design device that designs the station placement evaluates the communication state of each of the combination candidates included in the combination candidate group presented by the station placement design support device 1 by performing, for example, radio wave propagation simulation. The station placement design device determines the installation positions of the base stations and the installation positions of the terminal stations based on the evaluation results.
 置局設計支援装置1は、まず、評価対象エリア内に存在する遮蔽物等の物体の位置を表す低密度なデータを用いて見通し判定を行うことにより、事前に組合せ候補群の絞り込みを行う。ここでいう遮蔽物とは、基地局と端末局との間で送受信される電波の伝搬を遮る可能性がある物体である。遮蔽物には、例えば、住戸及びビル等の建物(建築物)、住宅の塀及び高架道路等の構造物、道路標識及び看板等の工作物、街路樹及び庭木等の植物、及び隆起した地面等の、電波の伝搬を遮断しうる全ての物体が含まれる。 The station placement design support device 1 first narrows down the combination candidate group in advance by performing visibility determination using low-density data representing the positions of objects such as shields existing in the evaluation target area. The shield here is an object that may block the propagation of radio waves transmitted and received between the base station and the terminal station. Examples of shields include buildings (buildings) such as dwelling units and buildings, structures such as residential walls and elevated roads, structures such as road signs and signboards, plants such as roadside trees and garden trees, and raised ground. All objects that can block the propagation of radio waves are included.
 低密度なデータ(第1の環境情報)とは、相対的に情報量の少ないデータであり、本実施形態では、建物の水平面上の(2次元の)輪郭を示す情報に、当該建物の高さ情報が付与された、3次元の地図情報(以下、単に「地図情報」という。)である。本実施形態における高さ情報とは、各々の建物の最高点の高さを示す情報である。 Low-density data (first environmental information) is data with a relatively small amount of information. It is three-dimensional map information (hereinafter simply referred to as "map information") to which the height information is added. Height information in this embodiment is information indicating the height of the highest point of each building.
 本実施形態における地図情報は、MMS等によって得られた点群データ(以下、単に「点群データ」という。)に基づいて生成された地図ではなく、例えば地図制作業者によって(例えば、測量等によって)制作された住宅地図等の一般的な地図に基づく情報である。したがって、本実施形態における地図情報には、例えば、建物の輪郭と高さとを示す情報は含まれているが、建物以外の物体(例えば上記の構造物、工作物、及び植物等)の位置に関する情報は含まれていないことがある。低密度なデータを用いた見通し判定では、判定精度は相対的に低くなるが、判定処理にかかる計算量が相対的に少なくなる。 The map information in this embodiment is not a map generated based on point cloud data (hereinafter simply referred to as "point cloud data") obtained by MMS or the like, but is generated by a map creator (for example, surveying). ) is information based on general maps such as produced residential maps. Therefore, the map information in the present embodiment includes, for example, information indicating the outline and height of buildings, but does not relate to the positions of objects other than buildings (for example, the above-mentioned structures, structures, plants, etc.). Information may not be included. In outlook determination using low-density data, determination accuracy is relatively low, but the amount of calculation required for determination processing is relatively small.
 その後、置局設計支援装置1は、低密度なデータに基づく見通し判定によって絞り込みがなされた組合せ候補の各々について、評価対象エリア内に存在する遮蔽物等の物体の位置を表す高密度なデータを用いて見通し判定を行う。 After that, the station placement design support apparatus 1 generates high-density data representing the positions of objects such as shields existing in the evaluation target area for each of the combination candidates narrowed down by the visibility determination based on the low-density data. Use it to determine line of sight.
 高密度なデータ(第2の環境情報)とは、相対的に情報量の多いデータであり、本実施形態では、例えばMMS等によって得られた3次元の点群データである。点群データには、建物だけでなく、上記の地図情報には含まれていない建物以外の物体を含んだ、遮蔽物となりうる全ての物体の3次元の位置を示す情報が含まれている。したがって、点群データは、上記の地図情報と比べて、はるかに情報量の多いデータである。高密度なデータを用いた見通し判定では、判定精度は相対的に高くなるが、判定処理にかかる計算量は相対的に多くなる。 High-density data (second environmental information) is data with a relatively large amount of information, and in this embodiment, is three-dimensional point cloud data obtained by MMS or the like, for example. The point cloud data includes information indicating the three-dimensional positions of all objects that can be shields, including not only buildings but objects other than buildings that are not included in the above map information. Therefore, the point cloud data has much more information than the above map information. In line-of-sight determination using high-density data, determination accuracy is relatively high, but the amount of calculation required for determination processing is relatively large.
 このように、本実施形態の置局設計支援装置1は、事前に低密度なデータを用いて見通し判定を行うことで、通信可能である見込みが低い両局の設置候補位置の組合せ候補を予め除外する。その後、置局設計支援装置1は、絞り込まれた組合せ候補のみについて、高密度なデータを用いて詳細な見通し判定を行う。これにより、置局設計支援装置1は、判定精度の低下を抑えつつ、より少ない計算量で、基地局の設置候補位置と端末局の設置候補位置との適切な組合せ候補群を提示することができる。 In this way, the station placement design support apparatus 1 of the present embodiment performs line-of-sight determination in advance using low-density data, so that combination candidates of installation candidate positions of both stations with a low possibility of being able to communicate are determined in advance. exclude. After that, the station placement design support device 1 performs detailed outlook determination using high-density data only for the narrowed-down combination candidates. As a result, the station placement design support apparatus 1 can present a group of suitable combination candidates of the candidate installation positions of the base stations and the candidate installation positions of the terminal stations with a smaller amount of calculation while suppressing deterioration in determination accuracy. can.
[置局設計支援装置の機能構成]
 以下、置局設計支援装置1の機能構成について説明する。図1は、本発明の第1の実施形態の置局設計支援装置1の機能構成を示すブロック図である。
[Functional configuration of station placement design support device]
The functional configuration of the station placement design support device 1 will be described below. FIG. 1 is a block diagram showing the functional configuration of a station placement design support device 1 according to the first embodiment of the present invention.
 図1に示されるように、置局設計支援装置1は、設備情報取得部11と、基地局候補位置抽出部12と、地図情報取得部13と、端末局候補位置抽出部14と、組合せ候補群生成部15と、地図見通し判定部16と、点群データ取得部21と、データ整合部22と、点群見通し判定部23と、記憶部30と、組合せ候補群出力部40と、を含んで構成される。置局設計支援装置1は、例えば汎用コンピュータ等の情報処理装置である。 As shown in FIG. 1, the station placement design support apparatus 1 includes a facility information acquisition unit 11, a base station candidate position extraction unit 12, a map information acquisition unit 13, a terminal station candidate position extraction unit 14, a combination candidate A group generation unit 15, a map outlook determination unit 16, a point cloud data acquisition unit 21, a data matching unit 22, a point cloud outlook determination unit 23, a storage unit 30, and a combination candidate group output unit 40. consists of The station placement design support device 1 is, for example, an information processing device such as a general-purpose computer.
 設備情報取得部11は、例えば外部の装置等から設備情報を取得する。ここでいう設備情報とは、例えば基地局を設置可能な電柱等の、屋外設備の平面位置及び高さを示す情報が含まれる。設備情報取得部11は、取得された設備情報を基地局候補位置抽出部12へ出力する。 The facility information acquisition unit 11 acquires facility information from, for example, an external device. The equipment information here includes information indicating the planar position and height of outdoor equipment such as a utility pole on which a base station can be installed. The facility information acquisition unit 11 outputs the acquired facility information to the base station candidate position extraction unit 12 .
 なお、ここでいう「平面位置」とは、高さ方向(垂直方向)の座標を含まない、2次元の座標のことをいう。また、以下の説明では、特に断りのない限り、「位置」とは、高さ方向(垂直方向)の座標を含む3次元の座標のことをいう。 The "planar position" here refers to two-dimensional coordinates that do not include coordinates in the height direction (vertical direction). Further, in the following description, unless otherwise specified, "position" refers to three-dimensional coordinates including coordinates in the height direction (vertical direction).
 なお、設備情報取得部11は、設備情報を、外部の記憶装置から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、設備情報が記憶部30に予め記憶されており、設備情報取得部11は、記憶部30から設備情報を取得する構成であってもよい。 Note that the facility information acquisition unit 11 may acquire facility information from an external storage device or from an external device via a communication network. Alternatively, the facility information may be stored in the storage section 30 in advance, and the facility information acquisition section 11 may acquire the facility information from the storage section 30 .
 基地局候補位置抽出部12は、設備情報取得部11から出力された設備情報を取得する。基地局候補位置抽出部12は、取得された設備情報に基づいて、基地局の設置候補位置を抽出する。基地局候補位置抽出部12は、抽出された基地局の設置候補位置を示す情報及び設備情報を組合せ候補群生成部15へ出力する。 The base station candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11. The base station candidate position extraction unit 12 extracts installation candidate positions of base stations based on the acquired equipment information. The base station candidate position extraction unit 12 outputs information indicating the extracted installation candidate positions of the base stations and facility information to the combination candidate group generation unit 15 .
 地図情報取得部13は、例えば外部の装置等から地図情報を取得する。ここでいう地図情報とは、例えば住宅及びビル等の、建物の輪郭の平面位置及び高さを示す情報が含まれる。地図情報取得部13は、取得された地図情報を、端末局候補位置抽出部14及びデータ整合部22へ出力する。 The map information acquisition unit 13 acquires map information from, for example, an external device. The map information here includes, for example, information indicating the planar position and height of outlines of buildings such as houses and buildings. The map information acquisition unit 13 outputs the acquired map information to the terminal station candidate position extraction unit 14 and the data matching unit 22 .
 なお、地図情報取得部13は、地図情報を、外部の記憶装置から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、地図情報が記憶部30に予め記憶されており、地図情報取得部13は、記憶部30から地図情報を取得する構成であってもよい。 Note that the map information acquisition unit 13 may acquire map information from an external storage device, or may acquire map information from an external device via a communication network. Alternatively, the map information may be stored in the storage unit 30 in advance, and the map information acquisition unit 13 may acquire the map information from the storage unit 30 .
 端末局候補位置抽出部14は、地図情報取得部13から出力された地図情報を取得する。端末局候補位置抽出部14は、取得された地図情報に基づいて、端末局の設置候補位置を抽出する。端末局候補位置抽出部14は、抽出された端末局の設置候補位置を示す情報及び地図情報を組合せ候補群生成部15へ出力する。 The terminal station candidate position extraction unit 14 acquires map information output from the map information acquisition unit 13 . The terminal station candidate position extraction unit 14 extracts installation candidate positions of the terminal station based on the acquired map information. The terminal station candidate position extraction unit 14 outputs information indicating the extracted installation candidate positions of the terminal stations and map information to the combination candidate group generation unit 15 .
 組合せ候補群生成部15(生成部)は、基地局候補位置抽出部12によって抽出された基地局の設置候補位置を示す情報及び設備情報を取得する。また、組合せ候補群生成部15は、端末局候補位置抽出部14によって抽出された端末局の設置候補位置を示す情報及び地図情報を取得する。組合せ候補群生成部15は、取得された情報に基づく、基地局(第1無線局)の設置候補位置と端末局(第2無線局)の設置候補位置とに基づいて、両局の設置候補位置の組合せの候補の集合(第1組合せ候補群)を生成する。組合せ候補群生成部15は、生成された組合せ候補群を示す情報、設備情報、及び地図情報を記憶部30に記憶させる。 The combination candidate group generating unit 15 (generating unit) acquires information indicating the installation candidate positions of the base stations extracted by the base station candidate position extracting unit 12 and facility information. Further, the combination candidate group generation unit 15 acquires information indicating the installation candidate positions of the terminal stations extracted by the terminal station candidate position extraction unit 14 and map information. Based on the acquired information, the combination candidate group generation unit 15 generates installation candidates for both stations based on the candidate installation positions of the base station (first wireless station) and the candidate installation positions of the terminal station (second wireless station). A set of position combination candidates (first combination candidate group) is generated. The combination candidate group generation unit 15 causes the storage unit 30 to store information indicating the generated combination candidate group, facility information, and map information.
 地図見通し判定部16(第1判定部)は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の各々について、見通し判定を行う。前述の通り、本実施形態における見通し判定とは、基地局と端末局との間の、見通しの有無の判定又は遮蔽率の算出に基づく、通信の可否の判定である。なお、地図見通し判定部16による見通し判定の処理の詳細については、後述される。 The map outlook determination unit 16 (first determination unit) acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map visibility determination unit 16 performs visibility determination for each of the acquired combination candidate groups. As described above, the line-of-sight determination in the present embodiment is a determination of whether or not communication is possible based on the determination of the presence or absence of line-of-sight between the base station and the terminal station or the calculation of the shielding rate. The details of the outlook determination processing by the map outlook determination unit 16 will be described later.
 地図見通し判定部16は、通信可能と判定された組合せ候補のみを抽出する。地図見通し判定部16は、記憶部30に記憶された組合せ候補群を、地図情報を用いた判定によって通信可能と判定された組合せ候補群によって上書き更新する。なお、地図見通し判定部16は、上記のように上書き更新をする代わりに、記憶部30に記憶された組合せ候補群に含まれる組合せ候補の各々について、見通し有りと判定されたか否かを示す情報(例えば、見通し判定結果フラグ)をそれぞれ付与するようにしてもよい。 The map outlook determination unit 16 extracts only combination candidates determined to be communicable. The map outlook determination unit 16 overwrites and updates the combination candidate group stored in the storage unit 30 with the combination candidate group determined to be communicable by the determination using the map information. In addition, instead of performing overwriting update as described above, the map outlook determination unit 16 provides information indicating whether or not each of the combination candidates included in the combination candidate group stored in the storage unit 30 has been determined to have a view. (For example, a visibility determination result flag) may be assigned to each.
 点群データ取得部21は、例えば外部の装置等から点群データを取得する。ここでいう点群データとは、空間を撮像することによって得られる3次元の点群データである。例えば、点群データは、MMSを搭載した車両等の移動体を評価対象の住宅エリア周辺の道路に沿って走行させることによって得られたものである。設備情報取得部11は、取得された点群データをデータ整合部22へ出力する。 The point cloud data acquisition unit 21 acquires point cloud data, for example, from an external device or the like. The point cloud data referred to here is three-dimensional point cloud data obtained by imaging a space. For example, the point cloud data is obtained by driving a mobile object such as a vehicle equipped with an MMS along a road around a residential area to be evaluated. The facility information acquisition unit 11 outputs the acquired point cloud data to the data matching unit 22 .
 なお、点群データ取得部21は、点群データを、外部の記憶装置から取得してもよいし、外部の装置から通信ネットワークを介して取得してもよい。あるいは、点群データが記憶部30に予め記憶されており、点群データ取得部21は、記憶部30から点群データを取得する構成であってもよい。 Note that the point cloud data acquisition unit 21 may acquire the point cloud data from an external storage device or from an external device via a communication network. Alternatively, point cloud data may be stored in the storage unit 30 in advance, and the point cloud data acquisition unit 21 may acquire the point cloud data from the storage unit 30 .
 データ整合部22は、地図情報取得部13から出力された地図情報を取得する。また、データ整合部22は、点群データ取得部21から出力された点群データを取得する。データ整合部22は、地図情報の座標系と点群データの座標系との整合を図り、地図情報に含まれる位置(座標)と点群データに含まれる位置(座標)とを整合させる。データ整合部22は、必要に応じて、記憶部30に記憶された組合せ候補群に含まれる位置を、点群データの座標系に基づく位置となるように補正する。データ整合部22は、取得された点群データを記憶部30に記憶させる。 The data matching unit 22 acquires the map information output from the map information acquiring unit 13. The data matching unit 22 also acquires the point cloud data output from the point cloud data acquiring unit 21 . The data matching unit 22 matches the coordinate system of the map information and the coordinate system of the point cloud data, and matches the positions (coordinates) included in the map information and the positions (coordinates) included in the point cloud data. The data matching unit 22 corrects the positions included in the combination candidate group stored in the storage unit 30 as necessary so that the positions are based on the coordinate system of the point cloud data. The data matching unit 22 causes the storage unit 30 to store the acquired point cloud data.
 なお、一般的には、地図情報の座標系と点群データの座標系には、例えば世界測地系等の共通の座標系が用いられている場合が多いため、データ整合部22による座標の整合処理を必要としない場合が多いと考えられる。 In general, since a common coordinate system such as the world geodetic system is often used for the coordinate system of the map information and the coordinate system of the point cloud data, the coordinate matching by the data matching unit 22 is performed. It is considered that there are many cases in which no treatment is required.
 点群見通し判定部23(第2判定部)は、記憶部30に記憶された組合せ候補群を示す情報、及び点群データを取得する。点群見通し判定部23は、取得された組合せ候補の各々について、見通し判定を行う。前述の通り、本実施形態における見通し判定とは、基地局と端末局との間の、見通しの有無の判定又は遮蔽率の算出に基づく、通信の可否の判定である。なお、点群見通し判定部23による見通し判定の処理には、任意の従来技術を用いることができる。 The point cloud outlook determination unit 23 (second determination unit) acquires information indicating the combination candidate group stored in the storage unit 30 and point cloud data. The point cloud view determination unit 23 performs view determination for each of the acquired combination candidates. As described above, the line-of-sight determination in the present embodiment is a determination of whether or not communication is possible based on the determination of the presence or absence of line-of-sight between the base station and the terminal station or the calculation of the shielding rate. Any conventional technology can be used for the outlook determination processing by the point cloud outlook determination unit 23 .
 点群見通し判定部23は、通信可能と判定された組合せ候補のみを抽出する。地図見通し判定部16は、記憶部30に記憶された組合せ候補群を、点群データを用いた判定によって通信可能と判定された組合せ候補群によって上書き更新する。なお、点群見通し判定部23は、上記のように上書き更新をする代わりに、記憶部30に記憶された組合せ候補の各々について、見通し有理と判定されたか否かを示す情報(例えば、見通し判定結果フラグ)をそれぞれ更新するようにしてもよい。 The point cloud outlook determination unit 23 extracts only combination candidates determined to be communicable. The map outlook determination unit 16 overwrites and updates the combination candidate group stored in the storage unit 30 with the combination candidate group determined to be communicable by the determination using the point cloud data. Note that, instead of overwriting and updating as described above, the point cloud outlook determination unit 23 provides information indicating whether or not the outlook is determined to be rational for each of the combination candidates stored in the storage unit 30 (for example, outlook determination result flag) may be updated.
 記憶部30は、上記の、組合せ候補群、設備情報、地図情報、及び点群データを記憶する。なお、記憶部30は、全ての設備情報、全ての地図情報、及び全ての点群データを記憶する必要はなく、少なくとも地図見通し判定部16による判定処理に必要となる設備情報及び地図情報と、少なくとも点群見通し判定部23による判定処理に必要となる点群データとを記憶していればよい。 The storage unit 30 stores the combination candidate group, facility information, map information, and point cloud data described above. Note that the storage unit 30 does not need to store all the facility information, all the map information, and all the point cloud data. At least the point cloud data necessary for the determination processing by the point cloud outlook determination unit 23 should be stored.
 記憶部30は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory;読み書き可能なメモリ)、ROM(Read Only Memory;読み出し専用メモリ)等の記憶媒体、又は、これらの記憶媒体の任意の組み合わせによって構成される。 The storage unit 30 includes, for example, a HDD (Hard Disk Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write Memory), ROM (Read Only Memory). memory), or any combination of these storage media.
 なお、例えば、基地局候補位置抽出部12、端末局候補位置抽出部14、組合せ候補群生成部15、地図見通し判定部16、データ整合部22、及び点群見通し判定部23は、1つの制御部(不図示)の構成要素として構成されてもよい。この場合、制御部は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。あるいは、制御部は、ソフトウェアとハードウェアの協働によって実現されてもよい。CPUによって読み出されるプログラムは、例えば、予め置局設計支援装置1が備える記憶部30等の記憶媒体に格納されていてもよい。 Note that, for example, the base station candidate position extraction unit 12, the terminal station candidate position extraction unit 14, the combination candidate group generation unit 15, the map outlook determination unit 16, the data matching unit 22, and the point cloud outlook determination unit 23 are one control unit. It may be configured as a component of a unit (not shown). In this case, the controller is implemented by a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Alternatively, the control unit may be realized by cooperation of software and hardware. The program read by the CPU may be stored in advance in a storage medium such as the storage unit 30 provided in the station placement design support apparatus 1, for example.
 組合せ候補群出力部40(出力部)は、組合せ候補群生成部15によって生成された組合せ候補群であって、その後、地図見通し判定部16による判定処理及び点群見通し判定部23による判定処理によって絞り込みがなされた組合せ候補群(第2組合せ候補群)を示す情報を記憶部30から取得する。組合せ候補群出力部40は、取得された組合せ候補群を示す情報を外部の装置へ出力する。 A combination candidate group output unit 40 (output unit) is a combination candidate group generated by the combination candidate group generation unit 15, and then determined by the map outlook determination unit 16 and the point cloud outlook determination unit 23. Information indicating the narrowed-down combination candidate group (second combination candidate group) is acquired from the storage unit 30 . The combination candidate group output unit 40 outputs information indicating the acquired combination candidate group to an external device.
 組合せ候補群出力部40は、例えば、組合せ候補群を示す情報を外部の装置へ出力するための通信インターフェースを含んで構成される。なお、組合せ候補群出力部40は、組合せ候補群を表示させる表示部として機能するものであってもよい。この場合、組合せ候補群出力部40は、例えば液晶ディスプレイ(LCD)又は有機EL(Electroluminescence)ディスプレイ等の表示装置を含んで構成される。 The combination candidate group output unit 40 includes, for example, a communication interface for outputting information indicating the combination candidate group to an external device. The combination candidate group output unit 40 may function as a display unit that displays the combination candidate group. In this case, the combination candidate group output unit 40 includes a display device such as a liquid crystal display (LCD) or an organic EL (Electroluminescence) display.
[置局設計支援装置の動作]
 以下、第1の実施形態における置局設計支援装置1の動作の一例について説明する。図2は、本発明の第1の実施形態における置局設計支援装置1の動作を示すフローチャートである。
[Operation of station placement design support device]
An example of the operation of the station placement design support apparatus 1 according to the first embodiment will be described below. FIG. 2 is a flow chart showing the operation of the station placement design support device 1 according to the first embodiment of the present invention.
 設備情報取得部11は、例えば外部の装置等から設備情報を取得する(ステップS1)。設備情報取得部11は、取得された設備情報を基地局候補位置抽出部12へ出力する。 The facility information acquisition unit 11 acquires facility information from, for example, an external device (step S1). The facility information acquisition unit 11 outputs the acquired facility information to the base station candidate position extraction unit 12 .
 地図情報取得部13は、例えば外部の装置等から地図情報を取得する。地図情報取得部13は、取得された地図情報を、端末局候補位置抽出部14及びデータ整合部22へ出力する(ステップS2)。 The map information acquisition unit 13 acquires map information from, for example, an external device. The map information acquisition unit 13 outputs the acquired map information to the terminal station candidate position extraction unit 14 and the data matching unit 22 (step S2).
 基地局候補位置抽出部12は、設備情報取得部11から出力された設備情報を取得する。基地局候補位置抽出部12は、取得された設備情報に基づいて、基地局の設置候補位置を抽出する(ステップS3)。基地局候補位置抽出部12は、抽出された基地局の設置候補位置を示す情報及び設備情報を組合せ候補群生成部15へ出力する。 The base station candidate position extraction unit 12 acquires the facility information output from the facility information acquisition unit 11. The base station candidate position extraction unit 12 extracts installation candidate positions of the base station based on the acquired equipment information (step S3). The base station candidate position extraction unit 12 outputs information indicating the extracted installation candidate positions of the base stations and facility information to the combination candidate group generation unit 15 .
 端末局候補位置抽出部14は、地図情報取得部13から出力された地図情報を取得する。端末局候補位置抽出部14は、取得された地図情報に基づいて、端末局の設置候補位置を抽出する(ステップS4)。端末局候補位置抽出部14は、抽出された端末局の設置候補位置を示す情報及び地図情報を組合せ候補群生成部15へ出力する。 The terminal station candidate position extraction unit 14 acquires map information output from the map information acquisition unit 13 . The terminal station candidate position extraction unit 14 extracts installation candidate positions of the terminal station based on the acquired map information (step S4). The terminal station candidate position extraction unit 14 outputs information indicating the extracted installation candidate positions of the terminal stations and map information to the combination candidate group generation unit 15 .
 組合せ候補群生成部15は、基地局候補位置抽出部12によって抽出された基地局の設置候補位置を示す情報及び設備情報を取得する。また、組合せ候補群生成部15は、端末局候補位置抽出部14によって抽出された端末局の設置候補位置を示す情報及び地図情報を取得する。組合せ候補群生成部15は、取得された情報に基づく、基地局の設置候補位置と端末局の設置候補位置とに基づいて、両局の設置候補位置の組合せの候補の集合である組合せ候補群を生成する(ステップS5)。組合せ候補群生成部15は、生成された組合せ候補群を示す情報、設備情報、及び地図情報を記憶部30に記憶させる。 The combination candidate group generation unit 15 acquires information indicating the installation candidate positions of the base stations extracted by the base station candidate position extraction unit 12 and facility information. Further, the combination candidate group generation unit 15 acquires information indicating the installation candidate positions of the terminal stations extracted by the terminal station candidate position extraction unit 14 and map information. A combination candidate group generation unit 15 generates a combination candidate group, which is a set of candidates for a combination of the candidate installation positions of the base station and the candidate installation positions of the terminal station, based on the acquired information. is generated (step S5). The combination candidate group generation unit 15 causes the storage unit 30 to store information indicating the generated combination candidate group, facility information, and map information.
 地図見通し判定部16は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の各々について、見通し判定を行う。地図見通し判定部16は、見通しが有ると判定された組合せ候補のみを抽出することにより、地図情報に基づく見通し判定による組合せ候補群の絞り込みを行う(ステップS6)。 The map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map visibility determination unit 16 performs visibility determination for each of the acquired combination candidate groups. The map outlook determination unit 16 narrows down the combination candidate group by the outlook determination based on the map information by extracting only the combination candidates determined to have visibility (step S6).
 地図見通し判定部16は、地図情報に基づいて絞り込まれた組合せ候補群を示す情報を記憶部30に出力する(ステップS7)。これにより、記憶部30に記憶された組合せ候補群が、地図情報を用いた見通し判定によって見通しが有ると判定された組合せ候補からなる組合せ候補群によって上書き更新される。なお、地図見通し判定部16は、地図情報に基づいて絞り込まれた組合せ候補群を示す情報を外部の装置に出力するようにしてもよい。なお、ステップS6の動作の詳細については、後に図3を参照しながら説明する。 The map outlook determination unit 16 outputs information indicating the combination candidate group narrowed down based on the map information to the storage unit 30 (step S7). As a result, the combination candidate group stored in the storage unit 30 is overwritten and updated with the combination candidate group made up of the combination candidates determined to have visibility by the visibility determination using the map information. Note that the map outlook determination unit 16 may output information indicating a combination candidate group narrowed down based on the map information to an external device. Details of the operation of step S6 will be described later with reference to FIG.
 データ整合部22には、上記ステップS7において出力された、地図情報に基づいて絞り込まれた組合せ候補群と、当該組合せ候補群に含まれる、基地局の設置候補位置及び端末局の設置候補位置の座標と、を示す情報が記憶部30から入力される(ステップS8)。なお、当該情報は、外部の装置からデータ整合部22に入力される構成であってもよい。 The data matching unit 22 receives the combination candidate group narrowed down based on the map information output in step S7, and the base station installation candidate positions and the terminal station installation candidate positions included in the combination candidate group. Information indicating the coordinates is input from the storage unit 30 (step S8). Note that the information may be input to the data matching unit 22 from an external device.
 なお、例えば置局設計支援装置1は、上記の地図情報に基づく見通し判定を行う装置と、下記の点群データに基づく見通し判定を行う装置と、を別々に有する装置であってもよい。なお、図2のフローチャートでは、地図情報に基づく見通し判定と、点群データに基づく見通し判定とが、一連の動作の中で行われている。但し、地図情報に基づく見通し判定と、点群データに基づく見通し判定とが、それぞれ別々に実行されてもよい。 It should be noted that, for example, the station placement design support device 1 may be a device that separately has a device that performs visibility determination based on the above map information and a device that performs visibility determination based on the point cloud data described below. In addition, in the flowchart of FIG. 2, the visibility determination based on the map information and the visibility determination based on the point cloud data are performed in a series of operations. However, the outlook determination based on the map information and the outlook determination based on the point cloud data may be performed separately.
 点群データ取得部21は、例えば外部の装置等から点群データを取得する(ステップS9)。点群データ取得部21は、取得された点群データをデータ整合部22へ出力する。 The point cloud data acquisition unit 21 acquires point cloud data from, for example, an external device (step S9). The point cloud data acquisition unit 21 outputs the acquired point cloud data to the data matching unit 22 .
 データ整合部22は、点群データ取得部21から出力された点群データを取得する。データ整合部22は、地図情報の座標系と点群データの座標系との整合を図り、地図情報に含まれる位置(座標)と点群データに含まれる位置(座標)とを整合させる。データ整合部22は、取得された点群データを記憶部30に記憶させる。 The data matching unit 22 acquires the point cloud data output from the point cloud data acquisition unit 21. The data matching unit 22 matches the coordinate system of the map information and the coordinate system of the point cloud data, and matches the positions (coordinates) included in the map information and the positions (coordinates) included in the point cloud data. The data matching unit 22 causes the storage unit 30 to store the acquired point cloud data.
 点群見通し判定部23は、記憶部30に記憶された組合せ候補群を示す情報、及び点群データを取得する。点群見通し判定部23は、取得された組合せ候補群に含まれる組合せ候補の各々について、見通し判定を行う。点群見通し判定部23は、見通しが有ると判定された組合せ候補のみを抽出する。地図見通し判定部16は、記憶部30に記憶された組合せ候補群を、点群データを用いた見通し判定によって見通しが有ると判定された組合せ候補からなる組合せ候補群によって上書き更新することにより、組合せ候補の絞り込みを行う(ステップS10)。なお、ステップS10の動作の詳細については、後に図4を参照しながら説明する。 The point cloud outlook determining unit 23 acquires information indicating the combination candidate group stored in the storage unit 30 and point cloud data. The point cloud view determination unit 23 performs view determination for each of the combination candidates included in the acquired combination candidate group. The point cloud visibility determination unit 23 extracts only combination candidates determined to have visibility. The map outlook determination unit 16 overwrites and updates the combination candidate group stored in the storage unit 30 with the combination candidate group consisting of the combination candidates determined to have visibility by the outlook determination using the point cloud data. The candidates are narrowed down (step S10). Details of the operation of step S10 will be described later with reference to FIG.
 組合せ候補群出力部40は、地図見通し判定部16による見通し判定及び点群見通し判定部23による見通し判定によって組合せ候補の絞り込みがなされた組合せ候補群を示す情報を記憶部30から取得する。組合せ候補群出力部40は、取得された組合せ候補群を示す情報を外部の装置へ出力する(ステップS11)。以上で、図2のフローチャートが示す置局設計支援装置1の動作が終了する。 The combination candidate group output unit 40 acquires from the storage unit 30 information indicating the combination candidate group narrowed down by the outlook determination by the map outlook determination unit 16 and the outlook determination by the point cloud outlook determination unit 23 . The combination candidate group output unit 40 outputs information indicating the acquired combination candidate group to an external device (step S11). Thus, the operation of the station placement design support device 1 shown in the flowchart of FIG. 2 is completed.
 以下、図2に示されるフローチャートのステップS6における、地図見通し判定部16の動作についてさらに詳しく説明する。図3は、本発明の第1の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。 The operation of the map outlook determination unit 16 in step S6 of the flowchart shown in FIG. 2 will be described in more detail below. FIG. 3 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the first embodiment of the present invention.
 地図見通し判定部16は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の中から、まだ見通し判定がなされていない組合せ候補を1つ選択する(ステップS601)。 The map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been performed from among the acquired combination candidate group (step S601).
 地図見通し判定部16は、選択された組合せ候補が示す、基地局の設置候補位置と端末局の設置候補位置との間の見通し判定を行う(ステップS602)。地図見通し判定部16は、見通し判定の結果、見通しが無いと判定された場合(ステップS602・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS603)。 The map visibility determination unit 16 performs visibility determination between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S602). When it is determined that there is no visibility as a result of the visibility determination (step S602, NO), the map outlook determination unit 16 deletes the selected combination candidate from the acquired combination candidate group (step S603).
 地図見通し判定部16は、取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定を行うまで、上記ステップS601からステップS603までの動作を繰り返す(ステップS604)。取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定が行われた場合(ステップS604・YES)、図2に示されるフローチャートのステップS7へ進む。 The map outlook determination unit 16 repeats the operations from step S601 to step S603 until the outlook is determined for all combination candidates included in the acquired combination candidate group (step S604). If outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S604, YES), the flow proceeds to step S7 of the flowchart shown in FIG.
 以下、図2に示されるフローチャートのステップS10における、点群見通し判定部23の動作についてさらに詳しく説明する。図4は、本発明の第1の実施形態の点群見通し判定部23による見通し判定処理の動作の一例を示すフローチャートである。 The operation of the point cloud outlook determination unit 23 in step S10 of the flowchart shown in FIG. 2 will be described in more detail below. FIG. 4 is a flow chart showing an example of the operation of the outlook determination process by the point cloud outlook determination unit 23 according to the first embodiment of the present invention.
 点群見通し判定部23は、記憶部30に記憶された組合せ候補群を示す情報、及び点群データを取得する。点群見通し判定部23は、取得された組合せ候補群の中から、まだ見通し判定がなされていない組合せ候補を1つ選択する(ステップS1001)。 The point cloud outlook determining unit 23 acquires information indicating the combination candidate group stored in the storage unit 30 and point cloud data. The point cloud view determination unit 23 selects one combination candidate for which view determination has not yet been performed from the acquired combination candidate group (step S1001).
 点群見通し判定部23は、選択された組合せ候補が示す、基地局の設置候補位置と端末局の設置候補位置との間の見通し判定を行う(ステップS1002)。点群見通し判定部23は、見通し判定の結果、見通しが無いと判定された場合(ステップS1002・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS1003)。 The point cloud view determination unit 23 performs view determination between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S1002). When it is determined that there is no view as a result of the view determination (step S1002, NO), the point cloud view determination unit 23 deletes the selected combination candidate from the acquired combination candidate group (step S1003).
 点群見通し判定部23は、取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定を行うまで、上記ステップS1001からステップS1003までの動作を繰り返す(ステップS1004)。取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定が行われた場合(ステップS1004・YES)、図2に示されるフローチャートのステップS11へ進む。 The point cloud outlook determining unit 23 repeats the operations from step S1001 to step S1003 until the outlook is determined for all combination candidates included in the acquired combination candidate group (step S1004). If outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S1004, YES), the process proceeds to step S11 of the flowchart shown in FIG.
 本実施形態の置局設計支援装置1による見通し判定の結果として、図37に示されるような4つのケースが考えられる。図37は、見通し判定の結果として考えられる4つのケースを説明するための図である。 As a result of the line-of-sight determination by the station placement design support device 1 of this embodiment, four cases as shown in FIG. 37 are conceivable. FIG. 37 is a diagram for explaining four possible cases as a result of line-of-sight determination.
 図37に示されるように、置局設計支援装置1による見通し判定の結果として考えられる4つのケースとは、地図情報に基づく見通し判定の結果が「見通し有り」である場合と「見通し無し」である場合と、点群データに基づく見通し判定の結果が「見通し有り」である場合と「見通し無し」である場合と、の組合せからなる。 As shown in FIG. 37, the four cases that can be considered as the result of the line-of-sight determination by the station placement design support device 1 are the case where the result of the line-of-sight determination based on the map information is "with line of sight" and the case where the result is "no line of sight". A combination of a case where there is a line of sight, a case where the result of the line of sight determination based on the point cloud data is "with line of sight" and a case where it is "no line of sight".
 図37に示されるように、ここでは、地図情報に基づく見通し判定の結果が「見通し有り」であり、点群データに基づく見通し判定の結果が「見通し有り」である場合を、「ケース(1)」という。また、地図情報に基づく見通し判定の結果も「見通し有り」であり、点群データに基づく見通し判定の結果が「見通し無し」である場合を、「ケース(2)」という。また、地図情報に基づく見通し判定の結果が「見通し無し」であり、点群データに基づく見通し判定の結果が「見通し有り」である場合を、「ケース(3)」という。また、地図情報に基づく見通し判定の結果が「見通し無し」であり、点群データに基づく見通し判定の結果も「見通し無し」である場合を、「ケース(4)」という。 As shown in FIG. 37, here, the case where the result of the visibility determination based on the map information is "with visibility" and the result of the visibility determination based on the point cloud data is "with visibility" is defined as "Case (1 )”. Further, the case where the result of the visibility determination based on the map information is also "with visibility" and the result of the visibility determination based on the point cloud data is "no visibility" is referred to as "Case (2)". Further, the case where the result of the visibility determination based on the map information is "no visibility" and the result of the visibility determination based on the point cloud data is "with visibility" is referred to as "Case (3)". Further, a case where the result of the visibility determination based on the map information is "no visibility" and the result of the visibility determination based on the point cloud data is also "no visibility" is referred to as "Case (4)".
[計算量の削減効果]
 以下、地図情報を用いた組合せ候補の事前の絞り込みによる計算量の削減効果について説明する。図5は、本発明の第1の実施形態における置局設計支援装置1による計算量の削減効果を説明するための図である。
[Calculation amount reduction effect]
Hereinafter, the effect of reducing the amount of calculation by narrowing down the combination candidates in advance using the map information will be described. FIG. 5 is a diagram for explaining the calculation amount reduction effect of the station placement design support apparatus 1 according to the first embodiment of the present invention.
 図5の(A)及び(B)は、地図見通し判定部16による地図情報に基づく見通し判定を示したものである。一方、図5の(C)及び(D)は、点群見通し判定部23による点群データに基づく見通し判定を示したものである。 (A) and (B) of FIG. 5 show the visibility determination based on the map information by the map visibility determination unit 16. FIG. On the other hand, (C) and (D) of FIG. 5 show visibility determination based on point cloud data by the point cloud visibility determining unit 23 .
 図示されるように、図5の(A)及び(B)では、地図情報に基づく見通し判定であることから、地図情報には含まれていない住宅の塀、街路樹、及び交通標識等の存在は、見通し判定において考慮されない。一方、図5の(C)及び(D)では、点群データに基づく見通し判定であることから、点群データには含まれている住宅の塀、街路樹、及び道路標識等の存在についても、見通し判定において考慮される。 As shown, in (A) and (B) of FIG. 5, since the visibility is determined based on the map information, the existence of residential walls, roadside trees, traffic signs, etc., which are not included in the map information. is not considered in line of sight determination. On the other hand, in (C) and (D) of FIG. 5, since the visibility judgment is based on the point cloud data, the existence of the fence of the house, the roadside tree, the road sign, etc. included in the point cloud data , are taken into account in the line-of-sight determination.
 図5の(A)~(D)はいずれも、住宅h1の壁面の一か所を端末局の設置候補位置とした場合の組合せ候補の一例を示している。 (A) to (D) of FIG. 5 all show examples of combination candidates when one wall surface of the house h1 is set as a candidate installation position for the terminal station.
 図5の(A)は、電柱p1を基地局の設置候補位置として、地図情報に基づく見通し判定が行われる場合を示す。この場合、図示されるように、基地局の設置候補位置と端末局の設置候補位置との間の見通しは住宅h2によって遮られるため、見通し判定の結果は「見通し無し」となる。 (A) of FIG. 5 shows a case where the outlook is determined based on the map information, with the utility pole p1 as the candidate installation position for the base station. In this case, as shown in the figure, since the line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station is blocked by the house h2, the result of the line of sight determination is "no line of sight".
 一方、図5の(B)は、電柱p2を基地局の設置候補位置として、地図情報に基づく見通し判定が行われる場合を示す。この場合、図示されるように、基地局の設置候補位置と端末局の設置候補位置との間の見通しは住宅h2等によって遮られることもないため、見通し判定の結果は「見通し有り」となる。 On the other hand, (B) of FIG. 5 shows a case where the line-of-sight determination is performed based on the map information, with the utility pole p2 as the candidate position for installing the base station. In this case, as shown in the figure, since the line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station is not blocked by the house h2 or the like, the result of the line of sight determination is "with line of sight". .
 図5の(C)は、電柱p1を基地局の設置候補位置として、点群データに基づく見通し判定が行われる場合を示す。この場合、図示されるように、基地局の設置候補位置と端末局の設置候補位置との間の見通しは住宅h2によって遮られるため、見通し判定の結果は「見通し無し」となる。 (C) of FIG. 5 shows a case where the line of sight determination is performed based on the point cloud data, with the utility pole p1 as the candidate position for installing the base station. In this case, as shown in the figure, since the line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station is blocked by the house h2, the result of the line of sight determination is "no line of sight".
 一方、図5の(D)は、電柱p2を基地局の設置候補位置として、点群データに基づく見通し判定が行われる場合を示す。この場合、図示されるように、基地局の設置候補位置と端末局の設置候補位置との間の見通しは、例えば住宅h2、当該住宅h2の塀、街路樹、及び道路標識等によって遮られることもないため、見通し判定の結果は「見通し有り」となる。 On the other hand, (D) of FIG. 5 shows a case where the line of sight determination is performed based on the point cloud data with the utility pole p2 as the candidate position for installing the base station. In this case, as shown in the figure, the line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station may be blocked by, for example, the house h2, the wall of the house h2, roadside trees, and road signs. Therefore, the result of line-of-sight determination is "with line-of-sight".
 本実施形態の置局設計支援装置1によって計算量の削減効果が表れる理由は、実際の環境においては、図37に示されるケース(1)又はケース(4)のような状況が殆どであると想定されることに基づいている。例えば、図5(B)の場合ように地図情報に基づく見通し判定によって見通しが有ると判定される状況では、図5の(D)の場合のように点群データに基づく見通し判定によっても見通しが有ると判定される状況である可能性が高い。同様に、例えば、図5(A)の場合ように地図情報に基づく見通し判定によって見通しが無いと判定される状況では、図5の(C)の場合のように点群データに基づく見通し判定によっても見通しが無いと判定される状況である可能性が高い。 The reason why the station placement design support apparatus 1 of the present embodiment has the effect of reducing the amount of calculation is that most of the situations in the actual environment are case (1) or case (4) shown in FIG. Based on expectations. For example, in a situation where it is determined that there is visibility based on the visibility determination based on the map information, as in the case of FIG. There is a high possibility that it is a situation where it is determined that there is. Similarly, for example, in a situation where it is determined that there is no visibility by the visibility determination based on the map information as in the case of FIG. There is a high possibility that it will be determined that there is no prospect for the future.
 しかしながら、可能性は高くないものの、図37に示されるケース(2)のような状況もあり得る。例えば、図5(B)の場合ように地図情報に基づく見通し判定によって見通しが有ると判定される状況であっても、図5の(C)の場合のように点群データに基づく見通し判定によっては見通しが無いと判定される状況も有り得る。例えば、地図情報に含まれない、住宅の塀及び高架道路等の構造物、道路標識及び看板等の工作物、街路樹及び庭木等の植物、及び隆起した地面等の電波の伝搬を遮断しうる建物以外のあらゆる物体によって、基地局の設置候補位置と端末局の設置候補位置との間の見通しが遮られることがある。そのため、本実施形態における置局設計支援装置1は、地図情報に基づく見通し判定によって見通しが有ると判定された組合せ候補に対して、点群データに基づく見通し判定を実施する。 However, although the possibility is not high, a situation such as case (2) shown in FIG. 37 is also possible. For example, even in a situation where it is determined that there is a line of sight by the line of sight determination based on the map information as in the case of FIG. There may be situations where it is determined that there is no line of sight. For example, structures such as residential walls and elevated roads, structures such as road signs and billboards, plants such as roadside trees and garden trees, and raised ground that are not included in the map information can block the propagation of radio waves. Any object other than a building may block the line-of-sight between the candidate installation location of the base station and the candidate installation location of the terminal station. Therefore, the station placement design support device 1 in the present embodiment performs outlook determination based on point cloud data for combination candidates that have been determined to have visibility by the outlook determination based on the map information.
 そして、更に可能性が高くないものの、図37に示されるケース(3)のような状況もあり得る。例えば、2次元の地図情報に含まれる建物の輪郭を示す情報に対して当該建物の最高点の高さが付与された地図情報に基づく見通し判定が行われる場合、別の建物が遮蔽物となって基地局の設置候補位置と端末局の設置候補位置との間の見通しが遮られることがある。例えば、後に説明する図10及び図13のような状況では、地図情報に基づく見通し判定によれば(建物の最高点の高さに基づいて)見通しが無いと判定されるが、点群データに基づく見通し判定によれば見通しが有ると判定される(実際には見通しが有る)ことがある。 Further, although the possibility is not high, there is also a situation like case (3) shown in FIG. For example, when line-of-sight determination is performed based on map information in which the height of the highest point of a building is assigned to information indicating the outline of a building included in two-dimensional map information, another building becomes an obstruction. line of sight between candidate locations for base stations and candidate locations for terminal stations. For example, in the situations shown in FIGS. 10 and 13, which will be described later, it is determined that there is no visibility (based on the height of the highest point of the building) according to the visibility determination based on the map information, but the point cloud data Based on the line-of-sight determination, it may be determined that there is line-of-sight (actually, there is line-of-sight).
 ここで、図5の(A)、(B)、(C)、及び(D)の場合における見通し判定に要する判定時間を、それぞれta、tb、tc、及びtdと表す。この場合、地図情報は点群データと比べて相対的に密度が低い(情報量の少ない)データであることから、地図情報に基づく見通し判定の判定時間であるta及びtbは、点群データに基づく見通し判定の判定時間であるtc及びtdと比べて大幅に短い時間となる。 Here, the determination times required for visibility determination in the cases of (A), (B), (C), and (D) in FIG. 5 are represented by ta, tb, tc, and td, respectively. In this case, the map information is relatively low-density data (small amount of information) compared to the point cloud data. This time is significantly shorter than the determination times tc and td for the visibility determination based on the above.
 また、見通しの有無に関わらず、各々の組合せ候補に対する地図情報に基づく見通し判定の判定時間は凡そ同程度の長さであることから、ta及びtbは凡そ同程度の長さの判定時間となる。同様に、見通しの有無に関わらず、各々の組合せ候補に対する点群データに基づく見通し判定の判定時間は凡そ同程度での長さであることから、tc及びtdは凡そ同程度の長さの判定時間となる。 In addition, regardless of the presence or absence of visibility, the determination time for the visibility determination based on the map information for each combination candidate is approximately the same length, so ta and tb have approximately the same length of determination time. . Similarly, regardless of the presence or absence of visibility, the determination time for visibility determination based on point cloud data for each combination candidate is about the same length, so tc and td are about the same length. It's time.
 以上のことから、以下の(1)式のような関係が成り立つといえる。 From the above, it can be said that the relationship shown in formula (1) below holds true.
   ta≒tb<<tc≒td   ・・・(1)    ta≈tb<<tc≈td (1)
 ここで、評価対象エリア内の、基地局の全ての設置候補位置と端末局の全ての設置候補位置との組合せの総数を、Mと表す。また、このM個の組合せ候補のうち、基地局の設置候補位置と端末局の設置候補位置との間に見通しが有る組合せの個数を、nと表す。 Here, let M be the total number of combinations of all candidate installation positions for base stations and all candidate installation positions for terminal stations in the evaluation target area. Also, among the M combination candidates, n represents the number of combinations in which there is a line of sight between the candidate installation positions of the base station and the candidate installation positions of the terminal stations.
 本実施形態における置局設計支援装置1は、まず地図情報に基づく見通し判定によって組合せ候補群に含まれる組合せ候補の個数の絞り込みを行い、その後、絞り込まれた組合せ候補の各々について点群データに基づく見通し判定を行うことから、凡そ、以下の(2)式に示される程度の判定時間で見通し判定を完了させることができる。 The station placement design support device 1 in this embodiment first narrows down the number of combination candidates included in the combination candidate group by outlook determination based on map information, and then, based on the point cloud data for each of the narrowed down combination candidates. Since the visibility determination is performed, it is possible to complete the visibility determination in approximately the determination time shown in the following equation (2).
   ta×n+tb×(M-n)+tc×n
   ここで、ta=tbとすると、
   ta×M+tc×n   ・・・(2)
ta×n+tb×(M−n)+tc×n
Here, if ta = tb,
ta×M+tc×n (2)
 一方、従来技術のように、評価対象エリア内の、基地局の全ての設置候補位置と端末局の全ての設置候補位置との組合せについて、点群データに基づく見通し判定が行われる場合、凡そ、以下の(3)式に示される程度の判定時間を要することになる。 On the other hand, when line-of-sight determination is performed based on point cloud data for combinations of all candidate installation positions of base stations and all candidate installation positions of terminal stations in an evaluation target area, as in the conventional technology, roughly: It takes a determination time as shown in the following equation (3).
   tc×n+td×(M-n)
   ここで、tc=tdとすると、
   tc×M   ・・・(3)
tc×n+td×(M−n)
Here, if tc=td,
tc×M (3)
 上記の通り、ta<<tcであることから、本実施形態における置局設計支援装置1は、凡そ、tc×(M-n)程度の判定時間の短縮を実現することができるということができる。 As described above, since ta<<tc, it can be said that the station placement design support apparatus 1 in this embodiment can shorten the determination time by about tc×(M−n). .
 なお、前述の通り、本実施形態における地図情報は、2次元の地図データに含まれる建物の位置情報の各々に対して、当該建物の高さを示す情報が付加されたものである。一般的に、2次元の地図情報に基づく座標情報は数メートル間隔での座標からなる座標情報であり、2次元の点群データに基づく座標情報は数セントメートル間隔での座標からなる座標情報である。したがって、2次元の点群データに基づく座標情報は、2次元の地図情報に基づく座標情報と比べて、1万(=100)倍程度の情報量となる。 As described above, the map information in this embodiment is obtained by adding information indicating the height of each building to each piece of building position information included in the two-dimensional map data. In general, coordinate information based on two-dimensional map information is coordinate information consisting of coordinates at intervals of several meters, and coordinate information based on two-dimensional point cloud data is coordinate information consisting of coordinates at intervals of several centimeters. be. Therefore, the amount of coordinate information based on two-dimensional point cloud data is about 10,000 (=100 2 ) times as much as that of coordinate information based on two-dimensional map information.
 以上説明したように、本発明の第1の実施形態における置局設計支援装置1は、事前に、評価対象エリア内に存在する遮蔽物の位置を表す低密度なデータ(3次元の地図情報)を用いて見通し判定を行う。これにより、置局設計支援装置1は、明らかに見通しが無いと推測される両局の設置候補位置の組合せを除外し、組合せ候補の絞り込みを行うことができる。その後、置局設計支援装置1は、絞り込みがなされた各々の組合せ候補について、評価対象エリア内に存在する遮蔽物の位置を表す高密度なデータ(3次元の点群データ)を用いてより詳細な見通し判定を行う。これにより、置局設計支援装置1は、見通しが有る組合せ候補を特定する。 As described above, the station placement design support device 1 according to the first embodiment of the present invention prepares in advance low-density data (three-dimensional map information) representing the positions of shields existing in the evaluation target area. Use to determine line of sight. As a result, the station placement design support apparatus 1 can narrow down the combination candidates by excluding combinations of installation candidate positions of both stations that are presumed to have no clear line of sight. After that, the station placement design support apparatus 1 uses high-density data (three-dimensional point cloud data) representing the positions of shielding objects existing in the evaluation target area for each of the narrowed-down combination candidates to obtain more detailed information. Make a clear line of sight judgment. As a result, the station placement design support device 1 identifies prospective combination candidates.
 このように、本発明の置局設計支援装置1は、事前に低密度なデータを用いて見通し判定を行うことで、高密度なデータを用いた詳細な見通し判定を行う件数を削減させることができる。 In this way, the station placement design support device 1 of the present invention performs line-of-sight determination in advance using low-density data, thereby reducing the number of detailed line-of-sight determinations using high-density data. can.
 このような構成を備えることで、発明の第1の実施形態における置局設計支援装置1は、見通し判定における計算量の増大を抑えつつ、基地局の設置候補位置と端末局の設置候補位置との組合せ候補を適切に提示することができる。 By providing such a configuration, the station placement design support apparatus 1 according to the first embodiment of the present invention suppresses an increase in the amount of calculation in line-of-sight determination, and determines the candidate installation positions of the base stations and the candidate installation positions of the terminal stations. combination candidates can be presented appropriately.
<第2の実施形態>
 以下、第2の実施形態における置局設計支援装置1について説明する。一般的に、基地局と端末局との間に見通しが無い場合であっても、例えば建物の壁面に電波が反射することによって電波の伝搬経路が確保され、通信が可能であることがある。本実施形態の置局設計支援装置1は、地図情報に基づく見通し判定によって、基地局の設置候補位置と端末局の設置候補位置との間に見通しが無いと判定された場合であっても、壁面等による電波の反射を許容した見通しの有無を、地図情報を用いてさらに判定する。
<Second embodiment>
The station placement design support apparatus 1 according to the second embodiment will be described below. In general, even if there is no line of sight between a base station and a terminal station, the propagation path of the radio waves may be secured by reflecting the radio waves on the wall of a building, for example, and communication may be possible. The station placement design support device 1 of the present embodiment, even if it is determined that there is no line of sight between the installation candidate position of the base station and the installation candidate position of the terminal station by line-of-sight determination based on the map information, The map information is used to further determine whether or not there is a line of sight that allows reflection of radio waves from walls and the like.
 以下、壁面等による電波の反射を許容した見通しを「反射見通し」といい、反射見通しの有無の判定を「反射見通し判定」という。第2の実施形態の置局設計支援装置1は、見通しが有ると判定された組合せ候補だけでなく、反射見通しがあると判定された組合せ候補も含めた、より多くの組合せ候補を提示することができる。 Hereafter, the line of sight that allows the reflection of radio waves by walls, etc. is referred to as "reflected line of sight", and the determination of whether or not there is a reflected line of sight is referred to as "reflected line of sight determination". The station placement design support device 1 of the second embodiment presents more combination candidates including not only combination candidates determined to have a line of sight but also combination candidates determined to have a reflected line of sight. can be done.
[地図情報に基づく見通し判定]
 以下、本実施形態の置局設計支援装置1による地図情報に基づく見通し判定について説明する。本実施形態の置局設計支援装置1は、まず、水平面上での見通し判定及び反射見通し判定を行った後、垂直断面上での見通し判定及び反射見通し判定を行う。
[Determination of visibility based on map information]
The outlook determination based on the map information by the station placement design support device 1 of the present embodiment will be described below. The station placement design support device 1 of the present embodiment first performs visibility determination and reflected visibility determination on a horizontal plane, and then performs visibility determination and reflected visibility determination on a vertical cross section.
 以下、置局設計支援装置1による見通し判定及び反射見通し判定について説明する。図6は、本発明の第2の実施形態の置局設計支援装置1による水平面上での見通し判定及び反射見通し判定を説明するための図である。 The line-of-sight determination and reflected line-of-sight determination by the station placement design support device 1 will be described below. FIG. 6 is a diagram for explaining the line-of-sight determination and reflection line-of-sight determination on a horizontal plane by the station placement design support apparatus 1 according to the second embodiment of the present invention.
 図6には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11が示されている。また、図6には、端末局の設置候補位置である住宅h11の一壁面の中央の位置である壁面位置h11-1と、住宅h11の一壁面の端部の位置である壁面位置h11-2と、壁面位置h11-1及び壁面位置h11-2に設置された場合のそれぞれの端末局t11と、が示されている。また、図6には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。 FIG. 6 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 6 also shows a wall surface position h11-1, which is the center position of one wall surface of the house h11, which is a candidate installation position of the terminal station, and a wall surface position h11-2, which is the end position of one wall surface of the house h11. , and the respective terminal stations t11 when installed at the wall surface position h11-1 and the wall surface position h11-2. FIG. 6 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
 地図見通し判定部16は、まず、基地局の設置候補位置である電柱p11と、端末局の設置候補位置である住宅h11の壁面との、水平面上での見通し判定を行う。図6に示されるように、例えば電柱p11と壁面位置h11-1との間は、住宅h12によって見通しが遮られていることから、電柱p11と住宅h11との間は見通しが無いといえる。この場合、地図見通し判定部16は、基地局の設置候補位置である電柱p11と、端末局の設置候補位置である住宅h11の壁面との、水平面上での反射見通し判定を行う。 The map view determination unit 16 first determines the view on the horizontal plane between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station. As shown in FIG. 6, for example, the line of sight between the utility pole p11 and the wall position h11-1 is blocked by the house h12, so it can be said that there is no line of sight between the utility pole p11 and the house h11. In this case, the map view determination unit 16 determines the reflection view on the horizontal plane between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station.
 図6に示されるように、住宅h13の一壁面を、電波を反射させる反射面m11とした場合、壁面位置h11-2から見た場合における電柱p11の鏡像の位置は、鏡像p11mの位置となる。また、壁面位置h11-2と鏡像p11mとを結ぶ直線と、反射面m11との交点は、電波が反射する位置である反射点r11となる。 As shown in FIG. 6, when one wall surface of the house h13 is a reflecting surface m11 that reflects radio waves, the position of the mirror image of the utility pole p11 when viewed from the wall surface position h11-2 is the position of the mirror image p11m. . Further, the intersection of the straight line connecting the wall surface position h11-2 and the mirror image p11m and the reflection surface m11 is the reflection point r11 where radio waves are reflected.
 地図見通し判定部16は、電柱p11と反射点r11との間に見通しが有り、かつ、反射点r11と壁面位置h11-2との間にも見通しが有ることに基づいて、電柱p11と壁面位置h11-2との間は、水平面上においては反射見通しが有ると判定する。 Based on the fact that there is a line of sight between the utility pole p11 and the reflection point r11 and that there is also a line of sight between the reflection point r11 and the wall surface position h11-2, the map line-of-sight determination unit 16 determines the line of sight between the utility pole p11 and the wall surface position h11-2. Between h11-2, it is determined that there is a reflection line of sight on the horizontal plane.
 次に、地図見通し判定部16は、基地局の設置候補位置である電柱p11と、端末局の設置候補位置である住宅h11の壁面との、垂直断面上での見通し判定を行う。 Next, the map visibility determining unit 16 determines visibility on the vertical section between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station.
 図7は、本発明の第2の実施形態の置局設計支援装置1による垂直断面上での見通し判定及び反射見通し判定を説明するための図である。 FIG. 7 is a diagram for explaining line-of-sight determination and reflected line-of-sight determination on a vertical section by the station placement design support device 1 according to the second embodiment of the present invention.
 図7の(A)は、電柱p11と壁面位置h11-1との、垂直断面上での見通し判定を示している。一方、図7の(B)は、電柱p11と壁面位置h11-2との、垂直断面上での反射見通し判定を示している。 (A) of FIG. 7 shows the line-of-sight determination on the vertical section between the utility pole p11 and the wall position h11-1. On the other hand, (B) of FIG. 7 shows reflection line-of-sight determination on a vertical section between the utility pole p11 and the wall surface position h11-2.
 図7の(A)及び(B)には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11が示されている。また、図7の(A)及び(B)には、端末局の設置候補位置である住宅h11の一壁面の中央の位置である壁面位置h11-1と、住宅h11の一壁面の端部の位置である壁面位置h11-2と、壁面位置h11-1及び壁面位置h11-2に設置された場合のそれぞれの端末局t11と、が示されている。また、図7の(A)及び(B)には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。なお、図示されるように、住宅h12の高さと比べて、住宅h13の高さはより低い。 (A) and (B) of FIG. 7 show a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. 7A and 7B show a wall surface position h11-1, which is the center position of one wall surface of the house h11, which is a candidate installation position of the terminal station, and an end portion of one wall surface of the house h11. The wall position h11-2, which is the position, and the terminal stations t11 when installed at the wall position h11-1 and the wall position h11-2 are shown. 7A and 7B show a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11. Note that, as illustrated, the height of the house h13 is lower than the height of the house h12.
 図7の(A)に示されるように、例えば電柱p11と壁面位置h11-1との間は、住宅h12によって見通しが遮られており、電柱p11と住宅h11との間は垂直断面上において見通しが無いといえる。 As shown in FIG. 7A, for example, the line of sight between the utility pole p11 and the wall position h11-1 is blocked by the house h12, and the line of sight between the utility pole p11 and the house h11 is visible on the vertical section. It can be said that there is no
 しかしながら、もし、住宅h12の高さが、例えば住宅h13の高さと同程度の高さならば、電柱p11と壁面位置h11-1との間は垂直断面上において見通しが有るといえる。このような場合には、地図見通し判定部16は、水平面上での見通し判定によって見通しが無いと判定された場合であっても、垂直断面上での見通し判定によって実際には見通しが有る可能性があることを認識することができる。 However, if the height of the house h12 is, for example, about the same as the height of the house h13, it can be said that there is a line of sight between the utility pole p11 and the wall surface position h11-1 on the vertical section. In such a case, even if it is determined that there is no line of sight by the line of sight determination on the horizontal plane, the map line of sight determination unit 16 determines the possibility that the line of sight is actually present by the line of sight determination on the vertical section. can recognize that there is
 地図見通し判定部16は、水平面上での見通し判定、及び垂直断面上での見通し判定のうち、少なくとも一方で見通しが有ると判定された場合には、基地局の設置候補位置と端末局の設置候補位置との間には見通しが有ると判定し、この組合せ候補を組合せ候補群に含める(すなわち、この組合せ候補を組合せ候補群から削除しない)。 If it is determined that there is visibility in at least one of the visibility determination on the horizontal plane and the visibility determination on the vertical section, the map visibility determination unit 16 determines the installation candidate position of the base station and the installation of the terminal station. It is determined that there is a line of sight to the candidate position, and this combination candidate is included in the combination candidate group (that is, this combination candidate is not deleted from the combination candidate group).
 地図見通し判定部16は、水平面上での見通し判定、及び垂直断面上での見通し判定のいずれにおいても見通しが無いと判定された場合には、基地局の設置候補位置と端末局の設置候補位置との間には見通しが無いと判定し、この組合せ候補を組合せ候補群から削除する。 If it is determined that there is no line of sight in both the line of sight determination on the horizontal plane and the line of sight on the vertical section, the map line of sight determination unit 16 determines the candidate installation position of the base station and the candidate installation position of the terminal station. , and this combination candidate is deleted from the combination candidate group.
 一方、図7の(B)に示されるように、例えば電柱p11と壁面位置h11-2との間を垂直断面上において直線で結んだ場合、反射点r11の位置は、図6の反射面m11を形成する住宅h13の高さより高いことが分かる。そのため、地図見通し判定部16は、図7の(B)に示される反射点r11の位置には実際には壁面が存在しないことから、反射見通しが無いことを認識することができる。 On the other hand, as shown in FIG. 7B, for example, when the utility pole p11 and the wall surface position h11-2 are connected by a straight line on the vertical cross section, the position of the reflection point r11 is the reflection surface m11 in FIG. is higher than the height of the house h13 forming Therefore, the map visibility determination unit 16 can recognize that there is no reflection visibility because there is actually no wall surface at the position of the reflection point r11 shown in FIG. 7B.
 このように、地図見通し判定部16は、水平面上での反射見通し判定によって反射見通しが有ると判定された場合であっても、垂直断面上での見通し判定によって実際には反射見通しが無いことを認識することができる。 In this way, even if it is determined that there is a reflected line of sight by the determination of the reflected line of sight on the horizontal plane, the map line of sight determination unit 16 determines that there is actually no reflected line of sight by the line of sight determination on the vertical cross section. can recognize.
 地図見通し判定部16は、水平面上での反射見通し判定、及び垂直断面上での反射見通し判定のいずれにおいても反射見通しが有ると判定された場合に、基地局の設置候補位置と端末局の設置候補位置との間には反射見通しが有ると判定し、この組合せ候補を組合せ候補群に含める(すなわち、この組合せ候補を組合せ候補群から削除しない)。 If it is determined that there is a reflected line of sight in both the determination of the reflected line of sight on the horizontal plane and the determination of the reflected line of sight on the vertical section, the map line of sight determination unit 16 determines the candidate installation positions of the base station and the installation of the terminal station. It is determined that there is a reflected line of sight between the candidate position and this combination candidate is included in the combination candidate group (that is, this combination candidate is not deleted from the combination candidate group).
 地図見通し判定部16は、水平面上での反射見通し判定、及び垂直断面上での反射見通し判定の少なくとも一方で反射見通しが無いと判定された場合に、基地局の設置候補位置と端末局の設置候補位置との間には反射見通しが無いと判定し、この組合せ候補を組合せ候補群から削除する。 If it is determined that there is no reflected line of sight in at least one of the reflected line of sight determination on the horizontal plane and the reflected line of sight on the vertical plane, the map line of sight determining unit 16 determines the candidate installation position of the base station and the installation of the terminal station. It is determined that there is no reflected line of sight with the candidate position, and this combination candidate is deleted from the combination candidate group.
 図38は、水平面上での見通し判定の結果及び垂直断面上での見通し判定の結果と、点群データに基づく見通し判定の対象であるか否かと、の関係を示す図である。図38は、水平面上での見通し判定の結果と垂直断面上での見通し判定の結果とに応じて、評価対象の組合せ候補が、点群データに基づく見通し判定の対象となるか否かを表している。 FIG. 38 is a diagram showing the relationship between the result of visibility determination on a horizontal plane and the result of visibility determination on a vertical section, and whether or not it is a target for visibility determination based on point cloud data. FIG. 38 shows whether or not the combination candidate to be evaluated is subject to the visibility determination based on the point cloud data, depending on the result of the visibility determination on the horizontal plane and the result of the visibility determination on the vertical cross section. ing.
 図38に示されるように、例えば、ケース(A)は、水平面上での見通し判定によって見通しが無いと判定され、垂直断面上での見通し判定によっても見通しが無いと判定された場合である。このようなケース(A)の場合には、評価対象の組合せ候補は、点群データに基づく見通し判定の対象外となる。また、ケース(B)は、水平面上での見通し判定によって見通しが無いと判定され、垂直断面上での見通し判定によって見通しが有ると判定された場合である。このようなケース(B)の場合には、評価対象の組合せ候補は、点群データに基づく見通し判定の対象となる。 As shown in FIG. 38, for example, case (A) is a case where it is determined that there is no line of sight by the line of sight determination on the horizontal plane and that there is no line of sight by the line of sight determination on the vertical section. In such a case (A), the evaluation target combination candidate is excluded from the visibility determination based on the point cloud data. Case (B) is a case where it is determined that there is no line of sight by the line of sight determination on the horizontal plane, and that there is line of sight by the line of sight determination on the vertical section. In such a case (B), the combination candidates to be evaluated are targets for visibility determination based on the point cloud data.
 また、ケース(C)は、水平面上での見通し判定によって見通しが有ると判定された場合である。このようなケース(C)の場合には、垂直断面上での見通し判定を行う必要はなく、評価対象の組合せ候補は、点群データに基づく見通し判定の対象となる。このような構成により、本実施形態の置局設計支援装置1は、点群データに基づく見通し判定の対象となるか否かを効率的に決定することができる。 In addition, case (C) is a case where it is determined that there is a line of sight by the line of sight determination on the horizontal plane. In such a case (C), it is not necessary to determine the visibility on the vertical cross section, and the combination candidate to be evaluated is subject to the visibility determination based on the point cloud data. With such a configuration, the station placement design support device 1 of the present embodiment can efficiently determine whether or not to be the target of the visibility determination based on the point cloud data.
 図39は、水平面上での反射見通し判定の結果及び垂直断面上での反射見通し判定の結果と、点群データに基づく見通し判定の対象であるか否かと、の関係を示す図である。図39は、水平面上での反射見通し判定の結果と垂直断面上での反射見通し判定の結果とに応じて、評価対象の組合せ候補が、点群データに基づく見通し判定の対象となるか否かを表している。 FIG. 39 is a diagram showing the relationship between the result of reflected visibility determination on a horizontal plane and the result of reflected visibility determination on a vertical cross section, and whether or not it is an object of visibility determination based on point cloud data. FIG. 39 shows whether or not a combination candidate to be evaluated is subject to visibility determination based on point cloud data, depending on the result of reflection visibility determination on a horizontal plane and the result of reflection visibility determination on a vertical cross section. represents.
 図39に示されるように、例えば、ケース(D)は、水平面上での反射見通し判定によって反射見通しが無いと判定された場合である。このようなケース(D)の場合には、垂直断面上での反射見通し判定を行う必要はなく、評価対象の組合せ候補は、点群データに基づく見通し判定の対象外となる。このような構成により、本実施形態の置局設計支援装置1は、点群データに基づく見通し判定の対象となるか否かを効率的に決定することができる。 As shown in FIG. 39, for example, case (D) is a case where it is determined that there is no reflected line of sight by determination of the reflected line of sight on the horizontal plane. In such a case (D), there is no need to determine the reflected visibility on the vertical cross section, and the combination candidates to be evaluated are excluded from the visibility determination based on the point cloud data. With such a configuration, the station placement design support device 1 of the present embodiment can efficiently determine whether or not to be the target of the visibility determination based on the point cloud data.
 また、ケース(E)は、水平面上での反射見通し判定によって反射見通しが有ると判定され、垂直断面上での反射見通し判定によって反射見通しが無いと判定された場合である。このようなケース(E)の場合には、評価対象の組合せ候補は、点群データに基づく見通し判定の対象外となる。また、ケース(F)は、水平面上での反射見通し判定によって反射見通しが有ると判定され、垂直断面上での反射見通し判定によっても反射見通しが有ると判定された場合である。このようなケース(E)の場合には、評価対象の組合せ候補は、点群データに基づく見通し判定の対象となる。 In addition, case (E) is a case where it is determined that there is a reflected line of sight by the determination of the reflected line of sight on the horizontal plane, and that there is no reflected line of sight by the determination of the reflected line of sight on the vertical section. In such a case (E), the combination candidates to be evaluated are excluded from the visibility determination based on the point cloud data. Case (F) is a case where it is determined that there is a reflected line of sight by the determination of the reflected line of sight on the horizontal plane, and that there is also the reflected line of sight by the determination of the reflected line of sight on the vertical section. In such a case (E), the combination candidates to be evaluated are targets for visibility determination based on the point cloud data.
[置局設計支援装置の動作]
 以下、第2の実施形態における置局設計支援装置1の動作の一例について説明する。なお、第2の実施形態における置局設計支援装置1の動作において、図2に示されるフローチャートのステップS6以外の動作は、前述の第1の実施形態における置局設計支援装置1の動作と同様である。したがって、以下、図2のフローチャートのステップS6に示される地図情報に基づく見通し判定による組合せ候補群の絞り込みの動作についてのみ説明する。
[Operation of station placement design support device]
An example of the operation of the station placement design support device 1 according to the second embodiment will be described below. In addition, in the operation of the station placement design support device 1 in the second embodiment, the operation other than step S6 in the flowchart shown in FIG. 2 is the same as the operation of the station placement design support device 1 in the first embodiment. is. Therefore, only the operation of narrowing down the combination candidate group by the visibility determination based on the map information shown in step S6 of the flowchart of FIG. 2 will be described below.
 図8は、本発明の第2の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。 FIG. 8 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the second embodiment of the present invention.
 地図見通し判定部16は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の中から、まだ見通し判定がなされていない組合せ候補を1つ選択する(ステップS611)。 The map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been made from among the acquired combination candidate group (step S611).
 地図見通し判定部16は、選択された組合せ候補が示す、基地局の設置候補位置と端末局の設置候補位置との間の、水平面上での見通し判定を行う(ステップS612)。地図見通し判定部16は、見通し判定の結果、水平面上での見通しが無いと判定された場合(ステップS612・NO)、基地局の設置候補位置と端末局の設置候補位置との間の、垂直断面上での見通し判定を行う(ステップS613)。 The map visibility determining unit 16 determines visibility on the horizontal plane between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S612). If it is determined that there is no horizontal line of sight as a result of the line of sight determination (step S612: NO), the map line of sight determination unit 16 determines the vertical direction between the candidate installation position of the base station and the candidate installation position of the terminal station. A line-of-sight determination on the cross section is performed (step S613).
 このように、水平面上での見通し判定の後に垂直断面上での見通し判定を行う処理順序である理由としては、前述の通り、図38のケース(C)の場合には、垂直断面上での見通し判定の実施は不要となるため、効率的な見通し判定を行うことができるようになるからである。 As described above, the reason why the processing order is to determine the visibility on the vertical plane after the determination of the visibility on the horizontal plane is that, as described above, in the case (C) of FIG. This is because it is not necessary to carry out the visibility determination, so efficient visibility determination can be performed.
 地図見通し判定部16は、見通し判定の結果、垂直断面上での見通しが無いと判定された場合(ステップS613・NO)、基地局の設置候補位置と端末局の設置候補位置との間の、水平面上での反射見通し判定を行う(ステップS614)。 If it is determined that there is no line of sight on the vertical cross section as a result of the line of sight determination (step S613: NO), the map line of sight determination unit 16 determines the distance between the candidate installation position of the base station and the candidate installation position of the terminal station. Reflection visibility determination on the horizontal plane is performed (step S614).
 地図見通し判定部16は、反射見通し判定の結果、水平面上での反射見通しが有ると判定された場合(ステップS614・YES)、基地局の設置候補位置と端末局の設置候補位置との間の、垂直断面上での反射見通し判定を行う(ステップS615)。 If it is determined that there is a reflected view on the horizontal plane as a result of the reflected view determination (step S614: YES), the map view determination unit 16 determines the distance between the candidate installation position of the base station and the candidate installation position of the terminal station. , determination of reflected line of sight on the vertical section is performed (step S615).
 このように、水平面上での反射見通し判定の後に垂直断面上での反射見通し判定を行う処理順序である理由としては、前述の通り、図38のケース(D)の場合には、垂直断面上での反射見通し判定の実施は不要となるため、効率的な反射見通し判定を行うことができるようになるからである。 In this way, the reason why the process order is to determine the reflected line of sight on the vertical plane after the determination of the reflected line of sight on the horizontal plane is that, as described above, in the case (D) of FIG. This is because it is not necessary to determine the reflected line of sight at , and thus efficient reflected line of sight determination can be performed.
 一方、地図見通し判定部16は、反射見通し判定の結果、水平面上での反射見通しが無いと判定された場合(ステップS614・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS616)。 On the other hand, when it is determined that there is no reflected view on the horizontal plane as a result of the reflected view determination (step S614, NO), the map view view determination unit 16 selects the selected combination candidate from the acquired combination candidate group. Delete (step S616).
 地図見通し判定部16は、反射見通し判定の結果、垂直断面上での反射見通しが無いと判定された場合(ステップS615・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS616)。 When it is determined that there is no reflected view on the vertical section as a result of the reflected view determination (step S615: NO), the map view determination unit 16 deletes the selected combination candidate from the acquired combination candidate group. (step S616).
 地図見通し判定部16は、取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定及び反射見通し判定を行うまで、上記ステップS611からステップS616までの動作を繰り返す(ステップS617)。取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定及び反射見通し判定が行われた場合、図2に示されるフローチャートのステップS7へ進む。 The map visibility determination unit 16 repeats the operations from steps S611 to S616 until the visibility determination and reflected visibility determination are performed for all combination candidates included in the acquired combination candidate group (step S617). When the line of sight determination and reflected line of sight determination have been performed for all combination candidates included in the acquired combination candidate group, the process proceeds to step S7 in the flowchart shown in FIG.
 以上説明したように、本発明の第2の実施形態における置局設計支援装置1は、地図情報に基づく見通し判定によって、基地局の設置候補位置と端末局の設置候補位置との間に見通しが無いと判定された場合であっても、例えば建物の壁面等の反射面による電波の反射を許容した反射見通しの有無をさらに判定する。置局設計支援装置1は、見通しが無いと判定された場合であっても、反射見通しが有ると判定された組合せ候補については、組合せ候補群から除外しない。 As described above, the station placement design support apparatus 1 according to the second embodiment of the present invention determines whether there is a line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station by the line of sight determination based on the map information. Even if it is determined that there is no reflection, it is further determined whether or not there is a reflection line-of-sight that allows reflection of radio waves by a reflecting surface such as a wall surface of a building. Even if it is determined that there is no line of sight, the station placement design support device 1 does not exclude combination candidates that are determined to have a reflected line of sight from the combination candidate group.
 なお、必要に応じ、図8に示されるフローチャートの、反射見通し判定に関するステップS614及びステップS615が省略されてもよい。すなわち、基地局の設置候補位置と端末局の設置候補位置との間の直接の見通し判定のみが行われる構成であってもよい。また、必要に応じ、図8に示されるフローチャートの、見通し判定に関するステップS612及びステップS613が省略されてもよい。すなわち、基地局の設置候補位置と端末局の設置候補位置との間の反射見通し判定のみが行われる構成であってもよい。 It should be noted that steps S614 and S615 relating to reflection visibility determination in the flow chart shown in FIG. 8 may be omitted as necessary. That is, the configuration may be such that only direct line-of-sight determination between the candidate installation positions of the base station and the candidate installation positions of the terminal stations is performed. Moreover, step S612 and step S613 regarding visibility determination in the flow chart shown in FIG. 8 may be omitted as necessary. In other words, the configuration may be such that only reflection outlook determination between the candidate installation positions of the base station and the candidate installation positions of the terminal stations is performed.
 このような構成を備えることで、発明の第2の実施形態における置局設計支援装置1は、見通し判定及び反射見通し判定における計算量の増大を抑えつつ、見通しが有ると判定された組合せ候補だけでなく、反射見通しがあると判定された組合せ候補も含めた、より多くの組合せ候補を適切に提示することができる。 With such a configuration, the station placement design support device 1 according to the second embodiment of the present invention suppresses an increase in the amount of calculation in line-of-sight determination and reflection line-of-sight determination, while only combining candidates determined to have line-of-sight. Instead, it is possible to appropriately present a larger number of combination candidates including combination candidates determined to have a reflected line of sight.
[地図情報に基づく建物の形状]
 なお、地図情報に含まれる高さ情報が各建物の最高点の高さを示す情報のみである場合、地図見通し判定部16は、各建物の形状が柱状であるものと見なして見通し判定及び反射見通し判定を行うようにしてもよい。
[Building shape based on map information]
If the height information included in the map information is only information indicating the height of the highest point of each building, the map outlook determination unit 16 regards the shape of each building as being columnar, and determines the outlook and reflection. A line of sight determination may be made.
 すなわち、地図見通し判定部16は、2次元の地図における輪郭が、例えば長方形の形状である建物については、3次元の形状が直方体であるものと見なすようにしてもよい。同様に、地図見通し判定部16は、2次元の地図において、例えば円形の形状である建物については、3次元の形状が円柱であるものと見なすようにしてもよい。 In other words, the map outlook determining unit 16 may regard a building whose outline in a two-dimensional map is, for example, a rectangular shape as having a three-dimensional shape of a rectangular parallelepiped. Similarly, the map outlook determination unit 16 may regard a building having a circular shape in a two-dimensional map as having a three-dimensional shape of a cylinder.
 図9は、本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 FIG. 9 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
 図9には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11と、が示されている。また、図9には、端末局の設置候補位置である住宅h11の一壁面の中央の位置である壁面位置h11-1と、壁面位置h11-1に設置された場合の端末局t11と、が示されている。また、図9には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。 FIG. 9 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 9 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h11, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown. FIG. 9 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
 図9に示されるように、地図見通し判定部16は、2次元の地図において輪郭が長方形の形状である住宅h11、住宅h12、及び住宅h13については、3次元の形状が直方体であると見なす。 As shown in FIG. 9, the map outlook determination unit 16 considers that the three-dimensional shape of the houses h11, h12, and h13 whose contours are rectangular in the two-dimensional map are rectangular parallelepipeds.
 例えば、住宅h12の最高点の高さに基づき、住宅h12の3次元の形状が図9に破線で示される直方体であると見なされるならば、地図見通し判定部16は、電柱p11と壁面位置h11-1の間は、住宅h12によって見通しが遮られるため、見通しが無いと判定する。また、例えば、住宅h12の最高点の高さに基づき、住宅h12の3次元の形状が図9に実線で示される直方体であると見なされるならば、地図見通し判定部16は、電柱p11と壁面位置h11-1の間は、住宅h12によって見通しが遮られないため、見通しが有ると判定する。 For example, based on the height of the highest point of the house h12, if the three-dimensional shape of the house h12 is considered to be a rectangular parallelepiped indicated by broken lines in FIG. Since the view is blocked by the house h12 during -1, it is determined that there is no view. Further, for example, based on the height of the highest point of the house h12, if the three-dimensional shape of the house h12 is considered to be a rectangular parallelepiped indicated by solid lines in FIG. Since the view is not blocked by the house h12 between the positions h11-1, it is determined that there is a view.
 なお、地図情報に含まれる高さ情報が、各建物の最高点の高さを示す情報のみではなく、例えば各建物の屋根の形状や傾斜角度等の、建物の形状に関する情報も含んでいる場合には、地図見通し判定部16は、建物の形状に関する情報も考慮して、見通し判定及び反射見通し判定を行ってもよい。 In addition, when the height information included in the map information includes not only information indicating the height of the highest point of each building, but also information related to the shape of the building, such as the shape and inclination angle of the roof of each building. Alternatively, the map visibility determining unit 16 may also consider information about the shape of the building to perform visibility determination and reflected visibility determination.
 図10は、本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 FIG. 10 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
 図10には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11と、が示されている。また、図10には、端末局の設置候補位置である住宅h14の一壁面の中央の位置である壁面位置h11-1と、壁面位置h11-1に設置された場合の端末局t11と、が示されている。また、図10には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h15と、住宅h16と、が示されている。 FIG. 10 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 10 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h14, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown. FIG. 10 also shows a house h15 and a house h16 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
 図10に示されるように、基地局b11の設置候補位置である電柱p11と、端末局t11の設置候補位置である住宅h14の壁面位置h11-1との間には、ともに切妻屋根を有する住宅h15及び住宅h16が存在する。 As shown in FIG. 10, between the utility pole p11, which is the candidate installation position for the base station b11, and the wall surface position h11-1 of the house h14, which is the candidate installation position for the terminal station t11, there is a house with a gable roof. There are h15 and house h16.
 前述の図9に示されるように、もし住宅h15の形状が最高点の高さに基づいて直方体であると見なされるならば、地図見通し判定部16は、電柱p11と壁面位置h11-1との間の見通しは住宅h15によって遮られることになるため、見通しが無いと判定される。しかしながら、建物の形状に関する情報も利用可能であるならば、地図見通し判定部16は、例えば住宅h15の屋根の形状等も考慮して、見通し判定を行うことができる。 As shown in FIG. 9 described above, if the shape of the house h15 is considered to be a rectangular parallelepiped based on the height of the highest point, the map visibility determining unit 16 determines the distance between the utility pole p11 and the wall surface position h11-1. Since the line of sight between is blocked by the house h15, it is determined that there is no line of sight. However, if information about the shape of the building is also available, the map outlook determination unit 16 can determine the outlook by taking into account the shape of the roof of the house h15, for example.
 図11及び図12は、本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。図11は、図10に示されるエリアにおける水平面上での物体の位置関係を表している。図11に示されるように、水平面上での見通し判定によれば、電柱p11と壁面位置h11-1との間の見通しは、住宅h16及び住宅h15によって遮られるため、見通しが無いと判定される。 11 and 12 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention. FIG. 11 shows the positional relationship of objects on the horizontal plane in the area shown in FIG. As shown in FIG. 11, according to the visibility judgment on the horizontal plane, the visibility between the utility pole p11 and the wall position h11-1 is blocked by the houses h16 and h15, so it is determined that there is no visibility. .
 一方、図12は、図10に示されるエリアにおける垂直断面上での物体の位置関係を表している。図12には、垂直断面上における住宅h15の屋根の位置rf15と、垂直断面上における住宅h16の屋根の位置rf16と、が示されている。また、参考までに、同じ垂直断面上における住宅h14の屋根の位置は、この例では最も高い位置(住宅h14の高さと同じ)である。図12に示されるように、電柱p11と壁面位置h11-1とを結ぶ直線は、住宅h15の最高点の高さより低い位置を通過するものの、垂直断面上における住宅h15の屋根の位置rf15と及び垂直断面上における住宅h16の屋根の位置rf16より高い位置を通過することから、地図見通し判定部16は、この組合せ候補は見通しが有ると認識することができる。 On the other hand, FIG. 12 shows the positional relationship of objects on the vertical section in the area shown in FIG. FIG. 12 shows the position rf15 of the roof of the house h15 on the vertical section and the position rf16 of the roof of the house h16 on the vertical section. Also, for reference, the position of the roof of the house h14 on the same vertical section is the highest position (same as the height of the house h14) in this example. As shown in FIG. 12, the straight line connecting the utility pole p11 and the wall surface position h11-1 passes through a position lower than the height of the highest point of the house h15. Since it passes through a position higher than the position rf16 of the roof of the house h16 on the vertical cross section, the map visibility determination unit 16 can recognize that this combination candidate has visibility.
[フレネルゾーンの遮蔽率を用いた見通し判定]
 なお、地図見通し判定部16は、基地局の設置候補位置と端末局の設置候補位置とを結ぶ一直線上の見通しによって単に見通し判定をするのではなく、フレネルゾーンの遮蔽率を考慮して見通し判定を行ってもよい。
[Determination of line of sight using Fresnel zone shielding rate]
Note that the map outlook determination unit 16 does not simply determine the outlook based on the line of sight that connects the candidate installation positions of the base station and the candidate installation positions of the terminal station, but determines the outlook considering the shielding rate of the Fresnel zone. may be performed.
 実際の電磁波は、対向する2つの無線局間を結ぶ直線的な経路のみを伝搬していくのではなく、フレネルゾーンと呼ばれる楕円形の経路領域内を伝搬していく。そのため、対向する2つの無線局間の見通しの有無の判定をより精度高く行うためには、フレネルゾーン内に存在する遮蔽物による影響を考慮した上で、見通しの有無を判定する必要がある。ミリ波帯におけるフレネルゾーンのフレネルゾーン半径は、例えば60[GHz]帯の電磁波を用いて50[m]の距離を伝送する場合において、最大で25[cm]程度である。  Actual electromagnetic waves propagate not only in a straight path connecting two opposing radio stations, but in an elliptical path area called the Fresnel zone. Therefore, in order to determine whether or not there is line-of-sight between two opposing radio stations with higher accuracy, it is necessary to determine whether or not there is line-of-sight after considering the effects of obstructions existing in the Fresnel zone. The Fresnel zone radius of the Fresnel zone in the millimeter wave band is, for example, about 25 [cm] at maximum when transmitting a distance of 50 [m] using electromagnetic waves in the 60 [GHz] band.
 図13は、本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 FIG. 13 is a diagram for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
 図13には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11が示されている。また、図13には、端末局の設置候補位置である住宅h11の一壁面の中央の位置である壁面位置h11-1と、壁面位置h11-1に設置された場合の端末局t11と、が示されている。また、図13には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。また、図13には、基地局b11と端末局t11との間で電波が送受信される場合のフレネルゾーンfz11が示されている。 FIG. 13 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 13 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h11, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown. FIG. 13 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11. FIG. 13 also shows a Fresnel zone fz11 when radio waves are transmitted and received between the base station b11 and the terminal station t11.
 図13に示されるように、基地局b11の設置候補位置である電柱p11と、端末局t11の設置候補位置である壁面位置h11-1との間の見通しは、住宅h12の壁面によって遮られている。また、図13には、見通しが遮られる住宅h12の壁面の位置におけるフレネルゾーンfz11の断面cs11が示されている。 As shown in FIG. 13, the line of sight between the utility pole p11, which is the candidate installation position for the base station b11, and the wall surface position h11-1, which is the candidate installation position for the terminal station t11, is blocked by the wall surface of the house h12. there is FIG. 13 also shows a cross section cs11 of the Fresnel zone fz11 at the position of the wall surface of the house h12 where the view is blocked.
 図示されるように、断面cs13のうち、住宅h12によって見通しが遮られている範囲は、断面cs13の下部の約半分程度の領域である(すなわち、遮蔽率は50%程度であるといえる)。したがって、電柱p11と壁面位置h11-1との間で直線での見通しは無いが、基地局b11と端末局t11との間で送受信される電波が、フレネルゾーンfz11の断面cs11の上部の範囲を通過することによって、通信可能である可能性がある。 As shown in the figure, the area where the view is blocked by the house h12 in the cross section cs13 is about half of the area below the cross section cs13 (that is, the blocking rate can be said to be about 50%). Therefore, although there is no straight line of sight between the utility pole p11 and the wall position h11-1, radio waves transmitted and received between the base station b11 and the terminal station t11 pass through the range above the cross section cs11 of the Fresnel zone fz11. It may be possible to communicate by passing through.
 図14及び図15は、本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 14 and 15 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
 図14は、図13に示されるエリアにおける水平面上での物体の位置関係を表している。図14に示されるように、水平面上での見通し判定によれば、電柱p11と壁面位置h11-1との間の見通しは、住宅h12によって遮られるため、見通しが無いと判定される。また、フレネルゾーンfz11を考慮したとしても、水平面上では、フレネルゾーンfz11は住宅h12によって遮られている。 FIG. 14 shows the positional relationship of objects on the horizontal plane in the area shown in FIG. As shown in FIG. 14, according to the line-of-sight determination on the horizontal plane, the line-of-sight between the utility pole p11 and the wall surface position h11-1 is blocked by the house h12, so it is determined that there is no line-of-sight. Moreover, even if the Fresnel zone fz11 is considered, the Fresnel zone fz11 is blocked by the house h12 on the horizontal plane.
 一方、図15は、図10に示されるエリアにおける垂直断面上での物体の位置関係を表している。図15に示されるように、垂直断面上での見通し判定によれば、電柱p11と壁面位置h11-1との間の見通しは、住宅h12によって遮られるため、見通しが無いと判定される。しかしながら、フレネルゾーンfz11を考慮した場合、垂直断面上では、フレネルゾーンfz11の少なくとも上部は、住宅h12によって遮られていないことが分かる。したがって、地図見通し判定部16は、例えばフレネルゾーンf11の断面cs11における遮蔽率が所定値以上である場合には、見通しが有ると判定するようにしてもよい。 On the other hand, FIG. 15 shows the positional relationship of objects on the vertical section in the area shown in FIG. As shown in FIG. 15, according to the line-of-sight judgment on the vertical section, the line-of-sight between the utility pole p11 and the wall surface position h11-1 is blocked by the house h12, so it is judged that there is no line-of-sight. However, when the Fresnel zone fz11 is considered, it can be seen that at least the upper part of the Fresnel zone fz11 is not obstructed by the house h12 on the vertical section. Therefore, the map visibility determining unit 16 may determine that there is visibility, for example, when the shielding rate in the cross section cs11 of the Fresnel zone f11 is equal to or greater than a predetermined value.
 このように、地図見通し判定部16は、基地局の設置候補位置と端末局の設置候補位置とを結ぶ一直線上の見通しが無い場合であっても、さらにフレネルゾーンの遮蔽率を考慮して見通しの有無を判定することによって、より正確に見通し判定を行うことができる。これにより、置局設計支援装置1は、より多くの組合せ候補を提示することができる。 In this way, even if there is no straight line of sight connecting the candidate installation position of the base station and the candidate installation position of the terminal station, the map outlook determination unit 16 further considers the shielding rate of the Fresnel zone to determine the line of sight. By determining whether or not there is a line of sight, it is possible to perform more accurate line-of-sight determination. As a result, the station placement design support device 1 can present more combination candidates.
[複数回の反射を許容する反射見通し判定]
 なお、本実施形態では、地図見通し判定部16が、1回の反射を含む反射見通し判定を行う場合について説明したが、2回以上の反射を含む反射見通し判定が行われる構成であってもよい。
[Reflected line of sight determination that allows multiple reflections]
In the present embodiment, the case where the map outlook determination unit 16 performs the reflection outlook determination including one reflection has been described, but the reflection outlook determination including two or more reflections may be performed. .
 図16~図23は、本発明の第2の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 16 to 23 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the second embodiment of the present invention.
 図16~図23には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11と、が示されている。また、図16~図23には、端末局の設置候補位置である住宅h11の一壁面の中央の位置である壁面位置h11-1及び住宅h11の一壁面の端部の位置である壁面位置h11-2と、壁面位置h11-1及び壁面位置h11-2にそれぞれ設置された場合の端末局t11と、が示されている。また、図16~図21には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、住宅h17と、住宅h18と、が示されている。 16 to 23 show a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. 16 to 23 also show a wall surface position h11-1, which is the central position of one wall surface of the house h11, which is a candidate installation position of the terminal station, and a wall surface position h11, which is the end position of one wall surface of the house h11. -2, and the terminal station t11 when installed at the wall surface position h11-1 and the wall surface position h11-2, respectively. 16 to 21 also show a house h12, a house h13, a house h17, and a house h18, which can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11. ing.
 なお、図16~図21は、上記の各物体の水平面上での位置関係を表した図であり、これらの位置関係は、図16~図21において共通である。また、図16~図21に示される、基地局b11の設置候補位置である電柱p11と、端末局t11の設置候補位置である壁面位置h11-1及びh11-2を有する住宅h11と、住宅h12と、住宅h13との位置関係は、前述の図6に示される電柱p11と各住宅との位置関係と同じである。 16 to 21 are diagrams showing the positional relationships of the above objects on the horizontal plane, and these positional relationships are common in FIGS. 16 to 21. FIG. 16 to 21, a utility pole p11 as a candidate installation position for the base station b11, a house h11 having wall surface positions h11-1 and h11-2 as candidate installation positions for the terminal station t11, and a house h12 , and the house h13 is the same as the positional relationship between the utility pole p11 and each house shown in FIG.
 図16に示されるように、水平面上において、基地局装置の設置候補位置である電柱p11と端末局の設置候補位置である住宅h11の壁面との間は、住宅h12が存在していることにより見通しが無い。そこで、地図見通し判定部16は、複数回の反射も許容した反射見通し判定を行う。 As shown in FIG. 16, on the horizontal plane, there is a house h12 between the utility pole p11, which is the candidate installation position for the base station, and the wall surface of the house h11, which is the candidate installation position for the terminal station. No prospects. Therefore, the map outlook determination unit 16 performs reflection outlook determination that allows multiple reflections.
 まず、地図見通し判定部16は、反射面となる壁面の候補を抽出する。図17は、6つの反射面候補(反射面候補α、β、γ、δ、ε、ζ)が抽出された様子を表す。図17には、基地局b11から各反射面候補への電波の伝搬経路となりうる領域が示されている。 First, the map outlook determination unit 16 extracts candidates for wall surfaces that serve as reflecting surfaces. FIG. 17 shows how six reflecting surface candidates (reflecting surface candidates α, β, γ, δ, ε, and ζ) are extracted. FIG. 17 shows areas that can serve as radio wave propagation paths from the base station b11 to each reflecting surface candidate.
 次に、地図見通し判定部16は、抽出された各反射面候補によって基地局b11の鏡像となる位置を特定する。図18に示されるように、反射面候補αによる基地局b11の鏡像の位置は鏡像Aの位置である。反射面候補βによる基地局b11の鏡像の位置は鏡像Bの位置である。反射面候補γによる基地局b11の鏡像の位置は鏡像Cの位置である。反射面候補δによる基地局b11の鏡像の位置は鏡像Dの位置である。反射面候補εによる基地局b11の鏡像の位置は鏡像Eの位置である(なお、図18~図20に示される、反射面候補εと鏡像Eとの位置関係は、前述の図6に示される、反射面m11と鏡像p11mとの位置関係と同じである)。反射面候補ζによる基地局b11の鏡像の位置は鏡像Fの位置である。 Next, the map outlook determining unit 16 identifies the position of the mirror image of the base station b11 by each of the extracted reflecting surface candidates. As shown in FIG. 18, the position of the mirror image of the base station b11 by the reflecting surface candidate α is the position of the mirror image A. In FIG. The position of the mirror image of the base station b11 by the reflecting surface candidate β is the position of the mirror image B. FIG. The position of the mirror image of the base station b11 by the reflecting surface candidate γ is the position of the mirror image C. The position of the mirror image of the base station b11 by the reflecting surface candidate δ is the position of the mirror image D. The position of the mirror image of the base station b11 by the reflecting surface candidate ε is the position of the mirror image E (the positional relationship between the reflecting surface candidate ε and the mirror image E shown in FIGS. 18 to 20 is shown in FIG. is the same as the positional relationship between the reflecting surface m11 and the mirror image p11m). The position of the mirror image of the base station b11 by the reflecting surface candidate ζ is the position of the mirror image F.
 次に、地図見通し判定部16は、上記の反射面候補によって反射した反射波が到達する建物の壁面である他の反射面候補によってさらに鏡像となる位置(すなわち、上記特定された鏡像の鏡像の位置)を特定する。図19に示されるように、具体的には、例えば、上記の反射面候補βによって反射した反射波が到達する住宅h18の壁面は反射面候補ηである。反射面候補ηによる鏡像Bの鏡像の位置は鏡像Gの位置である。 Next, the map outlook determination unit 16 determines a position that is a mirror image of another reflecting surface candidate, which is the wall surface of the building to which the reflected wave reflected by the reflecting surface candidate reaches (that is, the mirror image of the specified mirror image). location). Specifically, as shown in FIG. 19, for example, the wall surface of the house h18 where the reflected wave reflected by the reflecting surface candidate β reaches is the reflecting surface candidate η. The position of the mirror image B of the reflecting surface candidate η is the position of the mirror image G.
 一方、図19に示されるように、反射面候補εで反射する反射波は、端末局t11の設置候補位置である壁面位置h11-2に到達することが分かる。したがって、地図見通し判定部16は、反射面候補εでの電波の反射により、1回の反射で反射見通しが有る組合せ候補があることを認識することができる。 On the other hand, as shown in FIG. 19, it can be seen that the reflected wave reflected by the reflecting surface candidate ε reaches the wall surface position h11-2, which is the installation candidate position of the terminal station t11. Therefore, the map visibility determining unit 16 can recognize that there is a combination candidate that has a reflection visibility with one reflection due to the reflection of the radio wave on the reflecting surface candidate ε.
 次に、地図見通し判定部16は、反射面候補ηで再反射する反射波が伝搬する領域を特定する。図20に示されるように、地図見通し判定部16は、鏡像Gと、端末局t11の設置候補位置である壁面位置h11-1とを結ぶ経路に基づいて、反射点Cを特定する。地図見通し判定部16は、反射点Cと、反射面候補βとに基づいて、鏡像反射点cを特定する。地図見通し判定部16は、基地局の設置候補位置である電柱p11と、反射面候補βと、鏡像反射点cとに基づいて、反射点Bを特定する。反射点B及び反射点Cが特定されたことにより、地図見通し判定部16は、反射点B及び反射点Cでの電波の2回の反射によって、反射見通しが有る組合せ候補があることを認識することができる。 Next, the map outlook determination unit 16 identifies the area through which the reflected wave that is re-reflected by the reflecting surface candidate η propagates. As shown in FIG. 20, the map outlook determination unit 16 identifies the reflection point C based on the route connecting the mirror image G and the wall surface position h11-1, which is the installation candidate position for the terminal station t11. The map outlook determination unit 16 identifies the mirror image reflection point c based on the reflection point C and the reflection surface candidate β. The map visibility determining unit 16 identifies the reflection point B based on the utility pole p11, which is the candidate installation position of the base station, the reflection surface candidate β, and the mirror image reflection point c. By specifying the reflection point B and the reflection point C, the map visibility determination unit 16 recognizes that there is a combination candidate with reflection visibility due to the two reflections of the radio waves at the reflection point B and the reflection point C. be able to.
 なお、図21に示されるように、反射点Aで反射する電波の伝搬経路は、住宅h11の壁面位置h11-2に対しては反射見通しがあるが、住宅h11の壁面位置h11-1に対しては住宅h12が遮蔽物となるため反射見通しが無い(なお、図20~図21に示される反射点Aの位置は、前述の図6に示される反射点r11の位置と同じである)。一方、反射点B及び反射点Cで反射する電波の伝搬経路は、住宅h11の壁面位置h11-1に対しては反射見通しがあるが、住宅h11の壁面位置h11-2に対しては住宅h12が遮蔽物となるため反射見通しが無い。 As shown in FIG. 21, the propagation path of the radio wave reflected at the reflection point A has a reflection line of sight with respect to the wall surface position h11-2 of the house h11, but with respect to the wall surface position h11-1 of the house h11 20 and 21 is the same as the position of the reflection point r11 shown in FIG. 6). On the other hand, the propagation paths of the radio waves reflected at the reflection points B and C have a reflection line of sight to the wall surface position h11-1 of the house h11, but are reflected to the wall surface position h11-2 of the house h11. is an obstruction, so there is no reflected line of sight.
 次に、地図見通し判定部16は、垂直断面上での反射見通し判定を行う。図22の上側の図には、水平面上での、反射点B及び反射点Cで反射する電波の伝搬経路が示されている。また、図22の下側の図は、上記の水平面上での電波の伝搬経路が、垂直断面上に投影された様子を表している。 Next, the map visibility determination unit 16 determines reflection visibility on a vertical section. The upper diagram of FIG. 22 shows propagation paths of radio waves reflected at reflection points B and C on the horizontal plane. Also, the lower diagram in FIG. 22 shows how the propagation paths of the radio waves on the horizontal plane are projected on the vertical cross section.
 図23には、図22の下側の図に示される垂直断面上の電波の伝搬経路が、更に詳細に示されている。地図見通し判定部16は、反射面候補βによる、基地局の設置候補位置である電柱p11の鏡像の位置が、鏡像B(鏡像基地局)の位置であることを特定する。地図見通し判定部16は、反射面候補ηによる、反射面候補β上の反射点Bの鏡像の位置が鏡像反射点bの位置であることを特定する。地図見通し判定部16は、反射面候補βによる、反射面候補η上の反射点Cの鏡像の位置が鏡像反射点cの位置であることを特定する。地図見通し判定部16は、反射面候補ηによる、端末局の設置候補位置である住宅h11の壁面位置h11-1の鏡像の位置が鏡像端末局の位置であることを特定する。 FIG. 23 shows in more detail the propagation paths of radio waves on the vertical cross section shown in the lower diagram of FIG. The map outlook determining unit 16 identifies that the position of the mirror image of the utility pole p11, which is the base station installation candidate position, is the position of the mirror image B (mirror image base station). The map outlook determining unit 16 identifies that the position of the mirror image of the reflection point B on the reflection surface candidate β by the reflection surface candidate η is the position of the mirror image reflection point b. The map outlook determination unit 16 identifies that the position of the mirror image of the reflection point C on the reflection surface candidate η by the reflection surface candidate β is the position of the mirror image reflection point c. The map outlook determining unit 16 identifies that the position of the mirror image of the wall surface position h11-1 of the house h11, which is the installation candidate position of the terminal station, is the position of the mirror image terminal station.
 図23に示されるように、垂直断面上において、基地局b11の設置候補位置である電柱p11と、反射点Bと、鏡像反射点cとは、同一の直前上に位置する。また、垂直断面上において、鏡像基地局(鏡像B)の位置と、反射点Bの位置と、反射点Cの位置と、鏡像端末局の位置とは、同一の直線上に位置する。また、垂直断面上において、鏡像反射点bと、反射点Cと、端末局t11の設置候補位置である壁面位置h11-1とは、同一の直線上に位置する。 As shown in FIG. 23, on the vertical cross section, the utility pole p11, which is the installation candidate position of the base station b11, the reflection point B, and the mirror image reflection point c are located immediately above the same. Further, on the vertical section, the position of the mirror image base station (mirror image B), the position of the reflection point B, the position of the reflection point C, and the position of the mirror image terminal station are located on the same straight line. On the vertical cross section, the mirror image reflection point b, the reflection point C, and the wall surface position h11-1, which is the installation candidate position for the terminal station t11, are located on the same straight line.
 反射点Bは、住宅h17の壁面に位置する必要があることから、地図見通し判定部16は、住宅h17の壁面の高さと反射点Bの高さとを比較し、住宅h17の壁面の高さが反射点Bの高さより低い場合には、反射見通しが無いと認識することができる。また、反射点Cは、住宅h18の壁面に位置する必要があることから、地図見通し判定部16は、住宅h18の壁面の高さと反射点Cの高さとを比較し、住宅h18の壁面の高さが反射点Cの高さより低い場合には、反射見通しが無いと認識することができる。 Since the reflection point B needs to be located on the wall surface of the house h17, the map outlook determination unit 16 compares the height of the wall surface of the house h17 with the height of the reflection point B, and determines that the height of the wall surface of the house h17 is If the height is lower than the height of the reflection point B, it can be recognized that there is no reflection line of sight. In addition, since the reflection point C must be located on the wall surface of the house h18, the map outlook determination unit 16 compares the height of the wall surface of the house h18 with the height of the reflection point C, and determines the height of the wall surface of the house h18. is lower than the height of the reflection point C, it can be recognized that there is no reflection line of sight.
 なお、置局設計支援装置1は、上記の反射見通し判定によって絞り込まれた組合せ候補のそれぞれについて、例えばレイトレーシング法(非特許文献1~6を参照)を用いて電波伝搬のシミュレートを行い、伝搬品質の値が所定値以上となる組合せ候補のみとなるように、さらに組合せ候補の絞り込みを行うようにしてもよい。 Note that the station placement design support device 1 simulates radio wave propagation using, for example, the ray tracing method (see Non-Patent Literatures 1 to 6) for each of the combination candidates narrowed down by the reflection outlook determination, The combination candidates may be further narrowed down so that only combination candidates having a propagation quality value equal to or greater than a predetermined value are included.
<第3の実施形態>
 前述の実施形態では、置局設計支援装置1は、基地局の設置候補位置と端末局の設置候補位置との見通しを判定するにあたって、水平面上での見通し判定を行った後、垂直断面上での見通し判定を行う構成であった。一方、以下に説明する第3の実施形態における置局設計支援装置1では、高さ方向の見通し判定をより簡単な構成にすることができる。
<Third Embodiment>
In the above-described embodiment, when determining the line of sight between the candidate installation positions of the base stations and the candidate installation positions of the terminal stations, the station placement design support device 1 determines the line of sight on the horizontal plane, and then determines the line of sight on the vertical section. It was configured to determine the visibility of On the other hand, in the station placement design support device 1 according to the third embodiment described below, the visibility determination in the height direction can be made simpler.
 図24~図26は、本発明の第3の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 24 to 26 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the third embodiment of the present invention.
 図24には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11が示されている。また、図24には、端末局の設置候補位置である住宅h11の一壁面の中央の位置である壁面位置h11-1と、壁面位置h11-1に設置された場合の端末局t11と、が示されている。また、図24には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。 FIG. 24 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 24 also shows a wall surface position h11-1, which is the central position of one wall surface of a house h11, which is a candidate installation position for the terminal station, and a terminal station t11 when installed at the wall surface position h11-1. It is shown. FIG. 24 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
 図24に示されるように、電柱p11と壁面位置11-1との間には住宅h12が存在する。したがって、地図見通し判定部16は、水平面上での見通し判定を行った場合、この組合せ候補については、水平面上での見通しは無いと判定する。 As shown in FIG. 24, a house h12 exists between the utility pole p11 and the wall surface position 11-1. Therefore, when determining the visibility on the horizontal plane, the map outlook determination unit 16 determines that there is no visibility on the horizontal plane for this combination candidate.
 しかしながら、図25に示されるように、垂直断面上で見れば、住宅h12の高さが、基地局b11の設置候補位置と端末局t11の設置候補位置とを結ぶ直線の高さより低いことによって、垂直断面上での見通し有る場合がある。 However, as shown in FIG. 25, when viewed in a vertical section, the height of the house h12 is lower than the height of the straight line connecting the candidate installation position of the base station b11 and the candidate installation position of the terminal station t11. There may be line of sight on the vertical section.
 本実施形態では、地図見通し判定部16は、所定の高さの水平面である基準面を設定し、基準面上での見通し判定を行う。例えば、地図見通し判定部16は、電柱p11において基地局b11が設置される高さの水平面を基準面として設定する。図25に、基地局b11が設置される高さに設定された基準面rp11を示す。 In this embodiment, the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height, and determines the outlook on the reference plane. For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane. FIG. 25 shows the reference plane rp11 set at the height at which the base station b11 is installed.
 図26に示されるように、基準面上での見通し判定が行われる場合、基準面の高さに満たない住宅h12は、地図見通し判定部16によって遮蔽物の対象であるとは認識されない。これにより、地図見通し判定部16は、基地局の設置候補位置である電柱p11と端末局の設置候補位置である壁面位置h11-1との間は、見通しが有ると認識することができる。 As shown in FIG. 26, when the visibility is determined on the reference plane, the house h12 whose height is less than the reference plane is not recognized by the map visibility determination unit 16 as an obstacle. As a result, the map visibility determination unit 16 can recognize that there is visibility between the utility pole p11, which is the candidate installation position for the base station, and the wall surface position h11-1, which is the candidate installation position for the terminal station.
 このように、第3の実施形態の置局設計支援装置1は、基準面の設定によって高さ情報を考慮されたもとで、水平面である基準面上での見通し判定を行うため、前述の垂直断面上での見通し判定を省略させることができる。 As described above, the station placement design support device 1 of the third embodiment determines the line of sight on the reference plane, which is a horizontal plane, while considering the height information by setting the reference plane. It is possible to omit the line of sight judgment above.
[置局設計支援装置の動作]
 以下、第3の実施形態における置局設計支援装置1の動作の一例について説明する。なお、第3の実施形態における置局設計支援装置1の動作において、図2に示されるフローチャートのステップS6以外の動作は、前述の第1の実施形態における置局設計支援装置1の動作と同様である。したがって、以下、図3のフローチャートのステップS6に示される地図情報に基づく見通し判定による組合せ候補群の絞り込みの動作についてのみ説明する。
[Operation of station placement design support device]
An example of the operation of the station placement design support device 1 according to the third embodiment will be described below. In the operation of the station placement design support device 1 in the third embodiment, the operations other than step S6 in the flowchart shown in FIG. 2 are the same as the operations of the station placement design support device 1 in the first embodiment. is. Therefore, only the operation of narrowing down the combination candidate group by the visibility determination based on the map information shown in step S6 of the flowchart of FIG. 3 will be described below.
 図27は、本発明の第3の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。 FIG. 27 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the third embodiment of the present invention.
 地図見通し判定部16は、所定の高さの水平面である基準面を設定する(ステップS621)。例えば、地図見通し判定部16は、電柱p11において基地局b11が設置される高さの水平面を基準面として設定する。 The map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height (step S621). For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
 地図見通し判定部16は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の中から、まだ見通し判定がなされていない組合せ候補を1つ選択する(ステップS622)。 The map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map visibility determination unit 16 selects one combination candidate for which visibility has not yet been determined from among the obtained combination candidates (step S622).
 地図見通し判定部16は、選択された組合せ候補が示す、基地局の設置候補位置と端末局の設置候補位置との間の、基準面上での見通し判定を行う(ステップS623)。地図見通し判定部16は、見通し判定の結果、基準面上での見通しが無いと判定された場合(ステップS623・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS624)。 The map visibility determining unit 16 determines visibility on the reference plane between the installation candidate positions of the base stations and the installation candidate positions of the terminal stations indicated by the selected combination candidates (step S623). When it is determined that there is no visibility on the reference plane as a result of the visibility determination (step S623, NO), the map outlook determination unit 16 deletes the selected combination candidate from the acquired combination candidate group ( step S624).
 地図見通し判定部16は、取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定を行うまで、上記ステップS622からステップS624までの動作を繰り返す(ステップS625)。取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定が行われた場合、図2に示されるフローチャートのステップS7へ進む。 The map outlook determination unit 16 repeats the operations from step S622 to step S624 until the outlook is determined for all combination candidates included in the acquired combination candidate group (step S625). When the prospect determination has been performed for all combination candidates included in the acquired combination candidate group, the flow proceeds to step S7 in the flowchart shown in FIG.
 以上説明したように、本発明の第3の実施形態における置局設計支援装置1は、所定の高さの水平面である基準面を設定し、基準面上での見通し判定を行う。これにより、置局設計支援装置1は、水平面である基準面上での見通し判定を行うだけで、高さ方向の簡易な見通し判定も併せて行うことができるため、前述の垂直断面上の見通し判定の処理を省略させることができる。 As described above, the station placement design support device 1 according to the third embodiment of the present invention sets a reference plane, which is a horizontal plane with a predetermined height, and determines the line of sight on the reference plane. As a result, the station placement design support device 1 can perform a simple line-of-sight determination in the height direction only by determining the line-of-sight on the reference plane, which is a horizontal plane. The determination process can be omitted.
 このような構成を備えることで、本発明の第3の実施形態における置局設計支援装置1は、とくに高さ方向の見通し判定における計算量を削減しつつ、組合せ候補を適切に提示することができる。 With such a configuration, the station placement design support device 1 according to the third embodiment of the present invention can appropriately present combination candidates while reducing the amount of calculation, particularly in judging visibility in the height direction. can.
<第4の実施形態>
 前述の実施形態では、置局設計支援装置1は、基地局の設置候補位置と端末局の設置候補位置との反射見通しを判定するにあたって、水平面上での反射見通し判定を行った後、垂直断面上での反射見通し判定を行う構成であった。一方、以下に説明する第4の実施形態における置局設計支援装置1では、高さ方向の反射見通し判定をより簡単な構成にすることができる。
<Fourth Embodiment>
In the above-described embodiment, the station placement design support device 1 determines the reflection outlook between the candidate installation positions of the base station and the candidate installation positions of the terminal station. It was configured to perform reflection visibility judgment above. On the other hand, the station placement design support device 1 according to the fourth embodiment described below can have a simpler configuration for determination of reflected visibility in the height direction.
 図28~図30は、本発明の第4の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 FIGS. 28 to 30 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fourth embodiment of the present invention.
 図28には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11と、が示されている。また、図28には、端末局の設置候補位置である住宅h11の一壁面の端部の位置である壁面位置h11-2と、壁面位置h11-2に設置された場合の端末局t11と、が示されている。また、図28には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。 FIG. 28 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 28 also shows a wall surface position h11-2 which is the end position of one wall surface of the house h11 which is a candidate installation position of the terminal station, a terminal station t11 when installed at the wall surface position h11-2, It is shown. FIG. 28 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
 図28に示されるように、電柱p11と壁面位置11-2との間には住宅h12が存在する。しかしながら、地図見通し判定部16は、水平面上での反射見通し判定を行った場合、反射面候補ε(住宅h13の壁面)による反射を含む電波の伝搬経路を特定することができるため、この組合せ候補については、水平面上での反射見通しが有ると判定する。 As shown in FIG. 28, a house h12 exists between the utility pole p11 and the wall surface position 11-2. However, when the map outlook determining unit 16 performs reflection outlook determination on a horizontal plane, it is possible to identify the radio wave propagation path including the reflection by the reflecting surface candidate ε (the wall surface of the house h13). Regarding, it is determined that there is a reflection line of sight on the horizontal plane.
 しかしながら、図29に示されるように、住宅h13の高さが、基地局b11の設置候補位置と端末局t11の設置候補位置とを結ぶ直線の高さより低いことによって、反射点となる位置に壁面が存在せず、垂直断面上での反射見通しが無い場合がある。 However, as shown in FIG. 29, since the height of the house h13 is lower than the height of the straight line connecting the candidate installation position of the base station b11 and the candidate installation position of the terminal station t11, the wall surface is positioned as a reflection point. may not exist and there may be no reflected line-of-sight on the vertical cross-section.
 本実施形態では、地図見通し判定部16は、所定の高さの水平面である基準面を設定し、基準面上での反射見通し判定を行う。例えば、地図見通し判定部16は、電柱p11において基地局b11が設置される高さの水平面を基準面として設定する。図29に、基地局b11が設置される高さに設定された基準面rp11を示す。 In this embodiment, the map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height, and determines reflected outlook on the reference plane. For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane. FIG. 29 shows the reference plane rp11 set at the height at which the base station b11 is installed.
 図30に示されるように、基準面上での反射見通し判定が行われる場合、基準面の高さに満たない住宅h13は、地図見通し判定部16によって反射面の対象となる壁面を有する建物であるとは認識されない。これにより、地図見通し判定部16は、基地局の設置候補位置である電柱p11と端末局の設置候補位置である壁面位置h11-1との間は、利用できる反射面が存在しないことから、反射見通しが無いと認識することができる。 As shown in FIG. 30, when the reflection outlook determination is performed on the reference plane, the house h13 whose height is less than the reference plane is a building having a wall surface to be a reflection surface by the map visibility determination unit 16. not recognized to exist. As a result, the map outlook determination unit 16 determines that there is no usable reflecting surface between the utility pole p11, which is the candidate installation position of the base station, and the wall surface position h11-1, which is the candidate installation position of the terminal station. It can be recognized that there is no prospect.
 このように、第4の実施形態の置局設計支援装置1は、基準面の設定によって高さ情報が考慮されたもとで、水平面である基準面上での反射見通し判定を行うため、前述の垂直断面上での反射見通し判定を省略させることができる。 As described above, the station placement design support apparatus 1 of the fourth embodiment performs the reflected line of sight determination on the reference plane, which is a horizontal plane, while considering the height information by setting the reference plane. It is possible to omit the determination of the reflection line of sight on the cross section.
[置局設計支援装置の動作]
 以下、第4の実施形態における置局設計支援装置1の動作の一例について説明する。なお、第4の実施形態における置局設計支援装置1の動作において、図2に示されるフローチャートのステップS6以外の動作は、前述の第1の実施形態における置局設計支援装置1の動作と同様である。したがって、以下、図4のフローチャートのステップS6に示される地図情報に基づく見通し判定による組合せ候補群の絞り込みの動作についてのみ説明する。
[Operation of station placement design support device]
An example of the operation of the station placement design support device 1 according to the fourth embodiment will be described below. In the operation of the station placement design support device 1 in the fourth embodiment, the operations other than step S6 in the flowchart shown in FIG. 2 are the same as the operations of the station placement design support device 1 in the first embodiment. is. Therefore, only the operation of narrowing down the combination candidate group by the visibility determination based on the map information shown in step S6 of the flowchart of FIG. 4 will be described below.
 図31は、本発明の第4の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。 FIG. 31 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the fourth embodiment of the present invention.
 地図見通し判定部16は、所定の高さの水平面である基準面を設定する(ステップS631)。例えば、地図見通し判定部16は、電柱p11において基地局b11が設置される高さの水平面を基準面として設定する。 The map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height (step S631). For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
 地図見通し判定部16は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の中から、まだ見通し判定がなされていない組合せ候補を1つ選択する(ステップS632)。 The map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been made from the acquired combination candidate group (step S632).
 地図見通し判定部16は、基準面上において、選択された組合せ候補に基づく基地局の設置候補位置から見通しが有る反射面を抽出する(ステップS633)。また、地図見通し判定部16は、基準面上において、選択された組合せ候補に基づく端末局の設置候補位置から見通しが有る反射面を抽出する(ステップS634)。 The map line-of-sight determination unit 16 extracts, on the reference plane, reflection surfaces with line-of-sight from the installation candidate positions of the base stations based on the selected combination candidates (step S633). In addition, the map visibility determination unit 16 extracts reflection surfaces with visibility from the installation candidate positions of the terminal stations based on the selected combination candidates on the reference surface (step S634).
 地図見通し判定部16は、ステップS633において抽出された基地局の設置候補位置から見通しが有る反射面と、ステップS634において抽出された端末局の設置候補位置から見通しが有る反射面とを照合し、両局から見通しが有る反射面が存在するか否かを特定する(ステップ635)。 The map line-of-sight determination unit 16 compares the reflective surface with line of sight from the candidate installation position of the base station extracted in step S633 with the reflective surface with line of sight from the candidate installation position of the terminal station extracted in step S634, Determine if there is a reflective surface with line of sight from both stations (step 635).
 地図見通し判定部16は、照合の結果、両局から見通しが有る反射面が存在しないと判定された場合(ステップS635・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS636)。 When it is determined that there is no reflecting surface with visibility from both stations as a result of collation (step S635, NO), the map outlook determination unit 16 deletes the selected combination candidate from the acquired combination candidate group. (step S636).
 地図見通し判定部16は、取得された組合せ候補群に含まれる全ての組合せ候補について反射見通し判定を行うまで、上記ステップS632からステップS636までの動作を繰り返す(ステップS637)。取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定が行われた場合(ステップS637・YES)、図2に示されるフローチャートのステップS7へ進む。 The map outlook determination unit 16 repeats the above operations from step S632 to step S636 until the reflected outlook determination is performed for all combination candidates included in the acquired combination candidate group (step S637). If outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S637, YES), the flow proceeds to step S7 of the flowchart shown in FIG.
 以上説明したように、本発明の第4の実施形態における置局設計支援装置1は、所定の高さの水平面である基準面を設定し、基準面上での反射見通し判定を行う。これにより、置局設計支援装置1は、水平面である基準面上での反射見通し判定を行うだけで、高さ方向の簡易な反射見通し判定も同時に行うことができるため、前述の垂直断面上の反射見通し判定の処理を省略させることができる。 As described above, the station placement design support device 1 according to the fourth embodiment of the present invention sets a reference plane, which is a horizontal plane with a predetermined height, and determines the reflection outlook on the reference plane. As a result, the station placement design support apparatus 1 can simultaneously perform a simple reflected line of sight determination in the height direction only by determining the reflected line of sight on the reference plane, which is a horizontal plane. It is possible to omit the process of determining the reflected line of sight.
 なお、図31のフローチャートに示される反射見通し判定の一連の処理は、前述の図8に示されるフローチャートに組み入れられてもよい。この場合、基地局の設置候補位置と端末局の設置候補位置との間の直接の見通し判定に係る処理と、図31に示される反射見通し判定の一連の処理とを併せて実施することが可能になる。 It should be noted that the series of processes for determining reflected visibility shown in the flowchart of FIG. 31 may be incorporated into the flowchart shown in FIG. 8 described above. In this case, it is possible to perform the processing related to the determination of the direct line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station together with the series of processing of the reflected line of sight determination shown in FIG. become.
 このような構成を備えることで、本発明の第4の実施形態における置局設計支援装置1は、とくに高さ方向の反射見通し判定における計算量を削減しつつ、組合せ候補を適切に提示することができる。 By having such a configuration, the station placement design support device 1 according to the fourth embodiment of the present invention can appropriately present combination candidates while reducing the amount of calculation, particularly in determining the reflection outlook in the height direction. can be done.
<第5の実施形態>
 前述の第4の実施形態では、置局設計支援装置1は、例えば基地局が設置される高さ等の所定の高さの水平面を基準面として設定し、基準面上での反射見通し判定を行う構成であった。ここで、基準面の高さが低いほど、反射面となる壁面を有する建物の個数が増えることから、の反射見通し判定によって絞り込まれた後の組合せ候補の個数がより多くなることが見込まれる。以下に説明する第5の実施形態における置局設計支援装置1は、絞り込まれた後の組合せ候補の個数が所望の数になるように、基準面の高さを調節する。
<Fifth Embodiment>
In the above-described fourth embodiment, the station placement design support device 1 sets a horizontal plane having a predetermined height, such as the height at which a base station is installed, as a reference plane, and determines the reflection outlook on the reference plane. It was a configuration to do. Here, the lower the height of the reference plane, the greater the number of buildings having wall surfaces that serve as reflecting surfaces. Therefore, it is expected that the number of combination candidates after being narrowed down by the reflected view determination will increase. A station placement design support apparatus 1 according to a fifth embodiment described below adjusts the height of the reference plane so that the number of combination candidates after being narrowed down becomes a desired number.
 図32~図35は、本発明の第5の実施形態の置局設計支援装置1による見通し判定の一例を説明するための図である。 32 to 35 are diagrams for explaining an example of line-of-sight determination by the station placement design support device 1 according to the fifth embodiment of the present invention.
 図32には、基地局の設置候補位置である電柱p11と、当該電柱p11に設置された場合の基地局b11と、が示されている。また、図32には、端末局の設置候補位置である住宅h11の一壁面の端部の位置である壁面位置h11-2と、壁面位置h11-2に設置された場合の端末局t11と、が示されている。また、図32には、基地局b11と端末局t11との間の電波の伝搬を遮る遮蔽物となりうる、住宅h12と、住宅h13と、が示されている。 FIG. 32 shows a utility pole p11, which is a candidate installation position for a base station, and a base station b11 when installed on the utility pole p11. FIG. 32 also shows a wall surface position h11-2 which is the end position of one wall surface of the house h11 which is a candidate installation position of the terminal station, a terminal station t11 when installed at the wall surface position h11-2, It is shown. FIG. 32 also shows a house h12 and a house h13 that can serve as shields that block the propagation of radio waves between the base station b11 and the terminal station t11.
 また、図32には、3種類の高さの基準面が示されている。基準面rp11は、基地局b11の設置候補位置の高さの水平面である。また、基準面rp12は、上記の基準面rp11より低い高さの水平面である。また、基準面rp13は、上記の基準面rp12よりさらに低い高さの水平面である。 In addition, FIG. 32 shows reference planes with three different heights. The reference plane rp11 is a horizontal plane at the height of the installation candidate position of the base station b11. The reference plane rp12 is a horizontal plane having a height lower than that of the reference plane rp11. The reference plane rp13 is a horizontal plane with a height lower than that of the reference plane rp12.
 図32に示されるように、住宅h11の高さは、基準面rp11より高い。また、住宅h12の高さは、基準面rp12より高く、基準面rp11より低い。また、住宅h13の高さは、基準面rp13より高く、基準面rp12より低い。なお、端末局t11の設置候補位置である壁面位置h11-2は、基準面rp13より低い。 As shown in FIG. 32, the height of the house h11 is higher than the reference plane rp11. Also, the height of the house h12 is higher than the reference plane rp12 and lower than the reference plane rp11. Also, the height of the house h13 is higher than the reference plane rp13 and lower than the reference plane rp12. Note that the wall surface position h11-2, which is the installation candidate position of the terminal station t11, is lower than the reference plane rp13.
 図33は、基準面rp11に設定がなされた場合における反射見通し判定の様子を示している。図示されるように、基準面rp11では、当該基準面rp11より高さが低い住宅h12及び住宅h13は反射面の対象となる壁面を有する建物とは認識されない。そのため、基準面rp11に設定がなされた場合には、反射面となる建物の壁面が存在しないことから、地図見通し判定部16は、この組合せ候補は反射見通しが無いと判定する。 FIG. 33 shows how reflected visibility is determined when the reference plane rp11 is set. As shown in the figure, on the reference plane rp11, the houses h12 and h13, which are lower than the reference plane rp11, are not recognized as buildings having wall surfaces to be reflected. Therefore, when the reference plane rp11 is set, the wall surface of the building that serves as a reflecting surface does not exist, so the map visibility determination unit 16 determines that this combination candidate has no reflected visibility.
 図34は、基準面rp12に設定がなされた場合における反射見通し判定の様子を示している。図示されるように、基準面rp12では、当該基準面rp12より高さが低い住宅h13は反射面の対象となる壁面を有する建物とは認識されない。一方、図示されるように、基準面rp12では、当該基準面rp12より高さが高い住宅h12は反射面の対象となる壁面を有しうる建物と認識される。しかしながら、電柱p11と、壁面位置h11-2と、住宅h12との位置関係から、住宅h12には反射面候補となる壁面が存在しないため、地図見通し判定部16は、この組合せ候補は反射見通しが無いと判定する。 FIG. 34 shows how reflected visibility is determined when the reference plane rp12 is set. As shown in the figure, on the reference plane rp12, the house h13 whose height is lower than the reference plane rp12 is not recognized as a building having wall surfaces to be reflected. On the other hand, as shown in the figure, on the reference plane rp12, the house h12, which is taller than the reference plane rp12, is recognized as a building that can have a wall surface to be a reflection surface. However, due to the positional relationship between the utility pole p11, the wall surface position h11-2, and the house h12, there is no wall surface as a reflection surface candidate for the house h12. Determine that there is none.
 図35は、基準面rp13に設定がなされた場合における反射見通し判定の様子を示している。図示されるように、基準面rp13では、当該基準面rp13より高さが高い住宅h12及び住宅h13は反射面の対象となる壁面を有しうる建物と認識される。しかしながら、電柱p11と、壁面位置h11-2と、住宅h12との位置関係から、住宅h12には反射面候補となる壁面が存在しない。一方、電柱p11と、壁面位置h11-2と、住宅h13との位置関係から、住宅h13には反射面候補となる壁面が存在する。これにより、地図見通し判定部16は、この組合せ候補は反射見通しが有ると判定する。 FIG. 35 shows how reflected visibility is determined when the reference plane rp13 is set. As shown in the figure, on the reference plane rp13, houses h12 and h13, which are taller than the reference plane rp13, are recognized as buildings that can have wall surfaces that are objects of reflective surfaces. However, due to the positional relationship between the utility pole p11, the wall surface position h11-2, and the house h12, there is no wall surface that can serve as a reflection surface candidate for the house h12. On the other hand, from the positional relationship between the utility pole p11, the wall surface position h11-2, and the house h13, there is a wall surface serving as a reflection surface candidate in the house h13. Accordingly, the map visibility determining unit 16 determines that this combination candidate has a reflected visibility.
 このように、基準面の高さがより低くなるほど、組合せ候補群の中で、反射見通しが有ると判定される組合せ候補の個数が多くなる。本実施形態の置局設計支援装置1は、反射見通し判定後の組合せ候補の個数が所望の個数になるように、基準面の高さを調節する。 In this way, the lower the height of the reference plane, the greater the number of combination candidates determined to have a reflection line of sight in the combination candidate group. The station placement design support device 1 of the present embodiment adjusts the height of the reference plane so that the number of combination candidates after the reflection outlook determination is the desired number.
[置局設計支援装置の動作]
 以下、第5の実施形態における置局設計支援装置1の動作の一例について説明する。なお、第5の実施形態における置局設計支援装置1の動作において、図2に示されるフローチャートのステップS6以外の動作は、前述の第1の実施形態における置局設計支援装置1の動作と同様である。したがって、以下、図5のフローチャートのステップS6に示される地図情報に基づく見通し判定による組合せ候補群の絞り込みの動作についてのみ説明する。
[Operation of station placement design support device]
An example of the operation of the station placement design support apparatus 1 according to the fifth embodiment will be described below. In the operation of the station placement design support device 1 according to the fifth embodiment, the operations other than step S6 in the flowchart shown in FIG. 2 are the same as the operations of the station placement design support device 1 according to the first embodiment. is. Therefore, only the operation of narrowing down the combination candidate group by the visibility determination based on the map information shown in step S6 of the flowchart of FIG. 5 will be described below.
 図36は、本発明の第5の実施形態の地図見通し判定部16による見通し判定処理の動作の一例を示すフローチャートである。 FIG. 36 is a flow chart showing an example of the operation of the outlook determination process by the map outlook determination unit 16 according to the fifth embodiment of the present invention.
 地図見通し判定部16は、所定の高さの水平面である基準面を設定する(ステップS641)。地図見通し判定部16は、複数の高さの基準面のうち、最も高さが高い基準面を設定する。例えば、地図見通し判定部16は、電柱p11において基地局b11が設置される高さの水平面を基準面として設定する。 The map outlook determination unit 16 sets a reference plane, which is a horizontal plane with a predetermined height (step S641). The map outlook determining unit 16 sets the reference plane with the highest height among the reference planes with a plurality of heights. For example, the map outlook determining unit 16 sets a horizontal plane at a height at which the base station b11 is installed on the utility pole p11 as the reference plane.
 地図見通し判定部16は、記憶部30に記憶された組合せ候補群を示す情報、設備情報、及び地図情報を取得する。地図見通し判定部16は、取得された組合せ候補群の中から、まだ見通し判定がなされていない組合せ候補を1つ選択する(ステップS642)。 The map outlook determination unit 16 acquires information indicating a combination candidate group stored in the storage unit 30, facility information, and map information. The map outlook determination unit 16 selects one combination candidate for which outlook determination has not yet been made from among the acquired combination candidate group (step S642).
 地図見通し判定部16は、基準面上において、選択された組合せ候補に基づく基地局の設置候補位置から見通しが有る反射面を抽出する(ステップS643)。また、地図見通し判定部16は、基準面上において、選択された組合せ候補に基づく端末局の設置候補位置から見通しが有る反射面を抽出する(ステップS644)。 The map line-of-sight determination unit 16 extracts a reflecting surface with a line of sight from the installation candidate position of the base station based on the selected combination candidate on the reference plane (step S643). In addition, the map visibility determining unit 16 extracts a reflecting surface with visibility from the installation candidate position of the terminal station based on the selected combination candidate on the reference surface (step S644).
 地図見通し判定部16は、ステップS643において抽出された基地局の設置候補位置から見通しが有る反射面と、ステップS644において抽出された端末局の設置候補位置から見通しが有る反射面とを照合し、両局から見通しが有る反射面が存在するか否かを特定する(ステップ645)。 The map line-of-sight determination unit 16 compares the reflective surface with line of sight from the candidate installation position of the base station extracted in step S643 with the reflective surface with line of sight from the candidate installation position of the terminal station extracted in step S644, It is determined whether there is a reflective surface with line of sight from both stations (step 645).
 地図見通し判定部16は、照合の結果、両局から見通しが有る反射面が存在しないと判定された場合(ステップS645・NO)、取得された組合せ候補群から、上記選択された組合せ候補を削除する(ステップS646)。 When it is determined that there is no reflecting surface with visibility from both stations as a result of collation (step S645, NO), the map outlook determination unit 16 deletes the selected combination candidate from the obtained combination candidate group. (step S646).
 地図見通し判定部16は、取得された組合せ候補群に含まれる全ての組合せ候補について反射見通し判定を行うまで、上記ステップS642からステップS646までの動作を繰り返す(ステップS647)。 The map outlook determination unit 16 repeats the above operations from step S642 to step S646 until the reflected outlook determination is performed for all combination candidates included in the acquired combination candidate group (step S647).
 取得された組合せ候補群に含まれる全ての組合せ候補について見通し判定が行われた場合(ステップS647・YES)、地図見通し判定部16は、組合せ候補群に含まれる、反射見通し判定によって絞り込まれた組合せ候補の個数をカウントする。組合せ候補群に含まれる組合せ候補の個数が所定数に満たない場合(ステップS648・NO)、地図見通し判定部16は、上記の反射見通し判定によって組合せ候補が絞り込まれた組合せ候補群を削除する(ステップS649)。 When the outlook determination has been performed for all combination candidates included in the acquired combination candidate group (step S647: YES), the map outlook determination unit 16 selects the combinations narrowed down by the reflection outlook determination included in the combination candidate group. Count the number of candidates. If the number of combination candidates included in the combination candidate group is less than the predetermined number (step S648, NO), the map outlook determination unit 16 deletes the combination candidate group whose combination candidates have been narrowed down by the reflected outlook determination ( step S649).
 地図見通し判定部16は、記憶部30に記憶された、反射見通し判定が行われる前の組合せ候補群を再度読み込む(ステップS650)。すなわち、地図見通し判定部16は、組合せ候補群をリセットする。地図見通し判定部16は、基準面の高さを一段低い高さに再設定する(ステップS651)。このとき、地図見通し判定部16は、記憶部30に記憶された全ての組合せ候補について、再びまだ見通し判定がなされていないものと見なす。これにより、上記のステップS642において、全ての組合せ候補が再び選択候補となる。 The map outlook determination unit 16 rereads the combination candidate group before reflection outlook determination is performed, which is stored in the storage unit 30 (step S650). That is, the map outlook determination unit 16 resets the combination candidate group. The map outlook determination unit 16 resets the height of the reference plane to a height that is one step lower (step S651). At this time, the map visibility determination unit 16 regards all combination candidates stored in the storage unit 30 as having yet to determine visibility. As a result, in step S642, all combination candidates again become selection candidates.
 地図見通し判定部16は、反射見込み判定によって絞り込まれた組合せ候補群に含まれる組合せ候補の個数が所定数以上になるまで、上記ステップS642からステップS651までの動作を繰り返す(ステップS648)。組合せ候補群に含まれる組合せ候補の個数が所定数以上になった場合(ステップS648・YES)、図2に示されるフローチャートのステップS7へ進む。 The map outlook determination unit 16 repeats the operations from step S642 to step S651 until the number of combination candidates included in the combination candidate group narrowed down by the reflection probability determination reaches or exceeds a predetermined number (step S648). If the number of combination candidates included in the combination candidate group is equal to or greater than the predetermined number (step S648, YES), the process proceeds to step S7 of the flowchart shown in FIG.
 以上説明したように、本発明の第5の実施形態における置局設計支援装置1は、所定の高さの水平面である基準面を設定し、基準面上での反射見通し判定を行う。そして、置局設計支援装置1は、反射見通し判定によって絞り込まれた組合せ候補群に含まれる組合せ候補の個数が所定数に満たない場合には、基準面の高さを少し低くして、再度、基準面上での反射見通し判定を行う。置局設計支援装置1は、反射見通し判定によって絞り込まれた組合せ候補群に含まれる組合せ候補の個数が所定数以上になるまで、基準面の高さを少しずつ下げながら、基準面上での反射見通し判定を繰り返す。 As described above, the station placement design support device 1 according to the fifth embodiment of the present invention sets a reference plane, which is a horizontal plane with a predetermined height, and determines the reflection outlook on the reference plane. Then, when the number of combination candidates included in the combination candidate group narrowed down by reflection view determination is less than a predetermined number, the station placement design support device 1 slightly lowers the height of the reference plane, Determines reflected line of sight on the reference surface. The station placement design support device 1 reduces the height of the reference plane little by little until the number of combination candidates included in the combination candidate group narrowed down by reflection outlook determination reaches or exceeds a predetermined number. Repeat the line of sight judgment.
 これにより、本発明の第5の実施形態における置局設計支援装置1は、所望の個数の組合せ候補からなる組合せ候補群を得ることができる。また、置局設計支援装置1は、水平面である基準面上での反射見通し判定を行うだけで、高さ方向の簡易な反射見通し判定も同時に行うことができるため、前述の垂直断面上の反射見通し判定の処理を省略させることができる。 As a result, the station placement design support device 1 according to the fifth embodiment of the present invention can obtain a combination candidate group consisting of a desired number of combination candidates. In addition, since the station placement design support device 1 can perform a simple reflected line of sight determination in the height direction at the same time simply by determining the reflected line of sight on the reference plane, which is a horizontal plane, the above-mentioned reflected line of sight on the vertical section It is possible to omit the process of line-of-sight determination.
 なお、図36のフローチャートに示される反射見通し判定の一連の処理は、前述の図8に示されるフローチャートに組み入れられてもよい。この場合、基地局の設置候補位置と端末局の設置候補位置との間の直接の見通し判定に係る処理と、図36に示される反射見通し判定の一連の処理とを併せて実施することが可能になる。 It should be noted that the series of processes for determining reflected visibility shown in the flowchart of FIG. 36 may be incorporated into the flowchart shown in FIG. 8 described above. In this case, it is possible to perform the processing related to the determination of the direct line of sight between the candidate installation position of the base station and the candidate installation position of the terminal station together with the series of processing of the reflected line of sight determination shown in FIG. become.
 このような構成を備えることで、本発明の第5の実施形態における置局設計支援装置1は、とくに高さ方向の反射見通し判定における計算量を削減しつつ、組合せ候補を適切に提示することができる。 With such a configuration, the station placement design support device 1 according to the fifth embodiment of the present invention can appropriately present combination candidates while reducing the amount of calculation, particularly in determining the reflection outlook in the height direction. can be done.
 なお、上記の各実施形態において、基地局と端末局とが行う無線通信として、ミリ波無線を一例として示していたが、ミリ波無線通信以外の地上波デジタル通信、衛星電波による通信、UHF(Ultra High Frequency)を用いた通信であってもよい。 In each of the above embodiments, millimeter wave radio was used as an example of wireless communication between the base station and the terminal station. Ultra High Frequency) may also be used.
 上述した実施形態によれば、置局設計支援装置は、生成部と、第1判定部と、第2判定部と、出力部と、を備える。例えば、置局設計支援装置は、実施形態における置局設計支援装置1であり、生成部は、実施形態における組合せ候補群生成部15であり、第1判定部は、実施形態における地図見通し判定部16であり、第2判定部は、実施形態における点群見通し判定部23であり、出力部は、実施形態における組合せ候補群出力部40である。 According to the above-described embodiment, the station placement design support device includes the generation section, the first determination section, the second determination section, and the output section. For example, the station placement design support device is the station placement design support device 1 in the embodiment, the generation unit is the combination candidate group generation unit 15 in the embodiment, and the first determination unit is the map outlook determination unit in the embodiment. 16, the second determination unit is the point cloud outlook determination unit 23 in the embodiment, and the output unit is the combination candidate group output unit 40 in the embodiment.
 上記の生成部は、評価対象エリアにおける、第1無線局の設置候補位置と、第1無線局と通信を行う第2無線局の設置候補位置と、の組合せの集合である第1組合せ候補群を生成する。例えば、第1無線局は、実施形態における基地局b11であり、第2無線局は実施形態における端末局t11であり、第1組合せ候補群は、実施形態における組合せ候補群生成部15によって記憶部30に記憶させられる組合せ候補群である。 The generating unit is a first combination candidate group that is a set of combinations of installation candidate positions of the first wireless station and installation candidate positions of the second wireless station that communicates with the first wireless station in the evaluation target area. to generate For example, the first radio station is the base station b11 in the embodiment, the second radio station is the terminal station t11 in the embodiment, and the first combination candidate group is stored in the storage section by the combination candidate group generation section 15 in the embodiment. 30 is a combination candidate group stored in .
 上記の第1判定部は、第1組合せ候補群に含まれる組合せごとに、評価対象エリアに存在する電波を遮蔽又は反射しうる物体の平面上の位置と高さを示す情報を含む第1の環境情報に基づいて、第1無線局の設置候補位置と第2無線局の設置候補位置との間の見通しの有無を判定する。例えば、電波を遮蔽又は反射しうる物体は、実施形態における住宅h11~h18等の遮蔽物であり、第1の環境情報は、実施形態における地図情報及び設備情報である。 The above-described first determination unit provides, for each combination included in the first combination candidate group, a first determination section including information indicating the planar position and height of an object that is present in the evaluation target area and that can shield or reflect radio waves. Based on the environment information, it is determined whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station. For example, objects that can shield or reflect radio waves are shielding objects such as houses h11 to h18 in the embodiment, and the first environment information is map information and facility information in the embodiment.
 上記の第2判定部は、第1判定部によって見通しが有ると判定された組合せごとに、第1の環境情報より情報量の多い第2の環境情報に基づいて、第1無線局の設置候補位置と第2無線局の設置候補位置との間の見通しの有無を判定する。例えば、第2の環境情報は、実施形態における点群データである。 The above-mentioned second determination unit selects installation candidates for the first wireless station based on the second environment information having a larger amount of information than the first environment information for each combination determined by the first determination unit to have visibility. It is determined whether or not there is a line of sight between the position and the candidate position for installing the second radio station. For example, the second environment information is point cloud data in the embodiment.
 上記の出力部は、第2判定部によって見通しが有ると判定された組合せの集合である第2組合せ候補群を出力する。例えば、第2組合せ候補群は、実施形態における、地図見通し判定部16による見通し判定、及び点群見通し判定部23による見通し判定による組合せ候補の絞り込みがなされた後の組合せ候補群である。 The above output unit outputs the second combination candidate group, which is a set of combinations determined to have prospects by the second determination unit. For example, the second combination candidate group is a combination candidate group after the combination candidates are narrowed down by the outlook determination by the map outlook determination unit 16 and the outlook determination by the point cloud outlook determination unit 23 in the embodiment.
 なお、上記の第1判定部は、上記の物体が上記の情報に基づく高さを有する柱状の物体であるものと見なして見通しの有無を判定するようにしてもよい。 It should be noted that the above-mentioned first determination unit may determine whether or not there is line of sight, assuming that the above-mentioned object is a columnar object having a height based on the above-mentioned information.
 なお、上記の第1の環境情報には、上記の物体の屋根の形状に関する情報が含まれていてもよい。この場合、上記の第1判定部は、屋根の形状を考慮して見通しの有無を判定するようにしてもよい。 It should be noted that the first environmental information may include information regarding the shape of the roof of the object. In this case, the above first determination unit may determine whether or not there is visibility in consideration of the shape of the roof.
 なお、上記の第1判定部は、上記の電波を反射しうる物体による電波の反射を含んだ見通しの有無を判定するようにしてもよい。 It should be noted that the above first determination unit may determine whether or not there is a line of sight including the reflection of the radio wave by the object that can reflect the radio wave.
 なお、上記の第1判定部は、第1無線局と第2無線局との間で生成されるフレネルゾーンの遮蔽率に基づいて見通しの有無を判定するようにしてもよい。例えば、フレネルゾーンは、実施形態におけるフレネルゾーンfz11である。 It should be noted that the first determination unit described above may determine the presence or absence of line of sight based on the shielding rate of the Fresnel zone generated between the first wireless station and the second wireless station. For example, the Fresnel zone is Fresnel zone fz11 in the embodiment.
 なお、上記の第1判定部は、所定の高さの水平面である基準面を評価対象エリアに対して設定し、基準面の高さと上記の物体の高さとに基づいて見通しの有無を判定するようにしてもよい。 In addition, the above-described first determination unit sets a reference plane, which is a horizontal plane of a predetermined height, to the evaluation target area, and determines whether or not there is visibility based on the height of the reference plane and the height of the object. You may do so.
 なお、上記の第1判定部は、第2組合せ候補群に含まれる組合せの個数が所定数以上となるように基準面の高さを設定するようにしてもよい。 It should be noted that the above first determination unit may set the height of the reference plane so that the number of combinations included in the second combination candidate group is equal to or greater than a predetermined number.
 上述した各実施形態における置局設計支援装置1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合せで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The station placement design support device 1 in each of the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
1…置局設計支援装置、11…設備情報取得部、h11-1,h11-2…壁面位置、12…基地局候補位置抽出部、13…地図情報取得部、14…端末局候補位置抽出部、15…組合せ候補群生成部、16…地図見通し判定部、21…点群データ取得部、22…データ整合部、23…点群見通し判定部、30…記憶部、40…組合せ候補群出力部、800,801…ビル、810,811,812…住宅、821,826…電柱、830,834…基地局、840,844…端末局、850,851…局舎、900,901…光ファイバ Reference Signs List 1 Station placement design support device 11 Facility information acquisition unit h11-1, h11-2 Wall position 12 Base station candidate position extraction unit 13 Map information acquisition unit 14 Terminal station candidate position extraction unit , 15... combination candidate group generation unit 16... map outlook determination unit 21... point cloud data acquisition unit 22... data matching unit 23... point cloud outlook determination unit 30... storage unit 40... combination candidate group output unit .

Claims (8)

  1.  評価対象エリアにおける、第1無線局の設置候補位置と、前記第1無線局と通信を行う第2無線局の設置候補位置と、の組合せの集合である第1組合せ候補群を生成する生成部と、
     前記第1組合せ候補群に含まれる前記組合せごとに、前記評価対象エリアに存在する電波を遮蔽又は反射しうる物体の平面上の位置と高さを示す情報を含む第1の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第1判定部と、
     前記第1判定部によって前記見通しが有ると判定された組合せごとに、前記第1の環境情報より情報量の多い第2の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第2判定部と、
     前記第2判定部によって前記見通しが有ると判定された組合せの集合である第2組合せ候補群を出力する出力部と、
     を備える置局設計支援装置。
    A generation unit that generates a first combination candidate group that is a set of combinations of candidate installation positions of a first radio station and candidate installation positions of a second radio station that communicates with the first radio station in an evaluation target area. When,
    Based on first environmental information including information indicating the planar position and height of an object that can block or reflect radio waves existing in the evaluation target area for each of the combinations included in the first combination candidate group a first determination unit that determines whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station;
    For each combination determined to have the line of sight by the first determination unit, the installation candidate position of the first wireless station and the first a second determination unit that determines whether or not there is a line of sight between the installation candidate positions of the two wireless stations;
    an output unit that outputs a second combination candidate group that is a set of combinations determined to have the prospect by the second determination unit;
    A station placement design support device comprising:
  2.  前記第1判定部は、前記物体が前記高さを有する柱状の物体であるものと見なして前記見通しの有無を判定する
     請求項1に記載の置局設計支援装置。
    2. The station placement design support device according to claim 1, wherein the first determination unit determines whether or not the line of sight is present by assuming that the object is a columnar object having the height.
  3.  前記第1の環境情報には、前記物体の屋根の形状に関する情報が含まれ、
     前記第1判定部は、前記屋根の形状を考慮して前記見通しの有無を判定する
     請求項1に記載の置局設計支援装置。
    the first environmental information includes information about the shape of the roof of the object;
    2. The station placement design support device according to claim 1, wherein said first determination unit determines whether or not said line of sight is present in consideration of the shape of said roof.
  4.  前記第1判定部は、前記電波を反射しうる物体による前記電波の反射を含んだ前記見通しの有無を判定する
     請求項1から3のうちいずれか一項に記載の置局設計支援装置。
    The station placement design support device according to any one of claims 1 to 3, wherein the first determination unit determines whether or not the line of sight includes reflection of the radio wave by an object capable of reflecting the radio wave.
  5.  前記第1判定部は、前記第1無線局と前記第2無線局との間で生成されるフレネルゾーンの遮蔽率に基づいて前記見通しの有無を判定する
     請求項1から3のうちいずれか一項に記載の置局設計支援装置。
    4. The first determining unit determines whether or not there is a line of sight based on a shielding rate of a Fresnel zone generated between the first wireless station and the second wireless station. The station placement design support device according to the item.
  6.  前記第1判定部は、所定の高さの水平面である基準面を前記評価対象エリアに対して設定し、前記基準面の高さと前記物体の高さとに基づいて前記見通しの有無を判定する
     請求項1から5のうちいずれか一項に記載の置局設計支援装置。
    The first determination unit sets a reference plane, which is a horizontal plane of a predetermined height, to the evaluation target area, and determines whether or not the line of sight is present based on the height of the reference plane and the height of the object. Item 6. The station placement design support device according to any one of Items 1 to 5.
  7.  前記第1判定部は、第2組合せ候補群に含まれる組合せの個数が所定数以上となるように前記基準面の高さを設定する
     請求項6に記載の置局設計支援装置。
    7. The station placement design support device according to claim 6, wherein the first determination unit sets the height of the reference plane so that the number of combinations included in the second combination candidate group is equal to or greater than a predetermined number.
  8.  評価対象エリアにおける、第1無線局の設置候補位置と、前記第1無線局と通信を行う第2無線局の設置候補位置と、の組合せの集合である第1組合せ候補群を生成する生成ステップと、
     前記第1組合せ候補群に含まれる前記組合せごとに、前記評価対象エリアに存在する電波を遮蔽又は反射しうる物体の平面上の位置と高さを示す情報を含む第1の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第1判定ステップと、
     前記第1判定ステップにおいて前記見通しが有ると判定された組合せごとに、前記第1の環境情報より情報量の多い第2の環境情報に基づいて、前記第1無線局の設置候補位置と前記第2無線局の設置候補位置との間の見通しの有無を判定する第2判定ステップと、
     前記第2判定ステップにおいて前記見通しが有ると判定された組合せの集合である第2組合せ候補群を出力する出力ステップと、
     を有する置局設計支援方法。
    A generation step of generating a first combination candidate group, which is a set of combinations of candidate installation positions of a first radio station and candidate installation positions of a second radio station that communicates with the first radio station, in an evaluation target area. When,
    Based on first environmental information including information indicating the planar position and height of an object that can block or reflect radio waves existing in the evaluation target area for each of the combinations included in the first combination candidate group a first determination step of determining whether or not there is a line of sight between the candidate installation position of the first radio station and the candidate installation position of the second radio station;
    For each combination determined to have the line of sight in the first determining step, based on the second environment information having a larger amount of information than the first environment information, the installation candidate position of the first wireless station and the first wireless station a second determination step of determining whether or not there is a line-of-sight between the candidate installation positions of the two wireless stations;
    an output step of outputting a second combination candidate group, which is a set of combinations determined to have prospects in the second determination step;
    station placement design support method.
PCT/JP2021/015125 2021-04-12 2021-04-12 Station site design assisting device and station site design assisting method WO2022219669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/015125 WO2022219669A1 (en) 2021-04-12 2021-04-12 Station site design assisting device and station site design assisting method
JP2023514182A JPWO2022219669A1 (en) 2021-04-12 2021-04-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015125 WO2022219669A1 (en) 2021-04-12 2021-04-12 Station site design assisting device and station site design assisting method

Publications (1)

Publication Number Publication Date
WO2022219669A1 true WO2022219669A1 (en) 2022-10-20

Family

ID=83640235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015125 WO2022219669A1 (en) 2021-04-12 2021-04-12 Station site design assisting device and station site design assisting method

Country Status (2)

Country Link
JP (1) JPWO2022219669A1 (en)
WO (1) WO2022219669A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160269911A1 (en) * 2015-03-10 2016-09-15 Blinq Wireless Inc. Method and system for network planning in fixed wireless backhaul networks
JP2020025234A (en) * 2018-08-09 2020-02-13 公益財団法人鉄道総合技術研究所 Design method and system for radio sensor network
WO2020149291A1 (en) * 2019-01-18 2020-07-23 日本電信電話株式会社 Station installation design method, station installation design device, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160269911A1 (en) * 2015-03-10 2016-09-15 Blinq Wireless Inc. Method and system for network planning in fixed wireless backhaul networks
JP2020025234A (en) * 2018-08-09 2020-02-13 公益財団法人鉄道総合技術研究所 Design method and system for radio sensor network
WO2020149291A1 (en) * 2019-01-18 2020-07-23 日本電信電話株式会社 Station installation design method, station installation design device, and program

Also Published As

Publication number Publication date
JPWO2022219669A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US20080133190A1 (en) method and a system for planning a security array of sensor units
US10880755B2 (en) Method and system for radio communication network planning
CN104867174A (en) Three-dimensional map rendering and display method and system
JP2001526493A (en) Method and apparatus for predicting signal characteristics in a wireless communication system
JP2020113826A (en) Installation candidate presentation method, installation candidate presentation device, and program
EP4278645A1 (en) Installation of repeaters for a millimeter wave communications network
Hrovat et al. Radio coverage calculations of terrestrial wireless networks using an open-source GRASS system
US11637597B2 (en) System and method for geospatial planning of wireless backhaul links
JP7252495B2 (en) Station placement support method and station placement support device
WO2022219669A1 (en) Station site design assisting device and station site design assisting method
US9589358B1 (en) Determination of point of interest views from selected vantage points
Brown et al. Planning wireless backhaul links by testing line of sight and fresnel zone clearance
JP7260837B2 (en) Station setting support method, station setting support device, and station setting support program
Monserrat et al. Map-based channel model for urban macrocell propagation scenarios
JP7280536B2 (en) Outlook determination method, visibility determination device, and program
Hrovat et al. An open-source radio coverage prediction tool
Chen et al. Field strength prediction of mobile communication network based on GIS
EP2936865B1 (en) Method for estimating the electric field strength in a cellular communication network
WO2023032223A1 (en) Station installation design supporting method and station installation design supporting apparatus
JP7494388B1 (en) Information processing device, information processing method, and program
Ozimek et al. GRASS-RaPlaT-an open-source tool for radio coverage calculations
WO2023132030A1 (en) Communication feasibility determination method, communication feasibility determination device, and communication area setting assistance system
WO2022239215A1 (en) Station placement design assisting method and station placement design assisting device
KR102448466B1 (en) Image processing device for partial renewal of 3D underground facilities
WO2023037534A1 (en) Station placement design support method and station placement design support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514182

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936873

Country of ref document: EP

Kind code of ref document: A1