WO2023131466A1 - Appareil de soudage par scanner et procédé de soudage par scanner d'au moins deux pièces - Google Patents

Appareil de soudage par scanner et procédé de soudage par scanner d'au moins deux pièces Download PDF

Info

Publication number
WO2023131466A1
WO2023131466A1 PCT/EP2022/085022 EP2022085022W WO2023131466A1 WO 2023131466 A1 WO2023131466 A1 WO 2023131466A1 EP 2022085022 W EP2022085022 W EP 2022085022W WO 2023131466 A1 WO2023131466 A1 WO 2023131466A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
scanner
laser
range
workpieces
Prior art date
Application number
PCT/EP2022/085022
Other languages
German (de)
English (en)
Inventor
Oliver BOCKSROCKER
Nicolai Speker
Tim Hesse
Philipp Scheible
Original Assignee
Trumpf Laser- Und Systemtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser- Und Systemtechnik Gmbh filed Critical Trumpf Laser- Und Systemtechnik Gmbh
Publication of WO2023131466A1 publication Critical patent/WO2023131466A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms

Definitions

  • the invention relates to a scanner welding device according to the preamble of claim 1 and a method according to claim 9 .
  • the object of the invention is to propose an improved scanner welding device and an improved corresponding welding method for scanner welding of workpieces, in particular bipolar plates of a fuel cell.
  • the speed of the joining process should be increased with at least the same quality or Quality of the welds produced can be increased.
  • a small imaging ratio makes it possible to generate a small beam diameter of the laser beam, so that the smallest possible weld seam widths can be achieved at high feed rates and the heat input into the workpieces to be joined can be kept low. As a result, the speed of the laser welding process can be achieved while the quality of the weld seams produced remains the same or is improved.
  • the laser beam device has an optical fiber cable. Accordingly, a laser beam source can be used in the laser beam device, which works with a fiber-guided wavelength within the fiber-optic cable. Disc, fiber and diode lasers, for example, can be used as laser beam sources. It is advantageous if the laser light cable as a 2 inl laser light cable with an inner fiber core or an inner fiber and an outer fiber core or an outer fiber, in particular a ring fiber surrounding the inner fiber core.
  • the inner fiber core can have a diameter of up to 50 ⁇ m, for example, while the ring fiber can have a diameter of up to 200 ⁇ m, for example.
  • Such a 2 inl laser light cable can also be referred to as a multiclad fiber.
  • the laser beam device can advantageously be set up for dividing the laser beam of the 2-in-1 laser light cable into a plurality of individual beams.
  • the individual beams can generate a Gaussian (similar) or tophat profile from the core fiber and/or a donut (similar) profile from the ring fiber. This allows stabilization of the so-called keyhole or deep vapor capillary that occurs during laser welding , a precise welding depth and a high tightness of the weld seam.
  • the laser beam device is set up with a modulation module for power modulation of at least part of the laser beam. By modulating the power of a part of the laser beam, for example individual partial beams, or the entire laser beam, the melting bath dynamics can be optimized during laser beam welding.
  • the laser beam device has a laser beam source in the form of an infrared laser or, alternatively, in the form of a VIS laser.
  • a VIS laser is understood to be a laser that emits laser beams in the visible wavelength range (VIS).
  • the infrared laser can be used, for example, to emit laser radiation in a wavelength range from 800 nm to 1 . 200 nm, in particular for a range of 1 . 030 nm to 1 . 070 nm, be set up.
  • the VIS laser can be set up, for example, to emit laser radiation in a wavelength range from 400 nm to 450 nm (blue light) and/or at a wavelength of 515 nm (green light).
  • the laser beam device can be set up to emit two or more laser beams which share an optical axis, in particular have congruent optical axes, and in particular have different beam diameters. This also allows stabilization of the keyhole created during laser welding, precise welding depth and high tightness of the weld seam.
  • a multimode laser ie a laser that emits two or more laser beams, can be set up for beam diameters of the laser beams in the range from 50 ⁇ m to 170 ⁇ m. Individual laser beams can Range of 0, 1 times to 10 times the beam diameter of one or more other laser beams. However, the two or more laser beams can also have the same beam diameter.
  • a beam parameter product SPP of the laser beam is in the range from 0.3 mm*mrad to 18 mm*mrad, in particular in the range from 0.38 mm*mrad to 16 mm*mrad.
  • an SPP of 0.6 mm*rad or less has proven particularly advantageous.
  • an SPP of 3 mm* rad or less is particularly advantageous.
  • the use of a combination of large focal length, high beam quality (ie low SPP) and large numerical aperture has proven to be particularly advantageous. With this combination, a large field of work can be covered, while at the same time imaging errors are kept to a minimum.
  • feed speeds of the laser beam in the range from 100 mm/s to 5 . 000 mm/s, especially in the range from 300 mm/s to 2. 000 mm/ s , lie or . can be achieved, whereby rapid welding can be achieved with a high welding quality.
  • FIG. 1 shows a schematic representation of an exemplary embodiment of a scanner welding device according to the invention
  • FIG. 2 shows a section of the scanner welding device from FIG. 1 ;
  • FIG. 3 shows a scan field of the scanner optics of the scanner welding device from FIG. 1 .
  • the scanner welding device 100 is set up for joining the two workpieces 7 shown to one another by means of scanner welding.
  • the two workpieces 7 are metallic bipolar plates 7 made of aluminum.
  • the scanner welding device 100 has the features shown in FIG. 1 shown laser beam device 10 and a scanner optics 20 on. These can be arranged completely or partially in a laser processing head, not shown, of the scanner welding device 100, which in turn can be moved by means of a moving device, not shown, such as a robot arm, of the scanner welding device 100.
  • the scanner optics 20 allow the laser beam 1 generated by the laser beam device 10 to be advanced within the processing field or area covered by it. Scan field 6, as will be explained in more detail later.
  • the laser beam device 10 includes a laser beam source 11, which can be an infrared laser or a VIS laser, for example. From this laser beam source 11 generated laser radiation is in a cable or.
  • a fiber coupled which is presently formed by a 2 inl fiber optic cable 12, which in turn has an inner fiber core 13 and outer fiber core 14 or. comprises a ring fiber which is arranged around the inner fiber core 13 .
  • a laser beam 1 or laser beams 1 are emitted onto a scanner optics 20 .
  • FIG. 2 now shows a detail of the scanner welding device 100 of FIG. 1 with one end of the fiber optic cable 12, from which the laser beams 1 are decoupled, and the collimating lens 21 of the scanner optics 20.
  • the numerical aperture NA is set to, for example, 0.11, 0.12 or a value in between, which enables a large scan field 6 with an area of 50 mm ⁇ 36 mm or larger, which covers the entire processing surface 8 of the bipolar plate 7 , as Fig. 3 shows.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un appareil de soudage par scanner (100) pour souder par scanner au moins deux pièces (7), l'appareil de soudage par scanner (100) comprenant un dispositif à faisceau laser (10) pour émettre un faisceau laser (1) et une optique de balayage (20) pour orienter le faisceau laser émis (1) sur au moins une surface d'usinage (8) d'au moins l'une des au moins deux pièces (7) ; l'optique de balayage (20) comprenant une lentille de collimation (21) et au moins un miroir mobile (22) ; et, entre le dispositif à faisceau laser (10) et la lentille de collimation (21), une ouverture numérique NA pouvant être déterminée à partir de l'indice de réfraction n d'un milieu entre le dispositif à faisceau laser (10) et la lentille de collimation (21) et de l'angle d'ouverture α du faisceau laser (1) entre le dispositif à faisceau laser (10) et la lentille de collimation (21) selon la formule NA = n x sin(α/2), l'appareil de soudage par scanner (100) étant conçu de telle sorte que NA > 0,08 s'applique à l'ouverture numérique.
PCT/EP2022/085022 2022-01-05 2022-12-08 Appareil de soudage par scanner et procédé de soudage par scanner d'au moins deux pièces WO2023131466A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022100229.2 2022-01-05
DE102022100229.2A DE102022100229A1 (de) 2022-01-05 2022-01-05 Scannerschweißvorrichtung und Verfahren zum Scannerschweißen von zumindest zwei Werkstücken

Publications (1)

Publication Number Publication Date
WO2023131466A1 true WO2023131466A1 (fr) 2023-07-13

Family

ID=84785014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/085022 WO2023131466A1 (fr) 2022-01-05 2022-12-08 Appareil de soudage par scanner et procédé de soudage par scanner d'au moins deux pièces

Country Status (2)

Country Link
DE (1) DE102022100229A1 (fr)
WO (1) WO2023131466A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007178A1 (de) * 2004-02-13 2005-09-08 Precitec Kg Laserbearbeitungskopf
DE102007028504A1 (de) * 2007-06-18 2009-01-02 Scansonic Mi Gmbh Vorrichtung zum Bearbeiten eines Werkstücks mittels eines Laserstrahls
DE102017217145A1 (de) * 2017-09-27 2019-03-28 Trumpf Laser Gmbh Lasersystem und Verfahren zur Erzeugung eines Top-Hat- angenäherten Strahlprofils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007178A1 (de) * 2004-02-13 2005-09-08 Precitec Kg Laserbearbeitungskopf
DE102007028504A1 (de) * 2007-06-18 2009-01-02 Scansonic Mi Gmbh Vorrichtung zum Bearbeiten eines Werkstücks mittels eines Laserstrahls
DE102017217145A1 (de) * 2017-09-27 2019-03-28 Trumpf Laser Gmbh Lasersystem und Verfahren zur Erzeugung eines Top-Hat- angenäherten Strahlprofils

Also Published As

Publication number Publication date
DE102022100229A1 (de) 2023-07-06

Similar Documents

Publication Publication Date Title
US11351633B2 (en) Laser processing apparatus and method
EP2978588B1 (fr) Procédé et dispositif de soudage par laser de deux éléments à assembler composés de matériaux thermoplastiques, le long d'un joint soudé
DE69710346T3 (de) Verfahren zum bearbeiten eines materiales mittels laserstrahlbehandlung
WO2021005061A1 (fr) Appareil optique et procédé de soudage au laser d'une pièce, comprenant plusieurs faisceaux partiels présentant une zone centrale et une zone annulaire dans le profil de faisceau
DE102016222357A1 (de) Verfahren zum Tiefschweißen eines Werkstücks, mit Einstrahlen eines Laserstrahls in die von einem anderen Laserstrahl erzeugte Kapillaröffnung
US20210086295A1 (en) Welding method and welding apparatus
DE102008045778A1 (de) Laserstrahlanlage
DE19933825B4 (de) Laserbearbeitungsvorrichtung
DE102014203025A1 (de) Verfahren zum Laserstrahlschweißen und Schweißkopf
DE102019215968A1 (de) Laserschweißverfahren für Eckverbindungen von Werkstückteilen
DE10113471B4 (de) Verfahren zum Hybridschweißen mittels eines Laserdoppelfokus
DE102007006330A1 (de) Verfahren und Vorrichtung zum Laserschweißen
EP1175955B1 (fr) Procédé et dispositif de lissage de cordon soudé au cours du soudage par faisceau
WO2022171621A1 (fr) Procédé d'optimisation d'un temps d'usinage d'un processus d'usinage laser, procédé de réalisation d'un processus d'usinage laser sur une pièce, et système d'usinage laser conçu pour réaliser ce processus
WO2021228829A1 (fr) Procédé de découpe laser et installation de découpe laser
DE3626944A1 (de) Verfahren und vorrichtung zum fokussieren und steuern einer hochleistungsenergiequelle
WO2023131466A1 (fr) Appareil de soudage par scanner et procédé de soudage par scanner d'au moins deux pièces
DE4339661C2 (de) Verfahren zum Herstellen von röhrenförmigen Rohlingen aus Fein- oder Feinstblech
DE102015200795B3 (de) Anordnung zur Bestrahlung einer Objektfläche mit mehreren Teilstrahlen ultrakurz gepulster Laserstrahlung
EP3222380B1 (fr) Répartition de rayonnement pour l'usinage au laser
DE102021118390A1 (de) Schweißoptik zum Laserschweißen von Werkstücken, mit flexibler Einstellung von Anzahl und Abstand von Laserspots über Zylinderlinsen
EP3030375B1 (fr) Dispositif d'usinage de matière par faisceau laser
WO2022268822A1 (fr) Procédé et dispositif pour générer un contour de soudage au moyen de plusieurs spots laser par l'intermédiaire d'une optique de balayage
DE102021206488A1 (de) Verfahren zum mehrfachen Abfahren einer Schweißkontur mit mehreren Laserspots
WO2022268824A1 (fr) Procédé de soudage étanche aux milieux d'éléments contenant de l'aluminium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22835259

Country of ref document: EP

Kind code of ref document: A1