WO2023131164A2 - 一种油站执行机构plc控制改dcs控制的方法 - Google Patents

一种油站执行机构plc控制改dcs控制的方法 Download PDF

Info

Publication number
WO2023131164A2
WO2023131164A2 PCT/CN2023/070343 CN2023070343W WO2023131164A2 WO 2023131164 A2 WO2023131164 A2 WO 2023131164A2 CN 2023070343 W CN2023070343 W CN 2023070343W WO 2023131164 A2 WO2023131164 A2 WO 2023131164A2
Authority
WO
WIPO (PCT)
Prior art keywords
valve
dcs
control
oil
plc
Prior art date
Application number
PCT/CN2023/070343
Other languages
English (en)
French (fr)
Other versions
WO2023131164A3 (zh
Inventor
石永利
张升田
马天野
宋慧彬
范泽源
刘焕博
Original Assignee
呼伦贝尔安泰热电有限责任公司海拉尔热电厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呼伦贝尔安泰热电有限责任公司海拉尔热电厂 filed Critical 呼伦贝尔安泰热电有限责任公司海拉尔热电厂
Publication of WO2023131164A2 publication Critical patent/WO2023131164A2/zh
Publication of WO2023131164A3 publication Critical patent/WO2023131164A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32406Distributed scada
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present application relates to the technical field of electronic devices, and more specifically, relates to a method for changing PLC control of an actuator of a gas station to DCS control.
  • Huaneng Hailaer Thermal Power Plant 2*200MW unit #2 underwent zero-efficiency transformation, and installed two hydraulic butterfly valves for medium and low pressure Unicom pipes. Professionals cannot check the internal logic of the PLC, cannot quickly determine the cause of the failure, and there are hidden dangers in the long-term stable operation of the unit. And each hydraulic butterfly valve has two hydraulic oil pumps, the hydraulic oil pump cannot be remotely operated, and there is no oil pump operation feedback, and the two oil pumps share a thermal relay. When one oil pump fails to start, the remote cannot monitor and deal with it in time, and The other pump can only be switched to run locally.
  • this application proposes a method for changing the PLC control of the oil station actuator to DCS control, including the following steps:
  • Step 1 Re-lay cables, cancel the local PLC control system, and introduce DCS into all control systems
  • Step 2 Transform the oil pump control system of each hydraulic oil station
  • Step 3 Install 4 to 20mA to -5VDC to +5VDC signal isolation module
  • Step 4 According to the operation manual of the gas station, build the DCS logic configuration
  • Step 5 After the installation is completed, debug the hydraulic butterfly valve, consider the logical judgment of various working conditions and fault conditions, and conduct actual transmission experiments.
  • step 1 the method for transforming the gas station controlled by the PLC system into that controlled by the DCS system is: remove the internal loop connected to the PLC, and all hardware control systems are completed by the DCS.
  • the method for transforming the oil pump control system of each hydraulic oil station in step 2 is: convert the operation of the local control box to DCS screen display, and operate, wherein the start and stop of the oil pump of #1 valve are all operated by DCS To achieve, increase the interlock input button of each oil pump.
  • the interlock logic is: when the interlock is enabled, the start and stop of the oil pump is automatically controlled, when the current oil pressure is less than 12MPa, the oil pump is automatically started, and when it is greater than 16MPa, the oil pump is automatically stopped, and an audible and visual alarm is added. If it is less than 11Mpa, the low oil pressure alarm of the hydraulic oil station of the medium and low pressure Unicom pipe hydraulic oil station will be issued in the DCS screen.
  • the valve operation of the hydraulic butterfly valve in step 5 is divided into running state and positioning state, and the positioning state needs to select #1 valve positioning, or #2 valve positioning; when the positioning operation takes effect, click the + sign to increase the valve opening, click When the number is -, the valve opening is reduced, and the travel time is in the form of pulses. The modification of the specific pulse time length is confirmed by the thermal engineer.
  • the hydraulic butterfly valve that has not entered the positioning state can be operated normally, and the valve opening can be set for normal operation. , to set the valve opening, and to operate the valve according to the + sign or - sign.
  • the valve command is defined as: -5V—+5V, where 0V is the steady-state voltage, and the valve guarantees the current state; -5V—0V, is the valve opening voltage, and the smaller the voltage, the faster the valve opening action; 0V—+5V is the valve closing voltage, and the greater the voltage, the faster the valve closing action.
  • the specific logic configuration is, for example, compare the deviation between the command and feedback of the valve to judge the action mode.
  • This application provides a method for changing the PLC control of the actuator of the oil station to the DCS control, which improves the safety and reliability of the hydraulic butterfly valve of the medium and low pressure Unicom pipe, prevents the valve from suddenly opening due to PLC failure, and the internal configuration of the PLC cannot be read and
  • problems such as modification, when the position feedback device of the hydraulic butterfly valve of the middle and low pressure communication pipe fails to swing, it can be switched to the positioning state, so as to avoid the arbitrary swing of the valve from threatening the operation of the unit.
  • This application provides a method for changing the PLC control of the executive mechanism of the oil station to the DCS control.
  • the operation authority of the oil pump is uploaded to the DCS, which avoids the failure of the oil pump failure to start and expand the impact of the failure, and can reduce the equipment damage caused by the PLC failure. , saving the cost of spare parts maintenance.
  • dismantling and assembling all the equipment of the hydraulic butterfly valve control system of the medium and low pressure Unicom pipe has greatly improved the thermal engineering professionals' understanding of hydraulic valves and accumulated valuable experience for dealing with hydraulic valve failures in the future.
  • Figure 1 is a schematic diagram of the wiring diagram of the gas station after transformation
  • FIG. 2 is a schematic diagram of the cabinet after transformation
  • Figure 3 is a schematic diagram of the logic configuration when the valve enters the positioning state
  • Figure 4 is a schematic diagram of the logic configuration when any valve enters the positioning state or the valve feedback has a bad point
  • Figure 5 is a schematic diagram of valve position feedback selection during positioning
  • Fig. 6 is a schematic diagram of configuration control logic
  • Fig. 7 is a schematic diagram of the modified screen of the present invention.
  • Step 1 Remove the internal wiring connected to the PLC, re-lay cables, cancel the local PLC control system, introduce all control systems into DCS, and complete all hardware control systems by DCS, simplify the structure of the control system, and make the control system after transformation The structure of the system is simpler, the cost of transformation is small, and the DCS checks the fault point more directly, which is convenient for maintenance;
  • Step 2 Renovate the oil pump control system of each hydraulic oil station, convert the operation of the local control box to DCS screen display, and operate it.
  • the start and stop of the oil pump of #1 valve are realized by DCS single operation.
  • the interlock input button of the oil pump When the interlock is enabled, the start and stop of the oil pump are automatically controlled. When the current oil pressure is less than 12MPa, the oil pump will be automatically started.
  • the low oil pressure alarm of the medium and low pressure Unicom hydraulic oil station is issued to realize the remote control of the start and stop of the oil pump, so that it has the remote operating conditions, avoiding the failure of the oil pump to start and expand the impact of the failure, and can reduce Due to problems such as equipment damage caused by PLC failure, the maintenance cost of spare parts is saved, and feedback, failure, and interlocking are uploaded to the DCS screen;
  • Step 3 Install the 4 to 20mA to -5VDC to +5VDC signal isolation module.
  • the signal input of the original servo proportional valve is a current signal of 4 to 20mA.
  • the signal conversion is carried out through the isolation module, and it can be controlled after being converted into a voltage signal from -5VDC to +5VDC, so as to be suitable Equipped with the signal input of the servo proportional valve of the hydraulic oil station to realize the switch adjustment of the hydraulic butterfly valve;
  • Step 4 According to the operation manual of the gas station, build the DCS logic configuration. By setting up the DCS configuration settings by yourself, the safety and reliability of the medium and low pressure Lenovo tube liquid butterfly valves are improved, and the valve is prevented from suddenly opening due to PLC failure. The configuration is not correct. Clarify and other issues to realize remote monitoring and operation of gas stations;
  • Step 5 Debug the hydraulic butterfly valve after installation, consider the logical judgment of various working conditions and fault conditions, and conduct actual transmission experiments. Through this transformation, all equipment in the hydraulic butterfly valve control system of the medium and low pressure connecting pipes are disassembled, which greatly improves the thermal efficiency. Professionals' understanding of liquid valves has accumulated valuable experience for dealing with liquid valve failures in the future.
  • Hydraulic butterfly valve valve operation is divided into running state and positioning state, and the positioning state needs to select #1 valve positioning, or #2 valve positioning; when the positioning operation takes effect, click the + sign to increase the valve opening, and click the - sign to decrease the valve opening.
  • Degree and travel time are in the form of pulses. The modification of the specific pulse time length is confirmed by the thermal engineer.
  • the valves that have not entered the positioning state can be operated normally, the valve opening can be set, and the valve can be operated according to the + or - sign. , such as in the running state, the simultaneous action of two valves can be realized.
  • the specific realization of the configuration control logic is shown in Figure 6.
  • valve command is defined as: -5V—+5V, where 0V is the steady state voltage, and the valve guarantees the current state; -5V—0V, is the valve opening voltage, and the smaller the voltage, the faster the valve opening action; 0V—+5V is the valve closing voltage, and the greater the voltage, the faster the valve closing action.
  • the specific logic configuration is shown in Figure 4. The action mode is judged by comparing the deviation between the valve command and feedback.
  • Example of the action process of the hydraulic butterfly valve the operating range of the hydraulic valve is 0-100, 0 means fully closed, 100 means fully open, the current DCS hydraulic valve feedback 50 command 50, when the hydraulic valve needs to be operated, for example: set the command to 80 , the DCS sends a 10mA signal to the positive and negative 5V isolation module, and the isolation module outputs a negative voltage to act on the proportional valve, so that the hydraulic valve moves in a snap-in manner.
  • Zone is 1, it can be understood that the feedback reaches 79 to 81 and the valve stops acting), DCS detects that the command is consistent with the feedback, sends a 12mA command, the isolation module outputs a steady-state voltage of 0V to the proportional valve, and the hydraulic valve operation is completed.

Abstract

本申请实施例公开了一种油站执行机构PLC控制改DCS控制的方法,包括以下步骤:重新敷设电缆,取消就地PLC控制系统,所有控制系统引入DCS;将每台液压油站油泵控制系统改造;安装4到20mA转-5VDC到+5VDC信号隔离模块;根据油站操作说明书,搭建DCS逻辑组态。本申请提供的一种油站执行机构PLC控制改DCS控制的方法,提高了中低压联通管液压蝶阀的安全可靠性,防止因PLC故障引起的阀门突开,且PLC内部组态无法读取及修改等问题,当中低压联通管液压蝶阀位置反馈器出现故障摆动时,可切换至定位状态,从而避免阀门任意摆动威胁机组运行。

Description

一种油站执行机构PLC控制改DCS控制的方法 技术领域
本申请涉及电子装置技术领域,更具体地,涉及一种油站执行机构PLC控制改DCS控制的方法。
背景技术
华能海拉尔热电厂2*200MW机组#2机进行零出力改造,安装两台中低压联通管液压蝶阀,该液压蝶阀采用PLC控制系统,由于厂家因技术保密不提供PLC密码,当PLC出现故障时,热工专业人员无法检查PLC内部逻辑,不能快速判断故障原因,机组长周期稳定运行存在隐患。且每台液压蝶阀有两台液压油泵,液压油泵无法远方操作,且无油泵运行反馈,两台油泵共用一台热继电器,当一台油泵故障无法启动时,远方无法监视,不能及时处理,且只能在就地切换另一台泵运行。
发明内容
鉴于上述问题,本申请提出了一种油站执行机构PLC控制改DCS控制的方法,包括以下步骤:
步骤一:重新敷设电缆,取消就地PLC控制系统,所有控制系统引入DCS;
步骤二:将每台液压油站油泵控制系统改造;
步骤三:安装4到20mA转-5VDC到+5VDC信号隔离模块;
步骤四:根据油站操作说明书,搭建DCS逻辑组态;
步骤五:安装完毕后调试液压蝶阀,考虑各种工况及故障情况的逻辑判断,进行实际传动实验。
优选的,步骤一中将PLC系统控制的油站改造为DCS系统控制的方法为:将接至PLC的内部环线拆除,所有硬件控制系统均由DCS完成。
优选的,步骤二中每台液压油站油泵控制系统改造的方法为:将就地控制箱的操作转换为DCS画面显示,并操作,其中#1阀的油泵启动和停止均有DCS单体操作实现,增加每台油泵的联锁投入按钮。
优选的,联锁逻辑为:当联锁投入时,油泵的启动停止为自动控制,当前油压小于12MPa时,自动启油泵,大于16MPa时,自动停止油泵,并增加声光报警,当油压小于11Mpa,在DCS画面中发出中低压联通管液压油站油压低报警。
优选的,步骤五中液压蝶阀阀门操作分为运行状态和定位状态,且定位状态需选择#1阀定位,或#2阀定位;当定位操作生效时,点击+号,增加阀门开度,点击-号时减少阀门开度,行程时间,为脉冲形式,具体脉冲时间长度修改由热工人员自行确认,未进入定位状态的液压蝶阀,可进行正常操作,阀门开度设定,可进行正常操作,阀门开度设定,以及根据+号或-号对阀门进行操作。
优选的,所述阀门指令的定义为:-5V—+5V,其中0V为稳态电压,阀门保证当前状态;- 5V—0V,为开阀电压,且电压越小,开阀动作越快;0V—+5V,为关阀电压,且电压越大,关阀动作越快,具体逻辑组态如,由阀门的指令和反馈进行偏差比较,来判断动作方式,当阀门进入定位状态时,Rsflp进行触发,进行输出指令切换,定位阀门控制由功能块43控制输出,且输出脉冲时间由功能块46的时间决定。
本发明具有以下有益效果:
本申请提供的一种油站执行机构PLC控制改DCS控制的方法,提高了中低压联通管液压蝶阀的安全可靠性,防止因PLC故障引起的阀门突开,且PLC内部组态无法读取及修改等问题,当中低压联通管液压蝶阀位置反馈器出现故障摆动时,可切换至定位状态,从而避免阀门任意摆动威胁机组运行。
本申请提供的一种油站执行机构PLC控制改DCS控制的方法,油泵的操作权限上传至DCS,避免了因油泵故障未联启,扩大故障的影响,可减少由于PLC故障导致设备损坏等问题,节省了备件维护费用,通过本次改造,拆装中低压联通管液压蝶阀控制系统所有设备,大大提高了热工专业人员对液压阀门的了解,为今后处理液压阀门故障积累了宝贵的经验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为改造后油站接线图示意图;
图2为改造后柜内示意图;
图3为阀门进入定位状态时,逻辑组态示意图;
图4为任意阀门进入定位状态或阀门反馈出现坏点时,逻辑组态示意图;
图5为定位时阀位反馈选择示意图;
图6为组态控制逻辑示意图;
图7为本发明改造画面示意图。
注:图2中虚线为内部环线示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1至7,一种油站执行机构PLC控制改DCS控制的方法,包括以下步骤:
步骤一:将接至PLC的内部换线拆除,重新敷设电缆,取消就地PLC控制系统,所有控制系统引入DCS,所有硬件控制系统均由DCS完成,简化控制系统的结构,使改造后的控制系统的结构更加简单,改造成本小,DCS检查故障点更直接,便于维护;
步骤二:将每台液压油站油泵控制系统改造,将就地控制箱的操作转换为DCS画面显示,并操作,其中#1阀的油泵启动和停止均有DCS单体操作实现,增加每台油泵的联锁投入按钮,当联锁投入时,油泵的启动停止为自动控制,当前油压小于12MPa时,自动启油泵,大于16MPa时,自动停止油泵,并增加声光报警,当油压小于11Mpa,在DCS画面中发出中低压联通管液压油站油压低报警,实现远方控制油泵的启停,使其具备远方操作条件,避免了因油泵故障未联启,扩大故障的影响,可以减少由于PLC故障导致设备损坏等问题,节省了备件维护费用,反馈、故障、联锁上传至DCS画面;
步骤三:安装4到20mA转-5VDC到+5VDC信号隔离模块,通过4到20mA转-5VDC到+5VDC信号隔离模块的设置,原有的伺服比例阀的信号输入是4到20mA的电流信号,在将PLC控制系统改造为DCS后,4到20mA的电流信号无法控制伺服比例阀,则通过隔离模块进行信号转换,转换为转-5VDC到+5VDC的电压信号后,即可进行控制,从而适配液压油站伺服比例阀的信号输入,实现液压蝶阀的开关调节;
步骤四:根据油站操作说明书,搭建DCS逻辑组态,通过自行搭建DCS组态的设置,提高了中低压联想管液体蝶阀的安全可靠性,防止因PLC故障引起的阀门突开,组态不明确等问题,实现油站远方监视及操作;
步骤五:安装完毕后调试液压蝶阀,考虑各种工况及故障情况的逻辑判断,进行实际传动实验,通过本次改造,拆装中低压连通管液压蝶阀控制系统所有设备,大大提高了热工专业人员对液体阀门的了解,为今后处理液体阀门故障积累了宝贵的经验,
液压蝶阀阀门操作分为运行状态和定位状态,且定位状态需选择#1阀定位,或#2阀定位;当定位操作生效时,点击+号,增加阀门开度,点击-号时减少阀门开度,行程时间,为脉冲形式,具体脉冲时间长度修改由热工人员自行确认,未进入定位状态的阀门,可进行正常操作,阀门开度设定,以及根据+号或-号对阀门进行操作,如在运行状态下,可实现双阀同时动作,具体实现组态控制逻辑如图6所示,当任意阀门进行定位状态或阀门反馈出现坏点时,自动切换跟踪另一个反馈测点,保证系统的正常操作,阀门指令的定义为:-5V—+5V,其中0V为稳态电压,阀门保证当前状态;- 5V—0V,为开阀电压,且电压越小,开阀动作越快;0V—+5V,为关阀电压,且电压越大,关阀动作越快,具体逻辑组态如图4所示,由阀门的指令和反馈进行偏差比较,来判断动作方式,当阀门进入定位状态时,Rsflp进行触发,进行输出指令切换,定位阀门控制由功能块43控制输出,且输出脉冲时间由功能块46的时间决定,如图3。
液压蝶阀动作过程示例:液压阀的操作区间为0-100,0表示全关,100表示全开,现DCS液压阀反馈50指令50,当需要操作液压阀时,例如:将指令给定为80时,DCS发出10mA信号至正负5V隔离模块,隔离模块输出负电压作用于比例阀,从而液压阀卡式动作,液压阀位置反馈器反馈达到80与指令相同时(可设置死区,现行死区为1,可以这么理解反馈达到79至81阀门即停止动作),DCS检测到指令与反馈一致,发出12mA指令,隔离模块输出稳态电压0V至比例阀,液压阀操作完毕。
最后应说明的是:本申请涉及到的电器元件均在市场上可以买到,均是现有技术,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (6)

  1. 一种油站执行机构PLC控制改DCS控制的方法,其特征在于,包括以下步骤:
    步骤一:重新敷设电缆,取消就地PLC控制系统,所有控制系统引入DCS;
    步骤二:将每台液压油站油泵控制系统改造;
    步骤三:安装4到20mA转-5VDC到+5VDC信号隔离模块;
    步骤四:根据油站操作说明书,搭建DCS逻辑组态;
    步骤五:安装完毕后调试液压蝶阀,考虑各种工况及故障情况的逻辑判断,进行实际传动实验。
  2. 根据权利要求1所述的一种油站执行机构PLC控制改DCS控制的方法,其特征在于,步骤一中将PLC系统控制的油站改造为DCS系统控制的方法为:将接至PLC的内部环线拆除,所有硬件控制系统均由DCS完成。
  3. 根据权利要求1所述的一种油站执行机构PLC控制改DCS控制的方法,其特征在于,步骤二中每台液压油站油泵控制系统改造的方法为:将就地控制箱的操作转换为DCS画面显示,并操作,其中#1阀的油泵启动和停止均有DCS单体操作实现,增加每台油泵的联锁投入按钮。
  4. 根据权利要求3所述的一种油站执行机构PLC控制改DCS控制的方法,其特征在于,联锁逻辑为:当联锁投入时,油泵的启动停止为自动控制,当前油压小于12MPa时,自动启油泵,大于16MPa时,自动停止油泵,并增加声光报警,当油压小于11Mpa,在DCS画面中发出中低压联通管液压油站油压低报警。
  5. 根据权利要求1所述的一种油站执行机构PLC控制改DCS控制的方法,其特征在于,步骤五中液压蝶阀阀门操作分为运行状态和定位状态,且定位状态需选择#1阀定位,或#2阀定位;当定位操作生效时,点击+号,增加阀门开度,点击-号时减少阀门开度,行程时间,为脉冲形式,具体脉冲时间长度修改由热工人员自行确认,未进入定位状态的液压蝶阀,可进行正常操作,阀门开度设定,可进行正常操作,阀门开度设定,以及根据+号或-号对阀门进行操作。
  6. 根据权利要求5所述的一种油站执行机构PLC控制改DCS控制的方法,其特征在于,所述阀门指令的定义为:-5V—+5V,其中0V为稳态电压,阀门保证当前状态;- 5V—0V,为开阀电压,且电压越小,开阀动作越快;0V—+5V,为关阀电压,且电压越大,关阀动作越快,具体逻辑组态如,由阀门的指令和反馈进行偏差比较,来判断动作方式,当阀门进入定位状态时,Rsflp进行触发,进行输出指令切换,定位阀门控制由功能块43控制输出,且输出脉冲时间由功能块46的时间决定。
PCT/CN2023/070343 2022-01-07 2023-01-04 一种油站执行机构plc控制改dcs控制的方法 WO2023131164A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210016678.3 2022-01-07
CN202210016678.3A CN115437314A (zh) 2022-01-07 2022-01-07 一种油站执行机构plc控制改dcs控制的方法

Publications (2)

Publication Number Publication Date
WO2023131164A2 true WO2023131164A2 (zh) 2023-07-13
WO2023131164A3 WO2023131164A3 (zh) 2023-08-31

Family

ID=84241408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070343 WO2023131164A2 (zh) 2022-01-07 2023-01-04 一种油站执行机构plc控制改dcs控制的方法

Country Status (2)

Country Link
CN (1) CN115437314A (zh)
WO (1) WO2023131164A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115437314A (zh) * 2022-01-07 2022-12-06 呼伦贝尔安泰热电有限责任公司海拉尔热电厂 一种油站执行机构plc控制改dcs控制的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201364487Y (zh) * 2008-12-31 2009-12-16 广东省电力设计研究院 核电站电厂进线开关控制模块
DE102018217767A1 (de) * 2018-10-17 2020-04-23 Siemens Aktiengesellschaft Steuersystem zur Steuerung einer Kraftwerksanlage
CN112524320B (zh) * 2020-11-30 2023-05-30 华能国际电力股份有限公司营口电厂 一种液压蝶阀控制系统
CN113279962B (zh) * 2021-07-01 2023-01-13 华能国际电力股份有限公司上安电厂 一种空压机控制器改型方法
CN115437314A (zh) * 2022-01-07 2022-12-06 呼伦贝尔安泰热电有限责任公司海拉尔热电厂 一种油站执行机构plc控制改dcs控制的方法

Also Published As

Publication number Publication date
CN115437314A (zh) 2022-12-06
WO2023131164A3 (zh) 2023-08-31

Similar Documents

Publication Publication Date Title
WO2023131164A2 (zh) 一种油站执行机构plc控制改dcs控制的方法
JP5134681B2 (ja) 実地始動型流体調整検査のためのシステムおよびプロセス
MXPA01008885A (es) Sistema de prueba de desactivacion de emergencia.
US10845781B2 (en) Integrated process controller with loop and valve control capability
JP2013501186A (ja) マルチエンジン設備および当該設備の動作方法
CN104049622A (zh) 一种启动炉控制系统
US10890164B2 (en) Systems and methods for remotely managing wind power generation
CN101625567A (zh) 一种脉冲袋式除尘器的总线控制方法及装置
CN109386226A (zh) 电动窗帘控制系统及控制方法
CN103742696A (zh) 快速阀门磁控重力应急驱动装置
CN112524320B (zh) 一种液压蝶阀控制系统
CN201556065U (zh) 一种石油钻机电控系统的准热备份控制系统
CN113982829A (zh) 一种风力发电机无损偏航控制和故障预警系统及方法
CN113467385A (zh) 工业无线油田井口加热炉动态自控系统
CN113700920B (zh) 一种基于foxboro系统的两位置带自保持电动/气动阀门驱动级
CN109442214B (zh) 一种天然气场站输气方法
CN217606283U (zh) 一种玻璃生产用天然气喷枪冷却控制系统
CN113485186A (zh) 一种管汇闸阀远程控制系统
RU2525043C1 (ru) Способ постоянного контроля целостности цепей управления кранами трубопроводов и схема для его осуществления
CN211852214U (zh) 风机静叶控制系统
CN114941744A (zh) 一种智能电动阀失电导致阀位反馈异常故障的处理方法
CN215292787U (zh) 一种柴油供水泵的应急启动装置
CN111650905B (zh) 一种火电机组高压旁路控制系统改造方法
CN218825262U (zh) 一种压缩机运维监控系统
CN211577713U (zh) 一种用于风机和风阀的集成继电保护控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737028

Country of ref document: EP

Kind code of ref document: A2