WO2023131041A1 - 折叠组件及电子设备 - Google Patents
折叠组件及电子设备 Download PDFInfo
- Publication number
- WO2023131041A1 WO2023131041A1 PCT/CN2022/143268 CN2022143268W WO2023131041A1 WO 2023131041 A1 WO2023131041 A1 WO 2023131041A1 CN 2022143268 W CN2022143268 W CN 2022143268W WO 2023131041 A1 WO2023131041 A1 WO 2023131041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- section
- swing arm
- flat
- acceleration
- speed section
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 219
- 238000013016 damping Methods 0.000 claims abstract description 124
- 230000000670 limiting effect Effects 0.000 claims description 21
- 230000009194 climbing Effects 0.000 description 38
- 238000010586 diagram Methods 0.000 description 37
- 230000008859 change Effects 0.000 description 28
- 230000009466 transformation Effects 0.000 description 15
- 230000005484 gravity Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 230000002035 prolonged effect Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 229920001621 AMOLED Polymers 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/0206—Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
- H04M1/0208—Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
- H04M1/0214—Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
- H04M1/0216—Foldable in one direction, i.e. using a one degree of freedom hinge
- H04M1/022—The hinge comprising two parallel pivoting axes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1675—Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
- G06F1/1681—Details related solely to hinges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1652—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0266—Details of the structure or mounting of specific components for a display module assembly
- H04M1/0268—Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
Definitions
- the present application relates to the technical field of foldable electronic equipment, in particular to a foldable component and electronic equipment.
- folding terminal products With the maturity of flexible folding screen technology, folding terminal products have become a major trend. Folding terminal products (such as folding mobile phones, folding tablets, folding computers, etc.) need to meet high reliability and better operating experience. In order to realize the hovering of the folding terminal product at different angles, it is usually necessary to change the surface shape of the cam. However, changes to the profile of the cam may easily cause the risk of reduced life of the cam. How to achieve large-angle hovering while ensuring the life of the cam is a subject of continuous exploration in the industry.
- Embodiments of the present application provide a folding assembly and an electronic device, which can realize large-angle hovering while ensuring the service life of the cam.
- a folding assembly in the first aspect of the present application, includes:
- the first main swing arm, the first main swing arm is provided with a first chute, the first chute includes a first acceleration section and a first flat speed section connected to each other, the slope of the first acceleration section The absolute value of is greater than the absolute value of the slope of the first flat speed section;
- a first torsion swing arm comprising a first end and a second end
- the first shaft body passes through the first end and connects the first torsion swing arm and the first main swing arm with the first sliding slot;
- a damping assembly is rotatably connected to the second end, and when the first torsion swing arm rotates relative to the damping assembly, the first shaft moves from the first acceleration section to the first flat speed section , the damping assembly switches from the first resistance state to the second resistance state, and the rotation resistance of the damping assembly to the first torsion swing arm in the second resistance state is greater than that of the damping assembly in the first resistance state State the rotational resistance of the first torsional swing arm.
- the surface shape of the cam can be kept unchanged to prolong the service life of the cam, and only through the differential cooperation between the first main swing arm and the first torsion swing arm can the hovering angle range be realized. Further expansion is conducive to the large-angle hovering of the folding component.
- the hoverable angle range of the foldable component in the prior art is 80°-120°
- the hoverable angle range of the foldable component in the technical solution of the present application can be 30°-150°
- the hoverable range of the foldable component Compared with the prior art, the hoverable angle range is further expanded.
- the differential cooperation between the first main swing arm and the first torsion swing arm can be understood as the difference in rotation angle between the first main swing arm and the first torsion swing arm, for example, the first main swing arm and the first torsion swing arm
- the arm turns 1° for the first main swing arm originally, and the first torsion swing arm also turns 1°.
- the differential speed coordination it is possible to turn 1° for the first main swing arm, and turn 2° for the first torsion swing arm.
- the realization of the differential speed cooperation between the main swing arm and the torsion swing arm is realized by designing the first chute arranged on the first main swing arm.
- the first shaft body can slide in the first acceleration segment and the first flat speed segment, and the sliding speed of the first shaft body in the first acceleration segment and the first flat speed segment is different from the first acceleration segment and the first flat speed segment.
- the absolute value of the slope of the first flat speed segment is related. Specifically, when the first shaft moves in a section where the absolute value of the slope is larger, the movement speed of the first shaft in this section is faster, so at this stage, the first main swing arm and the second main swing The angle between the arms changes faster. At this stage, the damping assembly is in the first resistance state, and the first torsion swing arm can rotate freely.
- the damping assembly is in the second resistance state, and the first torsion swing arm can rotate to a certain angle and then stay at the angle.
- the range of the rotation angle of the folding assembly corresponding to the first flat speed section is relatively large, while the range of the rotation angle of the folding assembly corresponding to the first acceleration section is small, thereby effectively increasing the maximum damping of the folding assembly
- the duration of the hover phase since the time of the hovering stage with the maximum damping of the folding assembly is prolonged, the hovering angle range of the folding assembly can be further expanded, which is beneficial to realize the large-angle hovering of the folding assembly.
- the movement speed of the first torsion swing arm and the first main swing arm can be matched with the relationship of differential speed, so that the damping assembly can be in the second resistance state as much as possible during the rotation of the first main swing arm, effectively Useful for extending the duration of the hoverable phase of the collapsible component.
- the first chute further includes a second flat-speed section and a second acceleration section, one end of the second flat-speed section is connected to the first flat-speed section, and the second The other end of the flat speed section is connected with the second acceleration section, the absolute value of the slope of the second acceleration section is greater than the absolute value of the slope of the second flat speed section, and the second flat speed section is connected to the The first flat-speed section is rotationally symmetric;
- the first shaft moves from the first flat speed section to the second flat speed section, the damping assembly maintains the second resistance state, and the first shaft moves from the second flat speed section Moving to the second acceleration stage, the damping assembly is switched from the second resistance state to the third resistance state, and the resistance of the damping assembly to the rotation of the first torsion swing arm in the second resistance state is greater than The resistance of the damping assembly to the rotation of the first torsion swing arm in the third resistance state.
- the second flat speed section is rotationally symmetrical with the first flat speed section. That is to say, the first flat speed segment can be rotated around a certain point to obtain the second flat speed segment, and the second flat speed segment can be rotated around the same fixed point to obtain the first flat speed segment.
- the absolute value of the slope at the junction of the first flat speed section and the second flat speed section changes little, and the absolute value of the smaller slope
- the value change can make the speed change of the first shaft body small when it moves from the end of the first flat speed section to the beginning of the second flat speed section, so that the first shaft body can transition from the first flat speed section to the second flat speed section The speed of motion changes little.
- the second shaft body can slide in the second acceleration segment and the second flat speed segment, and the sliding speed of the second shaft body in the second acceleration segment and the second flat speed segment is different from the second acceleration segment and the second flat speed segment.
- the absolute value of the slope of the second flat speed segment is related. Specifically, when the second shaft body moves in a section where the absolute value of the slope is smaller, the second shaft body moves at a slower speed in this section, so at this stage, the second main swing arm and the second main swing The angle between the arms changes more slowly. At this stage, the damping assembly is in the second resistance state, and the second torsion swing arm can rotate to a certain angle and then stay at the angle.
- the range of the rotation angle of the folding assembly corresponding to the second flat speed section is relatively large, while the range of the rotation angle of the folding assembly corresponding to the second acceleration section is small, thereby effectively increasing the maximum damping of the folding assembly
- the duration of the hover phase since the time of the hovering stage with the maximum damping of the folding assembly is prolonged, the hovering angle range of the folding assembly can be further expanded, which is beneficial to realize the large-angle hovering of the folding assembly.
- the movement speed of the first torsion swing arm and the first main swing arm can be matched with the relationship of differential speed, so that the damping assembly can be in the second resistance state as much as possible during the rotation of the first main swing arm, effectively Useful for extending the duration of the hoverable phase of the collapsible component.
- the center of curvature of the first acceleration section and the center of curvature of the second acceleration section are respectively located on two sides of the first chute.
- the center of curvature of the first acceleration section and the center of curvature of the second acceleration section are respectively located on both sides of the first chute, which can be understood as the center of curvature of the first acceleration section and the center of curvature of the second acceleration section are aligned with the first chute
- the curvature center of the first acceleration section and the curvature center of the first flat speed section are located on the same side of the first chute
- the curvature center of the second acceleration section and the curvature center of the second flat speed section are located on the same side of the first chute. side.
- first flat-speed section and the second flat-speed section may be straight sections, so that the first chute as a whole presents a curved shape in which an arc section and a straight section are mixed.
- first flat speed section and the second flat speed section may also be arc sections, so that the first chute as a whole presents a curved shape with only arc sections.
- both the first acceleration segment and the second acceleration segment are straight segments.
- first flat-speed section and the second flat-speed section may be straight sections, so that the first chute as a whole presents a zigzag shape with only straight sections.
- first flat speed section and the second flat speed section may also be arc sections, so that the first chute as a whole presents a curved shape in which arc sections and straight sections are mixed.
- the first acceleration section and the second acceleration section are rotationally symmetrical.
- the first acceleration segment can be rotated around a certain point to obtain the second acceleration segment, and the second acceleration segment can be rotated around the same fixed point to obtain the first acceleration segment.
- the embodiment of the present application does not strictly limit the rotation angle required to obtain the second acceleration stage through the rotation transformation of the first acceleration stage or the rotation angle required to obtain the first acceleration stage through the rotation transformation of the second acceleration stage. Any angle based on component work requirements, such as 170°, 180°, etc.
- the first segment and the second segment can be rotationally symmetrical, that is, The first segment can be rotated around a certain point to obtain the second segment, and the second segment can be rotated around the same fixed point to obtain the first segment.
- the speed stage of the sliding movement of the first shaft in the first chute can be symmetrically arranged.
- the symmetrical speed stage is conducive to the extension of the hovering stage of the folding component.
- the embodiments of the present application do not strictly limit the rotation angle required to obtain the second segment from the first segment of rotation transformation or the rotation angle required to obtain the first segment from the second segment of rotation conversion, which can be used to meet the working requirements of the folding assembly. Any angle on the basis, such as 170°, 180°, etc.
- the center of curvature of the first flat speed section and the center of curvature of the second flat speed section are respectively located on two sides of the first chute.
- the center of curvature of the first flat speed section and the center of curvature of the second flat speed section are respectively located on both sides of the first chute, which can be understood as the center of curvature of the first flat speed section and the center of curvature of the second flat speed section
- the first chute is a reference object, one is located on one side of the first chute, and the other is located on the opposite side of the first chute.
- the first flat speed section and the second flat speed section can jointly form different shapes (such as wave shape, S shape, etc.) according to the difference in rotation angle between the first flat speed section and the second flat speed section. Curve segment, strong flexibility.
- the center of curvature of the first flat-speed section and the center of curvature of the first acceleration section are located on the same side of the first chute, and the center of curvature of the second flat-speed section is on the same side as the first chute.
- the center of curvature of the second acceleration section is located on the same side of the first chute.
- both the first flat speed section and the second flat speed section are straight line sections.
- the first flat-speed section and the second flat-speed section can jointly form a straight-line section or a broken-line section according to the difference in rotation angle between the first flat-speed section and the second flat-speed section, which is highly flexible.
- the folding assembly further includes a first rotating shaft passing through the second end, and the damping assembly includes a first cam structure, a second cam structure, a first elastic parts and limit parts;
- the first cam structure is fixed to the second end and sleeved on the first rotating shaft
- the second cam structure is sleeved on the first rotating shaft and contacts the first cam structure
- the positioning member is fixed on the first rotating shaft
- the first elastic member is held between the second cam structure and the limiting member
- the second cam structure can be pushed by the first cam structure
- the lower part moves along the first rotating shaft to compress or release the first elastic member.
- first cam structure cannot move axially along the first shaft, only the second cam structure has space for axial movement, and because the first cam structure and the second cam structure are always in good contact. Therefore, when the first cam structure rotates, the second cam structure is pushed by the first cam structure to move axially along the first rotating shaft, compressing or releasing the compression of the first elastic member, which improves the damping effect and improves the user's comfort when folding. Use experience.
- the first cam structure arranged at the second end of the first cam structure will move relative to the second cam structure.
- a cam structure slides to change the axial distance between the two, thereby compressing the first elastic member, and the first elastic member presses the first cam structure through the second cam structure, thereby generating resistance to the rotation of the first cam structure , forming a damping force.
- the damping force brought by the first elastic member can hinder the free rotation of the first torsion swing arm and the second torsion swing arm under the action of gravity, the first torsion swing arm can be stopped at any angle, so that the folding assembly can be positioned at any Hover is implemented within the angle.
- the present application also provides a folding assembly, the folding assembly includes:
- the first main swing arm, the first main swing arm is provided with a first chute, the first chute includes a first acceleration section and a first flat speed section connected to each other, the slope of the first acceleration section The absolute value of is greater than the absolute value of the slope of the first flat speed section;
- a first torsion swing arm comprising a first end and a second end
- the first shaft body passes through the first end and the first chute, the first shaft body connects the first torsion swing arm and the first main swing arm, the first shaft body a shaft body can slide in the first sliding groove;
- the damping assembly includes a first cam structure, a second cam structure, a first elastic member and a limiting member, the first cam structure is fixed to the second end and sleeved on the first rotating shaft, the second The cam structure is sleeved on the first rotating shaft and is in contact with the first cam structure, the first elastic member elastically resists between the second cam structure and the limiting member, and the second cam The structure can move along the first rotating shaft under the push of the first cam structure to compress or release the first elastic member.
- the first chute further includes a second flat-speed section and a second acceleration section, one end of the second flat-speed section is connected to the first flat-speed section, and the second The other end of the flat speed section is connected with the second acceleration section, the absolute value of the slope of the second acceleration section is greater than the absolute value of the slope of the second flat speed section, and the second flat speed section is connected to the The first flat-speed section is rotationally symmetrical.
- the center of curvature of the first acceleration section and the center of curvature of the second acceleration section are respectively located on two sides of the first chute.
- the present application further provides an electronic device, the electronic device includes a flexible display screen and the above-mentioned folding assembly, and the flexible display screen is carried on the folding assembly.
- FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application when it is in a folded state;
- Fig. 2 is a schematic structural diagram of the electronic device shown in Fig. 1 when it is in an intermediate state;
- Fig. 3 is a schematic structural diagram of the electronic device shown in Fig. 1 when it is in an unfolded state;
- FIG. 4 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
- Fig. 5 is an explosion schematic diagram of the electronic device shown in Fig. 4;
- Fig. 6 is a partial structural schematic diagram of the folding assembly shown in Fig. 5;
- Fig. 7 is an exploded schematic diagram of a part of the structure of the folding assembly shown in Fig. 6;
- Fig. 8 is a partial structural schematic diagram of the cam
- Fig. 9 is a schematic structural view of the folding assembly shown in Fig. 7 when it is in an unfolded state
- Fig. 10 is a schematic structural view of the folding assembly shown in Fig. 7 when it is in an intermediate state;
- Fig. 11 is a schematic structural view of the folding assembly shown in Fig. 7 in another intermediate state
- Fig. 12 is a schematic structural view of the first chute of the folding assembly shown in Fig. 7;
- Fig. 13 is another structural schematic diagram of the first chute of the folding assembly shown in Fig. 7;
- Fig. 14 is another structural schematic diagram of the first chute of the folding assembly shown in Fig. 7;
- Fig. 15 is another structural schematic diagram of the first chute of the folding assembly shown in Fig. 7;
- Fig. 16 is a corresponding relationship diagram between the climbing path of the second cam structure shown in Fig. 7 and the moving path of the first shaft body;
- Fig. 17 is a schematic diagram of the shape deformation of the first chute shown in Fig. 7;
- Fig. 18 is a schematic structural view of the second chute of the folding assembly shown in Fig. 7;
- Fig. 19 is another structural schematic diagram of the second chute of the folding assembly shown in Fig. 7;
- Fig. 20 is another structural schematic diagram of the second chute of the folding assembly shown in Fig. 7;
- Fig. 21 is another structural schematic diagram of the second chute of the folding assembly shown in Fig. 7;
- Fig. 22 is a corresponding relationship diagram between the climbing path of the fourth cam structure shown in Fig. 7 and the moving path of the second shaft body;
- FIG. 23 is a schematic diagram of the shape deformation of the second chute shown in FIG. 7 .
- Plurality refers to two or more than two.
- connection It should be understood in a broad sense.
- the connection between A and B can be directly connected between A and B, or indirectly connected through an intermediary.
- Embodiments of the present application provide a folding component and an electronic device using the folding component.
- the electronic device may be a device with a foldable function, which can be unfolded and closed under the user's operation.
- an electronic device such as a mobile phone with a wide range of users and rich application scenarios will be used as an example for illustration, but it is not limited thereto.
- FIG. 1 is a schematic structural diagram of an electronic device 200 provided in an embodiment of the present application when it is in a folded state.
- FIG. 2 is a schematic structural diagram of the electronic device 200 shown in FIG. 1 when it is in an intermediate state, wherein the deployment angle ⁇ of the electronic device 200 is 120°, and ⁇ may also be other angles.
- FIG. 3 is a schematic structural diagram of the electronic device 200 shown in FIG. 1 when it is in an unfolded state, wherein the unfolding angle ⁇ of the electronic device 200 is 180°, and ⁇ may also be other angles.
- the deployment angle ⁇ of the electronic device 200 shown in FIG. 3 is 120°, which means that ⁇ may be 120°, or approximately 120°, such as 115° or 125°.
- the unfolding angle ⁇ of the electronic device 200 shown in FIG. 4 is 180° means that ⁇ may be 180° or approximately 180°, such as 185° or 190°.
- the left and right parts of the electronic device 200 can rotate left and right, so that the electronic device 200 can be folded and unfolded.
- the folding and unfolding of the electronic device 200 affect the width of the electronic device 200 .
- the electronic device 200 is not limited to those shown in FIGS. 1-3 .
- the electronic device 200 can also be divided into upper and lower parts. The upper and lower parts can be rotated up and down, so that the electronic device 200 can be folded and unfolded.
- the length and size of the electronic device 200 are affected by the expansion, and will not be described in detail here.
- FIG. 4 is a schematic structural view of an electronic device 200 provided by an embodiment of the present application
- FIG. 5 is a schematic exploded view of the electronic device 200 shown in FIG. 4
- the electronic device 200 includes a flexible display 210 , a first housing 220 , a second housing 230 and a folding assembly 100 .
- Fig. 4 and Fig. 5 are only to schematically describe the connection relationship between the flexible display 210, the first housing 220, the second housing 230 and the folding assembly 100, not the connection position of each device.
- the specific structure and quantity are specifically limited.
- the structure shown in the embodiment of the present application does not constitute a specific limitation on the electronic device 200 .
- the electronic device 200 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
- the illustrated components can be realized in hardware, software or a combination of software and hardware.
- the first housing 220 and the second housing 230 may be independent housing structures capable of jointly supporting the flexible display screen 210 .
- the first housing 220 is provided with a first installation slot 240
- the second housing 230 is provided with a second installation slot 250
- the first installation slot 240 and the second installation slot 250 communicate to form an installation slot.
- the folding assembly 100 is installed in the installation groove, and is fixedly connected with the first housing 220 and the second housing 230 to realize the rotational connection between the first housing 220 and the second housing 230 .
- the first housing 220 and the second housing 230 can be relatively rotated through the folding assembly 100, so that the folding assembly 100 can switch between the folded state and the unfolded state.
- the first housing 220 and the second housing 230 are also provided with accommodating slots (not shown), which are used to accommodate electronic components such as processors, circuit boards, and camera modules of the electronic device 200 and structural components.
- the folding assembly 100 is connected between the first casing 220 and the second casing 230.
- the folding assembly 100 can make the first casing 220 and the second casing 230 relatively unfolded to an unfolded state, and can also make the first casing 220 and the second casing 230
- the second casing 230 is relatively folded to the closed state, and the first casing 220 and the second casing 230 can also be in an intermediate state between the unfolded state and the closed state, so as to realize the foldable performance of the electronic device 200 .
- the flexible display screen 210 is carried on the first housing 220 , the second housing 230 and the folding assembly 100 , and can be used to display information and provide an interactive interface for the user.
- the flexible display screen 210 can unfold as the first housing 220 and the second housing 230 are relatively unfolded, and can be folded as the first housing 220 and the second housing 230 are folded relative to each other.
- the flexible display screen 210 may be an organic light-emitting diode (organic light-emitting diode, OLED) display screen, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light-emitting diode , AMOLED) display, mini organic light-emitting diode (mini organic light-emitting diode) display, micro light-emitting diode (micro organic light-emitting diode) display, micro organic light-emitting diode (micro organic light-emitting diode) display, quantum Quantum dot light emitting diodes (QLED) display.
- the flexible display screen 210 can be fixed on the first housing 220 , the second housing 230 and the folding assembly 100 by dispensing glue.
- the first housing 220 and the second housing 230 can be relatively expanded to the unfolded state, so that the electronic device 200 is in the unfolded state.
- the flexible display screen 210 is unfolded to be in the unfolded state, which can expand the display area of the electronic device 200 .
- the flexible display screen 210 can display a full screen, so the electronic device 200 has a larger display area, which can present the effect of a large screen display and improve user experience.
- the angle between them can be set approximately at 180° (a little deviation is also allowed, such as 175°, 178° or 185°) .
- the first casing 220 and the second casing 230 can also be folded relative to each other to a folded state, so that the electronic device 200 is in a folded state.
- the planar size of the electronic device 200 is small, which is convenient for the user to store and carry.
- the first casing 220 and the second casing 230 are in the closed state, they can be completely closed to be parallel to each other (a slight deviation is also allowed).
- the first housing 220 and the second housing 230 can also be rotated relative to each other to approach (fold) or move away from each other (expand) to an intermediate state, so that the electronic device 200 is in an intermediate state, wherein the intermediate state can be an unfolded state and a closed state. Any state between states. For example, when the first housing 220 and the second housing 230 are in an intermediate state, the angle between them may be 135°, 90° or 45°.
- the electronic device 200 can use the folding assembly 100 to realize the inward folding of the flexible display 210.
- the flexible display 210 can be sandwiched between the first casing 220 and the second casing 230, that is, the flexible display 210 may be located inside the first casing 220 and the second casing 230 to be wrapped by the first casing 220 and the second casing 230 .
- the electronic device 200 can adopt the folding assembly 100 to realize the outward folding of the flexible display screen 210.
- the flexible display screen 210 assembly can be exposed to the outside as the appearance structure of the electronic device 200, that is to say, the flexible display screen 210 can be located at the second The outside of the first casing 220 and the second casing 230 presents a state of wrapping the first casing 220 and the second casing 230 .
- the folding assembly 100 is also in the unfolded state.
- the folding assembly 100 is also in the middle state.
- the folding assembly 100 is also in the folded state.
- first casing 220 and the second casing 230 can be relatively unfolded and relatively closed through the folding assembly 100 , so that the electronic device 200 can be switched between the unfolded state and the closed state.
- FIG. 6 is a schematic diagram of a partial structure of the folding assembly 100 shown in FIG. 5
- FIG. 7 is an exploded schematic diagram of a partial structure of the folding assembly 100 shown in FIG. 6 .
- the folding assembly 100 includes a first main swing arm 10 , a first shaft body 21 , a first torsion swing arm 30 , a first rotating shaft 41 , a second main swing arm 50 , and a second shaft body 22 , the second torsion swing arm 60 , the second rotating shaft 42 , the synchronization mechanism 70 , the damping assembly 80 and the base 90 .
- the first main swing arm 10 and the second main swing arm 50 are symmetrically distributed on both sides of the base 90
- the first torsion swing arm 30 and the second torsion swing arm 60 are symmetrically distributed on both sides of the base 90
- the first housing 220 and the second housing 230 are symmetrically distributed on both sides of the base 90 .
- the symmetrical distribution refers to the symmetrical distribution in position, and does not mean that the shapes and structures of the two main swing arms, the two torsion swing arms and the two shells are exactly the same, the two main swing arms, the two torsion swing arms
- the structures of the arm and the two housings may be the same or different, which is not strictly limited in the embodiments of the present application.
- the base 90 can maintain a static state during the process of relative folding and relative unfolding of the first main swing arm 10 and the second main swing arm 50 .
- the base 90 can maintain its own position unchanged, that is, the base 90 is relatively stationary, while the first main swing arm 10 and the second main swing arm 50 can both rotate relative to the base 90 .
- the receiving space 91 can be used to receive at least part of the components of the folding assembly 100 and other structures in the electronic device 200 .
- the synchronization mechanism 70 and the damping assembly 80 can be disposed in the receiving space 91 of the base 90 , and the base 90 can be used to accommodate the synchronization mechanism 70 and the damping assembly 80 .
- the first main swing arm 10 is connected to the first housing 220 and can move together with the first housing 220 . That is to say, when the first main swing arm 10 rotates relative to the base 90 , the first housing 220 is driven to rotate relative to the base 90 synchronously. When the first housing 220 rotates relative to the base 90 , the first main swing arm 10 is driven to rotate relative to the base 90 synchronously.
- the first main swing arm 10 is provided with a first chute 11 , and the first chute 11 can allow the first shaft body 21 to perform sliding movement therein.
- the first shaft body 21 is installed in the first torsion swing arm 30 , and both ends of the first shaft body 21 protrude from the first torsion swing arm 30 , wherein the first shaft body 21 protrudes from the first torsion swing arm 30 One end of is slidably connected to the first sliding slot 11.
- the first torsion swing arm 30 can be connected to the first main swing arm 10 through the first shaft body 21 , and the first torsion swing arm 30 and the first main swing arm 10 are connected in the first chute 11 through the first shaft body 21 . Swipe inside to achieve linkage. That is to say, when the first torsion swing arm 30 rotates relative to the base 90 , the first main swing arm 10 is driven to rotate relative to the base 90 synchronously. Alternatively, when the first main swing arm 10 rotates relative to the base 90 , the first torsion swing arm 30 is driven to rotate relative to the base 90 synchronously.
- the first torsion swing arm 30 includes a first end 31 and a second end 32.
- the first end 31 of the first torsion swing arm 30 is an end where the first torsion swing arm 30 is connected to the first main swing arm 10.
- the second end 32 of the arm 30 is the end where the first torsion swing arm 30 is connected to the first rotating shaft 41 , the synchronization mechanism 70 and the damping assembly 80 .
- the first end 31 of the first torsion swing arm 30 can be provided with a first through hole 33 through which the first shaft body 21 can pass.
- the outer diameter is suitable for passing the first shaft body 21 therein. That is to say, the first shaft body 21 connects the first torsion swing arm 30 and the first main swing arm 10 through the first end 31 and the first slide groove 11.
- the second end 32 of the first torsion swing arm 30 can be provided with a second through hole 34 through which the first rotating shaft 41 can pass, and the diameter of the second through hole 34 can match the outer diameter of the first rotating shaft 41 , so that the first rotating shaft 41 passes through it.
- the first rotating shaft 41 passes through the second end 32 of the first torsion swing arm 30 .
- the first rotating shaft 41 has a first axis 411 , the first axis 411 is the rotation center of the first rotating shaft 41 , and the first rotating shaft 41 can rotate around the first axis 411 .
- the first rotating shaft 41 can rotate synchronously with the first torsion swing arm 30 . That is to say, the first rotating shaft 41 can drive the first torsion swing arm 30 to rotate together through its own rotation during the rotation process around the first axis 411, and because the first torsion swing arm 30 passes through the first shaft
- the body 21 is linked with the first main swing arm 10, so the first torsion swing arm 30 can drive the first main swing arm 10 to rotate.
- Both ends of the first rotating shaft 41 stretch out the first torsion swing arm 30, wherein, one end of the first rotating shaft 41 extending out of the first torsion swing arm 30 is connected with the synchronous mechanism 70, and the first rotating shaft 41 stretches out of the first torsion swing arm The other end of 30 is connected with damping assembly 80 .
- the second main swing arm 50 is connected to the second housing 230 and can move together with the second housing 230 . That is to say, when the second main swing arm 50 rotates relative to the base 90 , the second housing 230 is driven to rotate relative to the base 90 synchronously. When the second housing 230 rotates relative to the base 90 , the second main swing arm 50 is driven to rotate relative to the base 90 synchronously.
- the second main swing arm 50 is provided with a second slide slot 51 , and the second slide slot 51 can allow the second shaft body 22 to slide therein.
- the second shaft body 22 is passed through the second torsion swing arm 60 , and both ends of the second shaft body 22 protrude from the second torsion swing arm 60 , wherein the second shaft body 22 protrudes from the second torsion swing arm 60 One end of is slidably connected to the second sliding slot 51 .
- the second torsion swing arm 60 can be connected with the second main swing arm 50 through the second shaft body 22 , and the second torsion swing arm 60 and the second main swing arm 50 are connected in the second chute 51 through the second shaft body 22 . Swipe inside to achieve linkage. That is to say, when the second torsion swing arm 60 rotates relative to the base 90 , the second main swing arm 50 is driven to rotate relative to the base 90 synchronously. Alternatively, when the second main swing arm 50 rotates relative to the base 90 , the second torsion swing arm 60 is driven to rotate relative to the base 90 synchronously.
- the second torsion swing arm 60 includes a third end 61 and a fourth end 62.
- the third end 61 of the second torsion swing arm 60 is an end where the second torsion swing arm 60 is connected to the second main swing arm 50.
- the fourth end 62 of the arm 60 is an end of the second torsion swing arm 60 connected with the second rotating shaft 42 , the synchronization mechanism 70 and the damping assembly 80 .
- the third end 61 of the second torsion swing arm 60 can be provided with a third through hole 63 through which the second shaft 22 can pass, and the diameter of the third through hole 63 can be compared with that of the second shaft 22
- the outer diameter is suitable for passing the second shaft body 22 therein.
- the second shaft body 22 connects the second torsion swing arm 60 and the second main swing arm 50 through the third end 61 and the second slot 51 .
- the fourth end 62 of the second torsion swing arm 60 can be provided with a fourth through hole 64 through which the second rotating shaft 42 can pass, and the diameter of the fourth through hole 64 can match the outer diameter of the second rotating shaft 42 , so that the second rotating shaft 42 passes through it.
- the second rotating shaft 42 passes through the fourth end 62 of the second torsion swing arm 60 .
- the second rotating shaft 42 has a second axis 421 , the second axis 421 is the rotation center of the second rotating shaft 42 , and the second rotating shaft 42 can rotate around the second axis 421 .
- the second rotating shaft 42 can rotate synchronously with the second torsion swing arm 60 . That is to say, the second rotating shaft 42 can drive the second torsion swing arm 60 to rotate together through its own rotation during the rotation process around the second axis 421, and because the second torsion swing arm 60 passes through the second shaft
- the body 22 is linked with the second main swing arm 50, so the second torsion swing arm 60 can drive the second main swing arm 50 to rotate.
- Both ends of the second rotating shaft 42 stretch out the second torsion swing arm 60, wherein, one end of the second rotating shaft 42 stretching out the second torsion swing arm 60 is connected with the synchronous mechanism 70, and the second rotating shaft 42 stretches out the second torsion swing arm The other end of 60 is connected with damping assembly 80 .
- the synchronization mechanism 70 may include a first rotating gear 71 , a second rotating gear 72 , a first synchronizing gear 73 and a second synchronizing gear 74 .
- the first rotating gear 71 is disposed at one end of the first rotating shaft 41 , and the first rotating shaft 41 and the first rotating gear 71 can form a gear shaft structure, so that the first rotating shaft 41 and the first rotating gear 71 can rotate synchronously.
- the second rotating gear 72 is disposed at one end of the second rotating shaft 42 , and the second rotating shaft 42 and the second rotating gear 72 can also form a gear shaft structure, so that the second rotating shaft 42 and the second rotating gear 72 can rotate synchronously.
- the first synchronizing gear 73 meshes with the first rotating gear 71
- the second synchronizing gear 74 meshes with the second rotating gear 72
- the first synchronizing gear 73 and the second synchronizing gear 74 mesh with each other. relationship, and when one rotates, the other can also rotate synchronously, thereby realizing the opening and closing of the first torsion swing arm 30 and the second torsion swing arm 60, that is, realizing the first main swing arm 10 and the second torsion swing arm 10.
- the opening and closing of the two main swing arms 50 also realize the opening and closing of the electronic device 200 .
- the damping assembly 80 and the synchronizing mechanism 70 can be arranged on both sides of the first torsion swing arm 30 and the second torsion swing arm 60 respectively, so as to avoid mutual interference between the two.
- the damping assembly 80 can realize that the first torsion swing arm 30 and the second torsion swing arm 60 can stay at the angle after turning to a certain angle, and then can assist in fixing and maintaining the angle between the first main swing arm 10 and the second main swing arm 50 .
- the damping assembly 80 can realize the slow-down effect when the two shells (the first shell 220 and the second shell 230) are turned over relatively, that is, the electronic device 200 can be positioned at any angle according to the use requirements during the process of folding or unfolding. .
- the damper assembly 80 has a first resistance state, a second resistance state and a third resistance state.
- the damping assembly 80 When the damping assembly 80 is in the first resistance state and the third resistance state, the first torsion swing arm 30 and the second torsion swing arm 60 can relatively freely rotate.
- the damping assembly 80 When the damping assembly 80 is in the second resistance state, the first torsion swing arm 30 and the second torsion swing arm 60 can rotate relative to a certain angle and then stay at the angle.
- the rotational resistance of the damping assembly 80 to the first torsion swing arm 30 and the second torsion swing arm 60 in the second resistance state is greater than that of the damping assembly 80 to the first torsion swing arm 30 and the second torsion swing arm in the first resistance state.
- the rotation resistance of the damping assembly 80 to the first torsion swing arm 30 and the second torsion swing arm 60 in the third resistance state is greater than the rotation resistance of the damping assembly 80 to the first torsion swing arm and the second torsion swing arm in the first resistance state .
- the damping assembly 80 may include a first cam structure 81 , a third cam structure 82 , a sliding member 83 , a first elastic member 84 , a second elastic member 85 and a limiting member 86 .
- the first cam structure 81 is disposed on the second end 32 of the first torsion swing arm 30 .
- the first cam structure 81 is a hollow structure, and the first cam structure 81 is sleeved on the first rotating shaft 41 through the hollow structure.
- the first cam structure 81 includes a plurality of first protrusions 811 and a plurality of first recesses 812, and every two adjacent first protrusions 811 are connected by a first recess 812, so that the first cam structure 81 can be uneven undulating shape.
- the first convex portion 811 may present a nearly trapezoidal shape.
- the third cam structure 82 is disposed on the fourth end 62 of the second torsion swing arm 60 .
- the third cam structure 82 is a hollow structure, and the third cam structure 82 is sleeved on the second rotating shaft 42 through the hollow structure.
- the third cam structure 82 includes a plurality of third convex parts 821 and a plurality of third concave parts 822, and every adjacent two third convex parts 821 are connected by a third concave part 822, so that the sliding cam can present an uneven undulating shape .
- the third convex portion 821 may present a nearly trapezoidal shape.
- the sliding member 83 is slidably connected to the first rotating shaft 41 and the second rotating shaft 42 , that is to say, the sliding member 83 can slide relative to the first rotating shaft 41 and the second rotating shaft 42 .
- the slider 83 can move on the first rotating shaft 41 in the axial direction of the first rotating shaft 41 , and can also move on the second rotating shaft 42 in the axial direction of the second rotating shaft 42 .
- the slider 83 includes a second cam structure 831 , a fourth cam structure 832 and a first connecting portion 833 .
- the second cam structure 831 has a hollow structure and is sheathed on the first shaft 41 through the hollow structure, and the second cam structure 831 can move on the first shaft 41 along the axial direction of the first shaft 41 . That is to say, the second cam structure 831 is in sliding connection with the first rotating shaft 41 .
- the second cam structure 831 is provided with a plurality of second protrusions 834 and a plurality of second recesses 835 on the side facing the first torsion swing arm 30 , and every two adjacent second protrusions 834 are connected by a second recess 835 , Therefore, the second cam structure 831 of the sliding member 83 can present an uneven and undulating shape.
- the second cam structure 831 is always in pressing contact with the first cam structure 81, and the contact between the two can include the first protrusion 811 of the first cam structure 81 and the second protrusion of the second cam structure 831.
- the concave portion 835 is in contact, and the first concave portion 812 of the first cam structure 81 is in contact with the second convex portion 834 of the second cam structure 831 , similar to the meshing between teeth. It may also include that the first protrusion 811 of the first cam structure 81 is in contact with the second protrusion 834 of the second cam structure 831 .
- the fourth cam structure 832 has a hollow structure and is sheathed on the second shaft 42 through the hollow structure, and the fourth cam structure 832 can move on the second shaft 42 along the axial direction of the second shaft 42 . That is to say, the fourth cam structure 832 is in sliding connection with the second rotating shaft 42 .
- the fourth cam structure 832 is provided with a plurality of fourth protrusions 836 and a plurality of fourth recesses 837 on the side facing the second torsion swing arm 60 , and every adjacent two fourth protrusions 836 are connected by a fourth recess 837 .
- the fourth cam structure 832 of the slider 83 can present an uneven and undulating shape.
- the fourth cam structure 832 is always in pressing contact with the third cam structure 82, and the contact between the two can include the third convex portion 821 of the third cam structure 82 and the fourth cam structure 832 of the fourth cam structure 832.
- the concave portion 837 is in contact, and the third concave portion 822 of the third cam structure 82 is in contact with the fourth convex portion 836 of the fourth cam structure 832 , similar to the meshing between teeth.
- the third protrusion 821 of the third cam structure 82 is in contact with the fourth protrusion 836 of the fourth cam structure 832 .
- the first connecting part 833 is connected between the second cam structure 831 and the fourth cam structure 832, and is located in the gap area between the first rotating shaft 41 and the second rotating shaft 42, and can connect the second cam structure 831 and the fourth cam structure
- the movement of 832 is connected in series, so that the second cam structure 831 and the fourth cam structure 832 move together.
- the first elastic member 84 is sleeved on the first rotating shaft 41 and resists the second cam structure 831 of the sliding member 83 .
- the first elastic member 84 may be an elastic body with elastic restoring force such as a spring or a disc spring set.
- the second cam structure 831 can be pushed to make the second cam structure 831 press-contact with the first cam structure 81, ensuring that the first cam structure 81 and the second cam structure The damping effect that structure 831 can realize.
- first cam structure 81 cannot move axially along the first rotating shaft 41, only the second cam structure 831 has space for axial movement, and because the first cam structure 81 and the second cam structure 831 are always in good condition. Cooperate with contact. Therefore, when the first cam structure 81 rotates, the second cam structure 831 is pushed by the first cam structure 81 to move axially along the first rotating shaft 41, compressing or releasing the compression of the first elastic member 84, which improves the damping effect and improves It improves the user experience when folding.
- the first cam structure 81 provided at the second end 32 will move relative to the second cam structure 831 of the slider 83, and the relative movement can be understood as
- the second cam structure 831 is squeezed and slides relative to the first cam structure 81, so that the axial distance between the two changes, thereby compressing the first elastic member 84, and the first elastic member 84 is squeezed by the second cam structure 831
- the first cam structure 81 further produces resistance to the rotation of the first cam structure 81 to form a damping force.
- the first torsion swing arm 30 can be stopped at any angle, thereby making the The electronic device 200 can hover within any angle.
- the cooperation between the first concave portion 812 and the second convex portion 834 can be used to achieve the effect of locking and positioning at a specific angle.
- the second cam structure 831 slides along the first rotating shaft 41 at the initial position and the end position, so that the second cam structure 831 is The compression of the first cam structure 81 is suddenly reduced, thereby providing clear and timely feedback to the user.
- the angle between the first housing 220 and the second housing 230 is 30°, 60°, 90° or 120°, the user can be provided with a clear and timely pause.
- the second elastic member 85 is sleeved on the second rotating shaft 42 and resists the fourth cam structure 832 of the sliding member 83 .
- the second elastic member 85 may be an elastic body with elastic restoring force such as a spring or a disc spring set.
- the fourth cam structure 832 can be pushed so that the fourth cam structure 832 is in press contact with the third cam structure 82, ensuring that the third cam structure 82 and the fourth cam structure The damping effect that structure 832 can realize.
- the third cam structure 82 provided at its fourth end 62 will move relative to the fourth cam structure 832 of the slider 83, and the relative movement can be understood as
- the fourth cam structure 832 is squeezed and slides relative to the third cam structure 82 , so that the axial distance between the two changes, thereby compressing the second elastic member 85 .
- the second elastic member 85 presses the third cam structure 82 through the fourth cam structure 832 , thereby generating resistance to the rotation of the third cam structure 82 to form a damping force.
- the second torsion swing arm 60 can stop at any angle, thereby making the The electronic device 200 can hover within any angle.
- the cooperation of the third convex portion 821 and the fourth convex portion 836 can be used to achieve the effect of locking and positioning at a specific angle.
- the fourth cam structure 832 slides along the second shaft 42 at the start position and the end position, so that the fourth cam structure 832
- the compression of the third cam structure 82 is suddenly reduced, thereby providing clear and timely feedback to the user.
- the angle between the first housing 220 and the second housing 230 is 30°, 60°, 90° or 120°, the user can be provided with a clear and timely pause.
- the limiting member 86 includes a first limiting end 861 , a second limiting end 862 and a second connecting portion 863 .
- the first limiting end 861 is a hollow structure, sleeved and fixed to the first rotating shaft 41 , so that the first elastic member 84 elastically abuts between the second cam structure 831 and the first limiting end 861 .
- the movement of the first elastic member 84 along the axial direction of the first rotating shaft 41 can be restricted, effectively preventing the first elastic member 84 from being disengaged from the first rotating shaft 41 in a direction away from the sliding member 83. Has good retention stability.
- the movement of the sliding member 83 along the first rotating shaft 41 can be limited by the abutting relationship between the first elastic member 84 and the second cam structure 831 of the sliding member 83.
- the movement in the axial direction enables the sliding member 83 to have an appropriate sliding distance on the first rotating shaft 41 .
- the second limiting end 862 is a hollow structure, sleeved and fixed to the second rotating shaft 42 , so that the second elastic member 85 elastically resists between the fourth cam structure 832 and the second limiting end 862 . Therefore, the limiting member 86 can limit the movement of the second elastic member 85 along the axial direction of the second rotating shaft 42, effectively preventing the second elastic member 85 from being disengaged from the second rotating shaft 42 from the direction away from the sliding member 83, and has a good performance. Retention stability.
- the movement of the sliding member 83 along the second rotating shaft 42 can be limited by the abutting relationship between the second elastic member 85 and the fourth cam structure 832 of the sliding member 83 .
- the movement in the axial direction enables the sliding member 83 to have an appropriate sliding distance on the second rotating shaft 42 .
- the second connecting portion 863 is connected between the first limiting end 861 and the second limiting end 862 , and is located in a gap region between the first rotating shaft 41 and the second rotating shaft 42 .
- the first elastic member 84 and the second elastic member 85 are in a compressed state due to being squeezed by the sliding member 83, so that the first elastic member 84 away from the end of the slider 83 and the end of the second elastic member 85 away from the slider 83 will receive a relatively large elastic force, thus, a stopper 86 is provided at this end, and the stopper 86 and the first rotating shaft 41 and The good retention stability of the second rotating shaft 42 solves the problem that the first elastic member 84 and the second elastic member 85 fall off due to excessive force, which is beneficial to ensure that the synchronous movement of the folding assembly 100 does not deflect, and the reliability is good .
- the first torsion swing arm 30 , the first cam structure 81 , the second cam structure 831 and the first elastic member 84 are arranged coaxially on the first rotating shaft 41 .
- the cam structure 831 can be squeezed by the first cam structure 81 on the first torsion swing arm 30, so the first elastic member 84 can be compressed to generate a damping force, and the surface profile of the first cam structure 81 and the second cam structure 831 can be adjusted. Designing can indirectly control the damping force of the folding assembly 100 .
- the second torsion swing arm 60 , the third cam structure 82 , the fourth cam structure 832 and the second elastic member 85 are arranged coaxially on the second rotating shaft 42 .
- the structure 832 can be squeezed by the third cam structure 82 on the second torsion swing arm 60, so the second elastic member 85 can be compressed to generate a damping force, and the surface profile of the third cam structure 82 and the fourth cam structure 832 can be
- the design can indirectly control the damping force of the folding assembly 100 .
- springs such as the first elastic member 84, the second elastic member 85
- cams such as the first cam structure 81, the third cam structure 82, the second cam structure 831, the second cam structure 831, the The size of the four-cam structure 832
- the climbing angle can be understood as the angle ⁇ shown in FIG. 8 .
- the main swing arm (the first main swing arm 10 and the second main swing arm 50) and the torsion force can be used without changing the cam surface type and increasing the cam climbing angle.
- the differential speed cooperation between the swing arms (the first torsion swing arm 30 and the second torsion swing arm 60 ) realizes further expansion of the hovering angle range of the folding assembly 100 , which is beneficial to realize the large-angle hovering of the folding assembly 100 .
- the hovering angle range of the folding assembly in the prior art is 80°-120°
- the hovering angle range of the folding assembly 100 can be 30°-150°
- the folding assembly 100 Compared with the hovering angle range of the prior art, the hoverable range of the invention is further expanded.
- the differential speed cooperation between the main swing arm and the torsion swing arm can be understood as the difference in the rotation angle between the main swing arm and the torsion swing arm, for example, the first main swing arm 10 and the first torsion swing arm 30 were originally The swing arm 10 turns 1°, and the first torsion swing arm 30 also turns 1°.
- Fig. 9 is a schematic structural diagram of the folding assembly 100 shown in Fig. 7 when it is in an unfolded state
- Fig. 10 is a structural schematic diagram of the folding assembly 100 shown in Fig. 7 being in an intermediate state
- Fig. 11 is a schematic structural diagram of the folding assembly shown in Fig. 7 Schematic diagram of the structure of 100 in another intermediate state.
- the length direction of the folding assembly 100 is defined as the first direction, and the first direction is marked with X.
- the height direction of the folding assembly 100 is the second direction, the second direction is marked with Z, and the first direction X is perpendicular to the second direction Z.
- the first direction X may be equal to the length direction of the electronic device 200
- the second direction Z may be equal to the height direction of the electronic device 200 .
- Fig. 9, Fig. 10 and Fig. 11 in combination, as the first main swing arm 10 and the second main swing arm 50 are folded relative to each other, the angle between the first main swing arm 10 and the second main swing arm 50 decreases continuously.
- the first shaft body 21 keeps sliding in the first chute 11 to drive the first torsion swing arm 30 to rotate together with the first main swing arm 10
- the second shaft body 22 keeps sliding in the second chute 51 to drive
- the second torsion swing arm 60 rotates together with the second main swing arm 50 , so that the first torsion swing arm 30 and the second torsion swing arm 60 are also relatively folded.
- the first chute 11 includes a first segment 111 and a second segment 112 .
- the first section 111 includes a first acceleration section 113 and a first flat-speed section 114.
- the first acceleration section 113 is bent and connected to the first flat-speed section 114.
- the bent connection can be understood as the first acceleration section 113 and the first flat-speed section 114.
- the segment 114 is arranged at an included angle, and the included angle may be within an angle range of 0°-180°.
- the absolute value of the slope of the first acceleration section 113 is greater than the absolute value of the slope of the first flat speed section 114, and the absolute value of the slope of the first acceleration section 113 is greater than the absolute value of the slope of the first flat speed section 114.
- the absolute value of the slope at any position on the first acceleration section 113 is greater than the absolute value of the slope at any position on the first flat speed section 114 .
- a coordinate system is established with the first direction X as the abscissa x-axis and the second direction Z as the ordinate, and the flexible display 210 when the folding assembly 100 is in the unfolded state may be parallel to the x-axis.
- the slope of the first acceleration section 113 indicates the degree of inclination of the first acceleration section 113 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the slope of the curve or straight line corresponding to the first acceleration section 113 has Positive or negative, the absolute value of the slope of the first acceleration section 113 is positive.
- the slope of the first flat speed section 114 indicates the degree of inclination of the first flat speed section 114 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the curve or straight line corresponding to the first flat speed section 114
- the slope of is positive or negative, and the absolute value of the slope of the first flat speed section 114 is positive.
- the first acceleration segment 113 and the first flat speed segment 114 may be located in the second quadrant of the coordinate system, the slope of the first acceleration segment 113 is a negative value, the slope of the first flat speed segment 114 is a negative value, and the first The absolute value of the slope of the acceleration segment 113 is greater than the absolute value of the slope of the first flat speed segment 114 .
- the first shaft body 21 can slide in the first acceleration section 113 and the first flat speed section 114, and the sliding speed of the first shaft body 21 in the first acceleration section 113 and the first flat speed section 114 It is related to the absolute value of the slope of the first acceleration segment 113 and the first flat speed segment 114 . Specifically, when the first shaft body 21 moves in a segment with a larger absolute value of the slope, the first shaft body 21 moves at a faster speed in this segment. At this stage, the first main swing arm 10 and the second main swing arm 10 The angle change between the main swing arms 50 can be faster.
- the first shaft body 21 moves in the section where the absolute value of the slope is smaller, the first shaft body 21 moves at a slower speed in this section, so at this stage, the first main swing arm 10 and the second main swing arm 10 The change in angle between the arms 50 can be slower. Therefore, when the first shaft body 21 moves in the first acceleration section 113 , the first shaft body 21 moves faster in this section. When the first shaft body 21 moves in the first flat speed section 114 , the first shaft body 21 moves at a slower speed in this section.
- the second section 112 includes a second acceleration section 116 and a second flat speed section 115 .
- the second flat speed section 115 is connected with the first flat speed section 114 .
- the end of the second flat-speed section 115 away from the first flat-speed section 114 is bent and connected to the second acceleration section 116.
- the bent connection can be understood as the second acceleration section 116 and the second flat-speed section 115 are arranged at an angle. It can be in the angle range of 0°-180°.
- the absolute value of the slope of the second acceleration section 116 is greater than the absolute value of the slope of the second flat speed section 115, and the absolute value of the slope of the second acceleration section 116 is greater than the absolute value of the slope of the second flat speed section 115.
- the absolute value of the slope at any position on the second acceleration section 116 is greater than the absolute value of the slope at any position on the second flat speed section 115 .
- a coordinate system is established with the first direction X as the abscissa x-axis and the second direction Z as the ordinate, and the flexible display 210 when the folding assembly 100 is in the unfolded state may be parallel to the x-axis.
- the slope of the second acceleration section 116 represents the degree of inclination of the second acceleration section 116 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the slope of the curve or straight line corresponding to the second acceleration section 116 has Positive or negative, the absolute value of the slope of the second acceleration section 116 is positive.
- the slope of the second flat speed section 115 represents the degree of inclination of the second flat speed section 115 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the curve or straight line corresponding to the second flat speed section 115
- the slope of is positive or negative, and the absolute value of the slope of the second flat speed section 115 is positive.
- the second acceleration segment 116 and the second flat speed segment 115 may be located in the fourth quadrant of the coordinate system, the slope of the second acceleration segment 116 is a negative value, the slope of the second flat speed segment 115 is a negative value, and the second The absolute value of the slope of the acceleration segment 116 is greater than the absolute value of the slope of the second flat speed segment 115 .
- the first shaft body 21 can slide in the second flat speed section 115 and the second acceleration section 116 , and the sliding speed of the first shaft body 21 in the second acceleration section 116 and the second flat speed section 115 It is related to the absolute value of the slope of the second acceleration segment 116 and the second flat speed segment 115 . Specifically, when the first shaft body 21 moves in a segment with a larger absolute value of the slope, the first shaft body 21 moves at a faster speed in this segment, so at this stage, the first main swing arm 10 and the second shaft body 10 The angle change between the two main swing arms 50 can be faster.
- the first shaft body 21 moves in the section where the absolute value of the slope is smaller, the first shaft body 21 moves at a slower speed in this section, so at this stage, the first main swing arm 10 and the second main swing arm 10 The change in angle between the arms 50 can be slower. Therefore, when the first shaft body 21 moves in the second acceleration section 116 , the first shaft body 21 moves faster in this section. When the first shaft body 21 moves in the second flat speed section 115 , the first shaft body 21 moves at a slower speed in this section.
- the second flat speed section 115 is rotationally symmetrical to the first flat speed section 114 . That is to say, the first flat speed section 114 can be rotated around a certain point to obtain the second flat speed section 115 , and the second flat speed section 115 can be rotated around the same fixed point to get the first flat speed section 114 .
- the rotation angle required for obtaining the second flat-speed section 115 through the rotation transformation of the first flat-speed section 114 or the rotation transformation of the second flat-speed section 115 to obtain the first flat-speed section 114 is not strict. Limit, which can be any angle on the basis of meeting the working requirements of the folding assembly 100, such as 170°, 180°, etc.
- the first flat-speed section 114 can be rotated around the midpoint of the line O1 to obtain the second flat-speed section 115 .
- the absolute value of the slope at the junction of the first flat speed section 114 and the second flat speed section 115 changes little and is small
- the change in the absolute value of the slope can make the first shaft body 21 move from the end of the first flat speed section 114 to the beginning of the second flat speed section 115.
- the speed change of the movement is small.
- Fig. 12 is a structural schematic diagram of the first chute 11 of the folding assembly 100 shown in Fig. 7, and Fig. 13 is another structural schematic diagram of the first chute 11 of the folding assembly 100 shown in Fig. 7 .
- the degree of inclination of the first acceleration section 113 relative to the first direction X is different.
- both the second flat speed section 115 and the first flat speed section 114 are straight line sections.
- the first flat speed section 114 and the second flat speed section 115 can jointly form a straight line segment shape or a broken line segment shape according to the difference in the rotation angle between the first flat speed segment 114 and the second flat speed segment 115 , strong flexibility.
- FIG. 14 is another structural schematic diagram of the first chute 11 of the folding assembly 100 shown in FIG. 7
- FIG. 15 is another structural schematic diagram of the first chute 11 of the folding assembly 100 shown in FIG. 7 .
- the degree of inclination of the first acceleration section 113 relative to the first direction X is different.
- the second flat speed segment 115 and the first flat speed segment 114 are both arc segments, and the center of curvature of the first flat speed segment 114 is the same as the second The centers of curvature of the flat speed section 115 are respectively located on both sides of the first chute 11 .
- the center of curvature of the first flat speed section 114 and the center of curvature of the second flat speed section 115 are respectively located on both sides of the first chute 11, which can be understood as the curvature center of the first flat speed section 114 and the second flat speed section 115.
- the first flat speed section 114 and the second flat speed section 115 can form different forms (such as wave-shaped, S-shaped, etc.) curve segment, strong flexibility.
- FIG. 16 is a corresponding relationship diagram between the climbing path of the second cam structure 831 shown in FIG. 7 and the moving path of the first shaft body 21 .
- the stage when the first shaft body 21 slides in the first acceleration section 113 is the sliding stage S1.
- the phase when the first shaft body 21 slides in the first flat speed section 114 and the second flat speed section 115 is the sliding phase S2.
- the stage when the first shaft body 21 slides in the second acceleration section 116 is the sliding stage S3.
- the first elastic member 84 presses the first cam structure 81 through the second cam structure 831, and then the damping force generated by the rotation of the first cam structure 81 is related to the first torsion swing arm 30 and the second torsion force.
- the value of the first peak value K1 when the gravity required for the swing arm to rotate freely is equal. Below the first peak value K1 means that the damping force provided by the first elastic member 84 is less than the gravity required for the free rotation of the first torsion swing arm 30 and the second torsion swing arm; above the first peak value K1 means that the first elastic member 84
- the damping force that can be provided is greater than the gravity required for the first torsion swing arm 30 and the second torsion swing arm to be able to rotate freely.
- the stage in which the second cam structure 831 climbs from the left initial position to the first peak K1 along the first cam structure 81 is the climbing stage D1.
- the stage in which the second cam structure 831 continues to climb above the first peak value K1 along the first cam structure 81 is the climbing stage D2.
- the stage where the second cam structure 831 climbs to the right end position along the first cam structure 81 and then below the first peak K1 is the climbing stage D3.
- the damping force provided by the first elastic member 84 is less than, greater than, and less than that of the first torsion swing arm 30 and the first torsion arm 30, respectively.
- the gravity required for the two torsion swing arms to freely rotate, at this moment, the damping assembly 80 is respectively in the first resistance state, the second resistance state, and the third resistance state.
- the folding assembly The 100 can be stopped at any angle to realize hovering, and then the electronic device 200 can be hovered at any angle.
- the second cam structure 831 moves in the climbing phase D1 .
- the second cam structure 831 moves in the climbing phase D2.
- the first sliding end moves in the climbing phase D3. That is to say, the sliding phase S1 corresponds to the climbing phase D1, the sliding phase S2 corresponds to the climbing phase D2, and the sliding phase S3 corresponds to the climbing phase D3.
- the damping force provided by the first elastic member 84 increases rapidly and approaches the first peak value K1.
- the damping force provided by the first elastic member 84 is greater than the first peak value K1, and the folding assembly 100 enters the hovering stage.
- the speed of the first shaft body 21 in the sliding phase S2 is slower than the speed of the first shaft body 21 in the sliding phase S1 , so that the damping force provided by the first elastic member 84 decreases continuously.
- the damping force provided by the first elastic member 84 decreases at a slower rate, and the time of the hovering phase of the folding assembly 100 is prolonged.
- the damping force provided by the first elastic member 84 is smaller than the first peak value K1, and the folding assembly 100 is unfolded/closed.
- the movement of the first shaft body 21 in the first acceleration section 113 is an acceleration stage in which the damping force provided by the first elastic member 84 can quickly approach the first peak value K1
- the first flat speed section 114 and the second flat speed section 115 are slow speed stages in which the damping force provided by the first elastic member 84 is greater than the first peak value K1 and the folding assembly 100 enters a hovering state, and the first shaft body 21 moves In the second acceleration stage 116 , the damping force provided by the first elastic member 84 is smaller than the first peak value K1 , so that the folding assembly 100 realizes the opening and closing acceleration stage.
- the damping assembly 80 when the folding assembly 100 is in the unfolded state, the damping assembly 80 is in the first resistance state, the first shaft body 21 slides in the first acceleration section 113 , and the first torsion swing arm 30 and the second torsion swing arm 60 are unfolded relative to each other.
- the damping assembly 80 is in the second resistance state, the first shaft body 21 slides in the first flat speed section 114 and the second flat speed section 115, and the first torsion swing arm 30 and The second torsional swing arms 60 gradually approach each other.
- the damping assembly 80 is in the third resistance state, the first shaft body 21 slides in the second acceleration section 116, and the first torsion swing arm 30 and the second torsion swing arm 60 are folded relative to each other. .
- the structure of the first chute 11 it is possible to effectively limit the trajectory of the first torsion swing arm 30 to rotate and fold, to ensure the rotation effect of the folding assembly 100, and to ensure that the folding can be ensured on the basis of retaining the climbing characteristics of the cam.
- the feeling of unfolding and closing the assembly 100 in place makes it possible to prolong as much as possible the stage where the damping force provided by the first elastic member 84 is greater than the first peak value K1 during the rotation of the first torsion swing arm 30 .
- the range of the rotation angle of the folding assembly 100 corresponding to the first flat speed section 114 and the second flat speed section 115 can be larger, while the first acceleration section 113 and the second acceleration section 116
- the corresponding range of the rotation angle of the folding assembly 100 may be smaller, so as to effectively increase the time of the hovering stage where the folding assembly 100 has the greatest damping.
- the hovering angle range of the folding assembly 100 can be further expanded, which is beneficial to realize the large-angle hovering of the folding assembly 100 .
- the hovering angle range of the folding assembly in the prior art is 80°-120°
- the hovering angle range of the folding assembly 100 in the technical solution of the present application may be 30°-150°.
- the first acceleration section 113 and the second acceleration section 116 may be rotationally symmetrical. That is to say, the first acceleration segment 113 can be rotated around a certain point to obtain the second acceleration segment 116 , and the second acceleration segment 116 can be rotated around the same fixed point to obtain the first acceleration segment 113 . For example, as shown in FIG. 9 , the first acceleration segment 113 can be rotated around the midpoint of the line O1 to obtain the second acceleration segment 116 .
- the first section 111 and the second section 112 can be rotated.
- Symmetry means that the first segment 111 can be rotated around a certain point to obtain the second segment 112 , and the second segment 112 can be rotated around the same fixed point to obtain the first segment 111 .
- the absolute value of the slope at the junction of the first section 111 and the second section 112 can be made The change is small, and the change of the absolute value of the small slope can make the speed change of the first shaft body 21 small when it moves from the end of the first section 111 to the beginning of the second section 112, which is beneficial to prolong the sliding stage S2, and then realize the folding assembly 100 Extension of the hoverable phase.
- the first shaft body 21 sequentially passes through the first acceleration section 113, the first flat speed section 114, the second flat speed section 115 and the second acceleration section 116, according to the first acceleration section 113 and the first flat speed section in the first section 111
- the change of the absolute value of the slope of the speed section 114 shows that the speed of the first shaft body 21 in the first section 111 is first fast and then slow. It can be seen from the value change that the speed of the first shaft body 21 in the second section 112 is first slow and then fast, so that the movement speed of the first shaft body 21 can be divided into three stages as a whole, that is, "acceleration-slow speed-acceleration".
- the moving speed of the first shaft body 21 is related to the damping force provided by the first elastic member 84 .
- the damping force provided by the first elastic member 84 quickly approaches the first peak value K1.
- the damping force provided by the first elastic member 84 is greater than the first peak value K1, and the folding assembly 100 enters the hovering stage.
- the damping force provided by the first elastic member 84 is smaller than the first peak value K1, and the folding assembly 100 is unfolded/closed.
- the embodiment of the present application does not strictly limit the rotation angle required to obtain the second segment 112 through the rotation transformation of the first segment 111 or the rotation angle required to obtain the first segment 111 through the rotation transformation of the second segment 112. Any angle based on the working requirements of the assembly 100, such as 170°, 180°, etc.
- both the first acceleration segment 113 and the second acceleration segment 116 are straight segments.
- the first flat-speed section 114 and the second flat-speed section 115 may be straight sections, so that the first chute 11 as a whole presents a broken line shape with only straight sections.
- the first flat speed section 114 and the second flat speed section 115 may also be arc sections, so that the first chute 11 as a whole presents a curved shape in which arc sections and straight sections are mixed.
- both the first acceleration segment 113 and the second acceleration segment 116 are arc segments, and the center of curvature of the first acceleration segment 113 is the same as that of the second acceleration segment 116 The centers of curvature are respectively located on both sides of the first chute 11 .
- the center of curvature of the first acceleration section 113 and the center of curvature of the second acceleration section 116 are respectively located on both sides of the first chute 11, which can be understood as the center of curvature of the first acceleration section 113 and the center of curvature of the second acceleration section 116 are at Based on the first chute 11 as a reference object, one is located on one side of the first chute 11 , and the other is located on the opposite side of the first chute 11 .
- the center of curvature of the first accelerating section 113 and the center of curvature of the first flat speed section 114 are located on the same side of the first chute 11
- the center of curvature of the second accelerating section 116 and the center of curvature of the second flat speed section 115 are located on the same side of the first chute 11. The same side of a chute 11.
- the first flat-speed section 114 and the second flat-speed section 115 can be straight sections, so that the first chute 11 as a whole presents a curved shape mixed with arc sections and straight sections.
- the first flat speed section 114 and the second flat speed section 115 may also be arc sections, so that the first chute 11 as a whole presents a curved shape with only arc sections.
- FIG. 17 is a schematic diagram of the shape deformation of the first chute 11 shown in FIG. 7 .
- the line E1 is the reference line of the shape of the first chute 11
- the line F1 is the limit condition of the shape of the first chute 11 .
- the shape of the first chute 11 can be designed within the range of the line E1 and the line F1 (including the line F1 ), which is not strictly limited.
- the second chute 51 includes a third segment 511 and a fourth segment 512 .
- the third section 511 includes a third acceleration section 513 and a third flat-speed section 514.
- the third acceleration section 513 and the third flat-speed section 514 are bent and connected.
- the curved connection can be understood as the third acceleration section 513 and the third flat-speed section
- the section 514 is arranged at an included angle, and the included angle may be within an angle range of 0°-180°.
- the absolute value of the slope of the third acceleration section 513 is greater than the absolute value of the slope of the third flat speed section 514, and the absolute value of the slope of the third acceleration section 513 is greater than the absolute value of the slope of the third flat speed section 514.
- the absolute value of the slope at any position on the third acceleration section 513 is greater than the absolute value of the slope at any position on the third flat speed section 514 .
- a coordinate system is established with the first direction X as the abscissa x-axis and the second direction Z as the ordinate, and the flexible display 210 when the folding assembly 100 is in the unfolded state may be parallel to the x-axis.
- the slope of the third acceleration section 513 indicates the degree of inclination of the third acceleration section 513 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the slope of the curve or straight line corresponding to the third acceleration section 513 has Positive or negative, the absolute value of the slope of the third acceleration section 513 is positive.
- the slope of the third flat speed section 514 indicates the degree of inclination of the third flat speed section 514 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the curve or straight line corresponding to the third flat speed section 514
- the slope of is positive or negative, and the absolute value of the slope of the third flat speed section 514 is positive.
- the third acceleration segment 513 and the third flat speed segment 514 may be located in the first quadrant of the coordinate system, the slope of the third acceleration segment 513 is a positive value, the slope of the third flat speed segment 514 is a positive value, and the third The absolute value of the slope of the acceleration segment 513 is greater than the absolute value of the slope of the third flat speed segment 514 .
- the second shaft body 22 can slide in the third acceleration segment 513 and the third flat speed segment 514, and the sliding speed of the second shaft body 22 in the third acceleration segment 513 and the third flat speed segment 514 It is related to the absolute value of the slope of the third acceleration segment 513 and the third flat speed segment 514 . Specifically, when the second shaft body 22 moves in a section where the absolute value of the slope is larger, the second shaft body 22 moves faster in this section, and the first main swing arm 10 and the second main swing arm 50 The angle change between can be faster.
- the second shaft body 22 moves in the section where the absolute value of the slope is smaller, the second shaft body 22 moves at a slower speed in this section, so at this stage, the first main swing arm 10 and the second main swing arm The change in angle between the arms 50 can be slower. Therefore, when the second shaft body 22 moves in the third acceleration section 513 , the first shaft body 21 moves faster in this section. When the first shaft body 21 moves in the third flat speed section 514 , the first shaft body 21 moves at a slower speed in this section.
- the fourth segment 512 includes a fourth acceleration segment 516 and a fourth flat speed segment 515 .
- the fourth flat speed section 515 is connected with the third flat speed section 514 .
- the end of the fourth flat-speed section 515 away from the third flat-speed section 514 is bent and connected to the fourth acceleration section 516.
- the bent connection can be understood as the fourth acceleration section 516 and the fourth flat-speed section 515 are arranged at an angle, and the angle It can be in the angle range of 0°-180°.
- the absolute value of the slope of the fourth acceleration section 516 is greater than the absolute value of the slope of the fourth flat speed section 515, and the absolute value of the slope of the fourth acceleration section 516 is greater than the absolute value of the slope of the fourth flat speed section 515 can be understood as The absolute value of the slope at any position on the fourth acceleration segment 516 is greater than the absolute value of the slope at any position on the fourth flat speed segment 515 .
- a coordinate system is established with the first direction X as the abscissa x-axis and the second direction Z as the ordinate, and the flexible display 210 when the folding assembly 100 is in the unfolded state may be parallel to the x-axis.
- the slope of the fourth acceleration section 516 indicates the degree of inclination of the fourth acceleration section 516 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the slope of the curve or straight line corresponding to the fourth acceleration section 516 has Positive or negative, the absolute value of the slope of the fourth acceleration section 516 is positive.
- the slope of the fourth flat speed section 515 indicates the degree of inclination of the fourth flat speed section 515 relative to the x-axis (first direction X) in the unfolded state of the folding assembly 100, and the curve or straight line corresponding to the fourth flat speed section 515
- the slope of is positive or negative, and the absolute value of the slope of the fourth flat speed section 515 is positive.
- the fourth acceleration segment 516 and the fourth flat speed segment 515 can be located in the third quadrant of the coordinate system, the slope of the fourth acceleration segment 516 is a positive value, the slope of the fourth flat speed segment 515 is a negative value, and the fourth The absolute value of the slope of the acceleration segment 516 is greater than the absolute value of the slope of the fourth flat speed segment 515 .
- the second shaft body 22 can slide in the fourth flat speed section 515 and the fourth acceleration section 516, and the sliding speed of the second shaft body 22 in the fourth acceleration section 516 and the fourth flat speed section 515 It is related to the absolute value of the slope of the fourth acceleration segment 516 and the fourth flat speed segment 515 . Specifically, when the second shaft body 22 moves in a segment with a larger absolute value of the slope, the second shaft body 22 moves at a faster speed in this segment, so at this stage, the first main swing arm 10 and the second shaft body 10 The angle change between the two main swing arms 50 can be faster.
- the second shaft body 22 moves in the section where the absolute value of the slope is smaller, the second shaft body 22 moves at a slower speed in this section, so at this stage, the first main swing arm 10 and the second main swing arm The change in angle between the arms 50 can be slower. Therefore, when the second shaft body 22 moves in the fourth acceleration section 516 , the second shaft body 22 moves faster in this section. When the second shaft body 22 moves in the fourth flat speed section 515 , the second shaft body 22 moves at a slower speed in this section.
- the fourth flat speed section 515 is rotationally symmetrical to the third flat speed section 514 . That is to say, the third flat speed segment 514 can be rotated around a certain point to obtain the fourth flat speed segment 515 , and the fourth flat speed segment 515 can be rotated around the same fixed point to obtain the third flat speed segment 514 .
- the rotation angle required for obtaining the fourth flat-speed section 515 through the rotation transformation of the third flat-speed section 514 or the rotation transformation of the fourth flat-speed section 515 to obtain the third flat-speed section 514 is not strict. Limit, which can be any angle on the basis of meeting the working requirements of the folding assembly 100, such as 170°, 180°, etc.
- the third flat-speed section 514 can be rotated around the midpoint of the line O2 to obtain the fourth flat-speed section 515 .
- the absolute value of the slope at the junction of the third flat speed section 514 and the fourth flat speed section 515 changes little and is small
- the change in the absolute value of the slope can make the second shaft body 22 move from the end of the third flat speed section 514 to the beginning of the fourth flat speed section 515.
- the speed change of motion is small.
- FIG. 18 is a schematic structural view of the second chute 51 of the folding assembly 100 shown in FIG. 7
- FIG. 19 is a schematic structural view of another structure of the second chute 51 of the folding assembly 100 shown in FIG. 7 .
- the degree of inclination of the third acceleration section 513 relative to the first direction X is different.
- both the fourth flat speed section 515 and the third flat speed section 514 are straight line sections.
- the third flat speed segment 514 and the fourth flat speed segment 515 can jointly form a straight line segment shape or a broken line segment shape according to the difference in the rotation angle between the third flat speed segment 514 and the fourth flat speed segment 515 , strong flexibility.
- FIG. 20 is another structural schematic diagram of the second chute 51 of the folding assembly 100 shown in FIG. 7
- FIG. 21 is another structural schematic diagram of the second chute 51 of the folding assembly 100 shown in FIG. 7 .
- the degree of inclination of the third acceleration section 513 relative to the first direction X is different.
- the fourth flat speed segment 515 and the third flat speed segment 514 are both arc segments, and the center of curvature of the third flat speed segment 514 is the same as that of the fourth flat speed segment.
- the center of curvature of the flat speed section 515 is respectively located on both sides of the second slide groove 51 .
- the center of curvature of the third flat speed section 514 and the center of curvature of the fourth flat speed section 515 are respectively located on both sides of the second chute 51, which can be understood as the center of curvature of the third flat speed section 514 and the center of curvature of the fourth flat speed section 515.
- the centers of curvature are based on the second chute 51 as a reference object, one is located on one side of the second chute 51, and the other is located on the opposite side of the second chute 51.
- the third flat speed section 514 and the fourth flat speed section 515 can jointly form different shapes (such as wavy, S-shaped, etc.) curve segment, strong flexibility.
- FIG. 22 is a corresponding relationship diagram between the climbing path of the fourth cam structure 832 shown in FIG. 7 and the moving path of the second shaft body 22 .
- the stage when the second shaft body 22 slides in the third acceleration section 513 is the sliding stage S4.
- the phase when the second shaft body 22 slides in the third flat speed section 514 and the fourth flat speed section 515 is the sliding phase S5.
- the stage when the second shaft body 22 slides in the fourth acceleration section 516 is the sliding stage S6.
- the second elastic member 85 presses the third cam structure 82 through the fourth cam structure 832, and then the damping force generated by the rotation of the third cam structure 82 is related to the first torsion swing arm 30 and the second torsion force.
- the critical line when the gravity required for the swing arm to freely rotate is equal is the second peak value K2. Below the second peak value K2 means that the damping force provided by the second elastic member 85 is less than the gravity required for the free rotation of the first torsion swing arm 30 and the second torsion swing arm, and above the second peak value K2 means that the second elastic member 85
- the damping force that can be provided is greater than the gravity required for the first torsion swing arm 30 and the second torsion swing arm to be able to rotate freely.
- the stage in which the fourth cam structure 832 climbs from the left initial position to the second peak K2 along the third cam structure 82 is the climbing stage D4.
- the stage in which the fourth cam structure 832 continues to climb above the second peak value K2 along the third cam structure 82 is the climbing stage D5.
- the stage in which the fourth cam structure 832 climbs to the right end position along the third cam structure 82 and then below the second peak K2 is the climbing stage D6.
- the damping force provided by the second elastic member 85 is less than, greater than, and less than that of the first torsion swing arm 30 and the first torsional swing arm 30, respectively.
- the gravity required for the two torsion swing arms to freely rotate, at this moment, the damping assembly 80 is respectively in the first resistance state, the second resistance state, and the third resistance state.
- the folding assembly The 100 can be stopped at any angle to achieve hovering, and then the electronic device 200 can be hovered at different angles.
- the fourth cam structure 832 moves in the climbing phase D4 .
- the fourth cam structure 832 moves in the climbing phase D5.
- the first sliding end moves in the climbing phase D6. That is to say, the sliding phase S4 corresponds to the climbing phase D4, the sliding phase S5 corresponds to the climbing phase D5, and the sliding phase S6 corresponds to the climbing phase D6.
- the damping force provided by the second elastic member 85 increases rapidly and approaches the second peak value K2.
- the damping force provided by the second elastic member 85 is greater than the second peak value K2, and the folding assembly 100 enters the hovering stage.
- the speed of the second shaft body 22 in the sliding phase S5 is slower than the speed of the second shaft body 22 in the sliding phase S4, so that the damping force provided by the second elastic member 85 is continuously reduced.
- the damping force provided by the second elastic member 85 decreases at a slower rate, and the time of the hovering phase of the folding assembly 100 is prolonged.
- the damping force provided by the second elastic member 85 is smaller than the second peak value K2, and the folding assembly 100 is unfolded/closed.
- the movement of the second shaft body 22 in the third acceleration section 513 is an acceleration stage in which the damping force provided by the second elastic member 85 can quickly approach the second peak value K2, and the movement of the second shaft body 22 in the
- the third flat speed section 514 and the fourth flat speed section 515 are slow speed stages in which the damping force provided by the second elastic member 85 is greater than the second peak value K2 and the folding assembly 100 enters the hovering state, and the second shaft body 22 moves In the fourth acceleration section 516 , the damping force provided by the second elastic member 85 is smaller than the second peak value K2 , so that the folding assembly 100 can rapidly realize the opening and closing acceleration stage.
- the damping assembly 80 when the folding assembly 100 is in the unfolded state, the damping assembly 80 is in the first resistance state, the second shaft body 22 slides in the third acceleration section 513 , and the first torsion swing arm 30 and the second torsion swing arm 60 are relatively unfolded.
- the damping assembly 80 is in the second resistance state, the second shaft body 22 slides in the third flat speed section 514 and the fourth flat speed section 515, and the first torsion swing arm 30 and The second torsional swing arms 60 gradually approach each other.
- the damping assembly 80 is in the third resistance state, the second shaft body 22 slides in the fourth acceleration section 516, and the first torsion swing arm 30 and the second torsion swing arm 60 are folded relative to each other. .
- the structure of the second chute 51 it is possible to effectively limit the trajectory of the second torsion swing arm 60 to rotate and fold, to ensure the rotation effect of the folding assembly 100, and to ensure that the folding can be ensured on the basis of retaining the climbing characteristics of the cam.
- the feeling of unfolding and closing the assembly 100 in place makes it possible to extend the stage in which the damping force provided by the second elastic member 85 is greater than the second peak value K2 during the rotation of the second torsion swing arm 60 as much as possible.
- the range of the rotation angle of the folding assembly 100 corresponding to the first flat speed section 114 and the second flat speed section 115 can be larger, while the first acceleration section 113 and the second acceleration section 116
- the corresponding range of the rotation angle of the folding assembly 100 may be smaller, so as to effectively increase the time of the hovering stage where the folding assembly 100 has the greatest damping.
- the third acceleration section 513 and the fourth acceleration section 516 may be rotationally symmetrical. That is to say, the third acceleration segment 513 can be rotated around a certain point to obtain the fourth acceleration segment 516 , and the fourth acceleration segment 516 can be rotated around the same fixed point to obtain the third acceleration segment 513 .
- the embodiment of the present application does not strictly limit the rotation angle required for obtaining the fourth acceleration segment 516 through the rotation transformation of the third acceleration segment 513 or the rotation conversion of the fourth acceleration segment 516 to obtain the third acceleration segment 513, which can be It is any angle on the basis of satisfying the working requirements of the folding assembly 100, such as 170°, 180° and so on.
- the third section 511 and the fourth section 512 can be rotated due to the rotational symmetry of the third acceleration section 513 and the fourth acceleration section 516, and the rotational symmetry of the third flat speed section 514 and the fourth flat speed section 515.
- Symmetrical that is, the third segment 511 can be rotated around a certain point to obtain the fourth segment 512
- the fourth segment 512 can be rotated around the same fixed point to obtain the third segment 511 .
- the hovering angle range of the folding assembly 100 can be further expanded, which is beneficial to realize the large-angle hovering of the folding assembly 100 .
- the hovering angle range of the folding assembly in the prior art is 80°-120°
- the hovering angle range of the folding assembly 100 in the technical solution of the present application may be 30°-150°.
- the second shaft body 22 sequentially passes through the third acceleration segment 513, the third flat speed segment 514, the fourth flat speed segment 515 and the fourth acceleration segment 516, according to the third acceleration segment 513 and the third flat speed segment in the third segment 511
- the absolute value of the slope of the speed section 514 changes, that is, the speed of the second shaft body 22 in the third section 511 is first fast and then slow, according to the slope of the fourth flat speed section 515 and the fourth acceleration section 516 in the fourth section 512
- the speed of the second shaft body 22 in the fourth section 512 is first slow and then fast, so that the movement speed of the second shaft body 22 can be divided into three stages as a whole, that is, "acceleration-slow speed-acceleration".
- the moving speed of the second shaft body 22 is related to the damping force provided by the second elastic member 85 .
- the damping force provided by the second elastic member 85 is greater than the second peak value K2, and the folding assembly 100 enters the hovering stage.
- the damping force provided by the second elastic member 85 is smaller than the second peak value K2, and the folding assembly 100 is unfolded/closed.
- the embodiment of the present application does not strictly limit the rotation angle required to obtain the fourth segment 512 through the rotation transformation of the third segment 511 or the rotation angle required to obtain the third segment 511 through the rotation transformation of the fourth segment 512. Any angle based on the working requirements of the assembly 100, such as 170°, 180°, etc.
- the third segment 511 can be rotated around the midpoint of the line O2 to obtain the fourth segment 512 .
- both the third acceleration segment 513 and the fourth acceleration segment 516 are straight-line segments.
- the third flat-speed section 514 and the fourth flat-speed section 515 may be straight sections, so that the second chute 51 as a whole presents a broken line shape with only straight sections.
- the third flat speed section 514 and the fourth flat speed section 515 may also be arc sections, so that the second chute 51 as a whole presents a curved shape in which arc sections and straight sections are mixed.
- both the third acceleration segment 513 and the fourth acceleration segment 516 are arc segments, and the center of curvature of the third acceleration segment 513 is the same as that of the fourth acceleration segment 516.
- the centers of curvature are located on both sides of the second slide groove 51 respectively.
- the center of curvature of the third acceleration section 513 and the center of curvature of the fourth acceleration section 516 are respectively located on both sides of the second chute 51, which can be understood as the center of curvature of the third acceleration section 513 and the center of curvature of the fourth acceleration section 516 are at Based on the second chute 51 as a reference, one is located on one side of the second chute 51 , and the other is located on the opposite side of the second chute 51 .
- center of curvature of the third acceleration section 513 and the center of curvature of the third flat speed section 514 are located on the same side of the second chute 51
- center of curvature of the fourth acceleration section 516 and the center of curvature of the fourth flat speed section 515 are located on the same side of the second chute 51. The same side of the two chute 51.
- the third flat-speed section 514 and the fourth flat-speed section 515 can be straight sections, so that the second chute 51 as a whole presents a curved shape mixed with arc sections and straight sections.
- the third flat speed section 514 and the fourth flat speed section 515 may also be arc sections, so that the second chute 51 as a whole presents a curved shape with only arc sections.
- FIG. 23 is a schematic diagram of the shape deformation of the second chute 51 shown in FIG. 7 .
- the line E2 is the reference line of the shape of the second chute 51
- the line F2 is the limit condition of the shape of the second chute 51 .
- the shape of the second chute 51 can be designed within the range of the line E2 and the line F2 (including the line F2 ), which is not strictly limited.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Telephone Set Structure (AREA)
Abstract
本申请提供一种折叠组件及电子设备。包括第一主摆臂、第一扭力摆臂、第一轴体和阻尼组件;第一主摆臂上设有第一滑槽,第一滑槽包括相互连接的第一加速段和第一平速段,第一加速段的斜率的绝对值大于第一平速段的斜率的绝对值;第一扭力摆臂包括第一端和第二端;第一轴体穿过第一端与第一滑槽连接第一扭力摆臂和第一主摆臂;阻尼组件与第二端转动连接,第一扭力摆臂相对于阻尼组件转动时,第一轴体由第一加速段运动到第一平速段,阻尼组件由第一阻力状态转换到第二阻力状态,阻尼组件在第二阻力状态对第一扭力摆臂的转动阻力大于阻尼组件在第一阻力状态对第一扭力摆臂的转动阻力。本申请的技术方案能够在保证凸轮寿命的同时,实现大角度悬停。
Description
本申请要求于2022年01月10日提交中国专利局、申请号为202210021087.5、申请名称为“折叠装置及电子设备”和于2022年04月25日提交中国专利局、申请号为202210437862.5、申请名称为“折叠组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及可折叠电子设备技术领域,尤其涉及一种折叠组件及电子设备。
随着柔性折叠屏技术日趋成熟,折叠终端产品已经成为一大趋势,折叠终端产品(如折叠手机、折叠平板、折叠电脑等)需要满足较高的可靠性及较好的操作体验。为了实现折叠终端产品在不同角度下的悬停,通常需要对凸轮的面型进行改变。但对凸轮的面型的改变易造成凸轮寿命降低的风险。如何在保证凸轮寿命的同时,实现大角度悬停,为业界持续探索的课题。
发明内容
本申请的实施例提供一种折叠组件及电子设备,能够在保证凸轮寿命的同时,实现大角度悬停。
本申请第一方面,提供一种折叠组件,所述折叠组件包括:
第一主摆臂,所述第一主摆臂上设有第一滑槽,所述第一滑槽包括相互连接的第一加速段和第一平速段,所述第一加速段的斜率的绝对值大于所述第一平速段的斜率的绝对值;
第一扭力摆臂,所述第一扭力摆臂包括第一端和第二端;
第一轴体,所述第一轴体穿过所述第一端与所述第一滑槽连接所述第一扭力摆臂和第一主摆臂;及
阻尼组件,与所述第二端转动连接,所述第一扭力摆臂相对于所述阻尼组件转动时,所述第一轴体由所述第一加速段运动到所述第一平速段,所述阻尼组件由第一阻力状态转换到第二阻力状态,所述阻尼组件在所述第二阻力状态对所述第一扭力摆臂的转动阻力大于所述阻尼组件在所述第一阻力状态对所述第一扭力摆臂的转动阻力。
可以理解的是,在折叠组件的小型化发展趋势下,阻尼组件中的弹簧和凸轮的尺寸均大幅度下降,进而造成其提供的阻尼力较小,若想保证其提供的阻尼力适宜,需改变凸轮的面型以使凸轮爬坡量增加,爬坡角增大,阻尼力增加。但改变凸轮的面型会导致凸轮的工作寿命发生缩减,进而导致折叠组件失效。
由此,本申请的实施例中,可维持凸轮的面型不变以延长凸轮使用寿命,仅通过第一主摆臂与第一扭力摆臂之间的差速配合实现可悬停角度区间的进一步扩大,有利于实现折叠组件的大角度悬停。例如,现有技术中的折叠组件的可悬停角度区间为80°-120°,本申请技术方案中折叠组件的可悬停角度区间可以为30°-150°,折叠组件的可悬停区间相较于现有技术的可悬停角度区间被进一步扩大。其中,第一主摆臂与第一扭力摆臂的差速配合 可理解为第一主摆臂与第一扭力摆臂之间转动角度的差异,例如,第一主摆臂与第一扭力摆臂原先为第一主摆臂转1°,第一扭力摆臂也转1°。而在差速配合下,可以为第一主摆臂转1°,第一扭力摆臂转2°。而主摆臂与扭力摆臂之间差速配合的实现是通过对设于第一主摆臂的第一滑槽进行设计而实现的。
可以理解的是,第一轴体能够在第一加速段和第一平速段内滑动,而第一轴体在第一加速段和第一平速段内的滑动速度与第一加速段和第一平速段的斜率的绝对值相关。具体为,当第一轴体运动在斜率的绝对值较大的区段时,第一轴体在此区段的运动速度较快,因此在这个阶段,第一主摆臂和第二主摆臂之间的夹角变化更快。而在这个阶段,阻尼组件处于第一阻力状态,第一扭力摆臂能够自由转动。
当第一轴体运动在斜率的绝对值较小的区段时,第一轴体在此区段的运动速度较慢,因此在这个阶段,第一主摆臂和第二主摆臂之间的夹角变化较慢。而在这个阶段,阻尼组件处于第二阻力状态,第一扭力摆臂能够转动到一定角度后停留保持在该角度。
也就是说,折叠组件在折叠过程中,第一平速段对应的折叠组件旋转角度的范围较大,而第一加速段对应的折叠组件旋转角度的范围较小,从而有效增加折叠组件阻尼最大的悬停阶段的时间。又由于折叠组件阻尼最大的悬停阶段的时间被延长,故而折叠组件的可悬停角度区间可被进一步扩大,有利于实现折叠组件的大角度悬停。
此设置下,能够使第一扭力摆臂和第一主摆臂的运动速度符合差速配合的关系,从而使第一主摆臂的转动过程中阻尼组件能够尽可能处于第二阻力状态,有利于延长折叠组件的可悬停阶段的时间。
一种可能的实施方式中,所述第一滑槽还包括第二平速段和第二加速段,所述第二平速段的一端与所述第一平速段连接,所述第二平速段的另一端与所述第二加速段连接,所述第二加速段的斜率的绝对值大于所述第二平速段的斜率的绝对值,所述第二平速段与所述第一平速段旋转对称;
所述第一轴体由所述第一平速段运动到所述第二平速段,所述阻尼组件保持所述第二阻力状态,所述第一轴体由所述第二平速段运动到所述第二加速段,所述阻尼组件由所述第二阻力状态转换到第三阻力状态,所述阻尼组件在所述第二阻力状态对所述第一扭力摆臂的转动阻力大于所述阻尼组件在所述第三阻力状态对所述第一扭力摆臂的转动阻力。
而第二平速段与第一平速段旋转对称。也就是说,第一平速段能够绕一定点经过旋转变换而得到第二平速段,第二平速段能够绕同一定点经过旋转变换而得到第一平速段。
需说明的是,本申请的实施例对于第一平速段旋转变换得到第二平速段或第二平速段旋转变换得到第一平速段所需的旋转角度不做严格限制,其可以是在满足折叠组件工作需求的基础上的任何角度,如170°、180°等。
由此,能够因第一平速段与第二平速段旋转对称的设置,而使第一平速段与第二平速段连接处的斜率的绝对值变化小,较小的斜率的绝对值变化能够使第一轴体自第一平速段的末端运动至第二平速段的开端时速度变化小,进而能够使第一轴体自第一平速段过渡至第二平速段时运动的速度变化小。
可以理解的是,第二轴体能够在第二加速段和第二平速段内滑动,而第二轴体在第二加速段和第二平速段内的滑动速度与第二加速段和第二平速段的斜率的绝对值相关。具体 为,当第二轴体运动在斜率的绝对值较小的区段时,第二轴体在此区段的运动速度较慢,因此在这个阶段,第二主摆臂和第二主摆臂之间的夹角变化较慢。而在这个阶段,阻尼组件处于第二阻力状态,第二扭力摆臂能够转动到一定角度后停留保持在该角度。
当第二轴体运动在斜率的绝对值较大的区段时,第二轴体在此区段的运动速度较快,因此在这个阶段,第二主摆臂和第二主摆臂之间的夹角变化更快。而在这个阶段,阻尼组件处于第三阻力状态,第二扭力摆臂能够自由转动。
也就是说,折叠组件在折叠过程中,第二平速段对应的折叠组件旋转角度的范围较大,而第二加速段对应的折叠组件旋转角度的范围较小,从而有效增加折叠组件阻尼最大的悬停阶段的时间。又由于折叠组件阻尼最大的悬停阶段的时间被延长,故而折叠组件的可悬停角度区间可被进一步扩大,有利于实现折叠组件的大角度悬停。此设置下,能够使第一扭力摆臂和第一主摆臂的运动速度符合差速配合的关系,从而使第一主摆臂的转动过程中阻尼组件能够尽可能处于第二阻力状态,有利于延长折叠组件的可悬停阶段的时间。
一种可能的实施方式中,所述第一加速段的曲率中心与所述第二加速段的曲率中心分别位于所述第一滑槽的两侧。
其中,第一加速段的曲率中心与第二加速段的曲率中心分别位于第一滑槽的两侧可理解为第一加速段的曲率中心与第二加速段的曲率中心在以第一滑槽为参照物的基础上,一个位于第一滑槽一边,另一个位于第一滑槽相对的另一边。并且,第一加速段的曲率中心与第一平速段的曲率中心位于第一滑槽的同一侧,第二加速段的曲率中心与第二平速段的曲率中心位于第一滑槽的同一侧。
本实施方式中,第一平速段和第二平速段可以为直线段,以使第一滑槽整体呈现弧线段与直线段混合的曲线形态。或者,第一平速段和第二平速段也可以为弧线段,以使第一滑槽整体呈现仅有弧线段的曲线形态。
一种可能的实施方式中,所述第一加速段和所述第二加速段均为直线段。
本实施方式中,第一平速段和第二平速段可以为直线段,以使第一滑槽整体呈现仅有直线段的折线形态。或者,第一平速段和第二平速段也可以为弧线段,以使第一滑槽整体呈现弧线段与直线段混合的曲线形态。
一种可能的实施方式中,所述第一加速段和所述第二加速段旋转对称。
也就是说,第一加速段能够绕一定点经过旋转变换而得到第二加速段,第二加速段能够绕同一定点经过旋转变换而得到第一加速段。
需说明的是,本申请的实施例对于第一加速段旋转变换得到第二加速段或第二加速段旋转变换得到第一加速段所需的旋转角度不做严格限制,其可以是在满足折叠组件工作需求的基础上的任何角度,如170°、180°等。
由此,能够因第一加速段与第二加速段旋转对称,且第一平速段与第二平速段旋转对称的设置,而使第一段与第二段旋转对称,也就是说,第一段能够绕一定点经过旋转变换而得到第二段,第二段能够绕同一定点经过旋转变换而得到第一段。而通过将第一滑槽的结构拆分为两段,能够因第一段与第二段旋转对称的设置,而使第一轴体在第一滑槽内滑动运动的速度阶段能够呈现对称设置的形态,对称的速度阶段有利于实现折叠组件可悬停阶段的延长。
需说明的是,本申请的实施例对于第一段旋转变换得到第二段或第二段旋转变换得到第一段所需的旋转角度不做严格限制,其可以是在满足折叠组件工作需求的基础上的任何角度,如170°、180°等。
一种可能的实施方式中,所述第一平速段的曲率中心与所述第二平速段的曲率中心分别位于所述第一滑槽的两侧。
其中,第一平速段的曲率中心与第二平速段的曲率中心分别位于第一滑槽的两侧可理解为第一平速段的曲率中心与第二平速段的曲率中心在以第一滑槽为参照物的基础上,一个位于第一滑槽一边,另一个位于第一滑槽相对的另一边。此设置下,第一平速段和第二平速段能够根据第一平速段与第二平速段之间旋转角度的不同,而共同形成不同形态的(如波浪形、S形等)曲线段,灵活性强。
一种可能的实施方式中,所述第一平速段的曲率中心与所述第一加速段的曲率中心位于所述第一滑槽的同一侧,所述第二平速段的曲率中心与所述第二加速段的曲率中心位于所述第一滑槽的同一侧。
一种可能的实施方式中,所述第一平速段与所述第二平速段均为直线段。
此设置下,第一平速段和第二平速段能够根据第一平速段与第二平速段之间的旋转角度的不同,而共同形成直线段形态或折线段形态,灵活性强。
一种可能的实施方式中,所述折叠组件还包括第一转轴,所述第一转轴穿设于所述第二端,所述阻尼组件包括第一凸轮结构、第二凸轮结构、第一弹性件和限位件;
所述第一凸轮结构固定至所述第二端且套设于所述第一转轴,所述第二凸轮结构套设于所述第一转轴且与所述第一凸轮结构接触,所述限位件固定于所述第一转轴,所述第一弹性件抵持在所述第二凸轮结构和所述限位件之间,所述第二凸轮结构能够在所述第一凸轮结构的推动下沿所述第一转轴移动而压缩或释放所述第一弹性件。
可以理解的是,由于第一凸轮结构不能沿第一转轴做轴向运动,仅第二凸轮结构具有轴向运动空间,又因第一凸轮结构与第二凸轮结构始终是良好配合接触的。故而在第一凸轮结构旋转的情况下,第二凸轮结构被第一凸轮结构推动沿第一转轴做轴向运动,压缩或释放压缩第一弹性件,提高了阻尼效果,改善了折叠时用户的使用体验。
在第一扭力摆臂相对于基座的转动过程中,设于其第二端的第一凸轮结构会与第二凸轮结构产生相对运动,相对运动可理解为第二凸轮结构受挤压而相对第一凸轮结构滑动,使两者之间的轴向距离发生变化,进而压缩第一弹性件,第一弹性件通过第二凸轮结构挤压第一凸轮结构,进而对第一凸轮结构的转动产生阻力,形成阻尼力。当第一弹性件带来的阻尼力能够阻碍第一扭力摆臂与第二扭力摆臂在重力作用下自由转动时,第一扭力摆臂可以在任意角度内停住,进而使折叠组件在任意角度内实现悬停。
第二方面,本申请还提供一种折叠组件,所述折叠组件包括:
第一主摆臂,所述第一主摆臂上设有第一滑槽,所述第一滑槽包括相互连接的第一加速段和第一平速段,所述第一加速段的斜率的绝对值大于所述第一平速段的斜率的绝对值;
第一扭力摆臂,所述第一扭力摆臂包括第一端和第二端;
第一轴体,所述第一轴体穿过所述第一端与所述第一滑槽,所述第一轴体连接所述第一扭力摆臂和第一主摆臂,所述第一轴体能够在所述第一滑槽内滑动;
第一转轴,所述第一转轴穿设于所述第二端;及
阻尼组件,包括第一凸轮结构、第二凸轮结构、第一弹性件和限位件,所述第一凸轮结构固定至所述第二端且套设于所述第一转轴,所述第二凸轮结构套设于所述第一转轴且与所述第一凸轮结构接触,所述第一弹性件弹性抵持在所述第二凸轮结构和所述限位件之间,所述第二凸轮结构能够在所述第一凸轮结构的推动下沿所述第一转轴移动而压缩或释放所述第一弹性件。
一种可能的实施方式中,所述第一滑槽还包括第二平速段和第二加速段,所述第二平速段的一端与所述第一平速段连接,所述第二平速段的另一端与所述第二加速段连接,所述第二加速段的斜率的绝对值大于所述第二平速段的斜率的绝对值,所述第二平速段与所述第一平速段旋转对称。
一种可能的实施方式中,所述第一加速段的曲率中心与所述第二加速段的曲率中心分别位于所述第一滑槽的两侧。
第三方面,本申请还提供一种电子设备,所述电子设备包括柔性显示屏和如上所述的折叠组件,所述柔性显示屏承载于所述折叠组件上。
图1是本申请实施例提供的电子设备处于折叠状态时的一种结构示意简图;
图2是图1所示电子设备处于中间状态时的结构示意简图;
图3是图1所示电子设备处于展开状态时的结构示意简图;
图4是本申请实施例提供的电子设备的一种结构示意图;
图5是图4所示电子设备的爆炸示意图;
图6是图5所示折叠组件的一种部分结构示意图;
图7是图6所示的折叠组件的部分结构爆炸示意图;
图8是凸轮的部分结构示意图;
图9是图7所示的折叠组件处于展开状态时的结构示意图;
图10是图7所示的折叠组件处于一种中间状态时的结构示意图;
图11是图7所示的折叠组件处于另一种中间状态时的结构示意图;
图12是图7所示折叠组件的第一滑槽的一种结构示意图;
图13是图7所示折叠组件的第一滑槽的另一种结构示意图;
图14是图7所示折叠组件的第一滑槽的又一种结构示意图;
图15是图7所示折叠组件的第一滑槽的再一种结构示意图;
图16是图7所示的第二凸轮结构的爬坡路径与第一轴体的移动路径的对应关系图;
图17是图7所示的第一滑槽的形状变形示意图;
图18是图7所示折叠组件的第二滑槽的一种结构示意图;
图19是图7所示折叠组件的第二滑槽的另一种结构示意图;
图20是图7所示折叠组件的第二滑槽的又一种结构示意图;
图21是图7所示折叠组件的第二滑槽的再一种结构示意图;
图22是图7所示的第四凸轮结构的爬坡路径与第二轴体的移动路径的对应关系图;
图23是图7所示的第二滑槽的形状变形示意图。
为了方便理解,首先对本申请的实施例所涉及的术语进行解释。
和/或:仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
多个:是指两个或多于两个。
连接:应做广义理解,例如,A与B连接,可以是A与B直接相连,也可以是A与B通过中间媒介间接相连。
下面将结合附图,对本申请的具体实施方式进行清楚地描述。
本申请的实施例提供一种折叠组件及应用折叠组件的电子设备。
其中,电子设备可以为具有可折叠的性能的设备,其能够在用户的操作下实现展开和闭合。本申请的实施例中,为了方便理解,将以手机这种具有广泛使用人群和丰富应用场景的电子设备为例进行说明,但并不以此为限。
图1是本申请实施例提供的电子设备200处于折叠状态时的一种结构示意简图。图2是图1所示电子设备200处于中间状态时的结构示意简图,其中,电子设备200的展开角度α为120°,α也可以是其它角度。图3是图1所示电子设备200处于展开状态时的结构示意简图,其中,电子设备200的展开角度β为180°,β也可以是其它角度。
需要说明的是,如上举例说明的角度均允许存在少许偏差。例如,图3所示电子设备200的展开角度α为120°是指,α可以为120°,也可以大约为120°,比如115°或125°等。图4所示电子设备200的展开角度β为180°是指,β可以为180°,也可以大约为180°,比如185°或190°等。
如图1-图3所示,电子设备200的左右两个部分能够实现左右转动,进而使电子设备200实现折叠与展开,电子设备200的折叠与展开影响电子设备200的宽度尺寸。应当理解,不局限于图1-图3所示,电子设备200也可以分为上下两个部分,上下两个部分能够实现上下转动,进而使电子设备200实现折叠与展开,电子设备200的折叠与展开影响电子设备200的长度尺寸,在此不做详细说明。
图4是本申请实施例提供的电子设备200的一种结构示意图,图5是图4所示电子设备200的爆炸示意图。请结合参阅图4和图5,电子设备200包括柔性显示屏210、第一壳体220、第二壳体230和折叠组件100。
需说明的是,图4和图5的目的仅在于示意性的描述柔性显示屏210、第一壳体220、第二壳体230和折叠组件100的连接关系,并非是对各个设备的连接位置、具体构造及数量做具体限定。而本申请实施例示意的结构并不构成对电子设备200的具体限定。在本申请另一些实施例中,电子设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
第一壳体220和第二壳体230可以是能够共同承载柔性显示屏210的独立的壳体结构。第一壳体220设有第一安装槽240,第二壳体230设有第二安装槽250,第一安装槽240和第二安装槽250连通形成安装槽。折叠组件100安装于安装槽,并与第一壳体220和第二壳体230固定连接,以实现第一壳体220和第二壳体230之间的转动连接。第一壳体220 和第二壳体230可通过折叠组件100相对转动,使得折叠组件100在折叠状态和展开状态之间相互切换。第一壳体220和第二壳体230还设有容置槽(图未示),容置槽用于容纳电子设备200的处理器、电路板、摄像模组等电子元件以及结构元件。
折叠组件100连接在第一壳体220和第二壳体230之间,折叠组件100可以使第一壳体220和第二壳体230相对展开至展开状态,也可以使第一壳体220和第二壳体230相对折叠至闭合状态,也可以使第一壳体220和第二壳体230处于展开状态与闭合状态之间的中间状态,从而实现电子设备200的可折叠的性能。
柔性显示屏210承载于第一壳体220、第二壳体230和折叠组件100上,能够用于显示信息并为用户提供交互界面。柔性显示屏210可随着第一壳体220和第二壳体230的相对展开而展开,随着第一壳体220和第二壳体230的相对折叠而折叠。示例性地,柔性显示屏210可以为有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏。柔性显示屏210可通过点胶的方式固定于第一壳体220、第二壳体230和折叠组件100上。
具体而言,第一壳体220与第二壳体230能够相对展开至展开状态,以使电子设备200处于展开状态。而电子设备200处于展开状态时,柔性显示屏210被展开而处于展开状态,能够扩展电子设备200的显示面积。此时,柔性显示屏210能够进行全屏显示,故而电子设备200具有较大的显示面积,能够呈现大屏显示的效果,提高用户的使用体验。示例性地,第一壳体220与第二壳体230处于展开状态时,两者之间的夹角可以大致呈180°设置(也允许存在少许偏差,例如175°、178°或者185°)。
第一壳体220与第二壳体230也能够相对折叠至折叠状态,以使电子设备200处于折叠状态。而电子设备200处于折叠状态时,电子设备200的平面尺寸较小,便于用户收纳和携带。示例性地,第一壳体220与第二壳体230处于闭合状态时,两者能够完全合拢至相互平行(也允许存在少许偏差)。
第一壳体220与第二壳体230还能够相对转动而彼此靠近(折叠)或彼此远离(展开)至中间状态,以使电子设备200处于中间状态,其中,中间状态可以为展开状态与闭合状态之间的任意状态。例如,第一壳体220与第二壳体230处于中间状态时,两者之间的夹角可以呈现135°、90°或45°。
示例性地,电子设备200可采用折叠组件100实现柔性显示屏210内折,此时,柔性显示屏210可夹设于第一壳体220和第二壳体230之间,即,柔性显示屏210可位于第一壳体220和第二壳体230内侧而呈现被第一壳体220和第二壳体230包裹的状态。或者,电子设备200可采用折叠组件100实现柔性显示屏210外折,此时,柔性显示屏210组件可作为电子设备200的外观结构而暴露在外部,也就是说,柔性显示屏210可位于第一壳体220和第二壳体230外侧而呈现包裹第一壳体220和第二壳体230的状态。
需说明的是,电子设备200处于展开状态时,折叠组件100也处于展开状态。当电子 设备200处于中间状态时,折叠组件100也处于中间状态。当电子设备200处于折叠状态时,折叠组件100也处于折叠状态。
由此,第一壳体220与第二壳体230可以通过折叠组件100实现相对展开和相对闭合,以使电子设备200在展开状态与闭合状态之间相互切换。
图6是图5所示折叠组件100的一种部分结构示意图,图7是图6所示的折叠组件100的部分结构爆炸示意图。
请结合参阅图6和图7,折叠组件100包括第一主摆臂10、第一轴体21、第一扭力摆臂30、第一转轴41、第二主摆臂50、第二轴体22、第二扭力摆臂60、第二转轴42、同步机构70、阻尼组件80和基座90。
示例性地,第一主摆臂10和第二主摆臂50对称分布在基座90的两侧,第一扭力摆臂30和第二扭力摆臂60对称分布在基座90的两侧,第一壳体220和第二壳体230对称分布在基座90的两侧。但应当理解,对称分布指的是位置上的对称分布,并不是指两个主摆臂、两个扭力摆臂和两个壳体的形状结构完全相同,两个主摆臂、两个扭力摆臂和两个壳体的结构可以相同,也可以不同,本申请的实施例对此不做严格限制。
基座90能够在第一主摆臂10和第二主摆臂50相对折叠和相对展开的过程中,维持静止状态。换言之,在第一主摆臂10和第二主摆臂50相对折叠和相对展开的过程中,基座90能够维持自身的位置不发生改变,即基座90相对静止,而第一主摆臂10和第二主摆臂50均可相对于基座90发生转动。
基座90内具有收容空间91,收容空间91可用于收容至少部分折叠组件100的部件和电子设备200中的其他结构。例如,同步机构70、阻尼组件80可设于基座90的收容空间91内,基座90可用于收容同步机构70、阻尼组件80。
第一主摆臂10与第一壳体220连接,能够与第一壳体220共同运动。也就是说,当第一主摆臂10相对于基座90进行转动运动时,第一壳体220会被带动而同步相对于基座90进行转动运动。当第一壳体220相对于基座90进行转动运动时,第一主摆臂10会被带动而同步相对于基座90进行转动运动。第一主摆臂10上设有第一滑槽11,第一滑槽11能够供第一轴体21在其内进行滑动运动。
第一轴体21穿设于第一扭力摆臂30中,且第一轴体21的两端均伸出第一扭力摆臂30,其中,第一轴体21伸出第一扭力摆臂30的一端可滑动连接至第一滑槽11。由此,第一扭力摆臂30能够通过第一轴体21与第一主摆臂10连接,第一扭力摆臂30与第一主摆臂10通过第一轴体21在第一滑槽11内的滑动实现联动。也就是说,第一扭力摆臂30相对于基座90进行转动运动时,第一主摆臂10会被带动而同步相对于基座90进行转动运动。或者,第一主摆臂10相对于基座90进行转动运动时,第一扭力摆臂30会被带动而同步相对于基座90进行转动运动。
第一扭力摆臂30包括第一端31和第二端32,第一扭力摆臂30的第一端31为第一扭力摆臂30与第一主摆臂10连接的一端,第一扭力摆臂30的第二端32为第一扭力摆臂30与第一转轴41、同步机构70和阻尼组件80连接的一端。具体而言,第一扭力摆臂30的第一端31可设有可供第一轴体21穿过的第一通孔33,第一通孔33的孔径尺寸可与第一轴体21的外径尺寸相适配,以供第一轴体21穿设于其中。也就是说,第一轴体21穿过第 一端31与第一滑槽11连接第一扭力摆臂30和第一主摆臂10。第一扭力摆臂30的第二端32可设有可供第一转轴41穿过的第二通孔34,第二通孔34的孔径尺寸可与第一转轴41的外径尺寸相适配,以供第一转轴41穿设于其中。
第一转轴41穿设于第一扭力摆臂30的第二端32中。第一转轴41具有第一轴线411,第一轴线411为第一转轴41的转动中心,第一转轴41能够绕第一轴线411做转动运动。第一转轴41能够与第一扭力摆臂30同步做转动运动。也就是说,第一转轴41可以在绕第一轴线411做转动运动的转动过程中通过自身的旋转运动而带动第一扭力摆臂30一起转动,又因第一扭力摆臂30通过第一轴体21与第一主摆臂10联动,故而第一扭力摆臂30能够带动第一主摆臂10进行转动。第一转轴41的两端均伸出第一扭力摆臂30,其中,第一转轴41伸出第一扭力摆臂30的一端与同步机构70连接,第一转轴41伸出第一扭力摆臂30的另一端与阻尼组件80连接。
第二主摆臂50与第二壳体230连接,能够与第二壳体230共同运动。也就是说,当第二主摆臂50进行相对于基座90转动运动时,第二壳体230会被带动而同步相对于基座90进行转动运动。当第二壳体230相对于基座90进行转动运动时,第二主摆臂50会被带动而同步相对于基座90进行转动运动。第二主摆臂50上设有第二滑槽51,第二滑槽51能够供第二轴体22在其内进行滑动运动。
第二轴体22穿设于第二扭力摆臂60中,且第二轴体22的两端均伸出第二扭力摆臂60,其中,第二轴体22伸出第二扭力摆臂60的一端可滑动连接至第二滑槽51。由此,第二扭力摆臂60能够通过第二轴体22与第二主摆臂50连接,第二扭力摆臂60与第二主摆臂50通过第二轴体22在第二滑槽51内的滑动实现联动。也就是说,第二扭力摆臂60相对于基座90进行转动运动时,第二主摆臂50会被带动而同步相对于基座90进行转动运动。或者,第二主摆臂50相对于基座90进行转动运动时,第二扭力摆臂60会被带动而同步相对于基座90进行转动运动。
第二扭力摆臂60包括第三端61和第四端62,第二扭力摆臂60的第三端61为第二扭力摆臂60与第二主摆臂50连接的一端,第二扭力摆臂60的第四端62为第二扭力摆臂60与第二转轴42、同步机构70和阻尼组件80连接的一端。具体而言,第二扭力摆臂60的第三端61可设有可供第二轴体22穿过的第三通孔63,第三通孔63的孔径尺寸可与第二轴体22的外径尺寸相适配,以供第二轴体22穿设于其中。也就是说,第二轴体22穿过第三端61与第二滑槽51连接第二扭力摆臂60和第二主摆臂50。第二扭力摆臂60的第四端62可设有可供第二转轴42穿过的第四通孔64,第四通孔64的孔径尺寸可与第二转轴42的外径尺寸相适配,以供第二转轴42穿设于其中。
第二转轴42穿设于第二扭力摆臂60的第四端62中。第二转轴42具有第二轴线421,第二轴线421为第二转轴42的转动中心,第二转轴42能够绕第二轴线421做转动运动。第二转轴42能够与第二扭力摆臂60同步做转动运动。也就是说,第二转轴42可以在绕第二轴线421做转动运动的转动过程中通过自身的旋转运动而带动第二扭力摆臂60一起转动,又因第二扭力摆臂60通过第二轴体22与第二主摆臂50联动,故而第二扭力摆臂60能够带动第二主摆臂50进行转动。第二转轴42的两端均伸出第二扭力摆臂60,其中,第二转轴42伸出第二扭力摆臂60的一端与同步机构70连接,第二转轴42伸出第二扭力摆 臂60的另一端与阻尼组件80连接。
请结合参阅图6和图7,同步机构70可以包括第一转动齿轮71、第二转动齿轮72、第一同步齿轮73和第二同步齿轮74。第一转动齿轮71设于第一转轴41的一端,第一转轴41与第一转动齿轮71可构成齿轮轴结构,从而能够使第一转轴41与第一转动齿轮71同步进行转动运动。第二转动齿轮72设于第二转轴42的一端,第二转轴42与第二转动齿轮72也可构成齿轮轴结构,从而能够使第二转轴42与第二转动齿轮72同步进行转动运动。第一同步齿轮73与第一转动齿轮71啮合,第二同步齿轮74与第二转动齿轮72啮合,且第一同步齿轮73与第二同步齿轮74互相啮合,由此,能够因两者相互啮合的关系,而在一者发生转动时,另一者也能够同步进行转动,从而实现第一扭力摆臂30与第二扭力摆臂60的打开和闭合,即实现第一主摆臂10与第二主摆臂50的打开和闭合,也即实现电子设备200的开闭。
阻尼组件80与同步机构70可以分别设置在第一扭力摆臂30和第二扭力摆臂60的两侧,以避免两者相互干扰。阻尼组件80可以实现第一扭力摆臂30与第二扭力摆臂60转动到一定角度后能够停留保持在该角度,进而能够辅助固定保持第一主摆臂10与第二主摆臂50的角度。换言之,阻尼组件80能够实现两个壳体(第一壳体220和第二壳体230)相对翻转时的缓降效果,即电子设备200折叠或展开的过程中可以根据使用需求定位在任意角度。
阻尼组件80具有第一阻力状态、第二阻力状态和第三阻力状态。阻尼组件80处于第一阻力状态和第三阻力状态时,第一扭力摆臂30和第二扭力摆臂60能够相对自由转动。阻尼组件80处于第二阻力状态时,第一扭力摆臂30和第二扭力摆臂60能够相对转动到一定角度后停留保持在该角度。
其中,阻尼组件80在第二阻力状态时对第一扭力摆臂30和第二扭力摆臂60的转动阻力,大于阻尼组件80在第一阻力状态对第一扭力摆臂30和第二扭力摆臂60的转动阻力。阻尼组件80在第三阻力状态对第一扭力摆臂30和第二扭力摆臂60的转动阻力,大于阻尼组件80在第一阻力状态对第一扭力摆臂和第二扭力摆臂的转动阻力。
阻尼组件80可以包括第一凸轮结构81、第三凸轮结构82、滑动件83、第一弹性件84、第二弹性件85和限位件86。
请结合参阅图6和图7,第一凸轮结构81设于第一扭力摆臂30的第二端32。第一凸轮结构81呈中空结构,第一凸轮结构81通过中空状结构套设于第一转轴41。第一凸轮结构81包括多个第一凸部811和多个第一凹部812,每相邻两个第一凸部811通过一个第一凹部812连接,从而使第一凸轮结构81能够呈现凹凸不平的起伏形态。示例性地,第一凸部811可呈现近梯形形态。
第三凸轮结构82设于第二扭力摆臂60的第四端62。第三凸轮结构82呈中空结构,第三凸轮结构82通过中空状结构套设于第二转轴42。第三凸轮结构82包括多个第三凸部821和多个第三凹部822,每相邻两个第三凸部821通过一个第三凹部822连接,从而使滑动凸轮能够呈现凹凸不平的起伏形态。示例性地,第三凸部821可呈现近梯形形态。
滑动件83滑动连接于第一转轴41和第二转轴42上,也就是说,滑动件83能够相对第一转轴41和第二转轴42滑动。换言之,滑动件83能够在第一转轴41上沿第一转轴41 的轴向方向移动,也能够在第二转轴42上沿第二转轴42的轴向方向移动。滑动件83包括第二凸轮结构831、第四凸轮结构832和第一连接部833。
第二凸轮结构831呈中空结构,并通过中空状结构套设于第一转轴41,且第二凸轮结构831能够在第一转轴41上沿第一转轴41的轴向方向移动。也就是说,第二凸轮结构831与第一转轴41滑动连接。第二凸轮结构831朝向第一扭力摆臂30的一侧设有多个第二凸部834和多个第二凹部835,每相邻两个第二凸部834通过一个第二凹部835连接,从而使滑动件83的第二凸轮结构831能够呈现凹凸不平的起伏形态。
可以理解的是,第二凸轮结构831始终与第一凸轮结构81抵压接触,两者之间的接触即可包括第一凸轮结构81的第一凸部811与第二凸轮结构831的第二凹部835接触,第一凸轮结构81的第一凹部812与第二凸轮结构831的第二凸部834接触,类似齿与齿之间的啮合。也可以包括第一凸轮结构81的第一凸部811与第二凸轮结构831的第二凸部834接触。
第四凸轮结构832呈中空结构,并通过中空状结构套设于第二转轴42,且第四凸轮结构832能够在第二转轴42上沿第二转轴42的轴向方向移动。也就是说,第四凸轮结构832与第二转轴42滑动连接。第四凸轮结构832朝向第二扭力摆臂60的一侧设有多个第四凸部836和多个第四凹部837,每相邻两个第四凸部836通过一个第四凹部837连接,从而使滑动件83的第四凸轮结构832能够呈现凹凸不平的起伏形态。
可以理解的是,第四凸轮结构832始终与第三凸轮结构82抵压接触,两者之间的接触即可包括第三凸轮结构82的第三凸部821与第四凸轮结构832的第四凹部837接触,第三凸轮结构82的第三凹部822与第四凸轮结构832的第四凸部836接触,类似齿与齿之间的啮合。也可以包括第三凸轮结构82的第三凸部821与第四凸轮结构832的第四凸部836接触。
第一连接部833连接在第二凸轮结构831和第四凸轮结构832之间,且位于第一转轴41与第二转轴42之间的间隙区域,能够将第二凸轮结构831和第四凸轮结构832的运动串联起来,使第二凸轮结构831与第四凸轮结构832共同运动。
第一弹性件84套设于第一转轴41且抵持滑动件83的第二凸轮结构831。示例性地,第一弹性件84可以是弹簧或碟簧组等具有弹性回复力的弹性体。由此,可以因第一弹性件84所具有良好的弹性力,而推动第二凸轮结构831使第二凸轮结构831与第一凸轮结构81抵压接触,保证第一凸轮结构81和第二凸轮结构831所能实现的阻尼效果。
可以理解的是,由于第一凸轮结构81不能沿第一转轴41做轴向运动,仅第二凸轮结构831具有轴向运动空间,又因第一凸轮结构81与第二凸轮结构831始终是良好配合接触的。故而在第一凸轮结构81旋转的情况下,第二凸轮结构831被第一凸轮结构81推动沿第一转轴41做轴向运动,压缩或释放压缩第一弹性件84,提高了阻尼效果,改善了折叠时用户的使用体验。
在第一扭力摆臂30相对于基座90的转动过程中,设于其第二端32的第一凸轮结构81会与滑动件83的第二凸轮结构831产生相对运动,相对运动可理解为第二凸轮结构831受挤压而相对第一凸轮结构81滑动,使两者之间的轴向距离发生变化,进而压缩第一弹性件84,第一弹性件84通过第二凸轮结构831挤压第一凸轮结构81,进而对第一凸轮结构 81的转动产生阻力,形成阻尼力。当第一弹性件84带来的阻尼力能够阻碍第一扭力摆臂30与第二扭力摆臂60在重力作用下自由转动时,第一扭力摆臂30可以在任意角度内停住,进而使电子设备200在任意角度内实现悬停。
而第一凹部812和第二凸部834的配合,可用于在特定的角度实现卡顿定位的效果。例如,通过设计第一凹部812和第二凸部834的起始位和结束位,在起始位和结束位时第二凸轮结构831沿第一转轴41滑动,以使第二凸轮结构831对第一凸轮结构81的挤压突然减小,因而能够为用户提供明确、及时的反馈。例如,可以在第一壳体220和第二壳体230之间为30°夹角、60°夹角、90°夹角或者120°夹角等不同的角度时,向用户提供明确、及时的停顿感。
第二弹性件85套设于第二转轴42且抵持滑动件83的第四凸轮结构832。示例性地,第二弹性件85可以是弹簧或碟簧组等具有弹性回复力的弹性体。由此,可以因第二弹性件85所具有良好的弹性力,而推动第四凸轮结构832使第四凸轮结构832与第三凸轮结构82抵压接触,保证第三凸轮结构82和第四凸轮结构832所能实现的阻尼效果。
可以理解的是,由于第三凸轮结构82不能沿第二转轴42做轴向运动,仅使第四凸轮结构832具有轴向运动空间,又因第三凸轮结构82与第四凸轮结构832始终是良好配合接触的。故而在第三凸轮结构82旋转的情况下,第四凸轮结构832被第三凸轮结构82推动沿第二转轴42做轴向运动,压缩或释放压缩第二弹性件85,提高了阻尼效果,改善了折叠时用户的使用体验。
在第二扭力摆臂60相对于基座90的转动过程中,设于其第四端62的第三凸轮结构82会与滑动件83的第四凸轮结构832产生相对运动,相对运动可理解为第四凸轮结构832受挤压而相对第三凸轮结构82滑动,使两者之间的轴向距离发生变化,进而压缩第二弹性件85。第二弹性件85通过第四凸轮结构832挤压第三凸轮结构82,进而对第三凸轮结构82的转动产生阻力,形成阻尼力。当第二弹性件85带来的阻尼力能够阻碍第一扭力摆臂30与第二扭力摆臂60在重力作用下自由转动时,第二扭力摆臂60可以在任意角度内停住,进而使电子设备200在任意角度内实现悬停。
而第三凸部821和第四凸部836的配合,可用于在特定的角度实现卡顿定位的效果。例如,通过设计第三凸部821和第四凸部836的起始位和结束位,在起始位和结束位时第四凸轮结构832沿第二转轴42滑动,以使第四凸轮结构832对第三凸轮结构82的挤压突然减小,因而能够为用户提供明确、及时的反馈。例如,可以在第一壳体220和第二壳体230之间为30°夹角、60°夹角、90°夹角或者120°夹角等不同的角度时,向用户提供明确、及时的停顿感。
请结合参阅图6和图7,限位件86包括第一限位端861、第二限位端862和第二连接部863。第一限位端861呈中空结构,且套设并固定至第一转轴41,以使第一弹性件84弹性抵持在第二凸轮结构831和第一限位端861之间。由此,通过设置限位件86,能够限制第一弹性件84沿第一转轴41轴向方向的移动,有效避免第一弹性件84自远离滑动件83的方向与第一转轴41脱开,具有良好的固位稳定性。而限制第一弹性件84沿第一转轴41轴向方向的移动,能够通过第一弹性件84与滑动件83的第二凸轮结构831的抵持关系,而限制滑动件83沿第一转轴41轴向方向的移动,使滑动件83在第一转轴41上具有适宜 的滑动距离。
第二限位端862呈中空结构,且套设并固定至第二转轴42,以使第二弹性件85弹性抵持在第四凸轮结构832和第二限位端862之间。由此,限位件86能够限制第二弹性件85沿第二转轴42轴向方向的移动,有效避免第二弹性件85自远离滑动件83的方向与第二转轴42脱开,具有良好的固位稳定性。而限制第二弹性件85沿第二转轴42轴向方向的移动,能够通过第二弹性件85与滑动件83的第四凸轮结构832的抵持关系,而限制滑动件83沿第二转轴42轴向方向的移动,使滑动件83在第二转轴42上具有适宜的滑动距离。
第二连接部863连接在第一限位端861和第二限位端862之间,且位于第一转轴41与第二转轴42之间的间隙区域。
基于上述描述,应当理解,在滑动件83沿轴向方向的移动过程中,第一弹性件84和第二弹性件85因受滑动件83的挤压而处于压缩状态,故而在第一弹性件84远离滑动件83的一端和第二弹性件85远离滑动件83的一端会受到较大的弹力,由此,在此端设置限位件86,能够因限位件86与第一转轴41与第二转轴42良好的固位稳定性,而解决第一弹性件84和第二弹性件85因受力过大而脱落的问题,有利于保证折叠组件100的同步运动不发生偏转,可靠性佳。
可以理解的是,在折叠组件100中,第一扭力摆臂30、第一凸轮结构81、第二凸轮结构831和第一弹性件84在第一转轴41上同轴设置。采用设于第一扭力摆臂30上的第一凸轮结构81与能够在第一转轴41上滑动的第二凸轮结构831相配合,当第一扭力摆臂30相对基座转动时,由于第二凸轮结构831能够被第一扭力摆臂30上的第一凸轮结构81挤压,故而能够压缩第一弹性件84产生阻尼力,通过对第一凸轮结构81、第二凸轮结构831的面型轮廓进行设计能够间接控制折叠组件100的阻尼力。
第二扭力摆臂60、第三凸轮结构82、第四凸轮结构832和第二弹性件85在第二转轴42上同轴设置。采用设于第二扭力摆臂60上的第三凸轮结构82与能够在第二转轴42上滑动的第四凸轮结构832相配合,当第一扭力摆臂相对基座转动时,由于第四凸轮结构832能够被第二扭力摆臂60上的第三凸轮结构82挤压,故而能够压缩第二弹性件85产生阻尼力,通过对第三凸轮结构82、第四凸轮结构832的面型轮廓进行设计能够间接控制折叠组件100的阻尼力。
而在折叠组件100的小型化发展趋势下,弹簧(如第一弹性件84、第二弹性件85)和凸轮(如第一凸轮结构81、第三凸轮结构82、第二凸轮结构831、第四凸轮结构832)的尺寸均大幅度下降,进而造成其提供的阻尼力较小,若想保证其提供的阻尼力适宜,需改变凸轮的面型以使凸轮爬坡量增加,爬坡角增大,阻尼力增加。但改变凸轮的面型会导致凸轮的工作寿命发生缩减,进而导致折叠组件100失效。其中,爬坡角可理解为图8所示的角度θ。
由此,本申请的实施例中,可在不改变凸轮面型不增大凸轮爬坡角的情况下,仅通过主摆臂(第一主摆臂10与第二主摆臂50)与扭力摆臂(第一扭力摆臂30和第二扭力摆臂60)之间的差速配合实现折叠组件100可悬停角度区间的进一步扩大,有利于实现折叠组件100的大角度悬停。例如,现有技术中的折叠组件的可悬停角度区间为80°-120°,本申请实施例的技术方案中折叠组件100的可悬停角度区间可以为30°-150°,折叠组件100的 可悬停区间相较于现有技术的可悬停角度区间被进一步扩大。其中,主摆臂与扭力摆臂的差速配合可理解为主摆臂与扭力摆臂之间转动角度的差异,例如,第一主摆臂10与第一扭力摆臂30原先为第一主摆臂10转1°,第一扭力摆臂30也转1°。而在差速配合下,可以为第一主摆臂10转1°,第一扭力摆臂30转2°。而主摆臂与扭力摆臂之间差速配合的实现是通过对设于第一主摆臂10的第一滑槽11和设于第二主摆臂50的第二滑槽51进行设计而实现的,第一滑槽11和第二滑槽51的具体结构将在下文进行说明。
图9是图7所示的折叠组件100处于展开状态时的结构示意图,图10是图7所示的折叠组件100处于一种中间状态时的结构示意图,图11是图7所示的折叠组件100处于另一种中间状态时的结构示意图。其中,定义折叠组件100的长度方向为第一方向,第一方向用X标识。折叠组件100的高度方向为第二方向,第二方向用Z标识,第一方向X与第二方向Z垂直。需说明的是,第一方向X可等同于电子设备200的长度方向,第二方向Z可等同于电子设备200的高度方向。
请结合参阅图9、图10和图11,随着第一主摆臂10和第二主摆臂50相对折叠,第一主摆臂10和第二主摆臂50之间的夹角不断减小,第一轴体21在第一滑槽11内不断滑动而带动第一扭力摆臂30跟随第一主摆臂10一起转动,第二轴体22在第二滑槽51内不断滑动而带动第二扭力摆臂60跟随第二主摆臂50一起转动,从而使第一扭力摆臂30和第二扭力摆臂60也相对折叠。
如图9所示,第一滑槽11包括第一段111和第二段112。第一段111包括第一加速段113和第一平速段114,第一加速段113与第一平速段114弯折连接,弯折连接可理解为第一加速段113与第一平速段114呈夹角设置,夹角可以在0°-180°的角度范围内。第一加速段113的斜率的绝对值大于第一平速段114的斜率的绝对值,而第一加速段113的斜率的绝对值大于第一平速段114的斜率的绝对值可理解为第一加速段113上任意一处位置的斜率的绝对值大于第一平速段114上任意一处位置的斜率的绝对值。
其中,以第一方向X为横坐标x轴,以第二方向Z为纵坐标建立坐标系,折叠组件100处于展开状态时的柔性显示屏210可以与x轴平行。第一加速段113的斜率表示在折叠组件100的展开状态下,第一加速段113相对于x轴(第一方向X)的倾斜程度,而第一加速段113对应的曲线或者直线的斜率具有正负,第一加速段113的斜率的绝对值为正值。第一平速段114的斜率表示在折叠组件100的展开状态下,第一平速段114相对于x轴(第一方向X)的倾斜程度,而第一平速段114对应的曲线或者直线的斜率具有正负,第一平速段114的斜率的绝对值为正值。示例性地,第一加速段113和第一平速段114可以位于坐标系的第二象限,第一加速段113的斜率为负值,第一平速段114的斜率为负值,第一加速段113的斜率的绝对值大于第一平速段114的斜率的绝对值。
可以理解的是,第一轴体21能够在第一加速段113和第一平速段114内滑动,而第一轴体21在第一加速段113和第一平速段114内的滑动速度与第一加速段113和第一平速段114的斜率的绝对值相关。具体为,当第一轴体21运动在斜率的绝对值较大的区段时,第一轴体21在此区段的运动速度较快,在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化可以更快。当第一轴体21运动在斜率的绝对值较小的区段时,第一轴体21在此区段的运动速度较慢,因此在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化 可以较慢。由此,第一轴体21运动在第一加速段113时,第一轴体21在此区段的运动速度较快。第一轴体21运动在第一平速段114时,第一轴体21在此区段的运动速度较慢。
第二段112包括第二加速段116和第二平速段115。第二平速段115与第一平速段114连接。第二平速段115远离第一平速段114的一端与第二加速段116弯折连接,弯折连接可理解为第二加速段116与第二平速段115呈夹角设置,夹角可以在0°-180°的角度范围内。第二加速段116的斜率的绝对值大于第二平速段115的斜率的绝对值,而第二加速段116的斜率的绝对值大于第二平速段115的斜率的绝对值可理解为第二加速段116上任意一处位置的斜率的绝对值大于第二平速段115上任意一处位置的斜率的绝对值。
其中,以第一方向X为横坐标x轴,以第二方向Z为纵坐标建立坐标系,折叠组件100处于展开状态时的柔性显示屏210可以与x轴平行。第二加速段116的斜率表示在折叠组件100的展开状态下,第二加速段116相对于x轴(第一方向X)的倾斜程度,而第二加速段116对应的曲线或者直线的斜率具有正负,第二加速段116的斜率的绝对值为正值。第二平速段115的斜率表示在折叠组件100的展开状态下,第二平速段115相对于x轴(第一方向X)的倾斜程度,而第二平速段115对应的曲线或者直线的斜率具有正负,第二平速段115的斜率的绝对值为正值。示例性地,第二加速段116和第二平速段115可以位于坐标系的第四象限,第二加速段116的斜率为负值,第二平速段115的斜率为负值,第二加速段116的斜率的绝对值大于第二平速段115的斜率的绝对值。
可以理解的是,第一轴体21能够在第二平速段115和第二加速段116内滑动,而第一轴体21在第二加速段116和第二平速段115内的滑动速度与第二加速段116和第二平速段115的斜率的绝对值相关。具体为,当第一轴体21运动在斜率的绝对值较大的区段时,第一轴体21在此区段的运动速度较快,因此在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化可以更快。当第一轴体21运动在斜率的绝对值较小的区段时,第一轴体21在此区段的运动速度较慢,因此在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化可以较慢。由此,第一轴体21运动在第二加速段116时,第一轴体21在此区段的运动速度较快。第一轴体21运动在第二平速段115时,第一轴体21在此区段的运动速度较慢。
本申请的实施例中,第二平速段115与第一平速段114旋转对称。也就是说,第一平速段114能够绕一定点经过旋转变换而得到第二平速段115,第二平速段115能够绕同一定点经过旋转变换而得到第一平速段114。
需说明的是,本申请的实施例对于第一平速段114旋转变换得到第二平速段115或第二平速段115旋转变换得到第一平速段114所需的旋转角度不做严格限制,其可以是在满足折叠组件100工作需求的基础上的任何角度,如170°、180°等。例如,如图9所示,第一平速段114可绕线O1的中点经旋转变换得到第二平速段115。
由此,能够因第一平速段114与第二平速段115旋转对称的设置,而使第一平速段114与第二平速段115连接处的斜率的绝对值变化小,较小的斜率的绝对值变化能够使第一轴体21自第一平速段114的末端运动至第二平速段115的开端时速度变化小,进而能够使第一轴体21自第一平速段114过渡至第二平速段115时运动的速度变化小。
图12是图7所示折叠组件100的第一滑槽11的一种结构示意图,图13是图7所示折 叠组件100的第一滑槽11的另一种结构示意图。在图12与图13中,第一加速段113相对于第一方向X的倾斜程度不同。
一种可能的实施方式中,如图12和图13所示,第二平速段115与第一平速段114均为直线段。此设置下,第一平速段114和第二平速段115能够根据第一平速段114与第二平速段115之间的旋转角度的不同,而共同形成直线段形态或折线段形态,灵活性强。
图14是图7所示折叠组件100的第一滑槽11的又一种结构示意图,图15是图7所示折叠组件100的第一滑槽11的再一种结构示意图。在图14与图15中,第一加速段113相对于第一方向X的倾斜程度不同。
另一种可能的实施方式中,如图14和图15所示,第二平速段115与第一平速段114均为弧线段,且第一平速段114的曲率中心与第二平速段115的曲率中心分别位于第一滑槽11的两侧。其中,第一平速段114的曲率中心与第二平速段115的曲率中心分别位于第一滑槽11的两侧可理解为第一平速段114的曲率中心与第二平速段115的曲率中心在以第一滑槽11为参照物的基础上,一个位于第一滑槽11一边,另一个位于第一滑槽11相对的另一边。此设置下,第一平速段114和第二平速段115能够根据第一平速段114与第二平速段115之间旋转角度的不同,而共同形成不同形态的(如波浪形、S形等)曲线段,灵活性强。
图16是图7所示的第二凸轮结构831的爬坡路径与第一轴体21的移动路径的对应关系图。
如图16所示,第一轴体21在第一加速段113内滑动时的阶段为滑动阶段S1。第一轴体21在第一平速段114和第二平速段115内滑动时的阶段为滑动阶段S2。第一轴体21在第二加速段116内滑动时的阶段为滑动阶段S3。
根据第一滑槽11在各个区段斜率的绝对值的变化可知,第一轴体21依次在滑动阶段S1、滑动阶段S2和滑动阶段S3滑动时,第一轴体21在第一滑槽11内的运动速度呈现“加速-慢速-加速”的三个阶段。
在图16中,定义第一弹性件84通过第二凸轮结构831挤压第一凸轮结构81,进而对第一凸轮结构81的转动产生的阻尼力,与第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力相等时的值为第一峰值K1。第一峰值K1以下表示第一弹性件84所能提供的阻尼力小于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力,第一峰值K1以上表示第一弹性件84所能提供的阻尼力大于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力。
第二凸轮结构831沿第一凸轮结构81从左侧起始位爬坡至第一峰值K1处的阶段为爬坡阶段D1。第二凸轮结构831沿第一凸轮结构81继续在第一峰值K1以上爬坡的阶段为爬坡阶段D2。第二凸轮结构831沿第一凸轮结构81接着在第一峰值K1以下爬坡至右侧终点位的阶段为爬坡阶段D3。
而第二凸轮结构831依次在爬坡阶段D1、爬坡阶段D2和爬坡阶段D3运动时,第一弹性件84所能提供的阻尼力分别小于、大于、小于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力,此时,阻尼组件80分别处于第一阻力状态、第二阻力状态、第三阻力状态。当第二凸轮结构831运动在爬坡阶段D2时,由于第一弹性件84带来的阻尼力大 于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力时,使得折叠组件100可以在任意角度内停住而实现悬停,进而使电子设备200在任意角度内实现悬停。
如图16所示,当第一轴体21在滑动阶段S1内运动时,第二凸轮结构831在爬坡阶段D1内运动。当第一轴体21在滑动阶段S2内运动时,第二凸轮结构831在爬坡阶段D2内运动。当第一轴体21在滑动阶段S3内运动时,第一滑动端在爬坡阶段D3内运动。也就是说,滑动阶段S1与爬坡阶段D1相对应,滑动阶段S2与爬坡阶段D2相对应,滑动阶段S3与爬坡阶段D3相对应。
当第一轴体21在滑动阶段S1内加速运动时,第一弹性件84所能提供的阻尼力迅速增加而接近第一峰值K1。当第一轴体21自滑动阶段S1的末端进入滑动阶段S2时,第一弹性件84所能提供的阻尼力大于第一峰值K1,折叠组件100进入可悬停阶段。而第一轴体21在滑动阶段S2的速度相比于第一轴体21在滑动阶段S1的速度有所减慢,使得第一弹性件84所能提供的阻尼力不断减小。又因第一轴体21在滑动阶段S2内的速度变化较小,故而第一弹性件84所能提供的阻尼力减小的速度变慢,折叠组件100可悬停阶段的时间被延长。而第一轴体21自滑动阶段S2的末端进入滑动阶段S3时,第一弹性件84所能提供的阻尼力小于第一峰值K1,折叠组件100实现展开/闭合。
基于上述描述,应当理解,第一轴体21运动在第一加速段113为能够使第一弹性件84所能提供的阻尼力迅速接近第一峰值K1的加速阶段,第一轴体21运动在第一平速段114和第二平速段115为第一弹性件84所能提供的阻尼力大于第一峰值K1而使折叠组件100进入悬停状态的慢速阶段,第一轴体21运动在第二加速段116为第一弹性件84所能提供的阻尼力小于第一峰值K1,使折叠组件100实现开闭的加速阶段。例如,折叠组件100处于展开状态时,阻尼组件80处于第一阻力状态,第一轴体21在第一加速段113内滑动,第一扭力摆臂30与第二扭力摆臂60相对展开。折叠组件100由展开状态切换至中间状态时,阻尼组件80处于第二阻力状态,第一轴体21在第一平速段114和第二平速段115内滑动,第一扭力摆臂30与第二扭力摆臂60逐渐相互靠近。折叠组件100由中间状态切换至折叠状态时,阻尼组件80处于第三阻力状态,第一轴体21在第二加速段116内滑动,第一扭力摆臂30与第二扭力摆臂60相对折叠。
而通过对第一滑槽11的结构进行设计,能够有效限定第一扭力摆臂30旋转折叠的轨迹,保障折叠组件100的旋转效果,且还能够在保留凸轮爬坡特征的基础上,保证折叠组件100展开和闭合到位的手感,使第一扭力摆臂30转动过程中尽可能延长第一弹性件84所能提供的阻尼力大于第一峰值K1的阶段。也就是说,折叠组件100在折叠过程中,第一平速段114和第二平速段115对应的折叠组件100旋转角度的范围可以较大,而第一加速段113和第二加速段116对应的折叠组件100旋转角度的范围可以较小,从而有效增加折叠组件100阻尼最大的悬停阶段的时间。又由于折叠组件100阻尼最大的悬停阶段的时间被延长,故而折叠组件100的可悬停角度区间可被进一步扩大,有利于实现折叠组件100的大角度悬停。例如,现有技术中的折叠组件的可悬停角度区间为80°-120°,本申请技术方案中折叠组件100的可悬停角度区间可以为30°-150°。
本申请的实施例中,第一加速段113和第二加速段116可以旋转对称。也就是说,第一加速段113能够绕一定点经过旋转变换而得到第二加速段116,第二加速段116能够绕同 一定点经过旋转变换而得到第一加速段113。例如,如图9所示,第一加速段113可绕线O1的中点经旋转变换得到第二加速段116。
需说明的是,本申请的实施例对于第一加速段113旋转变换得到第二加速段116或第二加速段116旋转变换得到第一加速段113所需的旋转角度不做严格限制,其可以是在满足折叠组件100工作需求的基础上的任何角度,如170°、180°等。
由此,能够因第一加速段113与第二加速段116旋转对称,且第一平速段114与第二平速段115旋转对称的设置,而使第一段111与第二段112旋转对称,也就是说,第一段111能够绕一定点经过旋转变换而得到第二段112,第二段112能够绕同一定点经过旋转变换而得到第一段111。而通过将第一滑槽11的结构拆分为两段,能够因第一段111与第二段112旋转对称的设置,而使第一段111与第二段112连接处的斜率的绝对值变化小,较小的斜率的绝对值变化能够使第一轴体21自第一段111的末端运动至第二段112的开端时速度变化小,有利于延长滑动阶段S2,进而实现折叠组件100可悬停阶段的延长。
例如,第一轴体21依次经过第一加速段113、第一平速段114、第二平速段115和第二加速段116,根据第一段111内第一加速段113和第一平速段114的斜率的绝对值变化可知,第一轴体21在第一段111的速度先快后慢,根据第二段112内第二平速段115和第二加速段116的斜率的绝对值变化可知,第一轴体21在第二段112的速度先慢后快,从而使第一轴体21的运动速度可整体分为三个阶段,即“加速-慢速-加速”。而第一轴体21的运动速度与第一弹性件84所能提供的阻尼力相关。当第一轴体21开始做第一阶段的加速运动,第一弹性件84所能提供的阻尼力迅速接近第一峰值K1。当第一轴体21开始做第二阶段的慢速运动时,第一弹性件84所能提供的阻尼力大于第一峰值K1,折叠组件100进入可悬停阶段。当第一轴体21第二阶段的慢速运动结束,开始做第三阶段的加速运动时,第一弹性件84所能提供的阻尼力小于第一峰值K1,折叠组件100实现展开/闭合。
需说明的是,本申请的实施例对于第一段111旋转变换得到第二段112或第二段112旋转变换得到第一段111所需的旋转角度不做严格限制,其可以是在满足折叠组件100工作需求的基础上的任何角度,如170°、180°等。
一种可能的实施方式中,如图12和图14所示,第一加速段113和第二加速段116均为直线段。本实施方式中,如图12所示,第一平速段114和第二平速段115可以为直线段,以使第一滑槽11整体呈现仅有直线段的折线形态。或者,如图14所示,第一平速段114和第二平速段115也可以为弧线段,以使第一滑槽11整体呈现弧线段与直线段混合的曲线形态。
另一种可能的实施方式中,如图13和图15所示,第一加速段113和第二加速段116均为弧线段,且第一加速段113的曲率中心与第二加速段116的曲率中心分别位于第一滑槽11的两侧。其中,第一加速段113的曲率中心与第二加速段116的曲率中心分别位于第一滑槽11的两侧可理解为第一加速段113的曲率中心与第二加速段116的曲率中心在以第一滑槽11为参照物的基础上,一个位于第一滑槽11一边,另一个位于第一滑槽11相对的另一边。并且,第一加速段113的曲率中心与第一平速段114的曲率中心位于第一滑槽11的同一侧,第二加速段116的曲率中心与第二平速段115的曲率中心位于第一滑槽11的同一侧。
本实施方式中,如图13所示,第一平速段114和第二平速段115可以为直线段,以使第一滑槽11整体呈现弧线段与直线段混合的曲线形态。或者,如图15所示,第一平速段114和第二平速段115也可以为弧线段,以使第一滑槽11整体呈现仅有弧线段的曲线形态。
图17是图7所示的第一滑槽11的形状变形示意图。其中,线E1第一滑槽11形状的基准线,线F1为第一滑槽11形状的极限情况。
如图17所示,第一滑槽11的形状可在线E1和线F1的范围内(包括线F1)进行设计,对此不做严格限制。
请再次参阅图9,第二滑槽51包括第三段511和第四段512。第三段511包括第三加速段513和第三平速段514,第三加速段513与第三平速段514弯折连接,弯折连接可理解为第三加速段513与第三平速段514呈夹角设置,夹角可以在0°-180°的角度范围内。第三加速段513的斜率的绝对值大于第三平速段514的斜率的绝对值,而第三加速段513的斜率的绝对值大于第三平速段514的斜率的绝对值可理解为第三加速段513上任意一处位置的斜率的绝对值大于第三平速段514上任意一处位置的斜率的绝对值。
其中,以第一方向X为横坐标x轴,以第二方向Z为纵坐标建立坐标系,折叠组件100处于展开状态时的柔性显示屏210可以与x轴平行。第三加速段513的斜率表示在折叠组件100的展开状态下,第三加速段513相对于x轴(第一方向X)的倾斜程度,而第三加速段513对应的曲线或者直线的斜率具有正负,第三加速段513的斜率的绝对值为正值。第三平速段514的斜率表示在折叠组件100的展开状态下,第三平速段514相对于x轴(第一方向X)的倾斜程度,而第三平速段514对应的曲线或者直线的斜率具有正负,第三平速段514的斜率的绝对值为正值。示例性地,第三加速段513和第三平速段514可以位于坐标系的第一象限,第三加速段513的斜率为正值,第三平速段514的斜率为正值,第三加速段513的斜率的绝对值大于第三平速段514的斜率的绝对值。
可以理解的是,第二轴体22能够在第三加速段513和第三平速段514内滑动,而第二轴体22在第三加速段513和第三平速段514内的滑动速度与第三加速段513和第三平速段514的斜率的绝对值相关。具体为,当第二轴体22运动在斜率的绝对值较大的区段时,第二轴体22在此区段的运动速度较快,第一主摆臂10和第二主摆臂50之间的夹角变化可以更快。当第二轴体22运动在斜率的绝对值较小的区段时,第二轴体22在此区段的运动速度较慢,因此在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化可以较慢。由此,第二轴体22运动在第三加速段513时,第一轴体21在此区段的运动速度较快。第一轴体21运动在第三平速段514时,第一轴体21在此区段的运动速度较慢。
第四段512包括第四加速段516和第四平速段515。第四平速段515与第三平速段514连接。第四平速段515远离第三平速段514的一端与第四加速段516弯折连接,弯折连接可理解为第四加速段516与第四平速段515呈夹角设置,夹角可以在0°-180°的角度范围内。而第四加速段516的斜率的绝对值大于第四平速段515的斜率的绝对值,而第四加速段516的斜率的绝对值大于第四平速段515的斜率的绝对值可理解为第四加速段516上任意一处位置的斜率的绝对值大于第四平速段515上任意一处位置的斜率的绝对值。
其中,以第一方向X为横坐标x轴,以第二方向Z为纵坐标建立坐标系,折叠组件100处于展开状态时的柔性显示屏210可以与x轴平行。第四加速段516的斜率表示在折叠组 件100的展开状态下,第四加速段516相对于x轴(第一方向X)的倾斜程度,而第四加速段516对应的曲线或者直线的斜率具有正负,第四加速段516的斜率的绝对值为正值。第四平速段515的斜率表示在折叠组件100的展开状态下,第四平速段515相对于x轴(第一方向X)的倾斜程度,而第四平速段515对应的曲线或者直线的斜率具有正负,第四平速段515的斜率的绝对值为正值。示例性地,第四加速段516和第四平速段515可以位于坐标系的第三象限,第四加速段516的斜率为正值,第四平速段515的斜率为负值,第四加速段516的斜率的绝对值大于第四平速段515的斜率的绝对值。
可以理解的是,第二轴体22能够在第四平速段515和第四加速段516内滑动,而第二轴体22在第四加速段516和第四平速段515内的滑动速度与第四加速段516和第四平速段515的斜率的绝对值相关。具体为,当第二轴体22运动在斜率的绝对值较大的区段时,第二轴体22在此区段的运动速度较快,因此在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化可以更快。当第二轴体22运动在斜率的绝对值较小的区段时,第二轴体22在此区段的运动速度较慢,因此在这个阶段,第一主摆臂10和第二主摆臂50之间的夹角变化可以较慢。由此,第二轴体22运动在第四加速段516时,第二轴体22在此区段的运动速度较快。第二轴体22运动在第四平速段515时,第二轴体22在此区段的运动速度较慢。
本申请的实施例中,第四平速段515与第三平速段514旋转对称。也就是说,第三平速段514能够绕一定点经过旋转变换而得到第四平速段515,第四平速段515能够绕同一定点经过旋转变换而得到第三平速段514。
需说明的是,本申请的实施例对于第三平速段514旋转变换得到第四平速段515或第四平速段515旋转变换得到第三平速段514所需的旋转角度不做严格限制,其可以是在满足折叠组件100工作需求的基础上的任何角度,如170°、180°等。例如,如图9所示,第三平速段514可绕线O2的中点经旋转变换得到第四平速段515。
由此,能够因第三平速段514与第四平速段515旋转对称的设置,而使第三平速段514与第四平速段515连接处的斜率的绝对值变化小,较小的斜率的绝对值变化能够使第二轴体22自第三平速段514的末端运动至第四平速段515的开端时速度变化小,进而使第一轴体21自第三平速段过渡至第四平速段515时运动的速度变化小。
图18是图7所示折叠组件100的第二滑槽51的一种结构示意图,图19是图7所示折叠组件100的第二滑槽51的另一种结构示意图。在图18与图19中,第三加速段513相对于第一方向X的倾斜程度不同。
一种可能的实施方式中,如图18和图19所示,第四平速段515与第三平速段514均为直线段。此设置下,第三平速段514和第四平速段515能够根据第三平速段514与第四平速段515之间的旋转角度的不同,而共同形成直线段形态或折线段形态,灵活性强。
图20是图7所示折叠组件100的第二滑槽51的又一种结构示意图,图21是图7所示折叠组件100的第二滑槽51的再一种结构示意图。在图20与图21中,第三加速段513相对于第一方向X的倾斜程度不同。
另一种可能的实施方式中,如图20和图21所示,第四平速段515与第三平速段514均为弧线段,且第三平速段514的曲率中心与第四平速段515的曲率中心分别位于第二滑 槽51的两侧。其中,第三平速段514的曲率中心与第四平速段515的曲率中心分别位于第二滑槽51的两侧可理解为第三平速段514的曲率中心与第四平速段515的曲率中心在以第二滑槽51为参照物的基础上,一个位于第二滑槽51一边,另一个位于第二滑槽51相对的另一边。此设置下,第三平速段514和第四平速段515能够根据第三平速段514与第四平速段515之间旋转角度的不同,而共同形成不同形态的(如波浪形、S形等)曲线段,灵活性强。
图22是图7所示的第四凸轮结构832的爬坡路径与第二轴体22的移动路径的对应关系图。
如图22所示,第二轴体22在第三加速段513内滑动时的阶段为滑动阶段S4。第二轴体22在第三平速段514和第四平速段515内滑动时的阶段为滑动阶段S5。第二轴体22在第四加速段516内滑动时的阶段为滑动阶段S6。
根据第一滑槽11在各个区段斜率的绝对值的变化可知,第二轴体22依次在滑动阶段S4、滑动阶段S5和滑动阶段S6滑动时,第二轴体22在第一滑槽11内的运动速度呈现“加速-慢速-加速”的三个阶段。
在图22中,定义第二弹性件85通过第四凸轮结构832挤压第三凸轮结构82,进而对第三凸轮结构82的转动产生的阻尼力,与第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力相等时的临界线为第二峰值K2。第二峰值K2以下表示第二弹性件85所能提供的阻尼力小于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力,第二峰值K2以上表示第二弹性件85所能提供的阻尼力大于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力。
第四凸轮结构832沿第三凸轮结构82从左侧起始位爬坡至第二峰值K2处的阶段为爬坡阶段D4。第四凸轮结构832沿第三凸轮结构82继续在第二峰值K2以上爬坡的阶段为爬坡阶段D5。第四凸轮结构832沿第三凸轮结构82接着在第二峰值K2以下爬坡至右侧终点位的阶段为爬坡阶段D6。
而第四凸轮结构832依次在爬坡阶段D4、爬坡阶段D5和爬坡阶段D6运动时,第二弹性件85所能提供的阻尼力分别小于、大于、小于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力,此时,阻尼组件80分别处于第一阻力状态、第二阻力状态、第三阻力状态。当第四凸轮结构832运动在爬坡阶段D5时,由于第二弹性件85带来的阻尼力大于第一扭力摆臂30与第二扭力摆臂能够自由转动所需的重力时,使得折叠组件100可以在任意角度内停住而实现悬停,进而使电子设备200在不同角度内实现悬停。
如图22所示,当第二轴体22在滑动阶段S4内运动时,第四凸轮结构832在爬坡阶段D4内运动。当第二轴体22在滑动阶段S5内运动时,第四凸轮结构832在爬坡阶段D5内运动。当第二轴体22在滑动阶段S6内运动时,第一滑动端在爬坡阶段D6内运动。也就是说,滑动阶段S4与爬坡阶段D4相对应,滑动阶段S5与爬坡阶段D5相对应,滑动阶段S6与爬坡阶段D6相对应。
当第二轴体22在滑动阶段S4内加速运动时,第二弹性件85所能提供的阻尼力迅速增加而接近第二峰值K2。当第二轴体22自滑动阶段S4的末端进入滑动阶段S5时,第二弹性件85所能提供的阻尼力大于第二峰值K2,折叠组件100进入可悬停阶段。而第二轴体 22在滑动阶段S5的速度相比于第二轴体22在滑动阶段S4的速度有所减慢,使得第二弹性件85所能提供的阻尼力不断减小。又因第二轴体22在滑动阶段S5内的速度变化较小,故而第二弹性件85所能提供的阻尼力减小的速度变慢,折叠组件100可悬停阶段的时间被延长。而第二轴体22自滑动阶段S5的末端进入滑动阶段S6时,第二弹性件85所能提供的阻尼力小于第二峰值K2,折叠组件100实现展开/闭合。
基于上述描述,应当理解,第二轴体22运动在第三加速段513为能够使第二弹性件85所能提供的阻尼力迅速接近第二峰值K2的加速阶段,第二轴体22运动在第三平速段514和第四平速段515为第二弹性件85所能提供的阻尼力大于第二峰值K2而使折叠组件100进入悬停状态的慢速阶段,第二轴体22运动在第四加速段516为第二弹性件85所能提供的阻尼力小于第二峰值K2,使折叠组件100快速实现开闭的加速阶段。例如,折叠组件100处于展开状态时,阻尼组件80处于第一阻力状态,第二轴体22在第三加速段513内滑动,第一扭力摆臂30与第二扭力摆臂60相对展开。折叠组件100由展开状态切换至中间状态时,阻尼组件80处于第二阻力状态,第二轴体22在第三平速段514和第四平速段515内滑动,第一扭力摆臂30与第二扭力摆臂60逐渐相互靠近。折叠组件100由中间状态切换至折叠状态时,阻尼组件80处于第三阻力状态,第二轴体22在第四加速段516内滑动,第一扭力摆臂30与第二扭力摆臂60相对折叠。
而通过对第二滑槽51的结构进行设计,能够有效限定第二扭力摆臂60旋转折叠的轨迹,保障折叠组件100的旋转效果,且还能够在保留凸轮爬坡特征的基础上,保证折叠组件100展开和闭合到位的手感,使第二扭力摆臂60转动过程中尽可能延长第二弹性件85所能提供的阻尼力大于第二峰值K2的阶段。也就是说,折叠组件100在折叠过程中,第一平速段114和第二平速段115对应的折叠组件100旋转角度的范围可以较大,而第一加速段113和第二加速段116对应的折叠组件100旋转角度的范围可以较小,从而有效增加折叠组件100阻尼最大的悬停阶段的时间。
本申请的实施例中,第三加速段513和第四加速段516可以旋转对称。也就是说,第三加速段513能够绕一定点经过旋转变换而得到第四加速段516,第四加速段516能够绕同一定点经过旋转变换而得到第三加速段513。
需说明的是,本申请的实施例对于第三加速段513旋转变换得到第四加速段516或第四加速段516旋转变换得到第三加速段513所需的旋转角度不做严格限制,其可以是在满足折叠组件100工作需求的基础上的任何角度,如170°、180°等。
由此,能够因第三加速段513与第四加速段516旋转对称,且第三平速段514与第四平速段515旋转对称的设置,而使第三段511与第四段512旋转对称,也就是说,第三段511能够绕一定点经过旋转变换而得到第四段512,第四段512能够绕同一定点经过旋转变换而得到第三段511。而通过将第二滑槽51的结构拆分为两段,能够因第三段511与第四段512旋转对称的设置,而使第三段511与第四段512连接处的斜率的绝对值变化小,较小的斜率的绝对值变化能够使第二轴体22自第三段511的末端运动至第四段512的开端时速度变化小,有利于延长滑动阶段S2,进而实现折叠组件100可悬停阶段的延长。又由于折叠组件100阻尼最大的悬停阶段的时间被延长,故而折叠组件100的可悬停角度区间可被进一步扩大,有利于实现折叠组件100的大角度悬停。例如,现有技术中的折叠组件的 可悬停角度区间为80°-120°,本申请技术方案中折叠组件100的可悬停角度区间可以为30°-150°。
例如,第二轴体22依次经过第三加速段513、第三平速段514、第四平速段515和第四加速段516,根据第三段511内第三加速段513和第三平速段514的斜率的绝对值变化可知,即第二轴体22在第三段511的速度先快后慢,根据第四段512内第四平速段515和第四加速段516的斜率的绝对值变化可知,第二轴体22在第四段512的速度先慢后快,从而使第二轴体22的运动速度可整体分为三个阶段,即“加速-慢速-加速”。而第二轴体22的运动速度与第二弹性件85所能提供的阻尼力相关。当第二轴体22开始做第二阶段的慢速运动时,第二弹性件85所能提供的阻尼力大于第二峰值K2,折叠组件100进入可悬停阶段。当第二轴体22第二阶段的慢速运动结束,开始做第三阶段的加速运动时,第二弹性件85所能提供的阻尼力小于第二峰值K2,折叠组件100实现展开/闭合。
需说明的是,本申请的实施例对于第三段511旋转变换得到第四段512或第四段512旋转变换得到第三段511所需的旋转角度不做严格限制,其可以是在满足折叠组件100工作需求的基础上的任何角度,如170°、180°等。例如,如图9所示,第三段511可绕线O2的中点经旋转变换得到第四段512。
一种可能的实施方式中,如图18和图20所示,第三加速段513和第四加速段516均为直线段。本实施方式中,如图18所示,第三平速段514和第四平速段515可以为直线段,以使第二滑槽51整体呈现仅有直线段的折线形态。或者,如图20所示,第三平速段514和第四平速段515也可以为弧线段,以使第二滑槽51整体呈现弧线段与直线段混合的曲线形态。
另一种可能的实施方式中,如图19和图21所示,第三加速段513和第四加速段516均为弧线段,且第三加速段513的曲率中心与第四加速段516的曲率中心分别位于第二滑槽51的两侧。其中,第三加速段513的曲率中心与第四加速段516的曲率中心分别位于第二滑槽51的两侧可理解为第三加速段513的曲率中心与第四加速段516的曲率中心在以第二滑槽51为参照物的基础上,一个位于第二滑槽51一边,另一个位于第二滑槽51相对的另一边。并且,第三加速段513的曲率中心与第三平速段514的曲率中心位于第二滑槽51的同一侧,第四加速段516的曲率中心与第四平速段515的曲率中心位于第二滑槽51的同一侧。
本实施方式中,如图19所示,第三平速段514和第四平速段515可以为直线段,以使第二滑槽51整体呈现弧线段与直线段混合的曲线形态。或者,如图21所示,第三平速段514和第四平速段515也可以为弧线段,以使第二滑槽51整体呈现仅有弧线段的曲线形态。
图23是图7所示的第二滑槽51的形状变形示意图。其中,线E2为第二滑槽51的形状的基准线,线F2为第二滑槽51的形状的极限情况。
如图23所示,第二滑槽51的形状可在线E2和线F2的范围内(包括线F2)进行设计,对此不做严格限制。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种折叠组件,其特征在于,所述折叠组件包括:第一主摆臂,所述第一主摆臂上设有第一滑槽,所述第一滑槽包括相互连接的第一加速段和第一平速段,所述第一加速段的斜率的绝对值大于所述第一平速段的斜率的绝对值;第一扭力摆臂,所述第一扭力摆臂包括第一端和第二端;第一轴体,所述第一轴体穿过所述第一端与所述第一滑槽连接所述第一扭力摆臂和第一主摆臂;及阻尼组件,与所述第二端转动连接,所述第一扭力摆臂相对于所述阻尼组件转动时,所述第一轴体由所述第一加速段运动到所述第一平速段,所述阻尼组件由第一阻力状态转换到第二阻力状态,所述阻尼组件在所述第二阻力状态对所述第一扭力摆臂的转动阻力大于所述阻尼组件在所述第一阻力状态对所述第一扭力摆臂的转动阻力。
- 如权利要求1所述的折叠组件,其特征在于,所述第一滑槽还包括第二平速段和第二加速段,所述第二平速段的一端与所述第一平速段连接,所述第二平速段的另一端与所述第二加速段连接,所述第二加速段的斜率的绝对值大于所述第二平速段的斜率的绝对值,所述第二平速段与所述第一平速段旋转对称;所述第一轴体由所述第一平速段运动到所述第二平速段,所述阻尼组件保持所述第二阻力状态,所述第一轴体由所述第二平速段运动到所述第二加速段,所述阻尼组件由所述第二阻力状态转换到第三阻力状态,所述阻尼组件在所述第二阻力状态对所述第一扭力摆臂的转动阻力大于所述阻尼组件在所述第三阻力状态对所述第一扭力摆臂的转动阻力。
- 如权利要求2所述的折叠组件,其特征在于,所述第一加速段的曲率中心与所述第二加速段的曲率中心分别位于所述第一滑槽的两侧。
- 如权利要求2所述的折叠组件,其特征在于,所述第一加速段和所述第二加速段均为直线段。
- 如权利要求2-4任一项所述的折叠组件,其特征在于,所述第一加速段和所述第二加速段旋转对称。
- 如权利要求2-5任一项所述的折叠组件,其特征在于,所述第一平速段的曲率中心与所述第二平速段的曲率中心分别位于所述第一滑槽的两侧。
- 如权利要求6所述的折叠组件,其特征在于,所述第一平速段的曲率中心与所述第一加速段的曲率中心位于所述第一滑槽的同一侧,所述第二平速段的曲率中心与所述第二加速段的曲率中心位于所述第一滑槽的同一侧。
- 如权利要求6所述的折叠组件,其特征在于,所述第一平速段与所述第二平速段均为直线段。
- 如权利要求1-8任一项所述的折叠组件,其特征在于,所述折叠组件还包括第一转轴,所述第一转轴穿设于所述第二端,所述阻尼组件包括第一凸轮结构、第二凸轮结构、第一弹性件和限位件;所述第一凸轮结构固定至所述第二端且套设于所述第一转轴,所述第二凸轮结构套设于所述第一转轴且与所述第一凸轮结构接触,所述限位件固定于所述第一转轴,所述第一 弹性件抵持在所述第二凸轮结构和所述限位件之间,所述第二凸轮结构能够在所述第一凸轮结构的推动下沿所述第一转轴移动而压缩或释放所述第一弹性件。
- 一种折叠组件,其特征在于,所述折叠组件包括:第一主摆臂,所述第一主摆臂上设有第一滑槽,所述第一滑槽包括相互连接的第一加速段和第一平速段,所述第一加速段的斜率的绝对值大于所述第一平速段的斜率的绝对值;第一扭力摆臂,所述第一扭力摆臂包括第一端和第二端;第一轴体,所述第一轴体穿过所述第一端与所述第一滑槽,所述第一轴体连接所述第一扭力摆臂和第一主摆臂,所述第一轴体能够在所述第一滑槽内滑动;第一转轴,所述第一转轴穿设于所述第二端;及阻尼组件,包括第一凸轮结构、第二凸轮结构、第一弹性件和限位件,所述第一凸轮结构固定至所述第二端且套设于所述第一转轴,所述第二凸轮结构套设于所述第一转轴且与所述第一凸轮结构接触,所述第一弹性件抵持在所述第二凸轮结构和所述限位件之间,所述第二凸轮结构能够在所述第一凸轮结构的推动下沿所述第一转轴移动而压缩或释放所述第一弹性件。
- 如权利要求10所述的折叠组件,其特征在于,所述第一滑槽还包括第二平速段和第二加速段,所述第二平速段的一端与所述第一平速段连接,所述第二平速段的另一端与所述第二加速段连接,所述第二加速段的斜率大于所述第二平速段的斜率,所述第二平速段与所述第一平速段旋转对称。
- 如权利要求11所述的折叠组件,其特征在于,所述第一加速段的曲率中心与所述第二加速段的曲率中心分别位于所述第一滑槽的两侧。
- 一种电子设备,其特征在于,包括柔性显示屏和如权利要求1-9任一项所述的折叠组件,所述柔性显示屏承载于所述折叠组件上;或者,包括柔性显示屏和如权利要求10-12任一项所述的折叠组件,所述柔性显示屏承载于所述折叠组件上。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/263,975 US20240302870A1 (en) | 2022-01-10 | 2022-12-29 | Foldable assembly and electronic device |
EP22918482.5A EP4269825A4 (en) | 2022-01-10 | 2022-12-29 | FOLDING ARRANGEMENT AND ELECTRONIC DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210021087 | 2022-01-10 | ||
CN202210021087.5 | 2022-01-10 | ||
CN202210437862.5A CN116447215A (zh) | 2022-01-10 | 2022-04-25 | 折叠组件及电子设备 |
CN202210437862.5 | 2022-04-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023131041A1 true WO2023131041A1 (zh) | 2023-07-13 |
WO2023131041A9 WO2023131041A9 (zh) | 2023-09-07 |
Family
ID=87073153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/143268 WO2023131041A1 (zh) | 2022-01-10 | 2022-12-29 | 折叠组件及电子设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240302870A1 (zh) |
EP (1) | EP4269825A4 (zh) |
WO (1) | WO2023131041A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160107940A (ko) * | 2015-03-06 | 2016-09-19 | (주)제이엠씨 | 단일면 폴딩장치 |
EP3095940A1 (en) * | 2015-05-18 | 2016-11-23 | Atasan Metal Sanayi Ve Ticaret Limited Sirketi | A hinge mechanism |
CN208421695U (zh) * | 2018-07-13 | 2019-01-22 | Oppo广东移动通信有限公司 | 电子设备 |
CN209944867U (zh) * | 2018-10-15 | 2020-01-14 | 日本电产三协株式会社 | 冰箱或冰柜 |
CN112087540A (zh) * | 2019-06-14 | 2020-12-15 | 北京小米移动软件有限公司 | 折叠装置、显示屏模块及移动终端 |
CN112901643A (zh) * | 2020-09-14 | 2021-06-04 | 华为技术有限公司 | 折叠装置及电子设备 |
CN113315860A (zh) * | 2021-06-11 | 2021-08-27 | 维沃移动通信有限公司 | 折叠机构及电子设备 |
KR102311588B1 (ko) * | 2020-10-20 | 2021-10-13 | 주식회사 이음 | 폴더블 디스플레이 장치 |
CN113643612A (zh) * | 2021-07-20 | 2021-11-12 | 江苏盈智融科技有限公司 | 内折齿轮连杆式柔性屏转轴机构 |
-
2022
- 2022-12-29 US US18/263,975 patent/US20240302870A1/en active Pending
- 2022-12-29 WO PCT/CN2022/143268 patent/WO2023131041A1/zh active Application Filing
- 2022-12-29 EP EP22918482.5A patent/EP4269825A4/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160107940A (ko) * | 2015-03-06 | 2016-09-19 | (주)제이엠씨 | 단일면 폴딩장치 |
EP3095940A1 (en) * | 2015-05-18 | 2016-11-23 | Atasan Metal Sanayi Ve Ticaret Limited Sirketi | A hinge mechanism |
CN208421695U (zh) * | 2018-07-13 | 2019-01-22 | Oppo广东移动通信有限公司 | 电子设备 |
CN209944867U (zh) * | 2018-10-15 | 2020-01-14 | 日本电产三协株式会社 | 冰箱或冰柜 |
CN112087540A (zh) * | 2019-06-14 | 2020-12-15 | 北京小米移动软件有限公司 | 折叠装置、显示屏模块及移动终端 |
CN112901643A (zh) * | 2020-09-14 | 2021-06-04 | 华为技术有限公司 | 折叠装置及电子设备 |
KR102311588B1 (ko) * | 2020-10-20 | 2021-10-13 | 주식회사 이음 | 폴더블 디스플레이 장치 |
CN113315860A (zh) * | 2021-06-11 | 2021-08-27 | 维沃移动通信有限公司 | 折叠机构及电子设备 |
CN113643612A (zh) * | 2021-07-20 | 2021-11-12 | 江苏盈智融科技有限公司 | 内折齿轮连杆式柔性屏转轴机构 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4269825A4 |
Also Published As
Publication number | Publication date |
---|---|
WO2023131041A9 (zh) | 2023-09-07 |
US20240302870A1 (en) | 2024-09-12 |
EP4269825A4 (en) | 2024-08-21 |
EP4269825A1 (en) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11336759B2 (en) | Rotating shaft mechanism and mobile terminal | |
WO2021007750A1 (zh) | 折叠装置及电子设备 | |
WO2022262684A1 (zh) | 折叠转轴结构及折叠电子设备 | |
WO2022111544A1 (zh) | 折叠铰链结构及折叠终端设备 | |
CN115076218B (zh) | 电子设备和折叠装置 | |
CN217849479U (zh) | 转轴机构及可折叠设备 | |
CN217682778U (zh) | 转动机构和可折叠电子设备 | |
WO2022068245A1 (zh) | 折叠装置及电子设备 | |
JP2024527713A (ja) | 回転軸機構および電子デバイス | |
CN115126767A (zh) | 一种阻尼机构、转轴机构及终端 | |
WO2023001105A1 (zh) | 折叠机构及电子设备 | |
CN117419098B (zh) | 转动机构和可折叠电子设备 | |
CN217502265U (zh) | 转动机构及电子设备 | |
WO2023131041A1 (zh) | 折叠组件及电子设备 | |
CN116447215A (zh) | 折叠组件及电子设备 | |
CN116708613B (zh) | 可折叠机构和可折叠终端 | |
CN117128233B (zh) | 一种阻尼机构、折叠铰链及电子设备 | |
CN217784008U (zh) | 转动机构及电子设备 | |
WO2024169288A1 (zh) | 转轴结构及折叠式终端 | |
CN115539498B (zh) | 转动机构及电子设备 | |
WO2024131443A1 (zh) | 一种可折叠电子设备和铰链 | |
WO2024159902A1 (zh) | 折叠机构及电子设备 | |
CN117128236B (zh) | 一种阻尼机构、折叠铰链及电子设备 | |
US20240219978A1 (en) | Rotating shaft mechanism and electronic device | |
CN117128229B (zh) | 折叠机构及可折叠电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18263975 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022918482 Country of ref document: EP Effective date: 20230728 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22918482 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |