WO2023130945A1 - 电动车高压系统的故障处理装置及电动车 - Google Patents

电动车高压系统的故障处理装置及电动车 Download PDF

Info

Publication number
WO2023130945A1
WO2023130945A1 PCT/CN2022/140013 CN2022140013W WO2023130945A1 WO 2023130945 A1 WO2023130945 A1 WO 2023130945A1 CN 2022140013 W CN2022140013 W CN 2022140013W WO 2023130945 A1 WO2023130945 A1 WO 2023130945A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electric vehicle
fault
switch
critical
Prior art date
Application number
PCT/CN2022/140013
Other languages
English (en)
French (fr)
Inventor
王赢
焦森
张春才
宋芳
石强
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023130945A1 publication Critical patent/WO2023130945A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to a fault detection technology for a high voltage system of an electric vehicle, for example, to a fault processing device for a high voltage system of an electric vehicle and the electric vehicle.
  • the number of electric vehicles is gradually increasing. Compared with fuel vehicles in related technologies, electric vehicles use high-voltage batteries as the power source, and there are multiple controllers inside the electric vehicle to realize functions such as high-voltage power on and off, vehicle starting, driving, charging and discharging, etc. , the number of control nodes increases, which increases the failure rate of the vehicle and increases the difficulty of fault location; in addition, due to the danger of the high-voltage system, the fault detection of the high-voltage system is particularly important.
  • the fault handling strategy in the related art is that multiple controllers report fault codes and fault levels to the vehicle controller, and the vehicle controller judges the fault level of each controller and executes the corresponding fault handling mechanism. In the event of a fault, the vehicle controller judges it as a serious fault and issues an instruction to disconnect the high-voltage relay, cut off the high-voltage circuit, and prohibit the high-voltage system from being powered on.
  • the failure of the high-voltage system caused by the failure of high-voltage components that are not necessary for driving, such as the air-conditioning compressor, will also prohibit the high-voltage output of the electric vehicle, making it impossible to power on at high voltage, resulting in the inability of the vehicle to drive and affecting the normal driving of the vehicle.
  • the application provides a fault handling device for a high-voltage system of an electric vehicle and the electric vehicle, which can solve the problem of unreasonable fault handling of the high-voltage system caused by the failure of a high-voltage component that is not necessary for driving, and improve the operating safety and stability of the electric vehicle.
  • an embodiment of the present application provides a fault handling device for a high voltage system of an electric vehicle, including at least one critical component and a plurality of non-critical components;
  • the fault processing device for the high voltage system of an electric vehicle includes: a battery management module, detecting the control module and the first shielding switch;
  • the battery management module includes a low-voltage power supply positive terminal, a low-voltage power supply negative terminal, a high-voltage power supply positive terminal, and a high-voltage power supply negative terminal; the low-voltage interlock circuit of the key component is connected in series with the low-voltage interlock circuit of the non-key component.
  • the first shielding switch is connected in parallel with the low-voltage interlock circuits of all the non-critical components; each of the key components
  • the high-voltage power supply circuit and the high-voltage power supply circuits of the plurality of non-critical components are connected in parallel between the positive terminal of the high-voltage power supply and the negative terminal of the high-voltage power supply;
  • the detection control module is configured to control the conduction of the first shielding switch when a high-voltage interlock fault occurs in the high-voltage system of the electric vehicle, and determine the key component according to the current electrical signal in the low-voltage interlock circuit Whether there is a high-voltage interlock failure;
  • the detection control module is also configured to control the battery management module to continue to provide high-voltage electrical signals to the key components when no high-voltage interlock failure occurs in the key components.
  • an embodiment of the present application further provides an electric vehicle, including: the above-mentioned fault processing device for the high-voltage system of the electric vehicle.
  • FIG. 1 is a topological diagram of a fault handling device for a high-voltage system of an electric vehicle provided by an embodiment of the present application;
  • Fig. 2 is a topological diagram of another fault handling device for a high-voltage system of an electric vehicle provided by an embodiment of the present application;
  • Fig. 3 is a topological diagram of another fault handling device for a high-voltage system of an electric vehicle provided by an embodiment of the present application;
  • Fig. 4 is a topological diagram of another fault handling device for a high-voltage system of an electric vehicle provided by an embodiment of the present application.
  • FIG. 1 is a topology diagram of a fault processing device for a high voltage system of an electric vehicle provided in an embodiment of the present application.
  • the electric vehicle high voltage system 10 includes at least one critical component 11 and a plurality of non-critical components 12 (the figure shows that the electric vehicle high voltage system 10 includes two critical components 11 and two non-critical components 12).
  • key components 11 refer to high-voltage components necessary for electric vehicles to run, such as power batteries, front and rear electric drive assemblies, vehicle controller assemblies and other high-voltage components; non-key components 12 refer to high-voltage components that are not necessary for driving, such as air conditioners High-voltage components such as compressors and on-board chargers.
  • the high-voltage system 10 of an electric vehicle has high-voltage hazards. Considering equipment safety and personal safety, all sub-circuits connected to the positive terminal 33 of the high-voltage power supply and the negative terminal 34 of the high-voltage power supply on the electric vehicle can be checked through low-voltage electrical signals The connection integrity of each high-voltage component (critical component 11, non-critical component 12) is checked.
  • the interlock circuit of each high-voltage component is connected in series with each other, and the low-voltage electrical signal is Once the low-voltage electrical signal is interrupted, it means that one of the high-voltage components (key components 11 and/or non-critical components 12) has a problem of looseness, falling off or internal failure.
  • the high voltage system fault includes a high voltage interlock fault.
  • the fault processing device 20 of the high voltage system of an electric vehicle includes a battery management module 30, a detection control module 41, and a first shielding switch 51, wherein the battery management module 30 includes a low voltage power supply positive terminal 31, a low voltage power supply negative terminal 32.
  • the positive terminal 33 of the high-voltage power supply and the negative terminal 34 of the high-voltage power supply, the positive terminal 31 of the low-voltage power supply and the negative terminal 32 of the low-voltage power supply are electrically connected to the low-voltage power supply, and the positive terminal 33 of the high-voltage power supply and the negative terminal 34 of the high-voltage power supply are electrically connected to the high-voltage power supply respectively.
  • the low-voltage interlock circuit of the key component 11 and the low-voltage interlock circuit of the non-critical component 12 are connected in series between the positive terminal 31 of the low-voltage power supply and the negative terminal 32 of the low-voltage power supply to form a low-voltage interlock circuit;
  • the electric circuit and the high-voltage electrical circuit of each non-critical component 12 are connected in parallel between the positive terminal 33 of the high-voltage power supply and the negative terminal 44 of the high-voltage power supply;
  • the first shielding switch 51 is connected in parallel with the low-voltage interlocking circuits of all non-critical components 12;
  • the detection control module 41 is configured to control the first shielding switch 51 to conduct when a high-voltage interlock fault occurs in the high-voltage system 10 of the electric vehicle, and determine whether the key component 11 has a high-voltage interlock fault according to the electrical signal in the current low-voltage interlock circuit
  • the detection control module 41 is also configured to control the battery management module 30 to continue to provide high-voltage electrical
  • the first shielding switch 51 may be an electrical controller such as a relay or a transistor, which is not specifically limited in this embodiment.
  • the first shielding switch 51 When the first shielding switch 51 is turned on, both ends of the low-voltage interlocking circuits of all non-critical components 12 are short-circuited, all non-critical components 12 are shielded by the first shielding switch 51, and the low-voltage interlocking circuits of all non-critical components 12 are no longer connected. In the low voltage interlock circuit.
  • the detection control module 41 controls the first shielding switch 51 to be turned on, the low-voltage interlock circuits of all non-critical components 12 are no longer connected to the low-voltage interlock circuit, and only the low-voltage interlock circuits of all key components 11 are connected in series to the low-voltage interlock circuit At this time, if a low-voltage electrical signal can be detected in the low-voltage interlock circuit, it indicates that the low-voltage interlock circuit is turned on, and the high-voltage interlock fault of the high-voltage system 10 of the electric vehicle is caused by the shielded non-critical component 12.
  • Fig. 1 only shows that the detection control module 41 is connected in series with the low-voltage interlock circuit, and the detection control module 41 can also be electrically connected to the low-voltage interlock circuit through only one detection terminal.
  • the connection mode of the detection control module 41 is not specifically limited.
  • the first shielding switch 51 is connected in parallel with the low-voltage interlocking circuits of all non-critical components 12, and the detection control module 41 controls the first shielding switch 51 to lead It can quickly determine the cause of the high-voltage interlock fault of the high-voltage system of the electric vehicle, quickly locate whether the high-voltage interlock fault is in the non-key component 12 or the key component 11, and ensure that the high-voltage interlock fault does not occur in the key component 11.
  • the key components of the whole vehicle can be powered on normally at high voltage without affecting the driving function of the electric vehicle.
  • the fault handling device for the high voltage system of the electric vehicle in the embodiment of the present application is designed reasonably, simply and efficiently.
  • the battery management module 30 is provided with a positive auxiliary switch 61 and a negative auxiliary switch 62.
  • the positive auxiliary switch 61 is electrically connected to the positive end 33 of the high voltage power supply and the high voltage power supply of each non-critical component 12.
  • the negative auxiliary switch 62 is electrically connected between the negative terminal 34 of the high-voltage power supply and the negative terminal of the high-voltage electrical circuit of each non-critical component 12 .
  • the positive auxiliary switch 61 and the negative auxiliary switch 62 may be electrical controllers such as relays and transistors, which are not specifically limited in this embodiment of the present application. At least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 can control whether all non-critical components 12 are connected to the high-voltage system 10 of the electric vehicle.
  • the positive auxiliary switch 61 and the negative auxiliary switch 62 are in a conducting state to detect whether a high voltage fault occurs in the electric vehicle high voltage system 10 .
  • the positive auxiliary switch 61 and the negative auxiliary switch 62 in the battery management module, it is possible to control whether non-critical components 12 are connected to the high voltage system 10 of the electric vehicle, which increases the controllability of the high voltage system 10 of the electric vehicle.
  • the detection control module 41 is also configured to control at least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 to turn off when no high-voltage interlock fault occurs in the critical components 11, so as to stop supplying power to each non-critical component 12. Provides a high voltage electrical signal.
  • the detection control module 41 controls the first shielding switch 51 to conduct, and a low-voltage electrical signal can be detected in the low-voltage interlock circuit, indicating that the high-voltage system of the electric vehicle
  • the high-voltage interlock fault of 10 is caused by the shielded non-critical component 12, and the high-voltage interlock fault does not occur in the key component 11, then the detection module 41 can control at least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 to disconnect, That is, the battery management module 30 no longer provides high-voltage electrical signals to non-critical components 12 that have high-voltage interlock failures, but only provides high-voltage electrical signals to key components 11 that do not have high-voltage interlock failures.
  • the key component 12 is no longer powered on, and the key component 11 can be normally powered on with high voltage, which does not affect the basic driving function of the electric vehicle.
  • the non-critical components 12 are no longer powered on, the battery management module no longer provides high-voltage electrical signals to the non-critical components 12, and the non-critical components 12 are stopped, but the use of the critical components 11 is not affected, thereby ensuring the failure of the high-voltage system of the electric vehicle
  • the design of the processing device is reasonable, simple and efficient.
  • the high-voltage system fault may include a high-voltage insulation fault in addition to a high-voltage interlock fault, and the embodiment of the present application may also detect a high-voltage insulation fault of at least one of the critical component 11 and the non-critical component 12 , and control the driving state of the vehicle based on this.
  • the detection control module 41 is further configured to control at least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 to disconnect when a high-voltage insulation fault occurs in the high-voltage system 10 of the electric vehicle, and according to the current voltage at the high-voltage power supply, signal to determine whether the key component 11 has a high-voltage insulation fault; the detection control module 41 is also configured to control the battery management module 30 to continue to provide the key component 11 with a high-voltage electrical signal when no high-voltage insulation fault occurs in the key component 11.
  • the insulation condition of the high-voltage system 10 of the electric vehicle can be monitored in real time through the detection control module 41. If the resistance value is less than the pre-defined alarm value, there may be a short circuit between one or several high-voltage components and the body, indicating that there may be a leakage current in the body, which will endanger equipment and users.
  • the corresponding high-voltage system fault handling instructions are executed inside the electric vehicle, and the user is reminded that a high-voltage insulation fault has occurred in the high-voltage system 10 of the electric vehicle.
  • the detection control module 41 controls at least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 to be disconnected, and all non-critical components 12 are not connected to the high-voltage system 10 of the electric vehicle, only all The key component 11 is connected to the high-voltage system 10 of the electric vehicle. At this time, the insulation resistance of the high-voltage system 10 of the electric vehicle increases and is no longer less than the alarm value.
  • the high-voltage interlock insulation is caused by the non-critical component 12, and the key component 11 has no high-voltage insulation fault, and at least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 is kept disconnected; after judging that the key component 11 has no high-voltage insulation fault, At least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 is disconnected, the battery management module 30 no longer provides high voltage electrical signals to the non-critical components 12, but the detection control module 41 can control the battery management module 30 to continue to provide high voltage to the critical components 11 The electrical signal ensures that all key components 11 of the electric vehicle can be powered on at high voltage normally at this time, and does not affect the basic driving function of the electric vehicle.
  • the positive auxiliary switch 61 and the negative auxiliary switch 62 are controlled by the detection control module 41.
  • At least one disconnection can quickly determine the cause of the high-voltage insulation fault of the high-voltage system of the electric vehicle, quickly locate whether the high-voltage insulation fault is in a non-critical component or a key component, and a high-voltage insulation fault occurs in the key component 11 and the high-voltage insulation does not occur in the key component 11
  • a fault occurs, at least one of the positive auxiliary switch 61 and the negative auxiliary switch 62 is disconnected, and the non-critical components 12 can be controlled to no longer be powered on when the high-voltage system of the electric vehicle is powered on, and the battery management module no longer provides high voltage to the non-critical components 12 Electric signal, stop using non-critical components 12, but still ensure that the key components 11 of the whole vehicle can be powered on normally at high voltage, without affecting the driving function of the electric vehicle, the fault handling device for the high-voltage system of the electric vehicle provided by the embodiment of the application
  • the design is reasonable, simple and efficient.
  • the battery management module 31 further includes a positive main switch 63 and a negative main switch 64.
  • the positive main switch 63 is electrically connected between the high voltage power supply and the positive end 33 of the high voltage power supply.
  • the negative main switch 64 is electrically Connected between the high-voltage power supply and the negative terminal 34 of the high-voltage power supply; when the electric vehicle high-voltage system 10 is powered on, the positive main switch 63 and the negative main switch 64 are in a conducting state.
  • the positive main switch 63 and the negative main switch 64 may be electrical controllers such as relays and transistors, which are not specifically limited in this embodiment of the present application. At least one of the positive main switch 63 and the negative main switch 64 can control whether all critical components 11 and all non-critical components 12 are connected to the electric vehicle high-voltage system 10. If the positive main switch 63 and the negative main switch 64 are simultaneously turned on, all The key components 11 and all non-key components 12 are connected to the electric vehicle high-voltage system 10.
  • the positive main switch 63 and the negative main switch 64 are in a conducting state to detect whether a high voltage fault occurs in the high voltage system 10 of the electric vehicle.
  • the positive main switch 63 and the negative main switch 64 in the battery management module, it is possible to control whether all high-voltage components are connected to the high-voltage system 10 of the electric vehicle, which increases the controllability of the high-voltage system 10 of the electric vehicle.
  • the detection control module 41 is further configured to control at least one of the positive main switch 63 and the negative main switch 64 to turn off when at least one of a high voltage interlock fault and a high voltage insulation fault occurs in the key component 11 .
  • the detection control module 41 controls the first shielding switch 51 to be turned on, and all non-critical components 12 are no longer connected to the low-voltage interlock circuit, only all key components
  • the low-voltage interlock circuit of 11 is connected in series in the low-voltage interlock circuit. At this time, if the high-voltage interlock fault still occurs in the high-voltage system 10 of the electric vehicle, it means that the high-voltage interlock fault of the high-voltage system 10 of the electric vehicle is caused by the key component 11.
  • the detection control module 41 controls the positive main switch 63 and/or the negative main switch 64 to be turned off, and the key components 11 and non-key components 12 are no longer powered on, so as to protect the safety of equipment and users.
  • the detection control module 41 controls the positive auxiliary switch 61 and/or the negative auxiliary switch 62 to be disconnected.
  • All non-critical components 12 are not connected to the high-voltage system 10 of the electric vehicle, and only all key components 11 are connected At this time, if the high-voltage insulation fault still occurs in the high-voltage system 10 of the electric vehicle, it means that the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is caused by the key component 11. At this time, the detection control module 41 controls The positive main switch 63 and/or the negative main switch 64 are turned off, and the critical components 11 and non-critical components 12 are no longer powered on, so as to protect equipment safety and user safety.
  • the functions of non-critical components can be stopped by controlling the battery management module to stop providing electrical signals to non-critical components, but the basic driving functions of the electric vehicle will not be affected; if the high-voltage system of the electric vehicle is caused to generate high-voltage interlock At least one of the faulty high-voltage components of the fault and the high-voltage insulation fault is a key component, and at least one of the faults of the high-voltage interlock fault and the high-voltage insulation fault is a high-voltage fault of the stop level, and the battery management module needs to be controlled to stop simultaneously.
  • Components and non-critical components provide electrical signals, and electric vehicles no longer have basic driving functions.
  • an electric vehicle running at high speed such as an electric vehicle with a vehicle speed greater than 5km/h
  • a key component has at least one of a high-voltage interlock fault and a high-voltage insulation fault, it will not Controlling the braking of the electric vehicle can still control the electric vehicle to keep running until it stops slowly.
  • the key components and non-critical components in the high-voltage system of the electric vehicle cannot be powered on until the high-voltage system fault is eliminated.
  • the detection control module controls at least one of the positive main switch and the negative main switch to be disconnected, so that the key component and the non-critical Components are no longer powered, which protects equipment safety and user safety.
  • FIG. 2 is a topological diagram of another fault processing device for the high voltage system of an electric vehicle provided in an embodiment of the present application.
  • the fault processing device 20 for the high voltage system 10 of an electric vehicle further includes A plurality of first control switches 65 corresponding to a plurality of non-critical components 12 one-to-one, and a plurality of second control switches 66 corresponding to a plurality of non-critical components 12; the first control switches 65 are electrically connected to the corresponding Between the positive terminal of the high-voltage circuit of the non-critical component 12 and the positive terminal 33 of the high-voltage power supply, the second control switch 66 is electrically connected between the negative terminal of the high-voltage circuit of the corresponding non-critical component 12 and the negative terminal 34 of the high-voltage power supply.
  • the first control switch 65 and the second control switch 66 may be electrical controllers such as relays and transistors, which are not specifically limited in this embodiment of the present application.
  • the first control switch 65 and the second control switch 66 can control whether the corresponding non-critical components 12 are connected to the electric vehicle high-voltage system 10. If the first control switch 65 and the second control switch 66 are turned on at the same time, the corresponding non-critical components 12 connected to the electric vehicle high-voltage system 10, when the electric vehicle high-voltage system 10 is powered on, the non-critical components 12 are also powered on; if at least one of the first control switch 65 and the second control switch 66 is disconnected, the non-critical components The key components 12 are not connected to the high-voltage system 10 of the electric vehicle.
  • the non-critical components 12 are no longer powered on.
  • all the first control switches 65 and all the second control switches 66 are in the conduction state to detect whether a high voltage fault occurs in the high voltage system 10 of the electric vehicle.
  • the detection control module 41 is also configured to sequentially control the first control switch 65 and the second control switch corresponding to each non-critical component 12 when no high-voltage insulation fault occurs in the critical component 11 66 is disconnected, and according to the electrical signal at the current high-voltage power source, determine the non-critical component 12 where the high-voltage insulation fault occurs.
  • the non-critical component 12 includes the first non-critical component 121 and the second non-critical component 122 as an example for illustration.
  • the detection control module 41 can control both the positive auxiliary switch 61 and the negative auxiliary switch 62 to turn on, and control at least one of the first control switch 65 and the second control switch 66 corresponding to the first non-critical component 121 to turn off, and the first non-critical Component 12 is not connected to the high-voltage system 10 of the electric vehicle.
  • the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is removed, it means that the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is caused by the first non-critical component 121, and the second At least one of the first control switch 65 and the second control switch 66 corresponding to a non-critical component 121 is turned off, and the battery management module 30 no longer provides a high-voltage electrical signal to the first non-critical component 121, but the control battery management module 30 can Continue to provide high-voltage electrical signals to other non-critical components other than the critical component 11 and the first non-critical component 121 to ensure that the high-voltage components of the electric vehicle that have not experienced high-voltage insulation faults can be powered on normally at high voltage without affecting the electric vehicle.
  • the detection control module 41 can control the connection with the second control switch 66. At least one of the first control switch 65 and the second control switch 66 corresponding to the two non-critical components 122 is disconnected.
  • the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is removed, it means that the high-voltage insulation of the high-voltage system 10 of the electric vehicle
  • the fault is caused by the second non-critical component 122, or is jointly caused by the second non-critical component 122 and the first non-critical component 121; the detection control module 41 controls the first control switch corresponding to the first non-critical component 121 65 and at least one of the second control switch 66 is turned on. If the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is removed, it means that the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is caused by the second non-critical component 122.
  • the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is not resolved, it means that the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is caused by the second non-critical component 122 and the first non-critical component 121; if the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle The fault is caused by the second non-critical component 122, keep at least one of the first control switch 65 and the second control switch 66 corresponding to the second non-critical component 122 disconnected, if the high-voltage insulation fault of the high-voltage system 10 of the electric vehicle is Caused jointly by the second non-critical component 122 and the first non-critical component 121, at least one of the first control switch 65 and the second control switch 66 corresponding to the first non-critical component 121 and the second non-critical component 122 is controlled disconnect.
  • non-critical components may also include multiple non-critical components such as a third non-critical component and a fourth non-critical component, and the embodiment of the present application does not specifically limit the number of non-critical components. If at least one of the first control switch 65 and the second control switch 66 corresponding to the first non-critical component 121 and the second non-critical component 122 is disconnected, and the high-voltage insulation fault of the high-voltage system of the electric vehicle is not removed, then the detection control The module can control at least one of the first control switch and the second control switch corresponding to the third non-critical component to be disconnected; if the high voltage insulation fault of the high voltage system of the electric vehicle is removed, it means that the high voltage insulation fault of the high voltage system of the electric vehicle is caused by the first One, two or three of the first non-critical component, the second non-critical component and the third non-critical component, control the corresponding first non-critical component and the second non-critical component other than the third non-critical component At least one of the first control switch and the second control switch
  • the detection control module can control the At least one of the first control switch and the second control switch is turned off until it is determined that a non-critical component has a high voltage insulation fault.
  • the detection control module sequentially controls at least one of the first control switch and the second control switch corresponding to each non-critical component.
  • One disconnection combined with the electrical signal at the current high-voltage power supply, can lock the area including non-critical components that cause high-voltage insulation faults in the high-voltage system of the electric vehicle; then control the first control switch and the second control switch corresponding to the non-critical components in the area At least one of the switches is turned on in turn, which can accurately locate the non-critical components that cause high-voltage insulation faults in the high-voltage system of electric vehicles; the detection and control module can also be used to control the non-critical components that cause high-voltage insulation faults in the high-voltage system of electric vehicles.
  • At least one of the first control switch and the second control switch is disconnected to isolate the non-critical components that have high-voltage insulation faults from the high-voltage system of the electric vehicle to ensure the safety of the high-voltage system of the electric vehicle, while other high-voltage components that do not have high-voltage insulation faults It can be powered on normally, and users can continue to use the functions of high-voltage components without high-voltage insulation faults; and by accurately locating non-critical components that cause high-voltage insulation faults in the high-voltage system of electric vehicles, it is unnecessary to check the key components during maintenance, improving maintenance efficiency.
  • the fault processing device 20 of the electric vehicle high voltage system 10 further includes a plurality of second shielding switches 52, and each second shielding switch 52 corresponds to the low voltage of a non-critical component 12 one by one.
  • the interlock circuits are connected in parallel.
  • the non-critical component 12 includes the first non-critical component 121 and the second non-critical component 122 as an example for illustration
  • the second shielding switch 521 is connected in parallel with the low-voltage interlock circuit of the first non-critical component 121
  • the second shielding switch 522 is connected in parallel with the low voltage interlock circuit of the second non-critical component 122 .
  • the second shielding switch 52 may be an electrical controller such as a relay or a transistor, which is not specifically limited in this embodiment of the present application.
  • the detection control module 41 is also configured to sequentially control each second shielding switch 52 to be turned on when no high-voltage interlock fault occurs in the key component 11, and according to each second shielding switch When 52 is closed, the electrical signal of the current low-voltage interlock circuit determines the non-critical component 12 that has a high-voltage interlock fault; At least one of the first control switch 65 and the second control switch 66 corresponding to the non-critical component 12 of the lock failure is disconnected, and the first control switch 65 corresponding to the non-critical component 12 that does not have a high-voltage interlock failure is controlled and the second control switch 66 is turned on.
  • the detection control module 41 can control the first shielding switch to be turned off, and control the second shielding switch 521 connected in parallel with the low-voltage interlock circuit of the first non-critical component 121 to be turned on, and the low-voltage interlock circuit of the first non-critical component 121 will not be turned on. Then connect to the low-voltage interlock circuit.
  • the detection control module 41 controls at least one of the first control switch 65 and the second control switch 66 corresponding to the first non-critical component 121 to be disconnected, and controls the non-critical
  • the first control switch 65 and the second control switch 66 corresponding to the critical component 12 are turned on, and the battery management module 30 no longer provides high-voltage electrical signals to the first non-critical component 121, but the battery management module 30 can continue to supply the critical component 11 and the second
  • Other non-critical components other than a non-critical component 121 provide high-voltage electrical signals to ensure that the high-voltage components of the electric vehicle that have not experienced high-voltage interlock faults can be powered on at high voltage normally, and will not affect the normal operation of other
  • the detection control module 41 can control the second shielding switch connected in parallel with the low-voltage interlocking circuit of the second non-critical component 122 522 is turned on. At this time, if the high-voltage interlock fault of the high-voltage system 10 of the electric vehicle is released, it means that the high-voltage interlock fault of the high-voltage system 10 of the electric vehicle is caused by the second non-critical component 122, or is caused by the second non-critical component 122.
  • the critical component 122 and the first non-critical component 121 are jointly caused; the detection control module 41 controls the second shielding switch 521 connected in parallel with the low-voltage interlock circuit of the first non-critical component 121 to disconnect, if the high voltage of the electric vehicle high voltage system 10 If the insulation fault is removed, it means that the high-voltage interlock fault of the high-voltage system 10 of the electric vehicle is caused by the second non-critical component 122; The lock failure is caused by the second non-critical component 122 and the first non-critical component 121; At least one of the first control switch 65 and the second control switch 66 corresponding to 122 is disconnected, if the high voltage interlock fault of the electric vehicle high voltage system 10 is caused by the second non-critical component 122 and the first non-critical component 121 , at least one of the first control switch 65 and the second control switch 66 corresponding to the first non-critical component 121 and the second non-critical component 122 is controlled to be turned off.
  • the detection control The module can control the conduction of the second shielding switch connected in parallel with the low-voltage interlock circuit of the third non-critical component; if the high-voltage interlock fault of the high-voltage system of the electric vehicle is released, it means that the high-voltage interlock fault of the high-voltage system of the electric vehicle One, two or three of the first non-critical component, the second non-critical component and the third non-critical component, control and the first non-critical component and the second non-critical component other than the third non-critical component
  • the second shielding switch connected in parallel to at least one low-voltage interlock circuit is turned off, and according to the current electrical signal of the low-voltage interlock circuit, a non-critical component where a high-voltage interlock fault occurs is determined
  • the detection control module can control the low-voltage interlock circuit with the fourth non-critical component.
  • the second shielding switch connected in parallel with the lock circuit is turned on until a non-critical component where a high voltage insulation fault occurs is determined.
  • the second shielding switch connected in parallel with the low-voltage interlock circuit of each non-critical component is sequentially controlled by the detection control module.
  • the area including the non-critical components that cause the high-voltage interlock fault of the high-voltage system of the electric vehicle can be locked;
  • the two shielding switches are disconnected in turn, which can accurately locate the non-critical components that cause high-voltage interlock faults in the high-voltage system of electric vehicles;
  • the detection and control module can also control the corresponding first non-critical components that cause high-voltage interlock faults in the high-voltage system of electric vehicles At least one of the first control switch and the second control switch is disconnected to isolate the non-critical components that have a high-voltage interlock fault from the high-voltage system of the electric vehicle to ensure the safety of the high-voltage system of the electric vehicle.
  • the components can be powered on normally, and users can continue to use the functions of high-voltage components that have not experienced high-voltage insulation failures; and by accurately locating non-critical components that cause high-voltage insulation failures in the high-voltage system of electric vehicles, it is not necessary to check the key components during maintenance. Improve maintenance efficiency.
  • FIG. 3 is a topology diagram of another fault handling device for a high-voltage system of an electric vehicle provided in an embodiment of the present application. As shown in FIG. 3 , the detection control module 41 is integrated in the battery management module 30 .
  • the detection and control module 41 is integrated in the battery management module 30, so that when a high-voltage fault occurs in the high-voltage system 10 of the electric vehicle, the high-voltage component that has a high-voltage fault can be located in time, and the battery management module 30 can be controlled in time to stop the high-voltage fault.
  • Faulty high-voltage components provide electrical signals, and the entire positioning and processing cycle can reach the millisecond level, which can protect the safety of equipment and users of electric vehicles in time.
  • FIG. 4 is a topological diagram of another fault processing device for the high voltage system of an electric vehicle provided in an embodiment of the present application.
  • the fault processing device for the high voltage system of an electric vehicle also includes a system controller 40 , the system controller 40 is electrically connected to the low-voltage interlock circuit of the critical component 11 and the low-voltage interlock circuit of the non-critical component 12 respectively, and the detection control module 41 is integrated into the system controller 40 .
  • the system controller 40 can be the general controller of the vehicle.
  • the above-mentioned processing strategy can be adopted for failures caused by other controllers that are not necessary for driving, such as failure to power on, failure to power off, and pre-charge timeout.
  • the component is a non-critical component 12
  • the high-voltage system 10 of the electric vehicle still has the basic driving function.
  • the faulty electric drive can also be controlled.
  • the control switch is turned off, so that the battery management module stops providing electrical signals to the faulty electric drive, without affecting the normal function of the other electric drive, so that the vehicle has a limp mode and can continue to drive in the form of two-wheel drive.
  • an embodiment of the present application further provides an electric vehicle, the electric vehicle includes a high-voltage system of the electric vehicle and a fault handling device for the high-voltage system of the electric vehicle described in any embodiment of the present application.
  • the electric vehicle provided in the embodiments of the present application can perform related operations in the fault handling device for the high-voltage system of the electric vehicle provided in any embodiment of the present application.
  • the electric vehicle provided by an embodiment of the present application can quickly determine whether a high-voltage fault occurs in a key component through the first shielding switch, the positive auxiliary switch and the negative auxiliary switch when a high-voltage fault occurs in the high-voltage system of the electric vehicle.
  • the key component does not have a high-voltage fault, It can control all the key components of the high-voltage system of the electric vehicle to be energized normally at high voltage without affecting the basic driving function of the electric vehicle;
  • the switch accurately locates the non-critical components that cause high-voltage faults in the high-voltage system of electric vehicles, and controls the battery management module to stop providing high-voltage electrical signals to non-critical components that have high-voltage faults, while other high-voltage components that have not experienced high-voltage insulation faults can be powered on normally , users can continue to use the functions of high-voltage components without high-voltage insulation faults; and by accurately locating non-critical components that cause high-voltage insulation faults in the high-voltage system of electric vehicles, it is unnecessary to check the key components during maintenance, which improves maintenance efficiency.
  • the electric vehicle provided in the above embodiments can perform related operations in the fault handling device for the high voltage system of the electric vehicle provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects in the fault processing device for the high voltage system of the electric vehicle.
  • the fault handling device for the high voltage system of an electric vehicle provided in any embodiment of the present application please refer to the fault handling device for the high voltage system of an electric vehicle provided in any embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动车高压系统的故障处理装置及电动车。其中,电动车高压系统包括至少一个关键部件和多个非关键部件,第一屏蔽开关与所有非关键部件的低压互锁电路并联连接;每一关键部件的高压用电电路以及多个非关键部件的高压用电电路并联连接于高压电源正极端和高压电源负极端之间;检测控制模块设置为在电动车高压系统产生高压故障时,控制第一屏蔽开关导通,并根据当前低压互锁回路中的电信号,确定关键部件是否发生高压故障;检测控制模块还设置为在关键部件未发生高压故障时,控制电池管理模块继续向关键部件提供高压电信号。

Description

电动车高压系统的故障处理装置及电动车
本申请要求申请日为2022年1月6日、申请号为202210008391.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动车高压系统故障检测技术,例如涉及一种电动车高压系统的故障处理装置及电动车。
背景技术
电动汽车保有量逐渐上升,与相关技术中的燃油车相比,电动车使用高压电池作为动力来源,且电动车内部有多个控制器用于实现高压上下电、车辆启动、行驶、充放电等功能,控制节点增多,使得整车的故障率提高,故障定位难度增加;此外,由于高压系统的危险性,高压系统故障检测尤为重要。
相关技术中的故障处理策略为多个控制器上报故障码及故障等级至整车控制器,整车控制器判断每个控制器的故障级别并执行相应的故障处理机制,当电动车发生高压系统故障时,整车控制器判断为严重故障并发出指令,断开高压继电器,切断高压回路,禁止高压系统上电。
但是,空调压缩机等非行驶必须的高压部件故障导致的高压系统故障也会禁止电动车的高压输出,无法高压上电,导致车辆无法行驶,影响车辆正常行驶。
发明内容
本申请提供了一种电动车高压系统的故障处理装置及电动车,能够解决由非行驶必须的高压部件故障导致的高压系统故障处理不合理问题,提高电动车的运行安全性和稳定性。
第一方面,本申请一实施例提供了一种电动车高压系统的故障处理装置,包括至少一个关键部件和多个非关键部件;所述电动车高压系统的故障处理装置包括:电池管理模块、检测控制模块和第一屏蔽开关;
所述电池管理模块包括低压电源正极端、低压电源负极端、高压电源正极端和高压电源负极端;所述关键部件的低压互锁电路与所述非关键部件的低压 互锁电路串联连接于所述低压电源正极端和所述低压电源负极端之间,以构成低压互锁回路;所述第一屏蔽开关与所有所述非关键部件的低压互锁电路并联连接;每一所述关键部件的高压用电电路以及所述多个非关键部件的高压用电电路并联连接于所述高压电源正极端和所述高压电源负极端之间;
所述检测控制模块设置为在所述电动车高压系统产生高压互锁故障时,控制所述第一屏蔽开关导通,并根据当前所述低压互锁回路中的电信号,确定所述关键部件是否发生高压互锁故障;
所述检测控制模块还设置为在所述关键部件未发生高压互锁故障时,控制所述电池管理模块继续向所述关键部件提供高压电信号。
第二方面,本申请一实施例还提供了一种电动车,包括:上述电动车高压系统的故障处理装置。
附图说明
图1为本申请一实施例提供的一种电动车高压系统的故障处理装置的拓扑图;
图2为本申请一实施例提供的又一种电动车高压系统的故障处理装置的拓扑图;
图3为本申请一实施例提供的又一种电动车高压系统的故障处理装置的拓扑图;
图4为本申请一实施例提供的又一种电动车高压系统的故障处理装置的拓扑图。
具体实施方式
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
本申请实施例提供一种电动车高压系统的故障处理装置,图1为本申请一实施例提供的一种电动车高压系统的故障处理装置的拓扑图。如图1所示,电动车高压系统10包括至少一个关键部件11和多个非关键部件12(图中示例性的示出 电动车高压系统10包括两个个关键部件11和两个非关键部件12)。
其中,关键部件11是指电动车行驶必须的高压部件,例如动力电池、前后电驱总成、整车控制器总成等高压部件;非关键部件12是指非行驶必须的高压部件,例如空调压缩机、车载充电机等高压部件。示例性,电动车高压系统10具有高压危险性,考虑到设备安全和人身安全,可以通过低压电信号来检查电动车上所有与高压电源正极端33和高压电源负极端34相连接的每个子回路的连接完整性,即检查每个高压部件(关键部件11、非关键部件12)的连接完整性。每个高压部件(关键部件11、非关键部件12)连接到电动车高压系统中时,每个高压部件(关键部件11、非关键部件12)的互锁电路相互串联导通,低压电信号沿着闭合的低压互锁回路传输,一旦低压电信号中断,说明其中的一个高压部件(关键部件11和/或非关键部件12)有松动、脱落或者内部故障的问题,激活互锁功能,电动车内部执行相应的高压系统的故障处理指令,并提醒用户出现了高压互锁故障。在一实施例中,高压系统故障包括高压互锁故障。
本申请一实施例中,电动车高压系统的故障处理装置20包括电池管理模块30、检测控制模块41和第一屏蔽开关51,其中,电池管理模块30包括低压电源正极端31、低压电源负极端32、高压电源正极端33和高压电源负极端34,低压电源正极端31和低压电源负极端32分别与低压电源电连接,高压电源正极端33和高压电源负极端34分别与高压电源电连接。关键部件11的低压互锁电路与非关键部件12的低压互锁电路串联连接于低压电源正极端31和低压电源负极端32之间,以构成低压互锁回路;每一关键部件11的高压用电电路以及每一非关键部件12的高压用电电路并联连接于高压电源正极端33和高压电源负极端44之间;第一屏蔽开关51与所有非关键部件12的低压互锁电路并联连接;检测控制模块41设置为在电动车高压系统10产生高压互锁故障时,控制第一屏蔽开关51导通,并根据当前低压互锁回路中的电信号,确定关键部件11是否发生高压互锁故障;检测控制模块41还设置为在关键部件11未发生高压互锁故障时,控制电池管理模块30继续向关键部件11提供高压电信号。
其中,第一屏蔽开关51可以为继电器、晶体管等电控制器,本实施例不做具体限定。第一屏蔽开关51导通时,所有非关键部件12的低压互锁电路两端短路,所有非关键部件12被第一屏蔽开关51屏蔽,所有非关键部件12的低压互锁电路不再接入低压互锁回路中。
在一实施例中,当电动车高压系统10产生高压互锁故障时,低压互锁回路 中断,低压互锁回路中检测不到低压电信号;在电动车高压系统10产生高压互锁故障后,检测控制模块41控制第一屏蔽开关51导通,所有非关键部件12的低压互锁电路不再接入低压互锁回路中,仅是所有关键部件11的低压互锁电路串联于低压互锁回路中,此时,若低压互锁回路中可检测到低压电信号,则说明低压互锁回路导通,电动车高压系统10的高压互锁故障是由被屏蔽的非关键部件12导致的,关键部件11未发生高压互锁故障,并且这个判断过程所用的时间非常短,可达到毫秒级别;判断关键部件11未发生高压互锁故障后,检测控制模块41可以控制电池管理模块30继续向关键部件11提供高压电信号,保证此时电动车高压系统10的所有关键部件11可正常高压上电,并不影响电动车的基本行驶功能。
在一实施例中,图1中仅是示例性的示出了检测控制模块41串联于低压互锁回路,检测控制模块41还可以仅通过一个检测端子电连接于低压互锁回路,本申请实施例对检测控制模块41的连接方式不做具体限定。
本申请实施例,通过设置第一屏蔽开关51与所有非关键部件12的低压互锁电路并联连接,以及检测控制模块41在电动车高压系统产生高压互锁故障时,控制第一屏蔽开关51导通,可以快速判断电动车高压系统的高压互锁故障的原因,快速定位高压互锁故障是在非关键部件12还是关键部件11,并在关键部件11未发生高压互锁故障时,仍可保证整车的关键部件可正常高压上电,并不影响电动车的行驶功能,本申请实施例的电动车高压系统的故障处理装置设计合理、简单、高效。
在一实施例中,继续参考图1,电池管理模块30设置有正极辅助开关61和负极辅助开关62,正极辅助开关61电连接于高压电源正极端33与每一非关键部件12的高压用电电路的正极端之间;负极辅助开关62电连接于高压电源负极端34与每一非关键部件12的高压用电电路的负极端之间。在电动车高压系统10上电时,正极辅助开关61和负极辅助62开关分别处于导通状态。
其中,正极辅助开关61和负极辅助开关62可以为继电器、晶体管等电控制器,本申请实施例不做具体限定。正极辅助开关61和负极辅助开关62中的至少一个可以控制所有非关键部件12是否接入电动车高压系统10,若正极辅助开关61和负极辅助开关62同时导通时,所有非关键部件12接入电动车高压系统10,当电动车高压系统10上电时,所有非关键部件12也上电;若正极辅助开关61和负极辅助开关62中的至少一个断开时,所有非关键部件12未接入电动车高压系 统10,当电动车高压系统10上电时,所有非关键部件12不再上电。
在一实施例中,在电动车高压系统10上电时,正极辅助开关61和负极辅助开关62处于导通状态,检测电动车高压系统10是否产生高压故障。通过在电池管理模块中设置正极辅助开关61和负极辅助开关62,可以控制非关键部件12是否接入电动汽车高压系统10,增加了电动车高压系统10的可控性。
在一实施例中,检测控制模块41还设置为在关键部件11未发生高压互锁故障时,控制正极辅助开关61和负极辅助62中的至少一个开关断开,以停止向各非关键部件12提供高压电信号。
在一实施例中,若电动车高压系统10产生高压互锁故障时,检测控制模块41控制第一屏蔽开关51导通,低压互锁回路中可检测到低压电信号,则说明电动车高压系统10的高压互锁故障是由被屏蔽的非关键部件12导致的,关键部件11未发生高压互锁故障,则检测模块41可控制正极辅助开关61和负极辅助开关62中的至少一个断开,即电池管理模块30不再向发生高压互锁故障的非关键部件12提供高压电信号,而仅向未发生高压互锁故障的关键部件11提供高压电信号,仅是电动车高压系统10的非关键部件12不再上电,关键部件11可正常高压上电,并不影响电动车的基本行驶功能。
本申请实施例,通过在非关键部件发生高压互锁故障且关键部件未发生高压互锁时,控制正极辅助开关和负极辅助开关中的至少一个断开,可以在电动汽车高压系统上电时控制非关键部件12不再上电,电池管理模块不再向非关键部件12提供高压电信号,停止使用非关键部件12,但是不影响关键性部件11的使用,从而保证了电动车高压系统的故障处理装置设计合理、简单、高效。
在一实施例中,高压系统故障除包括高压互锁故障外,还可以包括高压绝缘故障,而本申请实施例还可以对关键部件11和非关键部件12中的至少一个的高压绝缘故障进行检测,并基于此控制车辆的行驶状态。
在一实施例中,检测控制模块41还设置为在电动车高压系统10产生高压绝缘故障时,控制正极辅助开关61和负极辅助开关62中的至少一个断开,并根据当前高压电源处的电信号,确定关键部件11是否发生高压绝缘故障;检测控制模块41还设置为在关键部件11未发生高压绝缘故障时,控制电池管理模块30继续向关键部件11提供高压电信号。
在一实施例中,考虑到设备安全和人身安全,可以通过检测控制模块41实时监测电动车高压系统10的绝缘情况,当电动车高压系统10产生高压绝缘故障 时,电动车高压系统10的绝缘阻值小于预先定义的报警值,此时可能是其中一个或者几个高压部件和车身存在短路,说明车身有存在漏电流的可能,会危及设备和用户。在检测到电动车高压系统10有高压绝缘故障时,电动车内部执行相应的高压系统的故障处理指令,并提醒用户电动车高压系统10产生了高压绝缘故障。在电动车高压系统10产生高压绝缘故障后,检测控制模块41控制正极辅助开关61和负极辅助开关62中的至少一个断开,所有非关键部件12未接入电动车高压系统10,仅是所有关键部件11接入电动车高压系统10,此时,电动车高压系统10的绝缘阻值提高,不再小于报警值,则说明电动车高压系统10的高压绝缘故障解除,电动车高压系统10的高压互锁绝缘是由非关键部件12导致的,关键部件11未发生高压绝缘故障,保持正极辅助开关61和负极辅助开关62中的至少一个断开;判断关键部件11未发生高压绝缘故障后,正极辅助开关61和负极辅助开关62中的至少一个断开,电池管理模块30不再向非关键部件12提供高压电信号,但是检测控制模块41可以控制电池管理模块30继续向关键部件11提供高压电信号,保证此时电动车的所有关键部件11可正常高压上电,并不影响电动车的基本行驶功能。
本申请实施例通过设置检测控制模块41以及正极辅助开关61和负极辅助开关62,并在电动车高压系统产生高压绝缘故障时,通过检测控制模块41控制正极辅助开关61和负极辅助开关62中的至少一个断开,可以快速判断电动车高压系统的高压绝缘故障的原因,快速定位高压绝缘故障是在非关键部件还是关键部件,并在关键部件11发生高压绝缘故障且关键部件11未发生高压绝缘故障时,正极辅助开关61和负极辅助开关62中的至少一个断开,可以在电动汽车高压系统上电时控制非关键部件12不再上电,电池管理模块不再向非关键部件12提供高压电信号,停止使用非关键部件12,但仍可保证整车的关键部件11可正常高压上电,并不影响电动车的行驶功能,本申请的实施例提供的电动车高压系统的故障处理装置设计合理、简单、高效。
在一实施例中,继续参考图1,电池管理模块31还包括正极主开关63和负极主开关64,正极主开关63电连接于高压电源与高压电源正极端33之间,负极主开关64电连接于高压电源与高压电源负极端34之间;在电动车高压系统10上电时,正极主开关63和负极主开关64处于导通状态。
其中,正极主开关63和负极主开关64可以为继电器、晶体管等电控制器,本申请实施例不做具体限定。正极主开关63和负极主开关64中的至少一个可以 控制所有关键部件11和所有非关键部件12是否接入电动车高压系统10,若正极主开关63和负极主开关64同时导通时,所有关键部件11和所有非关键部件12接入电动车高压系统10,当电动车高压系统10上电时,所有关键部件11和所有非关键部件12也上电;若正极主开关63和负极主开关64中的至少一个断开时,所有关键部件11和所有非关键部件12未接入电动车高压系统10,当电动车高压系统10上电时,所有关键部件11和所有非关键部件12不再上电。
在一实施例中,在电动车高压系统10上电时,正极主开关63和负极主开关64处于导通状态,检测电动车高压系统10是否产生高压故障。通过在电池管理模块中设置正极主开关63和负极主开关64,可以控制所有高压部件是否接入电动汽车高压系统10,增加了电动车高压系统10的可控性。
在一实施例中,检测控制模块41还设置为在关键部件11产生高压互锁故障和高压绝缘故障中的至少一种时,控制正极主开关63和负极主开关64中的至少一个断开。
在一实施例中,电动车高压系统10产生高压互锁故障,检测控制模块41控制第一屏蔽开关51导通,所有非关键部件12不再接入低压互锁回路中,仅是所有关键部件11的低压互锁电路串联于低压互锁回路中,此时,若电动车高压系统10仍产生了高压互锁故障,则说明电动车高压系统10的高压互锁故障是由关键部件11导致的,此时检测控制模块41控制正极主开关63和/或负极主开关64断开,关键部件11以及非关键部件12不再上电,以保护设备安全和用户安全。电动车高压系统10产生高压绝缘故障,检测控制模块41控制正极辅助开关61和/或负极辅助开关62断开,所有非关键部件12未接入电动车高压系统10,仅是所有关键部件11接入电动车高压系统10,此时,若电动车高压系统10仍产生了高压绝缘故障,则说明电动车高压系统10的高压绝缘故障是由的关键部件11导致的,此时检测控制模块41控制正极主开关63和/或负极主开关64断开,关键部件11以及非关键部件12不再上电,以保护设备安全和用户安全。
在一实施例中,若引起电动车高压系统产生高压互锁故障和高压绝缘故障中的至少一种故障的高压部件属于非关键部件,则高压互锁故障和高压绝缘故障中的至少一种故障属于规避级别的高压故障,通过控制电池管理模块停止向非关键部件提供电信号即可停止使用非关键部件的功能,但不影响电动车的基本行驶功能;若引起电动车高压系统产生高压互锁故障和高压绝缘故障中的至少一种故障的高压部件属于关键部件,则高压互锁故障和高压绝缘故障中的至 少一种故障属于停驶级别的高压故障,需要控制电池管理模块同时停止向关键部件以及非关键部件提供电信号,电动车不再具备基本的行驶功能。在一实施例中,对于处于高速行驶过程中的电动车,例如车速大于5km/h的电动车,若关键部件产生了高压互锁故障和高压绝缘故障中的至少一种故障时,并不会控制电动车刹停,仍可以控制电动车保持行驶状态至缓慢停下,但是在下一次点火循环时,电动车高压系统中的关键部件和非关键部件均无法上电,直至高压系统故障消除。
在本申请实施例中,在关键部件产生高压互锁故障和高压绝缘故障中的至少一种时,检测控制模块控制正极主开关和负极主开关中的至少一个断开,使得关键部件以及非关键部件不再上电,可以保护设备安全和用户安全。
在一实施例中,图2为本申请的一实施例提供的又一种电动车高压系统的故障处理装置的拓扑图,如图2所示,电动车高压系统10的故障处理装置20还包括与多个非关键部件12一一对应的多个第一控制开关65、以及与多个非关键部件12一一对应的多个第二控制开关66;第一控制开关65的电连接于对应的非关键部件12的高压电路正极端与高压电源正极端33之间,第二控制开关66电连接于对应的非关键部件12的高压电路负极端与高压电源负极端34之间。
其中,第一控制开关65和第二控制开关66可以为继电器、晶体管等电控制器,本申请实施例不做具体限定。第一控制开关65和第二控制开关66可以控制对应的非关键部件12是否接入电动车高压系统10,若第一控制开关65和第二控制开关66同时导通时,对应的非关键部件12接入电动车高压系统10,当电动车高压系统10上电时,该非关键部件12也上电;若第一控制开关65和第二控制开关66中的至少一个断开时,该非关键部件12未接入电动车高压系统10,当电动车高压系统10上电时,该非关键部件12不再上电。在一实施例中,在电动车高压系统10上电时,所有第一控制开关65和所有第二控制开关66处于导通状态,检测电动车高压系统10是否产生高压故障。通过设置与多个非关键部件12一一对应的多个第一控制开关65、以及与多个非关键部件12一一对应的多个第二控制开关66,可以控制每个非关键部件12是否接入电动汽车高压系统10,进一步增加了电动车高压系统10的可控性。
在一实施例中,继续参考图2,检测控制模块41还设置为在关键部件11未发生高压绝缘故障时,依次控制与每一非关键部件12对应的第一控制开关65和第二控制开关66断开,并根据当前高压电源处的电信号,确定发生高压绝缘故障 的非关键部件12。其中,以非关键部件12包括第一非关键部件121和第二非关键部件122为例进行说明。
在一实施例中,在电动车高压系统10产生高压绝缘故障,且关键部件11未发生高压绝缘故障时,说明非关键部件12中的其中一个或几个发生了高压绝缘故障。检测控制模块41可控制正极辅助开关61和负极辅助开关62均导通,控制第一非关键部件121对应的第一控制开关65和第二控制开关66中的至少一个断开,第一非关键部件12未接入电动车高压系统10,此时,若电动车高压系统10的高压绝缘故障解除,则说明电动车高压系统10的高压绝缘故障是由第一非关键部件121导致的,保持第一非关键部件121对应的第一控制开关65和第二控制开关66中的至少一个断开,电池管理模块30不再向第一非关键部件121提供高压电信号,但是控制电池管理模块30可以继续向关键部件11以及第一非关键部件121之外的其他非关键部件提供高压电信号,保证此时电动车的未发生高压绝缘故障的高压部件均可正常高压上电,并不影响电动车的其他高压部件的正常使用。若在第一非关键部件121对应的第一控制开关65和第二控制开关66中的至少一个断开后,电动车高压系统10的高压绝缘故障没有解除,则检测控制模块41可以控制与第二非关键部件122对应的第一控制开关65和第二控制开关66中的至少一个断开,此时,若电动车高压系统10的高压绝缘故障解除,则说明电动车高压系统10的高压绝缘故障是由第二非关键部件122导致的,或者,是由第二非关键部件122及第一非关键部件121共同导致的;检测控制模块41控制第一非关键部件121对应的第一控制开关65和第二控制开关66中的至少一个导通,若电动车高压系统10的高压绝缘故障解除,则说明电动车高压系统10的高压绝缘故障是由第二非关键部件122导致的,若电动车高压系统10的高压绝缘故障没有解除,则说明电动车高压系统10的高压绝缘故障是由第二非关键部件122及第一非关键部件121共同导致的;若电动车高压系统10的高压绝缘故障是由第二非关键部件122导致的,保持第二非关键部件122对应的第一控制开关65和第二控制开关66中的至少一个断开,若电动车高压系统10的高压绝缘故障是由第二非关键部件122及第一非关键部件121共同导致的,控制与第一非关键部件121以及第二非关键部件122对应的第一控制开关65和第二控制开关66中的至少一个断开。
在一实施例中,非关键部件还可以包括第三非关键部件、第四非关键部件等多个非关键部件,本申请实施例对非关键部件的个数不做具体先限定。若与第一非关键部件121以及第二非关键部件122对应的第一控制开关65和第二控制 开关66中的至少一个断开后,电动车高压系统的高压绝缘故障没有解除,则检测控制模块可以控制第三非关键部件对应的第一控制开关和第二控制开关中的至少一个断开;若电动车高压系统的高压绝缘故障解除,则说明电动车高压系统的高压绝缘故障是由第一非关键部件、第二非关键部件和第三非关键部件中的一个、两个或者三个导致的,控制第三非关键部件之外的第一非关键部件和第二非关键部件对应的第一控制开关和第二控制开关中的至少一个导通,并根据当前高压电源处的电信号,确定发生高压绝缘故障的非关键部件。若与第三非关键部件对应的第一控制开关和第二控制开关中的至少一个断开后,电动车高压系统的高压绝缘故障没有解除,则检测控制模块可以控制与第四非关键部件对应的第一控制开关和第二控制开关中的至少一个断开,直至确定发生高压绝缘故障的非关键部件。
本申请的实施例,在非关键部件发生高压绝缘故障且关键部件未发生高压绝缘故障时,通过检测控制模块依次控制与每一非关键部件对应的第一控制开关和第二控制开关中的至少一个断开,结合当前高压电源处的电信号,可以锁定包括引起电动车高压系统产生高压绝缘故障的非关键部件的区域;然后控制区域中的非关键部件对应的第一控制开关和第二控制开关中的至少一个依次导通,可以精准定位到引起电动车高压系统产生高压绝缘故障的非关键部件;还可以通过检测控制模块控制引起电动车高压系统产生高压绝缘故障的非关键部件对应的第一控制开关和第二控制开关中的至少一个断开,将发生高压绝缘故障的非关键部件从电动车高压系统中隔离,保证电动车高压系统的安全,而其他未发生高压绝缘故障的高压部件可正常上电,用户可继续使用未发生高压绝缘故障的高压部件的功能;并且通过精准定位引起电动车高压系统产生高压绝缘故障的非关键部件,使得维修时无需对分关键部件进行排查,提高了维修效率。
在一实施例中,继续参考图2,电动车高压系统10的故障处理装置20还包括多个第二屏蔽开关52,每一第二屏蔽开关52一一对应地与一个非关键部件12的低压互锁电路并联连接。其中,以非关键部件12包括第一非关键部件121和第二非关键部件122为例进行说明,第二屏蔽开关521与第一非关键部件121的低压互锁电路并联连接,第二屏蔽开关522与第二非关键部件122的低压互锁电路并联连接。第二屏蔽开关52可以为继电器、晶体管等电控制器,本申请实施例不做具体限定。
在一实施例中,继续参考图2,检测控制模块41还设置为在关键部件11未发生高压互锁故障时,依次控制每一第二屏蔽开关52导通,并根据每一第二屏蔽开关52闭合时当前低压互锁回路的电信号,确定发生高压互锁故障的非关键部件12;检测控制模块41还设置为在确定发生高压互锁故障的非关键部件12时,控制与发生高压互锁故障的非关键部件12对应的所述第一控制开关65和第二控制开关66中的至少一个断开,以及控制与未发生高压互锁故障的非关键部件12对应的第一控制开关65和第二控制开关66导通。
在一实施例中,在电动车高压系统10产生高压互锁故障,且关键部件11未发生高压互锁故障时,说明非关键部件12中的其中一个或几个发生了高压互锁故障。检测控制模块41可控制第一屏蔽开关断开,并控制与第一非关键部件121的低压互锁电路并联连接的第二屏蔽开关521导通,第一非关键部件121的低压互锁电路不再接入低压互锁回路中,此时,若低压互锁回路中可检测到低压电信号,低压互锁回路导通,则说明电动车高压系统10的高压互锁故障是由被屏蔽的第一非关键部件121导致的,检测控制模块41控制与第一非关键部件121对应的第一控制开关65和第二控制开关66中的至少一个断开,控制与未发生高压互锁故障的非关键部件12对应的第一控制开关65和第二控制开关66导通,电池管理模块30不再向第一非关键部件121提供高压电信号,但是电池管理模块30可以继续向关键部件11以及第一非关键部件121之外的其他非关键部件提供高压电信号,保证此时电动车的未发生高压互锁故障的高压部件均可正常高压上电,并不影响电动车的其他高压部件的正常使用。若在第二屏蔽开关521导通后,电动车高压系统10的高压互锁故障没有解除,则检测控制模块41可以控制与第二非关键部件122的低压互锁电路并联连接的第二屏蔽开关522导通,此时,若电动车高压系统10的高压互锁故障解除,则说明电动车高压系统10的高压互锁故障是由第二非关键部件122导致的,或者,是由第二非关键部件122及第一非关键部件121共同导致的;检测控制模块41控制与第一非关键部件121的低压互锁电路并联连接的第二屏蔽开关521断开,若电动车高压系统10的高压绝缘故障解除,则说明电动车高压系统10的高压互锁故障是由第二非关键部件122导致的,若电动车高压系统10的高压绝缘故障没有解除,则说明电动车高压系统10的高压互锁故障是由第二非关键部件122及第一非关键部件121共同导致的;若电动车高压系统10的高压互锁故障是由第二非关键部件122导致的,控制与第二非关键部件122对应的第一控制开关65和第二控制开关66中的至少一个断开,若电动 车高压系统10的高压互锁故障是由第二非关键部件122及第一非关键部件121共同导致的,控制与第一非关键部件121以及第二非关键部件122对应的第一控制开关65和第二控制开关66中的至少一个断开。
在一实施例中,若与第一非关键部件以及第二非关键部件的低压互锁电路并联连接的第二屏蔽开关导通后,电动车高压系统的高压绝绝缘故障没有解除,则检测控制模块可以控制与第三非关键部件的低压互锁电路并联连接的第二屏蔽开关导通;若电动车高压系统的高压互锁故障解除,则说明电动车高压系统的高压互锁故障是由第一非关键部件、第二非关键部件和第三非关键部件中的一个、两个或者三个导致的,控制与第三非关键部件之外的第一非关键部件和二非关键部件中的至少一个的低压互锁电路并联连接的第二屏蔽开关断开,并根据当前低压互锁回路的电信号,确定发生高压互锁故障的非关键部件。若与第三非关键部件的低压互锁电路并联连接的第二屏蔽开关导通后,电动车高压系统的高压互锁故障没有解除,则检测控制模块可以控制与第四非关键部件的低压互锁电路并联连接的第二屏蔽开关导通,直至确定发生高压绝缘故障的非关键部件。
本申请实施例,在非关键部件发生高压互锁故障且关键部件未发生高压互锁故障时,通过检测控制模块依次控制与每一非关键部件的低压互锁电路并联连接的第二屏蔽开关导通,结合当前低压互锁回路的电信号,可以锁定包括引起电动车高压系统产生高压互锁故障的非关键部件的区域;然后控制与区域中的非关键部件的低压互锁电路并联连接的第二屏蔽开关依次断开,可以精准定位到引起电动车高压系统产生高压互锁故障的非关键部件;还可以通过检测控制模块控制引起电动车高压系统产生高压互锁故障的非关键部件对应的第一控制开关和第二控制开关中的至少一个断开,将发生高压互锁故障的非关键部件从电动车高压系统中隔离,保证电动车高压系统的安全,而其他未发生高压绝缘故障的高压部件可正常上电,用户可继续使用未发生高压绝缘故障的高压部件的功能;并且通过精准定位引起电动车高压系统产生高压绝缘故障的非关键部件,使得维修时无需对分关键部件进行排查,提高了维修效率。
在一实施例中,图3为本申请一实施例提供的又一种电动车高压系统的故障处理装置的拓扑图,如图3所示,检测控制模块41集成于电池管理模块30中。
在一实施例中,检测控制模块41集成于电池管理模块30中,可以在电动车高压系统10产生高压故障时,及时定位发生高压故障的高压部件,并及时控制 电池管理模块30停止向发生高压故障的高压部件提供电信号,整个定位及处理周期可达到毫秒级别,可以及时保护电动车的设备安全及用户安全。
在一实施例中,图4为本申请一实施例提供的又一种电动车高压系统的故障处理装置的拓扑图,如图4所示,电动车高压系统的故障处理装置还包括系统控制器40,系统控制器40分别与关键部件11的低压互锁电路和非关键部件12的低压互锁电路电连接,检测控制模块41集成与系统控制器40中。
在一实施例中,系统控制器40可以是车辆的总控制器,对于其他非行驶必须控制器导致的无法上电、无法下电、预充超时等故障可采用上述处理策略,判断出引起故障部件为非关键部件12时,电动车高压系统10仍具有基本的行驶功能,特别的,对于四驱的新能源动力系统,当其中一个电驱发生故障时,也可通过控制故障电驱的方式控制开关断开,使得电池管理模块停止向故障电驱提供电信号,不影响另一电驱正常功能,从而使车辆具有跛行模式,可以以两驱的形式继续行驶。
基于同一发明构思,本申请一实施例还提供了一种电动车,电动车包括电动车高压系统和本申请任意实施例所述的电动车高压系统的故障处理装置。本申请实施例提供的电动车可执行本申请任意实施例所提供的电动车高压系统的故障处理装置中的相关操作。
本申请一实施例提供的电动车,可以在电动车高压系统出现高压故障时,通过第一屏蔽开关、正极辅助开关和负极辅助快速判断关键部件是否发生高压故障,若关键部件未发生高压故障,可以控制电动车高压系统的所有关键部件可正常高压上电,并不影响电动车的基本行驶功能;若关键部件未发生高压故障,还可以通过第二屏蔽开关、第一控制开关和第二控制开关,精准定位引起电动车高压系统出现高压故障的非关键部件,并控制电池管理模块停止向发生高压故障的非关键部件提供高压电信号,而其他未发生高压绝缘故障的高压部件可正常上电,用户可继续使用未发生高压绝缘故障的高压部件的功能;并且通过精准定位引起电动车高压系统产生高压绝缘故障的非关键部件,使得维修时无需对分关键部件进行排查,提高了维修效率。
上述实施例中提供的电动车可执行本申请任意实施例所提供的电动车高压系统的故障处理装置中的相关操作,具备电动车高压系统的故障处理装置中相应的功能模块和有益效果。未在上述实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的电动车高压系统的故障处理装置。

Claims (12)

  1. 一种电动车高压系统的故障处理装置,其中,所述电动车高压系统包括至少一个关键部件和多个非关键部件;
    所述电动车高压系统的故障处理装置包括:电池管理模块、检测控制模块和第一屏蔽开关;
    所述电池管理模块包括低压电源正极端、低压电源负极端、高压电源正极端和高压电源负极端;
    所述关键部件的低压互锁电路与所述非关键部件的低压互锁电路串联连接于所述低压电源正极端和所述低压电源负极端之间,以构成低压互锁回路;
    所述第一屏蔽开关与所有所述非关键部件的低压互锁电路并联连接;
    每一所述关键部件的高压用电电路以及所述多个非关键部件的高压用电电路并联连接于所述高压电源正极端和所述高压电源负极端之间;
    所述检测控制模块设置为在所述电动车高压系统产生高压互锁故障时,控制所述第一屏蔽开关导通,并根据当前所述低压互锁回路中的电信号,确定所述关键部件是否发生高压互锁故障;
    所述检测控制模块还设置为在所述关键部件未发生高压互锁故障时,控制所述电池管理模块继续向所述关键部件提供高压电信号。
  2. 根据权利要求1所述的电动车高压系统的故障处理装置,其中,所述电池管理模块设置有正极辅助开关和负极辅助开关;所述正极辅助开关电连接于所述高压电源正极端与每一所述非关键部件的高压用电电路的正极端之间;所述负极辅助开关电连接于所述高压电源负极端与所述多个非关键部件的高压用电电路的负极端之间;
    所述正极辅助开关和所述负极辅助开关设置为在所述电动车高压系统上电时,处于导通状态。
  3. 根据权利要求2所述的电动车高压系统的故障处理装置,其中,所述检测控制模块还设置为在所述关键部件未发生高压互锁故障时,控制所述正极辅助开关和所述负极辅助开关中的至少一个断开,以停止向所述多个非关键部件提供所述高压电信号。
  4. 根据权利要求2所述的电动车高压系统的故障处理装置,其中,所述检测控制模块还设置为在所述电动车高压系统产生高压绝缘故障时,控制所述正极辅助开关和负极辅助开关中的至少一个断开,并根据当前高压电源处的电信号,确定所述关键部件是否发生高压绝缘故障;
    所述检测控制模块还设置为在所述关键部件未发生高压绝缘故障时,控制所述电池管理模块继续向所述关键部件提供高压电信号。
  5. 根据权利要求4所述的电动车高压系统的故障处理装置,还包括:与多个所述非关键部件一一对应的多个第一控制开关、以及与多个所述非关键部件一一对应的多个第二控制开关;
    所述第一控制开关电连接于所述非关键部件的高压电路正极端与所述高压电源正极端之间;所述第二控制开关电连接于所述非关键部件的高压电路负极端与所述高压电源负极端之间。
  6. 根据权利要求5所述的电动车高压系统的故障处理装置,其中,所述检测控制模块还设置为在所述关键部件未发生高压绝缘故障时,依次控制与所述多个非关键部件对应的所述第一控制开关和所述第二控制开关中的至少一个断开,并根据当前所述高压电源处的电信号,确定发生高压绝缘故障的所述非关键部件。
  7. 根据权利要求5所述的电动车高压系统的故障处理装置,还包括多个第二屏蔽开关,每一所述第二屏蔽开关一一对应地与所述多个非关键部件的低压互锁电路并联连接;
    所述检测控制模块还设置为在所述关键部件未发生高压互锁故障时,依次控制每一所述第二屏蔽开关导通,并根据每一所述第二屏蔽开关闭合时当前所述低压互锁回路的电信号,确定发生高压互锁故障的所述非关键部件;
    所述检测控制模块还设置为在确定发生高压互锁故障的所述非关键部件时,控制与发生高压互锁故障的所述非关键部件对应的所述第一控制开关和所述第二控制开关中的至少一个断开,以及控制与未发生高压互锁故障的所述非关键部件对应的所述第一控制开关和所述第二控制开关导通。
  8. 根据权利要求4所述的电动车高压系统的故障处理装置,其中,所述电池管理模块还包括正极主开关和负极主开关;所述正极主开关电连接于所述高压电源与所述高压电源正极端之间,所述负极主开关电连接于所述高压电源与所述高压电源负极端之间;
    所述正极主开关和所述负极主开关设置为在所述电动车高压系统上电时,处于导通状态。
  9. 根据权利要求8所述的电动车高压系统的故障处理装置,中,所述检测控制模块还设置为发生在所述关键部件产生高压互锁故障和所述负极主开关断 开中的至少一种情况。
  10. 根据权利要求1所述的电动车高压系统的故障处理装置,其中,所述检测控制模块集成于所述电池管理模块中。
  11. 根据权利要求1所述的电动车高压系统的故障处理装置,还包括系统控制器;所述系统控制器分别与所述关键部件的低压互锁电路和所述非关键部件的低压互锁电路电连接;所述检测控制模块集成于所述系统控制器中。
  12. 一种电动车,包括:电动车高压系统和权利要求1-11任一项所述的电动车高压系统的故障处理装置。
PCT/CN2022/140013 2022-01-06 2022-12-19 电动车高压系统的故障处理装置及电动车 WO2023130945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210008391.6A CN114347792B (zh) 2022-01-06 2022-01-06 一种电动车高压系统的故障处理装置及电动车
CN202210008391.6 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023130945A1 true WO2023130945A1 (zh) 2023-07-13

Family

ID=81107382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140013 WO2023130945A1 (zh) 2022-01-06 2022-12-19 电动车高压系统的故障处理装置及电动车

Country Status (2)

Country Link
CN (1) CN114347792B (zh)
WO (1) WO2023130945A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347792B (zh) * 2022-01-06 2023-05-26 中国第一汽车股份有限公司 一种电动车高压系统的故障处理装置及电动车
CN115723576A (zh) * 2022-12-09 2023-03-03 潍柴动力股份有限公司 一种车辆低压电源的亏电保护系统、控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106985673A (zh) * 2017-05-18 2017-07-28 深圳市瀚路新能源汽车有限公司 高压配电盒及高压互锁回路保护装置
CN108327538A (zh) * 2017-12-29 2018-07-27 北京智行鸿远汽车有限公司 重度绝缘故障可自动恢复的故障处理方法及新能源汽车
US20200017042A1 (en) * 2018-07-11 2020-01-16 Ford Global Technologies, Llc Vehicle power supply with load shed interlock
CN211416976U (zh) * 2019-12-31 2020-09-04 湖南汽车工程职业学院 一种电动汽车高压互锁系统
CN114347792A (zh) * 2022-01-06 2022-04-15 中国第一汽车股份有限公司 一种电动车高压系统的故障处理装置及电动车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106985673A (zh) * 2017-05-18 2017-07-28 深圳市瀚路新能源汽车有限公司 高压配电盒及高压互锁回路保护装置
CN108327538A (zh) * 2017-12-29 2018-07-27 北京智行鸿远汽车有限公司 重度绝缘故障可自动恢复的故障处理方法及新能源汽车
US20200017042A1 (en) * 2018-07-11 2020-01-16 Ford Global Technologies, Llc Vehicle power supply with load shed interlock
CN211416976U (zh) * 2019-12-31 2020-09-04 湖南汽车工程职业学院 一种电动汽车高压互锁系统
CN114347792A (zh) * 2022-01-06 2022-04-15 中国第一汽车股份有限公司 一种电动车高压系统的故障处理装置及电动车

Also Published As

Publication number Publication date
CN114347792A (zh) 2022-04-15
CN114347792B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2023130945A1 (zh) 电动车高压系统的故障处理装置及电动车
CN107662499B (zh) 纯电动汽车整车故障下电控制方法及系统
US7966110B2 (en) High-voltage vehicle fault detection method and apparatus
US7586722B2 (en) High voltage interlock system and control strategy
CN109649216B (zh) 驱动电池的自动连接
CN101318475A (zh) 用于车辆的简化的自动放电功能
CN112937300A (zh) 用于充电器接触器双焊接检测的系统和方法
CN111806236A (zh) 用于充电接触器焊接检查的系统和方法
CN108493904A (zh) 用于车用电机关断的igbt安全关断系统及方法
CN110154765B (zh) 一种串联混合动力车辆高压上下电控制策略
KR20130084875A (ko) 릴레이 제어신호 독립 모니터링 장치 및 방법
JP2002142353A (ja) 組電池
CN207875401U (zh) 高压互锁检测系统
CN111699605B (zh) 电池控制装置
CN214324892U (zh) 一种高压互锁电路、电池管理系统及车辆
CN211416976U (zh) 一种电动汽车高压互锁系统
JP5067359B2 (ja) 電子制御システムの故障診断装置
CN110962603B (zh) 控制模块、电池管理系统、电路检测及控制方法
WO2018045848A1 (zh) 多旋翼载人飞行器电源的反馈控制方法及装置
CN111746284B (zh) 一种电动汽车的高压保护方法
CN114290906A (zh) 一种高压控制装置、控制方法和飞行器
TWI683212B (zh) 鋰離子電池全方位安全監控系統及其方法
CN113928123B (zh) 一种车辆高压互锁系统
KR101887441B1 (ko) 배터리 셀의 과충전 보호 장치 및 방법
CN219706697U (zh) 电池管理系统、汽车供电系统及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918390

Country of ref document: EP

Kind code of ref document: A1