WO2023130595A1 - 一种阻燃防风絮片及其制备方法 - Google Patents

一种阻燃防风絮片及其制备方法 Download PDF

Info

Publication number
WO2023130595A1
WO2023130595A1 PCT/CN2022/084906 CN2022084906W WO2023130595A1 WO 2023130595 A1 WO2023130595 A1 WO 2023130595A1 CN 2022084906 W CN2022084906 W CN 2022084906W WO 2023130595 A1 WO2023130595 A1 WO 2023130595A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
retardant
fiber
windproof
wadding
Prior art date
Application number
PCT/CN2022/084906
Other languages
English (en)
French (fr)
Inventor
杨艳
杨涛
Original Assignee
杨艳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨艳 filed Critical 杨艳
Priority to US18/001,533 priority Critical patent/US20240011196A1/en
Priority to EP22918060.9A priority patent/EP4361332A1/en
Publication of WO2023130595A1 publication Critical patent/WO2023130595A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/08Supporting spinnerettes or other parts of spinnerette packs
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the invention relates to the technical field of fiber products, in particular to a flame-retardant windproof flake and a preparation method thereof.
  • Flocks refer to sheet-shaped sponges made of plant fibers, animal fibers or chemical fibers for warmth, heat insulation or shock resistance.
  • all kinds of flakes are available in the market, including flame retardant, windproof, warm, antibacterial and so on.
  • multi-layer (at least 3-layer) structures are often adopted in the production process of flakes, which need to be extruded layer by layer during preparation and stacked. The production of flakes in this way will lead to complex production process and low efficiency of flakes on the one hand, and on the other hand, it will increase the possibility of falling off between the flake structural layers, causing the actual effect to fail to meet expectations.
  • the invention patent of application number 202110758929.0 "An antibacterial, flame-retardant and warm-keeping flake and its preparation method" provides an antibacterial, flame-retardant and warm-keeping flake prepared by melt blending and co-extrusion, but the inter-fiber Blends poorly and falls off easily.
  • the invention patent of application number 201910140874.X “Phase-change thermal insulation wadding and its preparation method” provides wadding, which is a moisture-conducting fiber mesh layer, a thermal storage fiber mesh layer, and a heat-insulating fiber mesh layer connected to each other by non-woven needle punching. It is composed of fiber net layers, but the distribution between the fiber net layers is not uniform, which seriously affects the thermal insulation effect.
  • the invention patent of application number 201811023385.8 "A Permanent Flame-Retardant and Warm-keeping Carbonized Wadding and Its Preparation Method” provides the flakes made of a variety of fibers, but it is still not layered. It needs a carding machine to comb, the process is complicated, and the layered structure is easy to fall off.
  • the object of the present invention is to provide a flame-retardant and wind-proof flake with simple and efficient preparation method, good flame-retardant and wind-proof effect, and not easy to fall off.
  • the invention provides a flame-retardant windproof wadding, which is obtained by interweaving and compounding at least one polyester fiber in the spinning stage by using a polymer containing imide rings as a base material.
  • the polymer containing imide rings is polyimide fiber.
  • Polyimide fiber has good spinnability and can be made into various textiles for special occasions. Compared with other fibers, it is an excellent heat insulation material due to its high temperature resistance, flame retardancy, non-melting drop characteristics, self-extinguishing characteristics from fire and excellent temperature insulation characteristics.
  • the base material of the windproof batting can effectively interweave with other types of fibers to produce better effects.
  • the polyimide fiber is one of aliphatic polyimide fiber, semi-aromatic polyimide fiber and aromatic polyimide fiber or Various.
  • the degree of polymerization of the polyimide fibers is 20-300.
  • the degree of polymerization may be 20, 50, 100, 150, 200, 250, 300.
  • the polyester fiber is selected from one or more of flame-retardant viscose fibers, flame-retardant polyester fibers, flame-retardant polyester hollow fibers and low-melting composite fibers.
  • Flame-retardant viscose fiber is usually prepared by adding a flame retardant to viscose fiber. It can also be used as a flake substrate, and the effect is slightly lower than that of polyimide fiber (the main reason is that the viscose fiber can be spun However, with polyimide fiber as the base material and a certain amount of flame-retardant viscose fiber added, the common characteristics of the two can be brought into play, and the flame-retardant and heat-retaining performance of the flakes is further improved.
  • Flame-retardant polyester fibers and flame-retardant polyester hollow fibers are both modified flame-retardant polyesters. They have good flame-retardant effects. When they are overfired, they only melt and do not burn. Flame-retardant materials, but the traditional flame-retardant polyester, the preparation process is complicated, the amount of addition is too high, resulting in extremely high cost, and because of the characteristics of flame-retardant polyester itself, its texture is poor, which cannot meet the needs.
  • Low melting point composite fiber refers to the low melting point fiber produced by composite spinning of polyester and modified polyester, which can be melted and bonded with other fibers at a lower temperature, and its adhesiveness, processability and elasticity are better than ordinary fibers. fiber.
  • the polyimide fiber in parts by weight, is 12-28 parts, and the polyester fiber is 38-66 parts.
  • polyimide fiber is 12 parts, 15 parts, 18 parts, 22 parts, 25 parts, 28 parts; polyester fiber is 38 parts, 45 parts, 50 parts, 55 parts, 60 parts, 66 parts.
  • flame-retardant windproof wadding in the polyester fiber, in parts by weight, 27-33 parts of flame-retardant viscose fiber, 3-13 parts of flame-retardant polyester fiber, 3-13 parts of flame-retardant polyester hollow fiber 5-11 parts and/or 3-9 parts of low melting point composite fiber.
  • flame retardant viscose fiber is 27 parts, 30 parts, 33 parts; flame retardant polyester fiber is 3 parts, 6 parts, 7 parts, 9 parts, 10 parts, 13 parts; flame retardant polyester hollow fiber is 5 parts, 8 parts, 11 parts; low melting point composite fiber is 3 parts, 6 parts, 9 parts.
  • the flame-retardant viscose fibers are organic flame-retardant viscose fibers or inorganic flame-retardant viscose fibers, preferably pyrophosphate flame-retardant viscose fibers or silicon-based flame-retardant viscose fibers. Burn viscose.
  • the limiting oxygen index of the flame-retardant polyester fiber and the flame-retardant polyester hollow fiber is 26-34.
  • the limiting oxygen index is 26, 28, 30, 32, 34.
  • the low-melting composite fiber is a composite fiber with a sheath-core structure
  • the melting point of the skin layer is 110°C-180°C
  • the melting point of the core layer is 250°C-260°C.
  • the melting point of the skin layer is 110°C, 130°C, 150°C, 180°C, and the melting point of the core layer is 250°C, 255°C, 260°C.
  • the fineness of the polyimide fiber is 0.5-7dtex, and the length is 25-55mm; the fineness of the flame-retardant viscose fiber is 1.5-2dtex, and the length is 45-55mm; the fineness of the flame-retardant polyester fiber is 0.5-2dtex, and the length is 30-35mm; the fineness of the flame-retardant polyester hollow fiber is 3-4dtex, and the length is 60-70mm; the low melting point composite The fineness of the fiber is 3-5dtex and the length is 45-55mm.
  • the fineness of the polyimide fiber is 0.5dtex, 1dtex, 1.5dtex, 1.67dtex, 2.22dtex, 2.5dtex, 5dtex, 7dtex, and the length is 25mm, 30mm, 32mm, 40mm, 51mm, 55mm;
  • the fineness of rubber fiber is 1.5dtex, 1.67dtex, 2dtex, and the length is 45mm, 51mm, 55mm;
  • the fineness of polyester hollow fiber is 3dtex, 3.33dtex, 4dtex, and the length is 60mm, 64mm, 70mm;
  • the fineness of low melting point composite fiber is 3dtex, 4dtex, 5dtex, and the length is 45mm, 51mm, 55mm.
  • the flake also includes a bacteriostatic agent and/or a flame retardant.
  • the flame retardant is preferably a carbon-nitrogen flame retardant or a phosphorus-nitrogen flame retardant.
  • the antibacterial agent is 8121 antibacterial agent; the flame retardant is 8121 flame retardant or phosphorus nitrogen flame retardant.
  • 8121 antibacterial agent and phosphorus-nitrogen flame retardant or 8121 flame retardant can also be added to the flame-retardant windproof floc provided in the technical solution of the present invention, and the two are added together in the spinning stage. It can fully "immobilize" the bacteriostatic agent and flame retardant in the fiber structure of the flakes, and maintain the antibacterial and flame retardant effect for a long time. It has been verified by experiments that its antibacterial effect can be increased by about 10% to 30%, and the duration It can be increased by about 60% to 600%, and the flame retardant effect is increased by about 13%.
  • the second invention point of the present invention is to provide a special spinning equipment for flame-retardant and windproof flakes
  • the flame-retardant and windproof flakes are the above-mentioned flame-retardant and windproof flakes
  • the special spinning equipment includes spraying A wire plate, a spinneret hole arranged on the spinneret plate, and a grid mixed structure arranged outside the spinneret hole; the special spinneret equipment is used for the interweaving and compounding of the spinneret stage in the preparation process of the flame-retardant and windproof flakes .
  • the main function of the spinneret is to transform the polymer melt or solution into a thin stream with a characteristic interface through the micropores, and form thin strips after cooling by wind or solidification by a solidification bath.
  • the grid mixing structure after spraying out all kinds of fibers, can promote the better compounding of all kinds of fibers and achieve an orderly chaotic state. At the same time, a fully compound technical effect is achieved.
  • the spinneret hole is composed of interconnected guide holes and capillary holes, the guide holes are used to introduce melt or solution, and the capillary holes It is used to spray out a thin stream of melt or a thin stream of solution.
  • the geometric shape of the guide hole is a cone-bottomed cylinder, a cone, a hyperbola, a secondary cylinder and/or Cylindrical with flat bottom; preferably conical and/or hyperbolic.
  • the geometry of the guide hole in the spinneret hole directly affects the melt flow characteristics, which further affects the shape of the fiber.
  • the guide hole is conical and/or Hyperbolic, these two shapes of guide holes can effectively buffer the flow of the melt, make the spinning speed controllable, and the sprayed filaments are more uniform, which is convenient for subsequent crosslinking and is conducive to improving the bulkiness of the mixed fiber.
  • the distance between the spinning holes is 2-5 cm, and the distance between the spinning holes and the grid mixing structure is 1-3 cm.
  • the distance between the spinneret holes is 2 cm, 3 cm, 4 cm, 5 cm, and the distance between the spinneret holes and the grid mixing structure is 1 cm, 2 cm, 3 cm.
  • the grid mixing structure is composed of several adjustable grid plates, the width of the grid plates is 2-5mm, and the gap between the grid plates is The gap width can be adjusted between 2-5mm.
  • the width of the grid plates is 2mm, 3mm, 4mm, 5mm
  • the width of the gap between the grid plates is 2mm, 3mm, 4mm, 5mm and can be adjusted.
  • the principle of width adjustment is that the thicker the ejected fiber, the larger the width, and the faster the ejected fiber, the larger the width.
  • the material of the grid mixing structure is the same as that of the inner wall of the spinneret hole; the temperature of the grid mixing structure is 65% of the temperature inside the spinneret hole. %-75%, in order to facilitate the dispersion, cooling, interweaving and compounding of the spinnerets.
  • the temperature of the grid mixing structure is 65%, 70%, 75% of the temperature in the spinneret hole.
  • the grid mixing structure is a structure that can be translated periodically; the translation period is 1-3mm/s.
  • the translation period is 1mm/s, 2mm/s, 3mm/s.
  • the structure set to be periodically shifted can change the area where the interference effect has occurred, and form a more uniform composite fiber layer from a macroscopic perspective.
  • the third invention point of the present invention is to provide a method for preparing a flame-retardant windproof wadding.
  • the flame-retardant windproof wadding is the above-mentioned flame-retardant windproof wadding.
  • the specific operations of the preparation method are as follows:
  • step S2 Spinning the superfine fibers of the polymer substrate containing imide rings onto the mixed fiber layer obtained in step S1 to obtain semi-finished flakes;
  • step S3 On the semi-finished wadding obtained in step S2, another layer of the mixed fiber layer is covered to form a sandwich structure of double mixed fiber layers, that is, the flame-retardant windproof wadding is obtained.
  • step S2 to step S3 are performed at least once.
  • the operations from step S2 to step S3 are performed 1 time, 2 times, or 3 times.
  • the spinning temperature of the polyester fiber is 40°C-80°C; the spinning temperature of the polymer-based superfine fiber is 50°C-70°C .
  • the spinning temperature of the polyester fiber is 40°C, 50°C, 60°C, 70°C, 80°C, and the spinning temperature of the superfine fiber of the polymer substrate is 50°C, 60°C, 70°C.
  • the spinning speed of the polyester fiber is 0.20-0.45m/min; the spinning speed of the polymer base ultrafine fiber is 0.25-0.35m/min /min.
  • the spinning speed of the teron fiber is 0.20m/min, 0.25m/min, 0.30m/min, 0.35m/min, 0.40m/min, 0.45m/min; The speed is 0.25m/min, 0.30m/min, 0.35m/min.
  • the flame-retardant and windproof wadding provided by the present invention uses polyimide fiber as the base material, supplemented with various fibers, and through the adjustment of the preparation method and special equipment, finally realizes the windproof wadding of the wadding.
  • the heat preservation and flame retardant effect is improved, and the various fibers in the flakes are highly mixed to form a homogeneous, moderately cross-linked and fluffy mixed structure, which can greatly reduce the loss probability of the layered structure in the traditional process.
  • Figure 1 shows the spinning structure of the special spinning equipment for flame-retardant and windproof wadding; among them, 1 is the spinneret plate, 2 is the capillary hole, and 3 is the guide hole (A is a cylindrical shape with a cone bottom, B is a conical shape, and C is a Hyperbolic, D is a secondary cylinder, E is a flat-bottomed cylinder), 4 is a grid hybrid structure, and 5 is a grid plate.
  • Fig. 2 shows the appearance of the finished product of the flame-retardant windproof batting product provided by Example 4 of the present invention.
  • Fig. 3 shows a low-magnification view of the internal structure of the flame-retardant windproof wadding product provided by Example 4 of the present invention.
  • Fig. 4 shows a high-magnification view of the internal structure of the flame-retardant windproof wadding product provided by Example 4 of the present invention.
  • Fig. 5 shows an enlarged electron microscope view of the internal structure of the flame-retardant windproof batting product provided in Example 4 of the present invention.
  • the raw material source used in the present invention is a raw material source used in the present invention.
  • Polyimide fiber purchased from Jiangsu Xiannuo New Material Technology Co., Ltd. or Jilin Gaoqi Polyimide Material Co., Ltd.;
  • Flame retardant viscose fiber purchased from Beijing Saiolan Flame Retardant Fiber Co., Ltd., Lenzing Company or Hengtian (Jiangsu) Chemical Fiber Home Textile Technology Co., Ltd.;
  • Flame-retardant polyester fiber purchased from Sinopec Yizheng Chemical Fiber Company;
  • Flame-retardant polyester hollow fiber purchased from Sinopec Yizheng Chemical Fiber Company;
  • Low melting point composite fiber purchased from Hubei Yutao Special Fiber Co., Ltd. and Yizheng Zhongsheng Chemical Fiber Raw Material Co., Ltd.
  • Fungicide 8121 fungicide purchased from Beijing Mihe Technology Co., Ltd.
  • Flame retardant 8121 flame retardant purchased from Beijing Mihe Technology Co., Ltd.
  • a flame-retardant windproof wadding sheet is obtained by interweaving and compounding at least one polyester fiber in the spinning stage with a polymer containing imide rings as a base material.
  • Polymers containing imide rings are polyimide fibers.
  • the polyimide fiber is one or more of aliphatic polyimide fiber, semi-aromatic polyimide fiber and aromatic polyimide fiber.
  • the degree of polymerization of polyimide fiber is 20-300.
  • the degree of polymerization may be 20, 50, 100, 150, 200, 250, 300.
  • the polyester fiber is selected from one or more of flame-retardant viscose fibers, flame-retardant polyester fibers, flame-retardant polyester hollow fibers and low-melting composite fibers.
  • the polyimide fiber is 12-28 parts, and the polyester fiber is 38-66 parts.
  • polyimide fiber is 12 parts, 15 parts, 18 parts, 22 parts, 25 parts, 28 parts; polyester fiber is 38 parts, 45 parts, 50 parts, 55 parts, 60 parts, 66 parts.
  • polyester fibers by weight, 27-33 parts of flame-retardant viscose fiber, 3-13 parts of flame-retardant polyester fiber, 5-11 parts of flame-retardant polyester hollow fiber and/or 3 parts-33 parts of low-melting composite fiber 9 servings.
  • flame retardant viscose fiber is 27 parts, 30 parts, 33 parts; flame retardant polyester fiber is 3 parts, 6 parts, 7 parts, 9 parts, 10 parts, 13 parts; flame retardant polyester hollow fiber is 5 parts, 8 parts, 11 parts; low melting point composite fiber is 3 parts, 6 parts, 9 parts.
  • the flame-retardant viscose fiber is an organic flame-retardant viscose fiber or an inorganic flame-retardant viscose fiber, preferably a pyrophosphate-based flame-retardant viscose fiber or a silicon-based flame-retardant viscose fiber.
  • the limiting oxygen index of flame-retardant polyester fiber and flame-retardant polyester hollow fiber is 26-34.
  • the limiting oxygen index is 26, 28, 30, 32, 34.
  • the low-melting point composite fiber is a composite fiber with a skin-core structure, the melting point of the skin layer is 110°C-180°C, and the melting point of the core layer is 250°C-260°C.
  • the melting point of the skin layer is 110°C, 130°C, 150°C, 180°C, and the melting point of the core layer is 250°C, 255°C, 260°C.
  • the fineness of the polyimide fiber is 0.5-7dtex, and the length is 25-55mm; the fineness of the flame-retardant viscose fiber is 1.5-2dtex, and the length is 45-55mm; the fineness of the flame-retardant polyester fiber is 0.5 -2dtex, the length is 30-35mm; the fineness of the flame-retardant polyester hollow fiber is 3-4dtex, and the length is 60-70mm; the fineness of the low melting point composite fiber is 3-5dtex, and the length is 45-55mm.
  • the fineness of the polyimide fiber is 0.5dtex, 1dtex, 1.5dtex, 1.67dtex, 2.22dtex, 2.5dtex, 5dtex, 7dtex, and the length is 25mm, 30mm, 32mm, 40mm, 51mm, 55mm;
  • the fineness of rubber fiber is 1.5dtex, 1.67dtex, 2dtex, and the length is 45mm, 51mm, 55mm;
  • the fineness of polyester hollow fiber is 3dtex, 3.33dtex, 4dtex, and the length is 60mm, 64mm, 70mm;
  • the fineness of low melting point composite fiber is 3dtex, 4dtex, 5dtex, and the length is 45mm, 51mm, 55mm.
  • the flame-retardant windproof batting also includes a bacteriostatic agent and/or a flame retardant.
  • the flame retardant is preferably a carbon-nitrogen flame retardant or a phosphorus-nitrogen flame retardant.
  • the antibacterial agent is 8121 antibacterial agent; the flame retardant is phosphorus nitrogen flame retardant or 8121 flame retardant.
  • the special spinning equipment for flame-retardant windproof flakes includes a spinneret, spinneret holes arranged on the spinneret plate and a grid mixing structure arranged outside the spinneret holes; the special spinneret equipment is used for the The interweaving and compounding in the spinneret stage in the preparation process of flame-retardant windproof flakes, the spinneret structure is shown in Figure 1.
  • the spinneret hole is composed of interconnected guide holes and capillary holes, the guide holes are used to introduce melt or solution, and the capillary holes are used to spray out melt streams or solution streams.
  • the geometric shape of the guide hole is cylindrical with conical bottom, conical, hyperbolic, secondary cylindrical and/or cylindrical with flat bottom; preferably conical and/or hyperbolic.
  • the distance between the spinneret holes is 2-5cm, and the distance between the spinneret holes and the grid mixing structure is 1-3cm.
  • the distance between the spinneret holes is 2 cm, 3 cm, 4 cm, 5 cm, and the distance between the spinneret holes and the grid mixing structure is 1 cm, 2 cm, 3 cm.
  • the grid hybrid structure is composed of several adjustable grid plates, the width of the grid plates is 2-5mm, and the width of the gap between the grid plates can be adjusted between 2-5mm.
  • the width of the grid plates is 2mm, 3mm, 4mm, 5mm
  • the width of the gap between the grid plates is 2mm, 3mm, 4mm, 5mm and can be adjusted.
  • the material of the grid mixing structure is the same as that of the inner wall of the spinneret hole; the temperature of the grid mixing structure is 65%-75% of the temperature in the spinneret hole, so as to facilitate the dispersion, cooling, interweaving and compounding of the spinnerets.
  • the temperature of the grid mixing structure is 65%, 70%, 75% of the temperature in the spinneret hole.
  • the grid hybrid structure is a structure that can be translated periodically; the translation period is 1-3mm/s.
  • the translation period is 1mm/s, 2mm/s, 3mm/s.
  • the polyimide fiber substrate provided by the present invention is compounded with flame-retardant viscose fiber, flame-retardant polyester fiber, flame-retardant polyester hollow fiber and low-melting point composite fiber with defined fineness and length specifications, and is used for Raw materials for preparing flakes. After the raw materials are melted, traditional equipment (traditional spinneret holes) can be used to prepare flake products, and special equipment provided by the present invention can also be used to prepare the flame-retardant and windproof flakes.
  • Traditional equipment traditional spinneret holes
  • special equipment provided by the present invention can also be used to prepare the flame-retardant and windproof flakes.
  • the effect of flocculent flakes is slightly worse, and traditional equipment needs to perform silk mixing operations, and the operation is relatively random, which cannot guarantee the uniformity of the flakes. It is designed for the disordered mixing properties of flake insulation, flame retardant and windproof effects.
  • the disordered mixing of fibers means its uniformity.
  • the compound flake raw material has a certain viscosity after melting, is sprayed out through the spinneret hole, and then is initially cooled by the cooling grid, which effectively improves the degree of disordered mixing between the various fiber materials and realizes
  • the high degree of mixing of various fiber materials has achieved a high cross-linking state that cannot be achieved by existing spinning equipment. Compared with the existing layered superimposed flake products, it can effectively increase the adhesion and fixation of flakes, and greatly reduce the loss of flocs. The probability that all or a small part of each fiber material in the sheet will fall off.
  • the preparation method of the flame-retardant windproof wadding, the specific operation is as follows:
  • step S2 Spinning the superfine fibers of the polymer substrate containing imide rings onto the mixed fiber layer obtained in step S1 to obtain semi-finished flakes;
  • step S3 On the semi-finished wadding obtained in step S2, another layer of the mixed fiber layer is covered to form a sandwich structure of double mixed fiber layers, that is, the flame-retardant windproof wadding is obtained.
  • step S2 to step S3 is at least once.
  • the operations from step S2 to step S3 are performed 1 time, 2 times, or 3 times.
  • the spinning temperature of the polyester fiber is 40°C-80°C; the spinning temperature of the superfine fiber of the polymer substrate is 50°C-70°C.
  • the spinning temperature of the polyester fiber is 40°C, 50°C, 60°C, 70°C, 80°C, and the spinning temperature of the superfine fiber of the polymer substrate is 50°C, 60°C, 70°C.
  • the spinning speed of the polyester fiber is 0.20-0.45m/min; the spinning speed of the superfine fiber of the polymer substrate is 0.25-0.35m/min.
  • the spinning speed of teron fiber is 0.20m/min, 0.25m/min, 0.30m/min, 0.35m/min, 0.40m/min, 0.45m/min;
  • the speed is 0.25m/min, 0.30m/min, 0.35m/min.
  • the flame retardant viscose fiber is a pyrophosphate ester flame retardant viscose fiber.
  • the limiting oxygen index of flame-retardant polyester fiber and flame-retardant polyester hollow fiber is 26.
  • the low-melting point composite fiber is a composite fiber with a skin-core structure, the melting point of the skin layer is 110°C, and the melting point of the core layer is 250°C.
  • the 8121 antibacterial agent is also included in the flame-retardant windproof batting.
  • the preparation method of the flame-retardant windproof wadding, the specific operation is as follows:
  • the polyester fiber is sprayed and mixed by special spinning equipment to form a mixed fiber layer.
  • the spinning temperature of the polyester fiber is 40°C, and the spinning speed of the polyester fiber is 0.20m/min;
  • step S2 Spinning polymer substrate microfibers containing imide rings onto the mixed fiber layer obtained in step S1 to obtain semi-finished flakes.
  • the spinning temperature of polymer substrate microfibers is 50°C.
  • the spinning speed of the substrate microfiber is 0.25m/min;
  • step S3 On the semi-finished wadding obtained in step S2, another layer of the mixed fiber layer is covered to form a sandwich structure of double mixed fiber layers, that is, the flame-retardant windproof wadding is obtained.
  • the special spinning equipment for flame-retardant and windproof flakes includes a spinneret 1, a spinneret hole arranged on the spinneret plate, and a grid mixing structure 4 arranged outside the spinneret hole; the special spinneret equipment is used for the above-mentioned Interweaving and compounding in the spinneret stage in the preparation process of flame-retardant windproof batting.
  • the spinneret hole is made up of interconnected guide holes 3 and capillary holes 2, the guide holes 3 are used to introduce melt or solution, and the capillary holes 2 are used to eject a thin stream of melt or a thin stream of solution.
  • the geometric shape of the guide hole 3 is cone-bottomed cylindrical, conical, hyperbolic, secondary cylindrical and/or flat-bottomed cylindrical; preferably conical and/or hyperbolic.
  • the distance between the spinneret holes is 2-5 cm, and the distance between the spinneret holes and the grid mixing structure 4 is 1-3 cm.
  • the grid hybrid structure 4 is composed of several adjustable grid plates 5, the width of the grid plates 5 is 2-5 mm, and the width of the gap between the grid plates 5 can be adjusted between 2-5 mm.
  • the material of the grid mixing structure 4 is the same as that of the inner wall of the spinneret hole; the temperature of the grid mix structure 4 is 65%-75% of the temperature in the spinneret hole, so as to facilitate the dispersion, cooling, interweaving and compounding of the spinnerets.
  • the grid hybrid structure 4 is a structure that can be translated periodically; the translation period is 1-3mm/s.
  • the flame-retardant viscose fiber is a silicon-based flame-retardant viscose fiber.
  • the limiting oxygen index of flame-retardant polyester fiber and flame-retardant polyester hollow fiber is 34.
  • the low-melting point composite fiber is a composite fiber with a skin-core structure, the melting point of the skin layer is 180°C, and the melting point of the core layer is 260°C.
  • Phosphorus nitrogen flame retardants or 8121 flame retardants are also included in the flame retardant windproof batting.
  • the preparation method of the flame-retardant windproof wadding, the specific operation is as follows:
  • the polyester fiber is sprayed and mixed by a special spinning equipment to form a mixed fiber layer.
  • the spinning temperature of the polyester fiber is 80°C, and the spinning speed of the polyester fiber is 0.45m/min;
  • step S2 Spinning polymer base microfibers containing imide rings onto the mixed fiber layer obtained in step S1 to obtain semi-finished flakes.
  • the spinning temperature of polymer base microfibers is 70°C.
  • the spinning speed of the substrate microfiber is 0.35m/min;
  • step S3 On the semi-finished wadding obtained in step S2, another layer of the mixed fiber layer is covered to form a sandwich structure of double mixed fiber layers, that is, the flame-retardant windproof wadding is obtained.
  • the special spinning equipment for flame-retardant and windproof flakes includes a spinneret 1, a spinneret hole arranged on the spinneret plate, and a grid mixing structure 4 arranged outside the spinneret hole; the special spinneret equipment is used for the above-mentioned Interweaving and compounding in the spinneret stage in the preparation process of flame-retardant windproof batting.
  • the spinneret hole is composed of interconnected guide holes 3 and capillary holes 2, the guide holes 3 are used to introduce melt or solution, and the capillary holes 2 are used to eject a thin flow of melt or solution.
  • the geometric shape of the guide hole 3 is cone-bottomed cylindrical, conical, hyperbolic, secondary cylindrical and/or flat-bottomed cylindrical; preferably conical and/or hyperbolic.
  • the distance between the spinneret holes is 2-5 cm, and the distance between the spinneret holes and the grid mixing structure 4 is 1-3 cm.
  • the grid hybrid structure 4 is composed of several adjustable grid plates 5, the width of the grid plates 5 is 2-5 mm, and the width of the gap between the grid plates 5 can be adjusted between 2-5 mm.
  • the material of the grid mixing structure 4 is the same as that of the inner wall of the spinneret hole; the temperature of the grid mix structure 4 is 65%-75% of the temperature in the spinneret hole, so as to facilitate the dispersion, cooling, interweaving and compounding of the spinnerets.
  • the grid hybrid structure 4 is a structure that can be translated periodically; the translation period is 1-3mm/s.
  • the flame retardant viscose fiber is a pyrophosphate ester flame retardant viscose fiber.
  • the limiting oxygen index of flame-retardant polyester fiber and flame-retardant polyester hollow fiber is 30.
  • the low-melting point composite fiber is a composite fiber with a skin-core structure, the melting point of the skin layer is 150°C, and the melting point of the core layer is 255°C.
  • the flame retardant windproof batting also includes bacteriostatic agent and flame retardant, the bacteriostatic agent is 8121 bacteriostatic agent; the flame retardant is phosphorus nitrogen flame retardant or 8121 flame retardant.
  • the preparation method of the flame-retardant windproof wadding, the specific operation is as follows:
  • the polyester fiber is sprayed and mixed by a special spinning equipment to form a mixed fiber layer.
  • the spinning temperature of the polyester fiber is 60°C, and the spinning speed of the polyester fiber is 0.35m/min;
  • step S2 Spinning polymer base microfibers containing imide rings onto the mixed fiber layer obtained in step S1 to obtain semi-finished flakes.
  • the spinning temperature of polymer base microfibers is 60°C.
  • the spinning speed of the substrate microfiber is 0.3m/min;
  • step S3 On the semi-finished wadding obtained in step S2, another layer of the mixed fiber layer is covered to form a sandwich structure of double mixed fiber layers, that is, the flame-retardant windproof wadding is obtained.
  • the special spinning equipment for flame-retardant and windproof flakes includes a spinneret 1, a spinneret hole arranged on the spinneret plate, and a grid mixing structure 4 arranged outside the spinneret hole; the special spinneret equipment is used for the above-mentioned Interweaving and compounding in the spinneret stage in the preparation process of flame-retardant windproof batting.
  • the spinneret hole is composed of interconnected guide holes 3 and capillary holes 2, the guide holes 3 are used to introduce melt or solution, and the capillary holes 2 are used to eject a thin flow of melt or solution.
  • the geometric shape of the guide hole 3 is cone-bottomed cylindrical, conical, hyperbolic, secondary cylindrical and/or flat-bottomed cylindrical; preferably conical and/or hyperbolic.
  • the distance between the spinneret holes is 2-5 cm, and the distance between the spinneret holes and the grid mixing structure 4 is 1-3 cm.
  • the grid hybrid structure 4 is composed of several adjustable grid plates 5, the width of the grid plates 5 is 2-5 mm, and the width of the gap between the grid plates 5 can be adjusted between 2-5 mm.
  • the material of the grid mixing structure 4 is the same as that of the inner wall of the spinneret hole; the temperature of the grid mix structure 4 is 65%-75% of the temperature in the spinneret hole, so as to facilitate the dispersion, cooling, interweaving and compounding of the spinnerets.
  • the grid hybrid structure 4 is a structure that can be translated periodically; the translation period is 1-3mm/s.
  • polyimide fibers are used as the base material, and four kinds of polyester fibers with certain specifications and proportions can be used to obtain the flakes with the technical effects described in the present invention.
  • the claimed technical solution is the optimal technical solution of the present invention.
  • the applicant designed more experiments using the technology of Example 4 as a template. (ie embodiment and comparative example) in order to prove and contrast.
  • the key technical factors that can affect the final technical effect of the present invention include the following aspects:
  • the polymerization degree of polyimide fiber is 10 (comparative example 2), 350 (comparative example 3);
  • Polyester fiber is selected from:
  • polyester fibers Two kinds of polyester fibers: flame retardant viscose fiber + flame retardant polyester fiber (Example 9), flame retardant viscose fiber + flame retardant polyester hollow fiber (Example 10), flame retardant viscose fiber + low melting point composite fiber (Example 11), flame retardant polyester fiber+flame retardant polyester hollow fiber (embodiment 12), flame retardant polyester fiber+low melting point composite fiber (embodiment 13), flame retardant polyester hollow fiber+low melting point composite fiber (embodiment 14);
  • polyester fibers Three kinds of polyester fibers: flame retardant viscose fiber+flame retardant polyester fiber+flame retardant polyester hollow fiber (embodiment 15), flame retardant polyester fiber+flame retardant polyester hollow fiber+low melting point composite fiber (embodiment 16), Flame-retardant viscose fiber+flame-retardant polyester hollow fiber+low melting point composite fiber (embodiment 17);
  • the percentage of polyimide fiber is 10% (comparative example 4), 30% (comparative example 5);
  • the percentage of flame-retardant viscose fiber is 25% (comparative example 6), 35% (comparative example 7);
  • the percentage of flame-retardant polyester fiber is 2% (comparative example 8), 15% (comparative example 9);
  • the percentage of flame-retardant polyester hollow fiber is 3% (comparative example 10), 15% (comparative example 11);
  • the percentage of low melting point composite fiber is 2% (comparative example 12), 10% (comparative example 13).
  • embodiment 4 is the best of every index in all embodiments and comparative examples
  • comparative example 1 (no polyimide fiber) is the worst comprehensive index in all embodiments and comparative examples, obviously lower than each standard value given in table 2, it is difficult to reach the standard requirement, fully Explain that polyimide has played a key role in the present invention
  • Comparative Examples 2-3, Comparative Examples 4-5, Comparative Examples 6-7, Comparative Examples 8-9, Comparative Examples 10-11, and Comparative Examples 12-13 are respectively protected by the technical points provided by the present invention Optional point value outside the range, its effect is obviously lower than embodiment 2-4.
  • the applicant entrusted the National Textile Product Quality Supervision and Inspection Center in August 2016, January 2017, and August 2017 to carry out the flame-retardant and wind-proof tests of the various embodiments of the present invention according to GB/T 11048-2008 A and B methods.
  • the thermal insulation performance of the flakes was tested, and the testing items included thermal resistance (m 2 ⁇ K/W), Cro value, converted thermal insulation rate (%) and heat transfer coefficient (W/(m 2 ⁇ K)).
  • the applicant also entrusted the National Textile Products Quality Supervision and Inspection Center in January 2017 to test the vertical combustion performance of the flame-retardant and windproof wadding of each embodiment of the present invention according to GB/T 5455-2014.
  • the test items include Damage length (mm), after-flame time (s), smoldering time (s), burning characteristics and whether there are dripping objects.
  • the applicant also entrusted the National Textile Products Quality Supervision and Inspection Center in June 2016, according to FZ/T 64020-2011 (composite thermal insulation materials, chemical fiber composite wadding) and FZ/T 73023-2006 (antibacterial knitwear), to the present invention.
  • the product performance of the flame-retardant and windproof wadding of each embodiment described above is tested, and the testing items include compressive elastic rate (%), appearance change of washing performance, thermal insulation-thermal resistance (m 2 ⁇ K/W), air permeability ( mm/s), mass per unit area (g/m 3 ), bulkiness (cm 3 /g), Staphylococcus aureus (ATCC 6538) antibacterial rate (%) - after washing 50 times, Candida albicans (ATCC 10231 ) bacteriostatic rate (%)-after washing 50 times, Escherichia coli (8099) bacteriostatic rate (%)-after washing 50 times.
  • the flame-retardant and windproof wadding provided by the present invention has a flame-retardant effect and a fluffy effect.
  • anti-shedding effect, heat preservation effect, ventilation effect, quality and bacteriostasis rate and other indicators are all significantly better than the comparative example, and are also significantly better than the existing products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

一种阻燃防风絮片,是以含有酰亚胺环的聚合物为基材,在喷丝阶段交织复合至少一种涤纶纤维得到的;并提供了其制备方法和专用设备。该阻燃防风絮片,以聚酰亚胺纤维为基材,辅以多种纤维,通过制备方法和专用设备的调整,最终实现了絮片防风保暖阻燃效果的提升,同时絮片中的各种纤维高度混杂,形成的均质的、交联适度且蓬松的混合结构,能够大幅降低传统工艺中层状结构的脱落概率。

Description

一种阻燃防风絮片及其制备方法 技术领域
本发明涉及纤维产品技术领域,具体涉及一种阻燃防风絮片及其制备方法。
背景技术
絮片,指植物纤维、动物纤维或化学纤维制成的供保暖、隔热或防震用的片型绵状物。目前的各类絮片市面均有见,包括阻燃的、防风的、保暖的、抑菌的等等。而为了达到蓬松、多孔、轻质的效果,在絮片的生产过程中,往往会采取多层(至少3层)的结构,制备时需要一层一层地挤出成型,经过堆叠而成。此种方式生产絮片,一方面会导致絮片的生产工艺复杂,效率偏低,另一方面会导致絮片结构层之间增加了脱落的可能性,造成实际效果达不到预期。
申请号202110758929.0的发明专利《一种具有抗菌阻燃保暖功能的絮片及其制备方法》,提供了一种以熔融共混共挤方式制备的抗菌阻燃保暖絮片,但其各纤维之间混合程度较差,容易脱落。
申请号201910140874.X的发明专利《相变保暖絮片及其制备方法》,所提供的絮片,是通过无纺针刺方式相互连接的导湿纤维网层、蓄热纤维网层、隔热纤维网层组成的,但其各纤维网层之间分布并不均匀,严重影响了保暖效果。
申请号201811023385.8的发明专利《一种永久阻燃保暖碳化型絮片及其制备方法》,提供的絮片采用多种纤维制成,但其仍未层状结构,后续不仅需要开松,而且还需要梳理机梳理,工艺复杂,层状结构易脱落。
发明内容
本发明的目的是提供了一种制备方法简洁、高效、阻燃防风效果好,且不易脱落的阻燃防风絮片。
本发明的上述目的可采用下列技术方案来实现:
本发明提供了一种阻燃防风絮片,是以含有酰亚胺环的聚合物为基材,在喷丝阶段交织复合至少一种涤纶纤维得到的。
进一步的,上述的一种阻燃防风絮片,所述含有酰亚胺环的聚合物为聚酰亚胺纤维。
聚酰亚胺纤维拥有良好的可纺性,可以制成各类特殊场合使用的纺织品。由于具有耐高温特性、阻燃特性、不熔滴特性、离火自熄特性以及极佳的隔温特性,和其他纤维相比,是一种绝佳的隔温材料,同时,其做为阻燃防风絮片的基材,能够有效的与其它类别的纤维共同交织、产生更优的效果。
进一步的,上述的一种阻燃防风絮片,所述聚酰亚胺纤维为脂肪族聚酰亚胺纤维、半芳香族聚酰亚胺纤维和芳香族聚酰亚胺纤维中的一种或多种。
进一步的,上述的一种阻燃防风絮片,所述聚酰亚胺纤维的聚合度为20-300。
优选地,聚合度可以为20、50、100、150、200、250、300。
进一步的,上述的一种阻燃防风絮片,所述涤纶纤维选自阻燃粘胶纤维、阻燃涤纶纤维、阻燃涤纶中空纤维和低熔点复合纤维中的一种或多种。
阻燃粘胶纤维,通常是在粘胶纤维中加入阻燃剂制备得到的,其也能够做为絮片基材,效果略低于聚酰亚胺纤维(主要原因在于粘胶纤维的可纺性较差),但以聚酰 亚胺纤维为基材,添加一定量的阻燃粘胶纤维,则能够发挥二者的共同特性,进一步提高了絮片的阻燃保暖性能。
阻燃涤纶纤维和阻燃涤纶中空纤维,均是经过改性处理的阻燃涤纶,二者阻燃效果好,在过火时,只熔融不燃烧,其极限氧指数通常较高,为可燃甚至难燃材料,但传统的阻燃涤纶,制备工艺复杂,添加量过高,从而导致成本极高,同时由于阻燃涤纶本身的特性,其质感较差,无法满足需要。
低熔点复合纤维,是指聚酯和改性聚酯复合纺丝生产的低熔点纤维,可在更低的温度下熔融和其他纤维粘合,其粘合性、加工性和弹性均要好于普通纤维。
进一步的,上述的一种阻燃防风絮片,按照重量份计,聚酰亚胺纤维为12份-28份,涤纶纤维为38份-66份。
优选地,聚酰亚胺纤维为12份、15份、18份、22份、25份、28份;涤纶纤维为38份、45份、50份、55份、60份、66份。
进一步的,上述的一种阻燃防风絮片,所述涤纶纤维中,按照重量份计,阻燃粘胶纤维27份-33份、阻燃涤纶纤维3份-13份、阻燃涤纶中空纤维5份-11份和/或低熔点复合纤维3份-9份。
优选地,阻燃粘胶纤维为27份、30份、33份;阻燃涤纶纤维为3份、6份、7份、9份、10份、13份;阻燃涤纶中空纤维为5份、8份、11份;低熔点复合纤维为3份、6份、9份。
进一步的,上述的一种阻燃防风絮片,所述阻燃粘胶纤维为有机阻燃粘胶纤维或无机阻燃粘胶纤维,优选为焦磷酸酯类阻燃粘胶纤维或硅系阻燃粘胶纤维。
进一步的,上述的一种阻燃防风絮片,所述阻燃涤纶纤维和阻燃涤纶中空纤维的极限氧指数为26-34。
优选地,极限氧指数为26、28、30、32、34。
进一步的,上述的一种阻燃防风絮片,所述低熔点复合纤维为皮芯结构复合纤维,皮层熔点为110℃-180℃,芯层熔点为250℃-260℃。
优选地,皮层熔点为110℃、130℃、150℃、180℃,芯层熔点为250℃、255℃、260℃。
进一步的,上述的一种阻燃防风絮片,所述聚酰亚胺纤维的细度为0.5-7dtex,长度为25-55mm;所述阻燃粘胶纤维的细度为1.5-2dtex,长度为45-55mm;所述阻燃涤纶纤维的细度0.5-2dtex,长度为30-35mm;所述阻燃涤纶中空纤维的细度为3-4dtex,长度为60-70mm;所述低熔点复合纤维的细度为3-5dtex,长度为45-55mm。
优选地,聚酰亚胺纤维的细度为0.5dtex、1dtex、1.5dtex、1.67dtex、2.22dtex、2.5dtex、5dtex、7dtex,长度为25mm、30mm、32mm、40mm、51mm、55mm;阻燃粘胶纤维的细度为1.5dtex、1.67dtex、2dtex,长度为45mm、51mm、55mm;阻燃涤纶纤维的细度0.5dtex、0.89dtex、1.56dtex、2dtex,长度为30mm、32mm、35mm;阻燃涤纶中空纤维的细度为3dtex、3.33dtex、4dtex,长度为60mm、64mm、70mm;低熔点复合纤维的细度为3dtex、4dtex、5dtex,长度为45mm、51mm、55mm。
更优选地,阻燃防风絮片中各原料纤维的具体规格及所占比例如下表1所示。
表1
Figure PCTCN2022084906-appb-000001
Figure PCTCN2022084906-appb-000002
进一步的,上述的一种阻燃防风絮片,所述絮片中还包括有抑菌剂和/或阻燃剂。
阻燃剂优选为碳氮阻燃剂或磷氮阻燃剂。
抑菌剂为8121抑菌剂;所述阻燃剂为8121阻燃剂或磷氮阻燃剂。
为了进一步增强产品的技术优势,本发明技术方案中所提供的阻燃防风絮片中还可以加入8121抑菌剂和磷氮阻燃剂或8121阻燃剂,二者在喷丝阶段共同加入,能够使抑菌剂和阻燃剂充分“固定化”于絮片的纤维结构中,长久保持抑菌和阻燃效果,经过试验验证,其抑菌效果能够提高10%~30%左右,持续时间能够增加约60%~600%,阻燃效果提高约13%。
本发明的第二个发明点,是提供了一种阻燃防风絮片的专用喷丝设备,所述阻燃防风絮片为上述的阻燃防风絮片,所述专用喷丝设备包括有喷丝板、设置于喷丝板上的喷丝孔和设置于喷丝孔外部的格栅混合结构;所述专用喷丝设备用于所述阻燃防风絮片制备过程中喷丝阶段的交织复合。
喷丝板的主要作用是将高聚物熔体或溶液通过微孔转变成具有特性界面的细流,经风冷却或凝固浴固化而形成细条。
格栅混合结构,在将各类纤维喷出后,能够促使各类纤维更好的复合,达到有序的混沌状态,其原理是利用双缝或多缝干涉效应,使得多种纤维在喷出的同时就达到充分复合的技术效果。
进一步的,上述的一种阻燃防风絮片的专用喷丝设备,所述喷丝孔由相互联通的导孔和毛细孔构成,所述导孔用于导入熔体或溶液,所述毛细孔用于喷出熔体细流或溶液细流。
进一步的,上述的一种阻燃防风絮片的专用喷丝设备,所述喷丝孔中,导孔的几何形状为锥底圆柱形、圆锥形、双曲线形、二级圆柱形和/或平底圆柱形;优选为圆锥形和/或双曲线形。
喷丝孔中导孔的几何形状是直接影响熔体流动特性的,从而进一步影响了纤维的成形。熔体从较大的空间挤入很小的微孔时,流动速度急剧增大,为控制熔体流动的切变速度和获得较大的压力差来源,故而优选导孔为圆锥形和/或双曲线形,此两种形状的导孔能够有效缓冲熔体的流动,使喷丝速度可控,喷出的丝更加均匀,便于后续的交联,有利于提高混合纤维的蓬松度。
进一步的,上述的一种阻燃防风絮片的专用喷丝设备,所述喷丝孔之间的距离为2-5cm,喷丝孔与格栅混合结构的距离为1-3cm。
优选地,喷丝孔之间的距离为2cm、3cm、4cm、5cm,喷丝孔与格栅混合结构的距离为1cm、2cm、3cm。
进一步的,上述的一种阻燃防风絮片的专用喷丝设备,所述格栅混合结构由若干个可调节的格栅板组成,格栅板的宽度为2-5mm,格栅板之间的空隙宽度在2-5mm之间可调节。
优选地,格栅板的宽度为2mm、3mm、4mm、5mm,格栅板之间的空隙宽度为2mm、3mm、4mm、5mm且可调节。
宽度调节的原则是喷出纤维越粗,宽度越大,喷出纤维速度越快,宽度越大。
进一步的,上述的一种阻燃防风絮片的专用喷丝设备,所述格栅混合结构的材质 与喷丝孔内壁材质相同;所述格栅混合结构的温度为喷丝孔内温度的65%-75%,以便于喷丝的分散、冷却、交织、复合。
优选地,栅混合结构的温度为喷丝孔内温度的65%、70%、75%。
进一步的,上述的一种阻燃防风絮片的专用喷丝设备,所述格栅混合结构为可周期性平移的结构;平移周期为1-3mm/s。
优选地,平移周期为1mm/s、2mm/s、3mm/s。
设置为可周期性平移的结构,能够使已经发生干涉效应的区域发生变化,从宏观上形成了更加均匀的复合纤维层。
本发明的第三个发明点,是提供了一种阻燃防风絮片的制备方法,所述阻燃防风絮片为上述的阻燃防风絮片,制备方法具体操作为:
S1.将所述涤纶纤维通过上述的专用喷丝设备喷丝混合形成混合纤维层;
S2.将含有酰亚胺环的聚合物基材超细纤维喷丝到步骤S1得到的混合纤维层上,得到絮片半成品;
S3.在步骤S2得到的絮片半成品上,再覆盖一层所述混合纤维层,形成双混合纤维层的夹心结构,即得到所述阻燃防风絮片。
进一步的,上述的一种阻燃防风絮片的制备方法,所述步骤S2至步骤S3的操作至少为一次。
优选地,步骤S2至步骤S3的操作为1次、2次、3次。
进一步的,上述的一种阻燃防风絮片的制备方法,所述涤纶纤维的喷丝温度为40℃-80℃;所述聚合物基材超细纤维的喷丝温度为50℃-70℃。
优选地,涤纶纤维的喷丝温度为40℃、50℃、60℃、70℃、80℃,聚合物基材超细纤维的喷丝温度为50℃60℃、70℃。
进一步的,上述的一种阻燃防风絮片的制备方法,所述涤纶纤维的喷丝速度为0.20-0.45m/min;所述聚合物基材超细纤维的喷丝速度为0.25-0.35m/min。
优选地,纶纤维的喷丝速度为0.20m/min、0.25m/min、0.30m/min、0.35m/min、0.40m/min、0.45m/min;聚合物基材超细纤维的喷丝速度为0.25m/min、0.30m/min、0.35m/min。
本发明的的特点及优点是:本发明提供的阻燃防风絮片,以聚酰亚胺纤维为基材,辅以多种纤维,通过制备方法和专用设备的调整,最终实现了絮片防风保暖阻燃效果的提升,同时絮片中的各种纤维高度混杂,形成的均质的、交联适度且蓬松的混合结构,能够大幅降低传统工艺中层状结构的脱落概率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1显示为阻燃防风絮片专用喷丝设备的喷丝结构;其中,1为喷丝板,2为毛细孔,3为导孔(A为锥底圆柱形,B为圆锥形,C为双曲线形,D为二级圆柱形,E为平底圆柱形),4为格栅混合结构,5为格栅板。
图2显示为本发明实施例4所提供阻燃防风絮片产品的成品外观图。
图3显示为本发明实施例4所提供阻燃防风絮片产品内部结构的低倍放大图。
图4显示为本发明实施例4所提供阻燃防风絮片产品内部结构的高倍放大图。
图5显示为本发明实施例4所提供阻燃防风絮片产品的内部结构的电镜放大图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所用原料来源:
聚酰亚胺纤维:购买自江苏先诺新材料科技有限公司或吉林高琦聚酰亚胺材料有限公司;
阻燃粘胶纤维:购买自北京赛欧兰阻燃纤维有限公司、兰精公司或恒天(江苏)化纤家纺科技有限公司;
阻燃涤纶纤维:购买自中国石化仪征化纤公司;
阻燃涤纶中空纤维:购买自中国石化仪征化纤公司;
低熔点复合纤维:购买自湖北省宇涛特种纤维股份有限公司、仪征市中升化纤原料有限公司。
杀菌剂:购买自北京幂和科技有限公司的8121杀菌剂。
阻燃剂:购买自北京幂和科技有限公司的8121阻燃剂。
实施例1:
一种阻燃防风絮片,是以含有酰亚胺环的聚合物为基材,在喷丝阶段交织复合至少一种涤纶纤维得到的。
含有酰亚胺环的聚合物为聚酰亚胺纤维。
聚酰亚胺纤维为脂肪族聚酰亚胺纤维、半芳香族聚酰亚胺纤维和芳香族聚酰亚胺纤维中的一种或多种。
聚酰亚胺纤维的聚合度为20-300。
优选地,聚合度可以为20、50、100、150、200、250、300。
涤纶纤维选自阻燃粘胶纤维、阻燃涤纶纤维、阻燃涤纶中空纤维和低熔点复合纤维中的一种或多种。
按照重量份计,聚酰亚胺纤维为12份-28份,涤纶纤维为38份-66份。
优选地,聚酰亚胺纤维为12份、15份、18份、22份、25份、28份;涤纶纤维为38份、45份、50份、55份、60份、66份。
涤纶纤维中,按照重量份计,阻燃粘胶纤维27份-33份、阻燃涤纶纤维3份-13份、阻燃涤纶中空纤维5份-11份和/或低熔点复合纤维3份-9份。
优选地,阻燃粘胶纤维为27份、30份、33份;阻燃涤纶纤维为3份、6份、7份、9份、10份、13份;阻燃涤纶中空纤维为5份、8份、11份;低熔点复合纤维为3份、6份、9份。
阻燃粘胶纤维为有机阻燃粘胶纤维或无机阻燃粘胶纤维,优选为焦磷酸酯类阻燃粘胶纤维或硅系阻燃粘胶纤维。
阻燃涤纶纤维和阻燃涤纶中空纤维的极限氧指数为26-34。
优选地,极限氧指数为26、28、30、32、34。
低熔点复合纤维为皮芯结构复合纤维,皮层熔点为110℃-180℃,芯层熔点为250℃-260℃。
优选地,皮层熔点为110℃、130℃、150℃、180℃,芯层熔点为250℃、255℃、260℃。
聚酰亚胺纤维的细度为0.5-7dtex,长度为25-55mm;所述阻燃粘胶纤维的细度为1.5-2dtex,长度为45-55mm;所述阻燃涤纶纤维的细度0.5-2dtex,长度为30-35mm;所述阻燃涤纶中空纤维的细度为3-4dtex,长度为60-70mm;所述低熔点复合纤维的细度为3-5dtex,长度为45-55mm。
优选地,聚酰亚胺纤维的细度为0.5dtex、1dtex、1.5dtex、1.67dtex、2.22dtex、2.5dtex、5dtex、7dtex,长度为25mm、30mm、32mm、40mm、51mm、55mm;阻燃粘胶纤维的细度为1.5dtex、1.67dtex、2dtex,长度为45mm、51mm、55mm;阻燃涤纶纤维的细度0.5dtex、0.89dtex、1.56dtex、2dtex,长度为30mm、32mm、35mm;阻燃涤纶中空纤维的细度为3dtex、3.33dtex、4dtex,长度为60mm、64mm、70mm;低熔点复合纤维的细度为3dtex、4dtex、5dtex,长度为45mm、51mm、55mm。
更优选地,阻燃防风絮片中各原料纤维的具体规格及所占比例如前述表1所示。
阻燃防风絮片中还包括有抑菌剂和/或阻燃剂。
阻燃剂优选为碳氮阻燃剂或磷氮阻燃剂。
抑菌剂为8121抑菌剂;所述阻燃剂为磷氮阻燃剂或8121阻燃剂。
如图2-图5所示为本发明阻燃防风絮片的真实产品外观图、放大图及电镜图。从图中可以明显看出,絮片中,各种纤维混杂程度高,结构均匀,纤维间交联适度、蓬松,具有极高的防脱落性。
阻燃防风絮片的专用喷丝设备,包括有喷丝板、设置于喷丝板上的喷丝孔和设置于喷丝孔外部的格栅混合结构;所述专用喷丝设备用于所述阻燃防风絮片制备过程中喷丝阶段的交织复合,喷丝结构如图1所示。
喷丝孔由相互联通的导孔和毛细孔构成,所述导孔用于导入熔体或溶液,所述毛细孔用于喷出熔体细流或溶液细流。
喷丝孔中,导孔的几何形状为锥底圆柱形、圆锥形、双曲线形、二级圆柱形和/或平底圆柱形;优选为圆锥形和/或双曲线形。
喷丝孔之间的距离为2-5cm,喷丝孔与格栅混合结构的距离为1-3cm。
优选地,喷丝孔之间的距离为2cm、3cm、4cm、5cm,喷丝孔与格栅混合结构的距离为1cm、2cm、3cm。
格栅混合结构由若干个可调节的格栅板组成,格栅板的宽度为2-5mm,格栅板之间的空隙宽度在2-5mm之间可调节。
优选地,格栅板的宽度为2mm、3mm、4mm、5mm,格栅板之间的空隙宽度为2mm、3mm、4mm、5mm且可调节。
格栅混合结构的材质与喷丝孔内壁材质相同;所述格栅混合结构的温度为喷丝孔内温度的65%-75%,以便于喷丝的分散、冷却、交织、复合。
优选地,栅混合结构的温度为喷丝孔内温度的65%、70%、75%。
格栅混合结构为可周期性平移的结构;平移周期为1-3mm/s。
优选地,平移周期为1mm/s、2mm/s、3mm/s。
本发明所提供的聚酰亚胺纤维基材,复配以限定了细度和长度规格的阻燃粘胶纤维、阻燃涤纶纤维、阻燃涤纶中空纤维和低熔点复合纤维,得到了用于制备絮片的原料,此原料熔融后,既可以采用传统设备(传统喷丝孔)制备絮片产品,也可以采用本发明所提供的专用设备制备所述阻燃防风絮片,但传统设备制备的絮片效果略差,传统设备均需要进行混丝操作,其操作的随意性比较大,无法保证混丝的均匀性,而本发明所提供的阻燃防风絮片专用设备,是专门为了提高絮片保温、阻燃、防风效果的无序混合性质而设计的,在絮片制备技术领域中,纤维的无序混合意味着其均匀性。 复配后的絮片原材料,熔融后具备有一定的粘度,通过喷丝孔喷出,再通过降温的格栅进行初步冷却后,有效提高了各个纤维材料之间的无序混合程度,实现了各纤维材料的高度混杂,实现了现有喷丝设备所无法实现的高交联状态,与现有的层状叠加絮片产品相比较,能够有效增加絮片的粘联固定,大幅降低了絮片中各纤维材料整体或小部分脱落现象发生的几率。
阻燃防风絮片的制备方法,具体操作为:
S1.将所述涤纶纤维通过上述的专用喷丝设备喷丝混合形成混合纤维层;
S2.将含有酰亚胺环的聚合物基材超细纤维喷丝到步骤S1得到的混合纤维层上,得到絮片半成品;
S3.在步骤S2得到的絮片半成品上,再覆盖一层所述混合纤维层,形成双混合纤维层的夹心结构,即得到所述阻燃防风絮片。
步骤S2至步骤S3的操作至少为一次。
优选地,步骤S2至步骤S3的操作为1次、2次、3次。
制备方法中,涤纶纤维的喷丝温度为40℃-80℃;所述聚合物基材超细纤维的喷丝温度为50℃-70℃。
优选地,涤纶纤维的喷丝温度为40℃、50℃、60℃、70℃、80℃,聚合物基材超细纤维的喷丝温度为50℃、60℃、70℃。
制备方法中,涤纶纤维的喷丝速度为0.20-0.45m/min;所述聚合物基材超细纤维的喷丝速度为0.25-0.35m/min。
优选地,纶纤维的喷丝速度为0.20m/min、0.25m/min、0.30m/min、0.35m/min、0.40m/min、0.45m/min;聚合物基材超细纤维的喷丝速度为0.25m/min、0.30m/min、0.35m/min。
实施例2:
一种阻燃防风絮片,以聚合度为20的聚酰亚胺纤维为基材,聚酰亚胺纤维基材为25重量份,规格为1.67detx、32mm,还包括阻燃粘胶纤维,27重量份,规格为1.5detx、45mm,阻燃涤纶纤维6重量份,规格为0.89detx、32mm,阻燃涤纶中空纤维5重量份,规格为3detx、60mm,低熔点复合纤维3重量份,规格为3detx、45mm。
阻燃粘胶纤维为焦磷酸酯类阻燃粘胶纤维。
阻燃涤纶纤维和阻燃涤纶中空纤维的极限氧指数为26。
低熔点复合纤维为皮芯结构复合纤维,皮层熔点为110℃,芯层熔点为250℃。
阻燃防风絮片中还包括有8121抑菌剂。
阻燃防风絮片的制备方法,具体操作为:
S1.将涤纶纤维通过专用喷丝设备喷丝混合形成混合纤维层,涤纶纤维的喷丝温度为40℃,涤纶纤维的喷丝速度为0.20m/min;
S2.将含有酰亚胺环的聚合物基材超细纤维喷丝到步骤S1得到的混合纤维层上,得到絮片半成品,聚合物基材超细纤维的喷丝温度为50℃,聚合物基材超细纤维的喷丝速度为0.25m/min;
S3.在步骤S2得到的絮片半成品上,再覆盖一层所述混合纤维层,形成双混合纤维层的夹心结构,即得到所述阻燃防风絮片。
阻燃防风絮片的专用喷丝设备,包括有喷丝板1、设置于喷丝板上的喷丝孔和设置于喷丝孔外部的格栅混合结构4;专用喷丝设备用于所述阻燃防风絮片制备过程中喷丝阶段的交织复合。
喷丝孔由相互联通的导孔3和毛细孔2构成,导孔3用于导入熔体或溶液,毛细 孔2用于喷出熔体细流或溶液细流。
喷丝孔中,导孔3的几何形状为锥底圆柱形、圆锥形、双曲线形、二级圆柱形和/或平底圆柱形;优选为圆锥形和/或双曲线形。
喷丝孔之间的距离为2-5cm,喷丝孔与格栅混合结构4的距离为1-3cm。
格栅混合结构4由若干个可调节的格栅板5组成,格栅板5的宽度为2-5mm,格栅板5之间的空隙宽度在2-5mm之间可调节。
格栅混合结构4的材质与喷丝孔内壁材质相同;格栅混合结构4的温度为喷丝孔内温度的65%-75%,以便于喷丝的分散、冷却、交织、复合。格栅混合结构4为可周期性平移的结构;平移周期为1-3mm/s。
实施例3:
一种阻燃防风絮片,以聚合度为300的聚酰亚胺纤维为基材,聚酰亚胺纤维基材为15重量份,规格为2.22detx、51mm,还包括阻燃粘胶纤维,33重量份,规格为2detx、55mm,阻燃涤纶纤维10重量份,规格为1.56detx、32mm,阻燃涤纶中空纤维11重量份,规格为4detx、70mm,低熔点复合纤维9重量份,规格为5detx、55mm。
阻燃粘胶纤维为硅系阻燃粘胶纤维。
阻燃涤纶纤维和阻燃涤纶中空纤维的极限氧指数为34。
低熔点复合纤维为皮芯结构复合纤维,皮层熔点为180℃,芯层熔点为260℃。
阻燃防风絮片中还包括有磷氮阻燃剂或8121阻燃剂。
阻燃防风絮片的制备方法,具体操作为:
S1.将涤纶纤维通过专用喷丝设备喷丝混合形成混合纤维层,涤纶纤维的喷丝温度为80℃,涤纶纤维的喷丝速度为0.45m/min;
S2.将含有酰亚胺环的聚合物基材超细纤维喷丝到步骤S1得到的混合纤维层上,得到絮片半成品,聚合物基材超细纤维的喷丝温度为70℃,聚合物基材超细纤维的喷丝速度为0.35m/min;
S3.在步骤S2得到的絮片半成品上,再覆盖一层所述混合纤维层,形成双混合纤维层的夹心结构,即得到所述阻燃防风絮片。
阻燃防风絮片的专用喷丝设备,包括有喷丝板1、设置于喷丝板上的喷丝孔和设置于喷丝孔外部的格栅混合结构4;专用喷丝设备用于所述阻燃防风絮片制备过程中喷丝阶段的交织复合。
喷丝孔由相互联通的导孔3和毛细孔2构成,导孔3用于导入熔体或溶液,毛细孔2用于喷出熔体细流或溶液细流。
喷丝孔中,导孔3的几何形状为锥底圆柱形、圆锥形、双曲线形、二级圆柱形和/或平底圆柱形;优选为圆锥形和/或双曲线形。
喷丝孔之间的距离为2-5cm,喷丝孔与格栅混合结构4的距离为1-3cm。
格栅混合结构4由若干个可调节的格栅板5组成,格栅板5的宽度为2-5mm,格栅板5之间的空隙宽度在2-5mm之间可调节。
格栅混合结构4的材质与喷丝孔内壁材质相同;格栅混合结构4的温度为喷丝孔内温度的65%-75%,以便于喷丝的分散、冷却、交织、复合。格栅混合结构4为可周期性平移的结构;平移周期为1-3mm/s。
实施例4:
一种阻燃防风絮片,以聚合度为200的聚酰亚胺纤维为基材,聚酰亚胺纤维基材 为20重量份,规格为1.95detx、42mm,还包括阻燃粘胶纤维,30重量份,规格为1.67detx、51mm,阻燃涤纶纤维8重量份,规格为1.23detx、32mm,阻燃涤纶中空纤维8重量份,规格为3.33detx、64mm,低熔点复合纤维6重量份,规格为4detx、51mm。
阻燃粘胶纤维为焦磷酸酯类阻燃粘胶纤维。
阻燃涤纶纤维和阻燃涤纶中空纤维的极限氧指数为30。
低熔点复合纤维为皮芯结构复合纤维,皮层熔点为150℃,芯层熔点为255℃。
阻燃防风絮片中还包括有抑菌剂和阻燃剂,抑菌剂为8121抑菌剂;阻燃剂为磷氮阻燃剂或8121阻燃剂。
阻燃防风絮片的制备方法,具体操作为:
S1.将涤纶纤维通过专用喷丝设备喷丝混合形成混合纤维层,涤纶纤维的喷丝温度为60℃,涤纶纤维的喷丝速度为0.35m/min;
S2.将含有酰亚胺环的聚合物基材超细纤维喷丝到步骤S1得到的混合纤维层上,得到絮片半成品,聚合物基材超细纤维的喷丝温度为60℃,聚合物基材超细纤维的喷丝速度为0.3m/min;
S3.在步骤S2得到的絮片半成品上,再覆盖一层所述混合纤维层,形成双混合纤维层的夹心结构,即得到所述阻燃防风絮片。
阻燃防风絮片的专用喷丝设备,包括有喷丝板1、设置于喷丝板上的喷丝孔和设置于喷丝孔外部的格栅混合结构4;专用喷丝设备用于所述阻燃防风絮片制备过程中喷丝阶段的交织复合。
喷丝孔由相互联通的导孔3和毛细孔2构成,导孔3用于导入熔体或溶液,毛细孔2用于喷出熔体细流或溶液细流。
喷丝孔中,导孔3的几何形状为锥底圆柱形、圆锥形、双曲线形、二级圆柱形和/或平底圆柱形;优选为圆锥形和/或双曲线形。
喷丝孔之间的距离为2-5cm,喷丝孔与格栅混合结构4的距离为1-3cm。
格栅混合结构4由若干个可调节的格栅板5组成,格栅板5的宽度为2-5mm,格栅板5之间的空隙宽度在2-5mm之间可调节。
格栅混合结构4的材质与喷丝孔内壁材质相同;格栅混合结构4的温度为喷丝孔内温度的65%-75%,以便于喷丝的分散、冷却、交织、复合。格栅混合结构4为可周期性平移的结构;平移周期为1-3mm/s。
验证试验设计:
从实施例2-4可知,以聚酰亚胺纤维为基材,辅以一定规格和配比的四种涤纶纤维才能够得到具有本发明所描述技术效果的絮片,其中,实施例4所要求保护的技术方案,是本发明的最优技术方案,申请人为了表明本发明检测方法的预处理步骤以及所选用试剂的优越性,以实施例4的技术为模板,设计了更多的试验(即实施例和对比例)用以进行证明和对比。
验证试验的标准即检测方法如下表2所示:
表2
Figure PCTCN2022084906-appb-000003
实施例和对比例中所涉及的会影响本发明最终技术效果(质量、热阻、蓬松度、压缩弹性回复率、阻燃性能等)的关键技术因素,包括以下几个方面:
1、不添加基材聚酯纤维(对比例1);
2、聚酰亚胺纤维的聚合度为10(对比例2)、350(对比例3);
3、涤纶纤维选自:
1)单一涤纶纤维:阻燃粘胶纤维(实施例5)、阻燃涤纶纤维(实施例6)、阻燃涤纶中空纤维(实施例7)、低熔点复合纤维(实施例8);
2)两种涤纶纤维:阻燃粘胶纤维+阻燃涤纶纤维(实施例9)、阻燃粘胶纤维+阻燃涤纶中空纤维(实施例10)、阻燃粘胶纤维+低熔点复合纤维(实施例11)、阻燃涤纶纤维+阻燃涤纶中空纤维(实施例12)、阻燃涤纶纤维+低熔点复合纤维(实施例13)、阻燃涤纶中空纤维+低熔点复合纤维(实施例14);
3)三种涤纶纤维:阻燃粘胶纤维+阻燃涤纶纤维+阻燃涤纶中空纤维(实施例15)、阻燃涤纶纤维+阻燃涤纶中空纤维+低熔点复合纤维(实施例16)、阻燃粘胶纤维+阻燃涤纶中空纤维+低熔点复合纤维(实施例17);
4、聚酰亚胺纤维的百分占比为10%(对比例4)、30%(对比例5);
5、阻燃粘胶纤维的百分占比为25%(对比例6)、35%(对比例7);
6、阻燃涤纶纤维的百分占比为2%(对比例8)、15%(对比例9);
7、阻燃涤纶中空纤维的百分占比为3%(对比例10)、15%(对比例11);
8、低熔点复合纤维的百分占比为2%(对比例12)、10%(对比例13)。
验证试验的设置概括如下表3所示:
表3
Figure PCTCN2022084906-appb-000004
Figure PCTCN2022084906-appb-000005
表3中,所有空白部分的数据均与实施例4(最优选技术效果)相同。验证试验中各实施例和对比例的应用效果概括如下表4所示:
表4
Figure PCTCN2022084906-appb-000006
Figure PCTCN2022084906-appb-000007
从表3-4中各项实施例、对比例以及应用效果检测结果可以看出,
1、以检测结果看,实施例4为所有实施例和对比例中各项指标最好的;
2、对比例1(无聚酰亚胺纤维)为所有实施例和对比例中综合各项指标最差的,明显低于表2中所给出的各项标准值,难以达到标准要求,充分说明聚酰亚胺在本发明中起到了关键作用;
3、对比例2-3、对比例4-5、对比例6-7、对比例8-9、对比例10-11、对比例12-13分别为本发明所提供的各技术要点所要求保护的范围之外的任选点值,其效果明显低于实施例2-4。
申请人于2016年8月、2017年1月、2017年8月委托国家纺织制品质量监督检验中心,依据GB/T 11048-2008A法和B法,对本发明所述的各实施例的阻燃防风絮片的保温性能进行了检测,检测项目包括热阻(m 2·K/W)、克罗值、折算保温率(%)及传热系数(W/(m 2·K))。
申请人还于2017年1月委托国家纺织制品质量监督检验中心,依据GB/T 5455-2014,对本发明所述的各实施例的阻燃防风絮片的垂直燃烧性能进行了检测,检测项目包括损毁长度(mm)、续燃时间(s)、阴燃时间(s)、燃烧特征及有无滴落物。
申请人还于2016年6月委托国家纺织制品质量监督检验中心,依据FZ/T 64020-2011(复合保温材料,化纤复合絮片)和FZ/T 73023-2006(抗菌针织品),对本发明所述的各实施例的阻燃防风絮片的产品性能进行了检测,检测项目包括压缩弹性率(%)、水洗性能外观变化、保温性-热阻(m 2·K/W)、透气率(mm/s)、单位面积质量(g/m 3)、蓬松度(cm 3/g)、金黄色葡萄球菌(ATCC 6538)抑菌率(%)-洗涤50次后、白色念珠菌(ATCC 10231)抑菌率(%)-洗涤50次后、大肠杆菌(8099)抑菌率(%)-洗涤50次后。
综合比较本发明所提供实施例中(尤其是实施例4)的阻燃防风絮片产品的各项检测结果可以看出,本发明所提供的阻燃防风絮片,其阻燃效果、蓬松效果、防脱效果、保温效果、透气效果、质量以及抑菌率等各项指标均明显优于对比例,也明显优于现有产品。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种阻燃防风絮片,其特征在于,是以含有酰亚胺环的聚合物为基材,在喷丝阶段交织复合至少一种涤纶纤维得到的。
  2. 根据权利要求1所述的一种阻燃防风絮片,其特征在于,所述含有酰亚胺环的聚合物为聚酰亚胺纤维;优选地,所述聚酰亚胺纤维为脂肪族聚酰亚胺纤维、半芳香族聚酰亚胺纤维和芳香族聚酰亚胺纤维中的一种或多种;或优选地,所述聚酰亚胺纤维的聚合度为20-300。
  3. 根据权利要求1-2所述的一种阻燃防风絮片,其特征在于,所述涤纶纤维选自阻燃粘胶纤维、阻燃涤纶纤维、阻燃涤纶中空纤维和低熔点复合纤维中的一种或多种;优选地,按照重量份计,聚酰亚胺纤维为12份-28份,涤纶纤维为38份-66份;更优选地,所述涤纶纤维中,按照重量份计,阻燃粘胶纤维27份-33份、阻燃涤纶纤维3份-13份、阻燃涤纶中空纤维5份-11份和/或低熔点复合纤维3份-9份。
  4. 根据权利要求3所述的一种阻燃防风絮片,其特征在于,所述阻燃粘胶纤维为有机阻燃粘胶纤维或无机阻燃粘胶纤维,优选为焦磷酸酯类阻燃粘胶纤维或硅系阻燃粘胶纤维;所述阻燃涤纶纤维和阻燃涤纶中空纤维的极限氧指数为26-34;所述低熔点复合纤维为皮芯结构复合纤维,皮层熔点为110℃-180℃,芯层熔点为250℃-260℃。
  5. 根据权利要求4所述的一种阻燃防风絮片,其特征在于,所述聚酰亚胺纤维的细度为0.5-7dtex,长度为25-55mm;所述阻燃粘胶纤维的细度为1.5-2dtex,长度为45-55mm;所述阻燃涤纶纤维的细度0.5-2dtex,长度为30-35mm;所述阻燃涤纶中空纤维的细度为3-4dtex,长度为60-70mm;所述低熔点复合纤维的细度为3-5dtex,长度为45-55mm。
  6. 根据权利要求1-5任一所述的一种阻燃防风絮片,其特征在于,所述絮片中还包括有抑菌剂和/或阻燃剂;阻燃剂优选为碳氮阻燃剂或磷氮阻燃剂。
  7. 一种阻燃防风絮片的专用喷丝设备,其特征在于,所述阻燃防风絮片为权利要求1-6任一所述的阻燃防风絮片,所述专用喷丝设备包括有喷丝板、设置于喷丝板上的喷丝孔和设置于喷丝孔外部的格栅混合结构;所述专用喷丝设备用于所述阻燃防风絮片制备过程中喷丝阶段的交织复合;优选地,所述喷丝孔由相互联通的导孔和毛细孔构成,所述导孔用于导入熔体或溶液,所述毛细孔用于喷出熔体细流或溶液细流。
  8. 根据权利要求7所述的一种阻燃防风絮片的专用喷丝设备,其特征在于,所述喷丝孔中,导孔的几何形状为锥底圆柱形、圆锥形、双曲线形、二级圆柱形和/或平底圆柱形;优选为圆锥形和/或双曲线形;优选地,所述喷丝孔之间的距离为2-5cm,喷丝孔与格栅混合结构的距离为1-3cm。
  9. 根据权利要求8所述的一种阻燃防风絮片的专用喷丝设备,其特征在于,所述格栅混合结构由若干个可调节的格栅板组成,格栅板的宽度为2-5mm,格栅板之间的空隙宽度在2-5mm之间可调节;优选地,所述格栅混合结构的材质与喷丝孔内壁材质相同;所述格栅混合结构的温度为喷丝孔内温度的65%-75%,以便于喷丝的分散、冷却、交织、复合;更优选地,所述格栅混合结构为可周期性平移的结构;平移周期为1-3mm/s。
  10. 一种阻燃防风絮片的制备方法,其特征在于,所述阻燃防风絮片为权利要求1-6任一所述的阻燃防风絮片,制备方法具体操作为:
    S1.将所述涤纶纤维通过权利要求7-9任一所述的专用喷丝设备喷丝混合形成混合纤维层;
    S2.将含有酰亚胺环的聚合物基材超细纤维喷丝到步骤S1得到的混合纤维层上,得到絮片半成品;
    S3.在步骤S2得到的絮片半成品上,再覆盖一层所述混合纤维层,形成双混合纤维层的夹心结构,即得到所述阻燃防风絮片;
    优选地,所述步骤S2至步骤S3的操作至少为一次;更优选地,所述涤纶纤维的喷丝温度为40℃-80℃;所述聚合物基材超细纤维的喷丝温度为 50℃-70℃;所述涤纶纤维的喷丝速度为0.20-0.45m/min;所述聚合物基材超细纤维的喷丝速度为0.25-0.35m/min。
PCT/CN2022/084906 2022-01-06 2022-04-01 一种阻燃防风絮片及其制备方法 WO2023130595A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/001,533 US20240011196A1 (en) 2022-01-06 2022-04-01 Flame-retardant and windproof wadding and preparation method thereof
EP22918060.9A EP4361332A1 (en) 2022-01-06 2022-04-01 Flame-retardant windproof flaky wadding and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210008821.4 2022-01-06
CN202210008821.4A CN114262982B (zh) 2022-01-06 2022-01-06 一种阻燃防风絮片及其制备方法

Publications (1)

Publication Number Publication Date
WO2023130595A1 true WO2023130595A1 (zh) 2023-07-13

Family

ID=80832472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084906 WO2023130595A1 (zh) 2022-01-06 2022-04-01 一种阻燃防风絮片及其制备方法

Country Status (4)

Country Link
US (1) US20240011196A1 (zh)
EP (1) EP4361332A1 (zh)
CN (1) CN114262982B (zh)
WO (1) WO2023130595A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652574A (zh) * 2022-10-11 2023-01-31 中国人民解放军93114部队 用于提高絮料蓬松度的方法及絮料和飞行服

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232555A1 (en) * 2002-06-12 2003-12-18 Kuraray Co. Ltd. Flame-retardant leather-like sheet substrate and production method thereof
JP2007291570A (ja) * 2006-04-26 2007-11-08 Kaneka Corp 難燃性合成繊維、難燃繊維複合体およびそれを用いた炎遮断性バリア用不織布
US20090025144A1 (en) * 2005-06-03 2009-01-29 Kaneka Corporation Flame-Retardant Bedding
CN102242406A (zh) * 2011-06-21 2011-11-16 浙江尤夫高新纤维股份有限公司 高强型涤纶工业丝专用喷丝板
CN108221174A (zh) * 2018-02-01 2018-06-29 中国人民解放军62023部队 一种远红外保暖阻燃功能絮片及其制备方法
CN209144395U (zh) * 2018-09-03 2019-07-23 上海伊贝纳纺织品有限公司 一种工业用阻燃保暖絮片
CN112111859A (zh) * 2020-10-19 2020-12-22 上海镧泰微波设备制造有限公司 一种熔喷布及其成布工艺和成布方法
CN113322577A (zh) * 2021-07-05 2021-08-31 吉祥三宝高科纺织有限公司 一种具有抗菌阻燃保暖功能的絮片及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014960A1 (en) * 2005-07-18 2007-01-18 Western Nonwovens, Inc. Fire retardant binding tape for mattresses
CN105586719B (zh) * 2014-10-24 2019-04-05 张家港骏马无纺布有限公司 一种柔软高强力涤纶sms复合非织造材料及其制备方法
CN206870499U (zh) * 2017-06-29 2018-01-12 上海伊贝纳纺织品有限公司 一种阻燃复合絮片
CN111485328B (zh) * 2020-03-18 2021-06-18 浙江恒澜科技有限公司 一种阻燃纳米纤维复合材料的制备方法及装置
CN111485329B (zh) * 2020-03-23 2021-07-06 东华大学 一种具有三明治结构的纳米纤维絮片及其制备方法
CN213261466U (zh) * 2020-09-04 2021-05-25 嘉兴市周业纺织有限公司 一种阻燃涤纶面料
CN112359483B (zh) * 2020-10-16 2022-03-04 北京航天凯恩化工科技有限公司 一种聚酰亚胺保温絮片及其制备方法
CN112481820A (zh) * 2020-10-30 2021-03-12 张家港骏马无纺布有限公司 一种复合熔喷无纺布及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232555A1 (en) * 2002-06-12 2003-12-18 Kuraray Co. Ltd. Flame-retardant leather-like sheet substrate and production method thereof
US20090025144A1 (en) * 2005-06-03 2009-01-29 Kaneka Corporation Flame-Retardant Bedding
JP2007291570A (ja) * 2006-04-26 2007-11-08 Kaneka Corp 難燃性合成繊維、難燃繊維複合体およびそれを用いた炎遮断性バリア用不織布
CN102242406A (zh) * 2011-06-21 2011-11-16 浙江尤夫高新纤维股份有限公司 高强型涤纶工业丝专用喷丝板
CN108221174A (zh) * 2018-02-01 2018-06-29 中国人民解放军62023部队 一种远红外保暖阻燃功能絮片及其制备方法
CN209144395U (zh) * 2018-09-03 2019-07-23 上海伊贝纳纺织品有限公司 一种工业用阻燃保暖絮片
CN112111859A (zh) * 2020-10-19 2020-12-22 上海镧泰微波设备制造有限公司 一种熔喷布及其成布工艺和成布方法
CN113322577A (zh) * 2021-07-05 2021-08-31 吉祥三宝高科纺织有限公司 一种具有抗菌阻燃保暖功能的絮片及其制备方法

Also Published As

Publication number Publication date
CN114262982A (zh) 2022-04-01
EP4361332A1 (en) 2024-05-01
CN114262982B (zh) 2022-10-25
US20240011196A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
CN101736416B (zh) 细旦与超细旦聚丙烯纤维的制备工艺
CN102517676B (zh) 阻燃抗菌涤纶短纤维的生产工艺
CN101768789B (zh) 一种细旦中空尼龙6fdy长丝的生产方法
CN112981712B (zh) 一种纤维复合保暖絮片及其制备方法
CN110699857B (zh) 吸水熔喷无纺布及其制备方法
CN110438666B (zh) 一种复合熔喷无纺布及其制备方法
WO2023130595A1 (zh) 一种阻燃防风絮片及其制备方法
CN109487352A (zh) 石墨烯聚乳酸双组分复合纤维及其制备方法和设备
CN106757504B (zh) 一种复合弹性纤维及其制备方法
CN111455474B (zh) 一种仿羊毛卷曲静电纺纳米纤维及其制备方法
WO2020232931A1 (zh) 电纺聚丙烯腈纳米纤维连续长线纱的制备方法和应用
CN114293322B (zh) 高透湿低渗水复合无纺布的制备方法
CN102517686A (zh) 竹炭涤纶短纤维的生产工艺
CN113322577B (zh) 一种具有抗菌阻燃保暖功能的絮片及其制备方法
CN105063779B (zh) 一种耐化学性复合单丝及其制备方法
WO2021135080A1 (zh) 一种针织用复合卷曲纤维及其制备方法
CN111945240B (zh) 一种用于高分子熔喷纤维的驻极材料及其检测方法
CN108265405A (zh) 一种静电纺纳米多组分纤维非织造材料及其制备方法和应用
CN112481820A (zh) 一种复合熔喷无纺布及其制备方法
CN112981718A (zh) 一种静电纺纤维絮片及其制备方法
CN107502972A (zh) 一种石墨烯原位聚合改性聚酰胺6全牵伸丝及其制备方法
CN112778637B (zh) 一种可水洗熔喷聚丙烯材料及其制备方法和应用
CN116440590A (zh) 粗丝无纺布过滤材料及其制备方法
CN116674262A (zh) 一种气凝胶纳米纤维复合保暖材料及其制备方法
CN115386976A (zh) 一种透气排湿良好的功能性纺织新材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18001533

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022918060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022918060

Country of ref document: EP

Effective date: 20240117