WO2023128715A1 - 터빈 블레이드형 전기 모터 - Google Patents

터빈 블레이드형 전기 모터 Download PDF

Info

Publication number
WO2023128715A1
WO2023128715A1 PCT/KR2023/000006 KR2023000006W WO2023128715A1 WO 2023128715 A1 WO2023128715 A1 WO 2023128715A1 KR 2023000006 W KR2023000006 W KR 2023000006W WO 2023128715 A1 WO2023128715 A1 WO 2023128715A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
stator
poles
rotor
blade body
Prior art date
Application number
PCT/KR2023/000006
Other languages
English (en)
French (fr)
Inventor
유학철
유로빈
Original Assignee
주식회사 피닉스인베니트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피닉스인베니트 filed Critical 주식회사 피닉스인베니트
Publication of WO2023128715A1 publication Critical patent/WO2023128715A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature

Definitions

  • the present invention relates to an electric motor, and relates to a turbine blade-type electric motor having an expandable structure capable of easily increasing the output of the electric motor as needed with a stacked module capable of high-speed rotation and high torque.
  • a motor is a device for converting electric energy into kinetic energy by flowing current through an electromagnet
  • AC motors, DC motors, and BLDC motors (BrushLessDC) are typical examples. there is.
  • stator and the rotor of the conventional electric motor are provided in an exposed form, there is a problem in that the stator and the rotor may be damaged or worn by a hard object during use of the motor.
  • the present invention is intended to solve the problems of the prior art, enabling permanent magnets and electromagnets of a motor to be selected and used at positions corresponding to a stator and a rotor, and, if necessary, one or more stators and rotors inside a casing.
  • the purpose is to easily increase the output of the electric motor by enabling the characteristics of the electric motor to be variable while arranging a plurality of them in a row to expand, and to enable the expansion of the stator, rotor, and casing of the electric motor. .
  • the present invention makes the bodies of the stator and the rotor to be made of blades that can easily accommodate permanent magnets and electromagnets, and configures the blades in a streamlined shape to prevent damage while protecting the permanent magnets and electromagnets using the blades, , the purpose is to allow the motor to generate airflow by itself while the blade rotates.
  • the present invention to solve this object
  • stator coupled to an inner circumference of the casing
  • It is configured to include; a rotor axially coupled to one side of the stator through a shaft;
  • the stator and the rotor provide a turbine blade type electric motor, characterized in that having a blade body made of a streamlined shape.
  • the characteristics of the motor can be varied, one or more stators and rotors of the motor are selectively disposed in the casing, so that the output of the electric motor can be expanded as needed, and the body of the stator and the rotor can be expanded.
  • FIG. 1 is a front view of a turbine blade type electric motor according to the present invention.
  • FIG. 2 is a side view of a turbine blade type electric motor according to the present invention.
  • FIG 3 is a cross-sectional view of a main part of a turbine blade type electric motor according to the present invention.
  • FIG. 4 is a perspective view of a permanent magnet of a turbine blade type electric motor according to a first embodiment of the present invention.
  • FIG. 5 is a perspective view of an electromagnet of a turbine blade type electric motor according to a second embodiment of the present invention.
  • FIG. 6 is a perspective view of a permanent magnet in a turbine blade type electric motor according to a third embodiment of the present invention.
  • FIG. 1 and 2 are views for explaining the overall configuration of the turbine blade type electric motor of the present invention
  • FIG. 3 is a view for explaining the principle of generating rotational force as the stator and the rotor are pushed and pulled by attraction and repulsive force
  • 4 to 6 are views for explaining various embodiments of a permanent magnet and an electromagnet in a turbine blade type electric motor of the present invention.
  • the casing 100 is formed in a hollow shape, and the shaft 110 is axially coupled to the center, and the shaft 110 is coupled to both ends of the shaft 110.
  • the opening is a hole that communicates with the outside air. 120, and the casing 100 can have a variable length so that one or more stators 200a and one or more rotors 200b can be arranged in a line and extended.
  • the structure of the shaft 110 can be changed into an external type or an internal type depending on the position where the permanent magnet 210 and the electromagnet 220 are selected and used in the stator 200a and the rotor 200b in correspondence with each other.
  • the casing 100 is rotated while the shaft 110 is supported by bearings, and in the case of the internal type, the shaft 110 itself can be rotated while being supported by the casing 100 .
  • the casing 100 may be selectively used as an abduction type or an inversion type corresponding to the arrangement positions of the permanent magnet 210 and the electromagnet 220, and through this, rotational force is transmitted through the shaft 110 or the casing 100.
  • the stator 200a is coupled to the inner circumference of the casing 100, and the rotor 200b is axially coupled through the shaft 110 close to one side of the stator 200a.
  • the stator 200a and the rotor 200b are arranged radially around the casing 100.
  • stator 200a and the rotor 200b are composed of one or more permanent magnets 210 or electromagnets 220 arranged at equal intervals around the casing 100, and the permanent magnets 210 and the electromagnets 220 ) can be selected and used at positions corresponding to each other in the stator 200a and the rotor 200b.
  • the electromagnet 220 when the permanent magnet 210 is applied to the stator 200a, the electromagnet 220 is applied to the rotor 200b, and on the contrary, when the electromagnet 220 is applied to the stator 200a, the rotor 200b It can be arranged in a form in which the permanent magnet 210 is applied, and through this, the positions of the permanent magnet 210 and the electromagnet 220 are selectively used at positions corresponding to each other of the stator 200a and the rotor 200b. can
  • stator 200a and the rotor 200b are moved by the electromagnetic force of the permanent magnet 210 and the electromagnet 220 selectively disposed in the stator 200a and the rotor 200b. While attraction and repulsive force are generated between the rotor 200a and the rotor 200b, rotational force is generated by pushing or pulling each other, and the electric motor 1 is operated through the rotational force generated in this way.
  • FIG. 3 basically shows a form in which the stator 200a is made of an electromagnet 220 and the rotor 200b is made of a permanent magnet 210, and the stator 200a is to minimize drag on the air flow Accordingly, the rotor 200b may be formed in an airfoil shape capable of generating air flow.
  • the electromagnetic force of the permanent magnet 210 and the electromagnet 220 applied to the stator 200a and the rotor 200b can be controlled in a brushless motor control method, and the permanent magnet 210 and the electromagnet 220 BLDC motor driver modules and magnetic sensors can be used in response to various polarity directions.
  • stator 200a and the rotor 200b may be selectively expandable while sequentially arranging one or more in a row in the longitudinal direction of the casing 100 .
  • the turbine blade type electric motor 1 it is a motor capable of high-speed rotation, and in the case of increasing the output of the motor at high-speed rotation, the stator 200a and the rotor 200b are provided in the longitudinal direction of the casing 100. It can be expanded by sequentially arranging in a line above, and as a result, the output of the electric motor 1 is improved in proportion to the number of stators 200a and rotors 200b arranged in a line in the casing 100. .
  • the expansion structure of the stator 200a and the rotor 200b enables high-speed rotation and secures sufficient output when extended in multiple stages, so that the electric motor 1 of the present invention can be used in areas requiring high rotation and high torque. can be applied.
  • one or more stators 200a and a rotor 200b are sequentially arranged in a row inside the casing 100 and expanded as needed, so that the output of the electric motor 1 can be arbitrarily and conveniently increased. do.
  • the blade body 300 has a streamlined cross section to generate airflow when rotating around the casing 100.
  • the number of blade bodies 300 respectively applied to the stator 200a and the rotor 200b may be at least four, and four or more blade bodies 300 may be selected according to the user's choice. Can be placed in various ways.
  • the blade body 300 is a high permeability magnetic material and can be made of a silicon steel alloy used for the core of an electromagnet or a Permalloy alloy.
  • the blade body 300 can be disposed obliquely at any angle, increasing the arrangement angle of the blade body 300 increases the inflow of air and simultaneously increases the load, and reducing the arrangement angle of the blade body 300 increases air As the flow rate decreases, the load also decreases.
  • the angle of the blade body 300 may be increased or decreased corresponding to the application of the electric motor 1 .
  • the blade body 300 can rotate around the casing 100 at the positions of the stator 200a and the rotor 200b, and when the plurality of blade bodies 300 rotate, airflow is generated, and a number of Airflow generated through the blade body 300 may be supplied in one direction through openings at both ends of the casing 100 .
  • the pitch angle of the blade body 300 is lowered, the load due to air resistance is minimized and the function of simply cooling the motor can be performed. If it is increased, it can generate a strong air current as a power source for aircraft, or can be applied as a powerful blower.
  • the blade body 300 further includes a receiving space 310 into which a permanent magnet 210 or an electromagnet 220 constituting the stator 200a and the rotor 200b is inserted.
  • the accommodating space 310 is formed as a space into which the permanent magnet 210 or the electromagnet 220 is easily inserted into the blade body 300, and one end of the accommodating space 310 is formed in an open form so that the permanent magnet ( 210) or the electromagnet 220 can be easily inserted into the opening side of the accommodating space 310.
  • an assembly unit 320 for fixing the blade body 300 to the inner circumference of the casing 100 or the outer circumference of the shaft 110 is formed on the opening side of the accommodation space 310, and the assembly unit 320 is the blade body. It protrudes in the form of a plate at the end of the 300 and has a hole for fastening bolts at the corner of the assembly part 320 to easily attach the blade body 300 to the inner circumference of the casing 100 or the outer circumference of the shaft 110. It is supported and fixed with a bolted connection.
  • the present invention can prevent damage to the permanent magnet 210 and the electromagnet 220 protected by the blade body 300 as the permanent magnet 210 and the electromagnet 220 are accommodated inside the blade body 300. be able to
  • the accommodation space 310 further includes filling epoxy or foamed resin when the permanent magnet 210 or electromagnet 220 is inserted, and when filling the accommodation space 310 with epoxy or foamed resin, the accommodation space ( 310), the permanent magnet 210 or the electromagnet 220 can be easily fixed.
  • the permanent magnet 210 forms N poles and S poles at both ends of the blade body 300 in the transverse direction, or the permanent magnet 210 forms the blade body 300 vertically.
  • N poles and S poles may be formed at both ends of the direction.
  • the polarity direction of the permanent magnet 210 may be changed corresponding to the position where the permanent magnet 210 is applied to the stator 200a or the rotor 200b.
  • FIG. 4 shows a state in which the permanent magnet 210 is disposed by forming N poles and S poles at both ends of the blade body 300 in the transverse direction.
  • the permanent magnet 210 is a stator ( 200a).
  • the N pole and the S pole of the permanent magnet 210 are sequentially arranged in the longitudinal direction of the casing 100, respectively, and arranged in one or more stages back and forth.
  • a plurality of stators 200a and rotors 200b can be interconnected.
  • (b) of FIG. 4 shows a state in which the permanent magnet 210 is disposed by forming N poles and S poles at both ends of the blade body 300 in the longitudinal direction, in this case, along the center of the casing 100.
  • N poles of the plurality of permanent magnets 210 may be continuously arranged at one end and S poles may be continuously arranged at the other end.
  • the electromagnet 220 forms N poles and S poles at both ends of the blade body 300 in the transverse direction, or the electromagnet 220 is the length of the blade body 300 N poles and S poles may be formed at both ends of the direction.
  • FIG. 5 shows a state in which the electromagnet 220 is disposed by forming N poles and S poles at both ends of the blade body 300 in the horizontal direction, and in this case, it is disposed along the center of the casing 100.
  • One end of the plurality of electromagnets 220 to be N-poles are continuously arranged, the other end may be continuously arranged S-poles.
  • FIG. 5 shows a state in which the electromagnet 220 is disposed by forming N poles and S poles at both ends in the longitudinal direction of the blade body 300, in this case disposed along the center of the casing 100.
  • a plurality of electromagnets 220 may have N poles continuously arranged on one side in the longitudinal direction, and S poles may be continuously arranged on the other side.
  • the permanent magnet 210 is the longitudinal direction of the blade body 300 It can be divided into two and provided respectively.
  • FIG. 6 shows a state in which the permanent magnets 210 are bifurcated in the longitudinal direction of the blade body 300 in this state.
  • the bisected permanent magnet 210 may form N poles and S poles at both ends in the longitudinal direction of the blade body 300, and the permanent magnets 210 respectively positioned in the longitudinal direction of the blade body 300 are The N pole and the S pole may be arranged to cross each other oppositely.
  • the various polar arrangement forms of the permanent magnet 210 and the electromagnet 220 allow the user to vary the characteristics of the electric motor 1 while arranging them in various applications according to the target of use of the electric motor 1,
  • the current switching of the BLDC motor driver module is adjusted in response to the polarity change of the permanent magnet 210 and the electromagnet 220, the arrangement of which is variable, so that the turbine blade type electric motor 1 can operate smoothly. While generating various current flows, it can respond to various polarity arrangements.
  • stator 200a and the rotor 200b can be used by transforming permanent magnets or electromagnets 220 to correspond to each other, so that the characteristics of the electric motor 1 can be easily varied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 전기 모터에 관한 것으로, 고속 회전이 용이한 구조에 강력한 토크까지 가능한 적층식 모듈로 전기 모터의 출력을 필요에 따라 용이하게 높일 수 있는 확장형 구조를 갖는 터빈 블레이드형 전기 모터에 관한 것이다. 이에 따른 본 발명은; 고정자와 회전자의 전자기력을 이용한 전기 모터로서, 중공의 케이싱(100)과; 상기 케이싱(100)의 내주에 결합된 고정자(200a)와; 상기 고정자(200a)의 한쪽으로 근접하게 샤프트(110)를 통해 축 결합되는 회전자(200b);를 포함하여 구성되고, 상기 고정자(200a) 및 회전자(200b)는 유선형으로 이루어진 블레이드 몸체(300)를 갖는다.

Description

터빈 블레이드형 전기 모터
본 발명은 전기 모터에 관한 것으로, 고속 회전이 용이한 구조에 강력한 토크까지 가능한 적층식 모듈로 전기 모터의 출력을 필요에 따라 용이하게 높일 수 있는 확장형 구조를 갖는 터빈 블레이드형 전기 모터에 관한 것이다.
일반적으로, 모터는 전자석에 전류를 흘려 전기 에너지를 운동 에너지로 바꾸기 위한 장치이며, AC 모터, DC 모터, BLDC 모터(BrushLessDC)가 대표적이고, BLDC 모터에는 축의 회전 방식에 따라 외전형 또는 내전형이 있다.
그러나 종래에는 전기 모터의 고정자와 회전자의 형태를 변형할 수 없고, 모터 케이싱의 확장이 불가능한 구조를 갖기 때문에 전기 모터의 특성을 가변시킬 수 없고, 전기 모터의 고정자, 회전자 및 케이싱의 확장이 불가능하여 전기 모터의 출력을 쉽게 높일 수 없는 문제점이 있었다.
또한, 종래에는 전기 모터의 고정자와 회전자는 노출된 형태로 마련되기 때문에 모터의 사용 중 단단한 물체에 의해 고정자 및 회전자가 파손되거나, 마모될 수 있는 문제점이 있었다.
또한, 종래에는 전기 모터를 활용해 기류를 생성하는 경우 별도 블레이드를 제작하며, 제작된 블레이드를 모터의 구동축에 장착시켜 사용하는 구조를 갖기 때문에 블레이드의 제작 및 장착에 따른 번거로움이 있고, 모터 자체적으로 기류를 생성할 수 없는 문제점이 있었다.
본 발명은 종래의 문제점들을 해결하기 위한 것으로서, 모터의 영구자석 및 전자석을 고정자와 회전자에 상호 대응하는 위치에 각각 선택 사용할 수 있게 하고, 필요에 따라 케이싱의 내부에 하나 이상의 고정자와 회전자를 일렬로 다수 배치시켜 확장할 수 있도록 구성하면서 전기 모터의 특성을 가변 가능하게 하고, 전기 모터의 고정자와 회전자 및 케이싱의 확장을 가능하게 하여 전기 모터의 출력을 간편하게 높일 수 있도록 하는데 그 목적이 있다.
또한, 본 발명은 고정자와 회전자의 몸체가 영구자석 및 전자석을 용이하게 수용할 수 있는 블레이드로 만들어지게 하고, 블레이드를 유선형으로 구성하여 블레이드를 이용해 영구자석 및 전자석을 보호하면서 파손을 방지하도록 하고, 블레이드가 회전하면서 모터가 자체적으로 기류를 생성할 수 있도록 하는데 그 목적이 있다.
이와 같은 목적을 해결하기 위해 본 발명은;
고정자와 회전자의 전자기력을 이용한 전기 모터로서,
중공의 케이싱과;
상기 케이싱의 내주에 결합된 고정자와;
상기 고정자의 한쪽으로 근접하게 샤프트를 통해 축 결합되는 회전자;를 포함하여 구성되고,
상기 고정자 및 회전자는 유선형으로 이루어진 블레이드 몸체를 갖는 것을 특징으로 하는 터빈 블레이드형 전기 모터를 제공한다.
이러한 본 발명에 따르면, 모터의 특성을 가변시킬 수 있으며, 모터의 고정자와 회전자가 케이싱에 하나 이상 선택적으로 배치되어 전기 모터의 출력을 필요에 따라 높이기 위한 확장이 가능하고, 고정자와 회전자의 몸체가 블레이드로 이루어져 영구자석 및 전자석이 블레이드에 의해 보호되어 파손이 방지되는 동시에 블레이드에 피치(pitch)를 줄 경우 블레이드의 회전에 의해 모터 자체적으로 기류가 생성되는 효과가 있다.
또한, 덕트팬 형태로 제작하여 블레이드에 높은 각도의 피치로 형성하면 항공기의 동력원으로서 강력한 기류를 생성할 수 있고, 부하를 최소로 하는 낮은 각도의 피치로 형성하면 단순히 모터의 냉각 용도로 다양하게 활용할 수 있는 효과가 있다.
도 1은 본 발명에 따른 터빈 블레이드형 전기 모터의 정면도.
도 2는 본 발명에 따른 터빈 블레이드형 전기 모터의 측면도.
도 3은 본 발명에 따른 터빈 블레이드형 전기 모터의 요부 단면도.
도 4는 본 발명의 제1 실시 예에 따른 터빈 블레이드형 전기 모터 중 영구자석의 사시도.
도 5는 본 발명의 제2 실시 예에 따른 터빈 블레이드형 전기 모터 중 전자석의 사시도.
도 6은 본 발명의 제3 실시 예에 따른 터빈 블레이드형 전기 모터 중 영구자석의 사시도이다.
본 발명에 따른 터빈 블레이드형 전기 모터를 첨부된 도면을 참고로 하여 이하 상세히 기술되는 실시 예들에 의해 그 특징들을 이해할 수 있을 것이다.
한편, 실시 예를 설명함에 있어 본 발명이 속하거나 속하지 아니한 기술분야에서 광범위하게 널리 알려져 사용되고 있는 구성요소에 대해서는 이에 대한 상세한 설명은 생략하도록 하며, 이는 불필요한 설명을 생략함과 더불어 이에 따른 본 발명의 요지를 더욱 명확하게 전달하기 위함이다.
도 1 내지 도 2는 본 발명의 터빈 블레이드형 전기 모터의 전체적인 구성을 설명하기 위한 도면이고, 도 3은 고정자 및 회전자가 인력과 척력에 의해 밀고 당겨지면서 회전력이 생기는 원리를 설명하기 위한 도면이며, 도 4 내지 도 6은 본 발명의 터빈 블레이드형 전기 모터 중 영구자석 및 전자석의 다양한 실시 예를 설명하기 위한 도면이다.
이에 따른 터빈 블레이드형 전기 모터(1)를 개략적으로 살펴보면, 고정자와 회전자의 전자기력을 이용한 전기 모터로서, 중공의 케이싱(100); 케이싱(100)의 내주에 결합되는 고정자(200a); 고정자(200a)의 한쪽에 근접하게 결합되는 회전자(200b);를 포함하여 구성되고, 고정자(200a) 및 회전자(200b)는 유선형의 블레이드 몸체(300)를 갖는다.
이하, 본 발명에 따른 터빈 블레이드형 전기 모터의 구성을 구체적으로 설명한다.
먼저, 상기 케이싱(100)은;
도 1 내지 도 2에 도시된 바와 같이 중공의 형태로 이루어진 것으로, 케이싱(100)은 중앙에 샤프트(110)가 축 결합되고, 샤프트(110)가 결합된 측의 양단부로 외기와 통하는 구멍인 개구부(120)를 갖으며, 케이싱(100)은 고정자(200a)와 회전자(200b)가 하나 이상 일렬로 배치되어 확장될 수 있도록 길이를 가변 시킬 수 있다.
샤프트(110)는 고정자(200a)와 회전자(200b)에 영구자석(210) 및 전자석(220)이 상호 대응하여 선택 사용되는 위치에 따라 외전형 또는 내전형으로 구조가 가변될 수 있는데, 외전형의 경우 샤프트(110)가 베어링 등에 의해 지지된 상태에서 케이싱(100)이 회전되게 하고, 내전형의 경우 샤프트(110) 자체가 케이싱(100)에 지지된 상태에서 회전될 수 있다.
이 경우 케이싱(100)은 영구자석(210) 및 전자석(220)의 배치 위치에 대응하여 외전형 또는 내전형으로 선택적 사용될 수 있고, 이를 통해 회전력을 샤프트(110) 또는 케이싱(100)을 통해 전달할 수 있다.
그리고, 상기 고정자(200a) 및 회전자(200b)는;
도 1 내지 도 3에 도시된 바와 같이 케이싱(100)의 내주에 고정자(200a)가 결합되고, 상기 고정자(200a)의 한쪽으로 근접하게 샤프트(110)를 통해 회전자(200b)가 축 결합되어 이루어지는데, 상기 고정자(200a) 및 회전자(200b)는 케이싱(100)을 중심으로 방사 형태로 배치되어 구성된다.
또한, 고정자(200a) 및 회전자(200b)는 영구자석(210) 또는 전자석(220)이 케이싱(100)을 중심으로 하나 이상 등간격으로 배치되어 구성되는데, 영구자석(210) 및 전자석(220)은 고정자(200a)와 회전자(200b)에 상호 대응하는 위치에 각각 선택 사용할 수 있다.
일례로 상기 고정자(200a)에 영구자석(210)이 적용되면 회전자(200b)는 전자석(220)이 적용되고, 이와 반대로 고정자(200a)에 전자석(220)이 적용되면 회전자(200b)에 영구자석(210)이 적용되는 형태로 배치될 수 있으며, 이를 통해 영구자석(210) 및 전자석(220)의 위치가 고정자(200a)와 회전자(200b)의 상호 대응하는 위치에서 각각 선택적으로 사용할 수 있다.
한편, 상기 고정자(200a)와 회전자(200b)는 도 3에 도시된 바와 같이 고정자(200a) 및 회전자(200b)에 선택적 배치되는 영구자석(210) 및 전자석(220)의 전자기력에 의해 고정자(200a)와 회전자(200b) 사이에 인력과 척력이 발생하면서 서로 밀거나 당겨 회전력을 생성되게 하고, 이렇게 생성된 회전력을 통해 전기 모터(1)가 작동된다.
이 경우 도 3은 고정자(200a)가 전자석(220)으로 이루어지고, 회전자(200b)가 영구자석(210)으로 이루어진 형태를 기본으로 도시하였으며, 고정자(200a)는 기류에 항력을 최소화해야 함에 따라 수직방향으로 공기저항을 최소화한 형상으로 이루어지고, 회전자(200b)는 기류를 생성할 수 있는 에어포일(airfoil) 형상으로 이루어질 수 있다.
여기서 상기 고정자(200a) 및 회전자(200b)에 적용되는 영구자석(210) 및 전자석(220)의 전자기력은 브러쉬리스 모터의 제어방식으로 제어될 수 있고, 영구자석(210) 및 전자석(220)의 다양한 극성 방향에 대응하여 BLDC 모터 드라이버 모듈 및 자기센서 등을 활용할 수 있다.
이때, 모터 드라이버 모듈 및 자기센서 등을 활용하면, 전기 모터(1)에 하나 이상 배열되는 전자석(220)에 흐르는 전류를 스위칭 할 수 있고, 보다 상세하게 BLDC 모터 드라이버 모듈은 모터 위상의 전류들을 전환하는 동작을 하여 모터 작동에 적절한 전류 흐름을 생성하면서 전기 모터(1)의 원활한 작동을 가능하게 한다.
또한, 고정자(200a)와 회전자(200b)는 도 2에 도시된 바와 같이 케이싱(100)의 길이 방향으로 일렬로 하나 이상 순차적 배치되면서 선택적으로 확장 가능할 수 있다.
한편, 터빈 블레이드형 전기 모터(1)의 경우 고속 회전이 가능한 모터이며, 고속 회전에서 모터의 출력을 높이고자 하는 경우 고정자(200a)와 회전자(200b)를 케이싱(100)의 길이 방향으로 하나 이상 일렬로 순차적 배치하여 확장할 수 있으며, 고정자(200a)와 회전자(200b)가 케이싱(100)에 일렬로 하나 이상 배치되는 수에 비례하여 결론적으로 전기 모터(1)의 출력이 향상되게 된다.
이 경우 고정자(200a)와 회전자(200b)의 확장 구조를 통해 고속 회전이 가능하면서 다단으로 확장되는 경우 충분한 출력을 확보할 수 있어 고회전-고토크가 필요한 영역에 본 발명의 전기 모터(1)를 응용이 가능하게 된다.
예컨대 본 발명은 필요에 따라 케이싱(100)의 내부에 하나 이상의 고정자(200a)와 회전자(200b)가 일렬로 순차적으로 다수 배치되어 확장됨에 따라 전기 모터(1)의 출력을 임의로 간편하게 높일 수 있게 된다.
그리고, 상기 블레이드 몸체(300)는;
도 2에 도시된 바와 같이 고정자(200a) 및 회전자(200b)에 유선형으로 이루어진 몸체를 제공하는 것으로, 블레이드 몸체(300)는 단면이 유선형으로 이루어져 케이싱(100)을 중심으로 회전시 기류를 생성할 수 있으며, 고정자(200a) 및 회전자(200b)에 각각 적용되는 블레이드 몸체(300)의 개수는 최소 4개 이상으로 마련될 수 있고, 사용자의 선택에 따라 블레이드 몸체(300)를 4개 이상 다양하게 배치 할 수 있다.
이때, 블레이드 몸체(300)는 고투자율 자성 재료 (高透磁率磁性材料)로서 전자석의 코어에 사용하는 규소강철 합금이나, 퍼말로이(Permalloy) 합금으로 제작할 수 있다.
또한, 블레이드 몸체(300)는 임의 각도로 비스듬하게 배치될 수 있으며, 블레이드 몸체(300)의 배치 각도를 높이면 공기의 유입량이 많아지는 동시에 부하는 커지고, 블레이드 몸체(300)의 배치 각도를 줄이면 공기의 유입량이 적어지는 동시에 부하가 줄게 된다.
이때, 블레이드 몸체(300)의 각도는 전기 모터(1)의 활용 용도에 대응하여 높이거나 줄일 수 있다.
이 경우 블레이드 몸체(300)는 고정자(200a) 및 회전자(200b)의 위치에서 케이싱(100)을 중심으로 회전할 수 있고, 다수의 블레이드 몸체(300)가 회전하면 기류가 생성되며, 다수의 블레이드 몸체(300)를 통해 생성된 기류가 케이싱(100)의 양단 개구 측을 통해 일방향으로 공급될 수 있다.
여기서 상기와 같이 생성되는 기류의 경우 블레이드 몸체(300)의 피치각을 낮추면 공기저항에 의한 부하가 최소화되면서 단순히 모터를 냉각시키는 기능을 수행할 수 있고, 이와 반대로 블레이드 몸체(300)의 피치각을 높일 경우 항공기의 동력원으로서 강력한 기류를 생성되게 하거나, 또는 강력한 송풍기로 응용할 수 있도록 한다.
한편, 상기 블레이드 몸체(300)는 고정자(200a)와 회전자(200b)를 구성하는 영구자석(210) 또는 전자석(220)이 삽입되는 수용공간(310)을 갖는 것을 더 포함한다.
수용공간(310)은 블레이드 몸체(300)의 내부로 영구자석(210) 또는 전자석(220)이 용이하게 삽입되는 공간으로 형성되며, 수용공간(310)의 일단은 개구된 형태로 이루어져 영구자석(210) 또는 전자석(220)을 수용공간(310)의 개구 측에 용이하게 삽입시킬 수 있다.
이때, 수용공간(310)의 개구 측에는 블레이드 몸체(300)를 케이싱(100)의 내주 또는 샤프트(110)의 외주에 고정시키기 위한 조립부(320)가 형성되며, 조립부(320)는 블레이드 몸체(300)의 끝단에서 판 형태로 돌출되고 조립부(320)의 모서리 측에 볼트 체결을 위한 구멍을 갖으면서 블레이드 몸체(300)를 케이싱(100)의 내주 또는 샤프트(110)의 외주에 용이하게 지지되게 하면서 볼트 결합으로 고정되게 한다.
예컨대 본 발명은 영구자석(210) 및 전자석(220)이 블레이드 몸체(300)의 내부에 수용됨에 따라 블레이드 몸체(300)에 의해 보호되는 영구자석(210) 및 전자석(220)의 파손을 방지할 수 있게 된다.
또한, 상기 수용공간(310)은 영구자석(210) 또는 전자석(220)이 삽입되면 에폭시 또는 발포 수지를 채워 넣는 것을 더 포함하고, 수용공간(310)을 에폭시 또는 발포 수지를 채워 넣으면 수용공간(310)에 삽입된 영구자석(210) 또는 전자석(220)을 용이하게 고정할 수 있게 된다.
이하, 본 발명에 따른 터빈 블레이드형 전기 모터의 실시 예들을 구체적으로 설명한다.
도 4의 제1 실시 예에 따르면, 영구자석(210)은 블레이드 몸체(300)의 가로방향 양단으로 N극 및 S극을 형성시키거나, 또는 영구자석(210)은 블레이드 몸체(300)의 세로방향 양단으로 N극 및 S극을 형성시킬 수 있다.
영구자석(210)은 고정자(200a)에 적용되거나 회전자(200b)에 적용되는 위치에 대응하여 영구자석(210)의 극성방향이 변형될 수 있다.
한편, 도 4의 (a)는 영구자석(210)이 블레이드 몸체(300)의 가로방향 양단으로 N극 및 S극을 형성시켜 배치되는 상태를 나타낸 것이며, 이 경우 영구자석(210)이 고정자(200a)에 적용될 수 있다.
이 상태에서 도 2와 같이 고정자(200a)와 회전자(200b)가 확장되면 영구자석(210)의 N극 및 S극이 케이싱(100)의 길이방향으로 각각 순차적 배열되어 전후로 1단 이상 배치된 다수의 고정자(200a)와 회전자(200b)를 상호 연계시킬 수 있게 된다.
또한, 도 4의 (b)는 영구자석(210)이 블레이드 몸체(300)의 세로방향 양단으로 N극 및 S극을 형성시켜 배치되는 상태를 나타낸 것이고, 이 경우 케이싱(100)의 중심을 따라 배치되는 다수의 영구자석(210)이 일단은 N극이 연속 배열되고, 타단은 S극이 연속 배열될 수 있다.
그리고, 도 5의 제2 실시 예에 따르면, 전자석(220)은 블레이드 몸체(300)의 가로방향 양단으로 N극 및 S극을 형성시키거나, 또는 전자석(220)은 블레이드 몸체(300)의 길이방향 양단으로 N극 및 S극을 형성시킬 수 있다.
한편, 도 5의 (a)는 전자석(220)이 블레이드 몸체(300)의 가로방향 양단에 N극 및 S극을 형성시켜 배치되는 상태를 나타낸 것이고, 이 경우 케이싱(100)의 중심을 따라 배치되는 다수의 전자석(220)이 일단은 N극이 연속 배열되고, 타단은 S극이 연속 배열될 수 있다.
또한, 도 5의 (b)는 전자석(220)이 블레이드 몸체(300)의 길이방향 양단으로 N극 및 S극을 형성시켜 배치되는 상태를 나타낸 것이고, 이 경우 케이싱(100)의 중심을 따라 배치되는 다수의 전자석(220)이 길이방향 한쪽은 N극이 연속 배열되고, 그 반대쪽은 S극이 연속 배열될 수 있다.
그리고, 도 6의 제3 실시 예에 따르면, 전자석(220)이 블레이드 몸체(300)의 길이방향으로 N극 및 S극을 형성시키는 경우, 영구자석(210)은 블레이드 몸체(300)의 길이방향으로 양분되어 각각 마련될 수 있다.
한편, 전자석(220)이 도 5의 (b)와 같이 극성이 배열되는 경우, 도 6은 이 상태에서 영구자석(210)이 블레이드 몸체(300)의 길이방향으로 양분되어 배치되는 상태를 나타낸 것이고, 이 경우 양분된 영구자석(210)은 블레이드 몸체(300)의 세로방향 양단으로 N극 및 S극을 형성시킬 수 있으며, 블레이드 몸체(300)의 길이방향으로 각각 위치된 영구자석(210)은 N극과 S극이 서로 반대로 교차되게 배열될 수 있다.
여기서 상기 영구자석(210)과 전자석(220)의 다양한 극성 배열 형태는 전기 모터(1)의 활용 대상에 따라 사용자가 다양하게 응용하여 배열하면서 전기 모터(1)의 특성을 가변시키도록 하며, 이 경우 배치가 가변되는 영구자석(210) 및 전자석(220)의 극성 변화에 대응하여 BLDC 모터 드라이버 모듈의 전류 스위칭을 조정하면서 터빈 블레이드형 전기 모터(1)가 원활하게 작동할 수 있도록 모터 작동에 적절한 전류 흐름을 다양하게 생성하면서 다양한 극성 배열 형태에 대응하도록 한다.
예컨대 본 발명은 고정자(200a)와 회전자(200b)는 각각 영구자석 또는 전자석(220)을 서로 대응하여 변형시켜 사용할 수 있어 전기 모터(1)의 특성을 간편하게 가변시킬 수 있게 된다.
이상 설명한 바와 같이, 본 발명은 특정의 바람직한 실시 예를 예시한 설명과 도면으로 표현하였으나, 여기서 사용하는 용어들은 본 발명을 용이하게 설명하기 위함이며, 이 용어들에 대한 의미 한정이나, 특허청구범위에 기재된 범위를 제한하기 위함이 아니며,
본 발명은 상기한 실시 예에 따른 특허청구범위에 의해 나타난 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경 및 개조, 수정 등이 가능할 수 있음을 누구나 쉽게 알 수 있을 것이다.

Claims (8)

  1. 고정자와 회전자의 전자기력을 이용한 전기 모터로서,
    중공의 케이싱과;
    상기 케이싱의 내주에 결합된 고정자와;
    상기 고정자의 한쪽으로 근접하게 샤프트를 통해 축 결합되는 회전자;를 포함하여 구성되고,
    상기 고정자 및 회전자는 유선형으로 이루어진 블레이드 몸체를 갖는 것을 특징으로 하는 터빈 블레이드형 전기 모터.
  2. 제1항에 있어서,
    상기 고정자와 회전자는 케이싱의 길이 방향으로 일렬로 하나 이상 순차적 배치되면서 선택적으로 확장 가능한 것을 더 포함한 터빈 블레이드형 전기 모터.
  3. 제1항에 있어서,
    상기 고정자 및 회전자는 영구자석 또는 전자석을 케이싱을 중심으로 하나 이상 등간격으로 배치시켜 구성하는데, 상기 영구자석 및 전자석은 고정자와 회전자에 상호 대응하는 위치에 각각 선택 사용하는 것을 더 포함한 터빈 블레이드형 전기 모터.
  4. 제3항에 있어서,
    상기 영구자석은 블레이드 몸체의 가로방향 양단으로 N극 및 S극을 형성시키거나,
    또는, 상기 영구자석은 블레이드 몸체의 세로방향 양단으로 N극 및 S극을 형성시키는 것을 더 포함한 터빈 블레이드형 전기 모터.
  5. 제3항에 있어서,
    상기 전자석은 블레이드 몸체의 가로방향 양단으로 N극 및 S극을 형성시키거나,
    또는, 상기 전자석은 블레이드 몸체의 길이방향 양단으로 N극 및 S극을 형성시키는 것을 더 포함한 터빈 블레이드형 전기 모터.
  6. 제5항에 있어서,
    상기 전자석이 블레이드 몸체의 길이방향으로 N극 및 S극을 형성시키면, 상기 영구자석은 블레이드 몸체의 길이방향으로 양분되는 것을 더 포함한 터빈 블레이드형 전기 모터.
  7. 제6항에 있어서,
    상기 영구자석이 블레이드 몸체의 길이방향으로 양분되면 상기 영구자석은 블레이드 몸체의 세로방향 양단에 N극 및 S극을 형성시키는 것을 더 포함한 터빈 블레이드형 전기 모터.
  8. 제1항에 있어서,
    상기 블레이드 몸체는 고정자와 회전자를 구성하는 영구자석 또는 전자석이 삽입되는 수용공간을 갖는 것을 더 포함한 터빈 블레이드형 전기 모터.
PCT/KR2023/000006 2022-01-03 2023-01-02 터빈 블레이드형 전기 모터 WO2023128715A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0000475 2022-01-03
KR1020220000475A KR20230105208A (ko) 2022-01-03 2022-01-03 터빈 블레이드형 전기 모터

Publications (1)

Publication Number Publication Date
WO2023128715A1 true WO2023128715A1 (ko) 2023-07-06

Family

ID=86999793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000006 WO2023128715A1 (ko) 2022-01-03 2023-01-02 터빈 블레이드형 전기 모터

Country Status (2)

Country Link
KR (1) KR20230105208A (ko)
WO (1) WO2023128715A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188969A (ja) * 2005-01-04 2006-07-20 Fuji Seratekku Kk 風車及びそれを組み込んだ風力発電機
KR20110115756A (ko) * 2010-04-16 2011-10-24 김훈 가스관 기압발전용 터빈 일체형 발전기
CN102270903A (zh) * 2011-07-26 2011-12-07 中国北方车辆研究所 一种贯通式液冷自循环驱动电机
JP2012070550A (ja) * 2010-09-24 2012-04-05 Toyota Motor Corp 直流モータ
JP2020197148A (ja) * 2019-05-31 2020-12-10 三菱重工業株式会社 ポンプ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102371384B1 (ko) 2017-08-03 2022-03-07 엘지이노텍 주식회사 드론용 모터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188969A (ja) * 2005-01-04 2006-07-20 Fuji Seratekku Kk 風車及びそれを組み込んだ風力発電機
KR20110115756A (ko) * 2010-04-16 2011-10-24 김훈 가스관 기압발전용 터빈 일체형 발전기
JP2012070550A (ja) * 2010-09-24 2012-04-05 Toyota Motor Corp 直流モータ
CN102270903A (zh) * 2011-07-26 2011-12-07 中国北方车辆研究所 一种贯通式液冷自循环驱动电机
JP2020197148A (ja) * 2019-05-31 2020-12-10 三菱重工業株式会社 ポンプ

Also Published As

Publication number Publication date
KR20230105208A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
US11456693B2 (en) Smart electric motor with decoupled multiple windings
WO2010137766A1 (en) Hybrid pole bearingless srm
WO2015199332A1 (ko) 환기 및 냉각용 무코어 도너츠형 모터팬
US11738876B2 (en) Electrical propulsion unit for an aircraft and method for using such a propulsion unit
WO2009036402A2 (en) Composite electromechanical machines with uniform magnets
WO2004022948A1 (en) Jet motor or turbine motor
US11923731B2 (en) Electrical filtering system for a smart electric motor with decoupled multiple windings and associated smart electric motor
CN111082551B (zh) 定子及模块化结构的旋转直线两自由度永磁电机
WO2015088076A1 (ko) 복수의 보조동력 구조를 갖는 발전겸용 전동수단을 갖는 바퀴
WO2023128715A1 (ko) 터빈 블레이드형 전기 모터
CN209805603U (zh) 异步起动同步磁阻电机转子组件结构、电机
EP2047582A2 (en) Axial-flux electric machine
WO2020032600A1 (ko) 회전축 이용을 위한 발전기의 스테이터와 인너로터 제조방법
WO2020027557A1 (ko) 발전기의 스테이터와 인너로터 제조방법
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
US11462980B2 (en) Ducted double-magnetic-circuit coreless motor special for electric aircraft
WO2014061908A1 (ko) 이중 공극형 발전기
WO2023063740A1 (ko) 역기전력 감소 효율이 향상된 발전장치
WO2020085877A1 (ko) 다중의 회전자 및 고정자로 구성되는 발전기
WO2020197138A1 (ko) 모터
CN210183103U (zh) 一种镶嵌式节能电动机
WO2017122968A1 (ko) 고속 발전장치
CN113394951A (zh) 一种磁能动力装置
WO2018117555A1 (ko) 회전축 또는 고정축을 사용할 수 있는 2개의 회전자를 이용하는 발전기
Li et al. Novel microstepping control methods for electromagnetic micromotors with star-connected winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23735148

Country of ref document: EP

Kind code of ref document: A1