WO2023128459A1 - 고무에 내장하는 rfid 태그 모듈 - Google Patents

고무에 내장하는 rfid 태그 모듈 Download PDF

Info

Publication number
WO2023128459A1
WO2023128459A1 PCT/KR2022/020988 KR2022020988W WO2023128459A1 WO 2023128459 A1 WO2023128459 A1 WO 2023128459A1 KR 2022020988 W KR2022020988 W KR 2022020988W WO 2023128459 A1 WO2023128459 A1 WO 2023128459A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid tag
rubber
chip
antenna pattern
tag
Prior art date
Application number
PCT/KR2022/020988
Other languages
English (en)
French (fr)
Inventor
봉하빈
황철
정인조
김인주
김상오
양승호
최예찬
정필중
류길수
Original Assignee
주식회사 아모텍
주식회사 윌켐코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220145902A external-priority patent/KR20230100599A/ko
Application filed by 주식회사 아모텍, 주식회사 윌켐코리아 filed Critical 주식회사 아모텍
Publication of WO2023128459A1 publication Critical patent/WO2023128459A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier

Definitions

  • the present invention relates to an RFID tag module embedded in rubber, and more particularly, to an RFID tag module embedded in rubber such as an inner wall of a tire.
  • Car tires are directly related to driving stability because they support the weight of the vehicle body and come in direct contact with the ground. In order to fully demonstrate the performance of a car, it is recommended to install tires suitable for each season, and it is recommended to install summer tires in summer and winter tires in winter.
  • Summer tires have excellent grip on dry roads and are mainly used in spring, summer and autumn. Summer tires use soft rubber materials for effective adhesion to the road surface, providing excellent riding comfort and driving performance. However, in winter, the tire rubber becomes hard, so performance deteriorates.
  • Winter tires increase friction by inserting numerous cuffs (fine grooves) and increase the drainage performance of the grooves (tire grooves) to prevent aquaplaning from forming between the tire and the road when snow or ice melts. These winter tires demonstrate stable performance on cold asphalt roads and snowy roads.
  • summer and winter tires are distinguished by attaching an RFID tag to the inner wall of the tire using an adhesive and sensing the RFID tag with a reader so that the tire suitable for the season can be installed accurately.
  • a reader senses an RFID tag attached to the tire so that summer tires and winter tires can be classified, packaged, and transported.
  • an RFID tag having a structure in which an IC is mounted on a PCB made of FR4 material and spring wire antennas are soldered on both sides is manufactured, the manufactured RFID tag is wrapped with BR rubber (synthetic rubber), and RFID wrapped with BR rubber A method of inserting a tag into the middle part of the tire thickness is being applied.
  • BR rubber synthetic rubber
  • An object of the present invention is to provide an RFID tag module capable of improving operational reliability of an RFID tag by preventing damage to the RFID tag by reducing stress applied to an IC chip when the RFID tag is twisted (twisted).
  • an object of the present invention is to provide an RFID tag module embedded in rubber that has excellent bonding with rubber when inserted into a rubber material such as a tire, can be integrated with the rubber material, and does not damage the rubber material. is to provide
  • An RFID tag is formed of a dielectric material and includes a tag body on which an IC chip is mounted, and a recessed slot may be formed by recessing a part of the tag body at a position corresponding to both front and rear directions of the IC chip.
  • the concave slot may be formed in one of a semicircular shape, a quadrangular shape, a triangular shape, and a polygonal shape.
  • the concave slots may be symmetrically formed at positions corresponding to both front and rear directions of the IC chip.
  • the dielectric may consist of FR-4 PCB or FPCB.
  • An RFID tag is formed of a dielectric material and includes a tag body on which an IC chip is mounted and an antenna pattern is formed.
  • the antenna pattern is spirally formed inside the tag body along a first direction and one end is connected to one side of the IC chip. It may include a second antenna pattern spirally formed along the second direction opposite to the first direction inside the first antenna pattern and the tag body and having one end connected to the other side of the IC chip.
  • the antenna pattern is formed through the plurality of upper conductor patterns formed on the upper surface of the tag body, the plurality of lower conductor patterns formed on the lower surface of the tag body, and the tag body, and connects the plurality of upper conductor patterns to each of the plurality of lower conductor patterns.
  • a plurality of via holes forming a spiral three-dimensional helical antenna pattern may be included inside the tag body.
  • a rubber topping attached to the RFID tag and covering the entire RFID tag may be further included.
  • a rubber topping covering the entire RFID tag may be topped on a side wall of a tire in a vulcanization process.
  • An RFID tag may include one or more through-holes formed between patterns forming an antenna pattern.
  • the through hole is filled with molten rubber topping during topping, and connects the upper rubber topping and the lower rubber topping of the RFID tag.
  • the diameter of the through hole is larger than 0.5 mm and smaller than 3 mm.
  • the size of the rubber topping is preferably larger than that of the RFID tag.
  • the rubber topping may be made of at least one of natural rubber, SBR, MBR, CR, and EPDM, or a mixture thereof.
  • An epoxy layer may be placed between the RFID tag and the rubber topping.
  • a primer layer formed by applying a liquid primer may be disposed between the RFID tag and the rubber topping.
  • a rubber layer formed by applying liquid rubber may be disposed between the RFID tag and the rubber topping.
  • the RFID tag module of the present invention has a structure in which the entire RFID tag is wrapped with rubber topping, it has excellent bondability to the side wall of the tire in the curing process and is integrated with the rubber material constituting the side wall, thereby reducing the rubber material of the tire. has the effect of not damaging the
  • the RFID tag module of the present invention includes an epoxy layer between the RFID tag and the rubber topping, the binding force between the RFID tag and the rubber topping is increased during the curing process so that the RFID tag is stably maintained in the tire. There is an effect of increasing the operation reliability of the RFID tag.
  • the RFID tag module of the present invention connects a conductor pattern formed on a dielectric and a via hole to form a three-dimensional helical antenna pattern, the maximum antenna length can be secured on a limited dielectric area. Therefore, the present invention can be manufactured in a compact structure, which does not affect the appearance and function of the tire, and in particular, has an effect of enabling stable operation at a certain distance even when attached to a tire having a high permittivity characteristic.
  • the RFID tag module of the present invention has concave slots formed in the tag body at positions corresponding to the front and rear directions on both sides of the IC chip 120, the stress applied to the IC chip when the RFID tag is twisted is reduced to prevent damage to the RFID tag. There is an effect of improving the operational reliability of the RFID tag.
  • a through-hole is formed in the tag main body at a position between the antenna pattern and the antenna pattern, and the through-hole is filled with rubber topping in the vulcanization process, so that the rubber topping on the upper part of the RFID tag and the lower part of the RFID tag are filled. It has the effect of improving durability by connecting rubber toppings.
  • a primer layer formed by applying a liquid primer or a rubber layer formed by applying a liquid rubber is disposed between the RFID tag and the rubber topping, or a liquid primer and a liquid primer are disposed between the rubber topping.
  • FIG. 1 is a perspective view showing an RFID tag module embedded in rubber according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an RFID tag according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing the shape of an antenna pattern of an RFID tag according to an embodiment of the present invention.
  • FIG. 4 is a process diagram showing a method of manufacturing an RFID tag module embedded in rubber according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing an RFID tag module embedded in rubber according to another embodiment of the present invention.
  • FIG. 6 is a partial perspective view showing a first modified example of FIG. 5;
  • FIG. 7 is a partial perspective view showing a second modified example of FIG. 5;
  • FIGS. 8 to 10 are process diagrams showing a process of molding an RFID tag module embedded in rubber into a side well of a tire according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing an RFID tag module embedded in rubber according to an embodiment of the present invention.
  • an RFID tag module embedded in rubber (hereinafter referred to as an RFID tag module) 10 according to an embodiment of the present invention includes an RFID tag 100, an epoxy layer 210, and a rubber topping 220. includes
  • the epoxy layer 210 is coated on the RFID tag 100, and the rubber topping 220 is attached to the RFID tag 100 coated with the epoxy layer 210 so that the RFID tag 200 coated with the epoxy layer 210 wrap the whole That is, the RFID tag module 10 has a shape in which the entire RFID tag 100 is coated with the epoxy layer 210, and the rubber topping 220 covers the entire RFID tag 200 coated with the epoxy layer 210. .
  • the epoxy layer 210 is formed by coating the RFID tag 100 with epoxy.
  • the epoxy layer 210 is to increase bonding strength between the RFID tag 100 and the rubber topping 220 .
  • a thermosetting epoxy resin may be used as the epoxy forming the epoxy layer 210.
  • the thermosetting epoxy resin has adhesiveness to increase bonding strength between the rubber topping 220 and the RFID tag 100, has excellent heat resistance, is easy to use for high-temperature work, and has excellent heat resistance and chemical resistance.
  • a primer is applied (or coated) with a liquid primer instead of the epoxy layer 210 on the RFID tag 100.
  • Layers may be formed.
  • the primer layer may include an adhesion promoter component, and forms an adhesive layer coating on the surface of the RFID tag 100 to increase bonding strength between the RFID tag 100 and the rubber topping 220, and to prevent corrosion or damage to the surface of the RFID tag 100. It can protect against physical impact.
  • a rubber layer obtained by applying (or coating) liquid rubber may be formed on the RFID tag 100 instead of the epoxy layer 210 . Since the rubber layer is formed of the same material as the rubber topping 220, it is possible to provide high bonding strength without a sense of heterogeneity when combined with the rubber topping 220.
  • a primer layer in which a liquid primer and a liquid rubber are sequentially applied to the RFID tag 100 and a rubber layer may be laminated together.
  • the primer layer increases bonding strength between the RFID tag 100 and the rubber layer, and as a result, bonding strength between the RFID tag 100 and the rubber topping 220 is increased.
  • the surface of the RFID tag 100 is protected from corrosion or physical impact, and the RFID tag 100 and the rubber topping ( 220), it is possible to increase the operation reliability of the RFID tag by stably maintaining the state in which the RFID tag module is embedded in the tire.
  • the rubber topping 220 is to insulate and protect the RFID tag 100 and to improve bonding with rubber when the RFID tag 100 is embedded in rubber such as a tire.
  • the rubber topping 220 makes it easy to insert the RFID tag 100 into a rubber material such as a tire.
  • the rubber topping 220 surrounding the entire RFID tag 100 is topped on a side wall of a tire in a curing process.
  • Topping means that the rubber topping 220 is integrally molded with the rubber layer forming the side well of the tire in the curing process.
  • the sidewall of a tire refers to the side part of the tire between the tread (ground surface) and the bead, and is composed of a thick rubber layer.
  • the side well of the tire is made of a rubber layer, it is easy to mold the rubber topping 220 and it does not affect the propagation characteristics, so the tag is easily recognized.
  • the side well of the tire is a position where the tire with the RFID tag is not deformed or damaged due to the RFID tag when the tire is driven at high speed.
  • the size of the rubber topping 220 is preferably larger than that of the RFID tag. This is to allow the rubber topping 220 to surround and protect the entire RFID tag 100, and to improve bonding with the rubber when embedded in the rubber.
  • the rubber topping 220 may be made of at least one of natural rubber (NR), SBR, MBR, CR, and EPDM, or a mixture thereof.
  • NR natural rubber
  • SBR natural rubber
  • MBR MBR
  • CR CR
  • EPDM natural rubber
  • the rubber topping 220 is also made of natural rubber (NR), SBR, MBR, CR, and EPDM, which are the main raw materials of the tire. Combinability with tires can be improved by using synthetic rubber such as
  • the RFID tag 100 may be wrapped with various non-conductive polymers.
  • the RFID tag 100 may be embedded in rubber by wrapping the RFID tag 100 with a non-conductive polymer containing an adhesive and then melting the non-conductive polymer using a vulcanization process to combine with the rubber.
  • wrapping the RFID tag 100 with a rubber topping 220 made of the same material as the tire is effective in improving bonding strength.
  • the RFID tag 100 may be manufactured as narrow as 3 mm in width.
  • FIG. 2 is a perspective view showing an RFID tag according to an embodiment of the present invention.
  • the RFID tag 100 includes a tag body 110 , an IC chip 120 , and an antenna pattern 130 .
  • the RFID tag 100 uses the same frequency band as a non-contact type IC card and communicates in an electromagnetic induction type with no power supply, and the communication distance can be several tens of cm.
  • An RFID (Radio Frequency Identification) tag 100 is a radio frequency identification tag.
  • the tag body 110 is formed of a dielectric material.
  • the dielectric may consist of FR-4 PCB or FPCB.
  • FR-4 PCB or FPCB is a high dielectric to air.
  • the dielectric constant (Dk) of FR4 PCB or FPCB is 2 to 4.4.
  • the tag body 110 is formed in a shape of a strip having a length greater than a width.
  • the tag body 110 may have a thickness of 0.2T to 0.8T (mm), preferably 0.4T.
  • the width of the tag body 110 may be 3 mm or less. That is, the RFID tag 100 is formed with a minimum width, thickness, and length that do not damage rubber of a tire. In addition, even if the RFID tag 100 is embedded in the rubber of the tire, it is formed in a subminiature structure so as not to affect the appearance and function of the tire.
  • the IC chip 120 is mounted on the center of the upper surface of the tag body 110 .
  • the IC chip 120 may be mounted on the tag body 110 in the form of a flip chip.
  • wire bonding is omitted and soldering is not required, which simplifies the manufacturing process and connects the IC chip 120 and the antenna pattern 130 with a conductor. By connecting in a pattern, connection reliability of the connection portion between the IC chip 120 and the antenna pattern can be increased.
  • the antenna pattern 130 is manufactured as a left-right symmetric three-dimensional helical type antenna in order to secure the maximum antenna length on the limited tag body 110 .
  • the antenna pattern 130 includes a first antenna pattern 130a and a second antenna pattern 130b.
  • the first antenna pattern 130a is spirally formed inside the tag body 110 along a first direction (left direction in the drawing) and one end is connected to one side of the IC chip 120 .
  • the second antenna pattern 130b is spirally formed inside the tag body 110 in a second direction (right direction in the drawing) opposite to the first direction, and one end is connected to the other side of the IC chip 120. .
  • the first antenna pattern 130a includes a plurality of upper conductor patterns 131 , a plurality of lower conductor patterns 132 , and a via hole 133 .
  • the upper conductor pattern 131 of the first antenna pattern 130a is formed on the upper surface of the tag body 110 and the lower conductor pattern 132 is formed on the lower surface of the tag body 110 .
  • the via hole 133 of the first antenna pattern 130a is formed through the tag body 110 and connects the plurality of upper conductor patterns 131 and the plurality of lower conductor patterns 132 to form the tag body 110 A helical antenna pattern of a spiral is formed inside the.
  • the second antenna pattern 130b includes a plurality of upper conductor patterns 131, a plurality of lower conductor patterns 132, and a via hole 133.
  • the upper conductor pattern 131 of the second antenna pattern 130b is formed on the upper surface of the tag body 110
  • the lower conductor pattern 132 is formed on the lower surface of the tag body 110.
  • the via hole 133 of the second antenna pattern 130b is formed through the tag body 110 and connects the plurality of upper conductor patterns 131 and the plurality of lower conductor patterns 132 to form the tag body 110
  • a three-dimensional spiral helical antenna pattern is formed inside the.
  • the width of the tag body 110 can be reduced compared to the case of forming a zigzag pattern on a flat surface.
  • the width of the tag body 110 should be larger than in the embodiment in order to secure an antenna length in a limited area.
  • the width of the tag body 110 can be formed to be 3 mm, but when a zigzag pattern is formed on the surface where the chip is mounted, the width of the tag body is reduced to 5 mm. It should be about ⁇ 10 mm.
  • the upper conductor pattern 131 and the lower conductor pattern 132 forming the first antenna pattern 130a and the second antenna pattern 130b may be formed by attaching copper foil to the upper and lower surfaces of the tag body 110 and etching the same.
  • the seed layer and the plating layer may be formed on the upper and lower surfaces of the tag body 110 and then etched. If a seed layer is formed on the upper and lower surfaces of the tag body 110 by sputtering, a plating layer is formed by plating copper on the seed layer, and then an upper conductor pattern 131 and a lower conductor pattern 132 are formed by etching, the tag body ( Bondability between the upper conductor pattern 131 and the lower conductor pattern 132 relative to 110 is better.
  • a connection plating layer is formed in the via hole 133 of the first antenna pattern 130a and the second antenna pattern 130b to connect the upper conductor pattern 131 and the lower conductor pattern 132 .
  • FIG. 3 is a perspective view showing the shape of an antenna pattern of an RFID tag according to an embodiment of the present invention.
  • the first antenna pattern 130a is formed on the left side of the IC chip 120 and the second antenna pattern 130b is formed on the right side.
  • the first antenna pattern 130a and the second antenna pattern 130b form a three-dimensional helical antenna to secure the maximum antenna length within a limited size. This makes it possible to obtain the maximum frequency characteristic required within a limited size.
  • the connection part between the IC chip 120 and the first antenna pattern 130a and the connection part between the IC chip 120 and the second antenna pattern 130b are left-right symmetrical and connected by a conductor pattern.
  • the length of the antenna of the RFID tag 100 is secured to enable operation at a constant distance even when attached to a tire having a high permittivity characteristic.
  • the antenna pattern 130 of the present invention described above does not include a spring wire antenna, it does not cause defects or problems in the structure of the tire when embedded in the side well of the tire, and the antenna pattern does not break even during high-speed driving or the IC chip 120 ) and the disconnection of the antenna pattern does not occur.
  • FIG. 4 is a process diagram showing a method of manufacturing an RFID tag module embedded in rubber according to an embodiment of the present invention.
  • the manufacturing method of the RFID tag module includes manufacturing the RFID tag 100 (S1), and epoxy layer 210 on the outer surface of the RFID tag 100.
  • Forming step (S2) disposing an upper rubber topping 221 and a lower rubber topping 222 on the top and bottom of the RFID tag 100 on which the epoxy layer 210 is formed (S3), and the upper rubber topping A step (S4) of wrapping the entire RFID tag 100 on which the epoxy layer 210 is formed with the rubber topping 220 by attaching the lower rubber topping 222 to the step 221.
  • the IC chip 120 is mounted on the tag body 110 made of FR-4 PCB or FPCB, and a plurality of upper conductor patterns formed on the tag body 110 ( 131) and the plurality of lower conductor patterns 132 are connected through via holes 133 to manufacture an RFID tag 100 implementing a helical antenna pattern.
  • the tag body 110 is prepared to be formed in a shape longer than the width, and the RFID tag 100 can be manufactured to have a width of about 3 mm.
  • the via hole 133 may have a diameter of 0.1 mm.
  • the widths of the upper conductor pattern 131 and the lower conductor pattern 132 may be equal to or relatively larger than the diameter of the via hole 133 .
  • the entire outer surface of the RFID tag 100 is coated with epoxy to form the epoxy layer 210.
  • the epoxy layer 210 may be formed by applying a thermosetting epoxy resin to the entire surface of the RFID tag 100 .
  • a liquid primer is applied to the outer surface of the RFID tag 100 instead of the epoxy layer 210 (or coating) to form a primer layer, or coating (or coating) liquid rubber on the outer surface of the RFID tag 100 to form a rubber layer.
  • it may be replaced by sequentially applying a liquid primer and a liquid rubber to the outer surface of the RFID tag 100 to sequentially laminate and form a primer layer and a rubber layer.
  • the outer surface of the RFID tag 100 to which the liquid primer is to be applied is washed using a washing machine and then dried for a certain period of time using a dryer.
  • MEK and ACETONE solutions may be used as the washing solution, and after washing is completed, it may be dried for 3 minutes at a temperature of 60 ° C or higher in a dryer.
  • a liquid primer is applied to the outer surface of the RFID tag 100 that has been washed and dried, and dried with a dryer to form a primer layer on the outer surface of the RFID tag 100.
  • the RFID tag 100 coated with the primer is heated at a temperature of 60 to 80 ° C. It can be dried for more than 10 minutes.
  • a liquid rubber solution is applied to the outer surface of the RFID tag 100 to which the primer is applied, using a spray or dipping facility to a thickness of 12 to 25 ⁇ m, and then the RFID tag to which the rubber solution is applied. (100) is dried for 24 hours at a temperature of 80 to 100 ° C.
  • a primer layer and a rubber layer are sequentially laminated on the surface by sequentially applying a liquid primer and a rubber solution and then cutting the dried RFID tag using a cutting machine (for example, a laser cutting machine).
  • a cutting machine for example, a laser cutting machine.
  • the size is larger than that of the RFID tag 100.
  • An upper rubber topping 221 and a lower rubber topping 222 having a size to cover the entire RFID tag 100 are disposed.
  • the upper rubber topping 221 and the lower rubber topping 222 are flat plates having the same size.
  • the step (S4) of wrapping the entire RFID tag 100 on which the epoxy layer 210 is formed by attaching the upper rubber topping 221 and the lower rubber topping 222 with the rubber topping 220 is the RFID on which the epoxy layer 210 is formed.
  • An upper rubber topping 221 and a lower rubber topping 222 are attached to the upper and lower surfaces of the tag 200 and pressurized with predetermined pressure and heat to cover the entire RFID tag 100 on which the epoxy layer 210 is formed with the rubber topping 220. ) can be wrapped.
  • the corresponding surfaces of the upper rubber topping 221 and the lower rubber topping 222 contain an adhesive so that the upper rubber topping 221 and the lower rubber topping 222 form the RFID tag 100 on which the epoxy layer 210 is formed.
  • the state of wrapping the whole can be stably maintained.
  • the epoxy layer 210 disposed between the upper and lower rubber toppings 221 and 222 and the RFID tag 100 increases the adhesive strength between the rubber topping 220 and the RFID tag 100 and wraps the entire RFID tag 100. In a curing process to be described later, the adhesive strength between the rubber topping 220 and the RFID tag 100 can be further increased while the epoxy layer 210 is cured by heat.
  • FIG. 5 is a perspective view showing an RFID tag module embedded in rubber according to another embodiment of the present invention.
  • the RFID tag module 10-1 according to another embodiment of the present invention is different from the embodiment in that it further includes at least one recessed slot 135 and a plurality of through holes 137. There is a difference.
  • the concave slot 135 is formed in the tag body 110 .
  • the concave slots 135 are formed at positions corresponding to both front and rear directions of the IC chip 120 in the tag body 110 to prevent stress from being concentrated on the IC chip 120 .
  • the concave slot 135 reduces the stress applied to the IC chip 120 by the twisting force of the RFID tag 100 during high-speed driving to prevent damage to the IC chip 120, thereby improving the operation reliability of the RFID tag 100 let it
  • the tag body 110 is formed of FR-4 material, the IC chip 120 may be broken because the FR-4 material cannot withstand torsional stress.
  • At least one concave slot 135 is formed in the tag body 110 corresponding to the vicinity of the IC chip 120 to reduce stress applied to the IC chip 120 .
  • the concave slot 135 should be formed near the IC chip 120 to reduce stress applied to the IC chip 120 and prevent damage to the IC chip 120 .
  • At least two concave slots 135 may be formed at positions corresponding to both front and rear directions of the IC chip 120 in the tag body 110 .
  • the concave slot 135 has a shape that is recessed from the outside to the inside and may be formed in one of a semicircular shape, a quadrangular shape, a triangular shape, and a polygonal shape.
  • the concave slot 135 of another embodiment of FIG. 5 is formed in a semicircular shape.
  • the concave slots 135 are formed symmetrically at positions corresponding to both front and rear directions of the IC chip 120 to minimize stress applied to the IC chip 120 .
  • a plurality of through holes 137 are formed in the tag body 110 .
  • Each of the plurality of through holes 137 is formed through the tag body 110 at a position between the antenna patterns.
  • a rubber topping 220 is filled in each of the plurality of through holes 137 to connect the upper rubber topping 220 and the lower rubber topping 220 of the RFID tag 100 .
  • the rubber topping 220 filled in each through hole 137 is melted in the curing process and filled into each through hole 137 to form the upper rubber topping 220 and the lower rubber topping 220 of the RFID tag 100. connection to improve durability.
  • One or more through holes 137 formed between the antenna patterns may have a diameter greater than 0.5 mm and smaller than 3 mm. If the diameter of the through hole 137 is smaller than 0.5 mm, it is difficult to fill the rubber topping 220, and if the diameter of the through hole 137 is larger than 3 mm, the shape of the antenna pattern is affected.
  • the shape of the through hole 137 may be formed in one of a semicircular shape, a rectangular shape, a triangular shape, and a polygonal shape. For example, the through hole 137 of another embodiment of FIG. 5 is formed in a circular shape.
  • FIG. 6 is a partial perspective view showing a first modified example of FIG. 5
  • FIG. 7 is a partial perspective view showing a second modified example of FIG.
  • the concave slot 135' of the first modified example is formed in a triangular shape as an example, and the through hole 137 is formed in a circular shape as an example.
  • the concave slot 135 "of the second modified example is formed in a rectangular shape as an example, and the through hole 137' is formed in a rectangular shape as an example.
  • a rectangular through hole ( 137') increases the contact area with the rubber topping 220 to increase the coupling between the rubber topping 220 and the RFID tag 100 and durability.
  • FIGS. 8 to 10 are process diagrams showing a process of topping a side well of a tire with an RFID tag module embedded in rubber according to an embodiment of the present invention.
  • the rubber topping 220 surrounding the RFID tag 200 coated with the epoxy layer 210 in the RFID tag module 10 forms the side wall of the tire in the curing process. (w) topping and integration.
  • the tire T is largely completed through four processes: refining - semi-finished product (extrusion, rolling, bead) - molding, and vulcanization.
  • the molding process it is made into a cylindrical shape like a tire, and through a curing process in which heat and pressure are applied, tread is created and the tire (T) is completed.
  • a molded flexible tire T is put between the upper mold 1 and the lower mold 3 and heat and pressure are applied.
  • the rubber layer of the side well w As the rubber topping 220 surrounding the RFID tag 100 is melted and bonded, it becomes a molded state integrated with the rubber layer and solid bonding is possible.
  • the temperature of the curing process is 150 to 170 degrees, and the curing time may be 20 to 30 minutes.
  • the RFID tag module 10 is seated in the side well w of the tire T, and the tire T is pressed with the upper mold 1 and the lower mold 3 while the upper Between the mold 1 and the lower mold 3, heating steam is supplied at 150 to 170 degrees and heated for about 20 to 30 minutes. Then, while the rubber topping 220 of the RFID tag module 10 is melted, it is integrated with the rubber layer of the side well (w) of the tire (T). In this process, since the material of the rubber topping 220 of the RFID tag module 10 and the material of the rubber layer of the side well (w) of the tire T are formed of the same material, the bonding strength is excellent and integration is easier.
  • the upper mold 1 and the lower mold 3 are spaced apart from each other to separate the upper mold 1 and the lower mold 3 from the tire (T). T) is separated. Since the tire T manufactured in this way has an integrated shape with the RFID tag 100 embedded in the side well w, the rubber material of the tire T is not damaged, and the RFID tag 100 and the rubber topping ( 220) is also firmly bonded with the epoxy layer 210, so that damage is prevented even during high-speed driving and operational reliability of the RFID tag 100 can be secured.
  • the RFID tag module 10 of the present invention applies the RFID tag 100 in which an antenna pattern is formed by connecting a conductor pattern and a via hole, production is easier, mass production is possible, and more robust than conventional spring antennas. A constant quality can be maintained.
  • the above-described RFID tag module 10 of the present invention is topped on the side wall of the tire, embedded in the side wall of the tire, and reads and recognizes it in a contact or non-contact manner using an RFID reader. can do. This can be applied to the history management and distribution management of summer tires and winter tires.
  • the RFID tag 100 is manufactured in a narrow microstructure up to 0.2T to 0.8T (mm) and a width of 3mm, the appearance and function of the tire are not affected.
  • the above-described RFID tag module 10 of the present invention has been described as being integrated and embedded in the side wall of the tire T in the curing process as an example, it is melted by applying heat and pressure, which is a structure that is integrated by molding In this case, it can be applied to various rubber material products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

본 발명은 고무에 내장하는 RFID 태그 모듈에 관한 것으로, IC 칩과 안테나 패턴을 포함하는 RFID 태그와 IC 칩 근처에 적어도 하나 이상 형성되며 IC 칩에 가해지는 응력을 감소하는 요입슬롯을 포함한다. 본 발명은 IC 칩 근처에 요입슬롯이 형성되므로 고속주행 등으로 인해 RFID 태그에 비틀림 응력이 가해지더라도 IC 칩에 응력이 집중되는 것을 방지하여 IC 칩의 손상을 방지할 수 있는 이점이 있다.

Description

고무에 내장하는 RFID 태그 모듈
본 발명은 고무에 내장하는 RFID 태그 모듈에 관한 것으로, 더욱 상세하게는 타이어 내부벽과 같은 고무에 내장하는 RFID 태그 모듈에 관한 것이다.
자동차 타이어는 차체의 무게를 지탱하고 지면에 직접 닿으므로 주행 안정성과 직결된다. 자동차의 성능을 제대로 발휘하기 위해서는 계절별 적합한 타이어를 장착하는 것이 좋으며, 여름철에는 여름용 타이어를 겨울에는 겨울용 타이어를 장착하는 것이 좋다.
여름용 타이어는 마른 노면에서 접지력이 우수하여 봄, 여름, 가을에 주로 사용한다. 여름용 타이어는 노면에 효과적인 밀착을 위해 부드러운 고무 소재를 사용하여 승차감과 주행성능이 우수하다. 하지만 겨울에는 타이어 고무가 딱딱해지기 때문에 성능이 떨어진다.
겨울용 타이어는 수많은 커프(미세한 홈)을 삽입해 마찰력을 높이고 그루브(타이어 홈)의 배수 성능도 높여 눈이나 얼음이 녹아 타이어와 도로 사이에 형성되는 수막현상을 막는다. 이러한 겨울용 타이어는 차가운 아스팔트 노면과 눈길에서 안정적인 성능을 발휘한다.
유럽의 경우, 여름에는 여름용 타이어를 겨울에는 겨울용 타이어로 교환하여 장착하는 것이 필수이다.
여름용 타이어와 겨울용 타이어는 육안으로 구분하기 쉽지 않으므로 계절에 맞는 타이어를 정확하게 장착할 수 있도록, 타이어 내부벽에 점착제를 이용하여 RFID 태그를 부착하고 리더기로 RFID 태그를 센싱하여 여름용과 겨울용을 구분하고 있다.
또는, 타이어 생산 및 운송 공정에서 타이어가 이송벨트를 지나갈 때 리더기가 타이어에 부착된 RFID 태그를 센싱하여 여름용 타이어와 겨울용 타이어를 구분하여 포장하고 운송할 수 있도록 하고 있다.
그런데, 종래에는 타이어의 내부벽에 FPCB RFID 태그를 점착제를 이용하여 부착하는 테이프(Tape) 방식이므로, 점착제와 타이어의 부착력이 약해 잘 떨어지는 문제점이 있다.
이를 해결하기 위한 대안으로 FR4 재질의 PCB에 IC를 실장하고 양측에 스프링 와이어 안테나를 납땜한 구조의 RFID 태그를 제조하고, 제조한 RFID 태그를 BR 고무(합성 고무)로 감싸고, BR 고무로 감싼 RFID 태그를 타이어 두께의 중간 부분에 삽입하는 방식이 적용되고 있다.
그러나, 스프링 와이어 안테나를 적용한 RFID 태그의 경우 와이어 패턴과 와이어 패턴 사이의 공간에 틈이 많아 기포가 많이 발생되며, 고온상태가 되면 기포가 팽창되어 타이어가 손상될 수 있고, 와이어 안테나 재질이 금속(예, SUS)이기 때문에 BR 고무와 접착력이 약한 문제점이 있다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 공개된 종래 기술이 아닌 사항을 포함할 수 있다.
본 발명의 목적은 RFID 태그의 트위스트시(비틀림시) IC 칩에 가해지는 응력을 감소시켜 RFID 태그의 손상을 방지함으로써 RFID 태그의 동작 신뢰성을 향상시킬 수 있는 RFID 태그 모듈을 제공하는 것이다.
또한, 본 발명의 목적은 타이어와 같은 고무 재질의 내부에 삽입시 고무와의 결합성이 우수하고, 고무 재질과 일체화가 가능하며, 고무 재질에 손상을 주지 않도록 한 고무에 내장하는 RFID 태그 모듈을 제공하는 것이다.
상기한 과제를 해결하기 위한 본 발명의 실시예에 따른 고무에 내장하는 RFID 태그 모듈은 IC 칩과 안테나 패턴을 포함하는 RFID 태그와 IC 칩 근처에 적어도 하나 이상 형성되어 IC 칩에 가해지는 응력을 감소하는 요입슬롯을 포함한다.
RFID 태그는 유전체로 형성되며, IC 칩이 실장되는 태그 본체를 포함하고, 요입슬롯은 IC 칩의 양측 전후 방향에 해당하는 위치에서 태그 본체의 일부가 요입되어 형성될 수 있다.
요입슬롯은 반원형, 사각형, 삼각형, 다각형 형상 중 하나의 형상으로 형성될 수 있다.
요입슬롯은 IC 칩의 양측 전후 방향에 해당하는 위치에 대칭되게 형성될 수 있다.
유전체는 FR-4 PCB 또는 FPCB로 이루어질 수 있다.
RFID 태그는 유전체로 형성되며, IC 칩이 실장되고 안테나 패턴이 형성되는 태그 본체를 포함하고, 안테나 패턴은 태그 본체의 내부에 제1 방향을 따라 나선형으로 형성되고 일단이 IC 칩의 일측에 연결되는 제1 안테나 패턴과 태그 본체의 내부에 제1 방향의 반대 방향인 제2 방향을 따라 나선형으로 형성되고 일단이 IC 칩의 타측에 연결되는 제2 안테나 패턴을 포함할 수 있다.
안테나 패턴은 태그 본체의 상면에 형성된 복수의 상부 도체 패턴과 태그 본체의 하면에 형성된 복수의 하부 도체 패턴과 태그 본체에 관통 형성되며 상기 복수의 각 상부 도체 패턴과 상기 복수의 각 하부 도체 패턴을 연결하여 상기 태그 본체의 내부에 나선형의 입체형 헬리컬 안테나 패턴을 형성하는 복수의 비아홀을 포함할 수 있다.
RFID 태그에 부착되어 상기 RFID 태그 전체를 감싸는 고무 토핑을 더 포함할 수 있다.
RFID 태그 전체를 감싸는 고무 토핑은 가류공정에서 타이어의 사이드 웰(side wall)에 토핑될 수 있다.
RFID 태그는 안테나 패턴을 형성하는 패턴과 패턴의 사이에 관통 형성되는 하나 이상의 관통홀을 포함할 수 있다.
관통홀에는 토핑시 용융된 고무 토핑이 채워져 RFID 태그의 상부의 고무 토핑과 하부의 고무 토핑을 연결한다.
관통홀의 직경은 0.5mm보다 크고 3mm보다 작다.
고무 토핑의 크기는 RFID 태그에 비해 크기가 큰 것이 바람직하다.
고무 토핑은 천연고무, SBR, MBR, CR, EPDM 중 적어도 하나 또는 이들의 혼합물질로 이루어질 수 있다.
RFID 태그과 고무 토핑의 사이에 에폭시층이 배치될 수 있다.
RFID 태그와 고무 토핑 사이에 액상의 프라이머(Primer)가 도포되어 형성된 프라이머층이 배치될 수 있다.
RFID 태그와 고무 토핑 사이에 액상의 고무(Rubber)가 도포되어 형성된 고무층이 배치될 수 있다.
본 발명의 RFID 태그 모듈은 RFID 태그 전체를 고무 토핑이 감싼 구조로 되므로, 가류공정에서 타이어의 사이드 웰(side wall)에 결합성이 우수하고 사이드 웰을 구성하는 고무 재질과 일체화되어 타이어의 고무 재질에 손상을 주지 않는 효과가 있다.
또한, 본 발명의 RFID 태그 모듈은 RFID 태그와 고무 토핑의 사이에 에폭시층이 포함되므로, 가류공정에서 RFID 태그와 고무 토핑과의 결합력을 높여 RFID 태그가 타이어에 내장된 상태가 안정적으로 유지되게 하여 RFID 태그의 동작 신뢰성을 높이는 효과가 있다.
또한, 본 발명의 RFID 태그 모듈은 유전체 상에 형성된 도체 패턴과 비아홀을 연결하여 입체형 헬리컬 형태의 안테나 패턴을 형성하므로 제한된 유전체 면적 상에 최대한의 안테나 길이를 확보할 수 있다. 따라서 본 발명은 초소형 구조로 제작 가능하고 이는 타이어의 외형 및 기능상에 영향을 미치지 않으며 특히, 고유전율의 특성을 가지는 타이어에 부착되어도 일정한 거리에서 안정적인 동작이 가능한 효과가 있다.
또한, 본 발명의 RFID 태그 모듈은 IC 칩(120)의 양측 전후 방향에 해당하는 위치의 태그 본체에 요입슬롯이 형성되므로 RFID 태그의 트위스트시 IC 칩에 가해지는 응력을 감소시켜 RFID 태그의 손상을 방지함으로써 RFID 태그의 동작 신뢰성을 향상시키는 효과가 있다.
또한, 본 발명의 RFID 태그 모듈은 안테나 패턴과 안테나 패턴의 사이에 해당하는 위치의 태그 본체에 관통홀이 형성되고, 관통홀에는 가류공정에서 고무 토핑이 채워져 RFID 태그의 상부의 고무 토핑과 하부의 고무 토핑을 연결하여 내구성을 개선하는 효과가 있다.
또한, 본 발명의 RFID 태그 모듈은 RFID 태그와 고무 토핑 사이에 액상의 프라이머(Primer)가 도포되어 형성된 프라이머층 또는 액상의 고무(Rubber)가 도포되어 형성된 고무층을 배치하거나, 액상의 프라이머 및 액상의 고무가 순차적으로 도포되어 형성된 프라이머층 및 고무층을 적층 형성함으로써, RFID 태그와 고무 토핑 간의 결합력을 향상시킬 수 있으며, RFID 태그 모듈이 타이어 내부에 내장된 상태가 안정적으로 유지되게 하여 RFID 태그의 동작 신뢰성을 높이는 효과가 있다.
도 1은 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈을 보인 사시도이다.
도 2는 본 발명의 실시예에 의한 RFID 태그를 보인 사시도이다.
도 3은 본 발명의 실시예에 의한 RFID 태그의 안테나 패턴 형상을 보인 사시도이다.
도 4는 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈의 제조방법을 보인 과정도이다.
도 5는 본 발명의 다른 실시예에 의한 고무에 내장하는 RFID 태그 모듈을 보인 사시도이다.
도 6은 도 5의 제1 변형예를 보인 부분 사시도이다.
도 7은 도 5의 제2 변형예를 보인 부분 사시도이다.
도 8 내지 도 10은 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈을 타이어의 사이드 웰에 몰딩하는 과정을 보인 과정도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈을 보인 사시도이다.
도 1에 도시된 바에 의하면, 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈(이하, RFID 태그 모듈)(10)은 RFID 태그(100), 에폭시층(210) 및 고무 토핑(220)을 포함한다.
에폭시층(210)은 RFID 태그(100)에 코팅되고, 고무 토핑(220)은 에폭시층(210)이 코팅된 RFID 태그(100)에 부착되어 에폭시층(210)이 코팅된 RFID 태그(200) 전체를 감싼다. 즉, RFID 태그 모듈(10)은 RFID 태그(100) 전체에 에폭시층(210)이 코팅되고, 에폭시층(210)이 코팅된 RFID 태그(200) 전체를 고무 토핑(220)이 감싼 형상으로 된다.
에폭시층(210)은 RFID 태그(100)에 에폭시를 코팅하여 형성한다. 에폭시층(210)은 RFID 태그(100)와 고무 토핑(220)과의 결합력을 높이기 위한 것이다. 에폭시층(210)을 형성하는 에폭시는 열경화성 에폭시 수지가 사용될 수 있다. 열경화성 에폭시 수지는 점착성이 있어 고무 토핑(220)과 RFID 태그(100)와의 결합력을 높이며, 열에 대한 내구성이 우수하여 고열작업에 사용이 용이하며, 내열성과 내화학성이 우수하다.
RFID 태그(100)와 고무 토핑(220)과의 결합력을 높이기 위한 또 다른 방안으로, RFID 태그(100)에 상기 에폭시층(210) 대신에 액상의 프라이머(Primer)를 도포(또는 코팅)한 프라이머층이 형성될 수 있다. 프라이머층은 접착증진제 성분을 포함할 수 있으며, RFID 태그(100) 표면에 접착층 도막을 형성하여 RFID 태그(100)와 고무 토핑(220) 간의 결합력을 증대시키고, RFID 태그(100) 표면을 부식이나 물리적인 충격으로부터 보호할 수 있다.
또는, RFID 태그(100)에 상기 에폭시층(210) 대신에 액상의 고무(Rubber)를 도포(또는 코팅)한 고무층이 형성될 수도 있다. 고무층은 고무 토핑(220)과 동일한 재질로 형성되기 때문에 고무 토핑(220)과 결합시 이질감이 없이 높은 결합력을 제공할 수 있다.
또는, RFID 태그(100)에 액상의 프라이머 및 액상의 고무가 순차적으로 도포된 프라이머층 및 고무층을 함께 적층 형성할 수도 있다. 이 경우 프라이머층은 RFID 태그(100)와 고무층 간의 결합력을 증대시켜, 결과적으로 RFID 태그(100)와 고무 토핑(220) 간의 결합력을 증대시킨다.
이와 같이, RFID 태그(100)와 고무 토핑(220) 사이에 프라이머층 및(또는) 고무층을 형성함으로써 RFID 태그(100) 표면을 부식이나 물리적인 충격으로부터 보호하고 RFID 태그(100)와 고무 토핑(220) 간의 결합력을 증대시켜 RFID 태그 모듈이 타이어 내부에 내장된 상태가 안정적으로 유지되도록 함으로써 RFID 태그의 동작 신뢰성을 높일 수 있다.
고무 토핑(220)은 RFID 태그(100)를 절연 및 보호하고, RFID 태그(100)를 타이어와 같은 고무에 내장시 고무와 결합성을 향상시키기 위한 것이다. 또한, 고무 토핑(220)은 RFID 태그(100)를 타이어와 같은 고무재질의 내부에 삽입하기 용이하도록 한다. 일 예로, RFID 태그(100) 전체를 감싸는 고무 토핑(220)은 가류공정에서 타이어의 사이드 웰(side wall)에 토핑된다. 토핑은 고무 토핑(220)이 가류공정에서 타이어의 사이드 웰을 형성하는 고무층과 일체로 몰딩됨을 의미한다. 타이어의 사이드 웰은 트레드(접지면)와 비드 사이의 타이어 옆 부분을 의미하며, 두꺼운 고무층으로 이루어져 있다.
타이어의 사이드 웰은 고무층으로 이루어져 있어 고무 토핑(220)의 몰딩이 용이하고 전파특성에 영향을 주지 않으므로 태그의 인식이 용이한 위치이다. 또한, 타이어의 사이드 웰은 RFID 태그가 장착된 타이어가 고속으로 주행시 RFID 태그로 인한 타이어의 변형이나 파손이 없는 위치이다.
고무 토핑(220)의 크기는 RFID 태그에 비해 크기가 큰 것이 바람직하다. 이는 고무 토핑(220)이 RFID 태그(100) 전체를 감싸 보호할 수 있고, 고무에 내장시 고무와 결합성을 향상시키기 위함이다.
고무 토핑(220)은 천연고무(NR), SBR, MBR, CR, EPDM 중 적어도 하나 또는 이들의 혼합물질로 이루어질 수 있다. 일 예로, 타이어는 천연고무(NR), SBR, MBR, CR, EPDM 등의 합성고무를 사용하기 때문에 고무 토핑(220)도 타이어의 주 원료인 천연고무(NR), SBR, MBR, CR, EPDM 등의 합성고무를 사용하여 타이어와의 결합성이 좋아지게 할 수 있다.
고무 토핑(220)을 대신하여 RFID 태그(100)를 다양한 비전도성 폴리머로 감쌀 수 있다. 일 예로 RFID 태그(100)를 점착제가 포함된 비전도성 폴리머로 감싼 후, 가류공정을 이용하여 비전도성 폴리머를 녹여 고무와 결합하게 함으로써, RFID 태그(100)를 고무에 내장할 수 있다. 그러나 실시예와 같이 RFID 태그(100)를 타이어에 내장하는 경우 타이어와 동일한 재질의 고무 토핑(220)으로 RFID 태그(100)를 감싸는 것이 결합력 향상에 효과적이다.
실시예에서 RFID 태그(100)는 폭 3mm까지 좁게 제조할 수 있다.
도 2는 본 발명의 실시예에 의한 RFID 태그를 보인 사시도이다.
도 2에 도시된 바에 의하면, RFID 태그(100)는 태그 본체(110), IC 칩(120), 안테나 패턴(130)을 포함한다. RFID 태그(100)는 비접촉형 IC 카드와 같은 주파수 대역을 사용하고, 무전원을 전재한 전자 유도형으로 통신하며 통신거리는 수십 cm일 수 있다. RFID(Radio Frequency Identification) 태그(100)는 무선 주파수 인식 태그이다.
태그 본체(110)는 유전체로 형성된다. 유전체는 FR-4 PCB 또는 FPCB로 이루어질 수 있다. FR-4 PCB 또는 FPCB는 공기 대비 고유전체이다. FR4 PCB 또는 FPCB의 유전율(Dk)을 2~4.4이다.
태그 본체(110)는 폭에 비해 길이가 긴 형상 띠 형상으로 형성된다. 태그 본체(110)의 두께는 0.2T~0.8T(mm)일 수 있으며, 바람직하게는 0.4T일 수 있다. 태그 본체(110)의 폭은 3mm 이하일 수 있다. 즉, RFID 태그(100)는 타이어의 고무를 손상시키지 않는 최소한의 폭, 두께 및 길이로 형성한다. 또한, 타이어의 고무에 RFID 태그(100)가 내장되어도 타이어의 외형 및 기능상에 영향을 미치지 않도록 초소형으로 구조로 형성한다.
IC 칩(120)은 태그 본체(110)의 상면 중앙에 실장된다. IC 칩(120)은 태그 본체(110)에 플립칩(flip chip) 형태로 실장될 수 있다. IC 칩(120)은 태그 본체(110)에 플립칩 형태로 실장되면 와이어 본딩이 생략되어 납땜이 필요없게 되므로 제조 공정이 간편해지고, IC 칩(120)과 안테나 패턴(130)의 연결부위를 도체 패턴으로 연결하여 IC 칩(120)과 안테나 패턴의 연결부위의 접속 신뢰성을 높일 수 있다.
안테나 패턴(130)은 제한된 태그 본체(110) 상에 최대한의 안테나 길이를 확보하기 위해 좌우 대칭의 입체형 헬리컬 형태(Helical Type) 안테나로 제조한다.
안테나 패턴(130)은 제1 안테나 패턴(130a)과 제2 안테나 패턴(130b)을 포함한다. 제1 안테나 패턴(130a)은 태그 본체(110)의 내부에 제1 방향(도면상 좌측 방향)을 따라 나선형으로 형성되고 일단이 IC 칩(120)의 일측에 연결된다. 제2 안테나 패턴(130b)은 태그 본체(110)의 내부에 제1 방향의 반대 방향인 제2 방향(도면상 우측 방향)을 따라 나선형으로 형성되고 일단이 IC 칩(120)의 타측에 연결된다.
제1 안테나 패턴(130a)은 복수의 상부 도체 패턴(131)과 복수의 하부 도체 패턴(132)과 비아홀(133)을 포함한다. 제1 안테나 패턴(130a)의 상부 도체 패턴(131)은 태그 본체(110)의 상면에 형성되고, 하부 도체 패턴(132)은 태그 본체(110)의 하면에 형성된다. 제1 안테나 패턴(130a)의 비아홀(133)은 태그 본체(110)에 관통 형성되며, 복수의 각 상부 도체 패턴(131)과 복수의 각 하부 도체 패턴(132)을 연결하여 태그 본체(110)의 내부에 나선형의 헬리컬 안테나 패턴을 형성한다.
제2 안테나 패턴(130b)은 복수의 상부 도체 패턴(131)과 복수의 하부 도체 패턴(132)과 비아홀(133)을 포함한다. 제2 안테나 패턴(130b)의 상부 도체 패턴(131)은 태그 본체(110)의 상면에 형성되고, 하부 도체 패턴(132)은 태그 본체(110)의 하면에 형성된다. 제2 안테나 패턴(130b)의 비아홀(133)은 태그 본체(110)에 관통 형성되며, 복수의 각 상부 도체 패턴(131)과 복수의 각 하부 도체 패턴(132)을 연결하여 태그 본체(110)의 내부에 입체형 나선형의 헬리컬 안테나 패턴을 형성한다.
태그 본체(110)의 내부에 입체형 헬리컬 안테나 패턴을 형성하면, 평면에 지그재그 형태의 패턴을 형성하는 경우 대비 태그 본체(110)의 폭을 줄일 수 있는 이점이 있다. 평면에 지그재그 형태의 패턴을 형성하는 경우 제한된 면적에 안테나 길이를 확보하기 위해 태그 본체(110)의 폭이 실시예에 비해 더 커져야 한다. 실험 결과, 태그 본체(110)에 입체형 헬리컬 안테나 패턴을 형성하는 경우 태그 본체(110)의 폭을 3mm로 형성 가능하나, 칩이 실장되는 면에 지그재그 형태의 패턴을 형성하면 태그 본체의 폭을 5mm~10mm 정도 확보해야 한다.
제1 안테나 패턴(130a)과 제2 안테나 패턴(130b)을 형성하는 상부 도체 패턴(131)과 하부 도체 패턴(132)은 태그 본체(110)의 상면과 하면에 동박을 부착하고 에칭하여 형성할 수도 있고, 태그 본체(110)의 상면과 하면에 시드층과 도금층을 형성한 다음 에칭하여 형성할 수도 있다. 태그 본체(110)의 상면과 하면에 스퍼터링에 의해 시드층을 형성하고 시드층 상에 동도금하여 도금층을 형성한 다음 에칭하여 상부 도체 패턴(131)과 하부 도체 패턴(132)을 형성하면 태그 본체(110)에 대한 상부 도체 패턴(131)과 하부 도체 패턴(132)의 접합성이 더 좋아진다. 제1 안테나 패턴(130a)과 제2 안테나 패턴(130b)의 비아홀(133)에는 연결도금층이 형성되어 상부 도체 패턴(131)과 하부 도체 패턴(132)을 연결할 수 있다.
도 3은 본 발명의 실시예에 의한 RFID 태그의 안테나 패턴 형상을 보인 사시도이다.
도 3에 도시된 바에 의하면, 안테나 패턴(130)은 IC 칩(120)을 중심으로 좌측에 제1 안테나 패턴(130a)이 형성되고 우측에 제2 안테나 패턴(130b)이 형성된다. 제1 안테나 패턴(130a)과 제2 안테나 패턴(130b)은 입체형 헬리컬 형태 안테나를 형성하여 제한된 크기 내에서 최대한의 안테나 길이를 확보한다. 이는 제한된 크기 내에서 필요로 하는 최대 주파수 특성을 얻을 수 있도록 한다. IC 칩(120)과 제1 안테나 패턴(130a)의 연결부위 및 IC 칩(120)과 제2 안테나 패턴(130b)의 연결부위는 좌우 대칭형이고 도체 패턴으로 연결된다. RFID 태그(100)의 안테나의 길이 확보는 고유전율의 특성을 가지는 타이어에 부착되어도 일정한 거리에서 동작이 가능하도록 하기 위함이다.
상기한 본 발명의 안테나 패턴(130)은 스프링 와이어 안테나를 포함하지 않으므로, 타이어의 사이드 웰에 내장되었을 때 타이어의 구조에 결함이나 문제를 일으키지 않으며, 고속주행시에도 안테나 패턴이 끊어지거나 IC 칩(120)과 안테나 패턴의 연결부위가 끊어지는 문제가 발생하지 않는다.
도 4는 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈의 제조방법을 보인 과정도이다.
도 4에 도시된 바에 의하면, 본 발명의 실시예에 의한 RFID 태그 모듈의 제조방법은 RFID 태그(100)를 제조하는 단계(S1)와, RFID 태그(100)의 외면에 에폭시층(210)을 형성하는 단계(S2)와, 에폭시층(210)이 형성된 RFID 태그(100)의 상부와 하부에 상부 고무 토핑(221)과 하부 고무 토핑(222)을 배치하는 단계(S3)와, 상부 고무 토핑(221)과 하부 고무 토핑(222)을 부착하여 에폭시층(210)이 형성된 RFID 태그(100) 전체를 고무 토핑(220)으로 감싸는 단계(S4)를 포함한다.
RFID 태그(100)를 제조하는 단계(S1)는 FR-4 PCB 또는 FPCB로 이루어지는 태그 본체(110)에 IC 칩(120)을 실장하고, 태그 본체(110)에 형성한 복수의 상부 도체 패턴(131)과 복수의 하부 도체 패턴(132)을 비아홀(133)로 연결한 헬리컬 안테나 패턴을 구현한 RFID 태그(100)로 제조한다.
태그 본체(110)는 폭에 비해 길이가 긴 형상으로 형성된 것을 준비하고, RFID 태그(100)는 폭이 약 3mm가 되도록 제조할 수 있다. 비아홀(133)의 직경은 0.1mm로 형성할 수 있다. 상부 도체 패턴(131)과 하부 도체 패턴(132)의 폭은 비아홀(133)의 직경과 같거나 상대적으로 클 수 있다.
RFID 태그(100)의 외면에 에폭시층(210)을 형성하는 단계(S2)는 RFID 태그(100)의 외면 전체에 에폭시를 코팅하여 에폭시층(210)을 형성한다. 에폭시층(210)은 RFID 태그(100)의 전체면에 열경화성 에폭시 수지를 도포하여 형성될 수 있다.
여기서, 상기 RFID 태그(100)의 외면에 에폭시층(210)을 형성하는 단계(S2)는 상기 에폭시층(210) 대신에 RFID 태그(100)의 외면에 액상의 프라이머(Primer)를 도포(또는 코팅)하여 프라이머층을 형성하거나, RFID 태그(100)의 외면에 액상의 고무(Rubber)를 도포(또는 코팅)하여 고무층을 형성하는 단계로 대체될 수 있다. 또는, RFID 태그(100) 외면에 액상의 프라이머와 액상의 고무를 순차적으로 도포하여 프라이머층 및 고무층을 순차적으로 적층 형성하는 단계로 대체될 수도 있다.
일예로, RFID 태그(100) 외면에 액상의 프라이머와 액상의 고무를 순차적으로 도포하여 프라이머층 및 고무층을 적층 형성하는 경우,
먼저, 액상의 프라이머가 도포될 RFID 태그(100) 외면을 세척기를 이용하여 세척한 후 건조기를 이용하여 일정시간 동안 건조시킨다. 이때, 세척용액으로는 MEK, ACETONE 용액이 사용될 수 있으며, 세척완료 후 건조기에서 60℃ 이상의 온도로 3분 동안 건조시킬 수 있다.
다음으로, 세척 및 건조 완료된 RFID 태그(100) 외면에 액상의 프라이머를 도포한 후 건조기로 건조시켜 RFID 태그(100) 외면에 프라이머층을 형성시킨다. 이 경우 액상의 프라이머를 스프레이 또는 디핑(dipping) 설비를 사용하여 RFID 태그(100) 표면에 12~25㎛의 두께로 도포한 후, 프라이머가 도포된 RFID 태그(100)를 60~80℃ 온도에서 10분 이상 건조시킬 수 있다.
이어서, 프라이머가 도포된 RFID 태그(100) 외면에 액상의 고무용액(Rubber Solution)을 스프레이 또는 디핑(dipping) 설비를 사용하여 12~25㎛의 두께로 도포한 후, 고무용액이 도포된 RFID 태그(100)를 80~100℃ 온도에서 24시간 건조시킨다.
다음으로, 액상의 프라이머 및 고무용액이 순차적으로 도포된 후 건조 과정을 마친 RFID 태그를 커팅기(예를 들어, 레이저 커팅기)를 사용하여 커팅(cutting)함으로써, 표면에 프라이머층 및 고무층이 순차적으로 적층 형성된 RFID 태그(100)를 제조할 수 있다.
한편, 에폭시층(210)이 형성된 RFID 태그(200)의 상부와 하부에 상부 고무 토핑(221)과 하부 고무 토핑(222)을 배치하는 단계(S3)는, RFID 태그(100)에 비해 크기가 커 RFID 태그(100) 전체를 덮을 수 있는 크기의 상부 고무 토핑(221)과 하부 고무 토핑(222)을 배치한다. 상부 고무 토핑(221)과 하부 고무 토핑(222)은 크기가 동일한 평판 형상이다.
상부 고무 토핑(221)과 하부 고무 토핑(222)을 부착하여 에폭시층(210)이 형성된 RFID 태그(100) 전체를 고무 토핑(220)으로 감싸는 단계(S4)는 에폭시층(210)이 형성된 RFID 태그(200)의 상면과 하면에 상부 고무 토핑(221)과 하부 고무 토핑(222)을 부착하고 소정의 압력과 열로 가압하여 에폭시층(210)이 형성된 RFID 태그(100) 전체를 고무 토핑(220)이 감싸도록 할 수 있다.
이때, 상부 고무 토핑(221)과 하부 고무 토핑(222)의 대응되는 면에는 점착제가 포함되어 상부 고무 토핑(221)과 하부 고무 토핑(222)이 에폭시층(210)이 형성된 RFID 태그(100) 전체를 감싼 상태가 안정적으로 유지되게 할 수 있다.
또한, 상, 하부 고무 토핑(221,222)과 RFID 태그(100)의 사이에 배치된 에폭시층(210)이 고무 토핑(220)과 RFID 태그(100)의 접착력을 높여 RFID 태그(100) 전체를 감싼 상태가 안정적으로 유지되게 하고, 후술할 가류공정에서도 에폭시층(210)이 열에 의해 경화되면서 고무 토핑(220)과 RFID 태그(100)의 접착력을 더욱 높이는 역할을 할 수 있다.
도 5는 본 발명의 다른 실시예에 의한 고무에 내장하는 RFID 태그 모듈을 보인 사시도이다.
도 5에 도시된 바에 의하면, 본 발명의 다른 실시예에 의한 RFID 태그 모듈(10-1)은 적어도 하나 이상의 요입슬롯(135)과 복수의 관통홀(137)을 더 포함하는 점에서 실시예와 차이가 있다.
요입슬롯(135)은 태그 본체(110)에 형성된다. 요입슬롯(135)은 태그 본체(110)에서 IC 칩(120)의 양측 전후 방향에 해당하는 위치에 형성되어 IC 칩(120)에 응력이 집중되는 것을 방지한다. 요입슬롯(135)은 고속주행시 RFID 태그(100)의 비틀림 힘에 의해 IC 칩(120)에 가해지는 응력을 감소시켜 IC 칩(120)의 손상을 방지함으로써 RFID 태그(100)의 동작 신뢰성을 향상시킨다. 태그 본체(110)가 FR-4 재질로 형성되는 경우 FR-4 재질이 비틀림 응력을 견디지 못해 IC 칩(120)이 깨질 우려가 있다. 이를 방지하기 위해 IC 칩(120)의 근처에 해당하는 태그 본체(110)에 적어도 하나 이상의 요입슬롯(135)을 형성하여 IC 칩(120)에 가해지는 응력이 감소하도록 한다. 요입슬롯(135)은 IC칩(120)의 근처에 형성되어야 IC 칩(120)에 가해지는 응력을 감소시키고 IC 칩(120)의 손상을 방지할 수 있다.
일 예로, 요입슬롯(135)은 태그 본체(110)에서 IC 칩(120)의 양측 전후 방향에 해당하는 위치에 최소 2개 이상이 형성될 수 있다. 요입슬롯(135)은 외부에서 내부로 함몰된 형상이고 반원형, 사각형, 삼각형, 다각형 형상 중 하나의 형상으로 형성될 수 있다. 도 5의 다른 실시예의 요입슬롯(135)은 반원형 형상으로 형성된 것을 일 예로 한다.
또한, 요입슬롯(135)은 IC 칩(120)의 양측 전후 방향에 해당하는 위치에 대칭되게 형성되어 IC 칩(120)에 가해지는 응력을 최소로 할 수 있다.
한편, 복수의 관통홀(137)은 태그 본체(110)에 형성된다. 복수의 각 관통홀(137)은 안테나 패턴과 안테나 패턴의 사이에 해당하는 위치의 태그 본체(110)에 관통 형성된다. 복수의 각 관통홀(137)에는 고무 토핑(220)이 채워져 RFID 태그(100)의 상부의 고무 토핑(220)과 하부의 고무 토핑(220)을 연결한다. 각 관통홀(137)에 채워지는 고무 토핑(220)은 가류공정에서 용융되고 각 관통홀(137)에 채워져 RFID 태그(100)의 상부의 고무 토핑(220)과 하부의 고무 토핑(220)을 연결하여 내구성을 개선한다.
안테나 패턴과 안테나 패턴의 사이에 형성되는 관통홀(137)의 직경은 0.5mm보다 크고 3mm보다 작은 한 개 이상으로 형성될 수 있다. 관통홀(137)의 직경은 0.5mm보다 작으면 고무 토핑(220)이 채워지기 어렵고, 3mm보다 크면 안테나 패턴 형상에 영향을 주므로 바람직하지 않다. 관통홀(137)의 형상은 반원형, 사각형, 삼각형, 다각형 형상 중 하나의 형상으로 형성될 수 있다. 도 5의 다른 실시예의 관통홀(137)은 원형 형상으로 형성으로 형성된 것을 일 예로 한다.
도 6은 도 5의 제1 변형예를 보인 부분 사시도이고, 도 7은 도 5의 제2 변형예를 보인 부분 사시도이다.
도 6에 도시된 바에 의하면, 제1 변형예의 요입슬롯(135')은 삼각형 형상으로 형성으로 형성된 것을 일 예로 하고, 관통홀(137)은 원형 형상으로 형성으로 형성된 것을 일 예로 한다.
도 7에 도시된 바에 의하면, 제2 변형예의 요입슬롯(135")은 사각형 형상으로 형성된 것을 일 예로 하고, 관통홀(137')은 사각형 형상으로 형성된 것을 일 예로 한다. 사각형 형상의 관통홀(137')은 고무 토핑(220)과의 접촉면적을 넓혀 고무 토핑(220)과 RFID 태그(100)의 결합성을 높이고 내구성을 높인다.
도 8 내지 도 10은 본 발명의 실시예에 의한 고무에 내장하는 RFID 태그 모듈을 타이어의 사이드 웰에 토핑하는 과정을 보인 과정도이다.
도 8 내지 도 10에 도시된 바에 의하면, RFID 태그 모듈(10)에서 에폭시층(210)이 코팅된 RFID 태그(200)를 감싸는 고무 토핑(220)은 가류공정에서 타이어의 사이드 웰(side wall)(w)에 토핑되고 일체화된다.
타이어(T)는 크게 정련-반제품(압출, 압연, 비드)-성형, 가류, 네 가지의 공정을 거쳐 완성된다. 성형 공정에서 타이어처럼 원통형으로 만들고, 열과 압력을 가하는 가류(Curing Process)공정을 통해 트레드가 생기고 타이어(T)가 완성된다.
도 8을 참조하면, 가류공정은 성형을 거친 유연한 타이어(T)를 상부몰드(1)와 하부몰드(3)의 사이에 넣고 열과 압력을 가하게 되며, 이 과정에서 사이드 웰(w)의 고무층에 RFID 태그(100)를 감싼 고무 토핑(220)이 용융되어 결합됨으로써, 고무층과 일체화된 몰딩 상태가 되고 견고한 결합이 가능해진다.
가류공정의 온도는 150~170도이고 가류시간은 20~30분일 수 있다.
도 9를 참조하면, 가류공정에서 타이어(T)의 사이드 웰(w)에 RFID 태그 모듈(10)을 안착시키고, 상부몰드(1)와 하부몰드(3)로 타이어(T)를 가압하면서 상부몰드(1)와 하부몰드(3)의 사이에 150~170도의 가열증기를 공급하여 20~30분 정도 가열한다. 그러면 RFID 태그 모듈(10)의 고무 토핑(220)이 용융되면서 타이어(T)의 사이드 웰(w)의 고무층과 일체화된다. 이 과정에서 RFID 태그 모듈(10)의 고무 토핑(220)의 재질과 타이어(T)의 사이드 웰(w)의 고무층의 재질이 동일한 재질로 형성되므로 결합력이 우수하고 일체화가 보다 용이하다.
도 10을 참조하면, RFID 태그 모듈(10)을 타이어(T)에 내장하면, 상부몰드(1)와 하부몰드(3)를 서로 이격시켜 상부몰드(1)와 하부몰드(3)에서 타이어(T)를 분리한다. 이와 같이 제조한 타이어(T)는 사이드 웰(w)에 RFID 태그(100)가 내장되어 일체화된 형상이 되므로 타이어(T)의 고무 재질에 손상을 주지 않으며, RFID 태그(100)와 고무 토핑(220)이 에폭시층(210)으로도 견고하게 결합되어 있어 고속주행시에도 손상이 방지되고 RFID 태그(100)의 동작 신뢰성이 확보될 수 있다.
또한, 본 발명의 RFID 태그 모듈(10)은 도체 패턴과 비아홀을 연결하여 안테나 패턴을 형성한 RFID 태그(100)를 적용하므로 종래의 스프링 안테나에 비해 생산이 용이하고 대량 생산이 가능하며 더 견고하며 일정한 품질 유지가 가능하다.
상술한 본 발명의 RFID 태그 모듈(10)은 타이어의 사이드 웰(side wall)에 토핑되어, 타이어의 사이드 웰(side wall)에 내장되며, RFID 리더기를 이용하여 접촉식 또는 비접촉식으로 이를 판독, 인식할 수 있다. 이는 여름용 타이어와 겨울용 타이어에 대한 이력관리와 유통관리 등에 적용될 수 있다.
또한, RFID 태그(100)는 0.2T~0.8T(mm) 정도, 폭 3mm까지 좁게 초소형 구조로 제작되므로 타이어의 외형 및 기능상이 영향을 미치지 않는다.
상술한 본 발명의 RFID 태그 모듈(10)은 가류공정에서 타이어(T)의 사이드 웰(side wall)에 일체화되고 내장되는 것을 예로 들어 설명하였으나, 열과 압력을 가하여 용융되면서 몰딩에 의해 일체화되는 구조인 경우 다양한 고무재질 제품에 적용 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. IC 칩과 안테나 패턴을 포함하는 RFID 태그; 및
    상기 IC 칩 근처에 적어도 하나 이상 형성되어 상기 IC 칩에 가해지는 응력을 감소하는 요입슬롯;
    을 포함하는 RFID 태그 모듈.
  2. 제1항에 있어서,
    상기 RFID 태그는
    유전체로 형성되며, 상기 IC 칩이 실장되는 태그 본체를 포함하고,
    상기 요입슬롯은
    상기 IC 칩의 양측 전후 방향에 해당하는 위치에서 상기 태그 본체의 일부가 요입되어 형성되는 RFID 태그 모듈.
  3. 제2항에 있어서,
    상기 요입슬롯은 반원형, 사각형, 삼각형, 다각형 형상 중 하나의 형상으로 형성되는 RFID 태그 모듈.
  4. 제2항에 있어서,
    상기 요입슬롯은
    상기 IC 칩의 양측 전후 방향에 해당하는 위치에 대칭되게 형성된 RFID 태그 모듈.
  5. 제2항에 있어서,
    상기 유전체는 FR-4 PCB 또는 FPCB로 이루어지는 RFID 태그 모듈.
  6. 제1항에 있어서,
    상기 RFID 태그는
    유전체로 형성되며, 상기 IC 칩이 실장되고 안테나 패턴이 형성되는 태그 본체를 포함하고,
    상기 안테나 패턴은
    상기 태그 본체의 내부에 제1 방향을 따라 나선형으로 형성되고 일단이 상기 IC 칩의 일측에 연결되는 제1 안테나 패턴; 및
    상기 태그 본체의 내부에 상기 제1 방향의 반대 방향인 제2 방향을 따라 나선형으로 형성되고 일단이 상기 IC 칩의 타측에 연결되는 제2 안테나 패턴;
    을 포함하는 RFID 태그 모듈.
  7. 제6항에 있어서,
    상기 안테나 패턴은
    상기 태그 본체의 상면에 형성된 복수의 상부 도체 패턴;
    상기 태그 본체의 하면에 형성된 복수의 하부 도체 패턴;
    상기 태그 본체에 관통 형성되며 상기 복수의 각 상부 도체 패턴과 상기 복수의 각 하부 도체 패턴을 연결하여 상기 태그 본체의 내부에 나선형의 입체형 헬리컬 안테나 패턴을 형성하는 복수의 비아홀;
    을 포함하는 RFID 태그 모듈.
  8. 제1항에 있어서,
    상기 RFID 태그에 부착되어 상기 RFID 태그 전체를 감싸는 고무 토핑을 더 포함하는 RFID 태그 모듈.
  9. 제8항에 있어서,
    상기 RFID 태그 전체를 감싸는 고무 토핑은 가류공정에서 타이어의 사이드 웰(side wall)에 토핑되는 RFID 태그 모듈.
  10. 제8항에 있어서,
    상기 RFID 태그는
    상기 안테나 패턴을 형성하는 패턴과 패턴의 사이에 관통 형성되는 하나 이상의 관통홀을 포함하는 RFID 태그 모듈.
  11. 제10항에 있어서,
    상기 관통홀에는 토핑시 용융된 상기 고무 토핑이 채워져 상기 RFID 태그의 상부의 고무 토핑과 하부의 고무 토핑을 연결하는 RFID 태그 모듈.
  12. 제10항에 있어서,
    상기 관통홀의 직경은 0.5mm보다 크고 3mm보다 작은 RFID 태그 모듈.
  13. 제8항에 있어서,
    상기 고무 토핑의 크기는 상기 RFID 태그에 비해 크기가 큰 RFID 태그 모듈.
  14. 제8항에 있어서,
    상기 고무 토핑은
    천연고무, SBR, MBR, CR, EPDM 중 적어도 하나 또는 이들의 혼합물질로 이루어진 RFID 태그 모듈.
  15. 제8항에 있어서,
    상기 RFID 태그과 상기 고무 토핑의 사이에 에폭시층이 배치되는 RFID 태그 모듈.
  16. 제8항에 있어서, 상기 RFID 태그와 상기 고무 토핑 사이에 액상의 프라이머(Primer)가 도포되어 형성된 프라이머층이 배치되는 RFID 태그 모듈.
  17. 제8항에 있어서, 상기 RFID 태그와 상기 고무 토핑 사이에 액상의 고무(Rubber)가 도포되어 형성된 고무층이 배치되는 RFID 태그 모듈.
PCT/KR2022/020988 2021-12-28 2022-12-21 고무에 내장하는 rfid 태그 모듈 WO2023128459A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0189588 2021-12-28
KR20210189588 2021-12-28
KR10-2022-0145902 2022-11-04
KR1020220145902A KR20230100599A (ko) 2021-12-28 2022-11-04 고무에 내장하는 rfid 태그 모듈

Publications (1)

Publication Number Publication Date
WO2023128459A1 true WO2023128459A1 (ko) 2023-07-06

Family

ID=86999756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020988 WO2023128459A1 (ko) 2021-12-28 2022-12-21 고무에 내장하는 rfid 태그 모듈

Country Status (1)

Country Link
WO (1) WO2023128459A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080046816A (ko) * 2006-11-23 2008-05-28 한국타이어 주식회사 타이어 내에 장착되는 rfid 태그 구조
US20170277992A1 (en) * 2014-09-29 2017-09-28 Avery Dennison Corporation Tire Tracking RFID Label
KR20170130922A (ko) * 2016-05-20 2017-11-29 이주데이타시스템(주) 내열 및 내충격성 듀얼 rfid 태그
KR20200001919A (ko) * 2018-06-28 2020-01-07 (주)알판트 영구 부착형 uhf 대역 알에프아이디 타이어 태그 및 이의 제조 방법
KR20210101623A (ko) * 2020-02-10 2021-08-19 한국타이어앤테크놀로지 주식회사 Rfid 태그 및 그를 포함하는 타이어

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080046816A (ko) * 2006-11-23 2008-05-28 한국타이어 주식회사 타이어 내에 장착되는 rfid 태그 구조
US20170277992A1 (en) * 2014-09-29 2017-09-28 Avery Dennison Corporation Tire Tracking RFID Label
KR20170130922A (ko) * 2016-05-20 2017-11-29 이주데이타시스템(주) 내열 및 내충격성 듀얼 rfid 태그
KR20200001919A (ko) * 2018-06-28 2020-01-07 (주)알판트 영구 부착형 uhf 대역 알에프아이디 타이어 태그 및 이의 제조 방법
KR20210101623A (ko) * 2020-02-10 2021-08-19 한국타이어앤테크놀로지 주식회사 Rfid 태그 및 그를 포함하는 타이어

Similar Documents

Publication Publication Date Title
WO2020004797A1 (ko) 영구 부착형 uhf 대역 알에프아이디 타이어 태그 및 이의 제조 방법
CN112236318B (zh) 充气轮胎和组装片
WO2017052048A1 (ko) 벤딩 내구성이 개선된 연성회로기판 및 그 제조방법
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
US6978669B2 (en) Method and assembly of sensor ready tires
KR20110117139A (ko) 일체형 와이어 하니스를 구비한 헤드라이너
EP3894241A1 (en) Tyre with monitoring device
WO2023128459A1 (ko) 고무에 내장하는 rfid 태그 모듈
WO2022039159A9 (ja) Rfidタグ用のコイル
JP6751975B1 (ja) Rfidタグ、rfidタグ内蔵タイヤ、およびrfidタグの製造方法
KR20230100599A (ko) 고무에 내장하는 rfid 태그 모듈
US20210151812A1 (en) Battery module and vehicle with the same
CN101036265B (zh) 轮胎中电子构件装配的坚固的天线连接件
WO2023136540A1 (ko) 고무에 내장하는 rfid 태그 모듈
WO2013147479A1 (ko) 타이어용 알에프아이디 태그
KR20010041700A (ko) 광학접속부품 및 그 제작방법
WO2008147414A1 (en) Optical ribbon and method of forming same
WO2024172387A1 (ko) 고무에 내장하는 rfid 태그 모듈
KR20010108390A (ko) 광학 접속 부품
WO2020231154A1 (ko) 타이어 굴신운동에 대한 완충성능이 우수한 영구 부착형 uhf 대역 알에프아이디 타이어태그
EP4000966B1 (en) Tire
KR101799196B1 (ko) 열전소자를 이용하여 자가발전이 가능한 타이어 및 이의 제조방법
CN116529735B (zh) 橡胶产品用rfid标签以及橡胶产品用rfid标签的制造方法
US20090097222A1 (en) Electrical Subassembly Comprising a Protective Sheathing
EP4000965A2 (en) Tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE