WO2023128244A1 - Organic-based electrochemical system for removing unreacted ammonia - Google Patents

Organic-based electrochemical system for removing unreacted ammonia Download PDF

Info

Publication number
WO2023128244A1
WO2023128244A1 PCT/KR2022/017519 KR2022017519W WO2023128244A1 WO 2023128244 A1 WO2023128244 A1 WO 2023128244A1 KR 2022017519 W KR2022017519 W KR 2022017519W WO 2023128244 A1 WO2023128244 A1 WO 2023128244A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonium
organic
electrochemical system
unreacted ammonia
removing unreacted
Prior art date
Application number
PCT/KR2022/017519
Other languages
French (fr)
Korean (ko)
Inventor
김용태
신해용
정상문
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2023128244A1 publication Critical patent/WO2023128244A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0681Reactant purification by the use of electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an organic-based electrochemical system for removing unreacted ammonia. More specifically, the present invention lowers the activation energy required for the ammonia removal reaction during ammonia hydrogen extraction, so that the catalytic reaction proceeds quickly and shows improved activity, and the use of precious metals is reduced due to the interaction between the catalyst and the support, so that the precious metal platinum is about 15 times or more It relates to an organic-based electrochemical system for removing unreacted ammonia that can solve the problems of the conventional PSA method by realizing better economic effects than deposited catalysts.
  • a fuel cell is a device that converts chemical energy generated by oxidation-reduction of fuel into electrical energy.
  • unreacted ammonia generated during hydrogen extraction causes deterioration of the electrode and separator of the fuel cell, and thus an ammonia removal process is additionally required.
  • PSA pressure swing adsorption
  • the working electrode includes a working electrode, a counter electrode, a reference electrode, an electrolyte connecting them and a supporting electrolyte, and the working electrode is a non-noble metal-based catalyst and applied to the surface thereof.
  • the activation energy required for the ammonia removal reaction is lowered, so the catalytic reaction proceeds quickly, resulting in improved activity.
  • the present invention which can solve the problems of the conventional PSA method by implementing the effect, has been completed.
  • An object of the present invention is to provide an organic-based electrochemical system for removing unreacted ammonia that exhibits improved activity by rapidly progressing the catalytic reaction by lowering the activation energy required for the ammonia removal reaction.
  • Another object of the present invention is to reduce the use of precious metals due to the interaction between the catalyst and the support, thereby realizing an economic effect superior to that of a catalyst deposited with about 15 times more precious metal platinum, thereby solving the problems of the conventional PSA method, which was expensive for maintenance and additional costs. It is to provide an organic-based electrochemical system for removing unreacted ammonia.
  • One aspect of the present invention is a working electrode, a counter electrode, a reference electrode, and an electrolyte and a supporting electrolyte connecting the working electrode, the counter electrode, and the reference electrode.
  • the working electrode relates to an organic-based electrochemical system for removing unreacted ammonia including a non-noble metal-based catalyst and platinum applied on the surface of the non-noble metal-based catalyst.
  • the working electrode may include a rotating disk electrode
  • the counter electrode may include a graphite rod
  • the reference electrode may include Ag/AgCl.
  • the electrolyte is 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n- Butanol (n-butanol), n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethylformamide ( dimethyl formamide: DMF), dimethylacetamide: DMAc, dioxane, tetrahydrofuran: THF, dimethyl sulfoxide: DMSO, cyclohexane, benzene, It may include at least one selected from the group consisting of toluene, xylene, water, and derivatives or mixtures thereof.
  • NMP 1-methyl-2-pyrrolidone
  • acetone ethanol
  • n-propanol n-butanol
  • n-butanol n-hexane
  • cyclohexanol cyclohex
  • the supporting electrolyte may include an amide-based or ammonium-based compound.
  • the amide-based compound is melamine (2-amino-4,6-dichlorotriazine), cyanuric chloride, calcium cyanamide, sodium amide, melem (2 ,5,8-triamino-tri-s-triazine), cyanamide, dicyandiamide, and derivatives or mixtures thereof.
  • the ammonium compound is ammonium fluoride (NH 4 F), ammonium fluoborate (NH 4 BF 4 ), ammonium acetate (Ammonium Acetate, CH 3 COONH 4 ), ammonium Ammonium sulfamate (NH 4 SO 3 NH 2 ), Ammonium hexafluorophosphate (NH 4 PF 6 ), Ammonium hexafluoroaluminate ((NH 4 ) 3 AlF 6 ), Ammonium nitrite nitrite, NH 4 NO 2 ), Ammonium perchlorate (NH 4 ClO 4 ), Ammonium Sulfite (NH 4 ) 2 SO 3 ), Ammonium carbonate (NH 4 ) 2 CO 3 , Diammonium molybdate (NH 4 ) 2 MoO 4 ), ammonium phosphate (Ammonium phosphate, (NH 4 ) 2 PO 4 ), ammonium permanganate (NH 4 MnO 4 ), ammonium di Chride (NH
  • the non-noble metal-based catalyst is graphene, carbon black, graphite, acetylene black, Denka black, Catcheon black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon nanoring , Carbon nanowires and fullerene (C 60 ) It may be supported on any one of the carbon-based support selected from the group consisting of.
  • the non-noble metal-based catalyst is any one or more selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb and Ru. can include
  • the platinum may be applied on the surface of the non-noble metal-based catalyst in an amount of 1.5 to 2.5 nm.
  • the electrochemical system is a group consisting of voltammetry, amperometry, potentiometry, conductometry, coulometry and electrogravimetry. At least one electrochemical detection signal selected from may be measured.
  • the organic-based electrochemical system for removing unreacted ammonia lowers the activation energy required for the ammonia removal reaction through the organic-based electrochemical system during ammonia hydrogen extraction, so that the catalytic reaction proceeds quickly and exhibits improved activity. It has the advantage of solving the problems of the conventional PSA method, which had high maintenance and additional costs, by realizing superior economic effects than catalysts deposited with about 15 times more precious metal platinum by reducing the use of precious metals due to the interaction between supports.
  • FIG. 1 is a schematic diagram showing the principle of electricity generation in a conventional fuel cell and problems of an aqueous electrochemical system.
  • FIG. 2 is a photograph showing an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • FIG. 3 is a cyclic voltammetry graph comparing catalytic activity results according to electrolyte types of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • FIG. 4 is a cyclic voltammetry graph comparing catalytic activity results according to the type of lipoelectrolyte of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • 5 is a cyclic voltammetry graph comparing the activity of noble metal-based substances in an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • FIG. 6 is a bar graph comparing non-noble metal-based catalytic activity of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • FIG. 7 is a cyclic voltammetry graph comparing non-noble metal-based catalytic activity of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • each process constituting the method may occur in a different order from the specified order unless a specific order is clearly described in context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • An electrochemical system for removing unreacted ammonia which is one aspect of the present invention, includes a working electrode, a counter electrode, a reference electrode, and an electrolyte connecting the working electrode, the counter electrode, and the reference electrode. (Electroyte) and a supporting electrolyte (Supporting Electrode), and the working electrode includes a non-noble metal-based catalyst and platinum coated on the surface of the non-noble metal-based catalyst.
  • FIG. 1 is a schematic diagram showing the principle of electricity generation in a conventional fuel cell and problems of an aqueous electrochemical system.
  • a membrane electrode assembly in a fuel cell is a basic unit for generating electricity and is composed of an electrolyte membrane for the movement of hydrogen ions, an anode electrode formed on both sides of the electrolyte membrane, and a cathode electrode.
  • an oxidation reaction of fuel occurs to generate hydrogen ions and electrons
  • the hydrogen ions move to the cathode electrode through an electrolyte membrane
  • oxygen and hydrogen ions transferred through the electrolyte membrane react with electrons to form water is generated, and the movement of electrons occurs in the external circuit by this reaction.
  • FIG. 2 is a photograph showing an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • the working electrode is an electrode where an electrochemical reaction of metal ions to be analyzed occurs, and can be analyzed by placing an electrode catalyst on glassy carbon having low electrochemical reactivity.
  • the working electrode includes a non-noble metal-based catalyst and platinum applied on the surface of the non-noble metal-based catalyst, and through this, the activation energy required for the ammonia removal reaction is lowered, so that the catalytic reaction proceeds rapidly and exhibits improved activity.
  • the working electrode may include, for example, a rotating disk electrode. However, as long as it can implement the object of the present invention, it is not limited thereto.
  • the counter electrode is an electrode used to facilitate the current flow of the working electrode and complete the reaction.
  • the counter electrode undergoes a reduction reaction and the working electrode undergoes a reduction reaction.
  • an oxidation reaction may occur in the counter electrode.
  • the counter electrode may include a graphite rod having excellent performance of the counter electrode due to its large surface area. However, as long as it can implement the object of the present invention, it is not limited thereto.
  • the reference electrode is a standard for controlling and measuring the potential of the working electrode, is used to measure the voltage of the working electrode as an absolute value, and is made of a material in which the voltage does not change significantly during the electrochemical reaction.
  • the reference electrode may include Ag/AgCl or Ag/Ag + .
  • the electrolyte connects the working electrode, the counter electrode, and the reference electrode, and may include one having excellent solubility, current density, and the like.
  • the electrolyte is 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n-butanol (n-butanol), n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethylformamide formamide: DMF), dimethylacetamide: DMAc, dioxane, tetrahydrofuran: THF, dimethyl sulfoxide: DMSO, cyclohexane, benzene, toluene (toluene), xylene (xylene), water (water) and any one or more selected from the group consisting of derivatives or mixtures thereof.
  • dimethyl formamide (DMF) may be included.
  • DMF dimethyl form
  • FIG. 3 is a cyclic voltammetry graph comparing catalytic activity results according to electrolyte types of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • the organic-based material is screened, and the catalytic activity and solubility vary depending on the type of electrolyte, and in particular, it can be seen that the organic-based DMF has excellent characteristics. .
  • the supporting electrolyte is added to compensate for insufficient conductivity because an organic solvent is used as an electrolyte, and may include, for example, an amide-based compound or an ammonium-based compound.
  • the amide-based compound is, for example, melamine (2-amino-4,6-dichlorotriazine), cyanuric chloride (cyanuric chloride), calcium cyanamide (calcium cyanamide), sodium amide (sodium amide) , melem (2,5,8-triamino-tri-s-triazine), cyanamide, dicyandiamide, and any one or more selected from the group consisting of derivatives or mixtures thereof.
  • sodium amide (NaNH 2 ) may be included. However, as long as it can implement the object of the present invention, it is not limited thereto.
  • the ammonium-based compound is, for example, ammonium fluoride (Ammonium fluoride, NH 4 F), ammonium fluoborate (NH 4 BF 4 ), ammonium acetate (Ammonium Acetate, CH 3 COONH 4 ), Ammonium sulfamate (NH 4 SO 3 NH 2 ), Ammonium hexafluorophosphate (NH 4 PF 6 ), Ammonium hexafluoroaluminate (NH 4 ) 3 AlF 6 ), Ammonium nitrite (NH 4 NO 2 ), Ammonium perchlorate (NH 4 ClO 4 ), Ammonium Sulfite (NH 4 ) 2 SO 3 ), Ammonium carbonate (NH 4 ) 2 CO 3 ), Diammonium molybdate (NH 4 ) 2 MoO 4 ), Ammonium phosphate (NH 4 ) 2 PO 4 ), Ammonium Permanganate (NH 4 MnO 4 ), ammonium dichromate (NH 4 Mn
  • ammonium hexafluorophosphate (Ammonium hexafluorophosphate, NH 4 PF 6 ) may be included.
  • Ammonium hexafluorophosphate NH 4 PF 6
  • it is not limited thereto.
  • FIG. 4 is a cyclic voltammetry graph comparing catalytic activity results according to the type of lipoelectrolyte of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • the catalytic activity varies depending on the type of supporting electrolyte and the gas atmosphere.
  • metal amide-based compounds and ammonium salt-based compounds such as NaNH 2 and NH 4 PF 6 have excellent performance. It can be seen that the implementation of
  • the non-noble metal-based catalyst is, for example, graphene, carbon black, graphite, acetylene black, Denka black, Katchen black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn. , Carbon nanorings, carbon nanowires and fullerenes (C 60 ) It may be supported on any one of the carbon-based support selected from the group consisting of. However, it is not necessarily limited to these, and may include all as long as it can be used as a carbon-based support in the art.
  • the carbon-based support is a support having a large specific surface area and high crystallinity, and may include a structure such as a sphere, a rod, a tube, a horn, or a plate, for example. However, it is not necessarily limited to this structure and may include any structure that can be used as a catalyst support in the art for the carbon-based support.
  • the carbon-based support may be a porous support.
  • the carbon-based support may be a porous carbon material having a large specific surface area and pores.
  • the carbon-based support may be, for example, mesoporous, and part or all of the support having various shapes may be porous.
  • the non-noble metal catalyst is selected from the group consisting of, for example, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb and Ru Any one or more may be included.
  • the non-noble metal-based catalyst may include, for example, Ti, V, Ni, W, or Nb. However, as long as it can implement the object of the present invention, it is not limited thereto.
  • the non-noble metal-based catalyst is included in the working electrode together with platinum applied on the surface of the catalyst, and through this, the activation energy required for the ammonia removal reaction is lowered, so that the catalytic reaction proceeds quickly and exhibits improved activity.
  • the platinum may be applied on the surface of the non-noble metal-based catalyst in an amount of 1.5 to 2.5 nm. Preferably, 1.7 to 2.3 nm may be applied.
  • the coating amount of platinum is less than the coating range, platinum is not properly coated on the surface of the non-noble metal catalyst, making it difficult to realize the catalytic activity of the organic-based electrochemical system by the interaction between the catalyst and the support.
  • the amount of platinum applied to the surface of the non-noble metal catalyst increases and the cost is excessive, it is difficult to solve the problems of the conventional PSA method, which was expensive for maintenance and management.
  • the electrochemical system can be used by, for example, voltammetry, amperometry, potentiometry, conductometry, coulometry and electrogravimetry.
  • cyclic voltammetry may be measured in the voltammetry method.
  • the oxidation peak or reduction peak value derived by the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) may be detected and compared and analyzed.
  • the measurement of the cyclic voltammetry (CV) may be measured after heating for activation of hydrogen.
  • the cyclic voltammetry signal may be measured by purging at least one gas selected from the group consisting of argon, hydrogen, and oxygen.
  • the organic-based electrochemical system for removing unreacted ammonia shows improved activity as the catalytic reaction proceeds quickly by lowering the activation energy required for the ammonia removal reaction through the organic-based electrochemical system when ammonia hydrogen is extracted.
  • it includes a working electrode, a counter electrode, a reference electrode, an electrolyte connecting them and a supporting electrolyte, and the working electrode includes a non-noble metal-based catalyst and platinum applied on its surface, thereby using a noble metal as an interaction between the catalyst and the support. It is characterized in that it can solve the problems of the conventional PSA method, which was high in maintenance and additional costs, by realizing an economic effect superior to that of a catalyst deposited with about 15 times more precious metal platinum.
  • RDE Rotating Disk Electrode
  • Ag/AgCl as the reference electrode
  • a graphite rod as the counter electrode
  • dimethyl formamide DMF
  • an ammonium compound (Ammonium salt) and an amide compound (Metal amide) are used as supporting electrolytes, and at this time, the working electrode is Ti, which is a non-noble metal catalyst supported on a carbon-based support, and an island-and-type method on the Ti surface
  • An organic-based simulated electrochemical three-electrode system for removing unreacted ammonia including about 2 nm of Pt was completed.
  • Example 2 an electrochemical system was completed in the same manner as in Example 1, except that V was used instead of Ti as a non-metallic catalyst.
  • Example 3 an electrochemical system was completed in the same manner as in Example 1, except that Nb was used instead of Ti as a non-metallic catalyst.
  • Example 4 the electrochemical system was completed in the same manner as in Example 1, except that W was used instead of Ti as a non-metallic catalyst.
  • Example 5 an electrochemical system was completed in the same manner as in Example 1, except that Ni was used instead of Ti as a non-metallic catalyst.
  • Comparative Example 1 an electrochemical system was completed in the same manner as in Example 1, except that Pd was used instead of Pt as a material applied to the non-metallic catalyst.
  • Comparative Example 2 an electrochemical system was completed in the same manner as in Example 1, except that Ir was used instead of Pt as a material applied to the non-metallic catalyst.
  • Comparative Example 3 an electrochemical system was completed in the same manner as in Example 1, except that Ru was used instead of Pt as a material applied to the non-metallic catalyst.
  • Comparative Example 4 an electrochemical system was completed in the same manner as in Example 1, except that Au was used instead of Pt as a material applied to the non-metallic catalyst.
  • Comparative Example 5 an electrochemical system was completed in the same manner as in Example 1, except that Ni was used instead of Pt as a material applied to the non-metallic catalyst.
  • Comparative Example 6 an electrochemical system was completed in the same manner as in Example 1, except that Ag was used instead of Pt as a material applied to the non-metallic catalyst.
  • Comparative Example 7 the electrochemical system was completed in the same manner as in Example 1, except that 30 nm of platinum was applied to the GC instead of Ti as a non-metallic catalyst.
  • Comparative Example 8 the electrochemical system was completed in the same manner as in Example 1, except that 2 nm of platinum was applied to the GC instead of Ti as a non-metallic catalyst.
  • the catalyst was evaluated by the following method.
  • a three-electrode cell for RDE experiment was constructed using the fabricated catalyst, and the polarization curve of Ammonia Reduction Reaction was measured under normal pressure conditions at 80 °C. The potential at a constant current density (10 mA/cm 2 ) was read from the polarization curve obtained at this time.
  • Example 1 sample name overvoltage Example 1 (Pt 2nm on Ti) 0.253V Example 2 (Pt 2nm on V) 0.26V Example 3 (Pt 2 nm on Nb) 0.268V Example 4 (Pt 2nm on W) 0.276V Example 5 (Pt 2nm on Ni) 0.28V Comparative Example 7 (Pt 30nm on GC) 0.26V Comparative Example 8 (Pt 2 nm on GC) 0.40V
  • 5 is a cyclic voltammetry graph comparing the activity of noble metal-based substances in an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
  • FIG. 6 is a bar graph comparing non-noble metal-based catalytic activity of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention
  • FIG. 7 is a cyclic voltammetry graph related thereto.
  • the organic-based electrochemical system for removing unreacted ammonia according to the present invention through the physical property evaluation experiment example is the activation energy required for the ammonia removal reaction through the organic-based electrochemical system when extracting ammonia hydrogen compared to the conventional invention. It lowers the catalytic reaction and shows improved activity.
  • it includes a working electrode, a counter electrode, a reference electrode, an electrolyte connecting them, and a supporting electrolyte, and the working electrode includes a non-noble metal-based catalyst and platinum applied on its surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to an organic-based electrochemical system for removing unreacted ammonia. More specifically, the present invention lowers, during extraction of hydrogen from ammonia, the activation energy required for an ammonia removal reaction through an organic-based electrochemical system, so that a catalytic reaction rapidly proceeds, and thus improved activity is exhibited. The present invention comprises a working electrode, a counter electrode, and a reference electrode, and an electrolyte and a support electrolyte, which connect same, and the working electrode comprises a non-noble metal-based catalyst and platinum applied to the surface thereof so that the use of noble metals is reduced by the interaction between a catalyst and a support, and thus an economic effect superior to that of a catalyst having, deposited thereon, approximately 15 times more platinum, which is a noble metal, is implemented, and the problem of high maintenance and incidental expenses of a conventional PSA method can be solved.

Description

유기계 기반의 미반응 암모니아 제거용 전기화학시스템Organic based electrochemical system for removing unreacted ammonia
본 발명은 유기계 기반의 미반응 암모니아 제거용 전기화학시스템에 관한 것이다. 보다 구체적으로, 본 발명은 암모니아 수소 추출시 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타내고, 촉매와 지지체간 상호작용으로 귀금속 사용이 절감되어 귀금속 백금을 약 15배 이상 증착한 촉매보다 우수한 경제적 효과를 구현하여 종래 PSA 방식의 문제점을 해결할 수 있는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템에 관한 것이다.The present invention relates to an organic-based electrochemical system for removing unreacted ammonia. More specifically, the present invention lowers the activation energy required for the ammonia removal reaction during ammonia hydrogen extraction, so that the catalytic reaction proceeds quickly and shows improved activity, and the use of precious metals is reduced due to the interaction between the catalyst and the support, so that the precious metal platinum is about 15 times or more It relates to an organic-based electrochemical system for removing unreacted ammonia that can solve the problems of the conventional PSA method by realizing better economic effects than deposited catalysts.
연료전지는 연료의 산화 환원에 의해 발생하는 화학에너지를 전기에너지로 변환시키는 장치로 대용량 수소 추출이 가능한 암모니아 열 분해법이 사용된다. 그러나, 수소 추출시 발생되는 미반응 암모니아는 연료전지의 전극 및 분리막 열화를 유발하여 암모니아 제거 공정이 추가로 필요한 실정이다. A fuel cell is a device that converts chemical energy generated by oxidation-reduction of fuel into electrical energy. However, unreacted ammonia generated during hydrogen extraction causes deterioration of the electrode and separator of the fuel cell, and thus an ammonia removal process is additionally required.
이때, 수소 정화를 위해 가스 종의 분자 특성 및 흡착제 물질에 대한 친화성에 따라 가스 혼합물로부터 가스 종을 분리하는 압력순환흡착(PSA) 기술이 널리 사용되고 있다. 그러나, 이는 대용량 플랜트로 암모니아를 선택적으로 회수 제거하기 때문에 수만 Nm3/h 규모의 대형장치를 사용하는 등 유지 및 부대비용이 큰 문제가 있다.At this time, pressure swing adsorption (PSA) technology is widely used to separate gas species from a gas mixture according to molecular characteristics of the gas species and affinity for an adsorbent material for hydrogen purification. However, since ammonia is selectively recovered and removed as a large-capacity plant, there is a problem of high maintenance and additional costs, such as the use of a large-scale device with a scale of tens of thousands of Nm 3 /h.
따라서, 기존 PSA에서의 압력순환 방식이 아닌 Cathode, Anode, Diaphragm 구성을 통한 전기화학적 Cell에 의해 암모니아를 다른 화합물로 전환시키는 전기화학시스템에 의할 경우, 이러한 문제가 해결될 수 있다.Therefore, this problem can be solved by an electrochemical system that converts ammonia into other compounds by an electrochemical cell through a cathode, anode, and diaphragm configuration, rather than a pressure circulation method in the existing PSA.
그러나, 현재 사용되는 미반응 암모니아 제거용 전기화학 시스템은 대부분 수계 시스템 방식으로, 이 경우 경쟁반응인 HOR(Hydrogen Oxidation Reaction)에 의해 적용이 불가능한 단점이 있다. However, currently used electrochemical systems for removing unreacted ammonia are mostly water-based systems, and in this case, there is a disadvantage in that they cannot be applied due to a competitive reaction, HOR (Hydrogen Oxidation Reaction).
따라서, 근래에 급증하는 저비용, 고활성 촉매 및 연료전지에 대한 니즈를 충족하는 기술개발이 절실한 실정으로 KR10-1150843, KR10-1763382 등이 그러한 일 예이나, 아직까지 전술한 바를 해결하는 개시는 찾아볼 수 없다.Therefore, there is an urgent need for technology development to meet the needs for low-cost, highly active catalysts and fuel cells, which have rapidly increased in recent years. can't see
이에 본 발명자는 상기 문제점을 개선하기 위해 예의 노력을 계속하던 중, 작동전극, 대향전극, 기준전극 및 이를 연결하는 전해질과 지지전해질을 포함하고 상기 작동전극은 비귀금속계 촉매와 그 표면에 도포된 백금을 포함함으로써, 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타내고, 촉매와 지지체간 상호작용으로 귀금속 사용이 절감되어 귀금속 백금을 약 15배 이상 증착한 촉매보다 우수한 경제적 효과를 구현하여 종래 PSA 방식의 문제점을 해결할 수 있는 본 발명을 완성하기에 이르렀다.Accordingly, while the inventors of the present invention continue to make efforts to improve the above problems, the working electrode includes a working electrode, a counter electrode, a reference electrode, an electrolyte connecting them and a supporting electrolyte, and the working electrode is a non-noble metal-based catalyst and applied to the surface thereof. By including platinum, the activation energy required for the ammonia removal reaction is lowered, so the catalytic reaction proceeds quickly, resulting in improved activity. The present invention, which can solve the problems of the conventional PSA method by implementing the effect, has been completed.
(선행기술문헌)(Prior art literature)
(특허문헌)(patent literature)
선행특허 1 : 한국등록특허 제10-1150843호Prior Patent 1 : Korea Patent Registration No. 10-1150843
선행특허 2 : 한국등록특허 제10-1763382호Prior Patent 2: Korea Patent Registration No. 10-1763382
본 발명의 목적은 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타내는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템를 제공하는 것이다.An object of the present invention is to provide an organic-based electrochemical system for removing unreacted ammonia that exhibits improved activity by rapidly progressing the catalytic reaction by lowering the activation energy required for the ammonia removal reaction.
본 발명의 다른 목적은 촉매와 지지체간 상호작용으로 귀금속 사용이 절감되어 귀금속 백금을 약 15배 이상 증착한 촉매보다 우수한 경제적 효과를 구현하여 유지관리 및 부대비용이 컸던 종래 PSA 방식의 문제점을 해결할 수 있는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템을 제공하는 것이다.Another object of the present invention is to reduce the use of precious metals due to the interaction between the catalyst and the support, thereby realizing an economic effect superior to that of a catalyst deposited with about 15 times more precious metal platinum, thereby solving the problems of the conventional PSA method, which was expensive for maintenance and additional costs. It is to provide an organic-based electrochemical system for removing unreacted ammonia.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다. The above and other objects of the present invention can all be achieved by the present invention described below.
본 발명의 하나의 관점은 작동전극(Working Electrode), 대향전극(Counter Electrode), 기준전극(Reference Electrode) 및 상기 작동전극, 대향전극 및 기준전극을 연결하는 전해질(Electroyte)과 지지전해질(Suppoorting Electrode)을 포함하고, 상기 작동전극은 비귀금속계 촉매 및 상기 비귀금속계 촉매 표면에 도포된 백금을 포함하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템에 관한 것이다. One aspect of the present invention is a working electrode, a counter electrode, a reference electrode, and an electrolyte and a supporting electrolyte connecting the working electrode, the counter electrode, and the reference electrode. ), wherein the working electrode relates to an organic-based electrochemical system for removing unreacted ammonia including a non-noble metal-based catalyst and platinum applied on the surface of the non-noble metal-based catalyst.
일 구체예에서, 상기 작동전극은 회전원판전극(Rotating Disk Electrorode), 상기 대향전극은 그래파이트 로드(Graphite rod) 및 상기 기준전극은 Ag/AgCl을 포함할 수 있다. In one embodiment, the working electrode may include a rotating disk electrode, the counter electrode may include a graphite rod, and the reference electrode may include Ag/AgCl.
일 구체예에서, 상기 전해질은 1-메틸-2-피롤리돈(1-methyl-2-pyrrolidone: NMP), 아세톤(acetone), 에탄올(ethanol),n-프로판올(n-propanol),n-부탄올(n-butanol),n-헥산(n-hexane), 사이클로헥산올(cyclohexanol), 아세틱 산(acetic acid), 에틸아세테이트(ethyl acetate), 디에틸에테르(diethyl ether), 디메틸포름아미드(dimethyl formamide: DMF), 디메틸아세트아미드(dimethylacetamide: DMAc), 다이옥산(dioxane), 테트라하이드로퓨란(tetrahydrofuran: THF), 디메틸술폭사이드(dimethyl sulfoxide: DMSO), 사이클로헥산(cyclohexane), 벤젠(benzene), 톨루엔(toluene), 크실렌(xylene), 물(water) 및 이들의 유도체 또는 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다.In one embodiment, the electrolyte is 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n- Butanol (n-butanol), n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethylformamide ( dimethyl formamide: DMF), dimethylacetamide: DMAc, dioxane, tetrahydrofuran: THF, dimethyl sulfoxide: DMSO, cyclohexane, benzene, It may include at least one selected from the group consisting of toluene, xylene, water, and derivatives or mixtures thereof.
일 구체예에서, 상기 지지전해질은 아미드계 또는 암모늄계 화합물을 포함할 수 있다. In one embodiment, the supporting electrolyte may include an amide-based or ammonium-based compound.
일 구체예에서, 상기 아미드계 화합물은 멜라민(2-amino-4,6-dichlorotriazine), 염화시아눌(cyanuric chloride), 시안아미드화칼슘(calcium cyanamide), 나트륨아미드(sodium amide), 멜렘(2,5,8-triamino-tri-s-triazine), 시안아미드(cyanamide), 2시안2아미드(dicyandiamide) 및 이들의 유도체 또는 혼합물로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.In one embodiment, the amide-based compound is melamine (2-amino-4,6-dichlorotriazine), cyanuric chloride, calcium cyanamide, sodium amide, melem (2 ,5,8-triamino-tri-s-triazine), cyanamide, dicyandiamide, and derivatives or mixtures thereof.
일 구체예에서, 상기 암모늄계 화합물은 플루오린화 암모늄(Ammonium fluoride, NH4F), 플루오린붕소산 암모늄(Ammonium fluoborate, NH4BF4), 초산 암모늄(Ammonium Acetate, CH3COONH4), 암모늄 설파메이트(Ammonium sulfamate, NH4SO3NH2), 암모늄 헥사플루오르포스페이트(Ammonium hexafluorophosphate, NH4PF6), 암모늄 헥사플루오르아미네이트(Ammonium hexafluoroaluminate, (NH4)3AlF6), 아질산 암모늄(Ammonium nitrite, NH4NO2), 암모늄 퍼클로레이트(Ammonium perchlorate, NH4ClO4), 암모늄 설파이트(Ammonium Sulfite, (NH4)2SO3), 탄산 암모늄(ammonium carbonate, (NH4)2CO3), 디암모늄 몰리브데이트(Diammonium molybdate, (NH4)2MoO4), 암모늄 포스페이트(Ammonium phosphate, (NH4)2PO4), 암모늄 퍼망가네이트(Ammonium Permanganate, NH4MnO4), 암모늄 디크로메이트(Ammonium dichromate, (NH4)2Cr2O7), 황산 암모늄(Ammonium sulfate, NH4SO4), 암모늄 퍼술페이트(Ammonium persulfate, (NH4)2S2O8) 및 암모늄 헥사클로로플라티네이트(Ammonium hexachloroplatinate, (NH4)PtCl6)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. In one embodiment, the ammonium compound is ammonium fluoride (NH 4 F), ammonium fluoborate (NH 4 BF 4 ), ammonium acetate (Ammonium Acetate, CH 3 COONH 4 ), ammonium Ammonium sulfamate (NH 4 SO 3 NH 2 ), Ammonium hexafluorophosphate (NH 4 PF 6 ), Ammonium hexafluoroaluminate ((NH 4 ) 3 AlF 6 ), Ammonium nitrite nitrite, NH 4 NO 2 ), Ammonium perchlorate (NH 4 ClO 4 ), Ammonium Sulfite (NH 4 ) 2 SO 3 ), Ammonium carbonate (NH 4 ) 2 CO 3 , Diammonium molybdate (NH 4 ) 2 MoO 4 ), ammonium phosphate (Ammonium phosphate, (NH 4 ) 2 PO 4 ), ammonium permanganate (NH 4 MnO 4 ), ammonium di Chromate (Ammonium dichromate (NH 4 ) 2 Cr 2 O 7 ), Ammonium sulfate (NH 4 SO 4 ), Ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) and Ammonium hexachloroflame At least one selected from the group consisting of tinate (Ammonium hexachloroplatinate, (NH 4 )PtCl 6 ) may be included.
일 구체예에서, 상기 비귀금속계 촉매는 그래핀, 카본 블랙, 흑연, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어 및 플러렌(C60)으로 이루어진 군으로부터 선택된 어느 하나의 탄소계 지지체에 담지될 수 있다. In one embodiment, the non-noble metal-based catalyst is graphene, carbon black, graphite, acetylene black, Denka black, Catcheon black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon nanoring , Carbon nanowires and fullerene (C 60 ) It may be supported on any one of the carbon-based support selected from the group consisting of.
일 구체예에서, 상기 비귀금속계 촉매는 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb 및 Ru으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. In one embodiment, the non-noble metal-based catalyst is any one or more selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb and Ru. can include
일 구체예에서, 상기 백금은 상기 비귀금속계 촉매 표면에 1.5 내지 2.5nm 도포할 수 있다. In one embodiment, the platinum may be applied on the surface of the non-noble metal-based catalyst in an amount of 1.5 to 2.5 nm.
일 구체예에서, 상기 전기화학시스템은 전압전류법(voltammetry), 전류법(amperometry), 전위차법(potentiometry), 전도도법(conductometry), 전기량법(coulometry) 및 전해무게분석법(electrogravimetry)으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 전기화학적 검출신호를 측정할 수 있다. In one embodiment, the electrochemical system is a group consisting of voltammetry, amperometry, potentiometry, conductometry, coulometry and electrogravimetry. At least one electrochemical detection signal selected from may be measured.
본 발명에 의한 유기계 기반의 미반응 암모니아 제거용 전기화학시스템은 암모니아 수소 추출시 유기계 기반의 전기화학시스템을 통해 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타내고, 촉매와 지지체간 상호작용으로 귀금속 사용이 절감되어 귀금속 백금을 약 15배 이상 증착한 촉매보다 우수한 경제적 효과를 구현하여 유지관리 및 부대비용이 컸던 종래 PSA 방식의 문제점을 해결할 수 있는 장점이 있다.The organic-based electrochemical system for removing unreacted ammonia according to the present invention lowers the activation energy required for the ammonia removal reaction through the organic-based electrochemical system during ammonia hydrogen extraction, so that the catalytic reaction proceeds quickly and exhibits improved activity. It has the advantage of solving the problems of the conventional PSA method, which had high maintenance and additional costs, by realizing superior economic effects than catalysts deposited with about 15 times more precious metal platinum by reducing the use of precious metals due to the interaction between supports.
도 1은 종래 연료전지에서의 전기 발생원리 및 수계 전기화학시스템의 문제점을 나타낸 개략도이다.1 is a schematic diagram showing the principle of electricity generation in a conventional fuel cell and problems of an aqueous electrochemical system.
도 2는 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템을 나타낸 사진이다. 2 is a photograph showing an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 3은 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 전해질 종류에 따른 촉매 활성 결과를 비교한 순환전압전류 그래프이다.3 is a cyclic voltammetry graph comparing catalytic activity results according to electrolyte types of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 4는 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 지질전해질 종류에 따른 촉매 활성 결과를 비교한 순환전압전류 그래프이다. 4 is a cyclic voltammetry graph comparing catalytic activity results according to the type of lipoelectrolyte of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 5는 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 귀금속계 물질 활성을 비교한 순환전압전류 그래프이다. 5 is a cyclic voltammetry graph comparing the activity of noble metal-based substances in an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 6은 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 비귀금속계 촉매 활성을 비교한 막대 그래프이다.6 is a bar graph comparing non-noble metal-based catalytic activity of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 7은 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 비귀금속계 촉매 활성을 비교한 순환전압전류 그래프이다.7 is a cyclic voltammetry graph comparing non-noble metal-based catalytic activity of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
이하, 첨부한 도면들을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명하고자 한다. 그러나 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. Hereinafter, embodiments of the present application will be described in detail with reference to the accompanying drawings. However, the technology disclosed in this application is not limited to the embodiments described herein and may be embodied in other forms. However, the embodiments introduced herein are provided so that the disclosed content can be thorough and complete and the spirit of the present application can be sufficiently conveyed to those skilled in the art. In the drawing, in order to clearly express the components of each device, the size of the components, such as width or thickness, is shown somewhat enlarged.
또한, 설명의 편의를 위해 구성요소의 일부만을 도시하기도 하였으나, 당업자라면 구성요소 나머지 부분에 대하여도 용이하게 파악할 수 있을 것이다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위 또는 아래에 위치하는 것으로 언급될 경우, 이는 상기 일 요소가 다른 요소 위 또는 아래에 바로 위치하거나 또는 그들 요소들 사이에 추가적 요소가 개재될 수 있다는 의미를 모두 포함한다.In addition, although only some of the components are shown for convenience of explanation, those skilled in the art will be able to easily grasp the remaining components. When describing the drawings as a whole, it is described from the observer's point of view, and when one element is referred to as being located above or below another element, this means that the one element is located directly above or below another element, or an additional element is interposed between them. It includes all possible meanings.
또한, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 기술적 사상을 벗어나지 않는 범위 내에서 본 출원의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고, 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다. In addition, those skilled in the art will be able to implement the spirit of the present application in various other forms without departing from the technical spirit of the present application. Also, like reference numerals in a plurality of drawings denote substantially the same elements.
또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함하는 것으로 이해되어야 하고, 포함하다 또는 가지다 등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, singular expressions should be understood to include plural expressions, unless the context clearly dictates otherwise, and terms such as include or have describe features, numbers, steps, operations, components, parts, or combinations thereof. It should be understood that it is intended to specify that one exists, but does not preclude the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
또한, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In addition, in performing a method or manufacturing method, each process constituting the method may occur in a different order from the specified order unless a specific order is clearly described in context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
이하, 본 발명에 대하여 더욱 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
미반응 암모니아 제거용 전기화학시스템Electrochemical system for removing unreacted ammonia
본 발명의 하나의 관점인 미반응 암모니아 제거용 전기화학시스템은 작동전극(Working Electrode), 대향전극(Counter Electrode), 기준전극(Reference Electrode) 및 상기 작동전극, 대향전극 및 기준전극을 연결하는 전해질(Electroyte)과 지지전해질(Suppoorting Electrode)을 포함하고, 상기 작동전극은 비귀금속계 촉매 및 상기 비귀금속계 촉매 표면에 도포된 백금을 포함한다. An electrochemical system for removing unreacted ammonia, which is one aspect of the present invention, includes a working electrode, a counter electrode, a reference electrode, and an electrolyte connecting the working electrode, the counter electrode, and the reference electrode. (Electroyte) and a supporting electrolyte (Supporting Electrode), and the working electrode includes a non-noble metal-based catalyst and platinum coated on the surface of the non-noble metal-based catalyst.
도 1은 종래 연료전지에서의 전기 발생원리 및 수계 전기화학시스템의 문제점을 나타낸 개략도이다.1 is a schematic diagram showing the principle of electricity generation in a conventional fuel cell and problems of an aqueous electrochemical system.
도 1을 참조하면, 연료전지에서 막전극 접합체는 전기를 발생시키는 기본 단위가 되는 부분으로 수소 이온의 이동을 위한 전해질막, 전해질막 양면에 형성되는 애노드 전극 및 캐소드 전극으로 구성된다. 상기 애노드 전극에서는 연료의 산화반응이 일어나 수소 이온 및 전자가 발생하고, 상기 수소 이온은 전해질 막을 통해 캐소드 전극으로 이동하며, 상기 캐소드 전극에서는 산소와 전해질막을 통해 전달된 수소 이온과 전자가 반응하여 물이 생성되고, 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다. 이때, 상기 연료전지에서 수소 추출시 발생되는 미반응 암모니아는 연료전지의 전극 및 분리막 열화를 유발하여 암모니아 제거 공정이 추가로 필요하고, 이를 Cathode, Anode, Diaphragm 구성을 통한 전기화학적 Cell에 의해 암모니아를 다른 화합물로 전환시키는 전기화학시스템에 의할 수 있다(A). 그러나, 현재 대부분 수계 방식인 미반응 암모니아 제거용 전기화학시스템은 경쟁반응인 HOR(Hydrogen Oxidation Reaction)에 의해 적용이 어려운 문제가 있다(B). Referring to FIG. 1, a membrane electrode assembly in a fuel cell is a basic unit for generating electricity and is composed of an electrolyte membrane for the movement of hydrogen ions, an anode electrode formed on both sides of the electrolyte membrane, and a cathode electrode. At the anode electrode, an oxidation reaction of fuel occurs to generate hydrogen ions and electrons, the hydrogen ions move to the cathode electrode through an electrolyte membrane, and in the cathode electrode, oxygen and hydrogen ions transferred through the electrolyte membrane react with electrons to form water is generated, and the movement of electrons occurs in the external circuit by this reaction. At this time, unreacted ammonia generated during hydrogen extraction in the fuel cell causes deterioration of the electrode and separator of the fuel cell, so an ammonia removal process is additionally required, and ammonia is removed by an electrochemical cell through the configuration of a cathode, anode, and diaphragm. It can be by an electrochemical system that converts it into other compounds (A). However, most of the electrochemical systems for removing unreacted ammonia, which are currently water-based, have a problem in application due to the competing reaction HOR (Hydrogen Oxidation Reaction) (B).
도 2는 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템을 나타낸 사진이다. 2 is a photograph showing an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 구체예에 의한 유기계 기반의 미반응 암모니아 제거용 전기화학시스템과 같이, 작동전극(Working Electrode), 대향전극(Counter Electrode), 기준전극(Reference Electrode) 및 상기 작동전극, 대향전극 및 1020180074020기준전극을 연결하는 전해질(Electroyte)과 지지전해질(Suppoorting Electrode)을 포함하고, 상기 작동전극은 비귀금속계 촉매 및 상기 비귀금속계 촉매 표면에 도포된 백금을 포함할 경우, 캐소드 반응에서 암모니아가 적합하게 제거되어 최적의 촉매 활성을 지닌 유기계 기반의 전기화학 시스템을 구현할 수 있다. Referring to FIG. 2, like the organic-based electrochemical system for removing unreacted ammonia according to one embodiment of the present invention, a working electrode, a counter electrode, a reference electrode and the Including an electrolyte and a supporting electrolyte connecting a working electrode, a counter electrode and a 1020180074020 reference electrode, wherein the working electrode includes a non-noble metal catalyst and platinum applied on the surface of the non-noble metal catalyst , it is possible to implement an organic-based electrochemical system with optimal catalytic activity by properly removing ammonia in the cathode reaction.
일 구체예에서, 상기 작동전극(Working Electrode)은 분석하고자 하는 금속이온의 전기화학 반응이 일어나는 전극으로 전기화학적 반응성이 떨어지는 Glassy carbon 위에 전극 촉매를 올려서 분석할 수 있다. 또한, 상기 작동전극은 비귀금속계 촉매 및 상기 비귀금속계 촉매 표면에 도포된 백금을 포함하여고, 이를통해 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타낼 수 있다. 또한, 상기 작동전극은 예를들어, 회전원판전극(Rotating Disk Electrorode)을 포함할 수 있다. 그러나, 본 발명의 목적을 구현할 수 있는 것이라면 그 종류에 이에 제한되지 않는다. In one embodiment, the working electrode is an electrode where an electrochemical reaction of metal ions to be analyzed occurs, and can be analyzed by placing an electrode catalyst on glassy carbon having low electrochemical reactivity. In addition, the working electrode includes a non-noble metal-based catalyst and platinum applied on the surface of the non-noble metal-based catalyst, and through this, the activation energy required for the ammonia removal reaction is lowered, so that the catalytic reaction proceeds rapidly and exhibits improved activity. In addition, the working electrode may include, for example, a rotating disk electrode. However, as long as it can implement the object of the present invention, it is not limited thereto.
일 구체예에서, 상기 대향전극(Counter Electrode)은 작동전극의 전류의 흐름을 원활히 하고 반응을 완결하기 위해 사용하는 전극으로 작동전극이 산화가 일어날 경우 대향전극은 환원 반응이, 작동전극이 환원 반응이 일어날 경우 대향전극은 산화 반응이 일어날 수 있다. 예를들어, 상기 대향전극은 넓은 표면적으로 인해 대향전극 성능 구현이 우수한 그래파이트 로드(Graphite rod)를 포함할 수 있다. 그러나, 본 발명의 목적을 구현할 수 있는 것이라면 그 종류에 이에 제한되지 않는다.In one embodiment, the counter electrode is an electrode used to facilitate the current flow of the working electrode and complete the reaction. When oxidation occurs in the working electrode, the counter electrode undergoes a reduction reaction and the working electrode undergoes a reduction reaction. When this occurs, an oxidation reaction may occur in the counter electrode. For example, the counter electrode may include a graphite rod having excellent performance of the counter electrode due to its large surface area. However, as long as it can implement the object of the present invention, it is not limited thereto.
일 구체예에서, 상기 기준전극(Reference Electrode)은 작동전극의 전위를 제어 측정하는 기준이 되는 것으로 작동전극의 전압을 절대적 수치로 측정하기 위해 사용되며 전기화학 반응시 전압이 크게 변하지 않는 물질로 이루어질 수 있다. 예를들어, 상기 기준전극은 Ag/AgCl 또는 Ag/Ag+ 등을 포함할 수 있다. In one embodiment, the reference electrode is a standard for controlling and measuring the potential of the working electrode, is used to measure the voltage of the working electrode as an absolute value, and is made of a material in which the voltage does not change significantly during the electrochemical reaction. can For example, the reference electrode may include Ag/AgCl or Ag/Ag + .
일 구체예에서, 상기 전해질(Electroryte)은 상기 작동전극, 대향전극 및 기준전극을 연결하는 것으로 용해도, 전류밀도 등이 우수한 것을 포함할 수 있다. 예를들어, 상기 전해질은 1-메틸-2-피롤리돈(1-methyl-2-pyrrolidone: NMP), 아세톤(acetone), 에탄올(ethanol),n-프로판올(n-propanol),n-부탄올(n-butanol),n-헥산(n-hexane), 사이클로헥산올(cyclohexanol), 아세틱 산(acetic acid), 에틸아세테이트(ethyl acetate), 디에틸에테르(diethyl ether), 디메틸포름아미드(dimethyl formamide: DMF), 디메틸아세트아미드(dimethylacetamide: DMAc), 다이옥산(dioxane), 테트라하이드로퓨란(tetrahydrofuran: THF), 디메틸술폭사이드(dimethyl sulfoxide: DMSO), 사이클로헥산(cyclohexane), 벤젠(benzene), 톨루엔(toluene), 크실렌(xylene), 물(water) 및 이들의 유도체 또는 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다. 바람직하게는 디메틸포름아미드(dimethyl formamide: DMF)를 포함할 수 있다. 그러나, 본 발명의 목적을 구현할 수 있는 것이라면 그 종류에 이에 제한되지 않는다.In one embodiment, the electrolyte connects the working electrode, the counter electrode, and the reference electrode, and may include one having excellent solubility, current density, and the like. For example, the electrolyte is 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n-butanol (n-butanol), n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethylformamide formamide: DMF), dimethylacetamide: DMAc, dioxane, tetrahydrofuran: THF, dimethyl sulfoxide: DMSO, cyclohexane, benzene, toluene (toluene), xylene (xylene), water (water) and any one or more selected from the group consisting of derivatives or mixtures thereof. Preferably, dimethyl formamide (DMF) may be included. However, as long as it can implement the object of the present invention, it is not limited thereto.
도 3은 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 전해질 종류에 따른 촉매 활성 결과를 비교한 순환전압전류 그래프이다.3 is a cyclic voltammetry graph comparing catalytic activity results according to electrolyte types of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 3을 참조하면, 대향전극과 지지전해질을 고정 후 유기계 기반의 물질을 스크리닝하여, 전해질 종류에 따라 촉매 활성 및 용해도 등이 달라지고 특히, 유기계 기반의 DMF가 우수한 특성을 구현함을 알 수 있다.Referring to FIG. 3, after fixing the counter electrode and the supporting electrolyte, the organic-based material is screened, and the catalytic activity and solubility vary depending on the type of electrolyte, and in particular, it can be seen that the organic-based DMF has excellent characteristics. .
일 구체예에서, 상기 지지전해질(Suppoorting Electrode)은 전해질로 유기용매를 사용하기 때문에 부족한 전도도를 채워주기 위하여 첨가하는 것으로 예를들어, 아미드계 화합물 또는 암모늄계 화합물을 포함할 수 있다.In one embodiment, the supporting electrolyte is added to compensate for insufficient conductivity because an organic solvent is used as an electrolyte, and may include, for example, an amide-based compound or an ammonium-based compound.
일 구체예에서, 상기 아미드계 화합물은 예를들어, 멜라민(2-amino-4,6-dichlorotriazine), 염화시아눌(cyanuric chloride), 시안아미드화칼슘(calcium cyanamide), 나트륨아미드(sodium amide), 멜렘(2,5,8-triamino-tri-s-triazine), 시안아미드(cyanamide), 2시안2아미드(dicyandiamide) 및 이들의 유도체 또는 혼합물로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 바람직하게는 나트륨아미드(sodium amide, NaNH2)를 포함할 수 있다. 그러나, 본 발명의 목적을 구현할 수 있는 것이라면 그 종류에 이에 제한되지 않는다. In one embodiment, the amide-based compound is, for example, melamine (2-amino-4,6-dichlorotriazine), cyanuric chloride (cyanuric chloride), calcium cyanamide (calcium cyanamide), sodium amide (sodium amide) , melem (2,5,8-triamino-tri-s-triazine), cyanamide, dicyandiamide, and any one or more selected from the group consisting of derivatives or mixtures thereof. . Preferably, sodium amide (NaNH 2 ) may be included. However, as long as it can implement the object of the present invention, it is not limited thereto.
일 구체예에서, 상기 암모늄계 화합물은 예를들어, 플루오린화 암모늄(Ammonium fluoride, NH4F), 플루오린붕소산 암모늄(Ammonium fluoborate, NH4BF4), 초산 암모늄(Ammonium Acetate, CH3COONH4), 암모늄 설파메이트(Ammonium sulfamate, NH4SO3NH2), 암모늄 헥사플루오르포스페이트(Ammonium hexafluorophosphate, NH4PF6), 암모늄 헥사플루오르아미네이트(Ammonium hexafluoroaluminate, (NH4)3AlF6), 아질산 암모늄(Ammonium nitrite, NH4NO2), 암모늄 퍼클로레이트(Ammonium perchlorate, NH4ClO4), 암모늄 설파이트(Ammonium Sulfite, (NH4)2SO3), 탄산 암모늄(ammonium carbonate, (NH4)2CO3), 디암모늄 몰리브데이트(Diammonium molybdate, (NH4)2MoO4), 암모늄 포스페이트(Ammonium phosphate, (NH4)2PO4), 암모늄 퍼망가네이트(Ammonium Permanganate, NH4MnO4), 암모늄 디크로메이트(Ammonium dichromate, (NH4)2Cr2O7), 황산 암모늄(Ammonium sulfate, NH4SO4), 암모늄 퍼술페이트(Ammonium persulfate, (NH4)2S2O8) 및 암모늄 헥사클로로플라티네이트(Ammonium hexachloroplatinate, (NH4)PtCl6)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 바람직하게는 암모늄 헥사플루오르포스페이트(Ammonium hexafluorophosphate, NH4PF6)을 포함할 수 있다. 그러나, 본 발명의 목적을 구현할 수 있는 것이라면 그 종류에 이에 제한되지 않는다.In one embodiment, the ammonium-based compound is, for example, ammonium fluoride (Ammonium fluoride, NH 4 F), ammonium fluoborate (NH 4 BF 4 ), ammonium acetate (Ammonium Acetate, CH 3 COONH 4 ), Ammonium sulfamate (NH 4 SO 3 NH 2 ), Ammonium hexafluorophosphate (NH 4 PF 6 ), Ammonium hexafluoroaluminate (NH 4 ) 3 AlF 6 ), Ammonium nitrite (NH 4 NO 2 ), Ammonium perchlorate (NH 4 ClO 4 ), Ammonium Sulfite (NH 4 ) 2 SO 3 ), Ammonium carbonate (NH 4 ) 2 CO 3 ), Diammonium molybdate (NH 4 ) 2 MoO 4 ), Ammonium phosphate (NH 4 ) 2 PO 4 ), Ammonium Permanganate (NH 4 MnO 4 ), ammonium dichromate (NH 4 ) 2 Cr 2 O 7 ), ammonium sulfate (NH 4 SO 4 ), ammonium persulfate (Ammonium persulfate, (NH 4 ) 2 S 2 O 8 ) and It may include at least one selected from the group consisting of ammonium hexachloroplatinate ((NH 4 )PtCl 6 ). Preferably, ammonium hexafluorophosphate (Ammonium hexafluorophosphate, NH 4 PF 6 ) may be included. However, as long as it can implement the object of the present invention, it is not limited thereto.
도 4는 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 지질전해질 종류에 따른 촉매 활성 결과를 비교한 순환전압전류 그래프이다. 4 is a cyclic voltammetry graph comparing catalytic activity results according to the type of lipoelectrolyte of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 4를 참조하면, 지지전해질의 종류 및 가스 분위기에 따라 촉매 활성이 달라지고 특히, 암모니아 전해 메커니즘 고려시 metal amide 기반의 화합물과 ammonium salt 기반의 화합물인 NaNH2 및 NH4PF6 등이 우수한 성능을 구현함을 알 수 있다.Referring to FIG. 4, the catalytic activity varies depending on the type of supporting electrolyte and the gas atmosphere. In particular, considering the ammonia electrolysis mechanism, metal amide-based compounds and ammonium salt-based compounds such as NaNH 2 and NH 4 PF 6 have excellent performance. It can be seen that the implementation of
일 구체예에서, 상기 비귀금속계 촉매는 예를들어, 그래핀, 카본 블랙, 흑연, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어 및 플러렌(C60)으로 이루어진 군으로부터 선택된 어느 하나의 탄소계 지지체에 담지될 수 있다. 그러나, 반드시 이들로 한정되지 않고 당해 기술분야에서 탄소계 지지체로 사용될 수 있는 것이라면 모두 포함할 수 있다.In one embodiment, the non-noble metal-based catalyst is, for example, graphene, carbon black, graphite, acetylene black, Denka black, Katchen black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn. , Carbon nanorings, carbon nanowires and fullerenes (C 60 ) It may be supported on any one of the carbon-based support selected from the group consisting of. However, it is not necessarily limited to these, and may include all as long as it can be used as a carbon-based support in the art.
상기 탄소계 지지체는 넓은 비표면적을 갖고 결정성이 높은 담지체로 예를들어, 구형, 막대형, 튜브형, 뿔형 또는 판상형 등의 구조를 포함할 수 있다. 그러나, 반드시 이러한 구조로 한정되지 않고 당해 기술 분야에서 상기 탄소계 지지체가 촉매 담지체로 사용할 수 있는 구조라면 모두 포함할 수 있다. 또한, 상기 탄소계 지지체는 다공성 담지체일 수 있다. 예를들어, 상기 탄소계 지지체는 넓은 비표면적과 기공을 가지는 다공성 탄소재료일 수 있다. 또한, 상기 탄소계 지지체는 예를들어, 메조다공성일 수 있고, 다양한 형태를 지닌 지지체의 일부 또는 전부가 다공성일 수 있다.The carbon-based support is a support having a large specific surface area and high crystallinity, and may include a structure such as a sphere, a rod, a tube, a horn, or a plate, for example. However, it is not necessarily limited to this structure and may include any structure that can be used as a catalyst support in the art for the carbon-based support. In addition, the carbon-based support may be a porous support. For example, the carbon-based support may be a porous carbon material having a large specific surface area and pores. In addition, the carbon-based support may be, for example, mesoporous, and part or all of the support having various shapes may be porous.
일 구체예에서, 상기 비귀금속계 촉매는 예를들어, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb 및 Ru으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 바람직하게는 상기 비귀금속계 촉매는 예를들어, Ti, V, Ni, W, Nb를 포함할 수 있다. 그러나, 본 발명의 목적을 구현할 수 있는 것이라면 그 종류에 이에 제한되지 않는다. 또한, 상기 비귀금속계 촉매는 그 촉매 표면에 도포된 백금과 함께 작동전극에 포함되는 바, 이를 통해 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타낼 수 있다. In one embodiment, the non-noble metal catalyst is selected from the group consisting of, for example, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb and Ru Any one or more may be included. Preferably, the non-noble metal-based catalyst may include, for example, Ti, V, Ni, W, or Nb. However, as long as it can implement the object of the present invention, it is not limited thereto. In addition, the non-noble metal-based catalyst is included in the working electrode together with platinum applied on the surface of the catalyst, and through this, the activation energy required for the ammonia removal reaction is lowered, so that the catalytic reaction proceeds quickly and exhibits improved activity.
일 구체예에서, 상기 백금은 상기 비귀금속계 촉매 표면에 1.5 내지 2.5nm 도포할 수 있다. 바람직하게는 1.7 내지 2.3nm 도포할 수 있다. 상기 백금의 도포량이 도포 범위 미만일 경우, 백금이 비귀금속계 촉매 표면에 제대로 도포되지 않아 촉매와 지지체간 상호작용에 의한 유기계 기반 전기화학시스템의 촉매 활성 구현이 어렵고, 반면에, 상기 도포 범위 초과일 경우, 비귀금속계 촉매 표면에 도포되는 백금 양이 많아져 비용이 과다 발생하기 때문에 종래 유지관리 및 부대비용이 컸던 PSA 방식의 문제해결이 어려워지는 단점이 있다. In one embodiment, the platinum may be applied on the surface of the non-noble metal-based catalyst in an amount of 1.5 to 2.5 nm. Preferably, 1.7 to 2.3 nm may be applied. When the coating amount of platinum is less than the coating range, platinum is not properly coated on the surface of the non-noble metal catalyst, making it difficult to realize the catalytic activity of the organic-based electrochemical system by the interaction between the catalyst and the support. In this case, since the amount of platinum applied to the surface of the non-noble metal catalyst increases and the cost is excessive, it is difficult to solve the problems of the conventional PSA method, which was expensive for maintenance and management.
일 구체예에서, 상기 전기화학시스템은 예를들어, 전압전류법(voltammetry), 전류법(amperometry), 전위차법(potentiometry), 전도도법(conductometry), 전기량법(coulometry) 및 전해무게분석법(electrogravimetry)으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 전기화학적 검출신호를 측정할 수 있다. 바람직하게는 상기 전압전류법 중 순환전압전류(cyclic voltammetry; CV)를 측정하는 것일 수 있다. 예를들어, 상기 수소산화반응(HOR) 및 산소환원반응(ORR)에 의해 도출되는 산화피크 또는 환원피크 값을 검출하여 비교분석하는 것일 수 있다. 또한, 상기 순환전압전류(CV)의 측정은 수소의 활성화를 위해 가열 후 측정하는 것일 수 있다. 또한, 예를들어, 아르곤, 수소 및 산소로 이루어진 군에서 선택되는 적어도 어느 하나의 가스를 퍼지하여 순환전압전류 신호를 측정하는 것일 수 있다. In one embodiment, the electrochemical system can be used by, for example, voltammetry, amperometry, potentiometry, conductometry, coulometry and electrogravimetry. ) It is possible to measure at least one electrochemical detection signal selected from the group consisting of. Preferably, cyclic voltammetry (CV) may be measured in the voltammetry method. For example, the oxidation peak or reduction peak value derived by the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) may be detected and compared and analyzed. In addition, the measurement of the cyclic voltammetry (CV) may be measured after heating for activation of hydrogen. Further, for example, the cyclic voltammetry signal may be measured by purging at least one gas selected from the group consisting of argon, hydrogen, and oxygen.
본 발명의 일 구체예에 의한 유기계 기반의 미반응 암모니아 제거용 전기화학시스템는 암모니아 수소 추출시 유기계 기반의 전기화학시스템을 통해 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타내며, 또한, 작동전극, 대향전극, 기준전극 및 이를 연결하는 전해질과 지지전해질을 포함하고 상기 작동전극은 비귀금속계 촉매와 그 표면에 도포된 백금을 포함함으로써, 촉매와 지지체간 상호작용으로 귀금속 사용이 절감되어 귀금속 백금을 약 15배 이상 증착한 촉매보다 우수한 경제적 효과를 구현하여 유지관리 및 부대비용이 컸던 종래 PSA 방식의 문제점을 해결할 수 있는 특징이 있다.The organic-based electrochemical system for removing unreacted ammonia according to one embodiment of the present invention shows improved activity as the catalytic reaction proceeds quickly by lowering the activation energy required for the ammonia removal reaction through the organic-based electrochemical system when ammonia hydrogen is extracted. In addition, it includes a working electrode, a counter electrode, a reference electrode, an electrolyte connecting them and a supporting electrolyte, and the working electrode includes a non-noble metal-based catalyst and platinum applied on its surface, thereby using a noble metal as an interaction between the catalyst and the support. It is characterized in that it can solve the problems of the conventional PSA method, which was high in maintenance and additional costs, by realizing an economic effect superior to that of a catalyst deposited with about 15 times more precious metal platinum.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention and cannot be construed as limiting the present invention by this in any sense.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Contents not described herein can be technically inferred by those skilled in the art, so descriptions thereof will be omitted.
(실시예 1)(Example 1)
작동전극(Working electrode)으로 Rotating Disk Electrode(RDE)를, 기준전극(Reference electrode)으로 Ag/AgCl를, 대향전극(Counter electrode)으로 흑연봉(Graphite rod)를, 전해질로 DMF(Dimethyl formamide)를, 그리고, 지지전해질로 암모늄계 화합물(Ammonium salt)과 아미드계 화합물(Metal amide)을 사용하고, 이때 작동전극은 탄소계 지지체에 담지된 비귀금속계 촉매인 Ti 및 상기 Ti 표면에 아일앤드 방식으로 약 2nm 도포된 Pt을 포함하는 유기계 기반의 미반응 암모니아 제거용 전기화학적 모사 3전극 시스템를 완성하였다.Using a Rotating Disk Electrode (RDE) as the working electrode, Ag/AgCl as the reference electrode, a graphite rod as the counter electrode, and dimethyl formamide (DMF) as the electrolyte , And, an ammonium compound (Ammonium salt) and an amide compound (Metal amide) are used as supporting electrolytes, and at this time, the working electrode is Ti, which is a non-noble metal catalyst supported on a carbon-based support, and an island-and-type method on the Ti surface An organic-based simulated electrochemical three-electrode system for removing unreacted ammonia including about 2 nm of Pt was completed.
(실시예 2)(Example 2)
실시예 2는 비금속계 촉매로 Ti 대신에 V을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Example 2, an electrochemical system was completed in the same manner as in Example 1, except that V was used instead of Ti as a non-metallic catalyst.
(실시예 3)(Example 3)
실시예 3은 비금속계 촉매로 Ti 대신에 Nb를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Example 3, an electrochemical system was completed in the same manner as in Example 1, except that Nb was used instead of Ti as a non-metallic catalyst.
(실시예 4)(Example 4)
실시예 4는 비금속계 촉매로 Ti 대신에 W을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Example 4, the electrochemical system was completed in the same manner as in Example 1, except that W was used instead of Ti as a non-metallic catalyst.
(실시예 5)(Example 5)
실시예 5는 비금속계 촉매로 Ti 대신에 Ni을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Example 5, an electrochemical system was completed in the same manner as in Example 1, except that Ni was used instead of Ti as a non-metallic catalyst.
(비교예 1)(Comparative Example 1)
비교예 1은 비금속계 촉매에 도포되는 물질로 Pt 대신에 Pd을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 1, an electrochemical system was completed in the same manner as in Example 1, except that Pd was used instead of Pt as a material applied to the non-metallic catalyst.
(비교예 2)(Comparative Example 2)
비교예 2는 비금속계 촉매에 도포되는 물질로 Pt 대신에 Ir을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 2, an electrochemical system was completed in the same manner as in Example 1, except that Ir was used instead of Pt as a material applied to the non-metallic catalyst.
(비교예 3)(Comparative Example 3)
비교예 3은 비금속계 촉매에 도포되는 물질로 Pt 대신에 Ru을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 3, an electrochemical system was completed in the same manner as in Example 1, except that Ru was used instead of Pt as a material applied to the non-metallic catalyst.
(비교예 4)(Comparative Example 4)
비교예 4는 비금속계 촉매에 도포되는 물질로 Pt 대신에 Au을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 4, an electrochemical system was completed in the same manner as in Example 1, except that Au was used instead of Pt as a material applied to the non-metallic catalyst.
(비교예 5)(Comparative Example 5)
비교예 5는 비금속계 촉매에 도포되는 물질로 Pt 대신에 Ni을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 5, an electrochemical system was completed in the same manner as in Example 1, except that Ni was used instead of Pt as a material applied to the non-metallic catalyst.
(비교예 6)(Comparative Example 6)
비교예 6은 비금속계 촉매에 도포되는 물질로 Pt 대신에 Ag을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 6, an electrochemical system was completed in the same manner as in Example 1, except that Ag was used instead of Pt as a material applied to the non-metallic catalyst.
(비교예 7)(Comparative Example 7)
비교예 7은 비금속계 촉매로 Ti 대신에 GC에 백금 30nm을 도포한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 7, the electrochemical system was completed in the same manner as in Example 1, except that 30 nm of platinum was applied to the GC instead of Ti as a non-metallic catalyst.
(비교예 8)(Comparative Example 8)
비교예 8은 비금속계 촉매로 Ti 대신에 GC에 백금 2nm을 도포한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학시스템을 완성하였다.In Comparative Example 8, the electrochemical system was completed in the same manner as in Example 1, except that 2 nm of platinum was applied to the GC instead of Ti as a non-metallic catalyst.
(실험예)(experimental example)
다음과 같은 방법에 의하여 촉매를 평가하였다. The catalyst was evaluated by the following method.
제작된 촉매를 이용하여 RDE 실험을 위한 3전극 셀을 구성하고 80℃, 상압 조건하에서 Ammonia Reduction Reaction 분극곡선을 측정하였다. 이때 얻어진 분극곡선으로부터 일정 전류밀도(10mA/cm2)에서의 전위를 읽었다. A three-electrode cell for RDE experiment was constructed using the fabricated catalyst, and the polarization curve of Ammonia Reduction Reaction was measured under normal pressure conditions at 80 °C. The potential at a constant current density (10 mA/cm 2 ) was read from the polarization curve obtained at this time.
- 전체 실험 조건- Overall experimental conditions
a. 작동전극(Working electrode) - Rotating Disk Electrode(RDE)a. Working electrode - Rotating Disk Electrode (RDE)
기준전극(Reference electrode) - Ag/AgCl Reference electrode - Ag/AgCl
대향전극(Counter electrode) - Graphite rod Counter electrode - Graphite rod
b. 전해질 : DMF(Dimethyl formamide), b. Electrolyte: DMF (Dimethyl formamide),
지지전해질: Ammonium salt, Metal amide Supporting electrolyte: Ammonium salt, Metal amide
c. 온도 : 80℃c. Temperature: 80℃
- ARR 활성 평가 실험- ARR activity evaluation experiment
a. 전해질을 암모니아로 30분간 purginga. Purging the electrolyte with ammonia for 30 minutes
b. ARR에서의 전극 표면에 생성물 제거를 위해 작동전극을 1600rpm로 회전b. Rotate the working electrode at 1600 rpm to remove the products on the electrode surface in the ARR
c. Scan rate : 10 mV/sc. Scan rate: 10 mV/s
d. Scan range : -1.4 V(vs RHE) ~ 0.3 V(vs RHE)d. Scan range : -1.4 V(vs RHE) ~ 0.3 V(vs RHE)
샘플명sample name 과전압overvoltage
실시예 1
(Pt 2nm on Ti)
Example 1
(Pt 2nm on Ti)
0.253 V0.253V
실시예 2
(Pt 2nm on V)
Example 2
(Pt 2nm on V)
0.26 V0.26V
실시예 3
(Pt 2 nm on Nb)
Example 3
(Pt 2 nm on Nb)
0.268 V0.268V
실시예 4
(Pt 2nm on W)
Example 4
(Pt 2nm on W)
0.276 V0.276V
실시예 5
(Pt 2nm on Ni)
Example 5
(Pt 2nm on Ni)
0.28 V 0.28V
비교예 7
(Pt 30nm on GC)
Comparative Example 7
(Pt 30nm on GC)
0.26 V0.26V
비교예8
(Pt 2nm on GC)
Comparative Example 8
(Pt 2 nm on GC)
0.40 V 0.40V
이상과 같이 촉매 물성평가 실험을 하였고, 그 실험결과는 표 1 및, 도 5 내지 7에 개시하였다. As described above, the catalyst property evaluation experiment was conducted, and the experimental results are disclosed in Table 1 and FIGS. 5 to 7.
도 5는 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 귀금속계 물질 활성을 비교한 순환전압전류 그래프이다. 5 is a cyclic voltammetry graph comparing the activity of noble metal-based substances in an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention.
도 5를 참조하면, 귀금속 pallet을 이용하여 촉매 스크리닝한 결과, 실시예 1과 같이 백금을 도포할 경우, 다른 금속을 도포한 비교예 1 내지 6에 비해 Ammonia Reduction Reaction에서 최적의 활성을 구현할 수 있음을 알 수 있다.Referring to FIG. 5, as a result of catalyst screening using a noble metal pallet, when platinum is applied as in Example 1, the optimal activity can be realized in the Ammonia Reduction Reaction compared to Comparative Examples 1 to 6 where other metals are applied. can know
도 6은 본 발명의 일 구체예에 따른 유기계 기반의 미반응 암모니아 제거용 전기화학시스템의 비귀금속계 촉매 활성을 비교한 막대 그래프이고, 도 7은 이에 관한 순환전압전류 그래프이다.6 is a bar graph comparing non-noble metal-based catalytic activity of an organic-based electrochemical system for removing unreacted ammonia according to an embodiment of the present invention, and FIG. 7 is a cyclic voltammetry graph related thereto.
도 6 내지 7 및 표 1을 참조하면, 실시예 1 내지 5와 같이, 전류밀도 10mA/cm2에서 Ti, V, Nb, W 및 Ni 순으로 과전압이 낮게 측정되었는 바, 이는 암모니아 제거반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 더욱 빠르게 진행되어 향상된 활성을 나타냄을 알 수 있다. 특히 상기 촉매들의 경우, 비교예 8과 같이 GC에 귀금속 백금을 2배 이상 증착한 촉매(Pt on GC(30nm))보다 우수한 활성을 보이고 있고, 특히 비교예 7과 같이, 귀금속 백금을 약 15배 이상 증착하여 bulk한 백금 형태를 지닌 촉매(Pt on GC(30nm))보다 동등하거나 더 향상된 활성을 보이고 있음을 알 수 있는 바, 이를 통해, 본 발명에 의할 경우 촉매와 지지체간 상호작용에 의해 현저한 귀금속 절감 효과가 구현될 수 있음을 확인할 수 있다.Referring to Figures 6 to 7 and Table 1, as in Examples 1 to 5, at a current density of 10 mA / cm 2 , the overvoltage was measured in the order of Ti, V, Nb, W, and Ni, which is necessary for the ammonia removal reaction. It can be seen that by lowering the activation energy, the catalytic reaction proceeds more rapidly, indicating improved activity. In particular, in the case of the above catalysts, as in Comparative Example 8, they show better activity than the catalyst (Pt on GC (30 nm)) in which precious metal platinum is deposited on GC more than twice as much. It can be seen that the catalyst (Pt on GC (30 nm)) in the form of bulk platinum deposited above shows equal or improved activity. Through this, in the case of the present invention, by the interaction between the catalyst and the support It can be confirmed that a significant noble metal saving effect can be implemented.
이상 살펴본 바와 같이, 물성평가 실험예를 통해 본 발명에 의한 유기계 기반의 미반응 암모니아 제거용 전기화학시스템는 종래 발명과 대비하여 암모니아 수소 추출시 유기계 기반의 전기화학시스템을 통해 암모니아 제거 반응에 필요한 활성화 에너지를 낮춰 촉매 반응이 빠르게 진행되어 향상된 활성을 나타내며 또한, 작동전극, 대향전극, 기준전극 및 이를 연결하는 전해질과 지지전해질을 포함하고 상기 작동전극은 비귀금속계 촉매와 그 표면에 도포된 백금을 포함함으로써, 촉매와 지지체간 상호작용으로 귀금속 사용이 절감되어 귀금속 백금을 약 15배 이상 증착한 촉매보다 우수한 경제적 효과를 구현하여 유지관리 및 부대비용이 컸던 종래 PSA 방식의 문제점을 해결할 수 있음을 알 수 있다.As described above, the organic-based electrochemical system for removing unreacted ammonia according to the present invention through the physical property evaluation experiment example is the activation energy required for the ammonia removal reaction through the organic-based electrochemical system when extracting ammonia hydrogen compared to the conventional invention. It lowers the catalytic reaction and shows improved activity. In addition, it includes a working electrode, a counter electrode, a reference electrode, an electrolyte connecting them, and a supporting electrolyte, and the working electrode includes a non-noble metal-based catalyst and platinum applied on its surface. By doing this, the interaction between the catalyst and the support reduces the use of precious metals, realizing superior economic effects than catalysts deposited with about 15 times more precious metal platinum, thereby solving the problems of the conventional PSA method, which had high maintenance and additional costs. there is.
한편, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.On the other hand, although the present invention has been described with limited embodiments and drawings, the present invention is not limited to the above embodiments, and various modifications and variations from these descriptions can be made by those skilled in the art in the field to which the present invention belongs. possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined, and should be defined by not only the claims to be described later, but also those equivalent to the claims.

Claims (10)

  1. 작동전극(Working Electrode); Working electrode (Working Electrode);
    대향전극(Counter Electrode); Counter Electrode;
    기준전극(Reference Electrode) 및 Reference Electrode and
    상기 작동전극, 대향전극 및 기준전극을 연결하는 전해질(Electroyte)과 지지전해질(Suppoorting Electrode)을 포함하고,Including an electrolyte and a supporting electrolyte connecting the working electrode, the counter electrode and the reference electrode,
    상기 작동전극은 비귀금속계 촉매 및 상기 비귀금속계 촉매 표면에 도포된 백금을 포함하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The organic-based electrochemical system for removing unreacted ammonia, wherein the working electrode includes a non-noble metal catalyst and platinum applied on a surface of the non-noble metal catalyst.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 작동전극은 회전원판전극(Rotating Disk Electrorode), The working electrode is a rotating disk electrode,
    상기 대향전극은 그래파이트 로드(Graphite rod) 및The counter electrode is a graphite rod and
    상기 기준전극은 Ag/AgCl을 포함하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The reference electrode is an organic-based electrochemical system for removing unreacted ammonia, characterized in that it comprises Ag / AgCl.
  3. 청구항 1에 있어서, The method of claim 1,
    상기 전해질은 1-메틸-2-피롤리돈(1-methyl-2-pyrrolidone: NMP), 아세톤(acetone), 에탄올(ethanol),n-프로판올(n-propanol),n-부탄올(n-butanol),n-헥산(n-hexane), 사이클로헥산올(cyclohexanol), 아세틱 산(acetic acid), 에틸아세테이트(ethyl acetate), 디에틸에테르(diethyl ether), 디메틸포름아미드(dimethyl formamide: DMF), 디메틸아세트아미드(dimethylacetamide: DMAc), 다이옥산(dioxane), 테트라하이드로퓨란(tetrahydrofuran: THF), 디메틸술폭사이드(dimethyl sulfoxide: DMSO), 사이클로헥산(cyclohexane), 벤젠(benzene), 톨루엔(toluene), 크실렌(xylene), 물(water) 및 이들의 유도체 또는 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The electrolyte is 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n-butanol ), n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethyl formamide (DMF) , dimethylacetamide (DMAc), dioxane, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), cyclohexane, benzene, toluene, An organic-based electrochemical system for removing unreacted ammonia, characterized in that it includes at least one selected from the group consisting of xylene, water, and derivatives or mixtures thereof.
  4. 청구항 1에 있어서, The method of claim 1,
    상기 지지전해질은 아미드계 화합물 또는 암모늄계 화합물을 포함하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The organic-based electrochemical system for removing unreacted ammonia, characterized in that the supporting electrolyte includes an amide-based compound or an ammonium-based compound.
  5. 청구항 4에 있어서, The method of claim 4,
    상기 아미드계 화합물은 멜라민(2-amino-4,6-dichlorotriazine), 염화시아눌(cyanuric chloride), 시안아미드화칼슘(calcium cyanamide), 나트륨아미드(sodium amide), 멜렘(2,5,8-triamino-tri-s-triazine), 시안아미드(cyanamide), 2시안2아미드(dicyandiamide) 및 이들의 유도체 또는 혼합물로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The amide compound is melamine (2-amino-4,6-dichlorotriazine), cyanuric chloride, calcium cyanamide, sodium amide, melem (2,5,8- Organic-based unreacted ammonia removal characterized by comprising at least one selected from the group consisting of triamino-tri-s-triazine), cyanamide, dicyandiamide, and derivatives or mixtures thereof for electrochemical systems.
  6. 청구항 4에 있어서, The method of claim 4,
    상기 암모늄계 화합물은 플루오린화 암모늄(Ammonium fluoride, NH4F), 플루오린붕소산 암모늄(Ammonium fluoborate, NH4BF4), 초산 암모늄(Ammonium Acetate, CH3COONH4), 암모늄 설파메이트(Ammonium sulfamate, NH4SO3NH2), 암모늄 헥사플루오르포스페이트(Ammonium hexafluorophosphate, NH4PF6), 암모늄 헥사플루오르아미네이트(Ammonium hexafluoroaluminate, (NH4)3AlF6), 아질산 암모늄(Ammonium nitrite, NH4NO2), 암모늄 퍼클로레이트(Ammonium perchlorate, NH4ClO4), 암모늄 설파이트(Ammonium Sulfite, (NH4)2SO3), 탄산 암모늄(ammonium carbonate, (NH4)2CO3), 디암모늄 몰리브데이트(Diammonium molybdate, (NH4)2MoO4), 암모늄 포스페이트(Ammonium phosphate, (NH4)2PO4), 암모늄 퍼망가네이트(Ammonium Permanganate, NH4MnO4), 암모늄 디크로메이트(Ammonium dichromate, (NH4)2Cr2O7), 황산 암모늄(Ammonium sulfate, NH4SO4), 암모늄 퍼술페이트(Ammonium persulfate, (NH4)2S2O8) 및 암모늄 헥사클로로플라티네이트(Ammonium hexachloroplatinate, (NH4)PtCl6)로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The ammonium-based compound is ammonium fluoride (NH4F), ammonium fluoborate (NH 4 BF 4 ), ammonium acetate (Ammonium Acetate, CH 3 COONH 4 ), ammonium sulfamate (Ammonium sulfamate, NH 4 SO 3 NH 2 ), Ammonium hexafluorophosphate (NH 4 PF 6 ), Ammonium hexafluoroaluminate ((NH 4 ) 3 AlF 6 ), Ammonium nitrite (NH 4 NO 2 ) , Ammonium perchlorate (NH 4 ClO 4 ), Ammonium Sulfite ((NH 4 ) 2 SO 3 ), Ammonium carbonate (NH 4 ) 2 CO 3 ), Diammonium molybdate ( Diammonium molybdate, (NH 4 ) 2 MoO 4 ), Ammonium phosphate (Ammonium phosphate, (NH 4 ) 2 PO 4 ), Ammonium Permanganate (NH 4 MnO 4 ), Ammonium dichromate, (NH 4 ) 2 Cr 2 O 7 ), Ammonium sulfate (NH 4 SO 4 ), Ammonium persulfate (NH 4 ) 2 S 2 O 8 ) and Ammonium hexachloroplatinate, ( An organic-based electrochemical system for removing unreacted ammonia, characterized in that it comprises at least one selected from the group consisting of NH 4 )PtCl 6 ).
  7. 청구항 1에 있어서, The method of claim 1,
    상기 비귀금속계 촉매는 그래핀, 카본 블랙, 흑연, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어 및 플러렌(C60)으로 이루어진 군으로부터 선택된 어느 하나의 탄소계 지지체에 담지된 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The non-noble metal-based catalyst is graphene, carbon black, graphite, acetylene black, Denka black, Katchen black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon nanoring, carbon nanowire, and An organic-based electrochemical system for removing unreacted ammonia, characterized in that supported on any one carbon-based support selected from the group consisting of fullerene (C 60 ).
  8. 청구항 7에 있어서, The method of claim 7,
    상기 비귀금속계 촉매는 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb 및 Ru으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The non-noble metal-based catalyst comprises at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh, Nb, and Ru. An organic-based electrochemical system for removing unreacted ammonia.
  9. 청구항 1에 있어서, The method of claim 1,
    상기 백금은 상기 비귀금속계 촉매 표면에 1.5 내지 2.5nm 도포된 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The organic-based electrochemical system for removing unreacted ammonia, characterized in that the platinum is applied on the surface of the non-noble metal catalyst by 1.5 to 2.5 nm.
  10. 청구항 1에 있어서, The method of claim 1,
    상기 전기화학시스템은 전압전류법(voltammetry), 전류법(amperometry), 전위차법(potentiometry), 전도도법(conductometry), 전기량법(coulometry) 및 전해무게분석법(electrogravimetry)으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 전기화학적 검출신호를 측정하는 것을 특징으로 하는 유기계 기반의 미반응 암모니아 제거용 전기화학시스템.The electrochemical system is at least one selected from the group consisting of voltammetry, amperometry, potentiometry, conductometry, coulometry, and electrogravimetry. An organic-based electrochemical system for removing unreacted ammonia, characterized in that it measures one electrochemical detection signal.
PCT/KR2022/017519 2021-12-27 2022-11-09 Organic-based electrochemical system for removing unreacted ammonia WO2023128244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210188484A KR102681537B1 (en) 2021-12-27 2021-12-27 Organic based Electrochemical System For Removing Unreacted Ammonia
KR10-2021-0188484 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023128244A1 true WO2023128244A1 (en) 2023-07-06

Family

ID=86999353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017519 WO2023128244A1 (en) 2021-12-27 2022-11-09 Organic-based electrochemical system for removing unreacted ammonia

Country Status (2)

Country Link
KR (1) KR102681537B1 (en)
WO (1) WO2023128244A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053744A (en) * 2002-07-17 2004-02-19 Konica Minolta Holdings Inc Image forming apparatus
JP2009515036A (en) * 2005-10-14 2009-04-09 オハイオ ユニバーシティ Carbon fiber electrocatalyst for oxidizing ammonia and ethanol in alkaline media and its application to hydrogen production, fuel cells and purification processes
KR20110079668A (en) * 2008-10-30 2011-07-07 소니 주식회사 Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device
KR20160035338A (en) * 2014-09-23 2016-03-31 한국에너지기술연구원 Redox flow battery comprising all organic redox couple as an active material
KR102057211B1 (en) * 2019-06-18 2019-12-18 (주)센코 Electrochemical ammonia gas sensor
KR102310428B1 (en) * 2020-04-01 2021-10-08 공주대학교 산학협력단 Electrode material having bifunctional catalyst, method of manufacturing the same, and metal air battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736538B1 (en) * 2005-01-13 2007-07-06 주식회사 엘지화학 Electrode catalyst for fuel cell
KR101150843B1 (en) * 2010-09-15 2012-06-13 한국생산기술연구원 Preparing method of cathode catalyst comprising carbon nitride and conductive carbon support for pemfc, cathode catalyst for pemfc, electrode for pemfc and pemfc
KR101763382B1 (en) 2015-08-27 2017-08-02 한국에너지기술연구원 Working electrode of cell for felt electrode characterization and cell for felt electrode characterization using the same
KR102250351B1 (en) * 2019-10-04 2021-05-11 울산과학기술원 Method for preparing atomically dispersed catalyst, atomically dispersed catalyst thereby and oxygen reduction reaction catalyst comprising the atomically dispersed catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053744A (en) * 2002-07-17 2004-02-19 Konica Minolta Holdings Inc Image forming apparatus
JP2009515036A (en) * 2005-10-14 2009-04-09 オハイオ ユニバーシティ Carbon fiber electrocatalyst for oxidizing ammonia and ethanol in alkaline media and its application to hydrogen production, fuel cells and purification processes
KR20110079668A (en) * 2008-10-30 2011-07-07 소니 주식회사 Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device
KR20160035338A (en) * 2014-09-23 2016-03-31 한국에너지기술연구원 Redox flow battery comprising all organic redox couple as an active material
KR102057211B1 (en) * 2019-06-18 2019-12-18 (주)센코 Electrochemical ammonia gas sensor
KR102310428B1 (en) * 2020-04-01 2021-10-08 공주대학교 산학협력단 Electrode material having bifunctional catalyst, method of manufacturing the same, and metal air battery

Also Published As

Publication number Publication date
KR102681537B1 (en) 2024-07-03
KR20230099268A (en) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
US10158124B2 (en) Fuel cell electrode catalyst and method for activating catalyst
WO2012093880A9 (en) Nano-porous electrode for super capacitor and manufacturing method thereof
WO2020226449A1 (en) Radical scavenger, method for preparing same, and membrane-electrode assembly containing same
US20160298246A1 (en) Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
WO2016064086A1 (en) Oxygen-generating catalyst, electrode and electrochemical reaction system
WO2019132467A1 (en) Reduced graphene oxide, reduced graphene oxide-functional material complex, and manufacturing method thereof
KR20110109350A (en) Method for fabricating hybrid catalyst with metal oxide nanowire, electrode and fuel cell containing hybrid catalyst fabricated by the same
DE102016105766B4 (en) Process for manufacturing a fuel cell electrode
CN107941867B (en) Electrochemical gas sensor capable of jointly detecting nitric oxide in expired air and hydrogen sulfide in expired air
WO2021066251A1 (en) Transition metal phosphide water-splitting catalyst, and method for producing same
WO2023128244A1 (en) Organic-based electrochemical system for removing unreacted ammonia
WO2020159224A1 (en) Electrochemical reactor and production method for producing ammonium nitrate from nitrogen oxides
EP0157385A2 (en) Fuel cell electrode, process for producing the same and fuel cell using the same
WO2021062906A1 (en) Electrode used for degrading gas-phase organic pollutant, preparation method therefor, and device for degrading gas-phase organic pollutant
WO2015069069A1 (en) Fuel cell and method for manufacturing same
WO2022075565A1 (en) Lithium-sulfur battery cathode using fabric material, lithium-sulfur battery comprising same, and manufacturing method therefor
WO2013015650A2 (en) Cu-co alloy dendrite electrode and biosensor including same
WO2021125543A1 (en) Hydrogen evolution reaction catalyst comprising rhodium-nickel alloy nanofibers, and method for manufacturing rhodium-nickel alloy nanofibers
Chen et al. Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode
WO2015023072A1 (en) Capacitive deionization electrode and method for manufacturing same
US20060051283A1 (en) Method for producing carbon fiber, catalyst structure and membrane electrode junction body for solid polymer fuel cell
US20220293966A1 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
WO2022045816A1 (en) Reduction catalyst using graphitic frustrated lewis acid-base pair (gflp), and reduction system using same
Diao et al. The electrochemical reduction of fullerenes, C60 and C70

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE