KR100736538B1 - Electrode catalyst for fuel cell - Google Patents

Electrode catalyst for fuel cell Download PDF

Info

Publication number
KR100736538B1
KR100736538B1 KR1020050003155A KR20050003155A KR100736538B1 KR 100736538 B1 KR100736538 B1 KR 100736538B1 KR 1020050003155 A KR1020050003155 A KR 1020050003155A KR 20050003155 A KR20050003155 A KR 20050003155A KR 100736538 B1 KR100736538 B1 KR 100736538B1
Authority
KR
South Korea
Prior art keywords
platinum
metal
catalyst
fuel cell
electrode
Prior art date
Application number
KR1020050003155A
Other languages
Korean (ko)
Other versions
KR20060082595A (en
Inventor
박진남
김혁
김민숙
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020050003155A priority Critical patent/KR100736538B1/en
Publication of KR20060082595A publication Critical patent/KR20060082595A/en
Application granted granted Critical
Publication of KR100736538B1 publication Critical patent/KR100736538B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1257Oxidation ditches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/932Nature of the flow guiding elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 a) 백금보다 이온화 경향이 높은 금속 또는 금속 화합물 입자; 및 b) 상기 입자의 표면 전부에 형성된 백금 또는 백금 함유 합금 코팅층을 포함하는 코어-쉘 구조의 활성 입자를 포함하는 연료 전지용 전극 촉매 및 이의 제조방법을 제공한다. 또한 본 발명은 상기 전극촉매를 포함하는 전극막 접합체 및 이를 구비하는 연료 전지를 제공한다.The present invention is a) metal or metal compound particles having a higher ionization tendency than platinum; And b) a core-shell structured active particle comprising a platinum or platinum-containing alloy coating layer formed on all of the surfaces of the particles, and a method for manufacturing the electrode catalyst for a fuel cell. The present invention also provides an electrode membrane assembly including the electrode catalyst and a fuel cell having the same.

본 발명에 따른 전극 촉매는 기존 백금 촉매 입자의 내부를 백금보다 가격이 저렴한 다른 금속으로 치환함으로써, 백금 촉매의 활성 저하 없이 백금의 사용량 감소에 따른 경제성을 높일 수 있다.Electrode catalyst according to the present invention by replacing the inside of the existing platinum catalyst particles with another metal, which is cheaper than platinum, it is possible to increase the economical efficiency of the reduced amount of platinum without reducing the activity of the platinum catalyst.

전극 촉매, 백금, 합금, 담체, 전극막 접합체, 연료 전지Electrode Catalyst, Platinum, Alloy, Carrier, Electrode Membrane Assembly, Fuel Cell

Description

연료전지용 전극 촉매{ELECTRODE CATALYST FOR FUEL CELL} Electrode catalyst for fuel cell {ELECTRODE CATALYST FOR FUEL CELL}

본 발명은 백금 촉매의 성능 저하 없이 경제성이 향상된 연료전지용 전극촉매 및 이의 제조방법에 관한 것이다. The present invention relates to an electrocatalyst for a fuel cell and a manufacturing method thereof having improved economic efficiency without degrading the performance of a platinum catalyst.

최근 휴대용 전자기기 및 무선통신기기의 급격한 보급으로 인해, 휴대용 전원 공급원인 배터리로서의 연료전지 개발, 무공해 자동차용 연료전지 및 청정 에너지원으로서 발전용 연료전지의 개발에 많은 관심과 연구가 진행되고 있다.Recently, due to the rapid spread of portable electronic devices and wireless communication devices, a lot of interest and research has been progressed in the development of a fuel cell as a battery as a portable power supply source, a fuel cell for a pollution-free automobile and a fuel cell for power generation as a clean energy source.

연료전지는 연료가스(수소, 메탄올, 또는 기타 유기물)와 산화제(산소 또는 공기)가 가지는 화학적 에너지를 전기화학반응을 통해 직접 전기에너지로 변환시키는 발전시스템으로서, 이는 작동조건에 따라 고체산화물 전해질형 연료전지, 용융탄산염 전해질형 연료전지, 인산염 전해질형 연료전지 및 고분자 전해질형 연료전지 등으로 나뉜다.A fuel cell is a power generation system that converts chemical energy of fuel gas (hydrogen, methanol, or other organic substance) and oxidant (oxygen or air) directly into electrical energy through an electrochemical reaction. It is divided into fuel cell, molten carbonate electrolyte fuel cell, phosphate electrolyte fuel cell and polymer electrolyte fuel cell.

기존 연료전지용 촉매는 귀금속을 활성 성분으로 하며, 이러한 귀금속은 담체 물질에 담지되어 사용하거나 또는 담지되지 않은 블랙 형태로 사용된다. 담지된 촉매의 경우 귀금속의 함량은 10 내지 80 중량% 정도로서, 촉매 가격의 거의 대부분을 차지한다. 특히 연료전지 촉매용 소재로 가장 많이 사용되고 있는 백금의 경 우 매년 공급이 증가함에도 불구하고 그 수요를 따라가지 못하고 있다. 현 시점에서 수소를 사용하는 '고분자 전해질 연료전지'와 '메탄올 연료전지' 중 막전극 접합체에서의 백금 사용량은 각각 1 mg-Pt/cm2, 10 mg-Pt/cm2 정도이다. 이러한 백금의 사용량은 과다하다고 할 수 있으며, 많은 사람들이 백금의 사용량을 줄이기 위해 고효율 촉매개발, 고성능 막전극접합체 개발, 고효율 연료전지 시스템 등의 연구에 매달리고 있다. 연료전지의 궁극적 사용처인 연료전지 자동차를 볼 때, 막전극 접합체에서의 백금 사용량은 0.15 ~ 0.2 mg-Pt/cm2을 목표치로 하고 있으며, 이는 수소연료전지에 있어서 백금 사용량을 현재 수준의 1/5 이하로 줄여야 한다는 것을 뜻한다[C. Jaffray et. al, Handbook of Fuel Cells, Vol. 3, Chap. 37, p509, 2003].Existing fuel cell catalysts use a noble metal as an active ingredient, and the noble metal is used in a black form supported or unsupported on a carrier material. In the case of the supported catalyst, the content of the precious metal is about 10 to 80% by weight, which accounts for most of the catalyst price. In particular, platinum, which is most commonly used as a fuel cell catalyst material, cannot meet the demand despite the increase in supply every year. At the present time, the amount of platinum used in the membrane electrode assembly of the polymer electrolyte fuel cell and the methanol fuel cell using hydrogen is about 1 mg-Pt / cm 2 and 10 mg-Pt / cm 2 , respectively. The use of platinum can be said to be excessive, and many people are devoted to researching high efficiency catalyst development, high performance membrane electrode assembly, high efficiency fuel cell system, etc. to reduce the use of platinum. In the fuel cell vehicle, which is the ultimate use of fuel cells, the platinum consumption in the membrane electrode assembly is targeted at 0.15 to 0.2 mg-Pt / cm 2 , which is equivalent to the present level of platinum usage in hydrogen fuel cells. Means less than 5 [C. Jaffray et. al, Handbook of Fuel Cells , Vol. 3, Chap. 37, p509, 2003].

한편, 종래 연료 전지용 전극 촉매는 귀금속 입자를 침전법, 콜로이드법 또는 기상화학증착법 등을 통해 제조하였다. 촉매 반응에 있어서 중요한 것은 활성물질의 표면적이므로, 동일한 귀금속을 사용하면서도 표면적을 증대시키기 위해 많은 사람들이 활성물질의 입자 크기를 최소화시키고자 노력하고 있으나, 이러한 입자크기의 축소는 실제로 한계가 있었다. 또한 나노 미터 영역에서는 입자의 크기에 따라 표면의 상태가 달라지게 되며, 너무 작은 입자 크기에서는 단위 표면적당 활성이 도리어 저하된다. 따라서 입자 크기의 변경만으로 모든 것을 해결할 수 없었다.On the other hand, the electrode catalyst for a conventional fuel cell was prepared by noble metal particles through a precipitation method, a colloidal method or a gas phase chemical vapor deposition method. Since the surface area of the active material is important in the catalytic reaction, many people try to minimize the particle size of the active material to increase the surface area while using the same precious metal, but the reduction of the particle size is practically limited. Also, in the nanometer area, the surface state varies according to the size of the particles, and at too small particle sizes, the activity per unit surface area decreases. Therefore, just changing the particle size could not solve everything.

그 외에 귀금속과 V, Cr, Co, Ni, Fe 또는 Mn 등과 같은 전이금속을 합금화함으로써 귀금속의 활성을 높임과 동시에 촉매의 원가를 절감시키고자 하는 시도가 있었으나(Thompsett, Handbook of Fuel Cell, Vol.3., Chap. 37, p467, 2003), 대부분 상용화에 이르지 못하고 있다. 그 이유는 연료전지의 운전조건에서 대부분의 전이금속이 용출되며, 이 용출에 의해 촉매의 성능저하 및 막(membrane)에서의 전이금속 침적으로 인해 막전극 접합체의 성능이 감소되기 때문이다.In addition, attempts have been made to increase the activity of precious metals and reduce the cost of catalysts by alloying precious metals with transition metals such as V, Cr, Co, Ni, Fe or Mn (Thompsett, Handbook of Fuel Cell , Vol. 3., Chap. 37, p467, 2003), most have not reached commercialization. This is because most of the transition metals are eluted under the operating conditions of the fuel cell, and the elution reduces the performance of the membrane electrode assembly due to deterioration of the catalyst and deposition of transition metals in the membrane.

한편, 루테늄(Ru) 입자 표면에 백금 입자를 침전시켜 섬형태로 분산시키는 연구 [K. Sasaki et. al, Electrochimica Acta, Vol. 49, p3873, 2004] 또는 백금 입자 표면에 루테늄을 침전시켜 섬형태로 분산시키는 연구 [P. Waszczuk et. al, Journal of Catalysis, Vol. 203, p1, 2001]가 발표된 바가 있었으나, 전극 촉매의 성능 및 사용량에 따른 경제성면에서 만족스럽지 못했다.On the other hand, the precipitation of platinum particles on the surface of ruthenium (Ru) particles dispersed in island form [K. Sasaki et. al , Electrochimica Acta , Vol. 49, p3873, 2004] or a study to precipitate ruthenium on the surface of platinum particles and disperse them in island form [P. Waszczuk et. al, Journal of Catalysis , Vol. 203, p1, 2001], but it was not satisfactory in terms of the economic performance of the electrode catalyst performance and usage.

본 발명은 전술한 바와 같은 전이금속의 용출, 귀금속 촉매의 활성 저하 및 귀금속 촉매의 높은 사용량 등의 문제점을 해결하고자 한다. The present invention is to solve the problems such as the elution of the transition metal, degradation of the activity of the noble metal catalyst and high usage of the noble metal catalyst as described above.

상기의 문제점을 해결하기 위해서, 본 발명은 내부 충진재로서 안정하고 저가인 금속 입자를 사용하고 상기 입자 표면이 귀금속으로 코팅된 코어-쉘 구조를 갖는 연료전지용 전극촉매 및 이의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide an electrode catalyst for a fuel cell using a stable and inexpensive metal particle as an internal filler and having a core-shell structure coated with a noble metal, and a method of manufacturing the same. It is done.

또한, 본 발명의 다른 목적은 상기에서 제조된 전극 촉매를 이용한 전극막 접합체 및 이를 포함하는 연료전지를 제공하고자 한다.Another object of the present invention is to provide an electrode membrane assembly using the electrode catalyst prepared above, and a fuel cell including the same.

본 발명은 a) 백금보다 이온화 경향이 높은 금속 또는 금속 화합물 입자; 및 b) 상기 입자의 표면 전부에 형성된 백금 또는 백금 함유 합금 코팅층을 포함하는 코어-쉘 구조의 활성입자를 포함하는 연료 전지용 전극 촉매 및 이를 포함하는 전극막 접합체, 상기 전극을 구비한 연료 전지를 제공한다.The present invention is a) metal or metal compound particles having a higher ionization tendency than platinum; And b) an electrode catalyst for a fuel cell comprising an active particle having a core-shell structure including a platinum or platinum-containing alloy coating layer formed on all surfaces of the particles, an electrode membrane assembly comprising the same, and a fuel cell having the electrode. do.

또한, 본 발명은 a) 백금 전구체; 또는 백금 전구체 및 루테늄(Ru), 팔라듐(Pd), 금(Au), 은(Ag), 이리듐(Ir), 로듐(Rh) 및 오스뮴(Os)으로 이루어진 군으로부터 선택된 1종 이상의 전이금속을 포함하는 전구체 화합물을 각각 용해시켜 용액을 제조하는 단계; b) 상기 단계 a)에서 제조된 용액에 백금보다 이온화 경향이 높은 금속 또는 금속화합물 입자를 단독 또는 촉매 담체에 담지된 상태로 첨가 및 혼합하는 단계; c) 상기 단계 b)에서 얻어진 혼합물을 건조하는 단계를 포함하는 코어-쉘 구조의 활성입자를 포함하는 연료전지용 전극 촉매의 제조방법을 제공한다.In addition, the present invention a) platinum precursor; Or a platinum precursor and at least one transition metal selected from the group consisting of ruthenium (Ru), palladium (Pd), gold (Au), silver (Ag), iridium (Ir), rhodium (Rh) and osmium (Os) Dissolving the precursor compounds to prepare a solution; b) adding and mixing metal or metal compound particles having a higher ionization tendency than platinum to the solution prepared in step a) alone or supported on a catalyst carrier; c) it provides a method for producing an electrode catalyst for a fuel cell comprising the active particles of the core-shell structure comprising the step of drying the mixture obtained in step b).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 연료 전지용 전극 촉매는 기존 백금 또는 루테늄 등과 같은 귀금속의 활성을 그대로 유지함과 동시에 이들의 사용량 감소에 따른 경제성을 도모하고자, 내부와 외부 물질로서 각각 저가의 안정한 금속과 촉매 활성이 뛰어난 백금 또는 백금 함유 합금을 사용하여 2상(相) 이상의 구조를 형성하는 것을 특징으로 한다. 이때 2상 이상의 구조를 갖는 활성 입자는 코어-쉘(core-shell) 구조를 형성한다.The electrode catalyst for a fuel cell of the present invention is intended to maintain the activity of precious metals such as platinum or ruthenium as it is, and to achieve economical efficiency by reducing their usage. A platinum-containing alloy is used to form a two-phase or more structure. At this time, the active particles having a structure of two or more phases form a core-shell structure.

상기 전극촉매를 이루는 코어-쉘 구조의 활성 입자 중 코어(core) 부위의 물질로는 연료전지의 운전조건에서 용출되지 않는 반응성이 없고(inert) 안정한 금속 또는 금속 화합물이 바람직하다. 이는 연료전지의 운전하에서 용출되거나 또는 기존 공기나 수분과의 접촉으로 인한 부반응을 방지하기 위해서이다. 그러나 바깥의 쉘(shell)에 의해 코어(core) 물질의 용출이 방지되므로, 코어 물질은 상기와 같은 특성을 갖는 것으로 제한하지 않아도 무방하다. 또한, 코어 부위의 물질은 전극 촉매로 사용되는 백금 또는 백금과 합금을 이루는 기타 전이금속보다 이온화 경향이 높은 금속이 바람직하다. 이는 금속의 이온화경향 차이에 따라 2상 이상의 구조를 갖는 활성입자가 용이하게 제조될 수 있기 때문이다. 이러한 금속 또는 금속화합물로는 13족 원소, 14족 원소, 전이금속 또는 희토류 원소 등이 있으며, 바람직하게는 Ge, Ga, Zn, Cu, Ni, Co, Fe, Al, Si, Sr, Y, Nb, Mo, W, Ti, B, In, Sn, Pb, Mn, Cr, Ce, V, Zr, La 또는 이들의 조합이 있다. Among the active particles of the core-shell structure of the electrode catalyst, a material of a core portion is preferably an inert and stable metal or metal compound that does not elute under operating conditions of a fuel cell. This is to prevent side reactions due to elution under the operation of fuel cells or contact with existing air or moisture. However, since the eluting of the core material is prevented by the outer shell, the core material does not have to be limited to those having the above characteristics. In addition, the material of the core portion is preferably a metal having a higher tendency to ionize than platinum or other transition metals alloyed with platinum used as an electrode catalyst. This is because active particles having a structure of two or more phases can be easily produced according to the difference in ionization tendency of the metal. Such metals or metal compounds include Group 13 elements, Group 14 elements, transition metals or rare earth elements, and preferably Ge, Ga, Zn, Cu, Ni, Co, Fe, Al, Si, Sr, Y, Nb. , Mo, W, Ti, B, In, Sn, Pb, Mn, Cr, Ce, V, Zr, La, or a combination thereof.

상기 13족과 14족은 새로운 IUPAC에 따른 것으로, 각각 주기율표에서 Al을 포함하는 원소족과 Si을 포함하는 원소족을 의미한다.Groups 13 and 14 are according to the new IUPAC, and refer to element groups including Al and element groups including Si in the periodic table, respectively.

가격이 저가이고, 백금보다 이온화경향이 높은 금속 또는 금속화합물은 전극 촉매를 이루는 활성 입자 중 내부 구조를 차지함으로써, 백금과 같은 귀금속의 사용량을 감소시킨다. 이러한 금속 또는 금속화합물 입자의 크기로는 1 내지 10nm 범위가 바람직하다. 입자의 크기가 1 nm 미만일 경우 입자 표면의 결정구조가 손실되어 단위 표면적당 활성이 저하되며, 10 nm를 초과할 경우 사용되지 않는 내부의 귀금속양이 많아지게 되어 효율적인 귀금속 활용이 되지 않으며, 따라서 귀금속 단위무게당 활성이 낮아지게 된다.Metals or metal compounds which are inexpensive and have a higher ionization tendency than platinum occupy internal structures among the active particles constituting the electrode catalyst, thereby reducing the amount of precious metals such as platinum. The size of such metal or metal compound particles is preferably in the range of 1 to 10 nm. If the particle size is less than 1 nm, the crystal structure of the surface of the particle is lost, and the activity per unit surface area is reduced. If the particle size is larger than 10 nm, the amount of internal precious metal is not used. Activity per unit weight is lowered.

본 발명의 전극촉매를 이루는 코어-쉘 구조의 활성 입자 중 쉘(shell) 부위의 물질은 연료전지에서 전극촉매 역할을 할 수 있는 통상적인 귀금속으로서, 백금 또는 백금 함유 합금이 바람직하다. 이때 백금 함유 합금에 포함되는 금속으로는 루테늄(Ru), 팔라듐(Pd), 금(Au), 은(Ag), 이리듐(Ir), 로듐(Rh) 또는 오스뮴(Os) 등의 전이금속이 있다. Among the active particles of the core-shell structure of the electrocatalyst of the present invention, the material of the shell portion is a conventional noble metal that can serve as an electrocatalyst in a fuel cell, and platinum or a platinum-containing alloy is preferable. The metal included in the platinum-containing alloy may be a transition metal such as ruthenium (Ru), palladium (Pd), gold (Au), silver (Ag), iridium (Ir), rhodium (Rh) or osmium (Os). .

상기 백금 또는 백금 합금은 코어의 표면상에 코팅됨으로써, 내부 물질의 용출을 방지함과 동시에 기존 전극 촉매로서의 활성을 그대로 유지하여 단위귀금속 무게당 활성을 증대시킨다. 이러한 백금 또는 백금 합금의 코팅층 두께는 0.2 내지 3 nm 정도가 바람직하다. 0.2 nm 미만일 경우에는 내부 금속 입자의 용출 방지 효과가 미미할 수 있으며, 3 nm를 초과할 경우 귀금속 사용량에 따른 원가 절감 효과가 떨어진다.The platinum or platinum alloy is coated on the surface of the core, thereby preventing the elution of internal materials and at the same time maintaining the activity as an existing electrode catalyst, thereby increasing the activity per unit precious metal weight. The coating layer thickness of such platinum or platinum alloy is preferably about 0.2 to 3 nm. If less than 0.2 nm, the elution prevention effect of the internal metal particles may be insignificant, and if it exceeds 3 nm, the cost reduction effect due to the use of precious metals is inferior.

본 발명에 따라 코어-쉘 구조를 갖는 활성 입자를 포함하는 전극 촉매는 당 분야에서 통상적으로 사용되는 방법인 무전해도금법(귀금속 정련 공정)에 따라 제조될 수 있으나, 이를 제한하는 것은 아니다. 하기에 본 발명에 따른 전극촉매 제조방법의 일 실시 형태를 들어 설명하고자 한다.Electrode catalyst comprising active particles having a core-shell structure according to the present invention may be prepared according to the electroless plating method (precious metal refining process), which is commonly used in the art, but is not limited thereto. Hereinafter, an embodiment of the method for preparing an electrode catalyst according to the present invention will be described.

우선, 1) 백금 전구체; 또는 백금 전구체 및 Ru, Pd, Au, Ag, Ir, Rh 및 Os으로 이루어진 군으로부터 선택된 1종 이상의 전이금속을 포함하는 전구체 화합물을 각각 용해시켜 용액을 제조한다.First, 1) platinum precursor; Or a precursor compound containing a platinum precursor and at least one transition metal selected from the group consisting of Ru, Pd, Au, Ag, Ir, Rh and Os, respectively, to prepare a solution.

이때 백금 전구체 또는 백금 함유 합금에 포함되는 금속 전구체로는 특별히 제한되지 않으나, 상기 금속 원소를 단독 또는 1종 이상 조합하여 포함하는 염화물, 질화물, 황산염 등을 사용할 수 있으며, 특히 백금염으로는 H2PtCl6, 루테늄염은 RuCl3가 바람직하다. In this case, the metal precursor included in the platinum precursor or the platinum-containing alloy is not particularly limited, but chlorides, nitrides, sulfates, etc. including the metal element alone or in combination of one or more thereof may be used. Particularly, as the platinum salt, H 2 PtCl 6 and ruthenium salt are preferably RuCl 3 .

용매로는 상기 제시된 금속을 포함하는 염을 용해시킬 수 있는 모든 종류가 가능하나, 이중 증류수가 바람직하다. As the solvent, any kind capable of dissolving the salt containing the above-described metal is possible, but distilled water is preferable.

또한, 백금 또는 백금과 합금을 이루는 금속 성분이 용해된 용액의 농도는 0.01 g-metal/L 내지 100 g-metal/L 범위가 바람직하다.In addition, the concentration of the solution in which the metal component constituting platinum or platinum is dissolved is preferably in the range of 0.01 g-metal / L to 100 g-metal / L.

상기 백금; 또는 백금과 합금을 이루는 금속 성분이 용해된 용액의 산도(pH)는 5 이하가 바람직하며, 이를 위해 통상적인 산, 즉 염산 또는 황산 등을 첨가할 수 있다. 금속 또는 금속화합물 입자가 용해되고, 백금 또는 백금과 합금을 이루는 금속의 석출이 일어날 수 있는 산도(pH)는 5 이하이기 때문이다. 그러나 산도 조절 단계는 필수 구성 요소가 아니므로 포함하지 않을 수도 있으며, 이 경우도 본 발명의 범주에 속한다.The platinum; Alternatively, the acidity (pH) of the solution in which the metal component constituting platinum is dissolved is preferably 5 or less, and for this purpose, conventional acids, such as hydrochloric acid or sulfuric acid, may be added. This is because the acidity (pH) at which the metal or metal compound particles are dissolved and the precipitation of the metal constituting the platinum or the platinum may occur is 5 or less. However, the acidity adjustment step may not be included because it is not an essential component, and this case also belongs to the scope of the present invention.

본 발명에 따른 코어-쉘 구조의 전극 촉매는 코어(core)를 이루는 백금보다 이온화 경향이 높은 금속의 용출 반응과 쉘(shell)을 형성하는 백금 또는 백금과 합금을 이루는 금속 성분의 석출 반응에 의해 제조되는데, 이때 코어를 이루는 금속 또는 금속화합물의 용출 반응은 용출된 금속 이온과 염(salt)을 형성할 수 있는 음이온을 필요로 하게 된다. The electrode catalyst of the core-shell structure according to the present invention is obtained by the elution reaction of a metal having a higher ionization tendency than the platinum forming a core and the precipitation reaction of a metal component forming an alloy with platinum or platinum forming a shell. In this case, the eluting reaction of the metal or the metal compound constituting the core requires an anion capable of forming a salt with the eluted metal ions.

상기 용출된 금속 이온은 대체로 쉘을 형성하는 백금 전구체 또는 백금 함유 합금에 포함되는 금속 전구체에 포함된 음이온과 염을 형성하나, 용출된 코어 부분의 금속 이온이 요구하는 음이온의 개수와 쉘 부분의 귀금속 전구체에 포함된 음이온의 개수가 다르므로, 이러한 화학반응을 조절하기 위해서는 음이온의 농도를 적절히 조절하는 것이 요구된다. 일례로, 백금 전구체 화합물이 염소화합물인 경우 코어 물질의 용해에는 염화물 형태의 염이 관계하게 되는데, 코어 물질과 쉘 물질이 각각 필요로 하거나 보유하는 염소 이온의 개수가 상이하므로, 이를 조절하기 위해 염화나트륨(NaCl)과 같은 염화염을 첨가할 수 있다. 따라서, 상기 귀금속이 석출되는 반응 속도의 영향 인자인 음이온의 농도는 염화나트륨(NaCl) 등과 같은 통상적인 염의 첨가에 의해 조절할 수 있으며, 그 농도는 본 발명에서 사용되는 백금, 루테늄 등의 귀금속 용액의 10 내지 500배 몰농도이며, 바람직하게는 50 내지 200배 몰농도이다. The eluted metal ions generally form a salt with an anion contained in a platinum precursor or a metal precursor included in a platinum-containing alloy, but the number of anions required by the metal ion of the eluted core portion and the precious metal of the shell portion Since the number of anions contained in the precursor is different, it is required to appropriately adjust the concentration of anions in order to control the chemical reaction. For example, when the platinum precursor compound is a chlorine compound, the salt in the form of chloride is involved in dissolving the core material. Since the number of chlorine ions required or retained by the core material and the shell material is different, sodium chloride is used to control this. Chlorides such as (NaCl) can be added. Therefore, the concentration of anion, which is an influencing factor of the reaction rate at which the precious metal is precipitated, can be adjusted by the addition of a conventional salt such as sodium chloride (NaCl), and the concentration is 10 of the precious metal solution such as platinum, ruthenium, etc. used in the present invention. To 500 times molar concentration, preferably 50 to 200 times molar concentration.

2) 제조된 백금 용액 또는 백금과 합금을 이루는 루테늄, 팔라듐, 금, 은, 이리듐, 로듐 또는 오스뮴(Os) 등의 금속 혼합 용액에 백금보다 이온화경향이 높은 금속 또는 금속 화합물 입자를 단독 또는 촉매 담체에 담지된 상태로 첨가한다. 이때 상기 금속 또는 금속 화합물의 설명은 전술한 바와 같다.2) The metal or metal compound particles having a higher ionization tendency than platinum in the prepared platinum solution or a mixed metal solution such as ruthenium, palladium, gold, silver, iridium, rhodium or osmium (Os) alloying with platinum alone or as a catalyst carrier It is added as it is supported. In this case, the description of the metal or the metal compound is as described above.

상기 촉매 담체는 넓은 표면적을 이용하여 귀금속 촉매를 넓게 분산시키고, 금속 촉매만으로는 얻기 어려운 열적 및 기계적 안정성 등의 물리적 성질을 향상시키기 위하여 사용되는 것이다. 예를 들면 본 분야의 통상적인 미립자의 지지체에 코팅하거나 다른 방법을 적용하여 사용할 수 있다. The catalyst carrier is used to widely disperse the noble metal catalyst using a large surface area and to improve physical properties such as thermal and mechanical stability that are difficult to obtain only with the metal catalyst. For example, it may be used by coating on a support of conventional fine particles in the art or by applying another method.

사용 가능한 촉매 담체로는 다공성 카본, 전도성 고분자 또는 전도성 다공성 금속 산화물이 있으며, 상기 촉매 담체는 촉매 조성에 대하여 5 내지 90 중량%, 바람직하게는 20 내지 80 중량%가 바람직하다. The catalyst carriers that can be used include porous carbon, conductive polymers or conductive metal oxides, and the catalyst carrier is preferably 5 to 90% by weight, preferably 20 to 80% by weight based on the catalyst composition.

상기에 있어서, 다공성 카본은 활성탄, 카본블랙, 탄소 섬유, 흑연 섬유 또는 탄소 나노튜브를 사용할 수 있다. In the above, the porous carbon may be activated carbon, carbon black, carbon fiber, graphite fiber or carbon nanotubes.                     

상기에 있어서, 전도성 고분자는 폴리비닐카바졸(polyvinylcarbazole), 폴리아닐린(polyanilin), 폴리피롤(polypyrrole) 또는 그들의 유도체를 사용할 수 있다. In the above, the conductive polymer may be polyvinylcarbazole, polyanilin, polypyrrole or derivatives thereof.

상기에 있어서, 금속 산화물은 텅스텐, 몰리브덴, 티타늄, 니켈, 루테늄, 주석, 인듐, 안티모니, 탄탈륨 또는 코발트 산화물로 이루어진 군으로부터 선택된 1종 이상의 금속산화물이 사용 가능하다. In the above, the metal oxide may be one or more metal oxides selected from the group consisting of tungsten, molybdenum, titanium, nickel, ruthenium, tin, indium, antimony, tantalum or cobalt oxide.

첨가되는 금속 또는 금속 화합물의 양은 원하는 최종 코어-쉘 구조 중 코어의 지름과 쉘 두께에 따라 적절히 조절된다.The amount of metal or metal compound added is appropriately adjusted depending on the diameter and shell thickness of the core in the desired final core-shell structure.

이와 같이 상기 금속 또는 금속 화합물 입자를 첨가할 경우, 금속의 이온화경향에 따라 백금보다 이온화경향이 큰 금속은 용액상에 용출되며, 백금; 또는 백금 및 전이금속은 용출되지 못한 이온화 경향이 큰 금속 입자, 예를 들면 구리의 표면상에 석출되어 코어-쉘 구조를 갖는 활성입자를 형성하게 된다.As such, when the metal or metal compound particles are added, the metal having a larger ionization tendency than platinum is eluted in solution according to the ionization tendency of the metal, platinum; Alternatively, platinum and transition metals are precipitated on the surface of metal particles having a high tendency to not elute, such as copper, to form active particles having a core-shell structure.

이때 환원제를 추가적으로 사용할 수 있으며, 사용 가능한 환원제로는 수소화붕소나트륨(NaBH4) 히드라진(N2H4), 티오아황산나트륨, 니트로히드라진, 포름산나트륨(HCOONa), 알데히드 또는 알코올 등이 있다.In this case, a reducing agent may be additionally used, and available reducing agents include sodium borohydride (NaBH 4 ) hydrazine (N 2 H 4 ), sodium thiosulfite, nitrohydrazine, sodium formate (HCOONa), aldehyde or alcohol.

3) 얻어진 입자를 증류수로 세척한 후 건조함으로써, 최종적으로 코어-쉘 구조의 활성 입자를 포함하는 전극 촉매를 얻을 수 있다. 건조한 후에는 질소, 공기 또는 수소 분위기하에서 150 내지 600 ℃ 범위로 열처리하는 과정을 거칠 수도 있으며, 이는 적절한 합금화도를 달성하기 위해서이다. 3) The obtained particles are washed with distilled water and then dried to finally obtain an electrode catalyst containing active particles having a core-shell structure. After drying, heat treatment may be performed in a range of 150 to 600 ° C. under a nitrogen, air, or hydrogen atmosphere, in order to achieve an appropriate degree of alloying.                     

본 발명의 전극 촉매는 연료전지용 전극 촉매로 사용할 수 있다. 여기서 연료전지는 산소환원 반응을 양극 반응으로 채택하고 있는 고분자 전해질 연료전지와 직접 액체 연료전지가 가능하나, 이를 제한하는 것은 아니며, 특히 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지 또는 직접 디메틸에테르 연료전지가 바람직하다. 또한 인산염 전해질형 연료전지에도 사용 가능하다. The electrode catalyst of the present invention can be used as an electrode catalyst for a fuel cell. Here, the fuel cell may be a polymer electrolyte fuel cell and a direct liquid fuel cell which adopt an oxygen reduction reaction as a positive electrode reaction, but are not limited thereto. In particular, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct Dimethyl ether fuel cells are preferred. It can also be used in phosphate electrolyte fuel cells.

또한, 본 발명은 상기의 촉매를 포함하는 연료전지용 전극막 접합체(MEA: membrane electrode assembly)를 제공한다. 여기서 전극막 접합체는 연료와 공기의 전기화학 촉매반응이 일어나는 전극과 수소 이온의 전달이 일어나는 고분자막의 접합체를 의미하는 것으로서, 촉매 전극과 전해질 막이 접착된 단일의 일체형 유니트이다.The present invention also provides a membrane electrode assembly (MEA) for a fuel cell comprising the catalyst. Here, the electrode membrane assembly means a conjugate of an electrode in which an electrochemical catalytic reaction between fuel and air occurs and a polymer membrane in which hydrogen ions are transferred, and is a single unitary unit to which a catalyst electrode and an electrolyte membrane are bonded.

연료전지용 전극막 접합체는 확산층과 상기 촉매 물질을 함유하는 활성층을 포함하는 연료극과 확산층 및 상기 촉매 물질을 함유하는 활성층을 포함하는 공기극으로 구성된 전극; 및 연료극과 공기극 사이에 개재되고 한 면 또는 양면이 상기 촉매 물질을 포함하는 활성층으로 도포된 전해질 막을 포함하며, 당업계에 알려진 통상적인 방법에 따라 제조될 수 있다. An electrode membrane assembly for a fuel cell includes an electrode including a fuel electrode including a diffusion layer and an active layer containing the catalyst material, and an air electrode including a diffusion layer and an active layer containing the catalyst material; And an electrolyte membrane interposed between the anode and the cathode and coated on one side or both sides with an active layer comprising the catalyst material, and may be prepared according to conventional methods known in the art.

추가적으로, 본 발명은 상기의 전극막 접합체를 포함하는 연료전지를 제공한다. In addition, the present invention provides a fuel cell including the electrode membrane assembly.

연료전지는 당 분야에 통상적인 방법에 따라 상기에서 제조된 전극 즉, 양극, 음극 및 상기 양극과 음극 사이에 상기 촉매 물질을 포함하는 활성층으로 도포된 전해질을 포함하는 전극막 접합체와 바이폴라 플레이트를 구성하여 제조될 수 있다.The fuel cell comprises a bipolar plate and an electrode membrane assembly including an electrode prepared as described above according to a conventional method in the art, that is, an anode, a cathode, and an electrolyte coated with an active layer including the catalyst material between the anode and the cathode. Can be prepared.

본 발명은 하기의 실시예 및 실험예에 의거하여 더욱 상세히 설명된다.단, 실시예 및 실험예는 본 발명을 예시하기 위한 것이며 이들만으로 한정하는 것은 아니다.The present invention will be described in more detail based on the following Examples and Experimental Examples. However, the Examples and Experimental Examples are for illustrating the present invention and are not limited thereto.

실시예 1. 연료전지용 전극 촉매 제조Example 1 Preparation of Electrode Catalyst for Fuel Cell

백금 금속염(H2PtCl6, Aldrich사) 0.1g을 칭량하여 증류수 1L에 용해시켜 0.1g-Pt/L용액을 제조한 후, 이 용액을 교반하면서 염산을 적가하여 용액의 산도(pH)를 5 이하로 조절한다. pH가 조절된 용액에 4nm의 입도를 갖는 구리 입자를 첨가하여 교반한 후, 이 혼합물을 증류수로 3회 세척하고 12시간 동안 건조한다.0.1 g of platinum metal salt (H 2 PtCl 6 , Aldrich) was weighed and dissolved in 1 L of distilled water to prepare a 0.1 g-Pt / L solution. The solution was then added dropwise with hydrochloric acid to give a pH of 5 Adjust to the following. After stirring by adding copper particles having a particle size of 4 nm to the pH adjusted solution, the mixture is washed three times with distilled water and dried for 12 hours.

실시예 2. 연료전지 전극막 접합체 제조Example 2 Preparation of Fuel Cell Electrode Membrane Assembly

일반적인 습식 코팅법(wet coating)으로 나피온 막의 표면에 양극과 음극 촉매를 코팅하고, hot pressing하여 MEA를 제조한다. 양극 촉매는 상기 실시예 1에서 제조된 전극 촉매 5㎎/㎠를 사용하고, 음극 촉매는 상용 촉매인 PtRu black(Johnson Matthey사) 5㎎/㎠을 Nafion 117(Johnson Matthey사)과 접합하여 MEA(membrane Electrode Assembly)를 형성시킨다.A general wet coating method is used to coat an anode and a cathode catalyst on the surface of a Nafion membrane and hot press to prepare a MEA. The cathode catalyst was prepared by using 5 mg / cm 2 of the electrode catalyst prepared in Example 1, and the cathode catalyst was bonded to Nafion 117 (Johnson Matthey) by PtRu black (Johnson Matthey), a commercial catalyst. membrane electrode assembly).

실시예 3. 연료전지 제조Example 3 Fuel Cell Manufacturing

시험한 단위 전지는 6.25cm2 크기이며, 흑연 채널(graphite channel)을 통해 음극에는 2M의 메탄올 용액을 2 내지 15 cc/분으로, 양극에는 산소를 500 내지 2000 cc/분의 유속으로 공급한다. The unit cell tested was 6.25 cm 2 in size, supplied with a 2 M methanol solution at 2-15 cc / min for the cathode and oxygen at 500-2000 cc / min for the cathode via a graphite channel.

본 발명의 연료 전지용 전극 촉매는 내부 충진 물질로서 백금보다 이온화 경향이 높으며 저가인 금속 입자를 사용하고 표면 코팅층 성분으로 백금 또는 백금-전이금속 합금과 같은 물질을 사용함으로써, 전극 촉매의 활성을 유지함과 동시에 촉매 활성을 갖는 고가의 금속 사용량 감소에 따른 경제성을 도모할 수 있다.The electrode catalyst for the fuel cell of the present invention maintains the activity of the electrode catalyst by using metal particles having a higher ionization tendency than platinum as the internal filling material and using inexpensive metal particles and a material such as platinum or a platinum-transition metal alloy as the surface coating layer component. At the same time, economics can be achieved by reducing the amount of expensive metals having catalytic activity.

Claims (12)

a) 백금보다 이온화경향이 높은 금속 또는 금속 화합물 입자; 및a) metal or metal compound particles having a higher ionization tendency than platinum; And b) 상기 입자의 표면 전부에 형성된 백금 또는 백금 함유 합금 코팅층b) a platinum or platinum containing alloy coating layer formed on the entire surface of the particles; 을 포함하는 코어-쉘(core-shell) 구조의 활성 입자를 포함하는 연료 전지용 전극 촉매.Electrode catalyst for a fuel cell comprising the active particles of the core-shell (core-shell) structure comprising a. 제 1항에 있어서, 상기 금속 또는 금속 화합물 입자는 Ge, Ga, Zn, Cu, Ni, Co, Fe, Al, Si, Sr, Y, Nb, Mo, W, Ti, B, In, Sn, Pb, Mn, Cr, Ce, V, Zr 및 La으로 이루어진 군으로부터 선택된 1종 이상인 촉매.The method of claim 1, wherein the metal or metal compound particles are Ge, Ga, Zn, Cu, Ni, Co, Fe, Al, Si, Sr, Y, Nb, Mo, W, Ti, B, In, Sn, Pb At least one catalyst selected from the group consisting of Mn, Cr, Ce, V, Zr and La. 제 1항에 있어서, 상기 금속 또는 금속화합물 입자의 입경은 1 내지 10nm 범위인 촉매.The catalyst of claim 1, wherein the particle diameter of the metal or metal compound particles is in the range of 1 to 10 nm. 제 1항에 있어서, 상기 금속 또는 금속 화합물 입자는 다공성 탄소, 전도성 고분자 및 금속 산화물로 이루어진 군으로부터 선택된 촉매 담체에 담지된 촉매.The catalyst of claim 1, wherein the metal or metal compound particles are supported on a catalyst carrier selected from the group consisting of porous carbon, conductive polymers, and metal oxides. 제 1항에 있어서, 상기 백금 또는 백금 합금 코팅층의 두께는 0.2 내지 3nm 범위인 촉매 The catalyst of claim 1 wherein the platinum or platinum alloy coating layer has a thickness in the range of 0.2 to 3 nm. 제 1항에 있어서, 상기 백금 함유 합금에 포함된 금속은 루테늄(Ru), 팔라듐(Pd), 금(Au), 은(Ag), 이리듐(Ir), 로듐(Rh) 및 오스뮴(Os)으로 이루어진 군으로부터 선택된 1종 이상의 금속인 촉매.The method of claim 1, wherein the metal contained in the platinum-containing alloy is ruthenium (Ru), palladium (Pd), gold (Au), silver (Ag), iridium (Ir), rhodium (Rh) and osmium (Os) A catalyst which is at least one metal selected from the group consisting of. 제 1항 내지 제 6항 중 어느 한 항의 촉매를 포함하는 연료전지용 전극막 접합체.An electrode membrane assembly for a fuel cell comprising the catalyst of any one of claims 1 to 6. 제 7항에 기재된 전극막 접합체를 포함하는 연료전지.A fuel cell comprising the electrode membrane assembly according to claim 7. a) 백금 전구체; 또는 백금 전구체 및 루테늄(Ru), 팔라듐(Pd), 금(Au), 은(Ag), 이리듐(Ir), 로듐(Rh) 및 오스뮴(Os)으로 이루어진 군으로부터 선택된 1종 이상의 전이금속을 포함하는 전구체 화합물을 각각 용해시켜 용액을 제조하는 단계; a) platinum precursor; Or a platinum precursor and at least one transition metal selected from the group consisting of ruthenium (Ru), palladium (Pd), gold (Au), silver (Ag), iridium (Ir), rhodium (Rh) and osmium (Os) Dissolving the precursor compounds to prepare a solution; b) 상기 단계 a)에서 제조된 용액에 백금보다 이온화 경향이 높은 금속 또는 금속화합물 입자를 단독 또는 촉매 담체에 담지된 상태로 첨가 및 혼합하는 단계; b) adding and mixing metal or metal compound particles having a higher ionization tendency than platinum to the solution prepared in step a) alone or supported on a catalyst carrier; c) 상기 단계 b)에서 얻어진 혼합물을 건조하는 단계c) drying the mixture obtained in step b) 를 포함하는 코어-쉘 구조의 활성입자를 포함하는 연료전지용 전극 촉매의 제조방법.Method for producing an electrode catalyst for a fuel cell comprising active particles of the core-shell structure comprising a. 제 9항에 있어서, 상기 단계 a)의 용액은 pH가 5 이하로 조절된 용액인 것을 특징으로 하는 제조방법.10. The method according to claim 9, wherein the solution of step a) is a solution whose pH is adjusted to 5 or less. 제 9항에 있어서, 상기 단계 a)의 용액에 염(salt)을 첨가하는 것을 특징으로 하는 제조방법.10. The process according to claim 9, wherein salt is added to the solution of step a). 제 9항에 있어서, 상기 제조방법은 단계 c)를 통해 건조된 혼합물을 질소, 공기 또는 수소 분위기하에서 150 내지 600℃의 온도 범위에서 열처리하는 단계를 포함하는 제조방법.10. The method of claim 9, wherein the method comprises the step of heat-treating the mixture dried through step c) in a temperature range of 150 to 600 ° C under a nitrogen, air or hydrogen atmosphere.
KR1020050003155A 2005-01-13 2005-01-13 Electrode catalyst for fuel cell KR100736538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050003155A KR100736538B1 (en) 2005-01-13 2005-01-13 Electrode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050003155A KR100736538B1 (en) 2005-01-13 2005-01-13 Electrode catalyst for fuel cell

Publications (2)

Publication Number Publication Date
KR20060082595A KR20060082595A (en) 2006-07-19
KR100736538B1 true KR100736538B1 (en) 2007-07-06

Family

ID=37173232

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050003155A KR100736538B1 (en) 2005-01-13 2005-01-13 Electrode catalyst for fuel cell

Country Status (1)

Country Link
KR (1) KR100736538B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904203B1 (en) 2007-07-04 2009-06-23 한국과학기술연구원 Method for fabricating electrolyte-electrode composites for a fuel cell
US8288308B2 (en) 2006-08-30 2012-10-16 Umicore Ag & Co. Kg Core/shell-type catalyst particles and methods for their preparation
US8304362B2 (en) 2006-08-30 2012-11-06 Umicore Ag & Co. Kg Core/shell-type catalyst particles and methods for their preparation
US9123976B2 (en) 2011-01-13 2015-09-01 Samsung Electronics Co., Ltd. Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode including the active particles for lithium air battery, and lithium air battery including the electrode
US11658307B2 (en) 2016-12-07 2023-05-23 Korea Institute Of Energy Research Method and apparatus for manufacturing core-shell catalyst

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754379B1 (en) * 2006-09-04 2007-08-31 삼성에스디아이 주식회사 Electrode catalyst containing two or more metal components, preparation method of the same and the fuel cell employing the electrode catalyst
KR100844752B1 (en) * 2007-06-26 2008-07-07 현대자동차주식회사 Method for preparing the mixed electrode catalyst materials for a solid electrolyte fuel cell
KR101397020B1 (en) * 2007-11-20 2014-05-21 삼성에스디아이 주식회사 Electrocatalyst for fuel cell, method for preparing the same and fuel cell including the electrode comprising the electrocatalyst
KR101144109B1 (en) 2009-11-30 2012-05-24 서울대학교산학협력단 Synthesis methods of Core-Shell Nanoparticles on a Carbon support
KR20130037741A (en) 2011-10-07 2013-04-17 현대자동차주식회사 Electrode for fuel cell and method for manufacturing membrane-electrode assembly using the same
KR101349068B1 (en) * 2011-12-12 2014-01-10 기아자동차주식회사 Method for manufacturing core-shell type surpported catalysts for fuel cell
KR101926866B1 (en) 2012-07-17 2018-12-07 현대자동차주식회사 Method for manufacturing palladium-platinium core-shell catalysts for fuel cells
KR101560988B1 (en) 2013-11-08 2015-10-15 주식회사 엘지화학 Fuel cell and methode for manufacturing the same
KR101670929B1 (en) * 2014-10-21 2016-11-07 서울대학교산학협력단 Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
KR102039210B1 (en) * 2016-03-24 2019-10-31 주식회사 엘지화학 Method for manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell comprising thereof
KR102173226B1 (en) * 2016-10-25 2020-11-03 서울대학교산학협력단 Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
KR101812903B1 (en) 2016-12-07 2017-12-27 한국에너지기술연구원 Method of Manufacturing Core-Shell Catalyst and Apparatus for Scale-up Manufacturing the Same
KR102225379B1 (en) 2018-11-27 2021-03-10 한국에너지기술연구원 Continuous reactor type core-shell catalyst electrode manufacturing apparatus and method Thereof
KR102266497B1 (en) * 2019-07-02 2021-06-17 한양대학교 에리카산학협력단 Fiber type magnetic structure and fabricating method of the same
KR102681537B1 (en) * 2021-12-27 2024-07-03 포항공과대학교 산학협력단 Organic based Electrochemical System For Removing Unreacted Ammonia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110422A (en) * 1999-09-01 2001-04-20 Samsung Sdi Co Ltd Substance for activating negative electrode for lithium secondary battery and manufacturing method therefor
KR20050015492A (en) * 2003-08-06 2005-02-21 학교법인 대전기독학원 한남대학교 Hcms carbon structure, electrocatalysts for fuel cell supported by hcms carbon structure, and their preparation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110422A (en) * 1999-09-01 2001-04-20 Samsung Sdi Co Ltd Substance for activating negative electrode for lithium secondary battery and manufacturing method therefor
KR20050015492A (en) * 2003-08-06 2005-02-21 학교법인 대전기독학원 한남대학교 Hcms carbon structure, electrocatalysts for fuel cell supported by hcms carbon structure, and their preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288308B2 (en) 2006-08-30 2012-10-16 Umicore Ag & Co. Kg Core/shell-type catalyst particles and methods for their preparation
US8304362B2 (en) 2006-08-30 2012-11-06 Umicore Ag & Co. Kg Core/shell-type catalyst particles and methods for their preparation
US8691717B2 (en) 2006-08-30 2014-04-08 Umicore Ag & Co. Kg Core/shell-type catalyst particles and methods for their preparation
KR100904203B1 (en) 2007-07-04 2009-06-23 한국과학기술연구원 Method for fabricating electrolyte-electrode composites for a fuel cell
US9123976B2 (en) 2011-01-13 2015-09-01 Samsung Electronics Co., Ltd. Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode including the active particles for lithium air battery, and lithium air battery including the electrode
US11658307B2 (en) 2016-12-07 2023-05-23 Korea Institute Of Energy Research Method and apparatus for manufacturing core-shell catalyst

Also Published As

Publication number Publication date
KR20060082595A (en) 2006-07-19

Similar Documents

Publication Publication Date Title
KR100736538B1 (en) Electrode catalyst for fuel cell
KR100681691B1 (en) Electrode catalyst for fuel cell
KR101384650B1 (en) Core/shell-type catalyst particles and methods for their preparation
EP1920484B1 (en) Supported catalyst and fuel cell
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
US8288308B2 (en) Core/shell-type catalyst particles and methods for their preparation
US8470495B2 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
EP3027308B1 (en) Method for forming noble metal nanoparticles on a support
KR100837396B1 (en) Supported catalyst, method for preparing the same, cathode electrode comprising the same, and fuel cell comprising the electrode
US6730427B2 (en) Electrode for fuel cell and method of manufacturing the same
KR20110060589A (en) Synthesis methods of core-shell nanoparticles on a carbon support
EP1078406A1 (en) Improved composition of a selective oxidation catalyst for use in fuel cells
US8178462B2 (en) Method for production of electrode catalyst for fuel cell
Ehsani et al. Electrocatalytic oxidation of ethanol on the surface of graphene based nanocomposites: an introduction and review to it in recent studies
JP2001118582A (en) Electrode of fuel cell and method for manufacturing the same
US20230420694A1 (en) Composite particles of core-shell structure including metal oxide particle core and platinum-group transition metal shell, and electrochemical reaction electrode material including same
Kamyabi et al. Efficient methanol electrooxidation on activated pencil graphite electrode modified with PtCu catalyst
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
KR20070031133A (en) Electrode catalyst with improved oxygen reduction activity and fuel cell using the same
CN115966719B (en) Anode catalyst, preparation method thereof and proton exchange membrane fuel cell
Abreu et al. Synthesis and performance of PdAu/ITO electrocatalysts in urea oxidation reaction
CN117219795A (en) Low noble metal loading electrocatalyst and preparation method and application thereof
JP2010282855A (en) Method of manufacturing electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 13