WO2023127443A1 - Curable composition and cured product thereof - Google Patents

Curable composition and cured product thereof Download PDF

Info

Publication number
WO2023127443A1
WO2023127443A1 PCT/JP2022/045269 JP2022045269W WO2023127443A1 WO 2023127443 A1 WO2023127443 A1 WO 2023127443A1 JP 2022045269 W JP2022045269 W JP 2022045269W WO 2023127443 A1 WO2023127443 A1 WO 2023127443A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
weight
group
polymer
parts
Prior art date
Application number
PCT/JP2022/045269
Other languages
French (fr)
Japanese (ja)
Inventor
雄 板野
理子 矢野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023127443A1 publication Critical patent/WO2023127443A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a curable composition and its cured product.
  • Sealing materials are known as building materials that can be suitably used for exterior wall joints, repairing cracks, joints in reinforced concrete structures, around sashes, etc.
  • Patent Document 1 discloses polyalkylene oxide containing a dimethoxymethylsilyl group and having a main chain skeleton made of polypropylene oxide, polypropylene glycol, colloidal calcium carbonate, ground calcium carbonate, a dehydrating agent, and a hinder.
  • a curable composition comprising a dophenolic antioxidant is disclosed.
  • Patent Document 2 discloses an oxyalkylene polymer having a crosslinkable silicon group, an alkoxysilane compound that reacts with water to produce an amine compound having an alkoxysilyl group, a tetravalent tin compound, and a (meth)acrylic compound. Buildings having walled structures using one-component sealants containing acid ester polymer plasticizers are disclosed.
  • one aspect of the present invention is to provide a curable composition having excellent physical properties such as low modulus, high strength, and high elongation when cured even when a high amount of filler such as calcium carbonate is blended. With the goal.
  • the present inventors have studied to solve the above problems, and as a result, by blending a predetermined weight part of a polyoxyalkylene polymer having a specific reactive silicon group, a specific polypropylene glycol, and a dehydrating agent, The inventors have found new knowledge that low modulus, high strength, and high elongation can be achieved even when a high amount of filler such as calcium carbonate is blended, and have completed the present invention.
  • one aspect of the present invention comprises (A) 100 parts by weight of a polyoxyalkylene polymer having a reactive silicon group, (B) 120 to 300 parts by weight of polypropylene glycol having a molecular weight of 2000 or more, and (C) colloidal carbonic acid. 40 to 250 parts by weight of calcium, (D) 80 to 300 parts by weight of ground calcium carbonate, and (E) 4 parts by weight or more of a dehydrating agent, wherein the polymer (A) is contained in one molecule.
  • a curable composition ( Hereinafter, it is called "this curable composition”.).
  • a curable composition having excellent physical properties such as low modulus, high strength, and high elongation when cured even when a high amount of filler such as calcium carbonate is blended. can be done.
  • the present inventors have made intensive studies and found that a polyoxyalkylene polymer having a specific reactive silicon group, a specific polypropylene glycol, and a dehydrating agent are added to a predetermined
  • the present inventors have found new knowledge that by blending parts by weight, low modulus, high strength, and high elongation can be achieved even when a high amount of filler such as calcium carbonate is blended.
  • At least two types of polyoxyalkylene polymers having specific reactive silicon groups (a linear polymer with a high content of reactive silicon groups (highly silylated polymer) and
  • a linear polymer with a low silylation content (low silylation polymer)
  • the modulus tends to be high when only a high silylation polymer is used, but the linear high silyl content Modulus can be improved without sacrificing strength and elongation by blending low silylation polymers with linear low silylation polymers.
  • desired physical properties can be achieved while a high amount of filler such as calcium carbonate is blended into the curable composition, so cost reduction can be achieved, which is extremely advantageous in the field of sealants and the like. .
  • the present curable composition is a polyoxyalkylene polymer (A1) having a specific structure (that is, a linear structure containing an average of 1.6 or more reactive silicon groups in one molecule) (hereinafter simply referred to as Sometimes referred to as “polyoxyalkylene polymer (A1)” or “polymer (A1)”) and a specific structure (i.e., containing less than 1.6 reactive silicon groups on average per molecule
  • a polyoxyalkylene polymer (A2) hereinafter simply referred to as “polyoxyalkylene polymer (A2)” or “polymer (A2)” having a linear structure) and include.
  • the curable composition contains the polyoxyalkylene-based polymer (A1) and the polyoxyalkylene-based polymer (A2), so that when the curable composition is cured, a low modulus , high strength and high elongation.
  • a polyoxyalkylene polymer (A1) having a linear structure containing an average of 1.6 or more reactive silicon groups per molecule and an average of 1.6 reactive silicon groups per molecule.
  • A a polyoxyalkylene-based polymer having a reactive silicon group, which contains a polyoxyalkylene-based polymer (A2) having a linear structure containing less than 6, "polyoxyalkylene-based polymer (A )” and “Polymer (A)”.
  • the polyoxyalkylene polymer (A1) has a straight chain structure containing an average of 1.6 or more reactive silicon groups per molecule.
  • the polyoxyalkylene-based polymer (A1) has at least one reactive silicon group in the molecular chain, a silanol condensation reaction occurs to crosslink it, turn it into a polymer state, and cure it.
  • the number of reactive silicon groups contained in the polyoxyalkylene polymer (A1) must be at least 1 from the viewpoint of condensation reaction with a silanol condensation catalyst. Alternatively, it is preferable that reactive silicon groups are present at both ends of the branched molecular chain.
  • the reactive silicon group contained in the polyoxyalkylene polymer (A1) has a hydroxy group or hydrolyzable group bonded to the silicon atom, and forms a siloxane bond through a reaction accelerated by a silanol condensation catalyst. It is a group that can be crosslinked by means of
  • the polyoxyalkylene polymer (A1) has a reactive silicon group represented by general formula (1).
  • —Si(R) 3-a (X) a (1)
  • each R is independently a hydrocarbon group having 1 to 20 carbon atoms, or —OSi(R′) 3 (R′ is each independently a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group as R may be substituted and may have a hetero-containing group.
  • X is each independently a hydroxyl group or a hydro is a degradable group.
  • a is an integer of 1 to 3.
  • the number of carbon atoms in the hydrocarbon group of R is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 3.
  • R include, for example, methyl group, ethyl group, chloromethyl group, methoxymethyl group and N,N-diethylaminomethyl group, preferably methyl group, ethyl group and chloromethyl group. , a methoxymethyl group, more preferably a methyl group or a methoxymethyl group. According to the said structure, it has the advantage that it is easy to balance storage stability and reactivity.
  • Examples of X include hydroxyl group, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, and alkenyloxy group.
  • an alkoxy group such as a methoxy group and an ethoxy group is more preferred, and a methoxy group and an ethoxy group are particularly preferred, since they are moderately hydrolyzable and easy to handle.
  • Specific examples of the reactive silicon group possessed by the polyoxyalkylene polymer (A1) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and dimethoxymethyl silyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N ,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like, but are not limited thereto.
  • methyldimethoxysilyl trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with high rigidity can be obtained. A trimethoxysilyl group is more preferred.
  • the polyoxyalkylene polymer (A1) may have an average of more than one reactive silicon group at one terminal site.
  • "having an average of more than one reactive silicon group at one terminal site” means that the polyoxyalkylene polymer (A1) has the following general formula (2) It shows that one terminal portion contains a polyoxyalkylene having two or more reactive silicon groups. That is, the polyoxyalkylene polymer (A1) may contain only a polyoxyalkylene having two or more reactive silicon groups at one terminal site, or two or more at one terminal site. and polyoxyalkylenes having one reactive silicon group at one terminal site.
  • the plurality of terminal sites possessed by one molecule of polyoxyalkylene may include both a terminal site having two or more reactive silicon groups and a terminal site having one reactive silicon group.
  • the polyoxyalkylene polymer (A1) as a whole has an average of more than one reactive silicon group at one terminal site, but a poly having a terminal site without a reactive silicon group It may contain oxyalkylene.
  • the terminal portion of the polyoxyalkylene polymer (A1) has the general formula (2):
  • R 1 and R 3 are each independently a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 1 and R 3 are carbon, oxygen , nitrogen, each of R 2 and R 4 is independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10, R 5 is a substituted or an unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X is a hydroxyl group or a hydrolyzable group, and c is an integer of 1 to 3.).
  • R 1 and R 3 may be a divalent organic group having 1 to 6 carbon atoms, may contain an oxygen atom, or may be a hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group is preferably 1-4, more preferably 1-3, even more preferably 1-2.
  • Specific examples of R 1 include CH 2 OCH 2 , CH 2 O and CH 2 , preferably CH 2 OCH 2 .
  • Specific examples of R 3 include CH 2 and CH 2 CH 2 , preferably CH 2 .
  • the number of carbon atoms in the hydrocarbon groups of R 2 and R 4 is preferably 1-5, more preferably 1-3, even more preferably 1-2.
  • Specific examples of R 2 and R 4 include a hydrogen atom, a methyl group and an ethyl group, preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
  • the terminal moiety represented by the general formula (2) is CH 2 OCH 2 for R 1 , CH 2 for R 3 , and hydrogen atoms for R 2 and R 4 .
  • n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1 or 2.
  • n is not limited to one value, and may be a mixture of multiple values.
  • the number of reactive silicon groups possessed by the polyoxyalkylene polymer (A1) is preferably more than 1.0 on average at one terminal site, more preferably 1.1 or more. , is more preferably 1.5 or more, and even more preferably 2.0 or more. Also, the number is preferably 5 or less, more preferably 3 or less.
  • the number of terminal sites having more than one reactive silicon group contained in one molecule of the polyoxyalkylene polymer (A1) is preferably 0.5 or more on average, and 1.0 It is more preferably 1 or more, still more preferably 1.1 or more, and even more preferably 1.5 or more. Also, the number is preferably 4 or less, more preferably 3 or less.
  • the polyoxyalkylene polymer (A1) may have reactive silicon groups in addition to the terminal sites, but having only the terminal sites provides a rubber-like cured product with high elongation and low elastic modulus. It is preferable because it becomes easy to be
  • the average number of reactive silicon groups in one molecule of the polyoxyalkylene polymer (A1) is 1.6 or more, preferably 1.8 or more, and 2.0 or more. is more preferable, and 2.5 or more is even more preferable.
  • the number of reactive silicon groups is 1.6 or more on average, the effect of increasing the strength of the curable composition is exhibited.
  • the upper limit is not particularly limited, it is, for example, 5.0 or less on average, preferably 4.5 or less. When the upper limit is 5.0 or less, the effect of providing a flexible elastic body is exhibited.
  • the main chain skeleton of the polyoxyalkylene polymer (A1) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, Examples include polyoxypropylene-polyoxybutylene copolymers. Among them, polyoxypropylene is preferred.
  • the number average molecular weight of the polyoxyalkylene polymer (A1) is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene equivalent molecular weight in GPC. If the number average molecular weight is less than 3,000, the amount of reactive silicon groups to be introduced increases, which may be disadvantageous in terms of production costs. There is
  • the organic polymer precursor before introduction of the reactive silicon group was subjected to the hydroxyl value measurement method of JIS K 1557 and the iodine value of JIS K 0070.
  • the terminal group concentration was measured by titration analysis based on the principle of the measurement method, and indicate the terminal group equivalent molecular weight obtained by considering the structure of the organic polymer (degree of branching determined by the polymerization initiator used).
  • the terminal group-equivalent molecular weight of the polyoxyalkylene-based polymer (A1) is obtained by preparing a calibration curve of the number-average molecular weight obtained by general GPC measurement of the organic polymer precursor and the terminal-group-equivalent molecular weight, and calculating the polyoxyalkylene-based It is also possible to convert the number average molecular weight obtained by GPC of the polymer (A1) into a terminal group equivalent molecular weight.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A1) is not particularly limited, but is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, and even more preferably 1.5 or less. , 1.4 or less is particularly preferred, and 1.2 or less is most preferred.
  • the molecular weight distribution of the polyoxyalkylene polymer (A1) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the main chain structure of the polyoxyalkylene polymer (A1) is a linear structure.
  • the viscosity of the polyoxyalkylene polymer (A1) is not particularly limited, but is preferably 1 Pa s to 5 Pa s, more preferably 1.5 Pa s to 4 Pa s, and further 2 Pa s to 3 Pa s. preferable.
  • the viscosity of the polyoxyalkylene-based polymer (A1) is 1 Pa ⁇ s to 5 Pa ⁇ s, there is an advantage that the strength increases when the curable composition is cured.
  • Introduction of a reactive silicon group to the main chain of the polyoxyalkylene polymer (A1) may be performed by a known method. For example, the following methods are mentioned.
  • Method I An organic polymer having a functional group such as a hydroxy group is reacted with a compound having an active group that exhibits reactivity with the functional group and an unsaturated group to obtain an organic polymer having an unsaturated group. Then, the resulting organic polymer having unsaturated groups is reacted with a hydrosilane compound having reactive silicon groups by hydrosilylation.
  • Examples of compounds having a reactive active group and an unsaturated group that can be used in Method I include unsaturated group-containing epoxy compounds such as allyl glycidyl ether, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, Examples thereof include compounds having a carbon-carbon double bond such as methallyl bromide, vinyl iodide, allyl iodide and methallyl iodide.
  • Examples of compounds having a carbon-carbon triple bond include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentyne, 1,4-dichloro-2-butyne, 5-chloro-1-pentyne, 6-chloro-1-hexyne, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo- 2-octyne, 1-bromo-2-pentyne, 1,4-dibromo-2-butyne, 5-bromo-1-pentyne, 6-bromo-1-hexyne, propargyl iodide, 1-iodo-2-butyne, 4-iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2-p
  • Halogenated hydrocarbon compounds having a carbon-carbon triple bond as well as compounds such as vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, allyl iodide, and methallyl iodide. Hydrocarbon compounds with unsaturated bonds other than halogenated hydrocarbons with carbon-carbon triple bonds may also be used.
  • hydrosilane compounds that can be used in method I include halogenated silanes, alkoxysilanes, acyloxysilanes, ketoximate silanes, and the like. Hydrosilane compounds are not limited to these.
  • halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
  • alkoxysilanes include trimethoxysilane, triethoxysilane, triisopropoxysilane, dimethoxymethylsilane, diethoxymethylsilane, diisopropoxymethylsilane, (methoxymethyl)dimethoxysilane, phenyldimethoxysilane, 1-[ 2-(Trimethoxysilyl)ethyl]-1,1,3,3-tetramethyldisiloxane and the like.
  • acyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
  • ketoximate silanes include bis(dimethylketoximate)methylsilane and bis(cyclohexylketoximate)methylsilane.
  • halogenated silanes and alkoxysilanes are particularly preferred.
  • Alkoxysilanes are most preferred because they are mildly hydrolyzable and easy to handle.
  • alkoxysilanes it is easy to obtain, it is easy to obtain a resin composition for foams with excellent curability and storage stability, and it is possible to produce foams with excellent tensile strength using the resin composition for foams.
  • Dimethoxymethylsilane is preferred because it is easy to use.
  • Trimethoxysilane and triethoxysilane are also preferable from the viewpoint of easily obtaining a resin composition for foam having excellent curability.
  • Method II A compound having a mercapto group and a reactive silicon group is subjected to a radical addition reaction in the presence of a radical initiator and/or a radical generating source to obtain an organic polymer having an unsaturated group in the same manner as in Method I.
  • Compounds having a mercapto group and a reactive silicon group that can be used in Method II include, for example, 3-mercapto-n-propyltrimethoxysilane, 3-mercapto-n-propylmethyldimethoxysilane, 3-mercapto-n-propyl triethoxysilane, 3-mercapto-n-propylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane and the like.
  • Compounds having mercapto groups and reactive silicon groups are not limited to these.
  • Method III A method of reacting an organic polymer having functional groups such as hydroxy, epoxy, and isocyanate groups in the molecule with a compound having a functional group reactive to these functional groups and a reactive silicon group. .
  • the method of reacting an organic polymer having a hydroxy group with a compound having an isocyanate group and a reactive silicon group, which can be employed in Method III, is not particularly limited. and the like.
  • Compounds having isocyanate groups and reactive silicon groups that can be used in Method III include, for example, 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propylmethyldimethoxysilane, 3-isocyanato-n- Propyltriethoxysilane, 3-isocyanato-n-propylmethyldiethoxysilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, isocyanatomethyldiethoxymethylsilane and the like.
  • Compounds having isocyanate groups and reactive silicon groups are not limited to these.
  • Silane compounds such as trimethoxysilane, in which three hydrolyzable groups are bonded to one silicon atom, may undergo a disproportionation reaction. As the disproportionation reaction progresses, unstable compounds such as dimethoxysilane are produced, which can be difficult to handle. However, such a disproportionation reaction does not proceed with 3-mercapto-n-propyltrimethoxysilane and 3-isocyanato-n-propyltrimethoxysilane. Therefore, when a group in which three hydrolyzable groups are bonded to one silicon atom, such as a trimethoxysilyl group, is used as the silicon-containing group, method II or method III is preferably used.
  • the disproportionation reaction does not proceed with the silane compound represented by the following formula (2a).
  • X is the same as in formula (1a).
  • 2m+2 R 2a are independently the same as R 1a in Formula (1a).
  • R 3a represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • m represents an integer of 0 or more and 19 or less.
  • R 2a are each independently preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms. A hydrocarbon group having 1 or more and 4 or less atoms is more preferable.
  • R 3a is preferably a divalent hydrocarbon group having 1 to 12 carbon atoms, more preferably a divalent hydrocarbon group having 2 to 8 carbon atoms, and a divalent hydrocarbon group having 2 carbon atoms. groups are more preferred.
  • m is most preferably 1.
  • Silane compounds represented by formula (2a) include, for example, 1-[2-(trimethoxysilyl)ethyl]-1,1,3,3-tetramethyldisiloxane, 1-[2-(trimethoxysilyl) propyl]-1,1,3,3-tetramethyldisiloxane, 1-[2-(trimethoxysilyl)hexyl]-1,1,3,3-tetramethyldisiloxane and the like.
  • Method I or Method III the method of reacting an organic polymer having a terminal hydroxy group with a compound having an isocyanate group and a reactive silicon group provides a high conversion rate in a relatively short reaction time.
  • the organic polymer having a reactive silicon group obtained by Method I has a lower viscosity than the organic polymer having a reactive silicon group obtained by Method III, and the resin composition for foams has good workability. is obtained, and the organic polymer having a reactive silicon group obtained by Method II has a strong odor due to mercaptosilane. Therefore, Method I is particularly preferred.
  • a synthetic method for introducing an average of more than 1.0 reactive silicon groups to one terminal site of a polyoxyalkylene polymer will be described below.
  • the polyoxyalkylene polymer (A1) having an average of more than 1.0 reactive silicon groups at one terminal site has two at one terminal of the hydroxyl group-terminated polymer obtained by polymerization. After introducing the above carbon-carbon unsaturated bonds, it is preferable to react with a reactive silicon group-containing compound that reacts with the carbon-carbon unsaturated bonds.
  • the polyoxyalkylene polymer (A1) is preferably produced by polymerizing an epoxy compound with an initiator having a hydroxyl group using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex.
  • hydroxyl-containing initiators include hydroxyl groups such as ethylene glycol, propylene glycol, glycerin, pentaerythritol, low-molecular-weight polyoxypropylene glycol, polyoxypropylene triol, allyl alcohol, polypropylene monoallyl ether, and polypropylene monoalkyl ether. Examples include those having one or more.
  • epoxy compounds include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether. Among these, propylene oxide is preferred.
  • alkali metal salt used in the present invention sodium hydroxide, sodium methoxide, sodium ethoxide, potassium hydroxide, potassium methoxide and potassium ethoxide are preferred, and sodium methoxide and potassium methoxide are more preferred.
  • Sodium methoxide is particularly preferred because of its availability.
  • the temperature at which the alkali metal salt is allowed to act is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower.
  • the time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
  • epoxy compound having a carbon-carbon unsaturated bond used in the present invention, especially general formula (3):
  • R 1 and R 2 in the formula are the same as the substituents described above.
  • allyl glycidyl ether, methallyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, butadiene monoxide, and 1,4-cyclopentadiene monoepoxide are preferred from the viewpoint of reaction activity, and allyl glycidyl ether is particularly preferred.
  • the amount of the epoxy compound having a carbon-carbon unsaturated bond used in the present invention can be any amount in consideration of the introduction amount and reactivity of the carbon-carbon unsaturated bond to the polymer.
  • the molar ratio of the hydroxyl group-terminated polymer to the hydroxyl group is preferably 0.2 or more, more preferably 0.5 or more. Also, it is preferably 5.0 or less, more preferably 2.0 or less.
  • the reaction temperature for the ring-opening addition reaction of an epoxy compound having a carbon-carbon unsaturated bond with a polymer containing a hydroxyl group is preferably 60° C. or higher and 150° C. or lower. It is more preferably 110° C. or higher and 140° C. or lower.
  • halogenated hydrocarbon compounds having a carbon-carbon unsaturated bond examples include vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, and allyl iodide. , methallyl iodide, etc., and it is more preferable to use allyl chloride and methallyl chloride from the viewpoint of ease of handling.
  • the amount of the halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is not particularly limited, but the molar ratio to the hydroxyl group of the hydroxyl-terminated polymer is preferably 0.7 or more, and 1.0 or more. more preferred. Moreover, 5.0 or less is preferable and 2.0 or less is more preferable.
  • the temperature at which the halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is reacted is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower.
  • the reaction time is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
  • the polyoxyalkylene polymer (A2) has a linear structure containing less than 1.6 reactive silicon groups on average per molecule.
  • the average number of reactive silicon groups in one molecule of the polyoxyalkylene polymer (A2) is less than 1.6, preferably 1.5 or less, and 1.4 or less. is more preferable. When the average number of reactive silicon groups is less than 1.6, an effect of high elongation is obtained.
  • the lower limit is not particularly limited, it is, for example, 0.5 or more on average, preferably 0.6 or more. When the lower limit is 0.6 or more, the tackiness is good.
  • the viscosity of the polyoxyalkylene polymer (A2) is not particularly limited, but is preferably 6.0 Pa s to 50 Pa s, more preferably 7.0 Pa s to 48 Pa s, and 8.0 Pa s to 45 Pa. • s is more preferred.
  • the viscosity of the polyoxyalkylene polymer (A2) is 6.0 Pa ⁇ s to 50 Pa ⁇ s, physical properties such as low modulus and high elongation can be obtained when the curable composition is cured.
  • polyoxyalkylene polymer (A2) for example, JP-B-45-36319, JP-B-46-12154, JP-A-50-156599, JP-A-54-6096, JP-A-55-13767, JP-A-55-13468, JP-A-57-164123, JP-B-3-2450, US Pat. No. 3,632,557, US Pat. No. 4,345,053, US Pat. Polymers and the like proposed in publications such as No. 4960844 can be mentioned.
  • the weight ratio of the polyoxyalkylene polymer (A1) and the polyoxyalkylene polymer (A2) is preferably 95:5 to 30:70, more preferably 90:10 to 40:60. and more preferably 80:20 to 50:50.
  • the weight ratio of the polyoxyalkylene polymer (A1) to the polyoxyalkylene polymer (A2) is 95:5 to 30:70, the strength and elongation are well balanced.
  • the curable composition contains polypropylene glycol with a molecular weight of 2000 or greater.
  • polypropylene glycol intends a thermoplastic resin that is a polymerized polymer of propylene.
  • the molecular weight of polypropylene glycol is 2,000 or more, preferably 2,500 or more, and more preferably 3,000 or more. When the molecular weight of the polypropylene glycol is 2000 or more, the effect of low contamination is exhibited.
  • the upper limit of the molecular weight of the polypropylene glycol is not particularly limited, it is, for example, 15,000 or less, preferably 10,000 or less. When the upper limit of the molecular weight of the polypropylene glycol is 15000 or less, the effect of low viscosity is exhibited.
  • polypropylene glycol with a molecular weight of 2000 or more can be used.
  • examples of commercially available polypropylene glycol having a molecular weight of 2000 or more include Sannix PP-3000 (manufactured by Sanyo Chemical Industries) and Actcol P-3030 (manufactured by Mitsui Chemicals).
  • Polypropylene glycol having a molecular weight of 2000 or more may be used alone or in combination of two or more.
  • the blending amount of polypropylene glycol is 120 to 300 parts by weight, preferably 125 to 280 parts by weight, more preferably 130 to 260 parts by weight, with respect to 100 parts by weight of the total polyoxyalkylene polymer (A).
  • the blending amount of polypropylene glycol is 120 to 300 parts by weight, there is an advantage in terms of flexibility.
  • the curable composition comprises colloidal calcium carbonate. Cost reduction can be achieved by including colloidal calcium carbonate in the present curable composition. In addition, since the present curable composition contains colloidal calcium carbonate, it is possible to reduce slip and slump that occur when used for vertical joints under high temperature conditions.
  • the colloidal calcium carbonate is not particularly limited, but examples include mechanically pulverized and processed limestone. Only one type of colloidal calcium carbonate may be used, or two or more types may be used in combination.
  • the specific surface area of colloidal calcium carbonate is preferably 1 to 100 m 2 /g, more preferably 10 to 50 m 2 /g.
  • the specific surface area of the colloidal calcium carbonate (C) is determined by a powder specific surface area measuring device.
  • the average particle size of colloidal calcium carbonate is preferably 0.01-0.5 ⁇ m, more preferably 0.02-0.1 ⁇ m.
  • the average particle size of colloidal calcium carbonate is calculated from the specific surface area. The strength of the cured product tends to increase as the average particle size decreases.
  • the colloidal calcium carbonate may be surface-treated or untreated.
  • surface treatment agents used for surface treatment of colloidal calcium carbonate include organic substances, various surfactants (fatty acids, fatty acid soaps, fatty acid esters, etc.), and various coupling agents (silane coupling agents, titanate coupling agents, etc.). etc.
  • the colloidal calcium carbonate is preferably treated with a surface treatment agent in an amount of 0.1 to 20% by weight, based on the weight of the colloidal calcium carbonate, and is treated with a surface treatment agent in an amount of 0.2 to 10% by weight. is more preferable.
  • the amount of the surface treatment agent used is 0.1% by weight or more, the effect of improving workability and adhesiveness is good.
  • the amount of the surface treatment agent used is 20% by weight or less, the storage stability of the curable composition is good.
  • the amount of colloidal calcium carbonate compounded is 40 to 250 parts by weight, preferably 50 to 240 parts by weight, more preferably 60 to 230 parts by weight, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). .
  • the content of colloidal calcium carbonate is 40 to 250 parts by weight, it has the advantages of high strength and high elongation.
  • the curable composition comprises ground calcium carbonate. Cost reduction can be achieved by including heavy calcium carbonate in the present curable composition.
  • the heavy calcium carbonate is not particularly limited, but examples include those obtained by mechanically pulverizing and processing limestone, shells, chalk, marble, and the like. Only one type of ground calcium carbonate may be used, or two or more types may be used in combination.
  • the specific surface area of heavy calcium carbonate is preferably 1.0 to 3.5 m 2 /g, more preferably 1.2 to 3.0 m 2 /g.
  • the specific surface area of heavy calcium carbonate is determined by a powder specific surface area measuring device.
  • the average particle size of heavy calcium carbonate is preferably 0.8-5.0 ⁇ m, more preferably 1.0-3.0 ⁇ m.
  • the average particle size of heavy calcium carbonate is calculated from the specific surface area. The strength of the cured product tends to increase as the average particle size decreases.
  • the ground calcium carbonate may be surface-treated or untreated.
  • surface treatment agents used for surface treatment of heavy calcium carbonate include organic substances, various surfactants (fatty acids, fatty acid soaps, fatty acid esters, etc.), various coupling agents (silane coupling agents, titanate coupling agents, etc.). ) and the like.
  • the ground calcium carbonate is preferably treated with a surface treatment agent in an amount of 0.1 to 20% by weight, based on the weight of the ground calcium carbonate, and is treated with a surface treatment agent in an amount of 1 to 5% by weight. is more preferable.
  • the amount of the surface treatment agent used is 0.1% by weight or more, the effect of improving workability and adhesiveness is good.
  • the amount of the surface treatment agent used is 20% by weight or less, the storage stability of the curable composition is good.
  • the blending amount of heavy calcium carbonate is 80 to 300 parts by weight, preferably 85 to 290 parts by weight, more preferably 90 to 280 parts by weight, with respect to 100 parts by weight of the total polyoxyalkylene polymer (A). preferable.
  • the blending amount of heavy calcium carbonate is 80 to 300 parts by weight, it has the advantage of low viscosity.
  • the total amount of colloidal calcium carbonate and ground calcium carbonate is 250 parts by weight or more and 260 parts by weight with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). Above is preferable, and 270 parts by weight or more is more preferable.
  • a total amount of colloidal calcium carbonate and ground calcium carbonate of 250 parts by weight has the advantage of low cost.
  • the upper limit of the total amount of colloidal calcium carbonate and ground calcium carbonate is not particularly limited, it is, for example, 700 parts by weight or less, preferably 500 parts by weight or less. Slip resistance is excellent when the total amount of colloidal calcium carbonate and ground calcium carbonate is 700 parts by weight or less.
  • the curable composition contains a dehydrating agent. Storage stability can be improved by including a dehydrating agent in the present curable composition.
  • dehydrating agents include alkoxysilane compounds, synthetic zeolite, activated alumina, silica gel, quicklime, and magnesium oxide.
  • alkoxysilane compounds can be suitably used.
  • alkoxysilane compounds include n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, methyl silicate, ethyl silicate, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, ⁇ -glycerol. and sidoxypropyltrimethoxysilane.
  • vinyltrimethoxysilane has a high dehydration effect and can be preferably used. Only one type of dehydrating agent may be used, or two or more types may be used in combination.
  • a commercially available dehydrating agent may be used, or a synthetic one may be used.
  • Examples of commercially available dehydrating agents include vinylsilane A-171 manufactured by Momentive, VTMO manufactured by EVONIK, and KBM-1003 manufactured by Shin-Etsu Silicone.
  • the amount of the dehydrating agent is 4 parts by weight or more, preferably 4.2 parts by weight or more, more preferably 4.4 parts by weight or more, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). .
  • the amount of the dehydrating agent is 4 parts by weight or more, there is an advantage of stable storage.
  • the upper limit of the amount of the dehydrating agent is not particularly limited, it is, for example, 10 parts by weight or less, preferably 7 parts by weight or less.
  • the amount of the dehydrating agent to be blended is 10 parts by weight or less, a curing speed suitable for the sealant can be achieved.
  • the curable composition preferably contains an antioxidant having four hindered phenol structures in one molecule.
  • Weather resistance and moisture resistance can be improved by including an antioxidant in the present curable composition. As a result, it can be suitably used in tropical regions such as Southeast Asia, for example.
  • the antioxidant has a hindered phenol structure that is a single hindered phenol structure. is preferably
  • antioxidants include, but are not limited to, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di-or tri-) ( ⁇ -methylbenzyl)phenol, 2,2′-methylenebis(4ethyl-6-t-butylphenol), 2,2′-methylenebis(4methyl-6-t-butylphenol), 4,4′-butylidenebis(3- methyl-6-t-butylphenol), 4,4′-thiobis(3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, tri Ethylene glycol-bis-[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4- hydroxyphenyl
  • antioxidants or synthesized antioxidants may be used.
  • Commercially available antioxidants include, for example, Nocrac 200, Nocrac M-17, Nocrac SP, Nocrac SP-N, Nocrac NS-5, Nocrac NS-6, Nocrac NS-30, Nocrac 300, and Nocrac NS-7.
  • Nocrac DAH (all of the above are manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.); 658, ADEKA STAB AO-80, ADEKA STAB AO-15, ADEKA STAB AO-18, ADEKA STAB AO-18, ADEKA STAB 328, ADEKA STAB AO-37 (all manufactured by ADEKA Co., Ltd.); IRGANOX-1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all manufactured by Ciba Specialty Chemicals); SumilizerGM, SumilizerGA-80, Sum ilizer GS (all of which are manufactured by Sumitomo Chemical Co., Ltd.).
  • the amount of the antioxidant compounded is, for example, 0.2 to 5 parts by weight, preferably 0.4 to 4.5 parts by weight, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). 0.6 to 4 parts by weight is more preferred. When the blending amount of the antioxidant is 0.2 to 5 parts by weight, the weather resistance and humidity resistance can be favorably improved.
  • the curable composition preferably comprises organic balloons.
  • Organic balloons can also be referred to as plastic microballoons. Inclusion of organic balloons in the present curable composition improves thermal insulation.
  • organic balloons include, but are not limited to, phenol resin balloons, epoxy resin balloons, urea resin balloons, polyvinylidene chloride resin balloons, polyvinylidene chloride-(meth)acrylic resin balloons, polystyrene balloons, polymethacrylate balloons, polyvinyl Examples include alcohol balloons, styrene-(meth)acrylic resin balloons, polyacrylonitrile balloons, and the like. Only one type of organic balloon may be used, or two or more types may be used in combination. By combining with inorganic balloons such as glass balloons and shirasu balloons, hardness and stringiness can be improved.
  • organic balloons or synthesized ones may be used.
  • Commercially available organic balloons include, for example, MFL-HD60CA, MFL-81GCA (all manufactured by Matsumoto Yushi), EMC-40 (B) (manufactured by Nippon Philite), and the like.
  • the amount of the organic balloon compounded is, for example, 3 to 15 parts by weight, preferably 4 to 12 parts by weight, more preferably 5 to 10 parts by weight, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). preferable.
  • the amount of the organic balloon is 3 to 15 parts by weight, it has the advantage of improving the heat insulating properties.
  • the curable composition may contain other components in addition to the above components (A) to (G).
  • Other components are not particularly limited as long as they are commonly added to curable compositions used in the field of sealants and the like.
  • Other components include, for example, light stabilizers, adhesion imparting agents, thixotropic agents, pigments, ultraviolet absorbers, curing catalysts, matting agents and the like.
  • the blending amount of other components is not particularly limited as long as the effects of the present invention are achieved, and can be appropriately set by those skilled in the art.
  • Applications of the present curable composition are not particularly limited, but examples thereof include sealing materials, coating materials, adhesives, paints, waterproofing agents, potting agents and the like. Among others, it is preferably used as a sealant, and more preferably used as a joint structural sealant.
  • a cured product (hereinafter referred to as "main cured product") is provided by curing the present curable composition.
  • the cured product is formed by curing the curable composition.
  • the method of curing the present curable composition is not particularly limited, but for example, a method of curing the present curable composition with moisture in the air, a booster method of forcibly kneading moisture with a static mixer, heating with an oven or heat gun and a method of positively supplying water to the surface by spraying or the like.
  • the modulus of the cured product is preferably 0.4 MPa or less, more preferably 0.35 MPa or less, and even more preferably 0.30 MPa or less.
  • the lower limit of the modulus of the hardened product is, for example, 0.20 MPa or more, preferably 0.22 MPa or more, and more preferably 0.25 MPa or more.
  • the modulus of the main cured product is 0.20 MPa or more, the effect of low contamination is exhibited.
  • the modulus of the cured product can be measured by the method described in Examples below.
  • the strength of the hardened product is preferably 1.0 MPa or more, more preferably 1.1 MPa or more, and even more preferably 1.3 MPa or more. When the strength of the hardened product is 1.0 MPa or more, the effect of high durability is exhibited.
  • the upper limit of the strength of the hardened product is, for example, 3.0 MPa or less, preferably 2.5 MPa or less, and more preferably 2.0 MPa or less. When the strength of the hardened product is 3.0 MPa or less, the effect of preventing the frame from breaking is exhibited.
  • the strength of the cured product can be measured by the method described in Examples below.
  • the elongation of the cured product is preferably 500% or more, more preferably 600% or more, and even more preferably 700% or more.
  • the upper limit of elongation of the cured product is, for example, 1500% or less, preferably 1200% or less, and more preferably 1000% or less.
  • the elongation of the main cured product is 1500% or less, the effect of low staining is exhibited.
  • the elongation of the cured product can be measured by the method described in Examples below.
  • one aspect of the present invention includes the following. ⁇ 1> (A) 100 parts by weight of a polyoxyalkylene polymer having a reactive silicon group, (B) 120 to 300 parts by weight of polypropylene glycol having a molecular weight of 2000 or more; (C) 40 to 250 parts by weight of colloidal calcium carbonate; (D) 80 to 300 parts by weight of ground calcium carbonate, and (E) 4 parts by weight or more of a dehydrating agent,
  • the polymer (A) is a linear polyoxyalkylene polymer (A1) containing an average of 1.6 or more reactive silicon groups per molecule; a linear polyoxyalkylene polymer (A2) containing an average of less than 1.6 reactive silicon groups per molecule;
  • the curable composition wherein the total amount of the colloidal calcium carbonate (C) and the ground calcium carbonate (D) is 250 parts by weight or more.
  • ⁇ 2> The curable composition according to ⁇ 1>, wherein the weight ratio of (A1) and (A2) is 95:5 to 30:70.
  • ⁇ 3> The curable composition according to ⁇ 1> or ⁇ 2>, further comprising (F) an antioxidant having four hindered phenol structures in one molecule.
  • ⁇ 4> The curable composition according to any one of ⁇ 1> to ⁇ 3>, further comprising (G) an organic balloon.
  • ⁇ 5> The curable composition according to any one of ⁇ 1> to ⁇ 4>, wherein the polymer (A1) has a structure represented by the following general formula (2).
  • R 1 and R 3 are each independently a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 1 and R 3 are carbon, oxygen , nitrogen, each of R 2 and R 4 is independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10, R 5 is a substituted or an unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X is a hydroxyl group or a hydrolyzable group, and c is an integer of 1 to 3; ⁇ 6> The curable composition according to any one of ⁇ 3> to ⁇ 5>, wherein the hindered phenol structure of (F) is a single hindered phenol structure.
  • C2 Colloidal calcium carbonate (C2): Made by Shiraishi Calcium, Hakuenka CCR (Heavy calcium carbonate (D)) ⁇ Made by Omya, OMYACARB 1T (Thixotropic agent) ⁇ Arkema amide wax, Crayvallac SL (pigment) ⁇ Titanium oxide manufactured by Ishihara Sangyo, R820 (Organic balloon (G)) ⁇ Organic balloon 1 (G): MFL-HD60CA manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. (Organic balloon (G')) ⁇ Organic balloon 2 (G'): MFL-81GCA manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.
  • Antioxidant (F) Antioxidant (F): Clariant piece hindered phenolic antioxidant, HOSTANOX O3 (Antioxidant (F')) ⁇ Antioxidant (F'): BASF hindered phenol antioxidant, IRGANOX1010 (Ultraviolet absorber) ⁇ BASF benzotriazole UV absorber, Tinuvin326 (light stabilizer) ⁇ Light stabilizer 1: BASF HALS, Tinuvin770 ⁇ Light stabilizer 2: HALS manufactured by ADEKA, LA-63P (Dehydrating agent (E)) ⁇ Momentive vinyl silane, A-171 (Adhesion imparting agent) Aminosilane, A-1120 from Momentive (Curing catalyst) ⁇ Nitto Kasei tin catalyst, U220H [Measurement and evaluation method] Measurements and evaluations in Examples and Comparative Examples were carried out by the following methods.
  • Each curable composition shown in Table 1 was cured at 23° C./50% RH ⁇ 3 days+50° C. ⁇ 4 days to prepare a sheet having a thickness of about 3 mm.
  • a square having a side of 20 mm was cut out of the cured sheet and immersed in hot water at 70° C. for 7 days. After that, the sheet was taken out and tested for weather resistance and humidity resistance for 14 days with a metal weather tester manufactured by Daipla-Wintes.
  • the test illuminance was 130 W/m 2
  • the black panel temperature during irradiation was 80° C.
  • the humidity 50%.
  • the curable composition shown in Table 1 was molded into a shape having a width of 10 cm, a length of 10 cm and a thickness of 1 cm, and cured at 23° C. and 50% RH for 7 days.
  • An experimental hot plate (NEO HOTPLATE HI-1000, manufactured by AS ONE) is heated to 80 ° C., a cured sample is placed on it, and an infrared radiation thermometer (SK-8700II, manufactured by Sato Keiki Seisakusho) is set after 3 minutes. was used to measure the surface temperature. Evaluation criteria are as follows. Good: The temperature rise compared to the air temperature before measurement is 25°C or less. x: The temperature rise compared with the air temperature before measurement is more than 25 degreeC.
  • Synthesis example 1 (Preparation of polymer (A1-1)) Polyoxypropylene glycol having a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of 27,900 having hydroxyl groups at both ends (terminal group equivalent molecular weight of 17,700 ), and polyoxypropylene (P-1) having a molecular weight distribution Mw/Mn of 1.21 was obtained.
  • the unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-1) having a plurality of carbon-carbon unsaturated bonds at the ends was obtained. It was found that the polymer (Q-1) had an average of 2.0 carbon-carbon unsaturated bonds introduced at one terminal.
  • polyoxypropylene (Q-2) having an allyl group at its end was obtained.
  • Q-2 polyoxypropylene
  • a platinum divinyldisiloxane complex solution 3% by weight isopropanol solution in terms of platinum
  • dimethoxymethylsilane was slowly added dropwise while stirring.
  • unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a polyoxypropylene (A2 -1) was obtained. It was found that the polymer (A2-1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 1.4 dimethoxymethylsilyl groups per molecule.
  • a 28% methanol solution of sodium methoxide was added in an amount of 1.2 molar equivalents relative to the hydroxyl groups of the obtained polymer (P-6). After methanol was distilled off by vacuum devolatilization, 1.5 molar equivalents of allyl chloride was added to the hydroxyl groups of polymer (P-6) to convert terminal hydroxyl groups to allyl groups. Unreacted allyl chloride was removed by vacuum devolatilization. The obtained unpurified allyl group-terminated polyoxypropylene was mixed with n-hexane and water and stirred, and then the water was removed by centrifugation. Metal salts were removed.
  • polyoxypropylene (Q-5) having allyl groups at the terminal sites was obtained.
  • this polymer (Q-5) were added 25 mg of a platinum-divinyldisiloxane complex (3% by weight isopropanol solution in terms of platinum) and 6.8 g of dimethoxymethylsilane to carry out a hydrosilylation reaction.
  • unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain polyoxypropylene (A'2) having a dimethoxymethylsilyl group at the end and a number average molecular weight of 19,000. rice field. It was found that the polymer (A'2) had an average of 1.6 dimethoxymethylsilyl groups.
  • the resulting curable composition was filled into aluminum cartridges.
  • Low modulus, high strength, high elongation, resistance to paint contamination, storage stability, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product.
  • Table 1 shows the results.
  • the amount of each component is shown in parts by weight.
  • Example 2 200 parts by weight of colloidal calcium carbonate (C1) was changed to 50 parts by weight of colloidal calcium carbonate (C2), the amount of ground calcium carbonate (D) was changed to 250 parts by weight, and the amount of pigment was changed to 10 parts by weight.
  • Example 1 except that the antioxidant (F) was changed to the antioxidant (F'), the light stabilizer 2 was changed to the light stabilizer 1, and the amount of the curing catalyst was changed to 1 part by weight.
  • a curable composition was obtained in the same manner. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 3 A curable composition was obtained in the same manner as in Example 2, except that the antioxidant (F') was changed to the antioxidant (F). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 4 A curable composition was obtained in the same manner as in Example 1, except that the organic balloon 1 (G) was not added. Low modulus, high strength, high elongation, resistance to paint contamination, storage stability, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results.
  • Example 5 Change polymer (A1-1) to 90 parts by weight of polymer (A1-2), change the amount of polymer (A2-1) to 10 parts by weight, and do not add organic balloon 1 (G). Except for this, in the same manner as in Example 1, a curable composition was obtained. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 6 Change the amount of polymer (A1-1) to 95 parts by weight, change polymer (A2-1) to 5 parts by weight of polymer (A2-2), and do not add organic balloon 1 (G). Except for this, in the same manner as in Example 1, a curable composition was obtained. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 7 Change the amount of polymer (A1-1) to 90 parts by weight, change polymer (A2-1) to 10 parts by weight of polymer (A2-2), and do not add organic balloon 1 (G). Except for this, in the same manner as in Example 1, a curable composition was obtained. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 8 Example 1 except that the amount of polymer (A1-1) was changed to 30 parts by weight, the amount of polymer (A2-1) was changed to 70 parts by weight, and organic balloon 1 (G) was not added.
  • a curable composition was obtained in the same manner. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 1 A curable composition was obtained in the same manner as in Example 1, except that the amount of the polymer (A1-1) was changed to 100 parts by weight and the polymer (A2-1) was not added. Table 1 shows the results of low modulus, high strength, high elongation, resistance to paint staining, resistance to weathering and humidity, recovery rate, and heat insulating properties of the resulting curable composition and its cured product.
  • Example 2 A curable composition was obtained in the same manner as in Example 1, except that the amount of the polymer (A2-1) was changed to 100 parts by weight and the polymer (A1-1) was not added. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 3 A curable composition was obtained in the same manner as in Example 1, except that the polymers (A1-1) and (A2-1) were changed to 100 parts by weight of the polymer (A2-2). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 4 A curable composition was obtained in the same manner as in Example 1, except that the polymers (A1-1) and (A2-1) were changed to 100 parts by weight of the polymer (A'1). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
  • Example 5 A curable composition was obtained in the same manner as in Example 1, except that the polymers (A1-1) and (A2-1) were changed to 100 parts by weight of the polymer (A'2). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results.
  • a curable composition was obtained in the same manner as in Example 1, except that the amount of was changed to 3 parts by weight. Low modulus, high strength, high elongation, resistance to paint contamination, storage stability, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results.
  • Table 1 shows that Examples 1-8 achieve low modulus, high strength, and high elongation compared to Comparative Examples 1-6. That is, Examples 1 to 8 in which two types of polyoxyalkylene-based polymers are combined are more modulus, strength, and elongation at break than Comparative Examples 1 to 6 containing one type of polyoxyalkylene-based polymer, It was found to have excellent properties.
  • This curable composition contains a large amount of filler such as calcium carbonate and has excellent physical properties such as low modulus, high strength, and high elongation. can be used for

Abstract

The purpose of the present invention is to provide a curable composition that has excellent physical properties such as low modulus, high strength and high elongation when cured, even in the case of adding a large amount of a filler such as calcium carbonate. The aforesaid problem is solved by providing a curable composition that comprises: (A) a polyoxyalkylene polymer having a specific reactive silicon group; (B) polypropylene glycol having a molecular weight of 2000 or more; (C) colloidal calcium carbonate; (D) heavy calcium carbonate; and (E) a dehydrating agent, each in a specific amount, wherein the total amount of the colloidal calcium carbonate (C) and the heavy calcium carbonate (D) is 250 parts by weight or more.

Description

硬化性組成物およびその硬化物Curable composition and its cured product
 本発明は、硬化性組成物およびその硬化物に関する。 The present invention relates to a curable composition and its cured product.
 外壁目地、ひび割れの補修および鉄筋コンクリート造の打継ぎ部分やサッシ回り等に好適に用いることができる建材として、シーリング材が知られている。 Sealing materials are known as building materials that can be suitably used for exterior wall joints, repairing cracks, joints in reinforced concrete structures, around sashes, etc.
 近年、地球温暖化に伴い建築外壁の遮熱塗料の開発が活発になされている。低モジュラスかつ高伸びが必要とされる外壁目地用シーリング材の硬化性組成物についても、同様に遮熱効果が求められつつある。また、シーリング材上への塗料の塗布が増えていることから、塗料汚染性に優れた硬化性組成物も求められている。 In recent years, due to global warming, the development of thermal insulation paints for the outer walls of buildings has been actively carried out. Similarly, heat shielding effects are being sought for curable compositions for exterior wall joint sealants, which require low modulus and high elongation. In addition, since the application of paint to sealants is increasing, there is a demand for a curable composition that is excellent in paint stain resistance.
 例えば、特許文献1には、ジメトキシメチルシリル基を含有し、かつ主鎖骨格がポリプロピレンオキサイドからなるポリアルキレンオキサイドと、ポリプロピレングリコールと、コロイダル炭酸カルシウムと、重質炭酸カルシウムと、脱水剤と、ヒンダードフェノール系酸化防止剤とを含有してなる硬化性組成物が開示されている。 For example, Patent Document 1 discloses polyalkylene oxide containing a dimethoxymethylsilyl group and having a main chain skeleton made of polypropylene oxide, polypropylene glycol, colloidal calcium carbonate, ground calcium carbonate, a dehydrating agent, and a hinder. A curable composition comprising a dophenolic antioxidant is disclosed.
 また、特許文献2には、架橋性珪素基を有するオキシアルキレン系重合体、水と反応して、アルコキシシリル基を有するアミン化合物を生成するアルコキシシラン化合物、4価錫化合物、及び(メタ)アクリル酸エステル系重合体可塑剤を含有する1成分型シーリング材を使用した壁式構造を有する建築物が開示されている。 Further, Patent Document 2 discloses an oxyalkylene polymer having a crosslinkable silicon group, an alkoxysilane compound that reacts with water to produce an amine compound having an alkoxysilyl group, a tetravalent tin compound, and a (meth)acrylic compound. Buildings having walled structures using one-component sealants containing acid ester polymer plasticizers are disclosed.
日本国公開特許公報特開2018-76513号公報Japanese Patent Publication JP 2018-76513 国際公開第2019/203034号公報International Publication No. 2019/203034
 しかしながら、硬化性組成物の配合、および当該硬化性組成物を硬化させたときの物性の観点で、改善の余地があった。 However, there is room for improvement in terms of formulation of the curable composition and physical properties when the curable composition is cured.
 そこで、本発明の一態様は、炭酸カルシウム等の充填剤を高配合する場合でも、硬化させた際に、低モジュラス、高強度、高伸びといった優れた物性を有する硬化性組成物を提供することを目的とする。 Therefore, one aspect of the present invention is to provide a curable composition having excellent physical properties such as low modulus, high strength, and high elongation when cured even when a high amount of filler such as calcium carbonate is blended. With the goal.
 本発明者らは、上記課題を解決すべく検討した結果、特定の反応性ケイ素基を有するポリオキシアルキレン系重合体、特定のポリプロピレングリコール、および脱水剤を、所定の重量部配合することにより、炭酸カルシウム等の充填剤を高配合する場合でも、低モジュラス、高強度、高伸びが達成できるとの新規知見を見出し、本発明を完成するに至った。 The present inventors have studied to solve the above problems, and as a result, by blending a predetermined weight part of a polyoxyalkylene polymer having a specific reactive silicon group, a specific polypropylene glycol, and a dehydrating agent, The inventors have found new knowledge that low modulus, high strength, and high elongation can be achieved even when a high amount of filler such as calcium carbonate is blended, and have completed the present invention.
 したがって、本発明の一態様は、(A)反応性ケイ素基を有するポリオキシアルキレン系重合体を100重量部、(B)分子量2000以上のポリプロピレングリコールを120~300重量部、(C)膠質炭酸カルシウムを40~250重量部、(D)重質炭酸カルシウムを80~300重量部、および(E)脱水剤を4重量部以上、を含み、前記(A)の重合体が、一分子中に反応性ケイ素基を平均1.6個以上含有する直鎖構造のポリオキシアルキレン系重合体(A1)と、一分子中に反応性ケイ素基を平均1.6個未満含有する直鎖構造のポリオキシアルキレン系重合体(A2)と、を含み、前記(C)の膠質炭酸カルシウムと、前記(D)の重質炭酸カルシウムとの合計量が、250重量部以上である、硬化性組成物(以下、「本硬化性組成物」と称する。)である。 Therefore, one aspect of the present invention comprises (A) 100 parts by weight of a polyoxyalkylene polymer having a reactive silicon group, (B) 120 to 300 parts by weight of polypropylene glycol having a molecular weight of 2000 or more, and (C) colloidal carbonic acid. 40 to 250 parts by weight of calcium, (D) 80 to 300 parts by weight of ground calcium carbonate, and (E) 4 parts by weight or more of a dehydrating agent, wherein the polymer (A) is contained in one molecule. A linear polyoxyalkylene polymer (A1) containing an average of 1.6 or more reactive silicon groups, and a linear polyoxyalkylene polymer (A1) containing an average of less than 1.6 reactive silicon groups per molecule. A curable composition ( Hereinafter, it is called "this curable composition".).
 本発明の一態様によれば、炭酸カルシウム等の充填剤を高配合する場合でも、硬化させた際に、低モジュラス、高強度、高伸びといった優れた物性を有する硬化性組成物を提供することができる。 According to one aspect of the present invention, there is provided a curable composition having excellent physical properties such as low modulus, high strength, and high elongation when cured even when a high amount of filler such as calcium carbonate is blended. can be done.
 以下、本発明の実施の形態について詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意図する。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this, and various modifications are possible within the scope described, and the present invention also includes embodiments obtained by appropriately combining technical means disclosed in different embodiments. included in the technical scope of In this specification, unless otherwise specified, "A to B" representing a numerical range intends "A or more and B or less".
 〔1.本発明の概要〕
 本発明者らは、硬化性組成物のコストダウンの観点から、炭酸カルシウム等の充填剤を高配合する硬化性組成物について検討を行った。その検討の中で、硬化性組成物中に充填剤を高配合すると、当該硬化性組成物を硬化させたときのモジュラス、強度、伸びといった物性が劣るという問題が生じることを見出した。
[1. Overview of the present invention]
From the viewpoint of reducing the cost of the curable composition, the present inventors investigated a curable composition containing a large amount of a filler such as calcium carbonate. During the study, it was found that when a large amount of filler is blended into the curable composition, physical properties such as modulus, strength, and elongation are deteriorated when the curable composition is cured.
 そこで、本発明者らは、上記課題を解決するために、鋭意検討を行った結果、特定の反応性ケイ素基を有するポリオキシアルキレン系重合体、特定のポリプロピレングリコール、および脱水剤を、所定の重量部配合することにより、炭酸カルシウム等の充填剤を高配合する場合でも、低モジュラス、高強度、高伸びが達成できるとの新規知見を見出した。特に、特定の反応性ケイ素基を有するポリオキシアルキレン系重合体として、少なくとも2種類(反応性ケイ素基の含有量が多い直鎖状のポリマー(高シリル化のポリマー)と、反応性ケイ素基の含有量が少ない直鎖状のポリマー(低シリル化のポリマー))を使用することにより、高シリル化のポリマーのみを使用する場合にはモジュラスが高くなる傾向にあるが、直鎖状の高シリル化のポリマーと、直鎖状の低シリル化のポリマーとをブレンドすることで、強度および伸びを損なうことなく、モジュラスを改善し得る。 Therefore, in order to solve the above problems, the present inventors have made intensive studies and found that a polyoxyalkylene polymer having a specific reactive silicon group, a specific polypropylene glycol, and a dehydrating agent are added to a predetermined The present inventors have found new knowledge that by blending parts by weight, low modulus, high strength, and high elongation can be achieved even when a high amount of filler such as calcium carbonate is blended. In particular, at least two types of polyoxyalkylene polymers having specific reactive silicon groups (a linear polymer with a high content of reactive silicon groups (highly silylated polymer) and By using a linear polymer with a low silylation content (low silylation polymer), the modulus tends to be high when only a high silylation polymer is used, but the linear high silyl content Modulus can be improved without sacrificing strength and elongation by blending low silylation polymers with linear low silylation polymers.
 本発明の一態様によると、硬化性組成物中に炭酸カルシウム等の充填剤を高配合しつつ、所望の物性を達成できるため、コストダウンを達成でき、シーリング材等の分野において極めて有利である。 According to one aspect of the present invention, desired physical properties can be achieved while a high amount of filler such as calcium carbonate is blended into the curable composition, so cost reduction can be achieved, which is extremely advantageous in the field of sealants and the like. .
 また、上述したような構成によれば、高コストな原料の使用を低減することができ、これにより、例えば、目標12「持続可能な消費生産形態を確保する」等の持続可能な開発目標(SDGs)の達成に貢献できる。以下、本発明について詳説する。 In addition, according to the configuration as described above, it is possible to reduce the use of high-cost raw materials. can contribute to the achievement of SDGs). The present invention will be described in detail below.
 〔2.硬化性組成物〕
 (2-1.ポリオキシアルキレン系重合体(A))
 本硬化性組成物は、特定の構造(すなわち、一分子中に反応性ケイ素基を平均1.6個以上含有する直鎖構造)を有するポリオキシアルキレン系重合体(A1)(以下、単に、「ポリオキシアルキレン系重合体(A1)」、「重合体(A1)」と称する場合がある。)と、特定の構造(すなわち、一分子中に反応性ケイ素基を平均1.6個未満含有する直鎖構造)を有するポリオキシアルキレン系重合体(A2)(以下、単に、「ポリオキシアルキレン系重合体(A2)」、「重合体(A2)」と称する場合がある。)と、を含む。本硬化性組成物が、上記ポリオキシアルキレン系重合体(A1)と、上記ポリオキシアルキレン系重合体(A2)と、を含むことにより、本硬化性組成物を硬化させた際に、低モジュラス、高強度、高伸びといった優れた物性を有する。なお、以下において、「一分子中に反応性ケイ素基を平均1.6個以上含有する直鎖構造のポリオキシアルキレン系重合体(A1)と、一分子中に反応性ケイ素基を平均1.6個未満含有する直鎖構造のポリオキシアルキレン系重合体(A2)と、を含む、(A)反応性ケイ素基を有するポリオキシアルキレン系重合体」を、「ポリオキシアルキレン系重合体(A)」、「重合体(A)」と称する場合がある。
[2. Curable composition]
(2-1. Polyoxyalkylene polymer (A))
The present curable composition is a polyoxyalkylene polymer (A1) having a specific structure (that is, a linear structure containing an average of 1.6 or more reactive silicon groups in one molecule) (hereinafter simply referred to as Sometimes referred to as "polyoxyalkylene polymer (A1)" or "polymer (A1)") and a specific structure (i.e., containing less than 1.6 reactive silicon groups on average per molecule A polyoxyalkylene polymer (A2) (hereinafter simply referred to as “polyoxyalkylene polymer (A2)” or “polymer (A2)”) having a linear structure) and include. The curable composition contains the polyoxyalkylene-based polymer (A1) and the polyoxyalkylene-based polymer (A2), so that when the curable composition is cured, a low modulus , high strength and high elongation. In the following description, "a polyoxyalkylene polymer (A1) having a linear structure containing an average of 1.6 or more reactive silicon groups per molecule and an average of 1.6 reactive silicon groups per molecule. (A) a polyoxyalkylene-based polymer having a reactive silicon group, which contains a polyoxyalkylene-based polymer (A2) having a linear structure containing less than 6, "polyoxyalkylene-based polymer (A )” and “Polymer (A)”.
 (2-1-1.ポリオキシアルキレン系重合体(A1))
 ポリオキシアルキレン系重合体(A1)は、一分子中に反応性ケイ素基を平均1.6個以上含有する直鎖構造を有する。
(2-1-1. Polyoxyalkylene polymer (A1))
The polyoxyalkylene polymer (A1) has a straight chain structure containing an average of 1.6 or more reactive silicon groups per molecule.
 ポリオキシアルキレン系重合体(A1)は、分子鎖中に少なくとも1個の反応性ケイ素基を有するため、シラノール縮合反応が起こって架橋し、高分子状態となり、硬化する。ポリオキシアルキレン系重合体(A1)に含まれる反応性ケイ素基の数は、シラノール縮合触媒によって縮合反応するという点から、少なくとも1個必要であり、硬化性、柔軟性の点からは、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基が存在するのが好ましい。 Because the polyoxyalkylene-based polymer (A1) has at least one reactive silicon group in the molecular chain, a silanol condensation reaction occurs to crosslink it, turn it into a polymer state, and cure it. The number of reactive silicon groups contained in the polyoxyalkylene polymer (A1) must be at least 1 from the viewpoint of condensation reaction with a silanol condensation catalyst. Alternatively, it is preferable that reactive silicon groups are present at both ends of the branched molecular chain.
 ポリオキシアルキレン系重合体(A1)中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基または加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。 The reactive silicon group contained in the polyoxyalkylene polymer (A1) has a hydroxy group or hydrolyzable group bonded to the silicon atom, and forms a siloxane bond through a reaction accelerated by a silanol condensation catalyst. It is a group that can be crosslinked by means of
 本発明の一実施形態において、ポリオキシアルキレン系重合体(A1)は、一般式(1)に示す反応性ケイ素基を有する。
-Si(R)3-a(X)   ・・・(1)
 (式中、Rは、それぞれ独立に、炭素原子数1~20の炭化水素基、または-OSi(R’)(R’は、それぞれ独立に、炭素原子数1~20の炭化水素基である。)で示されるトリオルガノシロキシ基であり、Rとしての炭化水素基は、置換されていてもよく、かつ、ヘテロ含有基を有してもよい。Xは、それぞれ独立に、水酸基または加水分解性基である。aは、1~3の整数である。)
 Rの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。Rの具体例としては、例えば、メチル基、エチル基、クロロメチル基、メトキシメチル基、N,N-ジエチルアミノメチル基、を挙げることができるが、好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、より好ましくは、メチル基、メトキシメチル基である。当該構成によれば、貯蔵安定性と反応性とが両立しやすいという利点を有する。
In one embodiment of the present invention, the polyoxyalkylene polymer (A1) has a reactive silicon group represented by general formula (1).
—Si(R) 3-a (X) a (1)
(In the formula, each R is independently a hydrocarbon group having 1 to 20 carbon atoms, or —OSi(R′) 3 (R′ is each independently a hydrocarbon group having 1 to 20 carbon atoms. The hydrocarbon group as R may be substituted and may have a hetero-containing group.X is each independently a hydroxyl group or a hydro is a degradable group. a is an integer of 1 to 3.)
The number of carbon atoms in the hydrocarbon group of R is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 3. Specific examples of R include, for example, methyl group, ethyl group, chloromethyl group, methoxymethyl group and N,N-diethylaminomethyl group, preferably methyl group, ethyl group and chloromethyl group. , a methoxymethyl group, more preferably a methyl group or a methoxymethyl group. According to the said structure, it has the advantage that it is easy to balance storage stability and reactivity.
 Xとしては、例えば、水酸基、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことからメトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。 Examples of X include hydroxyl group, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, and alkenyloxy group. Among these, an alkoxy group such as a methoxy group and an ethoxy group is more preferred, and a methoxy group and an ethoxy group are particularly preferred, since they are moderately hydrolyzable and easy to handle.
 ポリオキシアルキレン系重合体(A1)が有する反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基が高い活性を示し、良好な機械物性を有する硬化物が得られるため好ましく、高剛性の硬化物が得られることから、トリメトキシシリル基、トリエトキシシリル基がより好ましく、トリメトキシシリル基がさらに好ましい。 Specific examples of the reactive silicon group possessed by the polyoxyalkylene polymer (A1) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and dimethoxymethyl silyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N ,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like, but are not limited thereto. Among these are methyldimethoxysilyl, trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with high rigidity can be obtained. A trimethoxysilyl group is more preferred.
 ポリオキシアルキレン系重合体(A1)は、1つの末端部位に平均して1個より多い反応性ケイ素基を有していてもよい。本明細書において「1つの末端部位に平均して1個より多い反応性ケイ素基を有する」とは、ポリオキシアルキレン系重合体(A1)に、下記の一般式(2)で示されるような1つの末端部位に2個以上の反応性ケイ素基を有するポリオキシアルキレンが含まれていることを示している。すなわち、ポリオキシアルキレン系重合体(A1)は、1つの末端部位に2個以上の反応性ケイ素基を有するポリオキシアルキレンのみを含むものであってもよいし、1つの末端部位に2個以上の反応性ケイ素基を有するポリオキシアルキレンと、1つの末端部位に1個の反応性ケイ素基を有するポリオキシアルキレンの両方を含むものであってもよい。また、1分子のポリオキシアルキレンが有する複数の末端部位として、2個以上の反応性ケイ素基を有する末端部位と、1個の反応性ケイ素基を有する末端部位の双方があってもよい。さらに、ポリオキシアルキレン系重合体(A1)は、総体としては、1つの末端部位に平均して1個より多い反応性ケイ素基を有するが、反応性ケイ素基を有さない末端部位を有するポリオキシアルキレンを含むものであってもよい。 The polyoxyalkylene polymer (A1) may have an average of more than one reactive silicon group at one terminal site. As used herein, "having an average of more than one reactive silicon group at one terminal site" means that the polyoxyalkylene polymer (A1) has the following general formula (2) It shows that one terminal portion contains a polyoxyalkylene having two or more reactive silicon groups. That is, the polyoxyalkylene polymer (A1) may contain only a polyoxyalkylene having two or more reactive silicon groups at one terminal site, or two or more at one terminal site. and polyoxyalkylenes having one reactive silicon group at one terminal site. In addition, the plurality of terminal sites possessed by one molecule of polyoxyalkylene may include both a terminal site having two or more reactive silicon groups and a terminal site having one reactive silicon group. Furthermore, the polyoxyalkylene polymer (A1) as a whole has an average of more than one reactive silicon group at one terminal site, but a poly having a terminal site without a reactive silicon group It may contain oxyalkylene.
 本発明の一実施形態において、ポリオキシアルキレン系重合体(A1)の末端部位は、一般式(2): In one embodiment of the present invention, the terminal portion of the polyoxyalkylene polymer (A1) has the general formula (2):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R、Rは、それぞれ独立に、2価の炭素数1~6の結合基であり、R、Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R、Rは、それぞれ独立に、水素、または炭素数1~10の炭化水素基である。nは、1~10の整数である。Rは、置換または非置換の炭素数1~20の炭化水素基である。Xは、水酸基または加水分解性基である。cは、1~3の整数である。)で表されることが好ましい。 (In the formula, R 1 and R 3 are each independently a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 1 and R 3 are carbon, oxygen , nitrogen, each of R 2 and R 4 is independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10, R 5 is a substituted or an unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X is a hydroxyl group or a hydrolyzable group, and c is an integer of 1 to 3.).
 R、Rとしては、2価の炭素数1~6の有機基であってよく、酸素原子を含んでもよく、炭化水素基であってもよい。該炭化水素基の炭素数は1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。Rの具体例としては、例えば、CHOCH、CHO、CHを挙げることができるが、好ましくは、CHOCHである。Rの具体例としては、例えば、CH、CHCHを挙げることができるが、好ましくは、CHである。 R 1 and R 3 may be a divalent organic group having 1 to 6 carbon atoms, may contain an oxygen atom, or may be a hydrocarbon group. The number of carbon atoms in the hydrocarbon group is preferably 1-4, more preferably 1-3, even more preferably 1-2. Specific examples of R 1 include CH 2 OCH 2 , CH 2 O and CH 2 , preferably CH 2 OCH 2 . Specific examples of R 3 include CH 2 and CH 2 CH 2 , preferably CH 2 .
 R、Rの炭化水素基の炭素数としては1~5が好ましく、1~3がより好ましく、1~2がさらに好ましい。R、Rの具体例としては、例えば、水素原子、メチル基、エチル基を挙げることができるが、好ましくは、水素原子、メチル基であり、より好ましくは水素原子である。 The number of carbon atoms in the hydrocarbon groups of R 2 and R 4 is preferably 1-5, more preferably 1-3, even more preferably 1-2. Specific examples of R 2 and R 4 include a hydrogen atom, a methyl group and an ethyl group, preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
 一般式(2)で表される末端部位は、特に好ましい態様によると、RがCHOCHであり、RがCHであり、RおよびRがそれぞれ水素原子である。nは1~5の整数が好ましく、1~3の整数がより好ましく、1または2がさらに好ましい。ただし、nは、1つの値に限定されるものではなく、複数の値が混在していてもよい。 According to a particularly preferred embodiment, the terminal moiety represented by the general formula (2) is CH 2 OCH 2 for R 1 , CH 2 for R 3 , and hydrogen atoms for R 2 and R 4 . n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1 or 2. However, n is not limited to one value, and may be a mixture of multiple values.
 ポリオキシアルキレン系重合体(A1)が有する反応性ケイ素基は、1つの末端部位に平均して1.0個より多く有していることが好ましく、1.1個以上であることがより好ましく、1.5個以上であることが更に好ましく、2.0個以上であることがより更に好ましい。また、5個以下であることが好ましく、3個以下であることがより好ましい。 The number of reactive silicon groups possessed by the polyoxyalkylene polymer (A1) is preferably more than 1.0 on average at one terminal site, more preferably 1.1 or more. , is more preferably 1.5 or more, and even more preferably 2.0 or more. Also, the number is preferably 5 or less, more preferably 3 or less.
 ポリオキシアルキレン系重合体(A1)1分子中に含まれる、1個より多くの反応性ケイ素基を有する末端部位の数は、平均して0.5個以上であることが好ましく、1.0個以上であることがより好ましく、1.1個以上であることがさらに好ましく、1.5個以上であることがより更に好ましい。また、4個以下であることが好ましく、3個以下であることがより好ましい。 The number of terminal sites having more than one reactive silicon group contained in one molecule of the polyoxyalkylene polymer (A1) is preferably 0.5 or more on average, and 1.0 It is more preferably 1 or more, still more preferably 1.1 or more, and even more preferably 1.5 or more. Also, the number is preferably 4 or less, more preferably 3 or less.
 ポリオキシアルキレン系重合体(A1)は、末端部位以外に反応性ケイ素基を有しても良いが、末端部位にのみ有することが、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなるため好ましい。 The polyoxyalkylene polymer (A1) may have reactive silicon groups in addition to the terminal sites, but having only the terminal sites provides a rubber-like cured product with high elongation and low elastic modulus. It is preferable because it becomes easy to be
 ポリオキシアルキレン系重合体(A1)が一分子中に有する反応性ケイ素基は、平均して1.6個以上であり、1.8個以上であることが好ましく、2.0個以上であることがより好ましく、2.5個以上であることがさらに好ましい。前記反応性ケイ素基が平均して1.6個以上であると、硬化性組成物の高強度の効果を奏する。上限は特に限定されないが、例えば、平均して5.0個以下であり、4.5個以下であることが好ましい。上限が5.0個以下であると、柔軟な弾性体を与える効果を奏する。 The average number of reactive silicon groups in one molecule of the polyoxyalkylene polymer (A1) is 1.6 or more, preferably 1.8 or more, and 2.0 or more. is more preferable, and 2.5 or more is even more preferable. When the number of reactive silicon groups is 1.6 or more on average, the effect of increasing the strength of the curable composition is exhibited. Although the upper limit is not particularly limited, it is, for example, 5.0 or less on average, preferably 4.5 or less. When the upper limit is 5.0 or less, the effect of providing a flexible elastic body is exhibited.
 <主鎖構造>
 ポリオキシアルキレン系重合体(A1)の主鎖骨格には特に制限はなく、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等が挙げられる。その中でも、ポリオキシプロピレンが好ましい。
<Main chain structure>
The main chain skeleton of the polyoxyalkylene polymer (A1) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, Examples include polyoxypropylene-polyoxybutylene copolymers. Among them, polyoxypropylene is preferred.
 ポリオキシアルキレン系重合体(A1)の数平均分子量はGPCにおけるポリスチレン換算分子量において好ましくは3000~100000であり、より好ましくは3000~50000であり、特に好ましくは3000~30000である。数平均分子量が3000未満では、反応性ケイ素基の導入量が多くなり、製造コストの点で不都合になる場合があり、100000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。 The number average molecular weight of the polyoxyalkylene polymer (A1) is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene equivalent molecular weight in GPC. If the number average molecular weight is less than 3,000, the amount of reactive silicon groups to be introduced increases, which may be disadvantageous in terms of production costs. There is
 ポリオキシアルキレン系重合体(A1)の分子量としては、反応性ケイ素基導入前の有機重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すことも出来る。ポリオキシアルキレン系重合体(A1)の末端基換算分子量は、有機重合体前駆体の一般的なGPC測定により求めた数平均分子量と前記末端基換算分子量の検量線を作成し、ポリオキシアルキレン系重合体(A1)のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。 As the molecular weight of the polyoxyalkylene polymer (A1), the organic polymer precursor before introduction of the reactive silicon group was subjected to the hydroxyl value measurement method of JIS K 1557 and the iodine value of JIS K 0070. Directly measure the terminal group concentration by titration analysis based on the principle of the measurement method, and indicate the terminal group equivalent molecular weight obtained by considering the structure of the organic polymer (degree of branching determined by the polymerization initiator used). can also The terminal group-equivalent molecular weight of the polyoxyalkylene-based polymer (A1) is obtained by preparing a calibration curve of the number-average molecular weight obtained by general GPC measurement of the organic polymer precursor and the terminal-group-equivalent molecular weight, and calculating the polyoxyalkylene-based It is also possible to convert the number average molecular weight obtained by GPC of the polymer (A1) into a terminal group equivalent molecular weight.
 ポリオキシアルキレン系重合体(A1)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましく、1.2以下が最も好ましい。ポリオキシアルキレン系重合体(A1)の分子量分布は、GPC測定により得られる数平均分子量と重量平均分子量から求めることが出来る。 The molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A1) is not particularly limited, but is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, and even more preferably 1.5 or less. , 1.4 or less is particularly preferred, and 1.2 or less is most preferred. The molecular weight distribution of the polyoxyalkylene polymer (A1) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 また、ポリオキシアルキレン系重合体(A1)の主鎖構造は、直鎖構造である。 Also, the main chain structure of the polyoxyalkylene polymer (A1) is a linear structure.
 ポリオキシアルキレン系重合体(A1)の粘度は、特に限定されないが、1Pa・s~5Pa・sが好ましく、1.5Pa・s~4Pa・sがより好ましく、2Pa・s~3Pa・sがさらに好ましい。ポリオキシアルキレン系重合体(A1)の粘度が1Pa・s~5Pa・sであると、硬化性組成物を硬化させた際に、強度が高まるとの利点を有する。 The viscosity of the polyoxyalkylene polymer (A1) is not particularly limited, but is preferably 1 Pa s to 5 Pa s, more preferably 1.5 Pa s to 4 Pa s, and further 2 Pa s to 3 Pa s. preferable. When the viscosity of the polyoxyalkylene-based polymer (A1) is 1 Pa·s to 5 Pa·s, there is an advantage that the strength increases when the curable composition is cured.
 <ポリオキシアルキレン系重合体(A1)の合成方法>
 次に、ポリオキシアルキレン系重合体(A1)の合成方法について説明する。
<Method for synthesizing polyoxyalkylene polymer (A1)>
Next, a method for synthesizing the polyoxyalkylene polymer (A1) will be described.
 ポリオキシアルキレン系重合体(A1)の主鎖への反応性ケイ素基の導入は、公知の方法で行えばよい。例えば、以下の方法が挙げられる。 Introduction of a reactive silicon group to the main chain of the polyoxyalkylene polymer (A1) may be performed by a known method. For example, the following methods are mentioned.
 方法I:ヒドロキシ基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する化合物を反応させ、不飽和基を有する有機重合体を得る。次いで、得られた不飽和基を有する有機重合体に、ヒドロシリル化によって、反応性ケイ素基を有するヒドロシラン化合物を反応させる。 Method I: An organic polymer having a functional group such as a hydroxy group is reacted with a compound having an active group that exhibits reactivity with the functional group and an unsaturated group to obtain an organic polymer having an unsaturated group. Then, the resulting organic polymer having unsaturated groups is reacted with a hydrosilane compound having reactive silicon groups by hydrosilylation.
 方法Iにおいて使用し得る反応性を示す活性基および不飽和基を有する化合物としては、例えば、アリルグリシジルエーテル等の不飽和基含有エポキシ化合物、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリル等の炭素-炭素二重結合を有する化合物等が挙げられる。 Examples of compounds having a reactive active group and an unsaturated group that can be used in Method I include unsaturated group-containing epoxy compounds such as allyl glycidyl ether, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, Examples thereof include compounds having a carbon-carbon double bond such as methallyl bromide, vinyl iodide, allyl iodide and methallyl iodide.
 また、炭素-炭素三重結合を有する化合物としては、例えば、塩化プロパルギル、1-クロロ-2-ブチン、4-クロロ-1-ブチン、1-クロロ-2-オクチン、1-クロロ-2-ペンチン、1,4-ジクロロ-2-ブチン、5-クロロ-1-ペンチン、6-クロロ-1-ヘキシン、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシン、ヨウ化プロパルギル、1-ヨード-2-ブチン、4-ヨード-1-ブチン、1-ヨード-2-オクチン、1-ヨード-2-ペンチン、1,4-ジヨード-2-ブチン、5-ヨード-1-ペンチン、6-ヨード-1-ヘキシン等の炭素-炭素三重結合を有するハロゲン化炭化水素化合物等が挙げられる。これらの中では、塩化プロパルギル、臭化プロパルギル、およびヨウ化プロパルギルがより好ましい。 Examples of compounds having a carbon-carbon triple bond include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentyne, 1,4-dichloro-2-butyne, 5-chloro-1-pentyne, 6-chloro-1-hexyne, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo- 2-octyne, 1-bromo-2-pentyne, 1,4-dibromo-2-butyne, 5-bromo-1-pentyne, 6-bromo-1-hexyne, propargyl iodide, 1-iodo-2-butyne, 4-iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2-pentyne, 1,4-diiodo-2-butyne, 5-iodo-1-pentyne, 6-iodo-1-hexyne, etc. and halogenated hydrocarbon compounds having a carbon-carbon triple bond of . Among these, propargyl chloride, propargyl bromide, and propargyl iodide are more preferred.
 炭素-炭素三重結合を有するハロゲン化炭化水素化合物と同時に、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、およびヨウ化メタリル等の炭素-炭素三重結合を有するハロゲン化炭化水素以外の不飽和結合を有する炭化水素化合物を使用してもよい。 Halogenated hydrocarbon compounds having a carbon-carbon triple bond as well as compounds such as vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, allyl iodide, and methallyl iodide. Hydrocarbon compounds with unsaturated bonds other than halogenated hydrocarbons with carbon-carbon triple bonds may also be used.
 方法Iにおいて使用し得るヒドロシラン化合物としては、例えば、ハロゲン化シラン類、アルコキシシラン類、アシロキシシラン類、ケトキシメートシラン類等が挙げられる。ヒドロシラン化合物は、これらに限定されない。 Examples of hydrosilane compounds that can be used in method I include halogenated silanes, alkoxysilanes, acyloxysilanes, ketoximate silanes, and the like. Hydrosilane compounds are not limited to these.
 ハロゲン化シラン類としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシラン等が挙げられる。 Examples of halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
 アルコキシシラン類としては、例えば、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジイソプロポキシメチルシラン、(メトキシメチル)ジメトキシシラン、フェニルジメトキシシラン、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of alkoxysilanes include trimethoxysilane, triethoxysilane, triisopropoxysilane, dimethoxymethylsilane, diethoxymethylsilane, diisopropoxymethylsilane, (methoxymethyl)dimethoxysilane, phenyldimethoxysilane, 1-[ 2-(Trimethoxysilyl)ethyl]-1,1,3,3-tetramethyldisiloxane and the like.
 アシロキシシラン類としては、例えば、メチルジアセトキシシラン、フェニルジアセトキシシラン等が挙げられる。 Examples of acyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
 ケトキシメートシラン類としては、例えば、ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシラン等が挙げられる。 Examples of ketoximate silanes include bis(dimethylketoximate)methylsilane and bis(cyclohexylketoximate)methylsilane.
 これらの中では、ハロゲン化シラン類、およびアルコキシシラン類が特に好ましい。アルコキシシラン類は、加水分解性が穏やかで取り扱いやすいために最も好ましい。 Among these, halogenated silanes and alkoxysilanes are particularly preferred. Alkoxysilanes are most preferred because they are mildly hydrolyzable and easy to handle.
 アルコキシシラン類の中では、入手しやすい点、硬化性、および貯蔵安定性に優れる発泡体用樹脂組成物を得やすい点、発泡体用樹脂組成物を用いて引張強度に優れる発泡体を製造しやすい点等からジメトキシメチルシランが好ましい。また、硬化性に優れる発泡体用樹脂組成物を得やすい点から、トリメトキシシラン、およびトリエトキシシランも好ましい。 Among the alkoxysilanes, it is easy to obtain, it is easy to obtain a resin composition for foams with excellent curability and storage stability, and it is possible to produce foams with excellent tensile strength using the resin composition for foams. Dimethoxymethylsilane is preferred because it is easy to use. Trimethoxysilane and triethoxysilane are also preferable from the viewpoint of easily obtaining a resin composition for foam having excellent curability.
 方法II:メルカプト基および反応性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、方法Iと同様にして得られた不飽和基を有する有機重合体の不飽和基部位に導入する方法。 Method II: A compound having a mercapto group and a reactive silicon group is subjected to a radical addition reaction in the presence of a radical initiator and/or a radical generating source to obtain an organic polymer having an unsaturated group in the same manner as in Method I. A method of introducing into the unsaturated group site of
 方法IIにおいて使用し得るメルカプト基および反応性ケイ素基を有する化合物としては、例えば、3-メルカプト-n-プロピルトリメトキシシラン、3-メルカプト-n-プロピルメチルジメトキシシラン、3-メルカプト-n-プロピルトリエトキシシラン、3-メルカプト-n-プロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン等が挙げられる。メルカプト基および反応性ケイ素基を有する化合物は、これらに限定されない。 Compounds having a mercapto group and a reactive silicon group that can be used in Method II include, for example, 3-mercapto-n-propyltrimethoxysilane, 3-mercapto-n-propylmethyldimethoxysilane, 3-mercapto-n-propyl triethoxysilane, 3-mercapto-n-propylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane and the like. Compounds having mercapto groups and reactive silicon groups are not limited to these.
 方法III:分子中にヒドロキシ基、エポキシ基、イソシアネート基等の官能基を有する有機重合体に、これらの官能基に対して反応性を示す官能基および反応性ケイ素基を有する化合物を反応させる方法。 Method III: A method of reacting an organic polymer having functional groups such as hydroxy, epoxy, and isocyanate groups in the molecule with a compound having a functional group reactive to these functional groups and a reactive silicon group. .
 方法IIIにおいて採用し得る、ヒドロキシ基を有する有機重合体と、イソシアネート基および反応性ケイ素基を有する化合物とを反応させる方法としては、特に限定されないが、例えば、特開平3-47825号公報に示される方法等が挙げられる。 The method of reacting an organic polymer having a hydroxy group with a compound having an isocyanate group and a reactive silicon group, which can be employed in Method III, is not particularly limited. and the like.
 方法IIIにおいて使用し得る、イソシアネート基および反応性ケイ素基を有する化合物としては、例えば、3-イソシアナト-n-プロピルトリメトキシシラン、3-イソシアナト-n-プロピルメチルジメトキシシラン、3-イソシアナト-n-プロピルトリエトキシシラン、3-イソシアナト-n-プロピルメチルジエトキシシラン、イソシアネトメチルトリメトキシシラン、イソシアナトメチルトリエトキシシラン、イソシアナトメチルジメトキシメチルシラン、イソシアナトメチルジエトキシメチルシラン等があげられる。イソシアネート基および反応性ケイ素基を有する化合物はこれらに限定されない。 Compounds having isocyanate groups and reactive silicon groups that can be used in Method III include, for example, 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propylmethyldimethoxysilane, 3-isocyanato-n- Propyltriethoxysilane, 3-isocyanato-n-propylmethyldiethoxysilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, isocyanatomethyldiethoxymethylsilane and the like. Compounds having isocyanate groups and reactive silicon groups are not limited to these.
 トリメトキシシラン等の1つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのような不安定な化合物が生じ、取り扱いが困難となることがある。しかし、3-メルカプト-n-プロピルトリメトキシシランや3-イソシアナト-n-プロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基等の3個の加水分解性基が1つのケイ素原子に結合している基を用いる場合には、方法IIまたは方法IIIの方法を用いることが好ましい。 Silane compounds such as trimethoxysilane, in which three hydrolyzable groups are bonded to one silicon atom, may undergo a disproportionation reaction. As the disproportionation reaction progresses, unstable compounds such as dimethoxysilane are produced, which can be difficult to handle. However, such a disproportionation reaction does not proceed with 3-mercapto-n-propyltrimethoxysilane and 3-isocyanato-n-propyltrimethoxysilane. Therefore, when a group in which three hydrolyzable groups are bonded to one silicon atom, such as a trimethoxysilyl group, is used as the silicon-containing group, method II or method III is preferably used.
 一方、下記式(2a)で表されるシラン化合物は不均化反応が進まない。
H-(SiR2a O)SiR2a -R3a-SiX   (2a)
 ここで、式(2a)において、Xは式(1a)と同じである。2m+2個のR2aはそれぞれ独立に式(1a)のR1aと同じである。R3aは、炭素原子数1以上20以下の置換または非置換の2価の炭化水素基を示す。mは0以上19以下の整数を示す。
On the other hand, the disproportionation reaction does not proceed with the silane compound represented by the following formula (2a).
H—(SiR 2a 2 O) m SiR 2a 2 —R 3a —SiX 3 (2a)
Here, in formula (2a), X is the same as in formula (1a). 2m+2 R 2a are independently the same as R 1a in Formula (1a). R 3a represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. m represents an integer of 0 or more and 19 or less.
 このため、方法Iで、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、式(2a)で表されるシラン化合物を用いることが好ましい。入手性およびコストの点から、2m+2個のR2aとしては、それぞれ独立に、炭素原子数1以上20以下の炭化水素基が好ましく、炭素原子数1以上8以下の炭化水素基がより好ましく、炭素原子数1以上4以下の炭化水素基がさらに好ましい。R3aとしては、炭素原子数1以上12以下の2価の炭化水素基が好ましく、炭素原子数2以上8以下の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基がさらに好ましい。mは1が最も好ましい。 Therefore, when introducing a group in which three hydrolyzable groups are bonded to one silicon atom in method I, it is preferable to use a silane compound represented by formula (2a). From the viewpoint of availability and cost, 2m+2 R 2a are each independently preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms. A hydrocarbon group having 1 or more and 4 or less atoms is more preferable. R 3a is preferably a divalent hydrocarbon group having 1 to 12 carbon atoms, more preferably a divalent hydrocarbon group having 2 to 8 carbon atoms, and a divalent hydrocarbon group having 2 carbon atoms. groups are more preferred. m is most preferably 1.
 式(2a)で示されるシラン化合物としては、例えば、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)プロピル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)ヘキシル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Silane compounds represented by formula (2a) include, for example, 1-[2-(trimethoxysilyl)ethyl]-1,1,3,3-tetramethyldisiloxane, 1-[2-(trimethoxysilyl) propyl]-1,1,3,3-tetramethyldisiloxane, 1-[2-(trimethoxysilyl)hexyl]-1,1,3,3-tetramethyldisiloxane and the like.
 前記の方法Iまたは方法IIIにおいて、末端にヒドロキシ基を有する有機重合体と、イソシアネート基および反応性ケイ素基を有する化合物とを反応させる方法は、比較的短い反応時間で高い転化率が得られるために好ましい。さらに、方法Iで得られた反応性ケイ素基を有する有機重合体は、方法IIIで得られる反応性ケイ素基を有する有機重合体よりも低粘度であり、作業性のよい発泡体用樹脂組成物が得られること、また、方法IIで得られる反応性ケイ素基を有する有機重合体は、メルカプトシランに基づく臭気が強いことから、方法Iが特に好ましい。 In Method I or Method III, the method of reacting an organic polymer having a terminal hydroxy group with a compound having an isocyanate group and a reactive silicon group provides a high conversion rate in a relatively short reaction time. preferred. Furthermore, the organic polymer having a reactive silicon group obtained by Method I has a lower viscosity than the organic polymer having a reactive silicon group obtained by Method III, and the resin composition for foams has good workability. is obtained, and the organic polymer having a reactive silicon group obtained by Method II has a strong odor due to mercaptosilane. Therefore, Method I is particularly preferred.
 ポリオキシアルキレン系重合体の1つの末端部位に平均して1.0個より多い反応性ケイ素基を導入する合成方法について、以下に説明する。 A synthetic method for introducing an average of more than 1.0 reactive silicon groups to one terminal site of a polyoxyalkylene polymer will be described below.
 1つの末端部位に平均して1.0個より多い反応性ケイ素基を有しているポリオキシアルキレン系重合体(A1)は、重合によって得られた水酸基末端重合体の1つの末端に2個以上の炭素-炭素不飽和結合を導入した後、炭素-炭素不飽和結合と反応する反応性ケイ素基含有化合物を反応させて得ることが好ましい。 The polyoxyalkylene polymer (A1) having an average of more than 1.0 reactive silicon groups at one terminal site has two at one terminal of the hydroxyl group-terminated polymer obtained by polymerization. After introducing the above carbon-carbon unsaturated bonds, it is preferable to react with a reactive silicon group-containing compound that reacts with the carbon-carbon unsaturated bonds.
 <重合>
 ポリオキシアルキレン系重合体(A1)は、亜鉛ヘキサシアノコバルテートグライム錯体等の複合金属シアン化物錯体触媒を用いた、水酸基を有する開始剤にエポキシ化合物を重合させる方法が好ましい。
<Polymerization>
The polyoxyalkylene polymer (A1) is preferably produced by polymerizing an epoxy compound with an initiator having a hydroxyl group using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex.
 水酸基を有する開始剤としては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリオキシプロピレングリコール、ポリオキシプロピレントリオール、アリルアルコール、ポリプロピレンモノアリルエーテル、ポリプロピレンモノアルキルエーテル等の水酸基を1個以上有するものが挙げられる。 Examples of hydroxyl-containing initiators include hydroxyl groups such as ethylene glycol, propylene glycol, glycerin, pentaerythritol, low-molecular-weight polyoxypropylene glycol, polyoxypropylene triol, allyl alcohol, polypropylene monoallyl ether, and polypropylene monoalkyl ether. Examples include those having one or more.
 エポキシ化合物としては、例えば、エチレンオキサイド、プロピレンオキサイド、等のアルキレンオキサイド類、メチルグリシジルエーテル、アリルグリシジルエーテル、等のグリシジルエーテル類、等が挙げられる。このなかでもプロピレンオキサイドが好ましい。 Examples of epoxy compounds include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether. Among these, propylene oxide is preferred.
 <炭素-炭素不飽和結合の導入>
 1つの末端に2個以上の炭素-炭素不飽和結合を導入する方法としては、水酸基末端重合体に、アルカリ金属塩を作用させた後、先ず炭素-炭素不飽和結合を有するエポキシ化合物を反応させ、次いで炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物を反応させる方法を用いるのが好ましい。この方法を用いることで、重合体主鎖の分子量や分子量分布を重合条件によって制御しつつ、さらに反応性基の導入を効率的かつ安定的に行うことが可能となる。
<Introduction of carbon-carbon unsaturated bond>
As a method for introducing two or more carbon-carbon unsaturated bonds to one terminal, an alkali metal salt is allowed to act on a hydroxyl-terminated polymer, and then an epoxy compound having a carbon-carbon unsaturated bond is first reacted. and then reacting a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond. By using this method, it is possible to efficiently and stably introduce reactive groups while controlling the molecular weight and molecular weight distribution of the polymer main chain by the polymerization conditions.
 本発明で用いるアルカリ金属塩としては、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシドが好ましく、ナトリウムメトキシド、カリウムメトキシドがより好ましい。入手性の点でナトリウムメトキシドが特に好ましい。 As the alkali metal salt used in the present invention, sodium hydroxide, sodium methoxide, sodium ethoxide, potassium hydroxide, potassium methoxide and potassium ethoxide are preferred, and sodium methoxide and potassium methoxide are more preferred. Sodium methoxide is particularly preferred because of its availability.
 アルカリ金属塩を作用させる際の温度としては、50℃以上150℃以下が好ましく、110℃以上140℃以下がより好ましい。アルカリ金属塩を作用させる際の時間としては、10分以上5時間以下が好ましく、30分以上3時間以下がより好ましい。 The temperature at which the alkali metal salt is allowed to act is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower. The time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
 本発明で用いる炭素-炭素不飽和結合を有するエポキシ化合物として、特に一般式(3): As the epoxy compound having a carbon-carbon unsaturated bond used in the present invention, especially general formula (3):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中のR、Rは前記の置換基と同じである。)で表される化合物が好適に使用できる。具体的には、アリルグリシジルエーテル、メタリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、ブタジエンモノオキシド、1,4-シクロペンタジエンモノエポキシドが反応活性の点から好ましく、アリルグリシジルエーテルが特に好ましい。 (R 1 and R 2 in the formula are the same as the substituents described above.) can be preferably used. Specifically, allyl glycidyl ether, methallyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, butadiene monoxide, and 1,4-cyclopentadiene monoepoxide are preferred from the viewpoint of reaction activity, and allyl glycidyl ether is particularly preferred.
 本発明で用いる炭素-炭素不飽和結合を有するエポキシ化合物の添加量は、重合体に対する炭素-炭素不飽和結合の導入量や反応性を考慮して任意の量を使用できる。特に、水酸基末端重合体が有する水酸基に対するモル比は、0.2以上であることが好ましく、0.5以上がより好ましい。また、5.0以下であることが好ましく、2.0以下であることがより好ましい。 The amount of the epoxy compound having a carbon-carbon unsaturated bond used in the present invention can be any amount in consideration of the introduction amount and reactivity of the carbon-carbon unsaturated bond to the polymer. In particular, the molar ratio of the hydroxyl group-terminated polymer to the hydroxyl group is preferably 0.2 or more, more preferably 0.5 or more. Also, it is preferably 5.0 or less, more preferably 2.0 or less.
 本発明において、水酸基を含有する重合体に対し炭素-炭素不飽和結合を有するエポキシ化合物を開環付加反応させる際の反応温度は、反応温度は60℃以上、150℃以下であることが好ましく、110℃以上、140℃以下であることがより好ましい。 In the present invention, the reaction temperature for the ring-opening addition reaction of an epoxy compound having a carbon-carbon unsaturated bond with a polymer containing a hydroxyl group is preferably 60° C. or higher and 150° C. or lower. It is more preferably 110° C. or higher and 140° C. or lower.
 本発明で用いる炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物としては、例えば、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリルなどが挙げられ、取り扱いの容易さから塩化アリル、塩化メタリルを用いることがより好ましい。 Examples of halogenated hydrocarbon compounds having a carbon-carbon unsaturated bond used in the present invention include vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, and allyl iodide. , methallyl iodide, etc., and it is more preferable to use allyl chloride and methallyl chloride from the viewpoint of ease of handling.
 前記の炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物の添加量は、特に制限はないが、水酸基末端重合体が有する水酸基に対するモル比は、0.7以上が好ましく、1.0以上がより好ましい。また、5.0以下が好ましく、2.0以下がより好ましい。 The amount of the halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is not particularly limited, but the molar ratio to the hydroxyl group of the hydroxyl-terminated polymer is preferably 0.7 or more, and 1.0 or more. more preferred. Moreover, 5.0 or less is preferable and 2.0 or less is more preferable.
 炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物を反応させる際の温度としては、50℃以上150℃以下が好ましく、110℃以上140℃以下がより好ましい。反応時間としては、10分以上5時間以下が好ましく、30分以上3時間以下がより好ましい。 The temperature at which the halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is reacted is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower. The reaction time is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
 <反応性ケイ素基の導入>
 反応性ケイ素基の導入方法は、前記で説明した3種類の方法が利用でき、特に限定されず、他の公知の方法を利用することができる。
<Introduction of reactive silicon group>
The three methods described above can be used for introducing a reactive silicon group, and there is no particular limitation, and other known methods can be used.
 (2-1-2.ポリオキシアルキレン系重合体(A2))
 ポリオキシアルキレン系重合体(A2)は、一分子中に反応性ケイ素基を平均1.6個未満含有する直鎖構造を有する。
(2-1-2. Polyoxyalkylene polymer (A2))
The polyoxyalkylene polymer (A2) has a linear structure containing less than 1.6 reactive silicon groups on average per molecule.
 なお、本項では、上記(2-1-1.ポリオキシアルキレン系重合体(A1))とは異なる点についてのみ記載する。本項で記載していない事項については、上記(2-1-1.ポリオキシアルキレン系重合体(A1))の記載が援用される。 In this section, only points that are different from the above (2-1-1. Polyoxyalkylene polymer (A1)) will be described. For matters not described in this section, the description of (2-1-1. Polyoxyalkylene-based polymer (A1)) above is incorporated.
 ポリオキシアルキレン系重合体(A2)が一分子中に有する反応性ケイ素基は、平均して1.6個未満であり、1.5個以下であることが好ましく、1.4個以下であることがより好ましい。前記反応性ケイ素基が平均して1.6個未満であると、高伸びとの効果を奏する。下限は特に限定されないが、例えば、平均して0.5個以上であり、0.6個以上であることが好ましい。下限が0.6個以上であると、タック性が良好である。 The average number of reactive silicon groups in one molecule of the polyoxyalkylene polymer (A2) is less than 1.6, preferably 1.5 or less, and 1.4 or less. is more preferable. When the average number of reactive silicon groups is less than 1.6, an effect of high elongation is obtained. Although the lower limit is not particularly limited, it is, for example, 0.5 or more on average, preferably 0.6 or more. When the lower limit is 0.6 or more, the tackiness is good.
 ポリオキシアルキレン系重合体(A2)の粘度は、特に限定されないが、6.0Pa・s~50Pa・sが好ましく、7.0Pa・s~48Pa・sがより好ましく、8.0Pa・s~45Pa・sがさらに好ましい。ポリオキシアルキレン系重合体(A2)の粘度が6.0Pa・s~50Pa・sであると、硬化性組成物を硬化させた際に、低モジュラス、高伸びの物性が得られる。 The viscosity of the polyoxyalkylene polymer (A2) is not particularly limited, but is preferably 6.0 Pa s to 50 Pa s, more preferably 7.0 Pa s to 48 Pa s, and 8.0 Pa s to 45 Pa. • s is more preferred. When the viscosity of the polyoxyalkylene polymer (A2) is 6.0 Pa·s to 50 Pa·s, physical properties such as low modulus and high elongation can be obtained when the curable composition is cured.
 ポリオキシアルキレン系重合体(A2)としては、例えば、特公昭45-36319号公報、特公昭46-12154号公報、特開昭50-156599号公報、特開昭54-6096号公報、特開昭55-13767号公報、特開昭55-13468号公報、特開昭57-164123号公報、特公平3-2450号公報、米国特許3632557号、米国特許4345053号、米国特許4366307号、米国特許4960844号等の各公報に提案されている重合体等が挙げられる。 As the polyoxyalkylene polymer (A2), for example, JP-B-45-36319, JP-B-46-12154, JP-A-50-156599, JP-A-54-6096, JP-A-55-13767, JP-A-55-13468, JP-A-57-164123, JP-B-3-2450, US Pat. No. 3,632,557, US Pat. No. 4,345,053, US Pat. Polymers and the like proposed in publications such as No. 4960844 can be mentioned.
 ポリオキシアルキレン系重合体(A1)とポリオキシアルキレン系重合体(A2)との配合比は、重量比で、95:5~:30:70であることが好ましく、90:10~40:60であることがより好ましく、80:20~50:50であることがさらに好ましい。ポリオキシアルキレン系重合体(A1)とポリオキシアルキレン系重合体(A2)との配合比が、重量比で、95:5~30:70であると、強度および伸びのバランスが良好となる。 The weight ratio of the polyoxyalkylene polymer (A1) and the polyoxyalkylene polymer (A2) is preferably 95:5 to 30:70, more preferably 90:10 to 40:60. and more preferably 80:20 to 50:50. When the weight ratio of the polyoxyalkylene polymer (A1) to the polyoxyalkylene polymer (A2) is 95:5 to 30:70, the strength and elongation are well balanced.
 (2-2.ポリプロピレングリコール(B))
 本硬化性組成物は、分子量2000以上のポリプロピレングリコールを含む。本明細書において、「ポリプロピレングリコール」とは、プロピレンの重合したポリマーである熱塑性樹脂を意図する。本硬化性組成物がポリプロピレングリコールを含むことにより、加工性、耐熱性、耐水性、耐薬品性、塗料汚染性等を向上することができる。
(2-2. Polypropylene glycol (B))
The curable composition contains polypropylene glycol with a molecular weight of 2000 or greater. As used herein, "polypropylene glycol" intends a thermoplastic resin that is a polymerized polymer of propylene. By including polypropylene glycol in the present curable composition, processability, heat resistance, water resistance, chemical resistance, paint stain resistance, etc. can be improved.
 ポリプロピレングリコールの分子量は、2000以上であり、2500以上であることが好ましく、3000以上であることがより好ましい。前記ポリプロピレングリコールの分子量が2000以上であると、低汚染との効果を奏する。また、前記ポリプロピレングリコールの分子量の上限は、特に限定されないが、例えば、15000以下であり、10000以下であることが好ましい。前記ポリプロピレングリコールの分子量の上限が15000以下であると、低粘度との効果を奏する。 The molecular weight of polypropylene glycol is 2,000 or more, preferably 2,500 or more, and more preferably 3,000 or more. When the molecular weight of the polypropylene glycol is 2000 or more, the effect of low contamination is exhibited. Although the upper limit of the molecular weight of the polypropylene glycol is not particularly limited, it is, for example, 15,000 or less, preferably 10,000 or less. When the upper limit of the molecular weight of the polypropylene glycol is 15000 or less, the effect of low viscosity is exhibited.
 分子量2000以上のポリプロピレングリコールは、市販のものを使用し得る。市販されている分子量2000以上のポリプロピレングリコールとしては、例えば、サンニックス PP―3000(三洋化成工業製)、アクトコール P-3030(三井化学製)等が挙げられる。分子量2000以上のポリプロピレングリコールは、1種類のみを用いてもよく、2種類以上を併用してもよい。 Commercially available polypropylene glycol with a molecular weight of 2000 or more can be used. Examples of commercially available polypropylene glycol having a molecular weight of 2000 or more include Sannix PP-3000 (manufactured by Sanyo Chemical Industries) and Actcol P-3030 (manufactured by Mitsui Chemicals). Polypropylene glycol having a molecular weight of 2000 or more may be used alone or in combination of two or more.
 ポリプロピレングリコールの配合量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、120~300重量部であり、125~280重量部が好ましく、130~260重量部がより好ましい。ポリプロピレングリコールの配合量が120~300重量部であると、柔軟性の観点で利点を有する。 The blending amount of polypropylene glycol is 120 to 300 parts by weight, preferably 125 to 280 parts by weight, more preferably 130 to 260 parts by weight, with respect to 100 parts by weight of the total polyoxyalkylene polymer (A). When the blending amount of polypropylene glycol is 120 to 300 parts by weight, there is an advantage in terms of flexibility.
 (2-3.膠質炭酸カルシウム(C))
 本硬化性組成物は、膠質炭酸カルシウムを含む。本硬化性組成物が膠質炭酸カルシウムを含むことにより、コストダウンを図ることができる。また、本硬化性組成物が膠質炭酸カルシウムを含むことにより、高温条件下で垂直目地に使用した場合に発生するスリップ・スランプを低減することができる。
(2-3. Colloidal calcium carbonate (C))
The curable composition comprises colloidal calcium carbonate. Cost reduction can be achieved by including colloidal calcium carbonate in the present curable composition. In addition, since the present curable composition contains colloidal calcium carbonate, it is possible to reduce slip and slump that occur when used for vertical joints under high temperature conditions.
 膠質炭酸カルシウムとしては、特に限定されないが、例えば、石灰石等を機械的に粉砕・加工したもの等が挙げられる。膠質炭酸カルシウムは、1種類のみを用いてもよく、2種類以上を併用してもよい。 The colloidal calcium carbonate is not particularly limited, but examples include mechanically pulverized and processed limestone. Only one type of colloidal calcium carbonate may be used, or two or more types may be used in combination.
 膠質炭酸カルシウムの比表面積は、1~100m/gが好ましく、10~50m/gがより好ましい。膠質炭酸カルシウム(C)の比表面積は、粉体比表面積測定装置により求められる。 The specific surface area of colloidal calcium carbonate is preferably 1 to 100 m 2 /g, more preferably 10 to 50 m 2 /g. The specific surface area of the colloidal calcium carbonate (C) is determined by a powder specific surface area measuring device.
 膠質炭酸カルシウムの平均粒径は、0.01~0.5μmが好ましく、0.02~0.1μmがより好ましい。膠質炭酸カルシウムの平均粒径は、比表面積から計算によって求められる。平均粒径が小さいほど、硬化物の強度が増す傾向にある。 The average particle size of colloidal calcium carbonate is preferably 0.01-0.5 μm, more preferably 0.02-0.1 μm. The average particle size of colloidal calcium carbonate is calculated from the specific surface area. The strength of the cured product tends to increase as the average particle size decreases.
 膠質炭酸カルシウムは、表面処理されたものであっても、無処理のものであってもよい。膠質炭酸カルシウムの表面処理に用いられる表面処理剤としては、例えば、有機物および各種界面活性剤(脂肪酸、脂肪酸石鹸、脂肪酸エステル等)、各種カップリング剤(シランカップリング剤、チタネートカップリング剤等)等が挙げられる。 The colloidal calcium carbonate may be surface-treated or untreated. Examples of surface treatment agents used for surface treatment of colloidal calcium carbonate include organic substances, various surfactants (fatty acids, fatty acid soaps, fatty acid esters, etc.), and various coupling agents (silane coupling agents, titanate coupling agents, etc.). etc.
 膠質炭酸カルシウムは、膠質炭酸カルシウムの重量に対して、0.1~20重量%の量の表面処理剤で処理することが好ましく、0.2~10重量%の量の表面処理剤で処理することがより好ましい。表面処理剤の使用量が0.1重量%以上であると、作業性および接着性の改善効果が良好である。表面処理剤の使用量が20重量%以下であると、硬化性組成物の貯蔵安定性が良好である。 The colloidal calcium carbonate is preferably treated with a surface treatment agent in an amount of 0.1 to 20% by weight, based on the weight of the colloidal calcium carbonate, and is treated with a surface treatment agent in an amount of 0.2 to 10% by weight. is more preferable. When the amount of the surface treatment agent used is 0.1% by weight or more, the effect of improving workability and adhesiveness is good. When the amount of the surface treatment agent used is 20% by weight or less, the storage stability of the curable composition is good.
 膠質炭酸カルシウムの配合量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、40~250重量部であり、50~240重量部が好ましく、60~230重量部がより好ましい。膠質炭酸カルシウムの配合量が40~250重量部であると、高強度と高伸びの利点を有する。 The amount of colloidal calcium carbonate compounded is 40 to 250 parts by weight, preferably 50 to 240 parts by weight, more preferably 60 to 230 parts by weight, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). . When the content of colloidal calcium carbonate is 40 to 250 parts by weight, it has the advantages of high strength and high elongation.
 (2-4.重質炭酸カルシウム(D))
 本硬化性組成物は、重質炭酸カルシウムを含む。本硬化性組成物が重質炭酸カルシウムを含むことにより、コストダウンを図ることができる。
(2-4. Heavy calcium carbonate (D))
The curable composition comprises ground calcium carbonate. Cost reduction can be achieved by including heavy calcium carbonate in the present curable composition.
 重質炭酸カルシウムとしては、特に限定されないが、例えば、石灰石、貝殻、白亜、大理石等を機械的に粉砕・加工したもの等が挙げられる。重質炭酸カルシウムは、1種類のみを用いてもよく、2種類以上を併用してもよい。 The heavy calcium carbonate is not particularly limited, but examples include those obtained by mechanically pulverizing and processing limestone, shells, chalk, marble, and the like. Only one type of ground calcium carbonate may be used, or two or more types may be used in combination.
 重質炭酸カルシウムの比表面積は、1.0~3.5m/gが好ましく、1.2~3.0m/gがより好ましい。重質炭酸カルシウムの比表面積は、粉体比表面積測定装置により求められる。 The specific surface area of heavy calcium carbonate is preferably 1.0 to 3.5 m 2 /g, more preferably 1.2 to 3.0 m 2 /g. The specific surface area of heavy calcium carbonate is determined by a powder specific surface area measuring device.
 重質炭酸カルシウムの平均粒径は、0.8~5.0μmが好ましく、1.0~3.0μmがより好ましい。重質炭酸カルシウムの平均粒径は、比表面積から計算によって求められる。平均粒径が小さいほど、硬化物の強度が増す傾向にある。 The average particle size of heavy calcium carbonate is preferably 0.8-5.0 μm, more preferably 1.0-3.0 μm. The average particle size of heavy calcium carbonate is calculated from the specific surface area. The strength of the cured product tends to increase as the average particle size decreases.
 重質炭酸カルシウムは、表面処理されたものであっても、無処理のものであってもよい。重質炭酸カルシウムの表面処理に用いられる表面処理剤としては、例えば、有機物および各種界面活性剤(脂肪酸、脂肪酸石鹸、脂肪酸エステル等)、各種カップリング剤(シランカップリング剤、チタネートカップリング剤等)等が挙げられる。 The ground calcium carbonate may be surface-treated or untreated. Examples of surface treatment agents used for surface treatment of heavy calcium carbonate include organic substances, various surfactants (fatty acids, fatty acid soaps, fatty acid esters, etc.), various coupling agents (silane coupling agents, titanate coupling agents, etc.). ) and the like.
 重質炭酸カルシウムは、重質炭酸カルシウムの重量に対して、0.1~20重量%の量の表面処理剤で処理することが好ましく、1~5重量%の量の表面処理剤で処理することがより好ましい。表面処理剤の使用量が0.1重量%以上であると、作業性および接着性の改善効果が良好である。表面処理剤の使用量が20重量%以下であると、硬化性組成物の貯蔵安定性が良好である。 The ground calcium carbonate is preferably treated with a surface treatment agent in an amount of 0.1 to 20% by weight, based on the weight of the ground calcium carbonate, and is treated with a surface treatment agent in an amount of 1 to 5% by weight. is more preferable. When the amount of the surface treatment agent used is 0.1% by weight or more, the effect of improving workability and adhesiveness is good. When the amount of the surface treatment agent used is 20% by weight or less, the storage stability of the curable composition is good.
 重質炭酸カルシウムの配合量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、80~300重量部であり、85~290重量部が好ましく、90~280重量部がより好ましい。重質炭酸カルシウムの配合量が80~300重量部であると、低粘度との利点を有する。 The blending amount of heavy calcium carbonate is 80 to 300 parts by weight, preferably 85 to 290 parts by weight, more preferably 90 to 280 parts by weight, with respect to 100 parts by weight of the total polyoxyalkylene polymer (A). preferable. When the blending amount of heavy calcium carbonate is 80 to 300 parts by weight, it has the advantage of low viscosity.
 本硬化性組成物において、膠質炭酸カルシウムと、重質炭酸カルシウムとの合計量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、250重量部以上であり、260重量部以上が好ましく、270重量部以上がより好ましい。膠質炭酸カルシウムと、重質炭酸カルシウムとの合計量が250重量部であると、低コストとの利点を有する。膠質炭酸カルシウムと、重質炭酸カルシウムとの合計量の上限は特に限定されないが、例えば、700重量部以下であり、500重量部以下であることが好ましい。膠質炭酸カルシウムと、重質炭酸カルシウムとの合計量が700重量部以下であると、耐スリップ性に優れる。 In the present curable composition, the total amount of colloidal calcium carbonate and ground calcium carbonate is 250 parts by weight or more and 260 parts by weight with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). Above is preferable, and 270 parts by weight or more is more preferable. A total amount of colloidal calcium carbonate and ground calcium carbonate of 250 parts by weight has the advantage of low cost. Although the upper limit of the total amount of colloidal calcium carbonate and ground calcium carbonate is not particularly limited, it is, for example, 700 parts by weight or less, preferably 500 parts by weight or less. Slip resistance is excellent when the total amount of colloidal calcium carbonate and ground calcium carbonate is 700 parts by weight or less.
 (2-5.脱水剤(E))
 本硬化性組成物は、脱水剤を含む。本硬化性組成物が脱水剤を含むことにより、貯蔵安定性を改善することができる。
(2-5. Dehydrating agent (E))
The curable composition contains a dehydrating agent. Storage stability can be improved by including a dehydrating agent in the present curable composition.
 脱水剤としては、例えば、アルコキシシラン化合物、合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウム等が挙げられる。特に、アルコキシシラン化合物は好適に利用できる。アルコキシシラン化合物として、例えば、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等が挙げられる。この中でもビニルトリメトキシシランは、脱水効果が高く好適に使用できる。脱水剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Examples of dehydrating agents include alkoxysilane compounds, synthetic zeolite, activated alumina, silica gel, quicklime, and magnesium oxide. In particular, alkoxysilane compounds can be suitably used. Examples of alkoxysilane compounds include n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, methyl silicate, ethyl silicate, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-glycerol. and sidoxypropyltrimethoxysilane. Among these, vinyltrimethoxysilane has a high dehydration effect and can be preferably used. Only one type of dehydrating agent may be used, or two or more types may be used in combination.
 脱水剤は、市販されているものを使用してもよく、合成したものを使用してもよい。市販されている脱水剤としては、例えば、Momentive製ビニルシランA-171、EVONIK製VTMO、信越シリコーン製KBM―1003等が挙げられる。 A commercially available dehydrating agent may be used, or a synthetic one may be used. Examples of commercially available dehydrating agents include vinylsilane A-171 manufactured by Momentive, VTMO manufactured by EVONIK, and KBM-1003 manufactured by Shin-Etsu Silicone.
 脱水剤の配合量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、4重量部以上であり、4.2重量部以上が好ましく、4.4重量部以上がより好ましい。脱水剤の配合量が4重量部以上であると、安定な貯蔵性との利点を有する。脱水剤の配合量の上限は特に限定されないが、例えば、10重量部以下であり、7重量部以下であることが好ましい。脱水剤の配合量が10重量部以下であると、シーリング材に好適な硬化速度を達成できる。 The amount of the dehydrating agent is 4 parts by weight or more, preferably 4.2 parts by weight or more, more preferably 4.4 parts by weight or more, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). . When the amount of the dehydrating agent is 4 parts by weight or more, there is an advantage of stable storage. Although the upper limit of the amount of the dehydrating agent is not particularly limited, it is, for example, 10 parts by weight or less, preferably 7 parts by weight or less. When the amount of the dehydrating agent to be blended is 10 parts by weight or less, a curing speed suitable for the sealant can be achieved.
 (2-6.酸化防止剤(F))
 本発明の一実施形態において、本硬化性組成物は、一分子中にヒンダードフェノール構造を4つ有する酸化防止剤を含むことが好ましい。本硬化性組成物が酸化防止剤を含むことにより、耐候耐湿性を改善することができる。これにより、例えば、東南アジアといった熱帯地域においても好適に利用できる。
(2-6. Antioxidant (F))
In one embodiment of the present invention, the curable composition preferably contains an antioxidant having four hindered phenol structures in one molecule. Weather resistance and moisture resistance can be improved by including an antioxidant in the present curable composition. As a result, it can be suitably used in tropical regions such as Southeast Asia, for example.
 本発明の一実施形態において、特に、日中の表面温度が60℃を超えるような水平目地部分での軟化防止の観点から、前記ヒンダードフェノール構造が、片ヒンダードフェノール構造である酸化防止剤であることが好ましい。 In one embodiment of the present invention, from the viewpoint of preventing softening of horizontal joints where the surface temperature exceeds 60° C. during the daytime, the antioxidant has a hindered phenol structure that is a single hindered phenol structure. is preferably
 酸化防止剤としては、特に限定されないが、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、モノ(またはジもしくはトリ)(αメチルベンジル)フェノール、2,2’-メチレンビス(4エチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4-ビス[(オクチルチオ)メチル]o-クレゾール、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)-ベンゾトリアゾール、メチル-3-[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネート-ポリエチレングリコール(分子量約300)縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。酸化防止剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Examples of antioxidants include, but are not limited to, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di-or tri-) (α-methylbenzyl)phenol, 2,2′-methylenebis(4ethyl-6-t-butylphenol), 2,2′-methylenebis(4methyl-6-t-butylphenol), 4,4′-butylidenebis(3- methyl-6-t-butylphenol), 4,4′-thiobis(3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, tri Ethylene glycol-bis-[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4- hydroxyphenyl)propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, pentaerythrityl-tetrakis [ 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] , octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, N,N′-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide ), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl- 4-hydroxybenzyl)benzene, bis(3,5-di-t-butyl-4-hydroxybenzylethyl)calcium phosphonate, tris-(3,5-di-t-butyl-4-hydroxybenzyl)isocyanurate, 2,4-bis[(octylthio)methyl]o-cresol, N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine, tris(2,4- Di-t-butylphenyl)phosphite, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H- benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2 -(3,5-di-t-butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzotriazole, 2-(2' -hydroxy-5′-t-octylphenyl)-benzotriazole, methyl-3-[3-t-butyl-5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate-polyethylene glycol (molecular weight 300) condensates, hydroxyphenylbenzotriazole derivatives, 2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-n-butylmalonate bis(1,2,2,6,6- pentamethyl-4-piperidyl), 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate and the like. Only one type of antioxidant may be used, or two or more types may be used in combination.
 酸化防止剤は、市販されているものを使用してもよく、合成したものを使用してもよい。市販されている酸化防止剤としては、例えば、ノクラック200、ノクラックM-17、ノクラックSP、ノクラックSP-N、ノクラックNS-5、ノクラックNS-6、ノクラックNS-30、ノクラック300、ノクラックNS-7、ノクラックDAH(以上、全て大内新興化学工業株式会社製);アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-616、アデカスタブ AO-635、アデカスタブ AO-658、アデカスタブ AO-80、アデカスタブ AO-15、アデカスタブ AO-18、アデカスタブ 328、アデカスタブ AO-37(以上、全て株式会社ADEKA製);IRGANOX-245、IRGANOX-259、IRGANOX-565、IRGANOX-1010、IRGANOX-1024、IRGANOX-1035、IRGANOX-1076、IRGANOX-1081、IRGANOX-1098、IRGANOX-1222、IRGANOX-1330、IRGANOX-1425WL(以上、全てチバ・スペシャルティ・ケミカルズ製);SumilizerGM、SumilizerGA-80、SumilizerGS(以上、全て住友化学株式会社製)等が挙げられる。 Commercially available antioxidants or synthesized antioxidants may be used. Commercially available antioxidants include, for example, Nocrac 200, Nocrac M-17, Nocrac SP, Nocrac SP-N, Nocrac NS-5, Nocrac NS-6, Nocrac NS-30, Nocrac 300, and Nocrac NS-7. , Nocrac DAH (all of the above are manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.); 658, ADEKA STAB AO-80, ADEKA STAB AO-15, ADEKA STAB AO-18, ADEKA STAB AO-18, ADEKA STAB 328, ADEKA STAB AO-37 (all manufactured by ADEKA Co., Ltd.); IRGANOX-1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all manufactured by Ciba Specialty Chemicals); SumilizerGM, SumilizerGA-80, Sum ilizer GS (all of which are manufactured by Sumitomo Chemical Co., Ltd.).
 酸化防止剤の配合量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、例えば、0.2~5重量部であり、0.4~4.5重量部が好ましく、0.6~4重量部がより好ましい。酸化防止剤の配合量が0.2~5重量部であると、耐候耐湿性を良好に改善できる。 The amount of the antioxidant compounded is, for example, 0.2 to 5 parts by weight, preferably 0.4 to 4.5 parts by weight, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). 0.6 to 4 parts by weight is more preferred. When the blending amount of the antioxidant is 0.2 to 5 parts by weight, the weather resistance and humidity resistance can be favorably improved.
 (2-7.有機バルーン(G))
 本発明の一実施形態において、本硬化性組成物は、有機バルーンを含むことが好ましい。有機バルーンは、プラスチックマイクロバルーンと称することもできる。本硬化性組成物が有機バルーンを含むことにより、断熱性が向上する。
(2-7. Organic balloon (G))
In one embodiment of the invention, the curable composition preferably comprises organic balloons. Organic balloons can also be referred to as plastic microballoons. Inclusion of organic balloons in the present curable composition improves thermal insulation.
 有機バルーンとしては、特に限定されないが、例えば、フェノール樹脂バルーン、エポキシ樹脂バルーン、尿素樹脂バルーン、ポリ塩化ビニリデン樹脂バルーン、ポリ塩化ビニリデン-(メタ)アクリル系樹脂バルーン、ポリスチレンバルーン、ポリメタクリレートバルーン、ポリビニルアルコールバルーン、スチレン-(メタ)アクリル系樹脂バルーン、ポリアクリロニトリルバルーン等が挙げられる。有機バルーンは、1種類のみを用いてもよく、2種類以上を併用してもよい。また、ガラスバルーン、シラスバルーン等の無機バルーンと組み合わせることで、硬度や糸引き性を改善させることもできる。 Examples of organic balloons include, but are not limited to, phenol resin balloons, epoxy resin balloons, urea resin balloons, polyvinylidene chloride resin balloons, polyvinylidene chloride-(meth)acrylic resin balloons, polystyrene balloons, polymethacrylate balloons, polyvinyl Examples include alcohol balloons, styrene-(meth)acrylic resin balloons, polyacrylonitrile balloons, and the like. Only one type of organic balloon may be used, or two or more types may be used in combination. By combining with inorganic balloons such as glass balloons and shirasu balloons, hardness and stringiness can be improved.
 有機バルーンは、市販されているものを使用してもよく、合成したものを使用してもよい。市販されている有機バルーンとしては、例えば、MFL―HD60CA、MFL-81GCA(いずれも松本油脂製)、EMC-40(B)(日本フィライト製)等が挙げられる。 Commercially available organic balloons or synthesized ones may be used. Commercially available organic balloons include, for example, MFL-HD60CA, MFL-81GCA (all manufactured by Matsumoto Yushi), EMC-40 (B) (manufactured by Nippon Philite), and the like.
 有機バルーンの配合量は、ポリオキシアルキレン系重合体(A)の総量100重量部に対して、例えば、3~15重量部であり、4~12重量部が好ましく、5~10重量部がより好ましい。有機バルーンの配合量が3~15重量部であると、断熱性向上との利点を有する。 The amount of the organic balloon compounded is, for example, 3 to 15 parts by weight, preferably 4 to 12 parts by weight, more preferably 5 to 10 parts by weight, with respect to 100 parts by weight of the total amount of the polyoxyalkylene polymer (A). preferable. When the amount of the organic balloon is 3 to 15 parts by weight, it has the advantage of improving the heat insulating properties.
 (2-8.その他の成分)
 本発明の一実施形態において、本硬化性組成物は、上記(A)~(G)成分以外に、その他の成分を含み得る。
(2-8. Other components)
In one embodiment of the present invention, the curable composition may contain other components in addition to the above components (A) to (G).
 その他の成分は、シーリング材等の分野において使用される硬化性組成物に一般に添加されるものであれば、特に限定されない。その他の成分としては、例えば、光安定剤、接着性付与剤、チキソ性付与剤、顔料、紫外線吸収剤、硬化触媒、艶消し剤等が挙げられる。 Other components are not particularly limited as long as they are commonly added to curable compositions used in the field of sealants and the like. Other components include, for example, light stabilizers, adhesion imparting agents, thixotropic agents, pigments, ultraviolet absorbers, curing catalysts, matting agents and the like.
 また、その他の成分の配合量は、本発明の効果を奏する限りにおいて特に限定されず、当業者により適宜設定され得る。 In addition, the blending amount of other components is not particularly limited as long as the effects of the present invention are achieved, and can be appropriately set by those skilled in the art.
 (2-9.用途)
 本硬化性組成物の用途としては、特に限定されないが、例えば、シーリング材、コーティング材、接着剤、塗料、防水剤、ポッティング剤等が挙げられる。なかでも、シーリング材として用いられることが好ましく、目地構造用シーリング材として用いられることがより好ましい。
(2-9. Applications)
Applications of the present curable composition are not particularly limited, but examples thereof include sealing materials, coating materials, adhesives, paints, waterproofing agents, potting agents and the like. Among others, it is preferably used as a sealant, and more preferably used as a joint structural sealant.
 〔3.硬化物〕
 本発明の一実施形態において、本硬化性組成物を硬化させてなる、硬化物(以下、「本硬化物」と称する。)を提供する。
[3. Cured material]
In one embodiment of the present invention, a cured product (hereinafter referred to as "main cured product") is provided by curing the present curable composition.
 本硬化物は、本硬化性組成物を硬化して形成されたものである。本硬化性組成物を硬化させる方法は特に限定されないが、例えば、本硬化性組成物を空気中の湿気により硬化させる方法、スタティックミキサーにより強制的に水分を練りこむブースター方式、オーブンやヒートガンにより加熱する方法、霧吹き等で表面へ積極的に水分を供給させる方法等が挙げられる。 The cured product is formed by curing the curable composition. The method of curing the present curable composition is not particularly limited, but for example, a method of curing the present curable composition with moisture in the air, a booster method of forcibly kneading moisture with a static mixer, heating with an oven or heat gun and a method of positively supplying water to the surface by spraying or the like.
 本硬化物のモジュラスは、0.4MPa以下であることが好ましく、0.35MPa以下であることがより好ましく、0.30MPa以下であることがさらに好ましい。本硬化物のモジュラスが0.4MPa以下であると、目地変位への良好な追従性との効果を奏する。本硬化物のモジュラスの下限は、例えば、0.20MPa以上であり、0.22MPa以上であることが好ましく、0.25MPa以上であることがより好ましい。本硬化物のモジュラスが0.20MPa以上であると、低汚染性との効果を奏する。なお、本硬化物のモジュラスは、後述する実施例に記載の方法によって測定することができる。 The modulus of the cured product is preferably 0.4 MPa or less, more preferably 0.35 MPa or less, and even more preferably 0.30 MPa or less. When the modulus of the main cured product is 0.4 MPa or less, the effect of good followability to joint displacement is exhibited. The lower limit of the modulus of the hardened product is, for example, 0.20 MPa or more, preferably 0.22 MPa or more, and more preferably 0.25 MPa or more. When the modulus of the main cured product is 0.20 MPa or more, the effect of low contamination is exhibited. The modulus of the cured product can be measured by the method described in Examples below.
 本硬化物の強度は、1.0MPa以上であることが好ましく、1.1MPa以上であることがより好ましく、1.3MPa以上であることがさらに好ましい。本硬化物の強度が1.0MPa以上であると、高耐久との効果を奏する。本硬化物の強度の上限は、例えば、3.0MPa以下であり、2.5MPa以下であることが好ましく、2.0MPa以下であることがより好ましい。本硬化物の強度が3.0MPa以下であると、躯体の破壊防止との効果を奏する。なお、本硬化物の強度は、後述する実施例に記載の方法によって測定することができる。 The strength of the hardened product is preferably 1.0 MPa or more, more preferably 1.1 MPa or more, and even more preferably 1.3 MPa or more. When the strength of the hardened product is 1.0 MPa or more, the effect of high durability is exhibited. The upper limit of the strength of the hardened product is, for example, 3.0 MPa or less, preferably 2.5 MPa or less, and more preferably 2.0 MPa or less. When the strength of the hardened product is 3.0 MPa or less, the effect of preventing the frame from breaking is exhibited. The strength of the cured product can be measured by the method described in Examples below.
 本硬化物の伸びは、500%以上であることが好ましく、600%以上であることがより好ましく、700%以上であることがさらに好ましい。本硬化物の伸びが500%以上であると、良好な目地追従性との効果を奏する。本硬化物の伸びの上限は、例えば、1500%以下であり、1200%以下であることが好ましく、1000%以下であることがより好ましい。本硬化物の伸びが1500%以下であると、低汚染性との効果を奏する。なお、本硬化物の伸びは、後述する実施例に記載の方法によって測定することができる。 The elongation of the cured product is preferably 500% or more, more preferably 600% or more, and even more preferably 700% or more. When the elongation of the main cured product is 500% or more, the effect of good joint followability is exhibited. The upper limit of elongation of the cured product is, for example, 1500% or less, preferably 1200% or less, and more preferably 1000% or less. When the elongation of the main cured product is 1500% or less, the effect of low staining is exhibited. The elongation of the cured product can be measured by the method described in Examples below.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 すなわち、本発明の一態様は、以下を含む。
<1>(A)反応性ケイ素基を有するポリオキシアルキレン系重合体を100重量部、
 (B)分子量2000以上のポリプロピレングリコールを120~300重量部、
 (C)膠質炭酸カルシウムを40~250重量部、
 (D)重質炭酸カルシウムを80~300重量部、および
 (E)脱水剤を4重量部以上、を含み、
 前記(A)の重合体が、
 一分子中に反応性ケイ素基を平均1.6個以上含有する直鎖構造のポリオキシアルキレン系重合体(A1)と、
 一分子中に反応性ケイ素基を平均1.6個未満含有する直鎖構造のポリオキシアルキレン系重合体(A2)と、を含み、
 前記(C)の膠質炭酸カルシウムと、前記(D)の重質炭酸カルシウムとの合計量が、250重量部以上である、硬化性組成物。
<2>前記(A1)と(A2)との配合比が、重量比で、95:5~30:70である、<1>に記載の硬化性組成物。
<3>さらに、(F)一分子中にヒンダードフェノール構造を4つ有する酸化防止剤を含む、<1>または<2>に記載の硬化性組成物。
<4>さらに、(G)有機バルーンを含む、<1>~<3>のいずれかに記載の硬化性組成物。
<5>前記(A1)の重合体が、下記一般式(2)で表される構造を有することを特徴とする、<1>~<4>のいずれかに記載の硬化性組成物。
That is, one aspect of the present invention includes the following.
<1> (A) 100 parts by weight of a polyoxyalkylene polymer having a reactive silicon group,
(B) 120 to 300 parts by weight of polypropylene glycol having a molecular weight of 2000 or more;
(C) 40 to 250 parts by weight of colloidal calcium carbonate;
(D) 80 to 300 parts by weight of ground calcium carbonate, and (E) 4 parts by weight or more of a dehydrating agent,
The polymer (A) is
a linear polyoxyalkylene polymer (A1) containing an average of 1.6 or more reactive silicon groups per molecule;
a linear polyoxyalkylene polymer (A2) containing an average of less than 1.6 reactive silicon groups per molecule;
The curable composition, wherein the total amount of the colloidal calcium carbonate (C) and the ground calcium carbonate (D) is 250 parts by weight or more.
<2> The curable composition according to <1>, wherein the weight ratio of (A1) and (A2) is 95:5 to 30:70.
<3> The curable composition according to <1> or <2>, further comprising (F) an antioxidant having four hindered phenol structures in one molecule.
<4> The curable composition according to any one of <1> to <3>, further comprising (G) an organic balloon.
<5> The curable composition according to any one of <1> to <4>, wherein the polymer (A1) has a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式中、R、Rは、それぞれ独立に、2価の炭素数1~6の結合基であり、R、Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R、Rは、それぞれ独立に、水素、または炭素数1~10の炭化水素基である。nは、1~10の整数である。Rは、置換または非置換の炭素数1~20の炭化水素基である。Xは、水酸基または加水分解性基である。cは、1~3の整数である。
<6>前記(F)のヒンダードフェノール構造が、片ヒンダードフェノール構造である、<3>~<5>のいずれかに記載の硬化性組成物。
<7>前記(A1)および/または(A2)の数平均分子量が、GPCにおけるポリスチレン換算分子量で3000~100000である、<1>~<6>のいずれかに記載の硬化性組成物。
<8><1>~<7>のいずれかに記載の硬化性組成物を硬化させてなる、硬化物。
(In the formula, R 1 and R 3 are each independently a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 1 and R 3 are carbon, oxygen , nitrogen, each of R 2 and R 4 is independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10, R 5 is a substituted or an unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X is a hydroxyl group or a hydrolyzable group, and c is an integer of 1 to 3;
<6> The curable composition according to any one of <3> to <5>, wherein the hindered phenol structure of (F) is a single hindered phenol structure.
<7> The curable composition according to any one of <1> to <6>, wherein (A1) and/or (A2) have a number average molecular weight of 3,000 to 100,000 in terms of polystyrene in GPC.
<8> A cured product obtained by curing the curable composition according to any one of <1> to <7>.
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定
されるものではない。
EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.
 〔材料〕
 実施例および比較例において、以下の材料を使用した。
〔material〕
The following materials were used in Examples and Comparative Examples.
 (重合体(A))
・重合体(A1-1):後述する合成例1で得られる重合体
・重合体(A1-2):後述する合成例2で得られる重合体
・重合体(A2-1):後述する合成例3で得られる重合体
・重合体(A2-2):後述する合成例4で得られる重合体
 (重合体(A’))
・重合体(A’1):後述する合成例5で得られる重合体
・重合体(A’2):後述する合成例6で得られる重合体
 (ポリプロピレングリコール(B))
・分子量約3000のポリプロピレングリコール
 (フタル酸系可塑剤(B’))
・ジェイ・プラス製、フタル酸ジイソノニル(DINP)
 (膠質炭酸カルシウム(C))
・膠質炭酸カルシウム(C1):竹原化学工業製、ネオライトSP
・膠質炭酸カルシウム(C2):白石カルシウム製、白艶華CCR
 (重質炭酸カルシウム(D))
・Omya製、OMYACARB 1T
 (チキソ性付与剤)
・Arkema製アミドワックス、Crayvallac SL
 (顔料)
・石原産業製酸化チタン、R820
 (有機バルーン(G))
・有機バルーン1(G):松本油脂製薬製、MFL―HD60CA
 (有機バルーン(G’))
・有機バルーン2(G’):松本油脂製薬製、MFL-81GCA
 (酸化防止剤(F))
・酸化防止剤(F):Clariant製片ヒンダードフェノール酸化防止剤、HOSTANOX O3
 (酸化防止剤(F’))
・酸化防止剤(F’):BASF製ヒンダードフェノール酸化防止剤、IRGANOX1010
 (紫外線吸収剤)
・BASF製ベンゾトリアゾール紫外線吸収剤、Tinuvin326
 (光安定剤)
・光安定剤1:BASF製HALS、Tinuvin770
・光安定剤2:ADEKA製HALS、LA-63P
 (脱水剤(E))
・Momentive製ビニルシラン、A-171
 (接着性付与剤)
・Momentive製アミノシラン、A-1120
 (硬化触媒)
・日東化成製錫触媒、U220H
 〔測定および評価方法〕
 実施例および比較例における測定および評価を、以下の方法で行った。
(Polymer (A))
Polymer (A1-1): Polymer obtained in Synthesis Example 1 described later Polymer (A1-2): Polymer obtained in Synthesis Example 2 described later Polymer (A2-1): Synthesis described later Polymer obtained in Example 3/Polymer (A2-2): Polymer obtained in Synthesis Example 4 described later (polymer (A'))
Polymer (A'1): Polymer obtained in Synthesis Example 5 described later Polymer (A'2): Polymer obtained in Synthesis Example 6 described later (polypropylene glycol (B))
・Polypropylene glycol with a molecular weight of about 3000 (phthalate plasticizer (B'))
・J-Plus, diisononyl phthalate (DINP)
(Colloidal calcium carbonate (C))
・ Colloidal calcium carbonate (C1): Neolite SP manufactured by Takehara Chemical Industry Co., Ltd.
・ Colloidal calcium carbonate (C2): Made by Shiraishi Calcium, Hakuenka CCR
(Heavy calcium carbonate (D))
・Made by Omya, OMYACARB 1T
(Thixotropic agent)
・Arkema amide wax, Crayvallac SL
(pigment)
・Titanium oxide manufactured by Ishihara Sangyo, R820
(Organic balloon (G))
・Organic balloon 1 (G): MFL-HD60CA manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.
(Organic balloon (G'))
・Organic balloon 2 (G'): MFL-81GCA manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.
(Antioxidant (F))
Antioxidant (F): Clariant piece hindered phenolic antioxidant, HOSTANOX O3
(Antioxidant (F'))
· Antioxidant (F'): BASF hindered phenol antioxidant, IRGANOX1010
(Ultraviolet absorber)
・BASF benzotriazole UV absorber, Tinuvin326
(light stabilizer)
· Light stabilizer 1: BASF HALS, Tinuvin770
・ Light stabilizer 2: HALS manufactured by ADEKA, LA-63P
(Dehydrating agent (E))
・Momentive vinyl silane, A-171
(Adhesion imparting agent)
Aminosilane, A-1120 from Momentive
(Curing catalyst)
・Nitto Kasei tin catalyst, U220H
[Measurement and evaluation method]
Measurements and evaluations in Examples and Comparative Examples were carried out by the following methods.
 (硬化性組成物の低モジュラス)
 表1に示す各硬化性組成物を、23℃/50%RH×3日間+50℃×4日間養生して厚さ約3mmのシートを作製した。このシートを3号ダンベル型に打ち抜いて、引っ張り速度200mm/分で引っ張り試験を行い、100%伸長時の応力を測定した。評価基準は、以下の通りである。
〇:0.40MPa以下である。
×:0.40MPaより大きい。
(Low modulus of curable composition)
Each curable composition shown in Table 1 was cured at 23° C./50% RH×3 days+50° C.×4 days to prepare a sheet having a thickness of about 3 mm. This sheet was punched into a No. 3 dumbbell shape and subjected to a tensile test at a tensile speed of 200 mm/min to measure the stress at 100% elongation. Evaluation criteria are as follows.
Good: 0.40 MPa or less.
×: greater than 0.40 MPa.
 (硬化性組成物の高強度)
 上記同様に作製したサンプルの破断強度を測定した。評価基準は、以下の通りである。
〇:1.0MPa以上である。
×:1.0MPaより小さい。
(High strength of curable composition)
The breaking strength of a sample prepared in the same manner as above was measured. Evaluation criteria are as follows.
○: 1.0 MPa or more.
x: smaller than 1.0 MPa.
 (硬化性組成物の高伸び)
 上記同様に作製したサンプルの破断伸びを測定した。評価基準は、以下の通りである。
〇:500%以上である。
×:500%より小さい。
(High elongation of curable composition)
The elongation at break of a sample prepared in the same manner as above was measured. Evaluation criteria are as follows.
O: 500% or more.
x: smaller than 500%.
 (硬化性組成物の塗料汚染)
 上記同様に準備した厚さ約3mmのシート状に、白色塗料(関西ペイント製、アレスエコクリーンマット)を刷毛で一度塗りをして、70℃で1週間養生した。その後、23℃50%RH雰囲気下に戻した状態で塗料の上に珪砂を振りかけて、サンプルを鉛直方向に静置した。評価基準は、以下の通りである。
〇:サンプルに珪砂が付着していない。
×:サンプルに珪砂が付着したままである。
(Paint contamination of curable composition)
A sheet having a thickness of about 3 mm prepared in the same manner as above was coated once with a white paint (manufactured by Kansai Paint Co., Ltd., Ares Eco Clean Mat) with a brush and cured at 70° C. for 1 week. After that, in a state of returning to a 23° C. and 50% RH atmosphere, silica sand was sprinkled on the paint, and the sample was allowed to stand vertically. Evaluation criteria are as follows.
O: No silica sand adhered to the sample.
x: Silica sand remains adhered to the sample.
 (硬化性組成物の貯蔵安定性)
 アルミニウムカートリッジに充填された硬化性組成物を50℃で4週間保管した後に、B型粘度計で2RPMでの粘度を測定して、貯蔵前後での粘度変化率を計算した。評価基準は、以下の通りである。
〇:貯蔵後の増粘率が200%以下である。
×:貯蔵後の増粘率が200%より大きい。
(Storage stability of curable composition)
After storing the curable composition filled in the aluminum cartridge at 50° C. for 4 weeks, the viscosity at 2 RPM was measured with a Brookfield viscometer to calculate the viscosity change rate before and after storage. Evaluation criteria are as follows.
O: The viscosity increase rate after storage is 200% or less.
x: Thickening rate after storage is greater than 200%.
 (硬化性組成物の耐侯耐湿性)
 表1に示す各硬化性組成物を、23℃/50%RH×3日間+50℃×4日間養生して厚さ約3mmのシートを作製した。硬化物シートを一辺が20mmの正方形に切り出し、70℃の温水に7日間浸漬させた。その後シートを取り出し、ダイプラ・ウィンテス製メタルウェザー試験機で14日間、耐侯性および耐湿性試験を実施した。試験照度は130W/mとして、照射時のブラックパネル温度は80℃、湿度は50%とした。この照射サイクルと結露サイクルを12時間ごとに繰りかえし、結露サイクルの前後には30秒間純水シャワーを行った。試験終了後のサンプルにスパチュラを押し当て、弾性の保持状態を観察した。評価基準は、以下の通りである。
〇:弾性を保持して、スパチュラにサンプルが付着しない。
×:塑性変形を起こして、スパチュラにサンプルが付着する。
(Weather and humidity resistance of curable composition)
Each curable composition shown in Table 1 was cured at 23° C./50% RH×3 days+50° C.×4 days to prepare a sheet having a thickness of about 3 mm. A square having a side of 20 mm was cut out of the cured sheet and immersed in hot water at 70° C. for 7 days. After that, the sheet was taken out and tested for weather resistance and humidity resistance for 14 days with a metal weather tester manufactured by Daipla-Wintes. The test illuminance was 130 W/m 2 , the black panel temperature during irradiation was 80° C., and the humidity was 50%. This irradiation cycle and dew condensation cycle were repeated every 12 hours, and a pure water shower was performed for 30 seconds before and after the dew condensation cycle. After the test was completed, the sample was pressed with a spatula to observe the elasticity retention state. Evaluation criteria are as follows.
◯: Elasticity is maintained and the sample does not adhere to the spatula.
x: Plastic deformation occurs and the sample adheres to the spatula.
 (硬化性組成物の復元率)
 上記同様に調整した厚さ3mmのダンベル試験片に標線を引き、23℃50%RH条件下で100%伸長させ、24時間保持した。その後、開放して1時間後の標線間距離を測定することで復元率を算出した。評価基準は、以下の通りである。
〇:復元率60%以上である。
×:復元率60%より小さい。
(Restoration rate of curable composition)
A dumbbell test piece having a thickness of 3 mm prepared in the same manner as described above was marked with a line, stretched 100% under conditions of 23° C. and 50% RH, and held for 24 hours. After that, the recovery rate was calculated by measuring the distance between the marked lines after 1 hour from the opening. Evaluation criteria are as follows.
O: Restoration rate of 60% or more.
x: Restoration rate less than 60%.
 (硬化性組成物の断熱性)
 表1に示す硬化性組成物を、幅10cm、長さ10cm、厚み1cmの形状に成型して23℃50%RH条件下で7日間硬化させた。実験用ホットプレート(アズワン製、NEO HOTPLATE HI-1000)を80℃に昇温させ、その上に硬化したサンプルを置き、3分後に赤外線放射温度計(佐藤計量器製作所製、SK-8700II)を用いて表面温度を測定した。評価基準は、以下の通りである。
〇:測定前の気温と比較した上昇温度が25℃以下である。
×:測定前の気温と比較した上昇温度が25℃より大きい。
(Heat insulation of curable composition)
The curable composition shown in Table 1 was molded into a shape having a width of 10 cm, a length of 10 cm and a thickness of 1 cm, and cured at 23° C. and 50% RH for 7 days. An experimental hot plate (NEO HOTPLATE HI-1000, manufactured by AS ONE) is heated to 80 ° C., a cured sample is placed on it, and an infrared radiation thermometer (SK-8700II, manufactured by Sato Keiki Seisakusho) is set after 3 minutes. was used to measure the surface temperature. Evaluation criteria are as follows.
Good: The temperature rise compared to the air temperature before measurement is 25°C or less.
x: The temperature rise compared with the air temperature before measurement is more than 25 degreeC.
 (合成例1)
 (重合体(A1-1)の調製)
 数平均分子量が約4500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900(末端基換算分子量17700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-1)を得た。続いてこの水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端に複数の炭素-炭素不飽和結合を有するポリオキシプロピレン(Q-1)を得た。重合体(Q-1)は1つの末端に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
(Synthesis example 1)
(Preparation of polymer (A1-1))
Polyoxypropylene glycol having a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of 27,900 having hydroxyl groups at both ends (terminal group equivalent molecular weight of 17,700 ), and polyoxypropylene (P-1) having a molecular weight distribution Mw/Mn of 1.21 was obtained. Subsequently, a 28% methanol solution of sodium methoxide was added in an amount of 1.0 molar equivalent to the hydroxyl group of this hydroxyl-terminated polyoxypropylene (P-1). After methanol was distilled off by vacuum devolatilization, 1.0 molar equivalent of allyl glycidyl ether was added to the hydroxyl groups of polymer (P-1), and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of sodium methoxide in methanol was added to remove the methanol, and 1.79 molar equivalent of allyl chloride was added to convert the terminal hydroxyl group to an allyl group. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-1) having a plurality of carbon-carbon unsaturated bonds at the ends was obtained. It was found that the polymer (Q-1) had an average of 2.0 carbon-carbon unsaturated bonds introduced at one terminal.
 得られた(Q-1)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらジメトキシメチルシラン9.6gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端に複数のジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(A1-1)を得た。重合体(A1-1)はジメトキシメチルシリル基を1つの末端に平均1.7個、一分子中に平均3.4個有することが分かった。 To 500 g of the obtained (Q-1) was added 50 μl of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 9.6 g of dimethoxymethylsilane was slowly added dropwise while stirring. After the mixed solution was reacted at 100° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a polyoxypropylene having a number average molecular weight of 28,500 and having a plurality of terminal dimethoxymethylsilyl groups ( A1-1) was obtained. It was found that the polymer (A1-1) had an average of 1.7 dimethoxymethylsilyl groups at one terminal and an average of 3.4 dimethoxymethylsilyl groups per molecule.
 (合成例2)
 (重合体(A1-2))
 合成例1で得られたポリオキシプロピレン(P-1)100重量部に対して、10ppmのトリス2-エチルヘキサン酸ビスマス(III)、および1.9重量部の3-イソシアネートプロピルトリメトキシシランを添加した。得られた混合溶液を90℃で2時間反応させる事により、シリル基数/末端数の比率が0.82、数平均分子量が28,000の、末端にトリメトキシシリル基を有する直鎖状のポリオキシプロピレン(A1-2)を得た。重合体(A1-2)はジメトキシメチルシリル基を1つの末端に平均0.875、1分子中に平均1.75個有することが分かった。
(Synthesis example 2)
(Polymer (A1-2))
Per 100 parts by weight of the polyoxypropylene (P-1) obtained in Synthesis Example 1, 10 ppm of bismuth (III) tris-2-ethylhexanoate and 1.9 parts by weight of 3-isocyanatopropyltrimethoxysilane were added. added. The resulting mixed solution was reacted at 90° C. for 2 hours to obtain a linear poly(polyethylene) having a silyl group/terminal number ratio of 0.82 and a number average molecular weight of 28,000 and a trimethoxysilyl group at the terminal. Oxypropylene (A1-2) was obtained. It was found that the polymer (A1-2) had an average of 0.875 dimethoxymethylsilyl groups at one terminal and an average of 1.75 dimethoxymethylsilyl groups per molecule.
 (合成例3)
 (重合体(A2-1))
 数平均分子量が約4500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量25,500(末端基換算分子量16300)、分子量分布Mw/Mn=1.24のポリオキシプロピレン(P-3)を得た。続いてこの水酸基末端ポリオキシプロピレン(P-3)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-3)の水酸基に対して、さらに1.2モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-2)を得た。この重合体(Q-2)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)20μlを加え、撹拌しながら、ジメトキシメチルシラン4.6gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量約26,500のポリオキシプロピレン(A2-1)を得た。重合体(A2-1)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均1.4個有することが分かった。
(Synthesis Example 3)
(Polymer (A2-1))
Polyoxypropylene glycol having a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of 25,500 having hydroxyl groups at both ends (terminal group equivalent molecular weight of 16,300 ), and polyoxypropylene (P-3) having a molecular weight distribution Mw/Mn of 1.24 was obtained. Subsequently, sodium methoxide was added as a 28% methanol solution in an amount of 1.2 molar equivalents relative to the hydroxyl groups of this hydroxyl-terminated polyoxypropylene (P-3). After methanol is distilled off by vacuum devolatilization, 1.2 molar equivalents of allyl chloride are further added to the hydroxyl groups of the polymer (P-3) to convert the terminal hydroxyl groups to allyl groups, thereby removing unreacted Allyl chloride was removed by vacuum devolatilization. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-2) having an allyl group at its end was obtained. To 500 g of this polymer (Q-2) was added 20 μl of a platinum divinyldisiloxane complex solution (3% by weight isopropanol solution in terms of platinum), and 4.6 g of dimethoxymethylsilane was slowly added dropwise while stirring. After the mixed solution was reacted at 90° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a polyoxypropylene (A2 -1) was obtained. It was found that the polymer (A2-1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 1.4 dimethoxymethylsilyl groups per molecule.
 (合成例4)
 (重合体(A2-2))
 数平均分子量が約4500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900(末端基換算分子量17700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-4)を得た。続いてこの水酸基末端ポリオキシプロピレン(P-4)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-4)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-3)を得た。この重合体(Q-3)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン2.4gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量約28,500のポリオキシプロピレン(A2-2)を得た。重合体(A2-2)はジメトキシメチルシリル基を1つの末端に平均0.4個、1分子中に平均0.8個有することが分かった。
(Synthesis Example 4)
(Polymer (A2-2))
Polyoxypropylene glycol having a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of 27,900 having hydroxyl groups at both ends (terminal group equivalent molecular weight of 17,700 ), and polyoxypropylene (P-4) having a molecular weight distribution Mw/Mn of 1.21 was obtained. Subsequently, sodium methoxide was added as a 28% methanol solution in an amount of 1.2 molar equivalents relative to the hydroxyl groups of this hydroxyl-terminated polyoxypropylene (P-4). After methanol is distilled off by vacuum devolatilization, 1.5 molar equivalents of allyl chloride is further added to the hydroxyl groups of the polymer (P-4) to convert the terminal hydroxyl groups to allyl groups, thereby removing unreacted Allyl chloride was removed by vacuum devolatilization. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, a polyoxypropylene (Q-3) having an allyl group at its end was obtained. To 500 g of this polymer (Q-3) was added 50 μl of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 2.4 g of dimethoxymethylsilane was slowly added dropwise while stirring. After the mixed solution was reacted at 100° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a polyoxypropylene (A2 -2) was obtained. It was found that the polymer (A2-2) had an average of 0.4 dimethoxymethylsilyl groups at one terminal and an average of 0.8 dimethoxymethylsilyl groups per molecule.
 (合成例5)
 (重合体(A’1))
 数平均分子量が約4500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量24,600(末端基換算分子量17,400)、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-5)を得た。得られた水酸基末端ポリオキシプロピレン(P-5)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-5)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-4)を得た。この重合体(Q-4)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン6.4gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量26,200のポリオキシプロピレン(A’1)を得た。重合体(A’1)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均2.2個有することが分かった。
(Synthesis Example 5)
(Polymer (A'1))
Polyoxypropylene triol having a number average molecular weight of about 4500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a terminal hydroxyl group-containing number average molecular weight of 24,600 (terminal group equivalent molecular weight of 17, 400) and a polyoxypropylene (P-5) having a molecular weight distribution Mw/Mn of 1.31 was obtained. A 28% methanol solution of sodium methoxide was added in an amount of 1.2 molar equivalents relative to the hydroxyl groups of the obtained hydroxyl-terminated polyoxypropylene (P-5). After methanol was distilled off by vacuum devolatilization, 1.5 molar equivalents of allyl chloride was added to the hydroxyl groups of polymer (P-5) to convert terminal hydroxyl groups to allyl groups. Unreacted allyl chloride was removed by vacuum devolatilization. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, a polyoxypropylene (Q-4) having an allyl group at its end was obtained. To 500 g of this polymer (Q-4) was added 50 μl of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 6.4 g of dimethoxymethylsilane was slowly added dropwise while stirring. After reacting at 100° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain polyoxypropylene (A'1) having a dimethoxymethylsilyl group at the end and a number average molecular weight of 26,200. rice field. It was found that the polymer (A'1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 2.2 dimethoxymethylsilyl groups per molecule.
 (合成例6)
 (重合体(A’2))
 数平均分子量が約4500のポリオキシプロピレングリコールと数平均分子量が約4500のポリオキシプロピレントリオールの重量比60%、40%の混合物を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量19,000、分子量分布Mw/Mn=1.28のポリオキシプロピレン(P-6)を得た。得られた重合体(P-6)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-6)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン(Q-5)を得た。この重合体(Q-5)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)25mg、およびジメトキシメチルシラン6.8gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量19,000のポリオキシプロピレン(A’2)を得た。重合体(A’2)はジメトキシメチルシリル基を平均1.6個有することが分かった。
(Synthesis Example 6)
(Polymer (A'2))
A mixture of polyoxypropylene glycol having a number average molecular weight of about 4500 and polyoxypropylene triol having a number average molecular weight of about 4500 at a weight ratio of 60% and 40% is used as an initiator, and propylene oxide is produced with a zinc hexacyanocobaltate glyme complex catalyst. Polymerization was carried out to obtain polyoxypropylene (P-6) having a terminal hydroxyl group, a number average molecular weight of 19,000 and a molecular weight distribution Mw/Mn of 1.28. A 28% methanol solution of sodium methoxide was added in an amount of 1.2 molar equivalents relative to the hydroxyl groups of the obtained polymer (P-6). After methanol was distilled off by vacuum devolatilization, 1.5 molar equivalents of allyl chloride was added to the hydroxyl groups of polymer (P-6) to convert terminal hydroxyl groups to allyl groups. Unreacted allyl chloride was removed by vacuum devolatilization. The obtained unpurified allyl group-terminated polyoxypropylene was mixed with n-hexane and water and stirred, and then the water was removed by centrifugation. Metal salts were removed. As a result, polyoxypropylene (Q-5) having allyl groups at the terminal sites was obtained. To 500 g of this polymer (Q-5) were added 25 mg of a platinum-divinyldisiloxane complex (3% by weight isopropanol solution in terms of platinum) and 6.8 g of dimethoxymethylsilane to carry out a hydrosilylation reaction. After reacting at 90°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain polyoxypropylene (A'2) having a dimethoxymethylsilyl group at the end and a number average molecular weight of 19,000. rice field. It was found that the polymer (A'2) had an average of 1.6 dimethoxymethylsilyl groups.
 〔実施例1〕
 重合体(A1-1)および(A2-1)、ポリプロピレングリコール(B)、膠質炭酸カルシウム(C1)、重質炭酸カルシウム(D)、チキソ性付与剤、顔料、酸化防止剤(F)、紫外線吸収剤、光安定剤2、ならびに有機バルーン1(G)を、表1に記載の量となるように秤量した。秤量した混合物をミキサーで分散させ、減圧条件下で加熱脱水した。水分を確認後に冷却を行い分散ペーストに、脱水剤(E)、接着性付与剤、および硬化触媒を、表1に記載の量となるように添加および攪拌した。得られた混合物に脱泡操作を行い、硬化性組成物を得た。得られた硬化性組成物を、アルミニウムカートリッジに充填した。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、貯蔵安定性、耐候耐湿性、復元率、および断熱性を評価した。結果を表1に示す。なお、表1中、各成分の量は、重量部で示す。
[Example 1]
Polymers (A1-1) and (A2-1), polypropylene glycol (B), colloidal calcium carbonate (C1), ground calcium carbonate (D), thixotropic agent, pigment, antioxidant (F), ultraviolet rays Absorbent, Light Stabilizer 2, and Organic Balloon 1 (G) were weighed in the amounts listed in Table 1. The weighed mixture was dispersed with a mixer and dehydrated by heating under reduced pressure. After confirming the water content, the dispersion paste was cooled, and the dehydrating agent (E), the adhesion imparting agent, and the curing catalyst were added to the dispersion paste in the amounts shown in Table 1 and stirred. The resulting mixture was defoamed to obtain a curable composition. The resulting curable composition was filled into aluminum cartridges. Low modulus, high strength, high elongation, resistance to paint contamination, storage stability, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results. In addition, in Table 1, the amount of each component is shown in parts by weight.
 〔実施例2〕
 200重量部の膠質炭酸カルシウム(C1)を50重量部の膠質炭酸カルシウム(C2)に変更し、重質炭酸カルシウム(D)の量を250重量部に変更し、顔料の量を10重量部に変更し、酸化防止剤(F)を酸化防止剤(F’)に変更し、光安定剤2を光安定剤1に変更し、硬化触媒の量を1重量部に変更した以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Example 2]
200 parts by weight of colloidal calcium carbonate (C1) was changed to 50 parts by weight of colloidal calcium carbonate (C2), the amount of ground calcium carbonate (D) was changed to 250 parts by weight, and the amount of pigment was changed to 10 parts by weight. Example 1 except that the antioxidant (F) was changed to the antioxidant (F'), the light stabilizer 2 was changed to the light stabilizer 1, and the amount of the curing catalyst was changed to 1 part by weight. A curable composition was obtained in the same manner. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔実施例3〕
 酸化防止剤(F’)を酸化防止剤(F)に変更した以外は実施例2と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Example 3]
A curable composition was obtained in the same manner as in Example 2, except that the antioxidant (F') was changed to the antioxidant (F). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔実施例4〕
 有機バルーン1(G)を添加しないこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、貯蔵安定性、耐候耐湿性、復元率、および断熱性を評価した。結果を表1に示す。
[Example 4]
A curable composition was obtained in the same manner as in Example 1, except that the organic balloon 1 (G) was not added. Low modulus, high strength, high elongation, resistance to paint contamination, storage stability, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results.
 〔実施例5〕
 重合体(A1-1)を90重量部の重合体(A1-2)に変更し、重合体(A2-1)の量を10重量部に変更し、有機バルーン1(G)を添加しないこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Example 5]
Change polymer (A1-1) to 90 parts by weight of polymer (A1-2), change the amount of polymer (A2-1) to 10 parts by weight, and do not add organic balloon 1 (G). Except for this, in the same manner as in Example 1, a curable composition was obtained. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔実施例6〕
 重合体(A1-1)の量を95重量部に変更し、重合体(A2-1)を5重量部の重合体(A2-2)に変更し、有機バルーン1(G)を添加しないこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Example 6]
Change the amount of polymer (A1-1) to 95 parts by weight, change polymer (A2-1) to 5 parts by weight of polymer (A2-2), and do not add organic balloon 1 (G). Except for this, in the same manner as in Example 1, a curable composition was obtained. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔実施例7〕
 重合体(A1-1)の量を90重量部に変更し、重合体(A2-1)を10重量部の重合体(A2-2)に変更し、有機バルーン1(G)を添加しないこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Example 7]
Change the amount of polymer (A1-1) to 90 parts by weight, change polymer (A2-1) to 10 parts by weight of polymer (A2-2), and do not add organic balloon 1 (G). Except for this, in the same manner as in Example 1, a curable composition was obtained. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔実施例8〕
 重合体(A1-1)の量を30重量部に変更し、重合体(A2-1)の量を70重量部に変更し、有機バルーン1(G)を添加しないこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Example 8]
Example 1 except that the amount of polymer (A1-1) was changed to 30 parts by weight, the amount of polymer (A2-1) was changed to 70 parts by weight, and organic balloon 1 (G) was not added. A curable composition was obtained in the same manner. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔比較例1〕
 重合体(A1-1)の量を100重量部に変更し、重合体(A2-1)を添加しなかったこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、復元率、および断熱性結果を表1に示す。
[Comparative Example 1]
A curable composition was obtained in the same manner as in Example 1, except that the amount of the polymer (A1-1) was changed to 100 parts by weight and the polymer (A2-1) was not added. Table 1 shows the results of low modulus, high strength, high elongation, resistance to paint staining, resistance to weathering and humidity, recovery rate, and heat insulating properties of the resulting curable composition and its cured product.
 〔比較例2〕
 重合体(A2-1)の量を100重量部に変更し、重合体(A1-1)を添加しなかったこと以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Comparative Example 2]
A curable composition was obtained in the same manner as in Example 1, except that the amount of the polymer (A2-1) was changed to 100 parts by weight and the polymer (A1-1) was not added. Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔比較例3〕
 重合体(A1-1)および(A2-1)を100重量部の重合体(A2-2)に変更した以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Comparative Example 3]
A curable composition was obtained in the same manner as in Example 1, except that the polymers (A1-1) and (A2-1) were changed to 100 parts by weight of the polymer (A2-2). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔比較例4〕
 重合体(A1-1)および(A2-1)を100重量部の重合体(A’1)に変更した以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、および断熱性を評価した。結果を表1に示す。
[Comparative Example 4]
A curable composition was obtained in the same manner as in Example 1, except that the polymers (A1-1) and (A2-1) were changed to 100 parts by weight of the polymer (A'1). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weather and humidity, and heat insulation were evaluated using the resulting curable composition and its cured product. Table 1 shows the results.
 〔比較例5〕
 重合体(A1-1)および(A2-1)を100重量部の重合体(A’2)に変更した以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、耐候耐湿性、復元率、および断熱性を評価した。結果を表1に示す。
[Comparative Example 5]
A curable composition was obtained in the same manner as in Example 1, except that the polymers (A1-1) and (A2-1) were changed to 100 parts by weight of the polymer (A'2). Low modulus, high strength, high elongation, resistance to paint contamination, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results.
 〔比較例6〕
 重合体(A1-1)の量を100重量部に変更し、重合体(A2-1)を添加せず、ポリプロピレングリコール(B)をフタル酸系可塑剤(B’)に変更し、膠質炭酸カルシウム(C1)の量を150重量部に変更し、重質炭酸カルシウム(D)の量を150重量部に変更し、顔料の量を10重量部に変更し、有機バルーン1(G)を15重量部の有機バルーン2(G’)に変更し、酸化防止剤(F)を酸化防止剤(F’)に変更し、光安定剤2を光安定剤1に変更し、脱水剤(E)の量を3重量部に変更した以外は実施例1と同様にして、硬化性組成物を得た。得られた硬化性組成物およびその硬化物を用いて、低モジュラス、高強度、高伸び、塗料汚染性、貯蔵安定性、耐候耐湿性、復元率、および断熱性を評価した。結果を表1に示す。
[Comparative Example 6]
The amount of the polymer (A1-1) was changed to 100 parts by weight, the polymer (A2-1) was not added, the polypropylene glycol (B) was changed to the phthalate plasticizer (B'), and the colloidal carbonate was added. The amount of calcium (C1) was changed to 150 parts by weight, the amount of ground calcium carbonate (D) was changed to 150 parts by weight, the amount of pigment was changed to 10 parts by weight, and the organic balloon 1 (G) was changed to 15 parts by weight. parts by weight of organic balloon 2 (G'), antioxidant (F) was changed to antioxidant (F'), light stabilizer 2 was changed to light stabilizer 1, dehydrating agent (E) A curable composition was obtained in the same manner as in Example 1, except that the amount of was changed to 3 parts by weight. Low modulus, high strength, high elongation, resistance to paint contamination, storage stability, resistance to weathering and humidity, recovery rate, and heat insulating properties were evaluated using the obtained curable composition and its cured product. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 〔結果〕
 表1より、実施例1~8は、比較例1~6に比して、低モジュラス、高強度、高伸びを達成することが示された。すなわち、2種類のポリオキシアルキレン系重合体を組み合わせた実施例1~8は、1種類のポリオキシアルキレン系重合体を含む比較例1~6よりも、モジュラス、強度、破断伸びの観点において、優れた性質を有することが分かった。
〔result〕
Table 1 shows that Examples 1-8 achieve low modulus, high strength, and high elongation compared to Comparative Examples 1-6. That is, Examples 1 to 8 in which two types of polyoxyalkylene-based polymers are combined are more modulus, strength, and elongation at break than Comparative Examples 1 to 6 containing one type of polyoxyalkylene-based polymer, It was found to have excellent properties.
 本硬化性組成物は、炭酸カルシウム等の充填剤を高配合しつつ、低モジュラス、高強度、高伸びといった優れた物性を有するため、建材、農業、漁業、林業、園芸、その他の分野に好適に利用することができる。

 
This curable composition contains a large amount of filler such as calcium carbonate and has excellent physical properties such as low modulus, high strength, and high elongation. can be used for

Claims (8)

  1.  (A)反応性ケイ素基を有するポリオキシアルキレン系重合体を100重量部、
     (B)分子量2000以上のポリプロピレングリコールを120~300重量部、
     (C)膠質炭酸カルシウムを40~250重量部、
     (D)重質炭酸カルシウムを80~300重量部、および
     (E)脱水剤を4重量部以上、を含み、
     前記(A)の重合体が、
     一分子中に反応性ケイ素基を平均1.6個以上含有する直鎖構造のポリオキシアルキレン系重合体(A1)と、
     一分子中に反応性ケイ素基を平均1.6個未満含有する直鎖構造のポリオキシアルキレン系重合体(A2)と、を含み、
     前記(C)の膠質炭酸カルシウムと、前記(D)の重質炭酸カルシウムとの合計量が、250重量部以上である、硬化性組成物。
    (A) 100 parts by weight of a polyoxyalkylene polymer having a reactive silicon group;
    (B) 120 to 300 parts by weight of polypropylene glycol having a molecular weight of 2000 or more;
    (C) 40 to 250 parts by weight of colloidal calcium carbonate;
    (D) 80 to 300 parts by weight of ground calcium carbonate, and (E) 4 parts by weight or more of a dehydrating agent,
    The polymer (A) is
    a linear polyoxyalkylene polymer (A1) containing an average of 1.6 or more reactive silicon groups per molecule;
    a linear polyoxyalkylene polymer (A2) containing an average of less than 1.6 reactive silicon groups per molecule;
    The curable composition, wherein the total amount of the colloidal calcium carbonate (C) and the ground calcium carbonate (D) is 250 parts by weight or more.
  2.  前記(A1)と(A2)との配合比が、重量比で、95:5~30:70である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the weight ratio of (A1) and (A2) is 95:5 to 30:70.
  3.  さらに、(F)一分子中にヒンダードフェノール構造を4つ有する酸化防止剤を含む、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising (F) an antioxidant having four hindered phenol structures in one molecule.
  4.  さらに、(G)有機バルーンを含む、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising (G) an organic balloon.
  5.  前記(A1)の重合体が、下記一般式(2)で表される構造を有することを特徴とする、請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式中、R、Rは、それぞれ独立に、2価の炭素数1~6の結合基であり、R、Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R、Rは、それぞれ独立に、水素、または炭素数1~10の炭化水素基である。nは、1~10の整数である。Rは、置換または非置換の炭素数1~20の炭化水素基である。Xは、水酸基または加水分解性基である。cは、1~3の整数である。)
    2. The curable composition according to claim 1, wherein the polymer (A1) has a structure represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 3 are each independently a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 1 and R 3 are carbon, oxygen , nitrogen, each of R 2 and R 4 is independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10, R 5 is a substituted or an unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X is a hydroxyl group or a hydrolyzable group, and c is an integer of 1 to 3.)
  6.  前記(F)のヒンダードフェノール構造が、片ヒンダードフェノール構造である、請求項3に記載の硬化性組成物。 The curable composition according to claim 3, wherein the hindered phenol structure of (F) is a one-sided hindered phenol structure.
  7.  前記(A1)および/または(A2)の数平均分子量が、GPCにおけるポリスチレン換算分子量で3000~100000である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the number average molecular weight of (A1) and/or (A2) is 3000 to 100000 in terms of polystyrene molecular weight in GPC.
  8.  請求項1~7のいずれか1項に記載の硬化性組成物を硬化させてなる、硬化物。

     
    A cured product obtained by curing the curable composition according to any one of claims 1 to 7.

PCT/JP2022/045269 2021-12-27 2022-12-08 Curable composition and cured product thereof WO2023127443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213313 2021-12-27
JP2021213313 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127443A1 true WO2023127443A1 (en) 2023-07-06

Family

ID=86998647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045269 WO2023127443A1 (en) 2021-12-27 2022-12-08 Curable composition and cured product thereof

Country Status (1)

Country Link
WO (1) WO2023127443A1 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041550A1 (en) * 2007-09-28 2009-04-02 Sharp Chemical Ind. Co., Ltd. Adhesive set and bonding method using the same
WO2015080067A1 (en) * 2013-11-29 2015-06-04 株式会社カネカ Curable composition
JP2017039782A (en) * 2014-01-09 2017-02-23 株式会社カネカ Curable composition
JP2018162437A (en) * 2017-03-27 2018-10-18 積水フーラー株式会社 Curable composition
WO2019159972A1 (en) * 2018-02-13 2019-08-22 株式会社カネカ Single-component curable composition for working joint
JP2019156883A (en) * 2018-03-07 2019-09-19 Agc株式会社 Curable composition, and cured product
JP2019156884A (en) * 2018-03-07 2019-09-19 Agc株式会社 Oxyalkylene polymer, curable composition containing the same, curable composition containing the same for sealing material, and cured product
JP2019182885A (en) * 2018-03-30 2019-10-24 株式会社カネカ Curable composition
JP2019189863A (en) * 2018-04-20 2019-10-31 Agc株式会社 Curable composition and cured article
JP2019218466A (en) * 2018-06-19 2019-12-26 積水フーラー株式会社 Curable composition
JP2020117583A (en) * 2019-01-21 2020-08-06 Agc株式会社 Curable composition
JP2021055013A (en) * 2019-10-01 2021-04-08 株式会社カネカ Reactive silicon group-containing polymer and curable composition
WO2021200342A1 (en) * 2020-03-31 2021-10-07 株式会社カネカ Polyoxyalkylene polymer mixture and curable composition
JP2022082297A (en) * 2020-11-20 2022-06-01 積水フーラー株式会社 Moisture-curable composition
WO2022163563A1 (en) * 2021-01-29 2022-08-04 株式会社カネカ Polyoxyalkylene-based polymer and mixture thereof
JP2022135913A (en) * 2021-03-03 2022-09-15 Agc株式会社 Curable composition and cured product thereof
WO2022191084A1 (en) * 2021-03-12 2022-09-15 Agc株式会社 Curable composition, and cured product

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041550A1 (en) * 2007-09-28 2009-04-02 Sharp Chemical Ind. Co., Ltd. Adhesive set and bonding method using the same
WO2015080067A1 (en) * 2013-11-29 2015-06-04 株式会社カネカ Curable composition
JP2017039782A (en) * 2014-01-09 2017-02-23 株式会社カネカ Curable composition
JP2018162437A (en) * 2017-03-27 2018-10-18 積水フーラー株式会社 Curable composition
WO2019159972A1 (en) * 2018-02-13 2019-08-22 株式会社カネカ Single-component curable composition for working joint
JP2019156883A (en) * 2018-03-07 2019-09-19 Agc株式会社 Curable composition, and cured product
JP2019156884A (en) * 2018-03-07 2019-09-19 Agc株式会社 Oxyalkylene polymer, curable composition containing the same, curable composition containing the same for sealing material, and cured product
JP2019182885A (en) * 2018-03-30 2019-10-24 株式会社カネカ Curable composition
JP2019189863A (en) * 2018-04-20 2019-10-31 Agc株式会社 Curable composition and cured article
JP2019218466A (en) * 2018-06-19 2019-12-26 積水フーラー株式会社 Curable composition
JP2020117583A (en) * 2019-01-21 2020-08-06 Agc株式会社 Curable composition
JP2021055013A (en) * 2019-10-01 2021-04-08 株式会社カネカ Reactive silicon group-containing polymer and curable composition
WO2021200342A1 (en) * 2020-03-31 2021-10-07 株式会社カネカ Polyoxyalkylene polymer mixture and curable composition
JP2022082297A (en) * 2020-11-20 2022-06-01 積水フーラー株式会社 Moisture-curable composition
WO2022163563A1 (en) * 2021-01-29 2022-08-04 株式会社カネカ Polyoxyalkylene-based polymer and mixture thereof
JP2022135913A (en) * 2021-03-03 2022-09-15 Agc株式会社 Curable composition and cured product thereof
WO2022191084A1 (en) * 2021-03-12 2022-09-15 Agc株式会社 Curable composition, and cured product

Similar Documents

Publication Publication Date Title
WO2007037485A1 (en) Curable composition
KR20130008530A (en) Curable composition
WO2007037484A1 (en) Curable composition
WO2005121255A1 (en) Curable composition
JP7073167B2 (en) Curable composition
WO2019189491A1 (en) Reactive silicon group-containing polymer and curable composition
JP2023075949A (en) Method for producing one-component curable composition for working joint, method for producing joint structure and construction method
JP7285247B2 (en) REACTIVE SILICON-CONTAINING POLYMER AND CURABLE COMPOSITION
WO2014024963A1 (en) Moisture curable composition
JP2011063669A (en) Curable composition
JP2020176169A (en) Curable composition, cured material, and sealant
JP2024009271A (en) Polyoxyalkylene-based polymer and curable composition
JP5110957B2 (en) Curable composition
JP7127302B2 (en) Curable composition containing oxyalkylene polymer, curable composition containing oxyalkylene polymer for sealant, and cured product
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
JPWO2016047519A1 (en) Curable composition and cured product thereof
WO2023127443A1 (en) Curable composition and cured product thereof
JP7356247B2 (en) Curable composition and cured product
JP7135432B2 (en) Curable composition, method for producing the same, cured product and sealant
JP2021055017A (en) Curable composition
JP2021055013A (en) Reactive silicon group-containing polymer and curable composition
JP7469875B2 (en) Curable composition and cured product thereof
CN113795547B (en) Curable composition and cured product
WO2023171425A1 (en) Polyoxyalkylene-based polymer mixture and curable composition
JP6839542B2 (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915674

Country of ref document: EP

Kind code of ref document: A1