WO2023127113A1 - エアロゾル生成装置、方法、及びプログラム - Google Patents

エアロゾル生成装置、方法、及びプログラム Download PDF

Info

Publication number
WO2023127113A1
WO2023127113A1 PCT/JP2021/048838 JP2021048838W WO2023127113A1 WO 2023127113 A1 WO2023127113 A1 WO 2023127113A1 JP 2021048838 W JP2021048838 W JP 2021048838W WO 2023127113 A1 WO2023127113 A1 WO 2023127113A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
heating
value
unit
generating device
Prior art date
Application number
PCT/JP2021/048838
Other languages
English (en)
French (fr)
Inventor
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/048838 priority Critical patent/WO2023127113A1/ja
Publication of WO2023127113A1 publication Critical patent/WO2023127113A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection

Definitions

  • the present invention relates to an aerosol generating device, method, and program for generating aerosol.
  • a change in capacitance is detected as a technique for detecting whether or not the smoking article is inserted into the device.
  • the present invention has been made in view of such problems.
  • one aspect of the present invention is an aerosol generating device that generates an aerosol, comprising: a holding unit that holds an aerosol-forming substrate including an aerosol source; a heating unit that heats the aerosol source; Insertion of the aerosol-forming substrate into the holding unit using a detection unit that detects the value of the capacitance sensor, and the detected value of the capacitance sensor and a predetermined threshold value. and a control unit that determines at least one of whether or not the heating unit is connected and whether the heating unit has been removed, and the control unit determines the value of the capacitance sensor based on the state of heating control for the heating unit. It is an aerosol generator that changes the sampling period for detection.
  • control unit sets a sampling period for detecting the value of the capacitance sensor depending on whether the heating unit is heating the aerosol-forming substrate.
  • the aerosol-generating device as described above, which is varied.
  • Another aspect of the present invention is the above aerosol generation device, wherein the detection unit uses a sampling capacitor.
  • Another aspect of the present invention is the aerosol generating device described above, wherein the sampling period while the heating unit is heating the aerosol-forming substrate is longer than the sampling period while heating is stopped.
  • Another aspect of the present invention is the above-described aerosol generating device, wherein the sampling period while the heating unit is heating the aerosol-forming substrate is shorter than the sampling period while heating is stopped.
  • control unit calculates a moving average value of a plurality of values of the detected capacitance sensor, and compares the calculated moving average value with a predetermined threshold value. to determine at least one of whether the aerosol-forming substrate has been inserted into the holding portion, whether it has been inserted, and whether it has been removed.
  • the threshold is a threshold relating to the difference between the two moving average values
  • the control unit compares the difference between the two moving average values with the threshold
  • control unit can operate in a first mode and a second mode with different power consumption, and the power consumption in the second mode is higher than the power consumption in the first mode.
  • the aerosol generating device is switched to the second mode by satisfying a predetermined condition, and the second mode state is switched at predetermined time intervals. It is said aerosol generation apparatus which cancel
  • another aspect of the present invention is the aerosol generation device described above, which includes at least two detection units.
  • control unit uses the values of the capacitance sensors detected by the at least two detection units and the threshold value to store the aerosol-forming substrate in the holding unit. is inserted, whether it is inserted, and is withdrawn.
  • Yet another aspect of the present invention is a method performed by an aerosol generating device comprising: a holder that holds an aerosol-forming substrate that includes an aerosol source; and a heating unit that heats the aerosol source, comprising: detecting the value of a capacitive sensor; and using the detected value of the capacitive sensor and a predetermined threshold value to determine whether or not the aerosol-forming substrate has been inserted into the holder. and that it has been extracted, wherein the determining step is for detecting the value of the capacitance sensor based on the state of heating control for the heating unit is a method of changing the sampling period of
  • Another aspect of the present invention is a program for causing an aerosol generator to execute the above method.
  • FIG. 1 is a diagram schematically showing a configuration example of an aerosol generating device according to an embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing a configuration example in which the aerosol generating device according to one embodiment of the present invention constitutes a PCC holder.
  • FIG. 2 illustrates a capacitive sensor scheme that may be used in an aerosol generating device according to an embodiment of the present invention
  • FIG. 4 is a diagram for explaining an overview of changes in count values (cnt) due to variations in the quality of circuit constituent elements and influences of disturbances such as noise; It is a figure explaining calculation of the moving average of several count values (cnt).
  • FIG. 10 is a diagram illustrating an overview of changes in count value (cnt) due to temperature drift of a sampling capacitor Cs; It is a figure explaining the difference of two count values (cnt).
  • FIG. 4 is a diagram showing an example of a configuration in which the aerosol generator includes multiple detectors;
  • FIG. 4 is a diagram showing an example of the positional relationship between the ground electrode and sensor electrode of one sensor and the ground electrode and sensor electrode of the other sensor; It is a figure which shows an example of the sensing pattern for an electrostatic capacitance detection.
  • FIG. 4 is a diagram showing an example of a configuration in which the aerosol generator includes multiple detectors;
  • FIG. 4 is a diagram showing an example of the positional relationship between the ground electrode and sensor electrode of one sensor and the ground electrode and sensor electrode of the other sensor; It is a figure which shows an example of the sensing pattern for an electrostatic capacitance detection.
  • FIG. 4 is a diagram showing an example of a configuration in which the aerosol generating device includes a detection section near the bottom of the holding section; It is a figure which shows an example when the foreign material of a liquid mixes in a holding
  • FIG. 4 is a diagram showing an arrangement example of a detection unit and a heating unit in the aerosol generation device according to one embodiment of the present invention; It is a figure which shows the example of a system configuration
  • FIG. 4 is a diagram showing an example of the processing flow of the aerosol generating device according to one embodiment of the present invention;
  • FIG. 4 is a diagram showing an example of a processing flow of insertion detection processing of a stick-type base material of the aerosol generating device according to one embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a configuration example of an aerosol generating device according to this embodiment.
  • the aerosol generating device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a detection unit 117, and a heating unit 121. , a holding portion 140 and an insulating portion 144 .
  • the aerosol generating device 100 according to the present embodiment will be described as an example of a heated cigarette, but it is not limited to this, and a similar configuration can be applied to an electronic cigarette or the like.
  • there are low-temperature heating types and high-temperature heating types for heat-not-burn cigarettes depending on the heating temperature but the same configuration as the aerosol generating device 100 according to the present embodiment can be applied to either heating method.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the aerosol generation device 100 under the control of the control unit 116 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 can be supplied with power by being connected to an external outlet via, for example, a USB (Universal Serial Bus) charging cable (not shown).
  • the battery may be connected to a separate charger via a charging terminal (not shown) and charged by power supplied from the charger.
  • the sensor unit 112 acquires various information about the aerosol generating device 100.
  • the sensor unit 112 may include a pressure sensor such as a microphone capacitor, a flow sensor, a temperature sensor, or the like.
  • the sensor unit 112 may also include an input device such as a button or switch that receives information input from the user. Additionally, the sensor portion may include a sensor configured to detect movement of a flavor suction device or the like.
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 in this embodiment can include a display device that displays messages.
  • the notification unit 113 includes, for example, an audio output device such as a speaker, a light emitting device or light emitting element that emits light, a display device that displays an image, a sound output device or acoustic element that outputs sound, or a vibrating device including a vibrator. You can
  • the storage unit 114 stores various information for the operation of the aerosol generating device 100.
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • Storage unit 114 may include volatile memory that provides a working area for control by control unit 116 .
  • the communication unit 115 can include a communication interface (including a communication module) conforming to a predetermined LPWA wireless communication standard or a wireless communication standard with similar restrictions. As such a communication standard, Sigfox, LoRA-WAN, etc. can be adopted.
  • the communication unit 115 may be a communication interface capable of performing communication conforming to any wired or wireless communication standard. Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like, for example, can be adopted as such a communication standard.
  • the detection unit 117 detects multiple sensor values.
  • the detection unit 117 is a capacitance sensor.
  • the detection unit 117 may detect a value related to parasitic capacitance as the value of the sensor, or may detect a value related to the sampling capacitor when a sampling capacitor is provided. good too.
  • the detection unit 117 may be a sensor such as an optical sensor such as an infrared proximity sensor, a pressure sensor using a piezo element, or the like.
  • the value of the sensor detected by the detection unit 117 is used by the control unit 116, which will be described later, to determine that the stick-type base material 150 has been inserted into the internal space 141 of the holding unit 140 by the user or the like of the aerosol generating device 100. Used.
  • the detection unit 117 is provided near the bottom portion 143 of the holding portion 140 in FIG. 1, this is merely an example.
  • the detector 117 may be arranged at another location. Further, the number of detection units 117 provided in the aerosol generation device 100 may be one or plural. The arrangement of the detector 117 will be detailed later. Note that the detection unit 117 may be configured as part of the sensor unit 112 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the aerosol generation device 100 according to various programs.
  • the control unit 116 is realized by electronic circuits such as a CPU (Central Processing Unit) and a microprocessor.
  • control unit 116 calculates a moving average value of a plurality of values of a sensor such as an electrostatic capacitance sensor detected by the detecting unit 117, and uses the calculated moving average value and a predetermined threshold value. , that the stick-shaped substrate 150 has been inserted into the holding portion 140, whether or not it has been inserted, and whether it has been removed. Furthermore, it may be determined that the stick-shaped substrate 150 has been inserted into the holding portion 140 using a difference between a plurality of moving average values and a predetermined threshold value for the difference.
  • a moving average is generally known as a technique for smoothing time-series data. In the moving average, the average value is obtained for each fixed interval, and the time-series transition of the average value is shown.
  • control unit 116 uses the value of the capacitance sensor detected by the detection unit 117 and a predetermined threshold value to determine whether the stick-type base material 150 has been inserted into the holding unit 140 and whether it has been inserted. It may be determined at least one of whether or not and that it has been extracted. That is, the capacitance sensor value itself (parasitic capacitance value, sampling capacitor value) may be compared with the threshold. Then, the control unit 116 may change the sampling period for detecting the value of the capacitance sensor based on the heating control state of the heating unit 121 . For example, the control unit 116 changes the sampling period for detecting the value of the capacitance sensor depending on whether the heating unit 121 is heating the aerosol-forming substrate (stick-type substrate 150). can be
  • the holding part 140 holds an aerosol-forming substrate containing an aerosol source.
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the stick-type substrate 150 of the present embodiment is an example of an aerosol-forming substrate, and is sometimes called a so-called "refill".
  • the stick-type substrate 150 is an elongated stick-shaped aerosol-forming substrate, but other shapes are possible.
  • the holding part 140 of the present embodiment has an elongated shape similar to the stick-shaped base material 150 as a whole so as to accommodate the stick-shaped base material 150 .
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a cylindrical body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the holding part 140 has a cylindrical shape elongated in the insertion direction of the stick-shaped base material 150 . More specifically, in this embodiment, the holding portion 140 is wider than the width of the opening 142 (in this embodiment, the opening 142 is substantially circular, and the "width of the opening 142" is, for example, a diameter).
  • the holding part 140 also has a function of defining a flow path for air supplied to the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet of air to such a channel, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-type base material 150 includes a base material portion 151 and a mouthpiece portion 152 .
  • Substrate portion 151 includes an aerosol source.
  • the aerosol source can be solid or liquid and is atomized by heating to produce an aerosol.
  • the aerosol source may be tobacco-derived, such as, for example, processed pieces of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the aerosol-generating device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient.
  • the stick-shaped base material 150 When the stick-shaped base material 150 is held by the holding part 140 , at least part of the base material part 151 is accommodated in the internal space 141 and at least part of the mouthpiece part 152 protrudes from the opening 142 .
  • the user sucks the mouthpiece 152 protruding from the opening 142, air flows into the internal space 141 from an air inlet hole (not shown) and reaches the user's mouth together with the aerosol generated from the base member 151.
  • the heating unit 121 heats the aerosol source included in the base member 151 to atomize the aerosol source and generate an aerosol.
  • the heating section 121 is configured in a film shape and arranged so as to cover at least part of the outer periphery of the holding section 140 . Then, when the heating part 121 generates heat, the base material part 151 of the stick-shaped base material 150 is heated from at least a part of the outer periphery, and aerosol is generated. Also, the heating unit 121 generates heat when supplied with power from the power supply unit 111 .
  • the heating section 121 may start heating when the control section 116 determines that the stick-shaped base material 150 has been inserted into the internal space 141 of the holding section 140 . Further, when the control unit 116 determines that the stick-shaped base material 150 has been removed from the internal space 141 of the holding unit 140, the heating unit 121 may stop heating.
  • the heat insulation part 144 prevents heat transfer from the heating part 121 to other components.
  • the heat insulating part 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
  • a configuration example of the aerosol generator 100 has been described above.
  • the configuration of the aerosol generating device 100 is not limited to the above, and various configurations exemplified below can be adopted.
  • the heating part 121 may be configured in a blade shape and arranged to protrude from the bottom part 143 of the holding part 140 into the internal space 141 .
  • the blade-shaped heating part 121 is inserted into the base material part 151 of the stick-shaped base material 150 and heats the base material part 151 of the stick-shaped base material 150 from the inside.
  • the heating part 121 may be arranged to cover the bottom part 143 of the holding part 140 .
  • the heating unit 121 is a combination of two or more of the first heating unit that covers the outer periphery of the holding unit 140, the blade-like second heating unit, and the third heating unit that covers the bottom part 143 of the holding unit 140. may be configured as
  • the holding part 140 may include an opening/closing mechanism such as a hinge that opens/closes a portion of the outer shell that forms the internal space 141 .
  • the holding part 140 may hold the stick-shaped base material 150 inserted into the internal space 141 by opening and closing the outer shell.
  • the heating part 121 may be provided at the holding part 140 at the holding part 140 and heat the stick-shaped base material 150 while pressing it.
  • the means for atomizing the aerosol source is not limited to heating by the heating unit 121.
  • the means of atomizing the aerosol source may be induction heating.
  • the aerosol generating device 100 exemplified in FIG. 1 may constitute a heated cigarette or the like by itself, or may constitute a PCC (Portable Charger Case) holder. That is, the aerosol generating device 100 is electrically connected to a separate charger (not shown) via a charging terminal or the like so that the rechargeable battery (power supply unit 111) is charged with electric power from the charger that enables smoking several times.
  • a separate charger not shown
  • the rechargeable battery power supply unit 111
  • FIG. 2 is a diagram showing a configuration example of a PCC system when the aerosol generating device 100 constitutes a PCC holder.
  • the PCC system illustrated in FIG. 2 includes a holder 100 ′ and a charger 200 .
  • the holder 100' further includes a charging terminal PG1 that is chargeably connected to the charger 200.
  • the charging terminal PG1 is connected to the power supply section 111, and the charging terminal PG1 sends the power supplied from the charger 200 to the power supply section 111.
  • FIG. Although the configuration of the holder 100' is simplified in FIG. 2, the configuration of the holder 100' other than the charging terminal PG1 is the same as in FIG.
  • the charger 200 may be configured to supply power to the holder 100' to charge the power source 111 of the holder 100'.
  • the charger 200 illustrated in FIG. 2 may be, for example, a portable pocket charger and sized to fit in a user's clothing pocket or bag.
  • the charger 200 can include a housing 202 having an accommodating portion 201 (accommodating space) capable of accommodating the holder 100', a user interface 203, and an electric component 210 having a power supply BAT.
  • the power supply BAT may be composed of a secondary battery such as a lithium ion secondary battery, or may be composed of an electric double layer capacitor such as a lithium ion capacitor.
  • the user interface 203 includes, for example, a display unit 203a (e.g., a light-emitting element such as an LED and/or an image display such as an LCD) that provides information to the user, and/or an operation unit 203b (for example, a switch, such as a button switch, and/or a touch display). Electrical components 210 are provided within housing 202 .
  • a display unit 203a e.g., a light-emitting element such as an LED and/or an image display such as an LCD
  • an operation unit 203b For example, a switch, such as a button switch, and/or a touch display.
  • Electrical components 210 are provided within housing 202 .
  • charger 200 has a connector PG2 in the housing portion 201 that is electrically connected to the charging terminal PG1 of the holder 100' when the whole holder 100' or a part including the charging terminal PG1 is housed in the housing portion 201.
  • charger 200 may include a terminal (not shown) such as a USB that is electrically connected to, for example, a household power source in order to charge power source BAT of charger 200 .
  • the charger 200 may include a cover member (not shown) in the housing 202 that can be opened and closed with respect to the housing portion 201 so as to cover the holder 100 ′ housed in the housing portion 201 .
  • the detector 117 may be a capacitive sensor.
  • FIG. 3 is a diagram illustrating the mechanism of a capacitance sensor that can be used in the aerosol generating device 100 according to this embodiment.
  • the controller 116 controls the capacitance sensor.
  • the control unit 116 controls the charge transfer circuit 1160 to repeatedly transfer the charge of the capacitor Cx to the sampling capacitor Cs at predetermined intervals, and the control unit 116 counts the number of transfers. .
  • the control unit 116 includes a register (not shown), and records a count value (that is, the number of times the charge of the capacitor Cx is transferred to the sampling capacitor Cs) each time the terminal voltage of the sampling capacitor Cs reaches the threshold value Vih. . Note that the count value may be recorded in the storage unit 114 .
  • the controller 116 can determine whether the stick-shaped substrate 150 has been inserted into the holder 140 or removed from the holder 140 through such control.
  • the capacitor Cs and the capacitor Cx are configured so that the capacity of the capacitor Cs is larger than the capacity of the capacitor Cx.
  • the charge transfer circuit 1160 includes a switch, and the control unit 116 controls the switch to switch between charging the capacitor Cx and transferring the charge to the sampling capacitor Cs.
  • the control unit 116 closes the switch so that the capacitors Cx and Cs are connected at predetermined intervals, and controls the switch between the capacitors Cx and Cs to be open during the charging period of the capacitor Cx.
  • the charge of the capacitor Cx is transferred to the sampling capacitor Cs 8000 times.
  • control unit 116 determines whether the stick-type substrate 150 has been inserted into the holding unit 140 or not based on the difference in the count values when the stick-type substrate 150 is not inserted into the holding unit 140 and when it is inserted. can be detected.
  • the time required for the terminal voltage of the sampling capacitor Cs to reach the threshold value Vih is approximately several milliseconds to several tens of milliseconds. This is regarded as one cycle, and this cycle is repeated at certain time intervals (hereinafter referred to as "sampling period") while the capacitive sensor is active.
  • control unit 116 sets a sampling period (and/or a moving average as described later) for detecting the value of the capacitance sensor according to the state of control of the operation of the aerosol generating device 100. number of samplings for calculation) is changed.
  • the control unit 116 may operate the aerosol generation device in a plurality of operation modes with different maximum power consumption, which is the peak value of the power consumption stored in the power supply unit 111 .
  • the control unit 116 increases or decreases the maximum power consumption and changes the operation mode by, for example, changing the number of pieces of hardware to be operated in the aerosol generating device 100 or by changing the circuits to be operated.
  • Examples of operation modes include a wake-up state in which the control unit 116 operates all hardware as necessary, and a sleep state in which the maximum power consumption is reduced compared to the wake-up state. For example, in the sleep state, the control unit 116 stops all hardware other than the control unit 116, and disables functions other than the function of detecting an operation from an input device that accepts input of information from the user in the control unit 116. and
  • the aerosol generating device 100 accepts a user's operation input (button operation, slider operation, etc.) in a sleep state in which the maximum power consumption is reduced from that in the startup state, and operates a stick-type base in a state where the sleep state described later is temporarily canceled.
  • a user's operation input button operation, slider operation, etc.
  • the control unit 116 may start heating control by detecting insertion of the stick-shaped substrate 150 in the activated state.
  • the control unit 116 may enter an operating state and further start heating control based on detection of insertion of the stick-shaped base material 150 in a state in which a sleep state, which will be described later, is temporarily canceled.
  • control unit 116 detects that a predetermined time has passed since the start of heating, that a predetermined number of puffs have been performed, or that the stick-shaped base material 150 has been pulled out, so that the aerosol-forming substrate ( Stop heating the stick substrate 150).
  • the control unit 116 causes the aerosol generating device 100 to start operating to the maximum power consumption automatically after the elapse of a predetermined period of time or by receiving user operation input (button operation, slider operation, etc.). It may be transitioned to a sleep state with a reduced amount.
  • the control unit 116 can be implemented by, for example, an MCU (Micro Controller Unit) or the like, but may control the operation of the heating unit 121 based on the heating profile stored in the storage unit 114.
  • the heating profile is information that defines the time-series transition of the target temperature, which is the target value of the temperature of the heating unit 121 .
  • the control unit 116 acquires temperature information of the heating unit 121, calculates the difference between the temperature information and the target temperature, and performs known feedback control such as PID control. Specifically, power from the power supply unit is supplied to the heating unit 121 in the form of pulses by pulse width modulation (PWM) or pulse frequency modulation (PFM), and the control unit 116 controls the temperature information of the heating unit 121 and the target temperature.
  • PWM pulse width modulation
  • PFM pulse frequency modulation
  • the duty ratio of the power pulse is calculated and adjusted based on the difference between the power pulses and is supplied to the heating unit 121 .
  • the control unit 116 changes the sampling period for detecting the value of the capacitance sensor depending on whether the heating unit 121 is heating the aerosol-forming substrate (stick-type substrate 150). may be In addition, when the control unit 116 changes the sampling period, as described later, when the control unit 116 calculates the moving average value of the count values in the insertion/removal detection of the stick-type base material 150, in addition to the change of the sampling period Alternatively, the control unit 116 may increase or decrease the number of samplings (the value of the variable X in FIG. 17) for calculating the moving average value.
  • the control unit 116 executes heating control as described above, so the load on the MCU and the like increases. Therefore, from the viewpoint of reducing the load on the MCU and saving power, the control unit 116 may, for example, lengthen the sampling period during heating compared to during heating stop (before heating is started and/or after heating is stopped). Also, the number of samplings in calculating the moving average may be reduced as described later. With such a configuration, it is possible to accurately detect the insertion and removal of the stick-shaped substrate when the heating is stopped, and while reducing the load on the MCU and the like and saving power during the heating state. 150 insertion/removal can be detected.
  • control unit 116 may shorten the sampling period during heating compared to during heating stop (before heating is started and/or after heating is stopped). This is because the accuracy of detection by the detection unit 117 may decrease due to a change in capacitance due to a temperature drift, as will be described later, due to a change in temperature during heating control. Therefore, by shortening the sampling period, the accuracy of detection in the detection unit 117 can be ensured. Also, the number of samplings in calculating the moving average may be increased as described later. With such a configuration, it is possible to accurately detect the insertion/removal of the stick-shaped base material 150 during heating, and to detect the insertion/removal of the stick-shaped base material 150 while saving power while the heating is stopped. can be detected.
  • the control unit 116 automatically or after a predetermined period of time has elapsed, or by a user's operation input (button operation, slider operation, etc.) ) to cause the aerosol generating device 100 to transition from the start state to a sleep state in which the maximum power consumption is reduced, and then cancel the sleep state at predetermined time intervals and detect by the detection unit 117. may be executed.
  • Cancellation of the sleep state may be an activated state or a partially activated state.
  • the partially active state means, for example, that only the sleep state of the circuit units or hardware related to the detection of insertion/removal of the stick-shaped substrate 150 by the detection unit 117 and the control unit 116 is canceled, and the circuit units or hardware that are not related to the detection of insertion/removal Wear maintains a sleep state. Even if the user is in the sleep state, the sleep state is temporarily released at predetermined time intervals and the processing for detecting the insertion of the stick-shaped substrate 150 is executed. The insertion of the mold substrate 150 can be detected and a process such as immediate heating can be performed.
  • the count value (cnt) detected by the capacitance sensor varies for the following reasons.
  • the count value (cnt) may change for the following reasons other than when the stick-shaped substrate 150 is inserted into the holding portion 140 .
  • FIG. 4 is a diagram for explaining an outline of changes in the count value (cnt) due to the influence of (a) variations in the quality of the circuit constituent elements and (b) disturbance such as noise.
  • FIG. 4 shows a plurality of graphs 410 representing the count values (cnt) counted when the stick-shaped substrate 150 is not inserted into the holding portion 140 under a certain temperature environment, and a plurality of graphs 410 showing the stick-shaped substrate.
  • a plurality of graphs 412 representing the count values (cnt) counted when 150 is inserted into holding portion 140 are shown. Note that these graphs shown in FIG. 4 show an overview of changes in the count value due to the reasons (a) and (b) above, and do not strictly show changes in the count value. .
  • Each graph in FIG. 4 shows the number of times (count value) that the terminal voltage of the sampling capacitor Cs reaches the threshold value Vih for each sampling period.
  • the count value (cnt) detected by the detection unit 117 may vary due to variations in the quality of circuit constituent elements or the effects of noise such as circuit noise and external noise.
  • the graph 410 represents a plurality of count values when the stick-shaped base material 150 is not inserted, and each count value varies. Also, when the stick-type base material 150 is not inserted, the count value usually exceeds the threshold value ⁇ , but the count value does not exceed the threshold value ⁇ .
  • Graph 412 shows the count values when the stick-shaped base material 150 is inserted, but the count values vary. When the stick-shaped base material 150 is inserted, the count value usually does not exceed the threshold value ⁇ , but the count value exceeding the threshold value ⁇ is generated.
  • the controller 116 cannot correctly determine the state of insertion of the stick-shaped substrate 150 .
  • a portable device such as a smoking device
  • FIG. 5 is a diagram explaining calculation of a moving average of a plurality of count values. Considering the possibility that the count value (cnt) varies due to noise or the like as described with reference to FIG. By calculating the graphs 410x and 420x), errors occurring in each count value can be absorbed. Then, the control unit 116 compares the calculated moving average value with a predetermined threshold value for the moving average value, and when the moving average value is below the threshold value, the stick-shaped substrate 150 is held by the holding unit. 140 can be determined. It should be noted that variations in the value of the capacitor Cx due to the above reasons (a) and (b) may also occur in the capacitor Cx. may be configured to calculate the moving average of
  • FIG. 6 is a diagram for explaining an overview of changes in the count value (cnt) due to temperature drift of the sampling capacitor Cs.
  • FIG. 6 shows a graph 420a representing the count value counted when the stick-type substrate 150 is inserted into the holding portion 140 under an A° C. environment, and a graph 420a showing the count values when the stick-type substrate 150 is not inserted into the holding portion 140.
  • a graph 422a representing the count value counted in one state is shown.
  • FIG. 6 also shows a graph 420b representing the count value counted when the stick-shaped substrate 150 is inserted into the holding portion 140 under an environment of B° C., which is a temperature different from A° C., and a stick A graph 422b representing count values counted when the mold base 150 is not inserted into the holding portion 140 is shown.
  • these graphs shown in FIG. 6 show an overview of changes in the count value due to temperature drift of the sampling capacitor Cs, and do not strictly show changes in the count value.
  • Each graph in FIG. 6 also shows the number of times (cnt) that the terminal voltage of the sampling capacitor Cs reaches the threshold value Vih for each sampling period.
  • the control section 116 can determine whether or not the stick-shaped substrate 150 has been inserted into the holding section 140 .
  • the controller 116 erroneously determines that the stick-shaped base material 150 has been inserted into the holding part 140 (graph 420b) even though it is not.
  • control unit 116 compares the difference between the two count values with a predetermined threshold for the difference instead of comparing the absolute value of the count values and the threshold. good too. Further, control unit 116 calculates a moving average value of a plurality of count values as described with reference to FIG. 5, and compares the calculated moving average value with a predetermined threshold for the moving average value. good too.
  • FIG. 7 is a diagram explaining the difference between two count values.
  • each count value indicated by the graphs 420a and 422a generally has substantially the same deviation when the environmental temperature changes. Therefore, instead of comparing the absolute value of the count value in each sampling cycle with the threshold value ⁇ , the control unit 116 preliminarily determines the difference between the count values before and after the count value detected in each sampling cycle, and the difference. By comparing with a predetermined threshold value, temperature drift due to environmental temperature changes can be absorbed. It is assumed that the predetermined threshold for the difference is a relatively large value that can be assumed between when the stick-shaped base material 150 is inserted and when it is not inserted.
  • the aerosol generating device 100 calculates the moving average value of the count value or the parasitic capacitance value in a predetermined number of sampling cycles, and further calculates the difference between the calculated moving average values, It may be compared with a predetermined threshold value. This makes it possible to reduce all the effects of the above reasons (a) to (c).
  • the aerosol generating device 100 may include a plurality of detection units 117 . Then, when the moving average value of the capacitance sensor values detected by each detection unit 117 exceeds the threshold, the control unit 116 may determine that the stick-shaped substrate 150 has been inserted into the holding unit 140. .
  • FIG. 8 is a diagram showing an example of a configuration in which the aerosol generating device 100 includes a plurality of sensors (detection unit 117). It is a figure which shows the position of .
  • the mouthpiece part 152 of the stick-shaped base material 150 may include a filter, and the base material part 151 has a paper tube part 151a on the side of the mouthpiece, and a paper filter part 151b and a paper tube part 151a on the end opposite to the mouthpiece.
  • a raw material portion 151c containing a flavor source such as a tobacco raw material or a flavoring agent, a drug, or the like may be included between the paper filter portions 151b.
  • FIG. 8 has a cylindrical shape elongated in the insertion direction of the stick-type base material 150, and FIGS. 140 is a cross-sectional view taken along a plane passing through the central axis of the cylindrical shape in the longitudinal direction (FIGS. 9 and 11 to 14 are similar cross-sectional views).
  • FIG. 8( a ) shows a state in which the stick-shaped substrate 150 is inserted into the holder 140 of the aerosol generator 100 .
  • FIG. 8(b) shows a state in which the stick-shaped substrate 150 is not inserted into the holding portion 140 of the aerosol generating device 100.
  • FIG. 8(c) is a cutaway view of the aerosol generating device 100 taken along a plane substantially parallel to the bottom 143 of the cylindrical holder 140 and passing through the sensor 117a or the sensor 117b.
  • a sensor 117a and a sensor 117b are provided in the detection unit 117 and are sensors for detecting the capacitance of the capacitor Cx.
  • the sensor 117a and the sensor 117b may each be further connected to a sampling capacitor Cs to form the detection section 117.
  • the aerosol generating device 100 shown in FIGS. 8(a) to 8(c) has two sensors 117a and 117b as an example. Further, the sensors 117a and 117b are provided on the side surface of the cylindrical aerosol generating device 100 so as to be separated from each other.
  • the sensor 117a is near the bottom portion 143 of the holding portion 140, and when the stick-shaped substrate 150 is inserted into the holding portion 140 (FIG. 8A), the paper filter 151b of the base portion 151 of the stick-shaped substrate 150 is detected. It is provided at a position corresponding to the vicinity. Further, the sensor 117b is provided near the opening 142 of the holding portion 140. As shown in FIG.
  • the aerosol generating device 100 After the stick-type base material 150 is heated (after the user smokes, etc.), for example, tobacco residue may accumulate on the bottom portion 143 of the holding portion 140, and FIG. ), it may be necessary to clean the inside of the holding portion 140 with a cleaning swab 50 or the like. In this case, if the aerosol generating device 100 has only the sensor 117a, there is a possibility that the cleaning swab 50 is erroneously detected as the stick-shaped base material 150.
  • the aerosol generating device 100 of this example includes a sensor 117b in addition to the sensor 117a near the opening 142 of the holding portion 140.
  • both the sensor 117a and the sensor 117b At the same time, the possibility of erroneously detecting the cleaning swab 50 as the stick-type substrate 150 is greatly reduced.
  • the two sensors are spaced apart from each other, particularly when they are located near the bottom 143 and near the opening 142 of the holding part 140 , i. If they are arranged at both ends in the longitudinal direction, it is possible to reduce the possibility of erroneous detection by the detection unit 117 and the control unit 116 .
  • a sensing pattern for capacitance detection is formed by FPC (Flexible Printed Circuit) or the like, and from the bottom 143 of the holding part 140 or the sensor 117a, an assumed foreign matter (cleaning swab 50 in FIG. 8) of size L1
  • the sensor 117b is installed at a position with the above distance. That is, it is preferable to set L1 ⁇ L2.
  • each of the sensors 117a and 117b may be configured such that one electrode faces the detection target, or multiple electrodes face the detection target with the detection target interposed therebetween.
  • the sensors 117a and 117b may be composed of two electrodes facing each other, and may be arranged so that the side surface of the holding portion 140 is sandwiched between the two electrodes.
  • the facing electrodes may be flat or curved.
  • the detection unit 117 may detect the capacitance between the two electrodes as a capacitor Cx by using the two electrodes facing each other as the value of the capacitance sensor.
  • the count value detected from the sampling capacitor Cs may be detected as the value of the capacitance sensor.
  • the number of sensors may be three or more.
  • FIG. 9 is a diagram showing an example of the positional relationship between the ground electrode 117x and the sensor electrode 117y of the sensor 117a and the ground electrode 117x and the sensor electrode 117y of the sensor 117b.
  • the ground electrode 117x and the sensor electrode 117y of the sensor 117a face each other so as to sandwich the holding portion 140 in the direction perpendicular to the longitudinal direction of the holding portion 140.
  • the ground electrode 117x and the sensor electrode 117y of the sensor 117a are substantially the same distance from the opening 142 or the bottom 143 in the longitudinal direction of the holding portion 140.
  • the ground electrode 117x and the sensor electrode 117y of the sensor 117b are provided so as to sandwich the holding portion 140 in the direction perpendicular to the longitudinal direction of the holding portion 140 so as to face each other.
  • the ground electrode 117x and the sensor electrode 117y of the sensor 117b are substantially the same distance from the opening 142 or the bottom 143 in the longitudinal direction of the holding portion 140. As shown in FIG.
  • the ground electrode 117x of the sensor 117a and the ground electrode 117x of the sensor 117b, and the sensor electrode 117y of the sensor 117a and the sensor electrode 117y of the sensor 117b each have an elongated cylindrical shape. It may be arranged at a position that substantially overlaps a certain holding portion 140 in the longitudinal direction (a position that substantially overlaps when viewed from the opening 143 to the bottom portion 143).
  • the ground electrode 117x of the sensor 117a and the sensor electrode 117y of the sensor 117b, and the sensor electrode 117y of the sensor 117a and the ground electrode 117x of the sensor 117b each have an elongated cylindrical shape.
  • substantially overlap means that a slight deviation within the range where the capacitor can function is allowed even if it does not strictly overlap.
  • FIG. 10 is a diagram showing an example of a sensing pattern for capacitance detection.
  • a sensing pattern for detecting capacitance is formed by FPC or the like, and the ground electrode 117x and the sensor electrode 117y of the sensor 117b face each other across the holding portion 140, and the ground electrode 117x and the sensor electrode 117y of the sensor 117a hold the pattern. It is wound around the holding portion 140 so as to face each other with the portion 140 interposed therebetween.
  • the sensor electrode 117y causes a large change in capacitance when the object to be detected comes into contact with it. Therefore, by configuring the sensor electrode position differently depending on the position of the holding part 140 in the longitudinal direction, for example, when L2 is shorter than L1 in FIG. ) contacts both the sensors 117a and 117b, even if a foreign object contacts the sensor electrode 117y in one sensor, the foreign object does not contact the sensor electrode 117y in the other sensor and contacts the ground electrode 117x. In this state, since the change in the capacitance of the other sensor is small, both the sensors 117a and 117b may erroneously detect a foreign object such as the cleaning swab 50 as the stick-shaped base material 150 at the same time. becomes very low.
  • the sensor electrode 117y of the sensor 117a and the ground electrode 117x of the sensor 117b are substantially aligned in the longitudinal direction of the holding portion 140 (when viewed from the opening 143 to the bottom portion 143).
  • the ground electrode 117x of the sensor 117a and the sensor electrode 117y of the sensor 117b are arranged in overlapping positions in the longitudinal direction of the holding part 140 (when viewed from the opening 143 to the bottom part 143). Therefore, it is possible to accurately detect whether or not the object to be detected is an assumed object.
  • the moving average value of a plurality of capacitance sensor values detected using each sensor 117a, 117b or the difference between two moving average values when each exceeds a predetermined threshold value, the control unit 116 determines that the stick-shaped substrate 150 has been inserted into the holding unit 140 .
  • the thresholds for the capacitance sensor values detected by the sensors 117a and 117b may be the same value or different values.
  • the aerosol generating device 100 includes two sensors, but may include three or more sensors. Then, the control unit 116 determines whether the moving average value of the plurality of values of the capacitance sensor detected using each sensor or the difference between the two moving average values exceeds a predetermined threshold value. It can be like this. Thereby, the detection accuracy of the stick-type base material 150 can be further improved.
  • control unit 116 detects a change in the capacitance of only one of the sensor 117a or the sensor 117b, there is a high possibility that the detection is not the stick-shaped base material 150 but some kind of foreign object. may notify the user of the aerosol generating device 100 to clean it.
  • At least one of the two or more sensors may be a sensor other than a capacitance sensor.
  • it may be an optical sensor such as an infrared proximity sensor, a pressure sensor using a piezoelectric element, or the like. good.
  • FIG. 11 illustrates a configuration in which the planar electrode of the sensor 117c is arranged to face the bottom portion 143 of the holding portion 140 of the aerosol generating device 100.
  • FIG. A sensor 117c is a sensor provided in the detection unit 117 for detecting the capacitance of the capacitor Cx. The sensor 117c may be further connected to a sampling capacitor Cs to form the detection section 117.
  • FIG. The plane electrode provided in the sensor 117c has a ground electrode on the opposite side to the side facing the holding section 140, and constitutes a capacitor Cx.
  • FIG. 11 shows a state in which the stick-shaped substrate 150 is inserted into the holding portion 140 .
  • the capacitance formed by the combination of the planar electrodes and the stick-shaped substrate 150 is transferred to the capacitor Cx. It can be detected by the detection unit 117 as capacitance.
  • FIG. 12 and 13 are diagrams showing an example of a case where a foreign substance is mixed inside the holding portion 140.
  • FIG. FIG. 12 exemplifies a case where a liquid foreign matter such as water or glycerin is mixed.
  • FIG. 13 illustrates a case where other foreign matter (especially solid matter) is mixed.
  • the sensor 117a Assuming the contamination of foreign matter as described above, it is preferable to use the sensor 117a as a capacitance sensor and the sensor 117b as an optical sensor. Foreign matter tends to stay on the bottom portion 143 of the holding portion 140 compared to the vicinity of the opening 142 , that is, it is easily soiled by tobacco leaves, etc. Therefore, it is more suitable to use a capacitance sensor near the bottom portion 143 .
  • an additive such as glycerin in the stick-type base material 150 may evaporate due to heating. Since the capacitance changes when the amount of the additive changes, if the additive such as glycerin evaporates due to heating, the count value does not reach the predetermined threshold even though the stick-shaped base material 150 is inserted. It may not be detected that it is inserted without Therefore, for example, the sensor 117a uses a capacitance sensor, and the sensor 117b uses an optical sensor. After the heating is started or a predetermined time after the heating is started, the sensor 117a near the bottom 143 may not be used, and only the sensor 117b near the opening 142 may be used for detection.
  • FIG. 14 is a diagram showing an arrangement example of the detection unit 117 and the heating unit 121 in the aerosol generation device 100. As shown in FIG. The configuration including a plurality of sensors (the detection unit 117) described above can be applied to both the external heating type aerosol generating apparatus 100 and the internal heating type aerosol generating apparatus 100.
  • FIG. FIG. 14(a) shows a configuration example of an external heating type using a heater.
  • FIG. 14(b) shows an electromagnetic induction type configuration example using a coil.
  • FIG. 14(c) shows an internal heating type configuration example using a heater. As shown in FIGS.
  • a configuration may be employed in which a heater 121a or a coil 121b (heating section 121) is provided between the sensor 117a and the sensor 117b.
  • the heater 121a or the coil 121b is arranged in the raw material portion 151c of the stick-shaped base material 150, and the sensors 117a and 117b for detecting the capacitance are arranged in the upper and lower paper tube portions 151a and the paper filter portions 151b.
  • glycerin, PG (propylene glycol), etc. whose capacitance can be easily detected in the paper tube portion 151a and the paper filter portion 151b, not in the raw material portion 151c portion, are adjusted to an amount suitable for capacitance detection and added.
  • Glycerin and PG are also used as an aerosol source, but with such a configuration, the aerosol source contained in the raw material portion 151c is efficiently heated so that it is mainly delivered to the user, and the paper tube portion Glycerin and PG (propylene glycol) added to 151a and paper filter portion 151b can be made less likely to evaporate compared to raw material portion 151c, and even when heated, the capacitance is detected by sensors 117a and 117b. can be made easier.
  • the heater 121 c (heating section 121 ) is configured in a blade shape and arranged so as to protrude from the bottom section 143 of the holding section 140 into the internal space 141 .
  • the sensors 117a and 117b are arranged apart from each other, one being installed near the bottom 143 of the holding unit 140 and the other near the opening 142. you can
  • FIG. 15 is a diagram showing a system configuration example when notifying a user.
  • FIG. 15(a) shows a case where the user is notified by the aerosol generating device 100 alone. In this case, the user can be notified using a user interface (notification unit 113) provided in the aerosol generation device 100.
  • FIG. 15(a) shows a case where the user is notified by the aerosol generating device 100 alone. In this case, the user can be notified using a user interface (notification unit 113) provided in the aerosol generation device 100.
  • a notification prompting the user to clean the aerosol generating device 100 can be given by an image or the like.
  • FIG. 15(b) shows a case where the user is notified from the aerosol generating device 100 via other devices 300 and 400.
  • FIG. 15(b) shows a case where the user is notified from the aerosol generating device 100 via other devices 300 and 400.
  • the communication function such as Bluetooth (registered trademark) installed in the aerosol generation device 100
  • a message prompting cleaning or Data such as an image can be transmitted to the user terminal 300 such as a user's smart phone or a tablet terminal for notification.
  • the control unit 116 determines that a foreign object has entered, and the foreign object in the control unit 116 Foreign matter contamination information including the determination result of is transmitted to the user terminal 300 such as a smartphone or a tablet terminal of the user, and the user terminal 300 may further transmit the foreign matter contamination information to the server device 400 .
  • the user terminal 300 such as a smartphone or a tablet terminal of the user
  • the user terminal 300 may further transmit the foreign matter contamination information to the server device 400 .
  • server device 400 investigates the frequency of cleaning with respect to the number of times smoked, based on the number of times of smoking separately transmitted from aerosol generating device 100 to server device 400 and information on foreign matter. It becomes possible to
  • FIG. 16 is a diagram illustrating an example of a main processing flow; For example, the process illustrated in FIG. 16 is performed by a user's operation input while the aerosol generation device 100 is active (while the power supply unit 111 holds sufficient power for the aerosol generation device 100 to operate). It can be started at timing such as an explicit instruction.
  • This variable K is a variable that counts the cycles for calculating the moving average value, and indicates the number of the current cycle. Variable K is used in the processing flow of FIG.
  • control unit 116 increments the variable K by 1 (step S102).
  • the control unit 116 and the detection unit 117 execute insertion detection processing of the stick-type substrate 150 (step S104).
  • the insertion detection process in step S104 can be executed in the process flow illustrated in FIG. These processes are repeated until it is determined to be completed (step S106).
  • the condition for determining termination may be, for example, when the power is turned off (the battery runs out), or when an explicit instruction is given by the user's operation input.
  • FIG. 17 is a diagram showing an example of the processing flow of the insertion detection processing of the stick-shaped base material 150 in step S104 of FIG.
  • the controller 116 counts the number of times the charge of the capacitor Cx is transferred to the sampling capacitor Cs, triggered by a predetermined operation such as turning on the power of the aerosol generating device 100 or disconnecting the charging terminal PG1 from the charger 200.
  • the control unit 116 transfers the charge of the capacitor Cx of the detection unit 117 (capacitance sensor) to the sampling capacitor Cs (step S204).
  • Control unit 116 increments the value of cnt by 1 (step S206).
  • the control unit 116 determines whether the terminal voltage of the sampling capacitor Cs is equal to or higher than "Vih" (step S208).
  • step S208: No When the terminal voltage of the sampling capacitor Cs is less than "Vih" (step S208: No), the control unit 116 performs the process of transferring the charge of the capacitor Cx to the sampling capacitor Cs (steps S204 and S206) at predetermined time intervals. repeat.
  • step S208: Yes When the terminal voltage of the sampling capacitor Cs becomes equal to or higher than "Vih” (step S208: Yes), the value of cnt in one sampling can be acquired.
  • the control unit 116 stores the value of cnt in a memory or the like (storage unit 114) (step S210).
  • the detection unit 117 and the control unit 116 repeat the processing of steps S202 to S210 at a predetermined sampling cycle until the count value for X times, which is the predetermined number of times, is obtained (step S212: No).
  • step S212 When X count values are acquired (step S212: Yes), the control unit 116 calculates the moving average value of the X count values (step S214). Then, the control unit 116 calculates the difference Y from the (K ⁇ 1)-th moving average value (the moving average value calculated when the process of FIG. 17 was performed last time) (step S216). The control unit 116 determines whether the calculated difference Y is greater than the threshold Th for the difference (step S218). If the difference Y is greater than the threshold value Th (step S218: Yes), the control unit 116 determines that the stick-shaped base material 150 is not inserted into the holding unit 140 or is removed (step S220). When the difference Y is equal to or less than the threshold value Th (step S218: No), the control unit 116 determines that the stick-shaped substrate 150 has been inserted into the holding unit 140 (step S222).
  • the moving average of three times is the moving average of the nth time, the (n+1)th time, and the (n+2)th time, the moving average of the (n+3)th time, the (n+4)th time, and the (n+5)th time.
  • ⁇ It may be calculated as follows, or moving averages of nth, (n+1)th, and (n+2)th times, moving averages of (n+1)th, (n+2)th, and (n+3)th times, etc. may be calculated.
  • the control unit 116 stores the value of cnt in a memory or the like (storage unit 114) in step S210, and then proceeds to step S214.
  • FIGS. 16 and 17 are processing flows on the assumption that the sampling process is repeated from the time the power is turned on until the power is turned off, for example.
  • the sampling process may be executed only during the time determined using a timer.
  • Control unit 116 changes the sampling period for detecting the value of the capacitance sensor in detection unit 117 based on detection that the charging terminal is connected to an external power supply source such as a charger or an outlet. It can be like this.
  • the control unit 116 may control the detection unit 117 not to detect the value of the capacitance sensor while the power supply unit 111 is supplied with power from the outside of the aerosol generation device 100 .
  • power is supplied from the charger to the power supply unit 111 so that it can be used for smoking several times. There is a request.
  • the user normally does not use the aerosol generating device 100 (that is, does not smoke). Therefore, power can be saved by adopting a configuration in which the processing of the detection unit 117 is not executed during charging.
  • the detection unit 117 sets the sampling period for detecting the value of the capacitance sensor during a predetermined period after the supply of power from the outside such as a separate charger or outlet is stopped.
  • the period may be shorter than the sampling period after the period has elapsed. It is assumed that the user starts using the aerosol generating device 100 (that is, starts smoking) immediately after charging is completed or interrupted. That is, there is a high possibility that the stick-shaped substrate 150 will be inserted for smoking. Therefore, in anticipation of the insertion of the stick-shaped base material 150, the sampling period for detecting the value of the capacitance sensor of the detection unit 117 is shortened during a predetermined period after the charging is stopped. After the period has elapsed, the sampling period may be lengthened. Note that "detecting the value of the capacitance sensor" corresponds to detecting a value related to parasitic capacitance or detecting a value related to a sampling capacitor.
  • the detection unit 117 prevents the detection unit 117 from detecting the value of the capacitance sensor.
  • the control unit 116 may control not to execute. “Electrically connected” may be connected via a charging terminal, or may be connected by other methods such as non-contact.
  • the detection unit 117 detects the value of the capacitance sensor at a sampling period shorter than the sampling period after the period.
  • the control unit 116 may control to detect the .
  • disconnection from the charger that is, after charging is completed or interrupted
  • the period may be shortened, and after the period has passed, the sampling period may be lengthened.
  • the holding portion 140 may have a lid portion 130 that can be opened and closed, and the control portion 116 may be configured to detect the open/closed state of the lid portion 130 .
  • the lid portion 130 moves between a position (closed state) covering the insertion opening of the stick-shaped base material 150 and a position (open state) opening the insertion opening of the stick-shaped substrate 150 by means of a hinge or a slider, for example. Since the stick-shaped substrate 150 is not inserted while the lid 130 is closed, the control unit 116 may control not to detect the value of the capacitance sensor from the viewpoint of power saving. Note that if the holding portion 140 does not have the lid portion 130, there is always a possibility that the stick-shaped base material 150 will be inserted. In this case, it is effective to change the sampling according to the connection state of the charging terminal as described above.
  • An aerosol generator that generates an aerosol, a holding portion holding an aerosol-forming substrate including an aerosol source; a heating unit that heats the aerosol source; a detection unit that detects a plurality of values of the capacitance sensor; A moving average value of a plurality of values of the detected capacitance sensor is calculated, and the aerosol-forming substrate is inserted into the holding part using the calculated moving average value and a predetermined threshold value.
  • a control unit that determines at least one of, whether it is inserted, and whether it has been removed;
  • the threshold is a threshold for the difference between the two moving average values
  • the control unit compares the difference between the two moving average values with the threshold to determine whether the aerosol-forming substrate has been inserted into the holding unit, whether it has been inserted, and whether it has been removed.
  • the control unit can operate in a first mode and a second mode with different power consumption, the power consumption in the two modes is smaller than the power consumption in the first mode, and the control unit operates in the second mode.
  • a power supply unit capable of accumulating electric power, and a charging terminal electrically connected to the power supply unit, The above (The aerosol generating device of any one of 1A) to (4A).
  • the detection unit sets the sampling period for detecting the value of the capacitance sensor to be shorter than the sampling period after the elapse of the period.
  • the aerosol generator is electrically connectable to a separate charger that powers the aerosol generator;
  • the aerosol generating device according to any one of (1A) to (7A) above, wherein the detection unit does not detect the value of the capacitance sensor while being connected to the charger.
  • the detection unit detects the value of the capacitance sensor at a sampling period shorter than the sampling period after the elapse of the predetermined period.
  • the holding part has an openable and closable lid part,
  • the aerosol generating device according to any one of (1A) to (9A) above, wherein the detection unit does not detect the value of the capacitance sensor while the lid is closed.
  • the holding part has an insertion opening for inserting the aerosol-forming substrate and an elongated spatial shape for holding the aerosol-forming substrate, Of the at least two detection units, the first detection unit is arranged on the insertion opening side in the longitudinal direction of the space shape of the holding unit, and the second detection unit is arranged from the first detection unit in the longitudinal direction.
  • the first detection unit includes a first electrode and a second electrode facing each other in a direction perpendicular to the longitudinal direction
  • the second detection unit comprises a third electrode and a fourth electrode facing each other in a direction perpendicular to the longitudinal direction, the first electrode and the three electrodes are connected to ground;
  • the above (13A) wherein the first electrode and the fourth electrode are arranged at overlapping positions in the longitudinal direction, and the second electrode and the third electrode are arranged at overlapping positions in the longitudinal direction. aerosol generator.
  • a method performed by an aerosol generating device comprising a holding part for holding an aerosol-forming substrate containing an aerosol source and a heating part for heating the aerosol source, the method comprising: a step of detecting a plurality of capacitance sensor values; A moving average value of a plurality of values of the detected capacitance sensor is calculated, and the aerosol-forming substrate is inserted into the holding part using the calculated moving average value and a predetermined threshold value. is inserted, and is withdrawn;
  • a method including
  • (20A) A program for causing an aerosol generator to execute the method described in (19A) above.
  • An aerosol generator that generates an aerosol, a holding portion holding an aerosol-forming substrate including an aerosol source; a heating unit that heats the aerosol source; a detection unit that detects the value of the capacitance sensor; Using the detected value of the capacitance sensor and a predetermined threshold value, at least one of inserting, inserting or not inserting, and removing the aerosol-forming substrate from the holding part. a control unit that determines one; with The aerosol generating device, wherein the control unit changes a sampling period for detecting the value of the capacitance sensor based on a state of heating control for the heating unit.
  • the control unit calculates a moving average value of a plurality of values detected by the capacitance sensor, and uses the calculated moving average value and a predetermined threshold to generate the aerosol in the holding unit.
  • the aerosol generating device according to any one of (1B) to (5B) above, which determines at least one of whether the substrate has been inserted, whether it has been inserted, and whether it has been removed.
  • the threshold is a threshold for the difference between the two moving average values
  • the control unit compares the difference between the two moving average values with the threshold to determine whether the aerosol-forming substrate has been inserted into the holding unit, whether it has been inserted, and whether it has been removed.
  • the control unit is operable in a first mode and a second mode with different power consumption, the power consumption in the second mode is smaller than the power consumption in the first mode, and the aerosol is formed by the heating unit.
  • the aerosol generator is switched to the second mode by satisfying a predetermined condition, and the second mode state is canceled at predetermined time intervals to perform detection by the detection unit.
  • the aerosol generating device according to any one of (1B) to (7B) above.
  • the controller determines whether or not the aerosol-forming substrate has been inserted into the holder using the value of the capacitance sensor detected by each of the at least two detectors and the threshold value.
  • the aerosol generating device of (9B) above which determines at least one of whether or not it has been extracted.
  • a method performed by an aerosol generating device comprising a holding part for holding an aerosol-forming substrate containing an aerosol source and a heating part for heating the aerosol source, the method comprising: detecting the value of the capacitive sensor; Using the detected value of the capacitance sensor and a predetermined threshold value, at least one of inserting, inserting or not inserting, and removing the aerosol-forming substrate from the holding part. determining one; including The method, wherein the determining step changes a sampling period for detecting the value of the capacitance sensor based on a state of heating control for the heating unit.
  • (12B) A program for causing the aerosol generator to execute the method (11B) above.

Abstract

静電容量の変化に基づいて喫煙物品がデバイスに挿入されているか否かを検出する場合、静電容量検出のために電力を消費する。静電容量検出に要する消費電力はなるべく小さくすることが望ましい。 エアロゾルを生成するエアロゾル生成装置であって、エアロゾル源を含むエアロゾル形成基体を保持する保持部と、前記エアロゾル源を加熱する加熱部と、静電容量センサの値を検出する検出部と、前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する制御部と、を備え、前記制御部は、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、エアロゾル生成装置。

Description

エアロゾル生成装置、方法、及びプログラム
 本発明は、エアロゾルを生成するエアロゾル生成装置、方法、及びプログラムに関する。
 喫煙物品を挿入して当該喫煙物品を加熱し、喫煙物品に含まれる成分を揮発させる喫煙デバイスにおいて、喫煙物品がデバイスに挿入されているか否かを検出する技術として静電容量の変化を検出する技術が存在する(例えば、特許文献1)。
特表2017-510270号公報
 静電容量の変化に基づいて喫煙物品がデバイスに挿入されているか否かを検出する場合、静電容量検出のために電力を消費する。静電容量検出に要する消費電力はなるべく小さくすることが望ましい。
 本発明はこのような課題に鑑みてなされたものである。
 上記課題を解決するために、本発明の一態様は、エアロゾルを生成するエアロゾル生成装置であって、エアロゾル源を含むエアロゾル形成基体を保持する保持部と、前記エアロゾル源を加熱する加熱部と、静電容量センサの値を検出する検出部と、前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する制御部と、を備え、前記制御部は、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、エアロゾル生成装置である。
 また、本発明の他の態様は、前記制御部は、前記加熱部が前記エアロゾル形成基体を加熱中であるか否かに応じて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記検出部は、サンプリングコンデンサを用いる、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記加熱部が前記エアロゾル形成基体を加熱中における前記サンプリング周期は、加熱停止中における前記サンプリング周期よりも長い、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記加熱部が前記エアロゾル形成基体を加熱中における前記サンプリング周期は、加熱停止中における前記サンプリング周期よりも短い、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記制御部は、前記検出された静電容量センサの複数の値の移動平均値を算出し、算出された前記移動平均値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記閾値は、2つの前記移動平均値の差分に関する閾値であり、前記制御部は、2つの前記移動平均値の差分と前記閾値とを比較することで、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記制御部は、電力消費量が異なる第1モードと第2モードにより動作可能であり、前記第2モードにおける電力消費量は前記1モードにおける電力消費量よりも小さく、前記加熱部による前記エアロゾル形成基体の加熱が停止すると、所定の条件を満たすことにより前記エアロゾル生成装置を第2モードに遷移させ、予め定められた時間間隔ごとに前記第2モード状態を解除して前記検出部による検出を実行させる、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記検出部は少なくとも2つ備えられている、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、前記制御部は、前記少なくとも2つの検出部のそれぞれにおいて検出された前記静電容量センサの値と前記閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記のエアロゾル生成装置である。
 また、本発明の他の態様は、エアロゾル源を含むエアロゾル形成基体を保持する保持部と、前記エアロゾル源を加熱する加熱部と、を備えるエアロゾル生成装置によって実行される方法であって、静電容量センサの値を検出するステップと、前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定するステップと、を含み、前記判定するステップは、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、方法である。
 また、本発明の他の態様は、上記の方法をエアロゾル生成装置に実行させるためのプログラムである。
本発明の一実施形態に係るエアロゾル生成装置の構成例を模式的に示す図である。 本発明の一実施形態に係るエアロゾル生成装置がPCCのホルダを構成する場合の構成例を示す図である。 本発明の一実施形態に係るエアロゾル生成装置にて用いられうる静電容量センサの仕組みを例示する図である。 回路構成素子の品質のばらつき、及びノイズ等の外乱の影響によるカウント値(cnt)の変化の概要を説明する図である。 複数のカウント値(cnt)の移動平均の算出について説明する図である。 サンプリングコンデンサCsの温度ドリフトによるカウント値(cnt)の変化の概要を説明する図である。 2つのカウント値(cnt)の差分について説明する図である。 エアロゾル生成装置が複数の検出部を備える構成の一例を示す図である。 一方のセンサのグラウンド電極及びセンサ電極と、他方のセンサのグラウンド電極及びセンサ電極との位置関係の例を示す図である。 静電容量検出用のセンシングパターンの一例を示す図である。 エアロゾル生成装置が保持部の底部付近に検出部を備える構成の一例を示す図である。 保持部に液体の異物が混入した場合の一例を示す図である。 保持部に異物が混入した場合の一例を示す図である。 本発明の一実施形態に係るエアロゾル生成装置における検出部と加熱部との配置例を示す図である。 ユーザに通知を行う場合のシステム構成例を示す図である。 本発明の一実施形態に係るエアロゾル生成装置の処理フローの一例を示す図である。 本発明の一実施形態に係るエアロゾル生成装置のスティック型基材の挿入検出処理の処理フローの一例を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
(エアロゾル生成装置の構成)
 図1は、本実施形態に係るエアロゾル生成装置の構成例を模式的に示す図である。図1に示されるように、本構成例に係るエアロゾル生成装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、検出部117、加熱部121、保持部140、及び断熱部144を含む。なお、本実施形態に係るエアロゾル生成装置100は、加熱式たばこである場合を一例として説明するがこれに限定されるものではなく、電子たばこ等においても同様の構成を適用することができる。また、加熱式たばこは加熱温度によって低温加熱式や高温加熱式などが存在するが、いずれの加熱方式においても本実施形態に係るエアロゾル生成装置100と同様の構成を適用することが可能である。
 電源部111は、電力を蓄積する。そして、電源部111は、制御部116による制御に基づいて、エアロゾル生成装置100の各構成要素に電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、例えばUSB(Universal Serial Bus)充電用ケーブル等(図示されない)によって外部のコンセントと接続されることで給電されうる。また、図示されない充電端子を介して別体の充電器と接続し、当該充電器から給電されて充電するようになっていてもよい。
 センサ部112は、エアロゾル生成装置100に関する各種情報を取得する。センサ部112は、マイクロホンコンデンサ等の圧力センサ、流量センサ又は温度センサ等を含んでいてもよい。また、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置を含んでいてよい。更に、センサ部は、香味吸引器具等の動きを検出するように構成されたセンサを含むことができる。
 通知部113は、情報をユーザに通知する。本実施形態における通知部113は、メッセージを表示する表示装置を含みうる。通知部113は、例えば、スピーカ等の音声出力装置発光する発光装置もしくは発光素子、画像を表示する表示装置、音を出力する音出力装置もしくは音響素子、又は振動子を含む振動装置等を含んでいてもよい。
 記憶部114は、エアロゾル生成装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114は、制御部116による制御のための作業領域を提供する揮発性メモリを含んでいてもよい。
 通信部115は、所定のLPWA無線通信規格又は同様の制限を有する無線通信規格に準拠した通信インターフェース(通信モジュールを含む。)を含むことができる。かかる通信規格としては、SigfoxやLoRA-WAN等が採用され得る。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インターフェースであってもよい。かかる通信規格としては、例えば、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。
 検出部117は、センサの値を複数検出する。本実施形態においては一例として、検出部117は静電容量センサである。また、検出部117が静電容量センサである場合、検出部117は、センサの値として寄生容量に関する値を検出してもよいし、サンプリングコンデンサを備える場合にはサンプリングコンデンサに関する値を検出してもよい。また、検出部117は、赤外線近接センサ等の光学式センサ、ピエゾ素子を用いた感圧センサ、等のセンサであってもよい。検出部117において検出されたセンサの値は、後述する制御部116によって、スティック型基材150がエアロゾル生成装置100のユーザ等によって保持部140の内部空間141に挿入されたことを判定するために用いられる。なお、図1においては、検出部117は保持部140の底部143付近に備えられているが、これはあくまで一例である。検出部117は他の場所に配置されてもよい。また、エアロゾル生成装置100に備えられる検出部117の数は1つであってもよいし複数であってもよい。検出部117の配置については、後に詳述する。なお、検出部117は、センサ部112の一部として構成されてもよい。
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従ってエアロゾル生成装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。
 さらに、制御部116は、検出部117において検出された静電容量センサ等のセンサの複数の値の移動平均値を算出し、算出された当該移動平均値と予め定められた閾値とを用いて、保持部140にスティック型基材150が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する。また、さらに複数の移動平均値の差分と、差分用の予め定められた閾値とを用いて、保持部140にスティック型基材150が挿入されたことを判定してもよい。移動平均とは、時系列データを平滑化する手法として一般に知られている。移動平均では、一定の区間ごとにその平均値を求め、平均値の時系列推移が示されることになる。これにより、例えば後述するカウント値の時系列推移の傾向をより精度良く特定することができる。なお、本実施形態において、移動平均は、単純移動平均、加重移動平均、指数移動平均等のような任意の手法が適用され得ることが当業者には理解される。
 また、制御部116は、検出部117において検出された静電容量センサの値と予め定められた閾値とを用いて、保持部140にスティック型基材150が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定してもよい。すなわち、静電容量センサの値そのもの(寄生容量の値、サンプリングコンデンサの値)と閾値とを比較するようになっていてもよい。そして、制御部116は、加熱部121に対する加熱制御の状態に基づいて、静電容量センサの値を検出するためのサンプリング周期を変化させるようになっていてもよい。例えば、制御部116は、加熱部121がエアロゾル形成基体(スティック型基材150)を加熱中であるか否かに応じて、静電容量センサの値を検出するためのサンプリング周期を変化させるようになっていてもよい。
 保持部140は、エアロゾル源を含むエアロゾル形成基体を保持する。保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。なお、本実施形態のスティック型基材150はエアロゾル形成基体の一例であり、いわゆる「リフィル」などと呼ばれる場合もある。本実施形態においては、スティック型基材150は、細長いスティック形状のエアロゾル形成基体であるが、他の形状であってもよい。本実施形態の保持部140はスティック型基材150を収容可能なように、全体としてスティック型基材150と同様の細長い形状となっている。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。本実施形態においては、一例として、保持部140は、スティック型基材150の挿入方向に細長い円筒形状である。より具体的には、本実施形態において保持部140は、開口142の幅(本実施形態においては、開口142は略円形状であり、「開口142の幅」とは、例えば直径である)よりも、円筒形状の長さ(高さ)(開口142と底部143との間の距離)のほうが長い円筒形状である。保持部140は、スティック型基材150へ供給される空気の流路を画定する機能も有する。かかる流路への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。
 スティック型基材150は、基材部151、及び吸口部152を含む。基材部151は、エアロゾル源を含む。エアロゾル源は、固体であっても液体であってもよく、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、刻みたばこ又はたばこ原料を、粒状、シート状、又は粉末状に成形した加工物などの、たばこ由来のものであってもよい。また、エアロゾル源は、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来のものを含んでいてもよい。一例として、エアロゾル源は、メントール等の香料成分を含んでいてもよい。エアロゾル生成装置100が医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。スティック型基材150が保持部140に保持された状態において、基材部151の少なくとも一部は内部空間141に収容され、吸口部152の少なくとも一部は開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から内部空間141に空気が流入し、基材部151から発生するエアロゾルと共にユーザの口内に到達する。
 加熱部121は、基材部151に含まれるエアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。図1に示される例では、加熱部121は、フィルム状に構成され、保持部140の外周の少なくとも一部を覆うように配置される。そして、加熱部121が発熱すると、スティック型基材150の基材部151が当該外周の少なくとも一部から加熱され、エアロゾルが生成される。また、加熱部121は、電源部111から給電されると発熱する。また、本実施形態においては、制御部116が、スティック型基材150が保持部140の内部空間141に挿入されたと判定すると、加熱部121が加熱を開始するようになっていてもよい。また、制御部116は、スティック型基材150が保持部140の内部空間141から抜き取られたと判定すると、加熱部121が加熱を停止するようになっていてもよい。
 断熱部144は、加熱部121から他の構成要素への伝熱を防止する。例えば、断熱部144は、真空断熱材、又はエアロゲル断熱材等により構成される。
 以上、エアロゾル生成装置100の構成例を説明した。もちろんエアロゾル生成装置100の構成は上記に限定されず、以下に例示する多様な構成をとり得る。
 一例として、加熱部121は、ブレード状に構成され、保持部140の底部143から内部空間141に突出するように配置されてもよい。その場合、ブレード状の加熱部121は、スティック型基材150の基材部151に挿入され、スティック型基材150の基材部151を内部から加熱する。他の一例として、加熱部121は、保持部140の底部143を覆うように配置されてもよい。また、加熱部121は、保持部140の外周を覆う第1の加熱部、ブレード状の第2の加熱部、及び保持部140の底部143を覆う第3の加熱部のうち、2以上の組み合わせとして構成されてもよい。
 他の一例として、保持部140は、内部空間141を形成する外殻の一部を開閉する、ヒンジ等の開閉機構を含んでいてもよい。そして、保持部140は、外殻を開閉することで、内部空間141に挿入されたスティック型基材150を挟持してもよい。その場合、加熱部121は、保持部140における当該挟持箇所に設けられ、スティック型基材150を押圧しながら加熱してもよい。
 また、エアロゾル源を霧化する手段は、加熱部121による加熱に限定されない。例えば、エアロゾル源を霧化する手段は、誘導加熱であってもよい。
 図1に例示されたエアロゾル生成装置100は、単体で加熱式たばこ等を構成してもよいし、PCC(Portable Charger Case)のホルダを構成してもよい。すなわち、エアロゾル生成装置100は、図示されない別体のチャージャと充電端子等により通電可能に接続され、チャージャから数回の喫煙を可能とする電力が充電式バッテリ(電源部111)に充電されるようになっていてもよい。
 図2は、エアロゾル生成装置100がPCCのホルダを構成する場合のPCCシステムの構成例を示す図である。図2に例示されるPCCシステムは、ホルダ100´と、チャージャ(充電器)200とを含んで構成される。また、ホルダ100´は、図1に示されるエアロゾル生成装置100の構成に加えて、チャージャ200と充電可能に接続する充電端子PG1をさらに備える。充電端子PG1は電源部111に接続されており、充電端子PG1は、チャージャ200から供給される電力を電源部111に送出する。図2においてホルダ100´の構成は簡略化して図示されているが、ホルダ100´の充電端子PG1以外の構成は図1と同様である。
 チャージャ200は、ホルダ100´の電源部111を充電するため、ホルダ100´に給電するように構成されうる。図2に例示されるチャージャ200は、例えば、持ち運び可能なポケットチャージャーであり、ユーザの衣服のポケットやバッグに収まるような大きさを有しうる。チャージャ200は、ホルダ100´を収容可能な収容部201(収容空間)を有するハウジング202と、ユーザインターフェース203と、電源BATを有する電気部品210とを備えうる。電源BATは、リチウムイオン二次電池のような二次電池で構成されていてもよいし、リチウムイオンキャパシタのような電気二重層キャパシタで構成されていてもよい。ユーザインターフェース203は、例えば、ユーザに情報を提供する表示部203a(例えば、LED等の発光素子、および/または、LCD等の画像表示器)、および/または、ユーザの操作を受け付ける操作部203b(例えば、ボタンスイッチ等のスイッチ、および/または、タッチディスプレイ)を含みうる。電気部品210は、ハウジング202内に設けられる。
 チャージャ200の収容部201には、図2において破線矢印で示されるように、ホルダ100´の全体または充電端子PG1を含む一部分が挿入される。また、チャージャ200は、収容部201内にホルダ100´の全体または充電端子PG1を含む一部分が収容されたときにホルダ100´の充電端子PG1と電気的に接続されるコネクタPG2を収容部201内に備えうる。ここで、チャージャ200は、チャージャ200の電源BATを充電するために、例えば家庭用電源に電気的に接続されるUSB等の端子(図示されない)を備えていてもよい。また、チャージャ200は、収容部201に収容されたホルダ100´を覆うように収容部201に対して開閉可能に構成された蓋部材(図示されない)をハウジング202に備えていてもよい。
(静電容量センサ)
 上述したように、検出部117は、静電容量センサであってもよい。図3は、本実施形態に係るエアロゾル生成装置100にて用いられうる静電容量センサの仕組みを例示する図である。静電容量センサの制御は制御部116が行う。スティック型基材150が保持部140に挿入されるとコンデンサCx(寄生容量)に蓄積される電荷が増加する。静電容量センサは、制御部116が電荷転送用回路1160を制御することによってコンデンサCxの電荷がサンプリングコンデンサCsに所定時間ごとに転送されることが繰り返され、制御部116は転送回数をカウントする。そして、制御部116は図示されないレジスタを備えており、サンプリングコンデンサCsの端子電圧が閾値Vihに到達する毎にカウント値(すなわちコンデンサCxの電荷をサンプリングコンデンサCsに転送した回数)をレジスタに記録する。なお、カウント値は記憶部114へ記録してもよい。制御部116は、このような制御によってスティック型基材150が保持部140に挿入されたか、保持部140から抜き取られたかを判定することができる。コンデンサCs及びコンデンサCxは、コンデンサCsの容量がコンデンサCxの容量よりも大きくなるように構成しておく。
 また、電荷転送用回路1160はスイッチを含み、制御部116が当該スイッチを制御することで、コンデンサCxの電荷のチャージ及びサンプリングコンデンサCsへの電荷の転送が切り替えられる。制御部116は、予め定められた時間ごとにコンデンサCxとCsとが接続するようにスイッチを閉じ、コンデンサCxのチャージ期間はCxとCsとの間のスイッチを開放するように制御する。
 例えば、スティック型基材150が保持部140に挿入されていない状態においてサンプリングコンデンサCsの端子電圧が閾値Vihに達した時にコンデンサCxの電荷をサンプリングコンデンサCsに転送した回数が8000回であった場合、制御部116が備えるレジスタに“カウント値(cnt)=8000”が記録される。コンデンサCxの電荷はスティック型基材150が静電容量センサ(検出部117)に接触すると増加するため、サンプリングコンデンサCsの端子電圧が閾値Vihに到達する際のカウント値は減少する。すなわち、スティック型基材150が保持部140に挿入されていない状態の時よりも少ない回数でサンプリングコンデンサCsの端子電圧が閾値Vihに到達する。つまり、スティック型基材150が保持部140に挿入されていない状態と挿入された際のカウント値の違いによって、制御部116はスティック型基材150が保持部140に挿入されたか否か等を検出することができる。
 なお、一般的に、サンプリングコンデンサCsの端子電圧が閾値Vihに到達するまでの時間は約数ms(ミリ秒)~数十ms程度である。これを1サイクルとして、静電容量センサがアクティブとなっている間はある特定の時間間隔(以下、「サンプリング周期」という)でこのサイクルを繰り返す。
 また、他の実施態様として、制御部116は、エアロゾル生成装置100の動作の制御の状態に応じて静電容量センサの値を検出するためのサンプリング周期(及び/又は後述するように移動平均を算出する場合のサンプリングの数)を変化させる。
 制御部116は電源部111に蓄えられた電力の消費量のピーク値である最大電力消費量が異なる複数の動作モードにてエアロゾル生成装置を動作させてもよい。制御部116は、例えば、エアロゾル生成装置100の動作させるハードウエアの数を変更したり、動作させる回路を変更したりすることにより、最大電力消費量を増減させて動作モードを変更する。動作モードの例としては、制御部116がすべてのハードウエアを必要に応じて動作させる起動状態や、起動状態よりも最大電力消費量を低減させたスリープ状態などがある。例えばスリープ状態においては、制御部116は制御部116以外のハードウエアを全て停止させ、且つ、制御部116におけるユーザからの情報の入力を受け付ける入力装置からの操作を検出する機能以外の機能を無効とする。
 エアロゾル生成装置100は起動状態より最大電力消費量を低減させたスリープ状態において、ユーザの操作入力(ボタン操作、スライダ操作、等)を受け付けたり、後述するスリープ状態を一時解除した状態においてスティック型基材150の挿入を検出したりするなどにより起動状態に遷移する。制御部116は、起動状態においてスティック型基材150の挿入を検出することにより加熱制御を開始してもよい。制御部116は、後述するスリープ状態を一時解除した状態において、スティック型基材150の挿入を検出したことに基づいて、動作状態になり更に加熱制御を開始してもよい。制御部116は例えば加熱開始から所定時間が経過したり、所定回数のパフを行ったことを検出したり、スティック型基材150の抜き取りを検出したりするなどにより加熱部121によるエアロゾル形成基体(スティック型基材150)の加熱を停止する。制御部116は、加熱を停止すると、予め定められた期間経過後に自動で、またはユーザの操作入力(ボタン操作、スライダ操作、等)を受け付けることによって、エアロゾル生成装置100を起動状態より最大電力消費量を低減させたスリープ状態に遷移させてもよい。
 制御部116は例えばMCU(Micro Controller Unit)などにより実現されうるが、記憶部114に保存される加熱プロファイルに基づいて加熱部121の動作を制御してもよい。加熱プロファイルとは加熱部121の温度の目標値である目標温度の時系列推移が規定された情報である。制御部116は加熱部121の温度情報を取得し、その温度情報と目標温度との差を算出し、例えばPID制御などの公知のフィードバック制御を行う。具体的には、電源部からの電力をパルス幅変調(PWM)又はパルス周波数変調(PFM)によるパルスの形態で加熱部121に供給し、制御部116は加熱部121の温度情報と目標温度との差に基づき電力パルスのデューティ比を計算して調整しながら加熱部121に供給する。制御部116は、加熱部121がエアロゾル形成基体(スティック型基材150)を加熱中であるか否かに応じて、静電容量センサの値を検出するためのサンプリング周期を変化させるようになっていてもよい。また、制御部116がサンプリング周期を変更する場合において、後述するように制御部116がスティック型基材150の挿抜検出においてカウント値の移動平均値を算出する場合は、当該サンプリング周期の変更に加えて、またはこれに代えて、制御部116は、移動平均値を算出するためのサンプリング数(図17の変数Xの値)を増減させてもよい。
 制御部116は、加熱中は、前述したとおり加熱制御を実行するためMCU等の負荷が高くなる。よって、MCU等の負荷低減及び節電の観点から、制御部116は、例えば、加熱中は加熱停止中(加熱開始前又は/及び加熱停止後)と比較してサンプリング周期を長くしてもよい。また、後述するように移動平均を算出する場合におけるサンプリングの数を減らしてもよい。このような構成とすることで、加熱停止の状態においては精度よくスティック型基材の挿抜を検出することができ、加熱中の状態においてはMCU等の負荷低減及び節電をしつつスティック型基材150の挿抜を検出することができる。
 また、制御部116は、加熱中は加熱停止中(加熱開始前又は/及び加熱停止後)と比較してサンプリング周期を短くするようになっていてもよい。なぜならば、加熱制御中は温度変化が生じることにより後述するとおり温度ドリフトによる容量変化などにより検出部117による検出の精度が低下する場合がある。よって、サンプリング周期を短くすることにより、検出部117における検出の精度が確保されうる。また、後述するように移動平均を算出する場合におけるサンプリングの数を増やしてもよい。このような構成とすることで、加熱中の状態においては精度よくスティック型基材150の挿抜を検出することができ、加熱停止中の状態においては節電をしつつスティック型基材150の挿抜を検出することができる。
 また、制御部116は、加熱部121によるエアロゾル形成基体(スティック型基材150)の加熱を停止すると、予め定められた期間経過後に自動で、またはユーザの操作入力(ボタン操作、スライダ操作、等)を受け付けることによって、エアロゾル生成装置100を起動状態より最大電力消費量を低減させたスリープ状態に遷移させた後、予め定められた時間間隔ごとに当該スリープ状態を解除して検出部117による検出を実行させるようになっていてもよい。スリープ状態を解除とは、起動状態としてもよいし、一部起動状態としてもよい。一部起動状態とは、例えば、検出部117及び制御部116によるスティック型基材150の挿抜検出に関係する回路部又はハードウエアのスリープ状態のみを解除し、挿抜検出に関係しない回路部又はハードウエアはスリープ状態を維持する。スリープ状態であっても所定時間ごとにスリープ状態を一時的に解除してスティック型基材150の挿入検出の処理は実行することにより、節電しつつ、例えば、ユーザが喫煙しようとした際にスティック型基材150の挿入を検出し、すぐに加熱する等の処理を実行することができる。
 ところで、静電容量センサが検出するカウント値(cnt)は、以下のような理由でばらつきが生じる。すなわち、スティック型基材150が保持部140に挿入された時以外にも、以下のような理由によりカウント値(cnt)が変化する場合がある。
(a)回路構成素子の品質のばらつき
(b)ノイズ等の外乱の影響
 図4は、上記した(a)回路構成素子の品質のばらつき、及び(b)ノイズ等の外乱の影響によるカウント値(cnt)の変化の概要を説明する図である。図4には、ある特定の温度環境下においてスティック型基材150が保持部140に未挿入である状態においてカウントされたカウント値(cnt)を表す複数の複数のグラフ410と、スティック型基材150が保持部140に挿入された状態においてカウントされたカウント値(cnt)を表す複数のグラフ412とが図示されている。なお、図4に示されるこれらのグラフは上記(a)及び(b)の理由によるカウント値の変化の概要を示すものであり、カウント値の変化を厳密に示すものではないことに留意されたい。また、図4の各グラフは、サンプリング周期ごとに、サンプリングコンデンサCsの端子電圧が閾値Vihに到達した回数(カウント値)を示す。
 図4に示されるように、回路構成素子の品質のばらつき、又は回路ノイズ及び外来ノイズ等のノイズの影響により、検出部117において検出されるカウント値(cnt)にばらつきが発生しうる。例えば、グラフ410はスティック型基材150が未挿入である場合の複数のカウント値を表しているが、各カウント値にばらつきが生じている。また、スティック型基材150が未挿入である場合はカウント値が閾値αを超えるのが通常であるが、閾値αを超えないカウント値が発生している。また、グラフ412はスティック型基材150が挿入されている場合のカウント値であるが、各カウント値にばらつきが生じている。スティック型基材150が挿入されている場合はカウント値が閾値αを超えないのが通常であるが、閾値αを超えるカウント値が発生している。このように上記理由(a)又は(b)によりカウント値にばらつきが生じると、制御部116は、スティック型基材150の挿入状態を正しく判断できない。喫煙デバイスのように可搬型のデバイスにおいては、静電容量センサの検出部117を小型化する必要があり、検出できる静電容量が小さくなるため、特にこのようなカウント値(cnt)のばらつきがスティック型基材150の挿入状態の検出に影響を与える。
 図5は、複数のカウント値の移動平均の算出について説明する図である。図4にて説明したようなノイズ等によるカウント値(cnt)のばらつきが生じる可能性を考慮して、制御部116は、予め定められた回数分の連続するサンプリングのカウント値の移動平均値(グラフ410x、420x)を算出することで、各カウント値に生じた誤差を吸収することができる。そして、制御部116は、算出された移動平均値と、移動平均値に対して予め定められた閾値とを比較し、移動平均値が閾値を下回った場合にはスティック型基材150が保持部140に挿入されたと判断することができる。なお、上記(a)及び(b)の理由による値のばらつきはコンデンサCxにも生じうるため、検出部117がコンデンサCxの値を検出する場合も、制御部116は検出されたコンデンサCxの値の移動平均を算出するようになっていてもよい。
 また、カウント値(cnt)は、サンプリングコンデンサCsの温度ドリフトによっても変化する場合もある。図6は、サンプリングコンデンサCsの温度ドリフトによるカウント値(cnt)の変化の概要を説明する図である。図6には、A℃環境下においてスティック型基材150が保持部140に挿入されている状態においてカウントされたカウント値を表すグラフ420aと、スティック型基材150が保持部140に未挿入である状態においてカウントされたカウント値を表すグラフ422aとが図示されている。また、図6には、さらに、A℃とは異なる温度であるB℃環境下においてスティック型基材150が保持部140に挿入されている状態においてカウントされたカウント値を表すグラフ420bと、スティック型基材150が保持部140に未挿入である状態においてカウントされたカウント値を表すグラフ422bとが図示されている。なお、図6に示されるこれらのグラフはサンプリングコンデンサCsの温度ドリフトによるカウント値の変化の概要を示すものであり、カウント値の変化を厳密に示すものではないことに留意されたい。また、図6の各グラフは、サンプリング周期ごとに、サンプリングコンデンサCsの端子電圧が閾値Vihに到達した回数(cnt)を示す。
 図6に示されるように、A℃環境下においてスティック型基材150が保持部140に未挿入である場合のグラフ420aは閾値αを超えており未挿入である場合のグラフ422aは閾値αを超えていない。このようにカウント値(cnt)が閾値を超えたか否かにより、制御部116は、スティック型基材150が保持部140に挿入されたか否かを判断することができる。ところが、サンプリングコンデンサCsの容量が温度ドリフトによって変化した結果、グラフ420b、422bによって示されるように、挿入時と未挿入時のカウント値が双方とも減少し、双方とも閾値αに達しないという状況に陥る場合がある。このような場合、制御部116は、スティック型基材150が保持部140に挿入されていないにも関わらず(グラフ420b)、挿入されたと誤って判断してしまうことになる。
 このような問題を解決するために、制御部116は、カウント値の絶対値と閾値とを比較するのではなく、2つのカウント値の差分と、差分について予め定められた閾値とを比較してもよい。さらに、制御部116は、図5にて説明したように複数のカウント値の移動平均値を算出し、当該算出された移動平均値と、移動平均値について予め定められた閾値とを比較してもよい。
 図7は、2つのカウント値の差分について説明する図である。図6にて説明したようなサンプリングコンデンサCsの温度ドリフトが生じた場合、グラフ420aとグラフ422aとによって示される各カウント値は、環境温度が変化した場合に全体的にほぼ同様のずれが生じる。よって、制御部116は、各サンプリング周期におけるカウント値の絶対値と閾値αとを比較することに代えて、サンプリング周期ごとに検出されるカウント値の前後のカウント値どうしの差分と、差分について予め定められた閾値とを比較することで、環境温度変化による温度ドリフトを吸収することができる。差分について予め定められた閾値は、スティック型基材150の挿入時と未挿入時との間で想定されうるある程度大きな値であることが想定される。すなわち、この閾値を超えないような差分しか発生しない場合には、それまでの挿入又は未挿入の状態が変化していないと判断されうる。また、閾値よりも大きな差が検出された場合には、挿入から未挿入への状態、又は未挿入から挿入への状態に変化したと判定されうる。なお、温度ドリフトはコンデンサCxにも同様に生じうるため、検出部117がコンデンサCxの値を検出する場合も、制御部116は検出されたコンデンサCxの値の移動平均を算出するようになっていてもよい。
 また、本実施形態にかかるエアロゾル生成装置100は、予め定められた回数のサンプリング周期におけるカウント値又は寄生容量の値の移動平均値を算出して、さらに算出された移動平均値どうしの差分を、予め定められた閾値と比較するようになっていてもよい。これにより、上記理由(a)~(c)のすべての影響を軽減することが可能となる。
(センサの配置方法)
 本実施形態に係るエアロゾル生成装置100は、複数の検出部117を備えていてもよい。そして、各検出部117において検出された静電容量センサの値の移動平均値が閾値を超えた場合に、制御部116は保持部140にスティック型基材150が挿入されたと判定してもよい。
 図8は、エアロゾル生成装置100が複数のセンサ(検出部117)を備える構成の一例を示す図であり、エアロゾル生成装置100のうちスティック型基材150が保持された保持部140及び検出部117の位置を示す図である。スティック型基材150の吸い口部152はフィルターを含んでよく、基材部151は吸い口側に紙管部151a、吸い口と反対側の端部にペーパーフィルタ部151b、紙管部151aとペーパーフィルタ部151bの間にたばこ原料や香料などの香味源や薬剤などを含む原料部151cを含むように構成されていてもよい。図8に例示されるエアロゾル生成装置100の保持部140はスティック型基材150の挿入方向に細長い円筒形状であり、図8(a)及び図8(b)は、エアロゾル生成装置100の保持部140を長手方向に円筒形状の中心軸を通る平面で切断した場合における断面図である(図9及び図11~図14も同様の断面図である)。図8(a)は、エアロゾル生成装置100の保持部140にスティック型基材150が挿入されている状態を示す。図8(b)は、エアロゾル生成装置100の保持部140にスティック型基材150は挿入されていない状態を示す。図8(c)は、エアロゾル生成装置100の円筒形状である保持部140の底部143に略平行かつセンサ117a又はセンサ117bを通る平面で切断した場合の切断図である。センサ117a及びセンサ117bはそれぞれ検出部117が備える、コンデンサCxの静電容量を検出するためのセンサである。センサ117a及びセンサ117bはそれぞれ更にサンプリングコンデンサCsと接続されて検出部117を構成していてもよい。
 図8(a)~図8(c)に示されるエアロゾル生成装置100は、一例として、2つのセンサ117a、117bを備えている。また、各センサ117a、117bは、円筒形状のエアロゾル生成装置100の側面に互いに離間して備えられている。センサ117aは保持部140の底部143付近であって、スティック型基材150が保持部140に挿入された際に(図8(a))スティック型基材150の基材部151のペーパーフィルタ151b付近に対応する位置に備えられている。また、センサ117bは保持部140の開口142付近に備えられている。
 エアロゾル生成装置100は、スティック型基材150が加熱された後などに(ユーザの喫煙後など)、例えばたばこ葉の燃えかすなどが保持部140の底部143に貯まることがあり、図8(b)に示されるように、清掃用綿棒50などによって保持部140の内部を清掃しなければならない場合がある。この場合、エアロゾル生成装置100がセンサ117aだけを備えている場合にはこの清掃用綿棒50をスティック型基材150であると誤検出する可能性がある。本例のエアロゾル生成装置100はセンサ117aに加えてセンサ117bを保持部140の開口142付近に備えており、清掃用綿棒50が保持部140の内部を動くことで、センサ117aとセンサ117bの両方が同時に清掃用綿棒50をスティック型基材150であると誤検出する可能性は非常に低くなる。このように2つのセンサが互いに離間して配置されており、特に、保持部140の底部143付近と開口142付近とに配置されている場合、すなわち2つのセンサが保持部140の内部空間141の長手方向の両端に配置されている場合には、検出部117及び制御部116により誤検出の可能性を低減させることができる。
 センサ117aとセンサ117bとの距離L2は、以下のように決定されるとより好適である。例えば、静電容量検知用のセンシングパターンをFPC(Flexible Printed Circuit)等で形成し、保持部140の底部143又はセンサ117aから、想定される異物(図8の清掃用綿棒50)の大きさL1以上の距離を取った位置にセンサ117bを設置する。すなわち、L1<L2とするのが好適である。
 また、各センサ117a、117bは、1つの電極が検出対象に対して対向するように構成されていてもよいし、複数の電極が検出対象を挟んで対向するように構成されていてもよい。例えば、図8(c)に示されるように、センサ117a、117bは互いに向き合う2つの電極によって構成されており、この2つの電極によって保持部140の側面を挟むように配置されていてもよい。向かい合う電極は平面であってもよいし、曲面であってもよい。このような構成の場合、検出部117は、互いに向き合う2つの電極をコンデンサCxとしてこの2つの電極間の静電容量を静電容量センサの値として検出してもよいし、このコンデンサCxと接続するサンプリングコンデンサCsから検出されるカウント値を静電容量センサの値として検出してもよい。また、センサの数は、3つ以上であってもよい。
 ここで、センサ117a、117bが備える2つの電極のうち、一つはグラウンドに接続されるグラウンド電極117xであり、それに対抗するもう一つの電極はコンデンサCxに蓄積される電荷を読み取るためのセンサ電極117yである。図9は、センサ117aのグラウンド電極117x及びセンサ電極117yと、センサ117bのグラウンド電極117x及びセンサ電極117yとの位置関係の例を示す図である。図9(a)及び図9(b)に示されるように、センサ117aのグラウンド電極117xとセンサ電極117yは、保持部140の長手方向に垂直な方向において保持部140を挟み込むようにして互いに向かい合うように備えられている。また、センサ117aのグラウンド電極117xとセンサ電極117yは、保持部140の長手方向における開口142又は底部143からの距離は略同一である。センサ117bのグラウンド電極117xとセンサ電極117yも同様に、保持部140の長手方向に垂直な方向において保持部140を挟み込むようにして互いに向かい合うように備えられている。また、センサ117bのグラウンド電極117xとセンサ電極117yは、保持部140の長手方向における開口142又は底部143からの距離は略同一である。
 また、図9(a)に示されるように、センサ117aのグラウンド電極117xとセンサ117bのグラウンド電極117x、及び、センサ117aのセンサ電極117yとセンサ117bのセンサ電極117yは、それぞれ、細長い円筒形状である保持部140の長手方向においてほぼ重なる位置(開口143から底部143へ見た場合にほぼ重なる位置)に配置されていてもよい。もしくは、図9(b)に示されるように、センサ117aのグラウンド電極117xとセンサ117bのセンサ電極117y、及び、センサ117aのセンサ電極117yとセンサ117bのグラウンド電極117xが、それぞれ、細長い円筒形状である保持部140の長手方向においてほぼ重なる位置(開口143から底部143へ見た場合にほぼ重なる位置)に配置されていてもよい。なお、「ほぼ重なる」とは厳密に重ならなくともコンデンサとして機能しうる範囲内での若干のズレは許容されるという意味である。
 図10は静電容量検出用のセンシングパターンの一例を示す図である。静電容量検出用のセンシングパターンをFPC等で形成し、これを、センサ117bのグラウンド電極117xとセンサ電極117yが保持部140を挟んで対向し、センサ117aのグラウンド電極117xとセンサ電極117yが保持部140を挟んで対向するように、保持部140に巻きつける。
 被検出物が接触した時に大きく静電容量変化を起こすのはセンサ電極117yである。したがって、このように保持部140の長手方向の位置によってセンサ電極位置が異なる構成とすることで、例えば図8(b)においてL2がL1よりも短い場合であって異物(ここでは清掃用綿棒50)がセンサ117a、117bのいずれにも接触する場合であっても、一方のセンサでは異物がセンサ電極117yに接触したとしても他方のセンサで異物がセンサ電極117yに接触せずグラウンド電極117xに接触する状態であれば、他方のセンサにおいては静電容量変化が小さいため、センサ117aとセンサ117bの両方が同時に清掃用綿棒50のような異物をスティック型基材150であると誤検出する可能性は非常に低くなる。
 すなわち、図9(b)や図10において例示したように、センサ117aのセンサ電極117yとセンサ117bのグラウンド電極117xが保持部140の長手方向において(開口143から底部143へ見た場合に)ほぼ重なる位置に配置され、センサ117aのグラウンド電極117xとセンサ117bのセンサ電極117yが保持部140の長手方向において(開口143から底部143へ見た場合に)ほぼ重なる位置に配置されるようにすることで、被検出物が想定するものであるか否かを精度よく検出することができる。
 図8、図9、図10に例示されるエアロゾル生成装置100の場合、各センサ117a、117bを用いて検出された静電容量センサの複数の値の移動平均値又は2つの移動平均値の差分が、それぞれ予め定められた閾値を超えると、制御部116は保持部140にスティック型基材150が挿入されたと判定する。また、センサ117a、117bのそれぞれを用いて検出される静電容量センサの値についての閾値は同じ値であってもよいし異なる値であってもよい。
 図8、図9、図10においては、エアロゾル生成装置100が2つのセンサを備える場合を例示したが、3つ以上のセンサを備えていてもよい。そして、各センサを用いて検出された静電容量センサの複数の値の移動平均値又は2つの移動平均値の差分が、それぞれ予め定められた閾値を超えるか否かを制御部116が判断するようになっていてもよい。これにより、スティック型基材150の検出の精度をより高めることができる。
 また、センサ117a又はセンサ117bの一方のみの静電容量変化を制御部116が検出した場合には、当該検出はスティック型基材150ではなく何らかの異物を検出した可能性が高いため、通知部113がエアロゾル生成装置100のユーザに清掃を促す通知を行うようになっていてもよい。
 また、2以上のセンサの少なくとも一方は、静電容量センサ以外のセンサであってよく、例えば、赤外線近接センサ等の光学式センサ、ピエゾ素子を用いた感圧センサ、等のセンサであってもよい。
 また、図11は、センサ117cが備える平面電極がエアロゾル生成装置100の保持部140の底部143と対向するように配置されている構成を例示している。センサ117cは検出部117が備える、コンデンサCxの静電容量を検出するためのセンサである。センサ117cは更にサンプリングコンデンサCsと接続されて検出部117を構成していてもよい。なお、センサ117cが備える平面電極は保持部140に対向する面とは逆の面にグラウンド電極を備えておりコンデンサCxを構成する。また、図11は、スティック型基材150が保持部140に挿入された状態を示している。このように平面電極が配置されている場合、スティック型基材150が保持部140に挿入されているときには当該平面電極とスティック型基材150との組合せから形成される静電容量をコンデンサCxの静電容量として検出部117が検出することができる。
 図12及び図13は、保持部140の内部に異物が混入した場合の一例を示す図である。図12は、水やグリセリン等の液体の異物が混入する場合について例示している。また、図13は、その他の異物(特に固形物)が混入する場合について例示している。
 液体の異物が保持部140に混入する場合、図12(a)に示されるように、保持部140の底部143の全体を覆うように異物52が付着する場合や、図12(b)に示されるように、保持部140の内部の側面に異物52が付着する場合が想定される。
 また、固体の異物が保持部140に混入する場合、図13(a)に示されるように、保持部140の底部143の全体を覆うように異物53が付着する場合や、図13(b)に示されるように、保持部140の開口142付近に異物53が付着する場合が想定される。
 以上のような異物の混入を想定するならば、センサ117aを静電容量センサとし、センサ117bを光学式センサとすることが好適である。保持部140の底部143は開口142付近と比較すると異物が留まりやすく、すなわちたばこ葉などにより汚れ易いため、底部143付近には静電容量センサを用いることがより好適である。
 また、スティック型基材150のグリセリンなどの添加物が加熱により蒸発することがありうる。添加物の量が変わると静電容量が変化するため、グリセリンなどの添加物が加熱により蒸発した場合、スティック型基材150が挿入されているにも関わらずカウント値が所定の閾値に到達せず挿入されていることを検出でない場合がある。よって、例えば、センサ117aは静電容量センサを、センサ117bは光学センサを用いるなどして、加熱開始などのためのスティック型基材150の挿入検出時には、2つのセンサ117a、117bにおいてセンサ値を検出し、加熱開始後、または加熱開始後の予め定められた時間経過後は、底部143付近のセンサ117aは用いずに、開口142に近いセンサ117bのみを用いて検出するようにしてもよい。
 図14は、エアロゾル生成装置100における検出部117と加熱部121との配置例を示す図である。上述した複数のセンサ(検出部117)を備える構成は、エアロゾル生成装置100が外部加熱式である場合にも内部加熱式である場合にも適用可能である。図14(a)はヒータによる外部加熱式の構成例を示す。図14(b)はコイルにより電磁誘導型の構成例を示す。図14(c)は、ヒータによる内部加熱式の構成例を示す。図14(a)及び図14(b)に示されるように、外部加熱式の場合、センサ117aとセンサ117bとの間にヒータ121a又はコイル121b(加熱部121)を備える構成としてもよい。このような構成によれば、スティック型基材150の原料部151cにヒータ121a又はコイル121bを配置し、その上下の紙管部151aやペーパーフィルタ部151bに静電容量を検出するセンサ117a及び117bが対応するように配置することができる。これにより、原料部151c部分ではなく紙管部151aやペーパーフィルタ部151bにおいて静電容量を検出しやすいグリセリンやPG(プロピレングリコール)などを、静電容量の検出に適した量に調整して添加することもできる。グリセリンやPG(プロピレングリコール)はエアロゾル源としても用いられるが、このような構成とすることで原料部151c部分に含まれるエアロゾル源が主にユーザへ送達されるよう効率よく加熱され、紙管部151aやペーパーフィルタ部151bに添加されたグリセリンやPG(プロピレングリコール)などは原料部151cと比較して蒸発されにくくすることができ、加熱された場合においてもセンサ117a及び117bによって静電容量を検出しやすくすることができる。
 図14(c)においては、ヒータ121c(加熱部121)がブレード状に構成されており、保持部140の底部143から内部空間141に突出するように配置されている。加熱部121がこのような構成となっている場合には、センサ117a、117bは、互いに離間して配置され、一方は保持部140の底部143付近に設置され、他方は開口142付近に設置されてよい。
 上述したようにセンサ117によって保持部140内の異物が検出された場合には、エアロゾル生成装置100のユーザに清掃を促す通知を行うようになっていてもよい。図15は、ユーザに通知を行う場合のシステム構成例を示す図である。図15(a)は、エアロゾル生成装置100単体でユーザに通知を行う場合を示す。この場合、エアロゾル生成装置100に備えられているユーザインタフェース(通知部113)を用いてユーザに通知しうる。より具体的には、スピーカ等の音声出力装置、LED(light emitting diode)等の発光素子、振動子を用いたバイブレータ機能、液晶パネル等の表示装置を用いて、音、光、振動、文字、画像、等によってユーザにエアロゾル生成装置100の清掃を促す通知を行うことができる。
 また、図15(b)は、エアロゾル生成装置100から他の装置300、400を介してユーザに通知を行う場合を示す。例えば、制御部116において異物が混入したと判断したことをトリガーとして、エアロゾル生成装置100に搭載されたBluetooth(登録商標)等の通信機能(通信部115)を使用して、清掃を促すメッセージや画像等のデータをユーザのスマートフォンやタブレット端末等のユーザ端末300に送信して通知することが可能である。また、制御部116において異物が混入したと判断したことをトリガーとして、エアロゾル生成装置100に搭載されたBluetooth(登録商標)等の通信機能(通信部115)を使用して、制御部116における異物の判断結果等を含む異物混入情報をユーザのスマートフォンやタブレット端末等のユーザ端末300に送信し、さらにユーザ端末300からサーバ装置400に異物混入情報を送信するようになっていてもよい。このような構成により、サーバ装置400において異物混入情報を蓄積して異物混入頻度等を調査することが可能となる。例えば、汚れ検知が可能であれば、別途エアロゾル生成装置100からサーバ装置400に適宜送信される喫煙回数データと、異物混入情報とに基づいて、サーバ装置400において喫煙回数に対する清掃の頻度などを調査することが可能となる。
(エアロゾル生成装置100の処理フロー)
 図16及び図17は、エアロゾル生成装置100の処理フローの一例を示す。図16は、メインの処理フローの一例を示す図である。図16に例示される処理は、例えば、エアロゾル生成装置100がアクティブである間(エアロゾル生成装置100が動作するのに十分な電力を電源部111が保持している間)、ユーザの操作入力による明示の指示、等のタイミングで開始されうる。
 図16において、まず、制御部116は、変数Kを初期化する(K=“0”とする)(ステップS100)。この変数Kは、移動平均値を算出するサイクルをカウントする変数であり、現在のサイクルが何番目であるかを示す変数である。変数Kは、図17の処理フローにおいて使用される。
 次に、制御部116は、変数Kを1インクリメントする(ステップS102)。制御部116は及び検出部117は、スティック型基材150の挿入検出処理を実行する(ステップS104)。ステップS104の挿入検出処理は、図17に例示される処理フローにて実行されうる。これらの処理は終了と判定されるまで繰り返される(ステップS106)。なお、終了と判定される条件は、例えば、電源がオフとなる(電池が切れる)、ユーザの操作入力による明示の指示、等のタイミングで終了されうる。
 図17は、図16のステップS104のスティック型基材150の挿入検出処理の処理フローの一例を示す図である。
 最初に、エアロゾル生成装置100の電源のオンや充電端子PG1のチャージャ200との接続の解除などの所定の操作をトリガーとして、制御部116は、コンデンサCxの電荷をサンプリングコンデンサCsに転送した回数をカウントするためのカウント値であるcntを初期化する(cnt=“0”とする)(ステップS202)。制御部116は、所定時間が経過すると検出部117(静電容量センサ)のコンデンサCxの電荷をサンプリングコンデンサCsに転送する(ステップS204)。制御部116は、cntの値を1インクリメントする(ステップS206)。制御部116は、サンプリングコンデンサCsの端子電圧が“Vih”以上であるか判定する(ステップS208)。サンプリングコンデンサCsの端子電圧が“Vih”未満である場合は(ステップS208:No)、制御部116は、所定時間ごとにコンデンサCxの電荷をサンプリングコンデンサCsに転送する処理(ステップS204及びS206)を繰り返す。サンプリングコンデンサCsの端子電圧が“Vih”以上となったとき(ステップS208:Yes)、1回分のサンプリングにおけるcntの値が取得できる。制御部116はcntの値をメモリ等(記憶部114)に記憶する(ステップS210)。
 検出部117及び制御部116は、予め定められた回数であるX回分のカウント値を取得するまで、ステップS202~S210の処理を所定のサンプリング周期で繰り返す(ステップS212:No)。ここで、“X”は移動平均をとるサンプリングの数である。例えば、図7の例の場合、3回分のサンプリングのカウント値の移動平均値を算出しているため、X=3である。
 X回分のカウント値を取得すると(ステップS212:Yes)、制御部116は、X回分のカウント値の移動平均値を算出する(ステップS214)。そして、制御部116は、K-1回目の移動平均値(前回、図17の処理を実行した際に算出された移動平均値)との差Yを算出する(ステップS216)。制御部116は、算出された差Yが、差に関する閾値Thよりも大きいか判定する(ステップS218)。制御部116は、差Yが閾値Thよりも大きい場合は(ステップS218:Yes)スティック型基材150が保持部140に挿入されていない、もしくは離脱した、と判定する(ステップS220)。制御部116は、差Yが閾値Th以下である場合は(ステップS218:No)スティック型基材150が保持部140に挿入された、と判定する(ステップS222)。
 なお、例えば3回分(X=3)の移動平均は、n回目と(n+1)回目と(n+2)回目の移動平均、(n+3)回目と(n+4)回目と(n+5)回目の移動平均・・・というように算出されてもよいし、n回目と(n+1)回目と(n+2)回目の移動平均、(n+1)回目と(n+2)回目と(n+3)回目の移動平均・・・というように算出されてもよい。この場合、初めにX回分のcntの値を取得した後は、ステップS210において制御部116はcntの値をメモリ等(記憶部114)に記憶したのち、ステップS214へ遷移する。
 なお、図16及び図17に例示された処理フローは、例えば電源オンとなってから電源をオフされるまでサンプリング処理が繰り返されることを想定した処理フローである。ただし、例えば、タイマーを利用して決められた時間の間のみサンプリング処理が実行されるようになっていてもよい。
(その他の実施形態)
 制御部116は、充電端子が外部のチャージャやコンセント等の電力供給源と接続されたことを検出したことに基づき、検出部117において静電容量センサの値を検出するためのサンプリング周期を変更するようになっていてもよい。例えば、制御部116は、電源部111がエアロゾル生成装置100の外部から電力を供給されている間は、検出部117が静電容量センサの値の検出を実行しないように制御してもよい。特に、PCCのシステムではチャージャから電源部111に対して数回の喫煙が可能な電力が供給されるが、チャージャ自体も可搬型であり保持している電力には限りがあるため、なるべく節電したいという要求がある。また、充電中は、通常、ユーザはエアロゾル生成装置100を使用しない状況である(すなわち、喫煙しない)。よって、充電中は検出部117の処理を実行させないような構成とすることで節電することができる。
 また、検出部117は、別体のチャージャやコンセントなどの外部からの電力の供給が停止された後の予め定められた期間においては、静電容量センサの値を検出するためのサンプリング周期を、当該期間経過後におけるサンプリング周期よりも短い周期としてもよい。充電が完了または中断された直後は、ユーザがエアロゾル生成装置100を使用し始める(すなわち、喫煙をし始める)ことが想定される。すなわち、喫煙のためにスティック型基材150が挿入される可能性が高い。よって、スティック型基材150が挿入されることを見越して、充電停止後の予め定められた期間においては、検出部117の静電容量センサの値を検出するためのサンプリング周期を短くして、当該期間が経過した後は、当該サンプリング周期を長くしてもよい。なお、「静電容量センサの値を検出する」とは、寄生容量に関する値を検出する場合や、サンプリングコンデンサに関する値を検出する場合が該当する。
 また、検出部117は、制御部116が別体のチャージャと電気的又は/及び物理的に接続されていることを検出している間は、検出部117による静電容量センサの値の検出を実行しないように制御部116が制御してもよい。「電気的に接続されている」とは、充電端子で接続されていてもよいし、非接触などの他の方法により接続されている場合も含む。
 検出部117は、チャージャとの電気的又は/及び物理的な接続が解除された後の予め定められた期間においては、当該期間経過後におけるサンプリング周期よりも短いサンプリング周期で静電容量センサの値の検出を実行するよう制御部116が制御してもよい。チャージャとの接続が解除された後、すなわち、充電が完了または中断された後は、ユーザがエアロゾル生成装置100を使用し始める(すなわち、喫煙をし始める)ことが想定される。よって、スティック型基材150が挿入されることを見越して、チャージャとの接続が解除された後の予め定められた期間においては、検出部117の静電容量センサの値を検出するためのサンプリング周期を短くして、当該期間が経過した後は、当該サンプリング周期を長くしてもよい。
 また、保持部140は開閉可能な蓋部130を有し、制御部116が蓋部130の開閉状態を検知できる構成としてもよい。蓋部130は例えばヒンジやスライダによりスティック型基材150の挿入口を覆う位置(閉状態)と開放する位置(開状態)とを移動する。蓋部130が閉じられている間は、スティック型基材150は挿入されないため、節電の観点から、静電容量センサの値の検出を実行しないように制御部116が制御してもよい。なお、保持部140が蓋部130を有しない場合はスティック型基材150が挿入される可能性が常にあるため、スティック型基材150の挿入検出処理は常時行っておくことが好ましい。この場合は、上述したような充電端子の接続状況などによるサンプリング変更が有効である。
 以上、本開示の実施形態が、その変更例及び適用態様と共に説明されたが、これらは例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良等を適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。
 なお、以下のような構成も本発明の技術的範囲に属する。
(1A)
 エアロゾルを生成するエアロゾル生成装置であって、
 エアロゾル源を含むエアロゾル形成基体を保持する保持部と、
 前記エアロゾル源を加熱する加熱部と、
 静電容量センサの値を複数検出する検出部と、
 前記検出された静電容量センサの複数の値の移動平均値を算出し、算出された前記移動平均値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する制御部と、
を備える、エアロゾル生成装置。
(2A)
 前記閾値は、2つの前記移動平均値の差分に関する閾値であり、
 前記制御部は、2つの前記移動平均値の差分と前記閾値とを比較することで、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記(1A)のエアロゾル生成装置。
(3A)
 前記制御部は、電力消費量が異なる第1モードと第2モードにより動作可能であり、前記2モードにおける電力消費量は前記第1モードにおける電力消費量よりも小さく、前記制御部は前記第2モードにおいて、予め定められた時間経過後に前記第2モード状態を解消して前記検出部における前記検出を行う、上記(1A)又は(2A)のエアロゾル生成装置。
(4A)
 前記検出部は、サンプリングコンデンサを用いる、上記(1A)から(3A)のいずれかのエアロゾル生成装置。
(5A)
 電力を蓄積可能な電源部と、前記電源部と電気的に接続する充電端子と、を備え、
 前記制御部は、前記充電端子が外部の電力供給源と接続されたことを検出したことに基づき、前記検出部において前記静電容量センサの値を検出するためのサンプリング周期を変更する、上記(1A)から(4A)のいずれかのエアロゾル生成装置。
(6A)
 前記検出部は、前記電源部が前記エアロゾル生成装置の外部から電力を供給されている間は、前記静電容量センサの値の検出を実行しない、上記(5A)のエアロゾル生成装置。
(7A)
 前記検出部は、前記外部からの電力の供給が停止された後の予め定められた期間においては、前記静電容量センサの値を検出するためのサンプリング周期を、当該期間経過後におけるサンプリング周期よりも短い周期とする、上記(5A)又は(6A)のエアロゾル生成装置。
(8A)
 前記エアロゾル生成装置は、前記エアロゾル生成装置に電力を供給する別体のチャージャと電気的に接続可能であり、
 前記検出部は、前記チャージャと接続されている間は、前記静電容量センサの値の検出を実行しない、上記(1A)から(7A)のいずれかのエアロゾル生成装置。
(9A)
 前記検出部は、前記チャージャとの接続が解除された後の予め定められた期間においては、当該期間経過後におけるサンプリング周期よりも短いサンプリング周期で前記静電容量センサの値の検出を実行する、上記(8A)のエアロゾル生成装置。
(10A)
 前記保持部は開閉可能な蓋部を有し、
 前記検出部は、前記蓋部が閉じられている間は、前記静電容量センサの値の検出を実行しない、上記(1A)から(9A)のいずれかのエアロゾル生成装置。
(11A)
 前記検出部は少なくとも2つ備えられている、上記(1A)から(10A)のいずれかのエアロゾル生成装置。
(12A)
 前記少なくとも2つの検出部のそれぞれにおいて用いられる前記閾値は異なる値である、上記(11A)のエアロゾル生成装置。
(13A)
 前記保持部は、前記エアロゾル形成基体を挿入する挿入口と前記エアロゾル形成基体を保持するための細長い空間形状を有し、
 前記少なくとも2つの検出部のうち、第1の検出部が前記保持部の前記空間形状の長手方向の挿入口側に配置され、第2の検出部が前記長手方向において前記第1の検出部より前記挿入口側とは反対側に配置される、上記(11A)又は(12A)のエアロゾル生成装置。
(14A)
 前記第1の検出部は前記長手方向に対して垂直な方向において互いに向かい合う第1の電極と第2の電極とを備え、
 前記第2の検出部は前記長手方向に対して垂直な方向において互いに向かい合う第3の電極と第4の電極とを備え、
 前記第1の電極及び前記3の電極はグラウンドに接続され、
 前記第1の電極と前記第4の電極が前記長手方向において重なる位置に配置され、前記第2の電極と前記第3の電極が前記前記長手方向において重なる位置に配置される、上記(13A)のエアロゾル生成装置。
(15A)
 前記加熱部は、前記少なくとも2つの検出部の間に配置される、上記(11A)から(14A)のいずれかのエアロゾル生成装置。
(16A)
 前記少なくとも2つの検出部の少なくとも一方は、静電容量センサ以外のセンサである、上記(11A)、(12A)、(13A)、又は(15A)のエアロゾル生成装置。
(17A)
 前記制御部は、前記少なくとも2つの検出部のそれぞれにおける前記エアロゾル形成基体が挿入されたことの検出の結果に基づいて、前記保持部に前記エアロゾル形成基体以外の物体が存在すると判定する、上記(11A)から(16A)のいずれかのエアロゾル生成装置。
(18A)
 前記制御部が前記エアロゾル形成基体以外の物体が前記保持部に存在すると判定した場合に、ユーザに前記エアロゾル形成基体以外の物体が前記保持部に存在する旨の通知又は前記保持部に対する清掃を促す旨の通知を行う通知部を更に備える、上記(17A)のエアロゾル生成装置。
(19A)
 エアロゾル源を含むエアロゾル形成基体を保持する保持部と、前記エアロゾル源を加熱する加熱部と、を備えるエアロゾル生成装置によって実行される方法であって、
 静電容量センサの値を複数検出するステップと、
 前記検出された静電容量センサの複数の値の移動平均値を算出し、算出された前記移動平均値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定するステップと、
を含む、方法。
(20A)
 上記(19A)に記載の方法をエアロゾル生成装置に実行させるためのプログラム。
(1B)
 エアロゾルを生成するエアロゾル生成装置であって、
 エアロゾル源を含むエアロゾル形成基体を保持する保持部と、
 前記エアロゾル源を加熱する加熱部と、
 静電容量センサの値を検出する検出部と、
 前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する制御部と、
を備え、
 前記制御部は、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、エアロゾル生成装置。
(2B)
 前記制御部は、前記加熱部が前記エアロゾル形成基体を加熱中であるか否かに応じて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、上記(1B)のエアロゾル生成装置。
(3B)
 前記検出部は、サンプリングコンデンサを用いる、上記(1B)又は(2B)のエアロゾル生成装置。
(4B)
 前記加熱部が前記エアロゾル形成基体を加熱中における前記サンプリング周期は、加熱停止中における前記サンプリング周期よりも長い、上記(1B)から(3B)のいずれかのエアロゾル生成装置。
(5B)
 前記加熱部が前記エアロゾル形成基体を加熱中における前記サンプリング周期は、加熱停止中における前記サンプリング周期よりも短い、上記(1B)から(4B)のいずれかのエアロゾル生成装置。
(6B)
 前記制御部は、前記検出された静電容量センサの複数の値の移動平均値を算出し、算出された前記移動平均値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記(1B)から(5B)のいずれかのエアロゾル生成装置。
(7B)
 前記閾値は、2つの前記移動平均値の差分に関する閾値であり、
 前記制御部は、2つの前記移動平均値の差分と前記閾値とを比較することで、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記(6B)のエアロゾル生成装置。
(8B)
 前記制御部は、電力消費量が異なる第1モードと第2モードにより動作可能であり、前記第2モードにおける電力消費量は前記1モードにおける電力消費量よりも小さく、前記加熱部による前記エアロゾル形成基体の加熱が停止すると、所定の条件を満たすことにより前記エアロゾル生成装置を第2モードに遷移させ、予め定められた時間間隔ごとに前記第2モード状態を解除して前記検出部による検出を実行させる、上記(1B)から(7B)のいずれかのエアロゾル生成装置。
(9B)
 前記検出部は少なくとも2つ備えられている、上記(1B)から(8B)のいずれかのエアロゾル生成装置。
(10B)
 前記制御部は、前記少なくとも2つの検出部のそれぞれにおいて検出された前記静電容量センサの値と前記閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、上記(9B)のエアロゾル生成装置。
(11B)
 エアロゾル源を含むエアロゾル形成基体を保持する保持部と、前記エアロゾル源を加熱する加熱部と、を備えるエアロゾル生成装置によって実行される方法であって、
 静電容量センサの値を検出するステップと、
 前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定するステップと、
を含み、
 前記判定するステップは、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、方法。
(12B)
 上記(11B)の方法をエアロゾル生成装置に実行させるためのプログラム。
 100…エアロゾル生成装置
 111…電源部
 112…センサ部
 113…通知部
 114…記憶部
 115…通信部
 116…制御部
 117…検出部
 121…加熱部
 130…蓋部
 140…保持部
 141…内部空間
 142…開口
 143…底部
 144…断熱部
 150…スティック型基材
 151…基材部
 152…吸口部
 200…チャージャ
 300…ユーザ端末
 400…サーバ装置
 50…清掃用綿棒
 52、53…異物

Claims (12)

  1.  エアロゾルを生成するエアロゾル生成装置であって、
     エアロゾル源を含むエアロゾル形成基体を保持する保持部と、
     前記エアロゾル源を加熱する加熱部と、
     静電容量センサの値を検出する検出部と、
     前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する制御部と、
    を備え、
     前記制御部は、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、エアロゾル生成装置。
  2.  前記制御部は、前記加熱部が前記エアロゾル形成基体を加熱中であるか否かに応じて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、請求項1に記載のエアロゾル生成装置。
  3.  前記検出部は、サンプリングコンデンサを用いる、請求項1又は2に記載のエアロゾル生成装置。
  4.  前記加熱部が前記エアロゾル形成基体を加熱中における前記サンプリング周期は、加熱停止中における前記サンプリング周期よりも長い、請求項1から3のいずれか一項に記載のエアロゾル生成装置。
  5.  前記加熱部が前記エアロゾル形成基体を加熱中における前記サンプリング周期は、加熱停止中における前記サンプリング周期よりも短い、請求項1から4のいずれか一項に記載のエアロゾル生成装置。
  6.  前記制御部は、前記検出された静電容量センサの複数の値の移動平均値を算出し、算出された前記移動平均値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、請求項1から5のいずれか一項に記載のエアロゾル生成装置。
  7.  前記閾値は、2つの前記移動平均値の差分に関する閾値であり、
     前記制御部は、2つの前記移動平均値の差分と前記閾値とを比較することで、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、請求項6に記載のエアロゾル生成装置。
  8.  前記制御部は、電力消費量が異なる第1モードと第2モードにより動作可能であり、前記第2モードにおける電力消費量は前記1モードにおける電力消費量よりも小さく、前記加熱部による前記エアロゾル形成基体の加熱が停止すると、所定の条件を満たすことにより前記エアロゾル生成装置を第2モードに遷移させ、予め定められた時間間隔ごとに前記第2モード状態を解除して前記検出部による検出を実行させる、請求項1から7のいずれか一項に記載のエアロゾル生成装置。
  9.  前記検出部は少なくとも2つ備えられている、請求項1から8のいずれか一項に記載のエアロゾル生成装置。
  10.  前記制御部は、前記少なくとも2つの検出部のそれぞれにおいて検出された前記静電容量センサの値と前記閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定する、請求項9に記載のエアロゾル生成装置。
  11.  エアロゾル源を含むエアロゾル形成基体を保持する保持部と、前記エアロゾル源を加熱する加熱部と、を備えるエアロゾル生成装置によって実行される方法であって、
     静電容量センサの値を検出するステップと、
     前記検出された静電容量センサの値と予め定められた閾値とを用いて、前記保持部に前記エアロゾル形成基体が挿入されたこと、挿入されているか否か、及び抜き取られたこと、の少なくとも1つを判定するステップと、
    を含み、
     前記判定するステップは、前記加熱部に対する加熱制御の状態に基づいて、前記静電容量センサの値を検出するためのサンプリング周期を変化させる、方法。
  12.  請求項11に記載の方法をエアロゾル生成装置に実行させるためのプログラム。
PCT/JP2021/048838 2021-12-28 2021-12-28 エアロゾル生成装置、方法、及びプログラム WO2023127113A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048838 WO2023127113A1 (ja) 2021-12-28 2021-12-28 エアロゾル生成装置、方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048838 WO2023127113A1 (ja) 2021-12-28 2021-12-28 エアロゾル生成装置、方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2023127113A1 true WO2023127113A1 (ja) 2023-07-06

Family

ID=86998381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048838 WO2023127113A1 (ja) 2021-12-28 2021-12-28 エアロゾル生成装置、方法、及びプログラム

Country Status (1)

Country Link
WO (1) WO2023127113A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170258142A1 (en) * 2016-03-10 2017-09-14 Pax Labs, Inc. Vaporization device with lip sensing
CN111436672A (zh) * 2020-04-24 2020-07-24 云南中烟工业有限责任公司 一种电加热不燃烧卷烟烟具温度控制装置及控制方法
CN211703541U (zh) * 2019-10-15 2020-10-20 深圳市汇顶科技股份有限公司 烟具和烟弹
JP2021016308A (ja) * 2019-07-17 2021-02-15 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、エアロゾル吸引器の電源診断方法、及びエアロゾル吸引器の電源診断プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170258142A1 (en) * 2016-03-10 2017-09-14 Pax Labs, Inc. Vaporization device with lip sensing
JP2021016308A (ja) * 2019-07-17 2021-02-15 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、エアロゾル吸引器の電源診断方法、及びエアロゾル吸引器の電源診断プログラム
CN211703541U (zh) * 2019-10-15 2020-10-20 深圳市汇顶科技股份有限公司 烟具和烟弹
CN111436672A (zh) * 2020-04-24 2020-07-24 云南中烟工业有限责任公司 一种电加热不燃烧卷烟烟具温度控制装置及控制方法

Similar Documents

Publication Publication Date Title
CN110191650B (zh) 微细颗粒产生装置
KR102590702B1 (ko) 전극 쌍을 갖춘 에어로졸 발생 시스템
US20180296779A1 (en) Power supply assembly, non-combustion-type flavor inhaler, and non-combustion-type flavor inhalation system
EP3179871B1 (en) Aerosol-generating system comprising multi-purpose computing device
KR102199792B1 (ko) 가열 방식의 미세 입자 발생 장치
KR20200011961A (ko) 에어로졸 전달 장치용 심박수 모니터
US20220202102A1 (en) An aerosol-generating system and haptic output elements for an aerosol-generating system
KR20200049655A (ko) 에어로졸 흡인기용 전원 유닛, 그 제어 방법 및 제어 프로그램
CN108471810B (zh) 具有多个电源的气溶胶生成装置
WO2023127113A1 (ja) エアロゾル生成装置、方法、及びプログラム
WO2023127109A1 (ja) エアロゾル生成装置、方法、及びプログラム
RU2741282C1 (ru) Системы предоставления пара
JP7312269B2 (ja) カートリッジ及びそれを含むエアロゾル生成装置
JP7340090B2 (ja) エアロゾル生成装置及びその動作方法
KR20210151580A (ko) 카트리지 및 이를 포함하는 에어로졸 생성 장치
KR102523579B1 (ko) 에어로졸 생성 장치
KR102660016B1 (ko) 에어로졸 발생 시스템 및 에어로졸 발생 장치
KR102657103B1 (ko) 에어로졸 생성 장치용 카트리지 및 이를 포함하는 에어로졸 생성 장치
KR20230055184A (ko) 에어로졸 생성 장치 및 그 동작 방법
KR20230123537A (ko) 에어로졸 발생 시스템 및 에어로졸 발생 장치
KR20240061080A (ko) 에어로졸 발생 장치 및 이를 포함하는 시스템
KR20230034020A (ko) 히터에 대한 전력 공급을 제어하는 에어로졸 생성 장치 및 그의 동작 방법
EA043226B1 (ru) Блок питания для аэрозольного ингалятора и способ управления и программа управления им
KR20240032853A (ko) 인터렉티브 에어로졸 제공 시스템
JP2023541500A (ja) エアロゾル生成装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969994

Country of ref document: EP

Kind code of ref document: A1