WO2023126021A2 - 波箔组件、箔片动压空气轴承及轴系 - Google Patents

波箔组件、箔片动压空气轴承及轴系 Download PDF

Info

Publication number
WO2023126021A2
WO2023126021A2 PCT/CN2023/077903 CN2023077903W WO2023126021A2 WO 2023126021 A2 WO2023126021 A2 WO 2023126021A2 CN 2023077903 W CN2023077903 W CN 2023077903W WO 2023126021 A2 WO2023126021 A2 WO 2023126021A2
Authority
WO
WIPO (PCT)
Prior art keywords
foil
positioning
arch
wave
bearing
Prior art date
Application number
PCT/CN2023/077903
Other languages
English (en)
French (fr)
Other versions
WO2023126021A3 (zh
Inventor
聂慧凡
张彪
赵俊志
毕刘新
侯炎恒
Original Assignee
天津飞旋科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津飞旋科技股份有限公司 filed Critical 天津飞旋科技股份有限公司
Publication of WO2023126021A2 publication Critical patent/WO2023126021A2/zh
Publication of WO2023126021A3 publication Critical patent/WO2023126021A3/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings

Definitions

  • the present application relates to the field of foil bearings, for example, to a corrugated foil assembly, a foil dynamic pressure air bearing and a shaft system.
  • Foil dynamic pressure air bearing is a key supporting component of rotating machinery shafting, for example, it is suitable for high speed, light load, high temperature, low temperature and oil-free working conditions. It mainly consists of three parts: top foil, corrugated foil and bearing sleeve. constitute.
  • the corrugated foil is a key part that determines the performance and reliability of the entire foil dynamic pressure air bearing.
  • the shafting of the rotating machinery requires the corrugated foil to have better bearing capacity and anti-vibration shock capacity.
  • the anti-vibration and shock ability is reflected in the rapid conversion of the mechanical energy of vibration and shock into internal energy by using the damping between the corrugated foil and the top foil, and between the corrugated foil and the bearing sleeve. If the damping performance of the foil dynamic pressure air bearing is insufficient, it will easily lead to instability or even jamming of the rotor-bearing system within the operating speed range.
  • one end of the top foil and one end of the corrugated foil are usually fixed on the bearing sleeve by pinning or welding, and the corrugated foil forms one end Fixed, one end free structure.
  • This structure brings natural asymmetry to the foil dynamic pressure air bearing, resulting in good damping effect at the free end and poor effect at the fixed end, which ultimately leads to insufficient damping performance of the foil dynamic pressure air bearing.
  • the application provides a corrugated foil component, a foil dynamic pressure air bearing and a shaft system, so as to improve the damping performance of the foil dynamic pressure air bearing.
  • the embodiment of the present application provides a wave foil assembly, including a positioning foil and a plurality of arch wave units;
  • the positioning foil is provided with a plurality of positioning grooves, the plurality of positioning grooves are arranged along the circumferential direction of the positioning foil, and correspond to the plurality of arch wave units respectively;
  • Each of the arch wave units includes a first positioning portion and a deformation portion connected to each other, the first positioning portion abuts against the side of the positioning foil facing the bearing sleeve, the deformation portion is arranged in an arch shape, so The deformation portion is disposed in the corresponding positioning groove, and the two side walls of the corresponding positioning groove along the circumferential direction of the positioning foil are not in contact with the deformation portion.
  • the embodiment of the present application provides a foil dynamic pressure air bearing, including a top foil, a bearing sleeve, and the above-mentioned corrugated foil assembly;
  • the dome of the deformed portion abuts against the top foil, and the first positioning portion abuts against the bearing sleeve.
  • the embodiment of the present application provides a shaft system, including a bearing seat, a rotating shaft, and the above-mentioned foil dynamic pressure air bearing;
  • the bearing sleeve is installed on the bearing seat, and the rotating shaft is passed through the top foil.
  • Fig. 1 shows a schematic diagram of the overall structure of the foil dynamic pressure air bearing in the background technology
  • Fig. 2 shows a schematic diagram of the structure of the foil dynamic pressure air bearing in the background technology after it is deployed along the circumferential direction;
  • Fig. 3 shows a schematic diagram of the deformation of a single arch wave in the background technology after compression
  • Fig. 4 shows a schematic diagram of the deformation of two adjacent arch waves in the background technology after compression
  • Fig. 5 shows a schematic diagram of the state in which the bearing load is located at the free end of the wave foil in the background technology
  • Fig. 6 shows a schematic diagram of the state in which the bearing load is located at the fixed end of the corrugated foil in the background technology
  • Fig. 7 shows the structural representation of stamping die in the background technology
  • Fig. 8 shows a schematic diagram of the overall structure of a corrugated foil assembly provided in Embodiment 1 of the present application;
  • Fig. 9 shows a structural schematic diagram of a corrugated foil assembly provided in Embodiment 1 of the present application under another viewing angle;
  • Fig. 10 shows an enlarged schematic diagram of place A in Fig. 9;
  • Fig. 11 shows a schematic structural view of an arch wave unit in a wave foil assembly provided in Embodiment 1 of the present application;
  • Fig. 12 shows a schematic diagram of the overall structure of a foil dynamic pressure air bearing provided in Embodiment 1 of the present application;
  • Fig. 13 shows a schematic diagram of a partial structure of a foil dynamic pressure air bearing provided in Embodiment 1 of the present application after it is deployed in the circumferential direction;
  • Fig. 14 shows a schematic structural view of a molding die used in the manufacturing process of a foil dynamic pressure air bearing provided in Embodiment 1 of the present application;
  • Fig. 15 shows a schematic diagram of the cooperative relationship between the positioning foil and the arch wave unit in a foil dynamic pressure air bearing provided in Embodiment 2 of the present application;
  • Fig. 16 shows a schematic diagram of the cooperative relationship between the positioning foil and the arch wave unit in a foil dynamic pressure air bearing provided in Embodiment 3 of the present application.
  • Wave foil assembly 100.
  • Positioning foil 111. Positioning slot; 112.
  • Connecting part 120.
  • Arch wave unit 121.
  • Second positioning part 200.
  • Top Foil 210, installation part; 300, bearing sleeve; 400, wave foil; 500, stamping die; 600, forming die.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise clearly defined.
  • foil hydrodynamic air bearings consist of two components: air film stiffness and damping, foil structural stiffness, and frictional damping.
  • foil structure stiffness and frictional damping account for the main part of the whole foil dynamic pressure air bearing.
  • the foil dynamic pressure air bearing in the related art is composed of a top foil 200 , a corrugated foil 400 and a bearing sleeve 300 , and one end of the top foil 200 and one end of the corrugated foil 400 are inserted into the inner wall of the bearing sleeve 300 , and is pinned and fixed with the bearing sleeve 300 through the pin key, and the rotating shaft is enveloped by the top foil 200 .
  • the top foil 200 and the corrugated foil 400 form a first friction pair
  • the corrugated foil 400 and the bearing sleeve 300 form a second friction pair.
  • the foil dynamic pressure air bearing in the related art works, a layer of air film is formed between the rotating shaft and the top foil 200 .
  • the air film pressure is also greater for the areas of the top foil 200 that are mainly subjected to bearing loads.
  • the aforementioned frictional damping means that under the action of air film pressure, the top foil 200 compresses the corrugated foil 400 to deform, so that a small relative movement occurs between the top foil 200 and the corrugated foil 400, and between the corrugated foil 400 and the bearing sleeve 300, forming friction , and use friction to do work to convert kinetic energy into internal energy.
  • the greater the power of frictional work the better the frictional damping effect, and the faster the kinetic energy is consumed, so that the vibration impact in the shafting of the rotating machinery can be more effectively suppressed.
  • the foil dynamic pressure air bearing of the related art is deployed along the circumferential direction.
  • a force analysis is performed on a single arch wave Bi (1 ⁇ i ⁇ n).
  • the solid line represents the arch wave before deformation
  • the dashed line represents the arch wave after deformation.
  • the top of the arch wave Bi will sag downwards, generating a horizontal thrust on the two bottoms of the arch wave Bi.
  • the horizontal thrust on the two bottoms of the arch wave Bi is greater than the friction between it and the bearing sleeve 300, the two bottoms of the arch wave Bi will be free to both sides along the circumferential direction of the foil dynamic pressure air bearing. move.
  • a force analysis is performed on two adjacent arch waves Bi and Bi+1.
  • the solid line represents the arch wave before deformation, and the dashed line represents the arch wave after deformation.
  • the tops of the arch wave Bi and the arch wave Bi+1 are simultaneously sunken downwards, producing the same horizontal thrust on the two bottoms of the arch wave Bi and the two bottoms of the arch wave Bi+1 respectively .
  • the horizontal thrust of the left bottom of the ith arch wave Bi acts on the right bottom of the i+1 arch wave Bi+1, and the i+1 arch wave Bi+1
  • the horizontal thrust on the right bottom of arch wave Bi acts on the left bottom of the i-th arch wave Bi
  • the horizontal thrusts on the left bottom of arch wave Bi and the right bottom of arch wave Bi+1 cancel each other out, that is, adjacent arch waves
  • the internal force between them is cancelled, which hinders the free movement of two adjacent arch waves Bi and Bi+1 along the 400-pitch direction of the wave foil.
  • the resultant force of the horizontal bottom thrust on the right side of the i+1th arch wave Bi+1 and the horizontal bottom thrust force on the left side of the i+1th arch wave Bi is too small to overcome the gap between the i+1th arch wave Bi+1 and the bearing sleeve 300 friction.
  • the corrugated foil 400 and the bearing sleeve 300 are relatively stationary, and the corrugated foil 400 and the top foil 200 are relatively stationary, and all friction forces do not perform work, consume no kinetic energy, and do not contribute to damping.
  • the arch wave Bi+1 on the right side of the load area is still far from the fixed end, and the right end of the arch wave Bi+1 is basically in a free state.
  • the deformation of all loaded arch waves is relatively easy, and the structural stiffness of the foil is small, and relative movement between the corrugated foil 400 and the top foil 200, and between the corrugated foil 400 and the bearing sleeve 300 is easy to occur , the frictional damping effect is stronger.
  • the first friction pair and the second friction pair cannot effectively consume the impact and vibration energy of the shaft through frictional force, resulting in poor frictional damping effect of the foil dynamic pressure air bearing, and finally the speed of the shaft cannot be increased, and the foil The load carrying capacity of the dynamic pressure air bearing cannot be increased.
  • a whole strip is usually used as a raw material, and a stamping die 500 is used to form a series of arch waves connected in sequence.
  • Whole piece corrugated foil 400 This one-piece continuous corrugated foil 400 structure requires that the size of the stamping die 500 must be larger than the expanded area of the bearing sleeve 300, so the stamping die 500 is required to be relatively large, and at the same time, the requirements for the precision of the stamping die 500's shape and position tolerance are very high. High, resulting in high cost of stamping die 500.
  • a whole piece of continuous corrugated foil 400 is also required to be stamped and formed at one time, and each arch wave of the corrugated foil 400 is completely formed and does not spring back after forming.
  • This process requires that the capacity of the supporting punch is large enough, and the volume of the punch is increased. Investment costs increase. Since the material is a strip, when the size of the bearing is large, it is difficult to detect the dimension of the arched wave formed by stamping the whole corrugated foil 400 , and it is easily affected by the flatness of the whole corrugated foil 400 , which increases the detection cost.
  • the processing technology of the continuous whole corrugated foil 400 structure in the related art has extremely high requirements on equipment, stamping die 500 and tooling, which increases the cost of research and development and manufacturing, and increases the cost of production control and quality control.
  • This embodiment provides a corrugated foil assembly 100 , which is applied to a foil dynamic air bearing and cooperates with a top foil 200 and a bearing sleeve 300 in the foil dynamic air bearing.
  • the corrugated foil assembly 100 includes a positioning foil 110 and a plurality of arch wave units 120 , wherein the plurality of arch wave units 120 are respectively laminated and in contact with the positioning foil 110 , and can be independently deformed when the force changes.
  • the cross section of the positioning foil 110 is arc-shaped, and the corresponding central angle is slightly smaller than 360 degrees (°).
  • One end of the positioning foil 110 along the circumferential direction is integrally formed with a connecting portion 112 for fixed connection with the bearing sleeve 300 .
  • the positioning foil 110 is provided with a plurality of positioning grooves 111 , and the plurality of positioning grooves 111 are distributed along the circumferential direction of the positioning foil 110 .
  • the arch wave unit 120 is composed of a first positioning portion 121 and a deformation portion 122 , and the first positioning portion 121 and the deformation portion 122 are arranged along the circumferential direction of the positioning foil 110 .
  • the first positioning portion 121 abuts against the outer sidewall of the positioning foil 110 , and the deformation portion 122 is configured in an arched shape and pierced in the positioning groove 111 .
  • the first side arch foot of the deformation part 122 is integrally formed with the first positioning part 121, the vault of the deformation part 122 is located at the inner periphery of the positioning foil 110, and the second side arch foot of the deformation part 122 overlaps the adjacent arch. on the first positioning portion 121 of the wave unit 120 .
  • the above arrangement can make the first positioning part 121 of the arch wave unit 120 abut against the side of the positioning foil 110 facing the bearing sleeve 300, and make the deformed part 122 pass through the positioning groove 111, thereby utilizing the positioning foil 110 restricts the arch wave unit 120 in the circumferential and axial directions of the positioning foil 110 .
  • the two side walls of the positioning groove 111 along the circumferential direction of the positioning foil 110 are not in contact with the deformation part 122 , and when the pressure on the deformation part 122 changes, the entire arch wave unit 120 Both ends are free to move and friction occurs.
  • the two side walls of the positioning groove 111 along the axial direction of the positioning foil 110 do not resist the deformation portion 122 , so as to prevent the deformation portion 122 from being stuck during the deformation process.
  • the positioning foil 110 not only restricts the arch wave unit 120 along its own circumferential direction, but also restricts the arch wave unit 120 along its own axial direction, so that the arch wave unit 120
  • the deformation part 122 is stably inside the positioning groove 111 .
  • the plurality of positioning grooves 111 includes multiple sets of positioning grooves 111 arranged along the axial direction of the positioning foil 110 , and the arch wave unit 120 is arranged corresponding to the positioning grooves 111 .
  • only one set of positioning grooves 111 is provided along the axial direction of the positioning foil 110, and the arch wave unit 120 is a whole long and narrow slender arch along the axial direction of the positioning foil 110. Wave.
  • the wave foil assembly 100 is split into a positioning foil 110 and a plurality of arch wave units 120, and the plurality of arch wave units 120 are respectively connected to the positioning foil 110, and the arch wave units 120 are along the circumferential direction of the positioning foil 110. Both ends of the arch wave unit 120 can move freely, so that each arch wave unit 120 can deform independently.
  • the multiple arch wave units 120 in the above wave foil assembly 100 are separated and decoupled from each other, and there will be no internal force cancellation between adjacent arch waves so that they cannot move, resulting in A situation where frictional damping cannot be produced.
  • the arch wave unit 120 in the above-mentioned wave foil assembly 100 is easier to deform, and it is easier to slide relative to the bearing sleeve 300 and the top foil 200, the frictional damping effect is stronger, and the damping performance of the foil dynamic pressure air bearing is effectively improved. .
  • this embodiment also provides a foil dynamic pressure air bearing, such as a low-cost, isotropic single arch wave, laminated strong friction damping foil dynamic pressure air bearing, the foil dynamic pressure air bearing
  • the compressed air bearing includes a top foil 200 , a bearing sleeve 300 and the above-mentioned corrugated foil assembly 100 .
  • the bearing sleeve 300 is in the shape of a cylinder, and serves as an installation base for the top foil 200 and the corrugated foil assembly 100 .
  • the outer diameter of the positioning foil 110 is smaller than the inner diameter of the bearing sleeve 300, and the connecting portion 112 at one end of the positioning foil 110 is inserted into the inner hole of the bearing sleeve 300, and is fixedly connected with the bearing sleeve 300 through a pin key. .
  • the first positioning part 121 is sandwiched between the positioning foil 110 and the bearing sleeve 300 , the first side of the first positioning part 121 is against the positioning foil 110 , and the second side of the first positioning part 121 is in contact with the bearing sleeve 300
  • the inner hole offsets Limited by the positioning foil 110 and the bearing sleeve 300 , the arch wave unit 120 cannot move along the radial direction of the foil dynamic pressure air bearing.
  • the top foil 200 is located at the inner periphery of the corrugated foil assembly 100 , and the outer diameter of the top foil 200 is smaller than the inner diameter of the positioning foil 110 , and the outer sidewall of the top foil 200 abuts against the dome of each deformation portion 122 .
  • One end of the top foil 200 along the circumferential direction is integrally formed with a mounting part 210 , the mounting part 210 is inserted into the inner hole of the bearing sleeve 300 , and is also fixedly connected with the bearing sleeve 300 by a pin.
  • every two adjacent arch wave units 120 are not a continuous whole, and the deformed part 122 of one arch wave unit 120 is pressed against the second arch wave unit 120 A positioning part 121, the two have only frictional force along the circumferential direction of the foil dynamic pressure air bearing, and there will be no relative displacement between the arch wave and the adjacent parts due to the cancellation of the internal force of the adjacent arch waves in the continuous wave foil 400 of the related art Case.
  • each arch wave unit 120 Under the action of air film pressure, the deformation part 122 and the first positioning part 121 of each arch wave unit 120 can move freely along the circumferential direction of the foil dynamic pressure air bearing, and there is no obstruction between two adjacent arch wave units 120 , so there will be no situation where one arch wave unit 120 cannot move due to too much frictional force and other arch wave units 120 cannot move.
  • the above-mentioned corrugated foil assembly 100 is more easily deformed than the corrugated foil 400 of the related art, between the corrugated foil assembly 100 and the top foil 200, The relative displacement between the corrugated foil assembly 100 and the bearing sleeve 300 is more likely to occur, contributing greater frictional damping. Therefore, the foil dynamic pressure air bearing is more suitable for high-speed light-load occasions prone to high-speed instability, and the effect is better.
  • each arch wave unit 120 is installed at the positioning groove 111 of the positioning foil 110 to ensure that each arch wave unit 120 can freely deform in the radial and circumferential directions of the foil dynamic pressure air bearing without interfering with each other, ensuring that the foil moves Compressed air bearings have the same stiffness and ideal frictional damping at all positions in the circumferential direction.
  • the stiffness and frictional damping effect of the corrugated foil assembly 100 have no big difference, which has the advantage of isotropy.
  • the load direction of the bearing is unstable, or when it bears a relatively large dynamic load, the structure of the above-mentioned foil dynamic pressure air bearing is more suitable than related technologies.
  • the foil dynamic pressure air bearing is deployed along the circumferential direction.
  • the dome of the deformation part 122 and the top foil 200 form a third friction pair
  • the positioning part 121 forms the fourth friction pair
  • the first positioning part 121 and the bearing sleeve 300 form the fifth friction pair
  • the first positioning part 121 and the positioning foil 110 form the sixth friction pair.
  • the fourth friction pair and the sixth friction pair are not available in the foil dynamic pressure air bearing in the related art.
  • the movement direction of the arch foot of the deformation part 122 is opposite to the movement direction of the first positioning part 121 of the adjacent arch wave unit 120, the relative movement distance between the two is significantly increased, and the frictional damping performance is significantly enhanced , greatly improving the stability of the system.
  • each arch wave unit 120 can freely deform under the action of external load, and perform work through the friction force of the four friction pairs to generate frictional damping, and there will be no foil dynamic pressure of the related technology
  • the frictional damping performance is better when the adjacent arch waves in the bearing restrain each other.
  • the axial and circumferential dimensions of a single arch wave unit 120 are much smaller than the continuous wave foil 400 of the related art, and can be stamped and formed one by one during the processing, and the required press and forming die 600 are very easy Available at a lower price, reducing stamping and forming costs.
  • the small size of the arch wave unit 120 no heat treatment tooling close to the three-dimensional size of the bearing is needed during heat treatment, so the furnace loading capacity for heat treatment can be increased, and the cost of heat treatment can be reduced.
  • the arch wave unit 120 has a small size and a single structure, it is very convenient to detect and reduce the cost of detection.
  • the positioning foil 110 with many positioning grooves 111 in the middle is processed by chemical etching, and the positioning foil 110 is rounded according to the set diameter.
  • the arch wave units 120 are stamped out one by one by using the molding die 600, and are used after heat treatment.
  • the top foil 200 is rolled into a circle according to the set diameter, and then it is used after heat treatment.
  • all the arch wave units 120 pass through the positioning slots 111 in sequence to form the wave foil assembly 100 .
  • the positioning foil 110 presses on the first positioning portion 121 of the arch wave unit 120
  • the deformation portion 122 of the arch wave unit 120 presses on the first positioning portion 121 of the adjacent arch wave unit 120 .
  • it is installed from the bottom to the top one by one.
  • the wave foil assembly 100 of the corresponding height is installed into the bearing sleeve 300 and fixed to ensure that the first positioning part 121 of the arch wave unit 120 sticks Live the inner surface of the bearing sleeve 300.
  • the top foil 200 is put into the bearing sleeve 300 and fixed to form a foil dynamic pressure air bearing.
  • This embodiment also provides a shaft system, including a bearing seat, a rotating shaft and the above-mentioned foil dynamic pressure air bearing.
  • the bearing sleeve 300 is installed on the bearing seat, and the rotating shaft is passed through the top foil 200 .
  • the difference between this embodiment and Embodiment 1 is that the arch foot of the deformation portion 122 away from the first positioning portion 121 overlaps the positioning foil 110 and abuts against the inner side wall of the positioning foil 110 .
  • the side of the deformation portion 122 away from the first positioning portion 121 overlaps the side of the positioning foil 110 facing away from the bearing sleeve 300 .
  • the fourth friction pair is composed of the arch foot on the side of the deformation portion 122 away from the first positioning portion 121 and the positioning foil 110 . Since only the arch foot of the deformation part 122 moves, and the positioning foil 110 does not move, the frictional damping performance of the fourth friction pair is lower than that of the first embodiment.
  • the arch wave unit 120 is composed of a first positioning portion 121 , a deformation portion 122 and a second positioning portion 123 .
  • the deformation part 122 is still configured in an arch shape, and the first positioning part 121 and the second positioning part 123 are integrally formed with the two arch feet of the deformation part 122 respectively.
  • the second positioning portion 123 is located on the side of the first positioning portion 121 of the adjacent arch wave unit 120 facing away from the positioning foil 110 , in other words, the first positioning portion 121 passes through the second positioning portion 123 of the adjacent arch wave unit 120 It is against the inner hole of the bearing sleeve 300 .
  • the fourth friction pair is composed of the first positioning portion 121 and the second positioning portion 123 of two adjacent arch wave units 120
  • the fifth friction pair is composed of the second positioning portion 123 and the bearing sleeve 300 .
  • any set numerical values should be construed as merely exemplary, and thus, other examples of the exemplary embodiment may have different values.

Abstract

本申请提供一种波箔组件、箔片动压空气轴承及轴系,波箔组件(100)包括定位箔片(110)和多个拱波单元(120);定位箔片(110)上开设有多个定位槽(111);每个拱波单元(120)包括相互连接的第一定位部(121)和变形部(122),第一定位部(121)与定位箔片(110)朝向轴承套筒的一侧相抵,变形部(122)呈拱形设置,变形部(122)穿设于对应的定位槽(111)内,且对应的定位槽(111)沿定位箔片(110)的周向的两侧壁不与变形部(122)接触。

Description

波箔组件、箔片动压空气轴承及轴系
本公开要求在2021年12月27日提交中国专利局、申请号为202111607782.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及箔片轴承领域,例如涉及一种波箔组件、箔片动压空气轴承及轴系。
背景技术
箔片动压空气轴承是旋转机械轴系的关键支撑部件,例如适用于高转速、轻负载、高温、低温以及无油工况,其主要由顶箔、波箔和轴承套筒这三个零件构成。
波箔是决定整个箔片动压空气轴承性能和可靠性的关键零件,旋转机械轴系要求波箔有较好的承载能力和抗振动冲击能力。其中,抗振动冲击能力体现为利用波箔与顶箔之间、波箔与轴承套筒之间的阻尼将振动冲击的机械能迅速转化为内能。如果箔片动压空气轴承的阻尼性能不足,则容易导致工作转速范围内转子-轴承系统失稳甚至卡死。
在相关技术的箔片动压空气轴承中,出于装配工艺性考虑,通常将顶箔的一端和波箔的一端通过销紧或焊接的工艺固定在轴承套筒上,波箔便形成了一端固定,一端自由的结构。这种结构给箔片动压空气轴承带来了天然的不对称性,造成自由端阻尼效果好,固定端效果差的情况,最终导致箔片动压空气轴承的阻尼性能不足。
发明内容
本申请提供一种波箔组件、箔片动压空气轴承及轴系,以提升箔片动压空气轴承的阻尼性能。
第一方面,本申请实施例提供了一种波箔组件,包括定位箔片和多个拱波单元;
所述定位箔片上开设有多个定位槽,多个所述定位槽沿所述定位箔片的周向排列,并与多个所述拱波单元分别对应;
每个所述拱波单元包括相互连接的第一定位部和变形部,所述第一定位部与所述定位箔片朝向轴承套筒的一侧相抵,所述变形部呈拱形设置,所述变形部穿设于对应的所述定位槽内,且对应的所述定位槽沿所述定位箔片的周向的两侧壁不与所述变形部接触。
第二方面,本申请实施例提供了一种箔片动压空气轴承,包括顶箔、轴承套筒和上述波箔组件;
所述变形部的拱顶与所述顶箔相抵,所述第一定位部与所述轴承套筒相抵。
第三方面,本申请实施例提供了一种轴系,包括轴承座、转轴和上述箔片动压空气轴承;
所述轴承套筒安装在所述轴承座上,所述转轴穿设于所述顶箔内。
附图说明
为了说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作介绍,应当理解,以下附图仅示出了本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了背景技术中箔片动压空气轴承的整体结构示意图;
图2示出了背景技术中箔片动压空气轴承沿周向展开后的结构示意图;
图3示出了背景技术中单个拱波在受压后的形变示意图;
图4示出了背景技术中相邻两个拱波在受压后的形变示意图;
图5示出了背景技术中轴承载荷位于波箔自由端的状态示意图;
图6示出了背景技术中轴承载荷位于波箔固定端的状态示意图;
图7示出了背景技术中冲压模具的结构示意图;
图8示出了本申请实施例1提供的一种波箔组件的整体结构示意图;
图9示出了本申请实施例1提供的一种波箔组件在另一视角下的结构示意图;
图10示出了图9中A处放大示意图;
图11示出了本申请实施例1提供的一种波箔组件中拱波单元的结构示意图;
图12示出了本申请实施例1提供的一种箔片动压空气轴承的整体结构示意图;
图13示出了本申请实施例1提供的一种箔片动压空气轴承沿周向展开后的局部结构示意图;
图14示出了本申请实施例1提供的一种箔片动压空气轴承在制作过程中所使用的成型模具的结构示意图;
图15示出了本申请实施例2提供的一种箔片动压空气轴承中定位箔片与拱波单元的配合关系示意图;
图16示出了本申请实施例3提供的一种箔片动压空气轴承中定位箔片与拱波单元的配合关系示意图。
主要元件符号说明:
100、波箔组件;110、定位箔片;111、定位槽;112、连接部;120、拱波
单元;121、第一定位部;122、变形部;123、第二定位部;200、顶箔;210、安装部;300、轴承套筒;400、波箔;500、冲压模具;600、成型模具。
具体实施方式
下面描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在模板的说明书中所使用的术语只是为了描述实施例的目的。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
箔片动压空气轴承的刚度和阻尼由两部分组成:气膜刚度和阻尼、箔片结构刚度和摩擦阻尼。一般而言,箔片结构刚度和摩擦阻尼占整个箔片动压空气轴承的主要部分。
请参阅图1,相关技术的箔片动压空气轴承由顶箔200、波箔400和轴承套筒300组成,顶箔200的一端和波箔400的一端均插接于轴承套筒300的内壁上,并通过销紧键与轴承套筒300销接固定,转轴被顶箔200包络。其中,顶箔200和波箔400形成第一摩擦副,波箔400和轴承套筒300形成第二摩擦副。
相关技术的箔片动压空气轴承工作时,在转轴与顶箔200之间会形成一层气膜。对于顶箔200上主要承受轴承载荷的区域而言,气膜压力也更大。前述摩擦阻尼是指在气膜压力作用下,顶箔200压迫波箔400变形,使得顶箔200和波箔400之间、波箔400和轴承套筒300之间产生微小的相对运动,形成摩擦,并利用摩擦力做功将动能转化为内能。摩擦力做功的功率越大,则摩擦阻尼效果越好,消耗动能的速度越快,从而能够更有效地抑制旋转机械轴系中的振动冲击。
请参阅图2,为了更加直观地体现相关技术的箔片动压空气轴承各结构之间的受力情况,将相关技术的箔片动压空气轴承沿周向展开。波箔400上有很多个形状类似的拱波B1\B2\...\Bi-1\Bi\Bi+1\...\Bn,其中,拱波B1作为固定端与轴承套筒300固定在一起,拱波Bn则作为自由端沿箔片动压空气轴承的周向自由伸展。
请参阅图3,忽略顶箔200与波箔400之间的摩擦,对单个拱波Bi(1≤i≤n)进行受力分析。实线代表变形前的拱波,虚线代表变形后的拱波。在气膜压力P作用下,拱波Bi的顶部会向下凹陷,对拱波Bi的两个底部产生水平推力。当拱波Bi的两个底部所受的水平推力大于其与轴承套筒300之间的摩擦力时,拱波Bi的两个底部将沿箔片动压空气轴承的周向分别向两侧自由移动。
请参阅图4,忽略顶箔200与波箔400之间的摩擦,对相邻两个拱波Bi和Bi+1进行受力分析。实线代表变形前的拱波,虚线代表变形后的拱波。在相同的气膜压力P作用下,拱波Bi和拱波Bi+1的顶部同时向下凹陷,分别对拱波Bi的两个底部和拱波Bi+1的两个底部产生相同的水平推力。
一方面,当拱波Bi的右侧底部和拱波Bi+1的左侧底部所受的水平推力分别 大于其与轴承套筒300之间的摩擦力时,拱波Bi的右侧底部和拱波Bi+1的左侧底部会相对于轴承套筒300移动,产生摩擦。另一方面,拱波Bi的左侧底部和拱波Bi+1的右侧底部所受的水平推力相互抵消,二者作为整体时所受的合力为零,不足以克服与轴承套筒300之间的摩擦力,故拱波Bi的左侧底部和拱波Bi+1的右侧底部无法相对于轴承套筒300移动,也就无法贡献摩擦阻尼。
在整个受气膜压力P作用的区域内,第i个拱波Bi的左侧底部水平推力作用在第i+1个拱波Bi+1的右侧底部,第i+1个拱波Bi+1的右侧底部水平推力作用在第i个拱波Bi的左侧底部,拱波Bi的左侧底部和拱波Bi+1的右侧底部所受的水平推力相互抵消,也即相邻拱波之间的内力抵消,阻碍了两个相临拱波Bi和Bi+1沿波箔400节距方向的自由移动。甚至在一些情况下,第i+1个拱波Bi+1的右侧底部水平推力和第i个拱波Bi的左侧底部水平推力的合力较小,无法克服与轴承套筒300之间的摩擦力。此时,波箔400和轴承套筒300之间相对静止,波箔400和顶箔200之间相对静止,所有摩擦力不做功,不消耗动能,不贡献阻尼。
总之,在受气膜压力P作用的区域内,多个拱波Bi-1、Bi、Bi+1之间相互约束,阻碍彼此沿箔片动压空气轴承的周向朝向两端自由移动的可能性,不利于发生相对移动以产生摩擦阻尼消耗能量。
请一并参阅图5和图6,在整个波箔400的角度来看,由于顶箔200上主要承受轴承载荷的区域不断变化,各处的气膜压力也不断改变。
当轴承载荷靠近波箔400的自由端时,载荷区右侧的拱波Bi+1距离固定端还很远,拱波Bi+1的右端基本处于自由状态。在气膜压力P的作用下,所有受载拱波的变形相对容易,箔片结构刚度较小,波箔400与顶箔200之间、波箔400与轴承套筒300之间容易发生相对移动,摩擦阻尼效果较强。
但是,当轴承载荷靠近波箔400的固定端时,由于拱波B1右端被销紧键固定,向右侧运动受限制,整个载荷区的箔片结构刚度增加。此外,由于拱波B1只能通过左侧底部向左移动,故拱波B1必然阻碍拱波B2向右侧移动,以此类推,拱波B2同样对拱波B3形成阻碍。特别地,当作用在拱波Bi上的气膜压力P足够大时,拱波B1到拱波Bi之间的拱波将完全无法移动。此时,第一摩擦副和第二摩擦副无法有效地通过摩擦力做功来消耗转轴的冲击振动能量,导致箔片动压空气轴承的摩擦阻尼效果差,最终导致转轴的转速无法提高,箔片动压空气轴承的承载能力无法提升。
请参阅图7,除了上述缺陷之外,相关技术的箔片动压空气轴承的波箔400在加工时,通常以一整条带材为原材料,利用冲压模具500冲压成型拱波依次相连的一整片波箔400。这种一整片连续的波箔400结构要求冲压模具500的尺寸必须大于轴承套筒300的展开面积,因此要求冲压模具500做得比较大,同时对冲压模具500形位公差的精度的要求很高,导致冲压模具500成本很高。
此外,还要求一整片连续的波箔400一次冲压成型,波箔400的每个拱波成型完整并且成型后不回弹。该工艺要求配套的冲床能力足够大,冲床体积增大, 投资成本增加。由于材料为带材,当轴承尺寸较大时,整片波箔400冲压成型后的拱波成型尺寸不易检测,容易受整片波箔400的平面度影响,检测成本增加。
总之,相关技术的连续一整片波箔400结构的加工工艺对设备、冲压模具500和工装的要求极高,增加了研发和制造成本,提高了生产控制及质量控制成本。
实施例1
请一并参阅图8和图9,本实施例提供一种波箔组件100,应用于箔片动压空气轴承,与箔片动压空气轴承中的顶箔200和轴承套筒300配合工作。波箔组件100包括定位箔片110和多个拱波单元120,其中,多个拱波单元120分别与定位箔片110相互层叠接触,在受力变化时能够独立地发生形变。
示例性的,定位箔片110的横截面呈弧形,对应的圆心角略小于360度(°)。定位箔片110沿周向的一端一体成型有连接部112,用于与轴承套筒300固定连接。此外,定位箔片110上开设有多个定位槽111,多个定位槽111沿定位箔片110的周向分布。
请一并参阅图10和图11,例如,拱波单元120与定位槽111的数量相同,二者一一对应。拱波单元120由第一定位部121和变形部122组成,且第一定位部121和变形部122沿定位箔片110的周向排列。
第一定位部121与定位箔片110的外侧壁相抵,变形部122则设置为拱形,并穿设于定位槽111内。变形部122的第一侧拱脚与第一定位部121一体成型,变形部122的拱顶则位于定位箔片110的内围,变形部122的第二侧拱脚搭接在相邻的拱波单元120的第一定位部121上。
可以理解的是,上述设置可以使拱波单元120的第一定位部121与定位箔片110朝向轴承套筒300的一侧相抵,并使变形部122穿过定位槽111,从而利用定位箔片110对拱波单元120在定位箔片110的周向和轴向进行限制。
在一实施例中,定位槽111沿定位箔片110周向的两侧壁不与变形部122接触,当变形部122所受的压力发生变化时,整个拱波单元120沿定位箔片110周向的两端能够自由移动,发生摩擦。此外,定位槽111沿定位箔片110轴向的两侧壁不与变形部122抵持,以免变形部122在变形过程中卡住。
在不阻碍拱波单元120的自由移动的前提下,定位箔片110既沿自身周向对拱波单元120进行限制,又沿自身轴向对拱波单元120进行限制,使拱波单元120的变形部122稳定在定位槽111内。
请再次参阅图8,在本实施例的一个实施方式中,多个定位槽111包括沿定位箔片110的轴向排列的多组定位槽111,拱波单元120与定位槽111对应设置。
在本实施例的另一实施方式中,定位槽111沿定位箔片110的轴向仅设有一组,拱波单元120为沿定位箔片110轴向的一整条长而窄的细长拱波。
总之,将波箔组件100拆分为定位箔片110和多个拱波单元120,并使多个拱波单元120分别与定位箔片110相连,且拱波单元120沿定位箔片110周向的两端均可自由移动,从而使得每个拱波单元120能够独立地发生形变。与相关技术的整片连续波箔400结构相比,上述波箔组件100中的多个拱波单元120相互分离解耦,不会出现相邻拱波之间的内力抵消以致无法移动,进而导致无法产生摩擦阻尼的情况。因此,上述波箔组件100中的拱波单元120更容易变形,更容易与轴承套筒300和顶箔200发生相对滑动,摩擦阻尼效果更强,有效提升了箔片动压空气轴承的阻尼性能。
请参阅图12,本实施例还提供一种箔片动压空气轴承,例如是一种低成本、各向同性的单拱波、层叠式强摩擦阻尼箔片动压空气轴承,该箔片动压空气轴承包括顶箔200、轴承套筒300和上述波箔组件100。
示例性的,轴承套筒300呈圆筒状,作为顶箔200和波箔组件100的安装基础。
示例性的,定位箔片110的外径小于轴承套筒300的内径,位于定位箔片110一端的连接部112插入轴承套筒300的内孔,并通过销紧键与轴承套筒300固定连接。第一定位部121夹于定位箔片110和轴承套筒300之间,第一定位部121的第一侧与定位箔片110相抵,第一定位部121的第二侧则与轴承套筒300的内孔相抵。受定位箔片110和轴承套筒300的限制,拱波单元120无法沿箔片动压空气轴承的径向移动。
示例性的,顶箔200位于波箔组件100内围,且顶箔200的外径小于定位箔片110的内径,顶箔200的外侧壁与每个变形部122的拱顶相抵。顶箔200沿周向的一端一体成型有安装部210,安装部210插入轴承套筒300的内孔,同样通过销紧键与轴承套筒300固定连接。
上述箔片动压空气轴承相对于相关技术具有诸多优点,分别阐述如下:
(1)在上述箔片动压空气轴承中,每两个相邻的拱波单元120之间不是连续的整体,其中一个拱波单元120的变形部122压在另一个拱波单元120的第一定位部121,二者沿箔片动压空气轴承的周向上只有摩擦力,不会存在相关技术的连续波箔400由于相邻拱波内力抵消导致拱波和相邻部件之间无相对位移的情况。
在气膜压力作用下,每个拱波单元120的变形部122和第一定位部121可以沿箔片动压空气轴承的周向自由移动,相邻两个拱波单元120之间互不阻碍,因此不会出现一拱波单元120所受摩擦力过大无法移动导致其它拱波单元120也无法移动的情况。
简而言之,由于拱波单元120之间相互断开,在相同的载荷情况下,上述波箔组件100比相关技术的波箔400更容易变形,波箔组件100与顶箔200之间、波箔组件100与轴承套筒300之间更容易发生相对位移,贡献更大的摩擦阻尼。因此,该箔片动压空气轴承更适用于容易出现高速失稳的高速轻载场合,效果更好。
(2)上述箔片动压空气轴承通过定位箔片110和轴承套筒300的内孔表面共同作用,对所有的拱波单元120进行轴向和周向限位。每个拱波单元120安装在定位箔片110的定位槽111处,确保每个拱波单元120可以在箔片动压空气轴承的径向和周向自由变形,互不干扰,保证箔片动压空气轴承在周向的各个位置具有相同的刚度和理想的摩擦阻尼。
因此,无论轴承载荷作用在定位箔片110的固定端还是自由端,波箔组件100的刚度和摩擦阻尼效果没有大的差异,具有各向同性的优点。在轴承载荷方向不稳定时,或承受较大的动载荷时,上述箔片动压空气轴承的结构比相关技术技术更加适合。
(3)请参阅图13,为了更加直观地体现箔片动压空气轴承各结构之间的配合情况,将箔片动压空气轴承沿周向展开。
在该箔片动压空气轴承中,变形部122的拱顶与顶箔200组成第三摩擦副,变形部122远离第一定位部121一侧的拱脚与相邻拱波单元120的第一定位部121组成第四摩擦副,第一定位部121与轴承套筒300组成第五摩擦副,第一定位部121与定位箔片110组成第六摩擦副。
其中,第四摩擦副和第六摩擦副为相关技术的箔片动压空气轴承所不具备。特别是在第四摩擦副中,变形部122的拱脚的移动方向与相邻拱波单元120的第一定位部121的移动方向相反,二者的相对移动距离显著增加,摩擦阻尼性能显著增强,大大提高了系统的稳定性。
当箔片动压空气轴承工作时,每个拱波单元120都能在外部载荷作用下自由变形,通过四种摩擦副的摩擦力做功,产生摩擦阻尼,不会出现相关技术的箔片动压轴承中相邻拱波相互约束阻碍的情况,摩擦阻尼性能更好。
(4)请参阅图14,单个拱波单元120的轴向尺寸和周向尺寸远小于相关技术的连续波箔400,加工过程中可以逐个冲压成型,所需的压机和成型模具600很容易以较低的价格获得,降低了冲压成型成本。同时,由于拱波单元120的尺寸很小,在热处理时不需要与轴承三维尺寸接近的热处理工装,因此可以提高热处理的装炉量,降低了热处理成本。再者,由于拱波单元120的尺寸较小,结构单一,因此检测起来很方便,降低了检测成本。
制作上述箔片动压空气轴承的步骤如下:
第一步,通过化学蚀刻的方法加工出中间有许多定位槽111的定位箔片110,并将定位箔片110按照设定的直径进行卷圆处理。
第二步,利用成型模具600逐个冲压出拱波单元120,进行热处理后备用。
第三步,将顶箔200按照设定的直径进行卷圆处理,进行热处理后备用。
第四步,将所有拱波单元120依次穿过定位槽111,组成波箔组件100。装配过程中确保定位箔片110压于拱波单元120的第一定位部121上,同时确保拱波单元120的变形部122压在相邻拱波单元120的第一定位部121上。此外,装配时沿 着定位槽111逐圈地从底部往上部安装。
第五步,每在一圈定位槽111中装配好拱波单元120,就将对应高度的波箔组件100装入到轴承套筒300并固定,确保拱波单元120的第一定位部121贴住轴承套筒300的内孔表面。最后将顶箔200装入轴承套筒300并固定,组成箔片动压空气轴承。
本实施例还提供一种轴系,包括轴承座、转轴和上述箔片动压空气轴承。轴承套筒300安装在轴承座上,转轴则穿设于顶箔200内。
实施例2
请参阅图15,本实施例与实施例1的不同之处在于,变形部122远离第一定位部121一侧的拱脚搭接于定位箔片110上,与定位箔片110的内侧壁相抵。换言之,变形部122远离第一定位部121的一侧搭接于定位箔片110背向轴承套筒300的一侧。
此时,第四摩擦副由变形部122远离第一定位部121一侧的拱脚与定位箔片110组成。由于仅有变形部122的拱脚移动,而定位箔片110不动,故第四摩擦副的摩擦阻尼性能相对于实施例1有所降低。
实施例3
请参阅图16,本实施例与实施例1的不同之处在于,拱波单元120由第一定位部121、变形部122和第二定位部123组成。
变形部122仍设置为拱形,第一定位部121和第二定位部123则分别与变形部122的两个拱脚一体成型。第二定位部123位于相邻的拱波单元120的第一定位部121背向定位箔片110的一侧,换言之,第一定位部121通过相邻的拱波单元120的第二定位部123与轴承套筒300的内孔相抵。
此时,第四摩擦副由相邻两个拱波单元120的第一定位部121和第二定位部123组成,第五摩擦副由第二定位部123与轴承套筒300组成。
在这里示出和描述的所有示例中,任何设定数值应被解释为仅仅是示例性的,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行定义和解释。

Claims (8)

  1. 一种波箔组件(100),包括定位箔片(110)和多个拱波单元(120);
    所述定位箔片(110)上开设有多个定位槽(111),多个所述定位槽(111)沿所述定位箔片(110)的周向排列,并与多个所述拱波单元(120)分别对应;
    每个所述拱波单元(120)包括相互连接的第一定位部(121)和变形部(122),所述第一定位部(121)与所述定位箔片(110)朝向轴承套筒(300)的一侧相抵,所述变形部(122)呈拱形设置,所述变形部(122)穿设于对应的所述定位槽(111)内,且对应的所述定位槽(111)沿所述定位箔片(110)的周向的两侧壁不与所述变形部(122)接触。
  2. 根据权利要求1所述的波箔组件,其中,所述变形部(122)远离所述第一定位部(121)的一侧搭接于相邻的所述拱波单元(120)的所述第一定位部(121)上。
  3. 根据权利要求1所述的波箔组件,其中,所述变形部(122)远离所述第一定位部(121)的一侧搭接于所述定位箔片(110)背向所述轴承套筒(300)的一侧。
  4. 根据权利要求1所述的波箔组件,其中,所述变形部(122)远离所述第一定位部(121)的一侧设有第二定位部(123),所述第二定位部(123)位于相邻的所述拱波单元(120)的所述第一定位部(121)背向所述定位箔片(110)的一侧。
  5. 根据权利要求1-4中任意一项所述的波箔组件,其中,所述定位槽(111)沿所述定位箔片(110)的轴向的两侧壁不与所述变形部(122)抵持以避免所述变形部(122)卡住。
  6. 根据权利要求5所述的波箔组件,其中,所述多个定位槽(111)包括沿所述定位箔片(110)的轴向排列的多组定位槽(111)。
  7. 一种箔片动压空气轴承,包括顶箔(200)、轴承套筒(300)和如权利要求1-6中任意一项所述的波箔组件(100);
    所述变形部(122)的拱顶与所述顶箔(200)相抵,所述第一定位部(121)与所述轴承套筒(300)相抵。
  8. 一种轴系,包括轴承座、转轴和如权利要求7所述的箔片动压空气轴承;
    所述轴承套筒(300)安装在所述轴承座上,所述转轴穿设于所述顶箔(200)内。
PCT/CN2023/077903 2021-12-27 2023-02-23 波箔组件、箔片动压空气轴承及轴系 WO2023126021A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111607782.1A CN113969938B (zh) 2021-12-27 2021-12-27 一种波箔组件、箔片动压空气轴承及轴系
CN202111607782.1 2021-12-27

Publications (2)

Publication Number Publication Date
WO2023126021A2 true WO2023126021A2 (zh) 2023-07-06
WO2023126021A3 WO2023126021A3 (zh) 2023-08-24

Family

ID=79590708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077903 WO2023126021A2 (zh) 2021-12-27 2023-02-23 波箔组件、箔片动压空气轴承及轴系

Country Status (2)

Country Link
CN (1) CN113969938B (zh)
WO (1) WO2023126021A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969938B (zh) * 2021-12-27 2022-03-08 天津飞旋科技股份有限公司 一种波箔组件、箔片动压空气轴承及轴系
CN114683006A (zh) * 2022-04-22 2022-07-01 天津捷强动力装备股份有限公司 一种新型气浮止推轴承及其制作方法
CN114857164B (zh) * 2022-04-28 2023-08-11 浙江飞旋科技有限公司 一种箔片动压轴承及轴系
CN115076219B (zh) * 2022-07-20 2022-11-15 天津飞旋科技股份有限公司 一种叠片式箔片动压轴承及轴系
CN115789076B (zh) * 2023-01-09 2023-05-02 天津飞旋科技股份有限公司 一种箔片动压轴承及旋转机械轴系
CN116989061B (zh) * 2023-09-25 2024-01-09 亿昇(天津)科技有限公司 一种箔片动压推力轴承及旋转机械

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137954C1 (ru) * 1997-04-03 1999-09-20 Московский государственный авиационный институт (технический университет) Лепестковый газодинамический подшипник
WO2002036974A2 (en) * 2000-11-03 2002-05-10 Capstone Turbine Corporation Bidirectional radial foil bearing
JP2002364643A (ja) * 2001-06-08 2002-12-18 Univ Osaka Sangyo 流体力学的箔軸受
JP2011169413A (ja) * 2010-02-19 2011-09-01 Honda Motor Co Ltd 動圧気体ジャーナル軸受
CN101839281B (zh) * 2010-05-27 2012-07-11 西安交通大学 一种具有分段组合复合支承的箔片动压径向气体轴承
JP5781402B2 (ja) * 2010-09-28 2015-09-24 Ntn株式会社 フォイル軸受
JP2012197887A (ja) * 2011-03-22 2012-10-18 Ntn Corp フォイル軸受およびその製造方法
CN104632871A (zh) * 2015-03-17 2015-05-20 湖南大学 一种微型箔片气体动压轴承
EP3171047A1 (en) * 2015-11-17 2017-05-24 Brandenburgische Technische Universität Cottbus-Senftenberg Gas lubricated foil bearing with self-induced cooling
CN111664169B (zh) * 2020-06-22 2021-07-23 珠海格力电器股份有限公司 一种弹性支撑组件及采用其的径向轴承
CN112324796A (zh) * 2020-10-19 2021-02-05 珠海格力电器股份有限公司 一种具有保护结构的箔片气体动压轴承及电机
CN112648379A (zh) * 2021-02-02 2021-04-13 昆明理工大学 一种弹性波箔型柱面气膜柔性支撑结构
CN214788551U (zh) * 2021-04-16 2021-11-19 河北金士顿科技有限责任公司 一种具有良好阻尼效果的径向箔片动压空气轴承
CN113503319A (zh) * 2021-07-22 2021-10-15 苏州昌恒精密金属压铸有限公司 一种波箔组合式径向空气轴承装置
CN113969938B (zh) * 2021-12-27 2022-03-08 天津飞旋科技股份有限公司 一种波箔组件、箔片动压空气轴承及轴系

Also Published As

Publication number Publication date
CN113969938B (zh) 2022-03-08
CN113969938A (zh) 2022-01-25
WO2023126021A3 (zh) 2023-08-24

Similar Documents

Publication Publication Date Title
WO2023126021A2 (zh) 波箔组件、箔片动压空气轴承及轴系
US8436484B2 (en) Direct-drive wind turbine generator
CN103890423B (zh) 径向箔轴承
US20020097927A1 (en) Hybrid air foil journal bearing and manufacturing method thereof
EP3299644B1 (en) Mixed-type dynamic pressure gas thrust bearing
WO2024016738A1 (zh) 叠片式箔片动压轴承及轴系
US20180156265A1 (en) Hybrid dynamic pressure gas radial bearing
JP2019059011A (ja) 高耐荷の案内機構及び多自由度、大ストローク、高精度の移動ステージシステム
US10673300B2 (en) Motor
CN110107590A (zh) 一种用于高速转子的箔片轴承
CN102797746A (zh) 一种变节距波箔支撑的油润滑多叶箔片轴承
CN115628264B (zh) 一种箔片式动压空气轴承及旋转机械轴系
CN115539501A (zh) 一种弹性叠片组件、箔片动压推力轴承及旋转机械轴系
CN211874935U (zh) 一种叠片式推力气体箔片轴承
CN116006580A (zh) 一种气悬浮径向轴承和电机
CN111637150B (zh) 具有弹性阻尼支承结构的箔片动压气体轴承系统
WO2022067911A1 (zh) 径向气体箔片轴承
CN115789076B (zh) 一种箔片动压轴承及旋转机械轴系
KR20190029145A (ko) 레디얼 포일베어링
CN111649058A (zh) 一种径向箔片轴承
CN201347587Y (zh) 带凹槽的向心关节轴承
CN101469712B (zh) 一种滚动转子式压缩机的装配方法
CN116989061B (zh) 一种箔片动压推力轴承及旋转机械
CN214578299U (zh) 螺旋弹簧基底的径向空气轴承
CN114857164B (zh) 一种箔片动压轴承及轴系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23735126

Country of ref document: EP

Kind code of ref document: A2