WO2023125968A1 - 换热器、热管理系统、复合材料及其制备方法 - Google Patents

换热器、热管理系统、复合材料及其制备方法 Download PDF

Info

Publication number
WO2023125968A1
WO2023125968A1 PCT/CN2022/144129 CN2022144129W WO2023125968A1 WO 2023125968 A1 WO2023125968 A1 WO 2023125968A1 CN 2022144129 W CN2022144129 W CN 2022144129W WO 2023125968 A1 WO2023125968 A1 WO 2023125968A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
sol
parts
colored coating
color
Prior art date
Application number
PCT/CN2022/144129
Other languages
English (en)
French (fr)
Inventor
薛明
黄海
黄宁杰
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111657197.2A external-priority patent/CN116410620A/zh
Priority claimed from CN202111657043.3A external-priority patent/CN116412694A/zh
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Publication of WO2023125968A1 publication Critical patent/WO2023125968A1/zh
Priority to US18/585,061 priority Critical patent/US20240200885A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/04Means for preventing wrong assembling of parts

Definitions

  • the present application relates to the technical field of heat exchange, and in particular to a heat exchanger and a heat management system, as well as a composite material used for the heat exchanger and a preparation method thereof.
  • heat exchangers it may be necessary to distinguish different heat exchangers or different parts of heat exchangers. For example, when there are more than two heat exchangers in the same module of the thermal management system, different heat exchangers use when implementing different functions. Most of the existing heat exchangers show the color of the base material, at most there are subtle differences in size or shape, which are difficult to distinguish, causing inconvenience in installation, inspection or maintenance.
  • a heat exchanger is a device that heats or cools the external environment by transferring heat between the internal fluid and the external environment.
  • the surface coating of the heat exchanger will more frequently undergo the process of alternating cold and heat.
  • the coating applied to the surface of the heat exchanger needs stronger adhesion and durability, so as to reduce the color additive or color additive in the colored coating.
  • the hidden danger of the overall peeling off of the colored coating The adhesion and durability of the coating are largely affected by the dispersion uniformity of the color additives. Therefore, there is a need to improve the dispersion uniformity of color additives in composite materials.
  • the present invention aims to solve the above technical problems. To this end, the present invention proposes a heat exchanger, a thermal management system, a composite material for the heat exchanger and a preparation method thereof.
  • the present application provides a heat exchanger, the heat exchanger has a channel for fluid circulation, at least part of the surface of the heat exchanger is covered with a colored coating, and the colored coating includes a color additive,
  • the color additive is at least one selected from organic pigments, inorganic pigments and dyes.
  • At least part of the surface of the heat exchanger of the present application has a colored coating, which facilitates the distinction, installation, inspection or maintenance of different heat exchangers.
  • the present application also provides a thermal management system
  • the thermal management system includes a compressor, a first heat exchanger, a throttling device and a second heat exchanger, and the colors of the surfaces of the first heat exchanger are different The color on the surface of the second heat exchanger; when the thermal management system has refrigerant flowing, the refrigerant flows into the first heat exchanger through the compressor, and occurs in the first heat exchanger After heat exchange, the refrigerant flows into the throttling device, and then the refrigerant flows into the second heat exchanger and flows into the compressor again after heat exchange occurs in the second heat exchanger.
  • the heat management system of the present application can distinguish different heat exchangers through the surface color of the heat exchangers, which facilitates the installation, inspection or maintenance of the heat exchangers in the heat management system.
  • the present application provides a composite material, the composite material includes 90-99 parts by mass of sol and 1-10 parts of color additives, the sol includes an alcoholic solvent, and the alcoholic solvent is contained in the The proportion in the sol is 15% to 30%.
  • the composite material of the present application has 90-99 parts by mass of sol and 1-10 parts of color additive, and the alcohol solvent in the sol accounts for 15%-30% of the sol, so that the color additive is uniformly dispersed.
  • the present application also provides a method for preparing a composite material, including:
  • the sol 90-99 parts by mass of the sol are mixed with 1-10 parts of the color additive, wherein the sol includes an alcoholic solvent, and the proportion of the alcoholic solvent in the sol is 15%-30%.
  • the preparation method of the present application can prepare a composite material in which the color additive is uniformly dispersed.
  • Fig. 1 is the structural representation of the heat exchanger in one embodiment of the present application
  • Fig. 2 is a partial cross-sectional schematic diagram of a heat exchanger header in an embodiment of the present application
  • Fig. 3 is an enlarged view of area A in Fig. 1;
  • FIG. 4 is a schematic diagram of fins and heat exchange tubes of a heat exchanger in an embodiment of the present application
  • Fig. 5 is a schematic diagram of the edge area and the middle area of the inner surface of the heat exchange tube of the heat exchanger in one embodiment of the present application;
  • Fig. 6 is a schematic diagram of the outer edge area and the central area of the fin inner surface of the heat exchanger in one embodiment of the present application;
  • FIG. 7 is a schematic diagram of a thermal management system in an embodiment of the present application.
  • Item C may contain a single element or multiple elements.
  • the terms "at least a portion of the surface”, “at least a portion of a surface”, “at least a portion of a surface” or other similar terms are used to mean any partial surface or the entire surface of the component.
  • at least a part of the surface of the heat exchanger refers to a certain part or several parts of the surface of the heat exchanger, or the entire surface of the heat exchanger.
  • heat exchanger coatings mostly focus on the protective effect of surface coatings on heat exchangers.
  • a hydrophilic or hydrophobic coating by coating the surface of the heat exchanger with a hydrophilic or hydrophobic coating, the condensation of condensed water on the surface of the heat exchanger and the frosting on the surface of the heat exchanger can be reduced, the heat exchange efficiency can be improved, and the material of the heat exchange surface can be alleviated by moisture and air.
  • Corrosion and rusting of impurities; or, adding antibacterial and antifungal substances to the hydrophilic or hydrophobic coating can reduce the growth of bacteria and mold on the surface of the heat exchanger, thereby improving the heat exchange efficiency and user experience of the heat exchanger.
  • the related art pays little attention to the surface coloring of the heat exchanger.
  • different heat exchangers may need to be distinguished, for example, when more than two heat exchangers are provided in the same module of the thermal management system, and different heat exchangers are used to achieve different functions.
  • Most of the existing heat exchangers show the color of the base material, at most there are subtle differences in size or shape, which are difficult to distinguish, causing inconvenience in installation, inspection or maintenance.
  • the first aspect of the present application provides a heat exchanger, the heat exchanger has channels for fluid circulation, at least part of the surface of the heat exchanger is covered with a colored coating, the colored coating includes a color additive, and the color additive is selected from At least one of organic pigments, inorganic pigments and dyes.
  • the surface has a colored coating, which is convenient for identification, installation, inspection or maintenance.
  • different heat exchangers or different areas of the heat exchanger can be coated with different colors of coatings according to the needs of use, so that they can be easily distinguished; or, colored coatings can be used on different heat exchangers.
  • Layers are coated with different numbers, letters or marks, different numbers, numbers or marks are used to distinguish different heat exchangers, and the coatings used to form numbers, numbers or marks on different heat exchangers can have the same or different colors .
  • the color of the colored coating is achieved by adjusting the type and content of the pigment.
  • the colored coating isolates the base of the heat exchanger from the external environment, reducing the corrosion of the heat exchanger by the external environment, so the durability of the heat exchanger in this application is also improved to a certain extent.
  • the heat exchanger includes a substrate having at least a portion of the surface of the substrate covered with a colored coating. That is to say, the surface of the heat exchanger is the surface of the heat exchanger substrate, and the colored coating is directly formed on the heat exchanger substrate. Of course, in other embodiments, there may also be other coatings between the colored coating and the heat exchanger substrate. When there are other coatings between the base material of the heat exchanger and the colored coating, at least part of the surface of the heat exchanger may refer to the surface of the other coatings.
  • the color additive is selected from C 18 H 10 C 12 N 2 O 2 , C 32 C 116 CuN 8 , C 32 H 16 CuN 8 , C 35 H 23 C 12 N 3 O 2 , C 12 H 10 At least one of N 6 O 4 , C 17 H 13 CaCl N 4 O 7 S 2 , a mixture of mica, titanium dioxide, tin dioxide and ferric oxide.
  • the color additive may be selected from C 18 H 10 C 12 N 2 O 2 (pigment red), C 32 C 116 CuN 8 (green), C 32 H 16 CuN 8 (blue), C 35 H 23 C l2 N 3 O 2 (purple), C 12 H 10 N 6 O 4 (orange), C 17 H 13 CaCl N 4 O 7 S 2 (yellow), mica, titanium dioxide, tin dioxide and ferric oxide Any one of the mixtures (gold color) or a mixture of any two or more in any proportion. In the actual coloring process, the requirements for the color of the colored coating may be varied.
  • the deployment of some colors may only require one organic pigment, inorganic pigment or dye, while the deployment of other colors may require more than two organic pigments, two More than one inorganic pigment, two or more dyes, or organic pigments, inorganic pigments and dyes are required to be used together.
  • the particle size of the color additive is 1-5 ⁇ m.
  • the small particle size of the color additive is also conducive to the stable adhesion of the color additive on the surface of the heat exchanger.
  • the thickness of the colored coating is 8-16 ⁇ m. Further, the average thickness of the colored coating is 10-11 ⁇ m, and the thickness of the coating is relatively thin, which will not greatly affect the heat exchange efficiency of the heat exchanger.
  • the standard deviation of the thickness of the colored coating is less than 0.8 ⁇ m.
  • the film thickness of the colored coating is uniform, so that the adhesion of the colored coating to the surface of the heat exchanger has good consistency, reducing the partial peeling of color additives and colored coatings.
  • the colored coating includes silica having functional groups —(CH 2 ) 3 —O—CH 2 —CH—OCH 2 and hydroxyl —OH bonded to at least a portion of the silica surface.
  • the addition of silicon dioxide can increase the adhesion and density of the coating, and silicon dioxide has a wide range of sources and is cheap.
  • the surface functional group -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 makes the silica nanoparticles uniformly dispersed in the sol, and the silica nanoparticles in the resulting coating are also uniformly dispersed, thereby improving the coating Layer uniformity and consistency.
  • the hydroxyl-OH makes the silica nanoparticles hydrophilic, so that the colored coating is hydrophilic, so that the water on the surface of the coating is easy to discharge, reducing the accumulation of water on the surface of the coating in large quantities, and reducing the impact of impurities in the water on the surface of the coating.
  • the coating erodes, allowing the coating to maintain strong adhesion to the substrate for a long time.
  • at least a portion of the silica has a particle size of 55-65 nm.
  • the colored coating also includes titanium dioxide. Titanium dioxide has hydrophilicity and photocatalytic activity, and titanium dioxide cooperates with silicon dioxide to form a binary oxide system, which enhances the hydrophilicity and self-cleaning properties of the coating. In some embodiments, at least a portion of the titanium dioxide has a particle size of 5-10 nm.
  • colored coatings of the same or different colors can be applied to different positions of the heat exchanger.
  • the colored coating includes a first colored coating and a second colored coating
  • the first colored coating and the second colored coating are respectively coated on different positions on the surface of the heat exchanger
  • the first colored coating and the second colored coating have a different color.
  • the heat exchanger includes a header and a heat exchange tube, the header is covered with a first colored coating, and the heat exchange tube is covered with a second colored coating, the color of the first colored coating is different from that of the first colored coating.
  • the color of the second colored coating so that the header and the heat exchange tube can be easily distinguished through the first colored coating and the second colored coating.
  • the heat exchanger has channel one for the flow of the first fluid and channel two for the flow of the second fluid, the outer surface of the structure forming channel one is covered with a first colored coating, and the outer surface of the structure forming channel two The surface is covered with a second colored coating, and the first colored coating and the second colored coating have different colors, so that channel one and channel two can be easily distinguished through the first colored coating and the second colored coating.
  • Different colors can be completely different or partially different.
  • the difference in color can be the shade of the color, such as red, green, blue; or it can be the shade of the color, such as dark red, light red; or it can be the gradient of the color, such as from the periphery to the inside Gradual darkening of color, gradual lightening of color from the inside to the periphery; or, the difference in color presented in other ways.
  • the heat exchanger includes a header, fins, and a plurality of heat exchange tubes; the heat exchange tube is fixed to the header, and the inner cavity of the heat exchange tube is connected to the header The inner cavity communicates with each other; the fins are located between two adjacent heat exchange tubes; the colored coating covers at least part of the surface of at least one of the header, the fins and the heat exchange tubes. In this way, different heat exchangers can be distinguished according to the surface color of at least one of the headers, fins and heat exchange tubes.
  • Microchannel heat exchanger is a high-efficiency heat exchange equipment developed in the 1990s, which can be widely used in chemical industry, energy and environment and other fields. Because microchannel heat exchangers have many characteristics different from conventional scale equipment, such as small size, light weight, high efficiency, and high strength. At the same time, micro-channel technology has triggered technological innovations in the fields of new energy vehicle thermal management systems, household air conditioners, commercial air conditioners, and refrigeration equipment to improve efficiency and reduce emissions.
  • the main structure of the microchannel heat exchanger 100 includes two headers 10, a plurality of heat exchange tubes 12 and at least one fin 13, the heat exchange tubes 12 and the headers 10 Fixed, the inner cavity of the heat exchange tube 12 communicates with the inner cavity of the header 10 .
  • a plurality of heat exchange tubes 12 are arranged along the length direction/axial direction (X direction) of the header 10, and one end of the heat exchange tube 12 in the length direction (Y direction) is connected to one of the two headers 10 for heat exchange. The other end of the tube 12 in the lengthwise direction is connected to the other of the two headers 10 .
  • Two adjacent heat exchange tubes and the header jointly form an external channel for external fluid circulation.
  • the inner cavity of the heat exchange tube 12 has a plurality of internal fluid passages extending along the length direction of the heat exchange tube 12 .
  • the heat exchange tube 12 can be a microchannel flat tube or an oval tube.
  • the fins 13 are located between two adjacent heat exchange tubes 12 .
  • the fins 13 are wave-shaped along the length direction of the heat exchange tubes 12, and the fins 13 include several crests and several troughs, and the crests and troughs of the fins 13 are respectively connected with two adjacent heat exchange tubes.
  • a window structure may be provided in a part of the fin 13 to form a louver-shaped fin to further enhance heat exchange.
  • the microchannel heat exchanger is an all-aluminum microchannel heat exchanger. The structure of the microchannel heat exchanger and the connection relationship of each component are conventional knowledge in the art, and will not be repeated here.
  • FIG. 1 schematically illustrates the surface of a collector 10 covered with a colored coating 11 , and a partial cross-sectional view of the collector is shown in FIG. 2 .
  • the colored coating covering at least part of the surface of at least one of the headers, fins, and heat exchange tubes has an average thickness
  • the colored coating covering at least part of the surface of the fin has at least The thickness of the part is smaller than the average thickness; and/or, the thickness of at least part of the colored coating covering at least part of the surface of the heat exchange tube is smaller than the average thickness.
  • the colored coating on the heat exchanger of this application is different from the hydrophilic coating, hydrophobic coating, antibacterial coating, etc. that need to improve the performance of the entire outer surface of the heat exchanger.
  • the colored coating is applied on the surface of the heat exchanger to facilitate the identification of the heat exchanger. Therefore, in some solutions, on some surfaces of the heat exchanger, such as shown in Figure 4, Figure 5 and Figure 6, the heat exchange tubes are used to form the inner side 121 of the external channel, and the fins are used to cooperate with the heat exchange tubes to form the outer surface 121.
  • the colored coating does not need to fully cover the inner surface 131 of the channel, etc., and the thickness of the colored coating may not be limited.
  • the coating of the colored coating on it does not change the appearance color of the heat exchanger much, because the space formed between the two heat exchange tubes, the heat exchange tube and the fins is small, and it is difficult for light to reach this space , resulting in a certain visual blind spot. In the visual blind zone, from the appearance of the heat exchanger, it is difficult to distinguish the color of its surface.
  • the coating of the colored coating on the inner surface of the heat exchanger may affect the heat transfer effect.
  • the channels of the heat exchanger include outer channels for external fluid communication
  • the heat exchange tubes have inner sides for forming outer channels
  • the inner sides have edge regions and middle regions
  • the outer channels have fluid inlets and fluid
  • the edge area includes a first edge area close to the fluid inlet relative to the middle area and a second edge area close to the fluid outlet relative to the middle area
  • the middle area is located between the first edge area and the second edge area
  • the thickness of the colored coating on the two edge areas is greater than or equal to the thickness of the colored coating on the middle area.
  • neither the edge area nor the middle area of the inner surface of the heat exchange tube is covered with colored coating.
  • the heat exchanger has internal passages for the circulation of internal fluids such as refrigerants and coolants, and external passages for the circulation of external fluids such as brine, such as air.
  • internal fluids such as refrigerants and coolants
  • external fluids such as brine, such as air.
  • the above-mentioned external fluid refers to the refrigerant, coolant, etc. that circulate through the internal passage.
  • it is best not to coat the inner surface of the heat exchange tube with a colored coating. In this case, it is necessary to cover the surface of the heat exchange tube when spraying.
  • the inner surface of the heat exchange tube can be sprayed directly without covering the inner surface of the heat exchange tube, so that the composite material will inevitably be sprayed on the inner surface of the heat exchange tube some areas.
  • the spraying direction can be made at a certain angle to the inner surface of the heat exchange tube to reduce the area or thickness of the colored coating on the inner surface of the heat exchange tube, so that the surface color of the heat exchanger is not affected. Minimize the reduction of the heat transfer efficiency of the heat exchanger by the colored coating.
  • the heat exchange tubes have an inner side 121 for forming an outer channel, and some heat exchange tubes have an outer side 122 .
  • the heat exchange tubes arranged in a row on the header only the two heat exchange tubes located at the head and tail of the arrangement have outer surfaces.
  • the inner surface 121 has a first edge region 1211 that is close to the fluid inlet a1 relative to the middle region 1213 and a second edge region 1212 that is close to the fluid outlet a2 relative to the middle region 1213, and the middle region 1213 is located at the first edge region 1211 Between the first edge region 1211 and the second edge region 1212 and the second edge region 1212 , the thickness of the colored coating on the first edge region 1211 and the second edge region 1212 is greater than the thickness of the colored coating on the middle region 1213 .
  • the edge area and the middle area may have a regular shape, such as a rectangle, a square, etc., or the edge area and the middle area may have an irregular shape, such as shown in FIG. 5 .
  • the thickness of the colored coating on the inner side is less than 8 ⁇ m.
  • the channels of the heat exchanger include outer channels for external fluid communication
  • the fins have inner surfaces for forming outer channels
  • the inner surfaces have peripheral regions and central regions
  • the outer channels have fluid inlets and fluid Outlet
  • the outer edge area includes a first outer edge area closer to the fluid inlet relative to the central area and a second outer edge area closer to the fluid outlet relative to the central area
  • the central area is located between the first outer edge area and the second outer edge area
  • the second outer edge area The thickness of the colored coating on the first peripheral region and the second peripheral region is greater than or equal to the thickness of the colored coating on the central region.
  • neither the outer edge area nor the central area of the inner surface of the fin is covered with a colored coating.
  • the inner surface of the fins may not be shielded, but sprayed directly, so that the composite material will inevitably be sprayed on some surfaces of the fins.
  • the spraying direction can be made at a certain angle to the inner surface of the fins to reduce the area or thickness of the colored coating on the fins, so that the surface color of the heat exchanger can be maximized without affecting the surface color of the heat exchanger. Reduce the reduction of the heat transfer efficiency of the heat exchanger by the colored coating.
  • the fin has an inner surface 131 , and along the fluid flow direction F, the inner surface 131 has an outer edge area and a central area, and the outer edge area includes an area close to the central area 1313 .
  • the thickness of the colored coating on the edge area 1311 and the second outer edge area 1312 is greater than the thickness of the colored coating on the central area 1313 .
  • the outer edge area and the central area may have a regular shape, such as a rectangle, a square, etc., or the outer edge area and the central area may have an irregular shape, such as shown in FIG. 6 .
  • the thickness of the colored coating on the inner surface of the fin is less than 8 ⁇ m.
  • a method for preparing a heat exchanger comprising:
  • composite materials including sol and color additives
  • a composite material is applied and cured to form a colored coating on at least a portion of the surface of the heat exchanger.
  • the preparation method of heat exchanger comprises:
  • composite materials including sol and color additives
  • a heat exchanger including a base material
  • a composite material is coated and cured on at least a portion of the surface of the substrate, thereby forming a colored coating on at least a portion of the surface of the substrate.
  • the manner of coating the heat exchanger with the composite material includes but is not limited to at least one of dip coating, spray coating, brush coating, flow coating or roller coating.
  • the composite material is coated on the surface of the heat exchanger by spraying.
  • the coating of the colored coating on the surface of the heat exchanger is to achieve the coloring of the surface of the heat exchanger, which is different from the hydrophilic coating, hydrophobic coating and antibacterial coating that need to be coated on the entire outer surface of the heat exchanger.
  • the coating is applied on the outer surface of the heat exchanger and the area where the sight can reach can achieve the purpose of coloring.
  • External surfaces refer to surfaces that are exposed to the external environment.
  • the outer surface of the heat exchanger includes components such as headers, heat exchange tubes and fins that can be in contact with the external heat exchange medium, such as air.
  • the spraying method can select the spraying area on the outer surface of the heat exchanger, so as to realize no coating or less coating on the inner surface of the heat exchange tube and the inner surface of the fin.
  • the spraying direction is parallel to at least part of the surface of the heat exchange tube, and/or, the spraying direction is parallel to at least part of the surface of the fin.
  • the spraying direction is parallel to at least part of the inner surfaces of the heat exchange tubes, and/or, the spraying direction is parallel to at least part of the inner surfaces of the fins.
  • the spraying direction is perpendicular to the windward side of the heat exchanger.
  • the external environment exchanges heat with the fluid in the heat exchanger (such as refrigerant, cooling liquid, etc.) through the heat transfer medium (for example, air). is the windward side of the heat exchanger.
  • the way of curing can be dried in an oven.
  • the curing temperature is 180°C-220°C; further, the curing temperature is 190°C-210°C; further, the curing temperature is 200°C.
  • the curing time is 5-75 minutes; further, the curing time is 10-60 minutes.
  • the method for preparing a heat exchanger includes: performing surface pretreatment on a substrate of the heat exchanger before coating the composite material.
  • the surface pretreatment specifically includes: sandblasting the surface of the heat exchanger base material with a mesh of 100 to 200 meshes, then cleaning the surface of the heat exchanger with alcohol or acid, and then drying it in the air or at 35° C. Dry at ⁇ 50°C.
  • Sandblasting can increase the roughness of the surface of the heat exchanger base material, so that the adhesion of the colored coating on the surface of the heat exchanger base material is more stable.
  • the sandblasting mesh is 120-180 mesh, for example, the sandblasting mesh is 150 mesh.
  • the drying temperature is 40°C.
  • the cleaning method used may be, for example, ultrasonic cleaning or spray cleaning with absolute ethanol, or acid etching cleaning.
  • a thermal management system in the third aspect of the present application, includes a compressor 2, a first heat exchanger 1001, a throttling device 3 and a second heat exchanger 1002.
  • the color of the surface of the first heat exchanger 1001 is Different from the color of the surface of the second heat exchanger 1002; when the thermal management system has refrigerant flow, the refrigerant flows into the first heat exchanger 1001 through the compressor 2, and flows into the throttling device after heat exchange occurs in the first heat exchanger 1001 3. Then the refrigerant flows into the second heat exchanger 1002 and flows into the compressor 2 again after heat exchange occurs in the second heat exchanger 1002 , as shown in FIG. 7 .
  • the surfaces of the first heat exchanger 1001 and the second heat exchanger 1002 have different colors, for example, the surface of the first heat exchanger is red and the surface of the second heat exchanger is green, so it is convenient to identify the first heat exchanger and the second heat exchanger. Two heat exchangers are distinguished.
  • the first heat exchanger 1001 is a condenser and the second heat exchanger 1002 is an evaporator.
  • a reversing device 4 is also provided in the thermal management system.
  • At least part of the surface of one of the first heat exchanger 1001 and the second heat exchanger 1002 is covered with a colored coating, and the color of the colored coating is the same as that of the first heat exchanger 1001 and the second heat exchanger 1001.
  • the colors of the base materials of the heat exchangers 1002 are all different; or, at least part of the surface of the first heat exchanger 1001 is covered with a third colored coating, and at least a part of the surface of the second heat exchanger 1002 is covered with a fourth colored coating , the color of the third colored coating is different from the color of the fourth colored coating.
  • the first heat exchanger and the second heat exchanger are distinguished by the color difference between the colored coating and the base material of the heat exchanger; or, by The surfaces of the two heat exchangers are covered with different colored coatings, and the first heat exchanger and the second heat exchanger are distinguished by the colored coatings of different colors.
  • TCP technology can provide obvious coating color changes, such as silver, blue or purple, by adding commercially available color additives.
  • studies in recent years have found that there are trace amounts of hexavalent chromium components in TCP, and Cr 6+ is very harmful to the health of operators.
  • the EU RoHS environmental protection organization has completely banned the commercial application of hexavalent chromium conversion coatings in 2017. , it is necessary to develop related alternative processes.
  • this application uses composite materials to form a colored coating on the surface of the heat exchanger.
  • the coloring of composite materials on the surface of heat exchanger is green and environmentally friendly, which greatly reduces the threat of coating to the health of operators and users.
  • the composite materials used to form the colored coating on the surface of the heat exchanger can be commercially available or self-made. However, some composite materials, the sol components, the ratio of sol and color additives, etc., are mostly designed for substrates used at normal or constant temperature such as glass, ceramics, and steel plates, and cannot be directly applied to the surface of heat exchangers, or applied The effect on the surface of the heat exchanger is not good.
  • a heat exchanger is a device that heats or cools the external environment by transferring heat between the internal fluid and the external environment. During the use of the heat exchanger, due to the temperature difference between the internal fluid and the external environment, the surface coating of the heat exchanger will more frequently undergo the process of alternating cold and heat.
  • the coating applied to the surface of the heat exchanger needs stronger adhesion and durability, so as to reduce the color additives or color additives in the colored coating.
  • the overall peeling off of the colored coating Compared with the coating on the surface of glass, ceramics, colored steel plate, etc. used at normal temperature or constant temperature, the coating applied to the surface of the heat exchanger needs stronger adhesion and durability, so as to reduce the color additives or color additives in the colored coating. The overall peeling off of the colored coating.
  • the fourth aspect of the present application provides a composite material that can form a colored coating with strong adhesion and good durability on the surface of the heat exchanger.
  • the composite material includes a sol and a color additive, and the sol includes Alcohol solvents.
  • the color additive or part of the colored coating falls off not because the adhesive force of the adhesive is not strong enough, but because the dispersion of the color additive is not good, resulting in the agglomeration of part of the color additive in the composite material, form aggregates.
  • the outer surface of the color additive aggregate can fully contact with the adhesive substance, but the color additive inside the aggregate cannot fully contact with the adhesive substance, or even be isolated from the adhesive substance, resulting in color additive aggregates
  • the combination with the substrate mainly depends on the adhesive substance combined with its outer surface, and this part of the adhesive substance is not enough to permanently attach the color additive aggregate to the substrate relative to the overall weight and volume of the color additive aggregate.
  • the aggregates of this part of the color additive fall off, and even drive the adhesive substances in the coating, causing the coating to fall off from the substrate as a whole, thus forming spots with peeling marks on the colored coating, affecting the appearance of the product .
  • the aggregate of color additives will make the thickness of the coating uneven, resulting in uneven surface of the coating, which affects the appearance of the product on the one hand, and unevenness on the other hand.
  • the surface makes the coating easy to adhere to the impurities in the external water or air, which will cause erosion to the coating and affect the service life of the coating.
  • the composite material of the present application includes sol and color additives, and the composite material can form a colored coating on the substrate surface.
  • the sol forms an adhesive substance that firmly attaches the color additive to the substrate.
  • the alcohol solvent in the sol can disperse the color additive evenly in the sol, so that the color additive can be evenly distributed in the colored coating, reduce the agglomeration of the color additive in some areas of the coating, and improve the combination of the color additive and the adhesive substance
  • the consistency of the force and the consistency of the adhesion of the coating to the substrate surface, so that the thickness, unit weight and adhesion of the colored coating also have good consistency, reducing some color additives or coatings due to binding force or adhesion
  • the adhesion is not strong enough to peel off from the surface of the substrate, thereby forming a colored coating on the surface of the substrate that can play a durable decorative and protective role.
  • the alcoholic solvent is derived from a sol, and/or the alcoholic solvent is an additional added solvent.
  • the alcohol solvent is derived from the sol, which means that at least part of the sol uses an alcohol solvent during the preparation process, and/or, the sol generates an alcohol solvent through a chemical reaction or other type of reaction during the preparation process. After the sol is prepared, the alcohol The solventoid remains at least partially in the sol.
  • Alcohol solvents are additional solvents, for example, alcohol solvents can be mixed into the sol, as long as the colloidal structure of the sol is not destroyed.
  • the sol includes an alcohol-soluble sol, and colloidal particles in the alcohol-soluble sol are dispersed in an alcoholic solvent.
  • the alcohol solvent includes an alcohol compound with 1-10 carbon atoms, preferably an alcohol compound with 1-8 carbon atoms, more preferably an alcohol compound with 1-4 carbon atoms.
  • the alcoholic solvent may be any one of methanol, ethanol, isopropanol, benzyl alcohol, and ethylene glycol, or a mixture of any two or more of them in any ratio.
  • the composite material in parts by mass, includes 90-99 parts of sol and 1-10 parts of color additives, and the proportion of alcohol solvent in the sol is 15%-30%.
  • the percentages, ratios or parts involved are by mass.
  • parts by mass refers to the basic unit of measurement of the mass ratio relationship of multiple components, and 1 part can represent any unit mass, for example, 1 part can be expressed as 1g, 1.68g, or 5g, etc.
  • the composite material includes 90-99 parts of sol, typical but non-limiting examples can be 90.1 parts, 90.2 parts, 90.5 parts, 91 parts, 93 parts, 95 parts, 97.5 parts, 98.8 parts and these points Any value in the range of any two of the values.
  • the composite material includes 1 to 10 parts of color additives, typical but non-limiting examples may be 1.1 parts, 1.5 parts, 2 parts, 3 parts, 5 parts, 5.6 parts, 6.1 parts, 7 parts, 8 parts Parts, 9 parts, 9.2 parts, 9.9 parts, and any value in the range formed by any two of these point values.
  • 1-10 parts of color additives can be 1-10 parts of organic pigments or 1-10 parts of inorganic pigments, or organic pigments, inorganic pigments, and dyes can be combined in any proportion to form 1-10 parts of color additives.
  • the proportion of the alcohol solvent in the sol is the ratio of parts. For example, if the alcohol solvent is 10 parts and the total amount of the sol is 100 parts, then the proportion of the alcohol solvent in the sol is 10%. .
  • the proportion of alcohol solvent in the sol refers to the proportion of alcohol solvent in the alcohol-soluble sol.
  • the proportion of the alcohol solvent in the sol refers to the proportion of the alcohol solvent in the total amount of the sol.
  • a sol includes an alcohol-soluble sol and a water-soluble sol
  • the proportion of an alcoholic solvent in a sol refers to the proportion of an alcoholic solvent in a mixed sol composed of an alcohol-soluble sol and a water-soluble sol.
  • the content of color additives determines the color concentration of the composite material, and also determines the color depth of the final colored coating. If there are too few color additives, the coating will not change the color of the substrate surface significantly, and it will take multiple coats to obtain the desired coating color, or the desired coating color cannot be obtained at all; while too many color additives may cause Its dispersion in the sol is not good, and then affects the overall performance of the coating.
  • Alcohol solvents can improve the dispersibility of pigments. Generally speaking, the higher the content of alcohol solvents, the better the dispersibility of pigments in the sol; Dispersion in .
  • the composite material of the present application is used to form a colored coating on the product surface, not only the dispersibility of the color additive must be considered, but also the binding force between the color additive and the adhesive substance in the coating and the adhesion of the colored coating to the substrate as a whole must be considered. Attachment.
  • the combination of color additives and adhesive substances and the adhesion of colored coatings to substrates mainly depend on the adhesive substances other than alcohol solvents in the sol, such as colloidal particles with organic functional groups on the surface of the sol.
  • the proportion of color additives and alcohol solvents is large, and the content of substances used for adhesion is relatively small. If the content of substances used for adhesion is too small, the adhesion performance of the coating will deteriorate.
  • the ratio of the sol and the color additive and the content of the alcohol solvent in the sol are selected within the above-mentioned range, and the performance index of the colored coating formed by the composite material is comprehensively considered, for example, the coloring effect of the colored coating, the sol
  • the compatibility and binding force with color additives, the adhesion of the colored coating to the substrate, the thickness of the coating, the uniformity of coating thickness, color, and unit weight, etc. can ensure that the color prepared by the composite material has a wide range.
  • the range of chromaticity, and make the coating have excellent comprehensive performance, reduce the peeling of pigment or coating part, so that the colored coating can provide stable, durable and uniform coloring to the product base.
  • the sol further includes a water solvent, and the proportion of the water solvent in the sol is 10%-40%.
  • the alcohol solvent volatilizes faster.
  • the surface drying speed of the composite material is too fast.
  • the resulting coating surface is uneven, and the sol also includes water with a slow volatilization rate.
  • the aqueous solvent is derived from a sol, and/or the aqueous solvent is an additional added solvent.
  • the water solvent derived from the sol means that at least part of the sol uses a water solvent during the preparation process, and/or the sol generates a water solvent through chemical reactions or other types of reactions during the preparation process. After the sol is prepared, at least part of the water solvent remain in the sol.
  • the water solvent is an additional solvent, for example, the water solvent can be mixed into the sol, as long as the colloidal structure of the sol is not damaged.
  • the sol includes a water soluble sol.
  • the water-soluble sol refers to a sol in which colloidal particles are dispersed in water.
  • the proportion of the alcohol solvent in the sol is 20%-26%, and the proportion of the water solvent in the sol is 30%-36%. In some embodiments, the proportion of alcohol solvent in the sol is 24%, and the proportion of water solvent in the sol is 34%.
  • the sol contains silica nanoparticles with functional groups -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 and hydroxyl groups -OH bound to the surface of at least part of the silica nanoparticles.
  • the surface functional group -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 makes the silica nanoparticles uniformly dispersed in the sol, and the silica nanoparticles in the resulting coating are also uniformly dispersed, thereby improving the coating Layer uniformity and consistency.
  • the hydroxyl-OH makes the silica nanoparticles hydrophilic, so that the colored coating is hydrophilic, so that the water on the surface of the coating is easy to discharge, reducing the accumulation of water on the surface of the coating in large quantities, and reducing the impact of impurities in the water on the surface of the coating.
  • the coating erodes, allowing the coating to maintain strong adhesion to the substrate for a long time.
  • at least some of the silica nanoparticles have a particle size of 55-65 nm.
  • the sol includes an alcohol-soluble sol, the alcohol-soluble sol contains silica nanoparticles, and functional groups -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 and hydroxyl groups are bound to the surface of the silica nanoparticles. -OH.
  • Alcohol-soluble sol means that colloidal particles are dispersed in an alcoholic solvent.
  • the sol contains titanium dioxide nanoparticles.
  • the addition of titanium dioxide nanoparticles makes silicon dioxide and titanium dioxide form a binary oxide system in the sol, and the interaction and substitution of titanium and silicon atoms in different coordination states can stabilize the structure of Ti-O and Si-O, thereby enabling The sol adhesion is enhanced and the hydrophilic properties of the coating are improved.
  • at least some of the titanium dioxide nanoparticles have a particle size of 5-10 nm.
  • the color additive is selected from at least one of organic pigments, inorganic pigments and dyes. In some embodiments, the color additive is selected from C 18 H 10 C 12 N 2 O 2 , C 32 C 116 CuN 8 , C 32 H 16 CuN 8 , C 35 H 23 C 12 N 3 O 2 , C 12 H 10 At least one of N 6 O 4 , C 17 H 13 CaCl N 4 O 7 S 2 , a mixture of mica, titanium dioxide, tin dioxide and ferric oxide.
  • the color additive may be selected from C 18 H 10 C l2 N 2 O 2 (red), C 32 C l16 CuN 8 (green), C 32 H 16 CuN 8 (blue), C 35 H 23 C l2 N 3 O 2 (purple), C 12 H 10 N 6 O 4 (orange), C 17 H 13 CaCl N 4 O 7 S 2 (yellow), a mixture of mica, titanium dioxide, tin dioxide and ferric oxide (Golden color) any one or any two or more mixtures in any proportion. In the actual coloring process, the requirements for the color of the colored coating may be varied.
  • the deployment of some colors may only require one organic pigment, inorganic pigment or dye, while the deployment of other colors may require more than two organic pigments, two More than one inorganic pigment, two or more dyes, or organic pigments, inorganic pigments and dyes are required to be used together.
  • the choice of color additives is based on the ability to mix with the sol to obtain the desired color.
  • a method for preparing a composite material comprising: mixing 90 to 99 parts of sol with 1 to 10 parts of color additives in parts by mass, wherein the sol includes alcohols Solvents, alcohol solvents account for 15% to 30% of the sol.
  • the preparation method of the present application uses a sol with an appropriate alcohol solvent ratio, and mixes the sol and the color additive in an appropriate ratio, so that the color additive is uniformly dispersed in the sol, and the agglomeration of the color additive can be reduced, so that the coating can be prepared.
  • a composite material with excellent performance the composite material can form a colored coating with good film thickness, color, and adhesion consistency, strong adhesion, and good durability, thereby reducing the number of color additives or coatings caused by the agglomeration of pigment additives. Layer peeling off the substrate due to weak bond or adhesion.
  • the preparation method of the composite material is based on the same inventive concept as the above-mentioned composite material.
  • the raw material composition and proportion of the composite material and other related features you can refer to the description of the composite material above, and will not repeat them here.
  • the method of mixing the above-mentioned sol and color additives includes but is not limited to mechanical mixing.
  • various common mixing methods well known in the art can also be used, such as ultrasonic mixing or a combination of mechanical mixing and ultrasonic mixing.
  • the present application There is no special limitation in this embodiment, as long as the sol can be mixed uniformly with the color additive.
  • the preparation method of the composite material includes: mechanically mixing the sol and the color additive for 10-30 minutes.
  • the sol and the color additive can be mechanically mixed for 10 minutes, 12 minutes, 15 minutes and 30 minutes, subject to the uniform mixing of the sol and the color additive.
  • the preparation method of the composite material further includes: performing sanding or grinding after mixing the sol and the color additive.
  • Sanding or grinding can make the pigment additives have a smaller particle size, so that the color of the colored coating is more fine and uniform.
  • the way to refine the particle size of the color additive is not limited to sanding or grinding, and other methods that can be used to refine the particle size of the color additive can also be used in the laboratory or in industry.
  • sanding or grinding generally speaking, the longer the sanding or grinding time, the smaller the particle size of the color additive, and the more uniform and fine the colored coating.
  • the particle size of the color additive can meet the usage requirements.
  • the preparation method of the composite material includes: after mixing the sol and the color additive, sanding with a sand mill for 10-60 minutes.
  • the sanding or grinding time can be set to 10min, 11min, 15min, 20min, 30min, 45min, 60min and any two of these point values according to the particle size of the required color additives, etc. Any value within the range formed.
  • the sources of the sol and color additives which can be prepared by themselves or commercially available.
  • at least one of the color additive and the sol can be obtained commercially.
  • the embodiment of the present application does not limit the preparation sequence of the color additive and the sol.
  • the color additive in the preparation process of the composite material, the color additive can be prepared first, and then the sol; or, the sol can be prepared first, and then the color additive can be prepared; or, the color additive and the sol can be prepared at the same time.
  • the sol in the composite material is self-prepared.
  • the preparation method of the sol will be described below.
  • the preparation method of the composite material also includes preparing an alcohol-soluble silica sol
  • the alcohol-soluble silica sol includes silica nanoparticles dispersed in an alcohol solvent, and functional groups are bound to the surface of the silica nanoparticles -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 and hydroxyl-OH
  • the preparation method of the alcohol-soluble silica sol comprises: silane precursor, alcohol solvent, surfactant, water and pH Regulators are mixed and reacted in a water bath to obtain alcohol-soluble silica sol.
  • the preparation method of the alcohol-soluble silica sol includes: by mass parts, 36-40 parts of silane precursor, 50-56 parts of alcohol solvent, 0.5-1.5 parts of surfactant, 5-7 parts of water and 0.5-2 parts of pH regulator are mixed and reacted in a water bath to obtain an alcohol-soluble silica sol, in which at least part of the silane precursor contains a functional group -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 .
  • the mass parts of the silane precursor can be, for example, 36 parts, 37 parts, 38 parts, 39 parts, 40 parts, etc.
  • the mass parts of the alcohol solvent can be, for example, 50 parts, 51 parts, 52 parts, 53 parts, 54 parts, 55 parts, 56 parts etc.
  • the mass parts of surfactant can be 0.5 parts, 0.8 parts, 1 part, 1.2 parts, 1.5 parts etc. for example
  • the mass parts of water can be 5 parts, 5.5 parts, 6.5 parts for example , 7 parts, etc.
  • the mass parts of the pH regulator are, for example, 0.5 parts, 1 part, 1.2 parts, 1.5 parts, 1.6 parts, 1.8 parts, 2 parts, etc.
  • the mixing temperature is between 45°C and 55°C.
  • the mixing temperature is 45°C, 46°C, 48°C, 50°C, 52°C, 54°C, 55°C, etc.
  • the silane precursor includes glycidyloxypropyltrimethoxysilane (KH-560 for short) and ethyl orthosilicate.
  • KH-560 for short
  • ethyl orthosilicate glycidyloxypropyltrimethoxysilane
  • functional groups -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 and hydroxyl group -OH are bonded to the surface of the silica nanoparticles contained in the prepared sol.
  • other types of silane precursors may also be used.
  • the silane precursor includes 30-32 parts of ⁇ -glycidoxypropyltrimethoxysilane (KH-560 for short) and 6-8 parts of ethyl orthosilicate.
  • KH-560 ⁇ -glycidoxypropyltrimethoxysilane
  • ethyl orthosilicate ethyl orthosilicate
  • the mass parts of KH-560 may be, for example, 30 parts, 31 parts, 32 parts, etc.
  • the mass parts of ethyl orthosilicate may be, for example, 6 parts, 7 parts, 8 parts, etc.
  • the alcoholic solvent includes an alcoholic solvent with 1-10 carbon atoms, preferably an alcoholic solvent with 1-8 carbon atoms, more preferably an alcoholic solvent with 1-4 carbon atoms.
  • the solvent is any one of methanol, ethanol, isopropanol, benzyl alcohol and ethylene glycol, or a mixture of any two or more in any ratio. Therefore, the source is wide, easy to obtain, and the cost is low.
  • the surfactant includes, but is not limited to, at least one of sodium lauryl sulfate, sodium dodecylsulfonate, sodium dodecylbenzenesulfonate, and cetylbenzenesulfonic acid . Further, in some embodiments, the surfactant is sodium lauryl sulfate. Therefore, the cost is low, the source is extensive, and the use effect is good.
  • the pH adjusting agent includes an organic acid or an inorganic acid.
  • the pH regulator includes, but is not limited to, at least one of formic acid and acetic acid. Further, in some embodiments, the pH regulator is formic acid.
  • KH560 has the following structural formula (I):
  • the silica nanoparticles in the sol prepared in this application are synthesized in situ, and the surface is bound with functional groups -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 , so that the coating formed by the composite material, the silica Silicon nanoparticles are evenly distributed, which improves the uniformity and consistency of the coating.
  • the alcohol-soluble silica sol prepared in this application can form a film independently on the surface of the substrate. Since the surface of silica nanoparticles contains a large number of hydroxyl (-OH) hydrophilic groups, the dehydration condensation between hydroxyl groups forms a spatial network structure. Since the silica sol is an alcohol-soluble sol prepared by an alcohol solvent, the alcohol solvent can uniformly disperse the color additive.
  • the dehydration and condensation of silica sol can evenly adhere the color additive and silica nanoparticles to the surface of the substrate, forming strong adhesion, uniform film thickness, color, and durability. Good color coating.
  • the hydroxyl groups on the surface of silica nanoparticles make the coating hydrophilic, enhance the drainage effect of the colored coating, reduce the erosion of the coating by impurities in external water or air, and further improve the durability of the colored coating.
  • the preparation method of the alcohol-soluble silica sol includes: weighing 50-56 parts of alcohol solvent and 0.5-1.5 parts of surfactant in parts by mass, and ultrasonically dispersing; adding 36-40 parts 2 parts of silane precursor, mixed in water bath; dropwise add 5-7 parts of water and 0.5-2 parts of pH adjuster, and react in water bath to obtain alcohol-soluble silica sol, wherein at least part of silane precursor contains functional group -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 .
  • the alcohol-soluble silica sol prepared in the embodiment of the present application has good compatibility with the color additive, the color additive can be well dispersed therein, and the preparation process is simple.
  • the preparation method of the sol includes: in parts by mass, weighing 50-56 parts of alcohol solvent and 0.5-1.5 parts of surfactant, ultrasonically dispersing for 5-15 minutes; adding 36-40 parts of Silane precursor, mixed in water bath at 40-60°C for 20-40min, stirring speed at 200-300rpm; add 5-7 parts of water and 0.5-2 parts of pH regulator dropwise, control the dropwise addition within 5-15min, and react in water bath for 22-20 minutes After 26 hours, an alcohol-soluble silica sol is obtained, wherein at least part of the silane precursor contains a functional group -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 .
  • the preparation method of the sol further includes adding fillers into the sol.
  • Adding fillers to the sol can increase the viscosity, reduce the permeability of the coating, and improve the durability of the coating.
  • powdery fillers are mixed into coatings to improve coating properties, such as adhesion, durability, etc., but the dispersion of powder in sol is not good, which easily leads to poor uniformity of coatings and increases the coating's Possibility of partial peeling of fillers or color additives.
  • the filler is added into the sol by sol mixing, on the one hand, it is beneficial to the uniform dispersion of the filler, on the other hand, because the filler is prepared by the sol-gel method, and there are functional groups attached to its surface, compared with the dry powder filler In other words, after the coating is formed, its own adhesion to the substrate is also stronger.
  • the preparation method of the sol includes: mixing the water-soluble silica sol and the titanium dioxide sol with the alcohol-soluble silica sol prepared above, wherein the mixed solid content of the water-soluble silica sol and the titanium dioxide sol Greater than the solid content of alcohol-soluble silica sol.
  • the mixed solid content of the water-soluble silica sol and the titanium dioxide sol refers to the solid content of the mixed sol obtained after mixing the water-soluble silica sol and the titanium dioxide sol.
  • the solid content of water-soluble silica sol is x 1 %
  • the proportion in the mixed sol is y 1 %
  • the solid content of titanium dioxide sol is x 2 %
  • the proportion in the mixed sol is y 2 %
  • the sum of y 1 % and y 2 % is 1, then the mixed solid content is x 1 % ⁇ y 1 %+x 2 % ⁇ y 2 %.
  • the silicon dioxide in the water-soluble silica sol and the titanium dioxide in the titanium dioxide sol are used as fillers, and are added to the alcohol-soluble silica sol by means of sol mixing.
  • the water solvent in the water-soluble silica sol can increase the coating performance of the composite material and prevent the problem of uneven coating surface caused by the fast volatilization of the solvent during the spraying process and the fast surface drying speed of the composite material.
  • the particle size of the silica nanoparticles in the water-soluble silica sol is 55-65 nm, and the solid content is 45%-55%. In some embodiments, the particle diameter of the silica nanoparticles in the alcohol-soluble silica sol is smaller than the particle diameter of the silica nanoparticles in the water-soluble silica sol. In some embodiments, the silica nanoparticles in the silica sol have a particle diameter of 60 nm and a solid content of 50%. In some embodiments, the pH of the water-soluble silica sol is 9.
  • the particle diameter of the silica nanoparticles in the titania sol is 5-10 nm, and the solid content is 2%-4%.
  • the titanium dioxide sol is a water-soluble sol or an alcohol-soluble sol.
  • the preparation method of the sol includes: mixing alcohol-soluble silica sol, water-soluble silica sol and titanium dioxide sol, adjusting the pH to acidic with a pH regulator, and stirring in a water bath.
  • pH adjusters include organic or inorganic acids.
  • the pH adjuster is formic acid. In this way, the prepared mixed sol has good uniformity, and the silicon dioxide nanoparticles and titanium dioxide nanoparticles can be uniformly dispersed in the sol.
  • the preparation method of the sol includes: weighing water-soluble silica sol, alcohol-soluble silica sol and titanium dioxide sol, adjusting the pH to 3.0-4.0 with a pH regulator, stirring in a water bath at 40-60°C for 3- 5h.
  • the preparation method of the sol includes: weighing 34 to 36 parts of alcohol-soluble silica sol, 55 to 57 parts of water-soluble silica sol and 4 to 6 parts of titanium dioxide sol, and using 3 to 5 parts of pH adjustment Adjust the pH to 3.0-4.0 with a reagent, and stir in a water bath at 40-60°C for 3-5 hours.
  • the mass parts of the alcohol-soluble sol is 34-36 parts, typical but non-limiting examples may be 34 parts, 34.5 parts, 34.8 parts, 35 parts, 35.5 parts, 36 parts and any of these point values Any value in the range formed by any two.
  • the mass parts of silica sol is 55-57, typical but non-limiting examples may be 55.5 parts, 56 parts, 56.5 parts, 57 parts and any two of these point values. Any value in the range.
  • the mass parts of titanium dioxide sol are 4-6 parts, typical but non-limiting, such as 4 parts, 4.5 parts, 5 parts, 5.5 parts and any two of these point values. any value of .
  • the ratio of alcohol-soluble silica sol, water-soluble silica sol and titanium dioxide sol is selected within this range, taking into account the dispersion of pigment additives and fillers in the composite material, the pigment additives and fillers in the colored coating. The binding force between the filler and the substrate, the density and uniformity of the coating, etc., the resulting coating, pigment additives and fillers are evenly distributed, with good uniformity and strong adhesion.
  • the sol includes alcohol-soluble silica sol, water-soluble silica sol and titanium dioxide sol.
  • the alcohol-soluble silica sol is self-prepared, and is a transparent sol in appearance, and the content of absolute ethanol in the alcohol-soluble silica sol is approximately 54%.
  • Both water-soluble silica sol and titanium dioxide sol are commercially available products, and titanium dioxide sol is also a water-soluble sol.
  • the particle size of the colloidal particles in the water-soluble silica sol is 55-65 nm
  • the solid content is about 50%
  • the pH value is 9.
  • the particle size of the colloidal particles in the titanium dioxide sol is 5-10 nm, and the solid content of the titanium dioxide sol is about 3%.
  • the color additive is commercially available Pigment Red 254 with a chemical composition of C 18 H 10 Cl 2 N 2 O 2 .
  • the alcohol-soluble sol refers to a sol in which colloidal particles are dispersed in an alcoholic solvent.
  • 54 parts of absolute ethanol and 1 part of sodium lauryl sulfate were dispersed ultrasonically for 10 minutes; then 31 parts of KH-560 and 7 parts of tetraethyl orthosilicate were added, and mechanically stirred for 30 minutes in a water bath at 50°C , the stirring speed is 250rpm, and then 6 parts of water and 1 part of formic acid are added dropwise to the system, and the dropwise addition is controlled within 10 minutes, and the reaction is carried out in a water bath at 50°C for 24 hours to obtain alcohol-soluble silica sol, alcohol-soluble silica sol,
  • the silica nanoparticles contained in the silica sol have functional groups -(CH 2 ) 3 -O-CH 2 -CH-OCH 2 and hydroxyl groups -OH bonded to the surface.
  • step (a1) With 35 parts of alcohol-soluble silica sols prepared in step (a1), 56 parts of water-soluble silica sols and 5 parts of water-soluble titanium dioxide sols, mix uniformly, adopt 4 parts of pH regulator formic acid to adjust the pH value of the system to 3.0, stirred and reacted for about 4 hours in a water bath at about 50°C to obtain a sol. After mixing, the proportion of absolute ethanol in the mixed sol is about 24%, and the proportion of absolute ethanol added in the process of preparing the alcohol-soluble sol is 18.9%.
  • Pretreatment of the substrate surface of the heat exchanger to be coated specifically including: sandblasting the surface of the heat exchange tube substrate with 150 mesh, and then spraying the surface of the heat exchange tube and/or fins with absolute ethanol , dried at 40°C for later use.
  • the composite material obtained in the above step 1 was sprayed on the surface of the pretreated heat exchanger base material, and after curing at 200° C. for 30 minutes, a heat exchanger with a red coating was obtained.
  • Composite materials and heat exchangers were prepared in the same manner as in Example 1, except for the types of color additives, and/or the proportions of sol and color additives.
  • Example 2 95 parts of sol and 5 parts of Pigment Green 7 were mixed, and the main chemical composition of Pigment Green 7 was C 32 C l16 CuN 8 .
  • Example 3 95 parts of sol and 5 parts of Pigment Blue 15:3 were mixed, and the main chemical composition of Pigment Blue 15:3 was C 32 H 16 CuN 8 .
  • Example 4 95 parts of sol and 5 parts of Pigment Violet 23 were mixed, and the main chemical composition of Pigment Violet 23 was C 35 H 23 Cl 2 N 3 O 2 .
  • Example 5 92 parts of sol and 8 parts of golden color pigment were mixed, wherein the golden color pigment was a mixture of mica, titanium dioxide, tin dioxide, and ferric oxide.
  • Example 6 90 parts of sol and 10 parts of Pigment Orange 64 were mixed, and the main chemical composition of Pigment Orange 64 was C 12 H 10 N 6 O 4 .
  • Example 7 90 parts of sol and 10 parts of Pigment Yellow 191 were mixed, and the main chemical composition of Pigment Yellow 191 was C 17 H 13 CaCl N 4 O 7 S 2 .
  • a composite material and a heat exchanger were prepared in the same manner as in Example 1, except for the ratio of sol and red pigment, and the curing time of the composite material.
  • Example 8 the composite material contains 90 parts of sol and 10 parts of pigment red 254; the composite material is sprayed on the surface of the pretreated heat exchanger, and after curing at 180°C for 60 minutes, a heat exchanger with a colored coating is obtained. device.
  • Example 9 the composite material contains 99 parts of sol and 1 part of Pigment Red 254; the composite material is sprayed on the surface of the pretreated heat exchanger, and after curing at 220°C for 10 minutes, a heat exchanger with a colored coating is obtained. device.
  • Example 10 the difference from Example 1 is: in step (a1), by mass parts, 56 parts of dehydrated alcohol and 1.5 parts of sodium lauryl sulfate are mixed, ultrasonically dispersed for 15min, and then Add 32 parts of KH-560 and 8 parts of tetraethyl orthosilicate, mechanically stir for 40 minutes under the condition of 55°C water bath, the stirring speed is 300rpm, then add 7 parts of water and 2 parts of formic acid dropwise into the system, control The dropwise addition was completed in 15 minutes, and the reaction was carried out in a water bath at 55° C. for about 26 hours to obtain an alcohol-soluble silica sol; the rest were the same as in Example 1.
  • Example 11 the difference from Example 1 is: in step (a1), by mass parts, 50 parts of dehydrated alcohol and 0.5 part of sodium lauryl sulfate are mixed, ultrasonically dispersed for 5min, and then Add 30 parts of KH-560 and 6 parts of tetraethyl orthosilicate, mechanically stir for 20 minutes in a water bath at 45°C at a stirring speed of 200 rpm, then add 5 parts of water and 0.5 parts of formic acid dropwise into the system, and control The dropwise addition was completed in 5 minutes, and the reaction was carried out in a water bath at 45° C. for about 22 hours to obtain an alcohol-soluble silica sol; the rest were the same as in Example 1.
  • Composite materials and heat exchangers were prepared in the same manner as in Example 1, except that: (a2) in mixing the alcohol-soluble sol and the water-soluble sol, the ratio of the alcohol-soluble sol and the water-soluble sol.
  • Example 12 the difference from Example 1 is that in step (a2), 36 parts of alcohol-soluble silica sol prepared in step (a1), 57 parts of water-soluble silica sol and 6 parts of water-soluble Titanium dioxide sol, mixed evenly, using 5 parts of pH adjuster formic acid to adjust the pH value of the system to about 3.0, stirring and reacting in a water bath at about 55°C for about 5 hours to obtain a sol; the rest are the same as in Example 1.
  • Example 13 the difference from Example 10 is that in step (a2), 34 parts of alcohol-soluble silica sol prepared in step (a1), 55 parts of water-soluble silica sol and 4 parts of water-soluble Titanium dioxide sol, mixed evenly, using 3 parts of pH adjuster formic acid to adjust the pH value of the system to about 3.0, stirring and reacting in a water bath at about 45°C for about 5 hours to obtain a sol; the rest are the same as in Example 1.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the surface of the heat exchange tube and/or the fin base material of the heat exchanger in Comparative Example 1 has been subjected to 150-mesh sandblasting, and then the surface of the heat exchanger is sprayed with absolute ethanol. Tube and/or fin surfaces and allow to dry. And the surface of the heat exchanger in Comparative Example 1 is not provided with a colored coating formed by composite materials.
  • test samples of Examples 1-13 were subjected to a cross-cut test.
  • the 100-grid knife test is to cut and penetrate the coating on the substrate as a lattice pattern.
  • the completed pattern is classified into six grades to evaluate the resistance of the coating to separation from the substrate.
  • Baige knife test ISO grade:
  • Grade 1 There are small pieces peeling off at the intersection of the cuts, and the actual damage in the cross-cut area does not exceed 5%;
  • Level 2 The edges and/or intersections of the cuts are peeled off, and the peeled off area is 5% to 15% of the crossed area;
  • Level 3 There is partial peeling or a large piece of peeling along the edge of the cut, and/or part of the lattice is completely peeled off, and the peeled area is 15% to 35% of the marked area;
  • Level 4 Large pieces of peeling off at the edge of the cut/or partial or complete peeling off of some grids, the peeled area is 35% to 65% of the crossed area;
  • Level 5 Exceeds the previous level.
  • the ISO grades of the test samples of Examples 1 to 13 are all 0 grades in the cross-cut test. It can be seen that the colored coating of the present application has strong adhesion to the substrate.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Thickness ( ⁇ m) 11.9 14.0 15.7 14.3 15.0 8.1 10.1
  • the thickness of the colored coating formed by solidification on the surface of the heat exchanger is in the range of 8-16 ⁇ m, and the thinner colored coating has little effect on the heat exchange efficiency of the heat exchanger.
  • the present application also tests the thickness uniformity of the colored coating on the surface of the heat exchanger prepared in Example 1 and Example 5.
  • the specific test method is: randomly select 10 test points on the surface of the heat exchanger with the colored coating , were tested for film thickness.
  • the thicknesses of the red coating measured at the test points on the surface of the heat exchanger in Example 1 are: 11.2 ⁇ m, 10.2 ⁇ m, 10.1 ⁇ m, 11.8 ⁇ m, 10.4 ⁇ m, 9.6 ⁇ m, 10.5 ⁇ m, 9.4 ⁇ m, 9.7 ⁇ m, 9.5 ⁇ m , 10.2 ⁇ m.
  • the average film thickness is 10.2 ⁇ m, and the standard deviation is 0.736 ⁇ m.
  • the thicknesses of the golden coatings measured at the test points on the surface of the heat exchanger in Example 5 are: 11.8 ⁇ m, 12.0 ⁇ m, 11.3 ⁇ m, 11.1 ⁇ m, 12.8 ⁇ m, 12.1 ⁇ m, 12.8 ⁇ m, 11.2 ⁇ m, 10.3 ⁇ m, 12.6 ⁇ m, 11.8 ⁇ m.
  • the average film thickness is 11.8 ⁇ m, and the standard deviation is 0.782 ⁇ m.
  • the test instrument used is a contact angle measuring instrument, which adopts the principle of optical imaging and uses image profile analysis to measure the contact angle of the sample.
  • the contact angle refers to the point where a drop of liquid drops on a solid horizontal plane, and the solid-liquid-gas three-phase junction point on the solid surface, when the two tangent lines of the gas-liquid interface and the solid-liquid interface sandwich the liquid phase into the corner.
  • the volume is generally about 1 ⁇ L
  • the droplet forms a droplet on the needle
  • the rotary knob moves the workbench up, so that the surface of the sample and the droplet Contact, and then move down the workbench, the droplet can be left on the sample.
  • the contact angle of this area is obtained through test software and data analysis.
  • the sample of each embodiment and the comparative example gets 5 different points to carry out the test and takes the average value, and records it as the contact angle of the sample of the embodiment and the comparative example.
  • test results of the above contact angles show that the initial contact angles of the sample surfaces of Examples 1 to 13 are all smaller than those of Comparative Example 1, which is 39.114°.
  • the hydrophilic particles contained in the coating of the present application such as silicon dioxide and titanium dioxide, increase the hydrophilicity of the surface of the substrate, which is conducive to the discharge of condensed water, so that the surface of the sample is not easy to form a wet water environment .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Paints Or Removers (AREA)

Abstract

本申请的换热器的至少部分表面覆设有有色涂层,以便区分。本申请的热管理系统,包括压缩机、第一换热器、节流装置和第二换热器,第一换热器表面的颜色不同于第二换热器表面的颜色,冷媒依次流经压缩机、第一换热器、节流装置和第二换热器,而后冷媒再次流入压缩机。本申请的热管理系统可以通过换热器外观颜色对不同换热器进行区分。本申请的复合材料,包括按质量份计90~99份溶胶和1~10份颜色添加剂,醇类溶剂在溶胶中的占比为15%~30%,颜色添加剂在复合材料中分散均匀。本申请的复合材料的制备方法,包括将溶胶与颜色添加剂混合,溶胶包括醇类溶剂,醇类溶剂在溶胶中的占比为15%~30%。本申请的制备方法能够制备颜色添加剂分散均匀的复合材料。

Description

换热器、热管理系统、复合材料及其制备方法 技术领域
本申请涉及换热技术领域,尤其涉及一种换热器和热管理系统,以及用于换热器的复合材料及其制备方法。
背景技术
在换热器的使用过程中,可能需要对不同的换热器或换热器的不同部件进行区分,例如当热管理系统的同一模块中设有两个以上的换热器,不同换热器用于实现不同的功能时。现有的换热器大多呈现基材的颜色,至多是尺寸或形状上有细微的区别,很难加以区分,造成安装、检查或维修不便。
此外,用于表面着色的复合材料大多针对常温或温度相对恒定的条件下使用的玻璃、陶瓷、钢板等而设计,直接应用在换热器上效果不佳。换热器是通过内部流体与外部环境之间的热量传递,对外部环境进行加热或冷却的设备。在换热器的使用过程中,由于内部流体与外部环境之间的温差,换热器表面涂层会更加频繁地历经冷热交替的过程。相较于常温或恒温下使用的玻璃、陶瓷、彩色钢板等表面的涂层,施于换热器表面的涂层需要更强的粘附力和耐久性,从而降低有色涂层中颜色添加剂或有色涂层整体脱落的隐患。而涂层的粘附力和耐久性很大程度上受到颜色添加剂的分散均匀性的影响。因此,需要对复合材料中颜色添加剂的分散均匀性进行改进。
发明内容
本发明旨在解决上述技术问题。为此,本发明提出一种换热器,以及一种热管理系统,以及用于换热器的复合材料及其制备方法。
第一方面,本申请提供一种换热器,所述换热器具有用于流体流通的通道,所述换热器的至少部分表面覆设有有色涂层,所述有色涂层包括颜色添加剂,所述颜色添加剂选自有机颜料、无机颜料和染料中的至少一种。
本申请的换热器的至少部分表面具有有色涂层,便于不同换热器的区分、安装、检查或维修。
第二方面,本申请还提供一种热管理系统,所述热管理系统包括压缩机、第一换热器、节流装置和第二换热器,所述第一换热器表面的颜色不同于所述第二换热器表面的颜色;当所述热管理系统有冷媒流动时,所述冷媒经所述压缩机流入所述第一换热器,并在所述第一换热器发生热交换之后流入所述节流装置,而后所述冷媒流入所述第二换热器并在所述第二换热器发生热交换后再次流入所述压缩机。
本申请的热管理系统可以通过换热器表面颜色对不同换热器进行区分,便于热管理系统的中换热器的安装、检查或维修。
第三方面,本申请提供一种复合材料,所述复合材料包括按质量份计90~99份溶胶和1~10份颜色添加剂,所述溶胶包括醇类溶剂,所述醇类溶剂在所述溶胶中的占比为15%~30%。
本申请的复合材料具有按质量份计90~99份溶胶和1~10份颜色添加剂,溶胶中的醇类溶剂在所述溶胶中的占比为15%~30%,使得颜色添加剂分散均匀。
第四方面,本申请还提供一种复合材料的制备方法,包括:
按质量份计将90~99份溶胶与1~10份颜色添加剂混合,其中,所述溶胶包括醇类溶剂,所述醇类溶剂在所述溶胶中的占比为15%~30%。
本申请的制备方法能够制备颜色添加剂分散均匀的复合材料。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请一个实施例中的换热器的结构示意图;
图2为本申请一个实施例中换热器集流管的部分剖面示意图;
图3为图1中区域A的放大图;
图4为本申请一个实施例中的换热器的翅片和换热管的示意图;
图5为本申请一个实施例中的换热器的换热管内侧面的边缘区域和中间区域的示意图;
图6为本申请一个实施例中的换热器的翅片内表面的外缘区域和中央区域的示意图;
图7为本申请一个实施例中的热管理系统的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请提供的技术方案及所给出的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值或单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围。
需要说明的是,本文中使用的术语“和/或”或者“/”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在本申请的说明中,使用的术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A、B,那么短语“A、B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B、C,那么短语“A、B、C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。此外,所使用的术语“至少部分表面”、“表面的至少一部分”、“至少一部分表面”或其他相似术语意 味着该部件的任意部分表面或整个表面。例如,换热器表面的至少一部分是指,换热器的某一部分或某几部分表面,或者换热器的整个表面。
下面通过具体的实施例对本申请做进一步地详细描述。
当前,换热器涂层的研发大多关注表面涂层对换热器的防护作用。例如,通过在换热器表面涂覆亲水或疏水涂层,以减少换热器表面冷凝水的凝聚和换热器表面结霜,提高换热效率,缓解换热表面材质被水分和空气中杂质腐蚀和锈化;或者,在亲水或疏水涂层中添加具有抑菌抗霉作用的物质,减少换热器表面细菌和霉菌的滋生,从而提升换热器的换热效率和用户体验。但是,相关技术很少关注换热器的表面着色。
在换热器的使用过程中,可能需要对不同的换热器进行区分,例如当热管理系统的同一模块中设有两个以上的换热器,不同换热器用于实现不同的功能时。现有的换热器大多呈现基材的颜色,至多是尺寸或形状上有细微的区别,很难加以区分,造成安装、检查或维修不便。
因此,本申请的第一方面,提供一种换热器,换热器具有用于流体流通的通道,换热器的至少部分表面覆设有有色涂层,有色涂层包括颜色添加剂,颜色添加剂选自有机颜料、无机颜料和染料中的至少一种。
本申请的换热器,至少部分表面具有有色涂层,便于区分、安装、检查或维修。在实际应用中,可以根据使用需求在不同换热器或者换热器不同区域表面上涂覆不同颜色的涂层,使其便于对其进行区分;或者,可以在不同换热器上用有色涂层涂覆不同的数字、字母或标记,以不同的数字、数字或标记对不同换热器进行区分,不同换热器上用于形成数字、数字或标记的涂层可以具有相同或不同的颜色。有色涂层的颜色通过调配其中颜料的种类和含量实现。此外,有色涂层将换热器基底与外界环境隔离,减少了外界环境对换热器的腐蚀,因此在本申请的换热器的耐久性在一定程度上也有所提高。
在一些实施方式中,换热器包括基材,基材的至少部分表面覆设有有色涂层。也就是说,换热器的表面就是换热器基材的表面,有色涂层直接形成在换热器基材上。当然,在另一些实施方式中,有色涂层和换热器基材之间也可以有其他的涂层。当换热器基材与有色涂层之间有其他涂层时,换热器的至少部分表面可以指的是其他涂层的表面。
在一些实施例中,颜色添加剂选自C 18H 10C l2N 2O 2,C 32C l16CuN 8,C 32H 16CuN 8,C 35H 23C l2N 3O 2,C 12H 10N 6O 4,C 17H 13CaC lN 4O 7S 2,云母、二氧化钛、二氧化锡和三氧化二铁的混合物中的至少一种。也就是说,颜色添加剂可以选自C 18H 10C l2N 2O 2(颜料红),C 32C l16CuN 8(绿色),C 32H 16CuN 8(蓝色),C 35H 23C l2N 3O 2(紫色),C 12H 10N 6O 4(橙色),C 17H 13CaC lN 4O 7S 2(黄色),云母、二氧化钛、二氧化锡和三氧化二铁的混合物(黄金色)中的任意一种或任意两种及以上的任意比例组成的混合物。在实际着色过程中,对有色涂层颜色的需求可能多种多样,一些颜色的调配可能只需要一种有机颜料、无机颜料或染料,而其他一些颜色的调配可能需要两种以上有机颜料、两种以上无机颜料、两种以上染料,或者需要有机颜料、无机颜料和染料搭配使用。
在一些实施例中,颜色添加剂的粒度为1~5μm。颜色添加剂粒度越小,有色涂层越均匀细腻,在换热器表面的形成的有色涂层美观。而且颜色添加剂粒度小还有利于颜色添加剂在换热器表面的稳固粘附。
在一些实施例中,有色涂层的厚度为8~16μm。进一步,有色涂层的平均厚度为10~11μm,涂层厚度较薄,不会对换热器的换热效率产生较大的影响。
在一些实施例中,有色涂层的厚度标准差小于0.8μm。有色涂层的膜厚均匀,使得有色涂层对换热器表面的粘附力具有良好的一致性,减少颜色添加剂和有色涂层的部分剥落。
在一些实施例中,有色涂层包括二氧化硅,至少部分二氧化硅表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH。二氧化硅的添加可以增加涂层的粘附力和致密度,且二氧化硅来源广泛、价格低廉。表面官能团-(CH 2) 3-O-CH 2-CH-OCH 2使得二氧化硅纳米粒子在溶胶中均匀分散,由此形成的涂层中的二氧化硅纳米粒子也均匀分散,从而提升涂层均匀性和一致性。羟基-OH使二氧化硅纳米粒子具有亲水性,从而使有色涂层具有亲水性,从而使涂层表面的水易于排放,减少水大量地在涂层表面聚集,能够减少水中的杂质对涂层侵蚀,从而使涂层能够持久地保持对基底的强粘附力。在一些实施例中,至少部分二氧化硅的粒径为55~65nm。
在一些实施例中,有色涂层还包括二氧化钛。二氧化钛具有亲水性和光催化活性,二氧化钛与二氧化硅配合形成二元氧化物体系,增强涂层的亲水性和自清 洁特性。在一些实施例中,至少部分二氧化钛的粒径为5~10nm。
对于只有一个换热器的场景,可以在换热器不同位置上覆设相同或不同颜色的有色涂层。
在一些实施例中,有色涂层包括第一有色涂层和第二有色涂层,第一有色涂层和第二有色涂层分别覆设于换热器表面的不同位置,第一有色涂层和第二有色涂层具有不同的颜色。如此,可以通过有色涂层区分换热器的不同位置,或者换热器的不同部件。例如,换热器包括集流管和换热管,在集流管上覆设第一有色涂层,在换热管上覆设第二有色涂层,第一有色涂层的颜色不同于第二有色涂层的颜色,如此可以通过第一有色涂层和第二有色涂层方便地区分集流管和换热管。或者,换热器具有用于第一流体流动的通道一和用于第二流体流动的通道二,在形成通道一的结构的外表面覆设第一有色涂层,在形成通道二的结构的外表面覆设第二有色涂层,第一有色涂层和第二有色涂层具有不同的颜色,如此可以通过第一有色涂层和第二有色涂层方便地区分通道一和通道二。
颜色不同,可以是完全不同,也可以是部分不同。颜色不同可以是颜色的色度不同,例如红色、绿色、蓝色;或者,可以是颜色的深浅不同,例如深红色、浅红色;或者,还可以是颜色的渐变方式不同,例如从外围到内部颜色逐渐加深、内部到外围颜色逐渐变浅;或者,以其他方式呈现出的颜色的不同。
在本申请的一些实施例中,换热器包括集流管、翅片以及多个换热管;换热管与集流管相固定,所述换热管的内腔与所述集流管的内腔连通;所述翅片位于相邻的两个换热管之间;有色涂层覆设于集流管、翅片和换热管的至少一者的至少部分表面。如此,可以根据集流管、翅片和换热管的至少一者的表面颜色上对不同换热器进行区分。
下面对本申请的换热器进行示例性说明。
微通道换热器是20世纪90年代发展起来的高效换热设备,可广泛应用于化工、能源与环境等领域。由于微通道换热器具有许多与常规尺度设备不同的特征,如体积小、重量轻、效率高、强度大等。微通道技术同时触发了新能源汽车热管理系统、家用空调、商业空调及冷冻设备等领域提高效率、降低排放的技术革新。
示例性地,如图1所示,微通道换热器100的主要结构,包括两个集流管10、多个换热管12以及至少一个翅片13,换热管12与集流管10相固定,换热管12 的内腔与集流管10的内腔连通。多个换热管12沿集流管10的长度方向/轴向方向(X方向)排列,换热管12长度方向(Y方向)的一端与两个集流管10中的一个连接,换热管12长度方向的另一端与两个集流管10中的另一个连接。相邻的两个换热管与集流管共同形成用于外部流体流通的外部通道。换热管12的内腔具有沿换热管12长度方向延伸的多个内部流体通道。换热管12可以为微通道扁管或者椭圆管。翅片13位于相邻的两个换热管12之间。翅片13沿换热管12的长度方向呈波形,翅片13包括若干波峰部和若干波谷部,翅片13的波峰部和波谷部分别与相邻的两个换热管相连接。在一些实施方式中,翅片13的部分区域可以设置窗口结构形成百叶窗型翅片,进一步强化换热。在一些实施例中,该微通道换热器为全铝的微通道换热器。微通道换热器的结构和各个部件的连接关系为本领域的常规知识,在此不再赘述。
本申请中,换热器100的集流管10、换热管12和翅片13的至少一部分表面覆设有有色涂层11。图1对集流管10表面覆设有色涂层11进行示意,集流管部分剖面示意图如图2所示。
在一些实施例中,覆设于集流管、翅片和换热管的至少一者的至少部分表面的有色涂层具有平均厚度,覆设于翅片的至少部分表面的有色涂层的至少部分的厚度小于平均厚度;和/或,覆设于所述换热管的至少部分表面的所述有色涂层的至少部分的厚度小于平均厚度。
本申请换热器上的有色涂层,不同于需要对换热器的整个外表面性能进行改善的亲水涂层、疏水涂层、抗菌涂层等。有色涂层涂覆在换热器表面是为了便于对换热器进行区分。因此,在一些方案中,在换热器的一些表面,例如图4、图5和图6所示,换热管用于形成外部通道的内侧面121,翅片用于与换热管配合形成外部通道的内表面131等,有色涂层不需要在其上进行全面覆盖,有色涂层在其上的厚度也可以不作限定。一方面有色涂层在其上的涂覆对于换热器外观颜色改变不大,因为两个换热管之间、换热管与翅片之间形成的空间较小,光线难以抵达该空间内,造成一定的视觉盲区。在视觉盲区内,从换热器外观上看,难以辨别其表面的颜色。另一方面,有色涂层在换热器内表面的涂覆可能会影响换热效果。
在一些实施例中,换热器的通道包括用于外部流体流通的外部通道,换热管 具有用于形成外部通道的内侧面,内侧面具有边缘区域和中间区域,外部通道具有流体入口和流体出口,边缘区域包括相对中间区域靠近流体入口的第一边缘区域和相对中间区域靠近流体出口的第二边缘区域,中间区域位于第一边缘区域和第二边缘区域之间,第一边缘区域和第二边缘区域上覆设的有色涂层厚度均大于或等于中间区域上覆设的有色涂层厚度。在一些实施例中,换热管内侧面的边缘区域和中间区域均不覆设有色涂层。
在一些实施例中,换热器具有用于冷媒、冷却剂等内部流体流通的内部通道,以及用于载冷剂,例如空气等外部流体流通的外部通道。上述外部流体是相对于在内部通道流通的冷媒、冷却剂等而言。实际上,换热管的内侧面不涂覆有色涂层最佳,这种情况下,需要在进行喷涂时、对换热管表面进行遮挡。但是,在对换热器进行喷涂的过程中,为了简化工艺、降低加工成本,可以不对换热管的内侧面进行遮挡,而是直接喷涂,如此复合材料不可避免地会喷射到换热管内侧面的一些区域。在喷涂时,可以使喷涂方向与换热管内侧面成一定角度,以减小换热管内侧面上覆设的有色涂层的面积或厚度,从而在不影响换热器表面颜色的情况下,较大程度地减少有色涂层对换热器的换热效率的降低。
示例性地,如图3、图4和图5所示,换热管具有用于形成外部通道的内侧面121,相对地,有些换热管具有外侧面122。通常,对于在集流管上排列设置的换热管而言,只有位于所述排列首尾的两个换热管具有外侧面。沿着流体流动方向F、内侧面121具有相对中间区域1213靠近流体入口a1的第一边缘区域1211和相对中间区域1213靠近流体出口a2的第二边缘区域1212,中间区域1213位于第一边缘区域1211和第二边缘区域1212之间,第一边缘区域1211和第二边缘区域1212上覆设的有色涂层厚度均大于中间区域1213上覆设的有色涂层厚度。在一些实施例中,边缘区域和中间区域可以具有规则的形状,例如长方形、正方形等,或者,边缘区域和中间区域可以具有不规则的形状,例如图5所示。在一些实施例中,所述内侧面上的有色涂层厚度小于8μm。
在一些实施例中,换热器的通道包括用于外部流体流通的外部通道,翅片具有用于形成外部通道的内表面,内表面具有外缘区域和中央区域,外部通道具有流体入口和流体出口,外缘区域包括相对中央区域靠近流体入口的第一外缘区域和相对中央区域靠近流体出口的第二外缘区域,中央区域位于第一外缘区域和第 二外缘区域之间,第一外缘区域和第二外缘区域上覆设的有色涂层厚度均大于或等于中央区域上覆设的有色涂层厚度。在一些实施例中,翅片内表面的外缘区域和中央区域均不覆设有色涂层。
实际上翅片内表面不涂覆有色涂层最佳,这种情况下,需要对翅片表面进行遮挡。但是,在对换热器进行喷涂的过程中,为了简化工艺、降低成本,可以不对翅片的内表面进行遮挡,而是直接喷涂,如此复合材料不可避免地会喷射到翅片的一些表面。在喷涂时,可以使喷涂方向与翅片内表面成一定角度,以减小翅片上覆设的有色涂层的面积或厚度,从而在不影响换热器表面颜色的情况下,较大程度地减少有色涂层对换热器的换热效率的降低。
示例性地,如图3、图4和图6所示,翅片具有内表面131,沿着流体流动方向F、内表面131具有外缘区域和中央区域,外缘区域包括相对中央区域1313靠近流体入口a1的第一外缘区域1311和相对中央区域1313靠近流体出口a2的第二外缘区域1312,中央区域1313位于第一外缘区域1311和第二外缘区域1312之间,第一外缘区域1311和第二外缘区域1312上覆设的有色涂层厚度均大于中央区域1313上覆设的有色涂层厚度。在一些实施例中,外缘区域和中央区域可以具有规则的形状,例如长方形、正方形等,或者,外缘区域和中央区域可以具有不规则的形状,例如图6所示。
在一些实施例中,翅片内表面的有色涂层厚度小于8μm。
本申请的第二方面,提供一种换热器的制备方法,所述制备方法包括:
提供复合材料,复合材料包括溶胶和颜色添加剂;
涂覆并固化复合材料,从而形成换热器的至少部分表面上的有色涂层。
在一些实施方式中,换热器的制备方法包括:
提供复合材料,复合材料包括溶胶和颜色添加剂;
提供换热器,换热器包括基材;
在基材的至少部分表面涂覆并固化复合材料,从而在基材的至少部分表面形成有色涂层。
本申请的一些实施例中,复合材料涂覆换热器的方式包括但不限于浸涂、喷涂、刷涂、淋涂或辊涂中的至少一种。
在一些实施例中,采用喷涂的方式将复合材料涂覆在换热器表面。有色涂层 在换热器表面的涂覆是以实现换热器表面着色为目的的,不同于需要涂覆在换热器整个外表面的亲水涂层、疏水涂层和抗菌涂层,有色涂层涂覆在换热器外表面、视线能够抵达的区域即可实现着色的目的。外表面指的是裸露在外界环境中的表面。对于微通道换热器而言,换热器的外表面包括集流管、换热管和翅片等部件能够与外界的换热介质,例如空气接触的表面。但是,换热器外表面的一些区域,例如换热管的内侧面以及翅片的内表面等,由于外界光线难以抵达,形成视觉盲区,难以辨别其表面的颜色,在其上不进行涂覆或少涂覆为佳。喷涂的方式可以对换热器外表面的喷涂区域进行选择,从而实现换热管内侧面和翅片内表面的不涂覆或少涂覆。
在一些实施例中,喷涂方向与换热管的至少部分表面平行,和/或,喷涂方向与翅片的至少部分表面平行。如此,喷涂时,翅片/换热管与喷涂方向平行的表面不容易被喷涂上复合材料,从而不容易形成有色涂层,便于实现换热管内侧面和翅片内表面的不涂覆或少涂覆。在一些实施例中,喷涂方向与换热管的至少部分内侧面平行,和/或,喷涂方向与翅片的至少部分内表面平行。
在一些实施例中,喷涂方向与换热器的迎风面垂直。外部环境通过载热介质(例如,空气)与换热器内的流体(例如,冷媒、冷却液等)换热,外部载热介质穿过换热器时,首先与外部载热介质接触的面为换热器的迎风面。
固化的方式,例如可以在烘箱中烘干。在一些实施例中,固化温度为180℃~220℃;进一步,固化温度为190℃~210℃;进一步,固化温度为200℃。在一些实施例中,固化时间为5~75min;进一步,固化时间为10~60min。
在一些实施例中,换热器的制备方法包括:在涂覆复合材料之前,对换热器基材进行表面预处理。具体地,在一些实施例中,表面预处理具体包括:将换热器基材表面进行100~200目的喷砂处理,再用醇或酸进行清洗换热器表面,而后晾干或在35℃~50℃下烘干。喷砂处理可以增加换热器基材表面的粗糙度,从而使有色涂层在换热器基材表面的附着更加稳固。在一些实施例中,喷砂目数为120~180目,如喷砂目数为150目。在一些实施例中,烘干温度为40℃。所采用的清洗方式例如可以采用无水乙醇超声清洗或喷洗,或者采用酸蚀清洗。
本申请的第三方面,提供一种热管理系统,热管理系统包括压缩机2、第一换热器1001、节流装置3和第二换热器1002,第一换热器1001表面的颜色不同 于第二换热器1002表面的颜色;当热管理系统有冷媒流动时,冷媒经压缩机2流入第一换热器1001,并在第一换热器1001发生热交换之后流入节流装置3,而后冷媒流入第二换热器1002并在第二换热器1002发生热交换后再次流入压缩机2,如图7所示。由于第一换热器1001和第二换热器1002表面具有不同颜色,例如,第一换热器表面为红色,第二换热器表面为绿色,因而可以便于对第一换热器和第二换热器进行区分。在一些实施例中,第一换热器1001是冷凝器,第二换热器1002是蒸发器。在一些实施例中,热管理系统中还设有换向装置4。
在一些实施例中,第一换热器1001和第二换热器1002的其中之一的至少部分表面覆设有有色涂层,有色涂层的颜色与第一换热器1001和第二换热器1002基材的颜色均不相同;或者,第一换热器1001的至少部分表面覆设有第三有色涂层,第二换热器1002的至少部分表面覆设有第四有色涂层,第三有色涂层的颜色不同于第四有色涂层的颜色。如此,通过对两个换热器的其中之一覆设有色涂层,通过有色涂层与换热器基材颜色的区别对第一换热器和第二换热器进行区分;或者,通过对两个换热器表面覆设不同的有色涂层,通过不同颜色的有色涂层对第一换热器和第二换热器进行区分。
对于换热器表面着色技术,TCP技术可以通过添加市售颜色添加剂提供明显的涂层颜色变化,例如银色、蓝色或紫色。但是,近几年的研究发现TCP中存在痕量六价铬组分,Cr 6+对操作人员的健康危害很大,欧盟RoHS环保组织已于2017年全面禁止六价铬转化膜的商业化应用,需要对相关替代工艺进行研发。
因此,本申请采用复合材料在换热器表面形成有色涂层。相对于TCP着色技术,采用复合材料在换热器表面的着色绿色环保,大大降低了涂层对操作人员和使用人员健康的威胁。
用于在换热器表面形成有色涂层的复合材料可以是市售的或者是自制的。但是,一些复合材料,其中的溶胶组分、溶胶与颜色添加剂配比等大多是针对玻璃、陶瓷、钢板等常温或恒温下使用的基材设计的,不能直接应用于换热器表面,或者应用于换热器表面效果不好。换热器是通过内部流体与外部环境之间的热量传递,对外部环境进行加热或冷却的设备。在换热器的使用过程中,由于内部流体与外部环境之间的温差,换热器表面涂层会更加频繁地历经冷热交替的过程。相较于常温或恒温下使用的玻璃、陶瓷、彩色钢板等表面的涂层,施于换热器表面 的涂层需要更强的粘附力和耐久性,从而减少有色涂层中颜色添加剂或有色涂层整体的脱落。
为此,本申请的第四方面,提供一种复合材料,该复合材料能够在换热器表面形成粘附力强、耐久性好的有色涂层,该复合材料包括溶胶和颜色添加剂,溶胶包括醇类溶剂。
对于一些复合材料,形成有色涂层之后,颜色添加剂或有色涂层的部分脱落并非因为胶粘剂的粘附力不够强,而是因为颜色添加剂的分散性不好,导致复合材料中部分颜色添加剂团聚、形成聚集体。在复合材料形成有色涂层之后,颜色添加剂聚集体外表面能够与胶粘物质充分接触,但是聚集体内部的颜色添加剂无法与胶粘物质充分接触、甚至与胶粘物质隔离,从而导致颜色添加剂聚集体与基底的结合主要依靠与其外表面结合的胶粘物质,而该部分胶粘物质相对于颜色添加剂聚集体整体的重量和体积而言,不足以将颜色添加剂聚集体持久地附着在基底上,在使用一段时间后,该部分颜色添加剂聚集体脱落,甚至带动涂层内的胶粘物质、使涂层整体从基材上脱落,从而形成有色涂层上带有剥落痕迹的斑点,影响产品的外观。在另一些情况下,即使能够通过胶粘物质附着在基底上,颜色添加剂聚集体也会使涂层的厚度不均匀,导致涂层表面凹凸不平,一方面影响产品外观,另一方面不平整的表面使涂层容易粘附外界水中或者空气中的杂质,这些杂质对涂层造成侵蚀,影响涂层的使用寿命。
本申请的复合材料包括溶胶和颜色添加剂,复合材料能够在基底表面形成具有颜色的涂层。在复合材料形成有色涂层的过程中,溶胶形成胶粘物质将颜色添加剂牢固附着在基底上。溶胶中的醇类溶剂,使颜色添加剂在溶胶中均匀分散,进而使颜色添加剂能够均匀分布在有色涂层中,减少颜色添加剂在涂层的部分区域发生团聚,提高颜色添加剂与胶粘物质的结合力的一致性、以及涂层对基底表面粘附力的一致性,进而使有色涂层的厚度、单位重量以及粘附力也具有良好的一致性,减少部分颜色添加剂或涂层因为结合力或粘附力不强而从基底表面剥落,从而在基底表面形成能够起到持久装饰和防护作用的有色涂层。
在一些实施例中,醇类溶剂源自溶胶,和/或,醇类溶剂是额外添加的溶剂。醇类溶剂源自溶胶指的是,至少部分溶胶在制备过程中使用醇类溶剂,和/或,溶胶在制备过程中通过化学反应或其他类型的反应生成醇类溶剂,溶胶制备完成 后,醇类溶剂至少部分保留在溶胶中。醇类溶剂是额外添加的溶剂,例如,可以将醇类溶剂混入溶胶中,只要不破坏溶胶的胶体结构即可。在一些实施例中,溶胶包括醇溶性溶胶,醇溶性溶胶中的胶体粒子分散在醇类溶剂中。
在一些实施例中,醇类溶剂包括碳原子数1~10的醇类化合物,优选为碳原子数1~8的醇类化合物,更优选为碳原子数1~4的醇类化合物。在一些实施例中,醇类溶剂可以是甲醇、乙醇、异丙醇、苯甲醇和乙二醇中的任意一种或任意两种及以上的任意比例组成的混合物。
在一些实施例中,按质量份计,所述复合材料包括90~99份溶胶和1~10份颜色添加剂,醇类溶剂在溶胶中的占比为15%~30%。
本文中,除非另有说明,否则所涉及的百分数、比例或份数按照质量计。其中,“质量份”指多个组分的质量比例关系的基本计量单位,1份可表示任意的单位质量,例如1份可以表示为1g,可以表示1.68g,也可以表示为5g等。
根据本申请实施例,复合材料包括90~99份溶胶,典型但非限制性的例如可以为90.1份、90.2份、90.5份、91份、93份、95份、97.5份、98.8份以及这些点值中的任意两个所构成的范围中的任意值。
根据本申请实施例,复合材料包括1~10份颜色添加剂,典型但非限制性的例如可以为1.1份、1.5份、2份、3份、5份、5.6份、6.1份、7份、8份、9份、9.2份、9.9份以及这些点值中的任意两个所构成的范围中的任意值。1~10份颜色添加剂可以是1~10份有机颜料或1~10份无机颜料,也可以是有机颜料、无机颜料、染料以任意比例搭配、共同构成1~10份颜色添加剂。
根据本申请实施例,醇类溶剂在溶胶中的占比是份数占比,例如,醇类溶剂为10份,溶胶总量为100份,那么醇类溶剂在溶胶中的占比是10%。例如,当溶胶只包括醇溶性溶胶时,醇类溶剂在溶胶中的占比,指的是醇类溶剂在醇溶性溶胶中的占比。当溶胶不仅包括醇溶性溶胶、还包括其他溶胶时,醇类溶剂在溶胶中的占比指的是醇类溶剂在溶胶总量中的占比。例如,溶胶包括醇溶性溶胶和水溶性溶胶,醇类溶剂在溶胶中的占比指的是醇类溶剂在醇溶性溶胶和水溶性溶胶组成的混合溶胶中的占比。
颜色添加剂的含量,决定了复合材料的颜色浓度,也决定了最终形成的有色涂层的颜色深浅。颜色添加剂太少,涂层对基底表面颜色的改变不明显,需要涂 覆多次才能得到所需的涂层颜色,或者根本无法得到所需的涂层颜色;而颜色添加剂过多,可能会导致其在溶胶中的分散不好,进而影响涂层的综合性能。醇类溶剂能够提高颜料的分散性,通常来说,醇类溶剂的含量越高,颜料在溶胶中的分散性越好;颜色添加剂越多,醇类溶剂也要相应地增加才能保证颜料在溶胶中的分散性。但是,本申请的复合材料用于在产品表面形成有色涂层,不仅要考虑颜色添加剂的分散性,还需要考虑涂层中颜色添加剂与胶粘物质的结合力以及有色涂层整体对基底的粘附力。而颜色添加剂与胶粘物质的结合力和有色涂层对基底的粘附力主要取决于溶胶中除醇类溶剂以外、起胶粘作用的物质,例如溶胶中表面连接有机官能团的胶体粒子。颜色添加剂和醇类溶剂占比多,用于起胶粘作用的物质含量相对就少,用于起胶粘作用的物质含量过少,就会导致涂层粘附性能的恶化。
本申请将溶胶和颜色添加剂的配比以及醇类溶剂在溶胶中的含量选择在上述范围内,综合考虑了复合材料所形成的有色涂层的性能指标,例如,有色涂层的着色效果,溶胶与颜色添加剂的相容性和结合力,有色涂层对基底的粘附力,涂层的厚度,涂层厚度、颜色、单位重量的均一性等,能够保证复合材料所调配的颜色具有较宽的色度范围,并且使涂层具有优良的综合性能,减少颜料或涂层部分的剥落,进而使有色涂层能够对产品基底进行稳固、耐久且均匀的着色。
在一些实施例中,溶胶还包括水溶剂,水溶剂在溶胶中的占比为10%~40%。在涂覆复合材料时,醇类溶剂挥发的速度较快,为了使复合材料在基材表面具有良好的涂覆性能,防止由于溶剂在喷涂过程中挥发过快,复合材料表干速度过快,从而导致的涂层表面不平整的问题,溶胶还包括挥发速度慢的水。
在一些实施例中,水溶剂源自溶胶,和/或,水溶剂是额外添加的溶剂。水溶剂源自溶胶指的是,至少部分溶胶在制备过程中使用水溶剂,和/或,溶胶在制备过程中通过化学反应或其他类型的反应生成水溶剂,溶胶制备完成后,水溶剂至少部分保留在溶胶中。水溶剂是额外添加的溶剂,例如,可以将水溶剂混入溶胶中,只要不破坏溶胶的胶体结构即可。在一些实施例中,溶胶包括水溶性溶胶。水溶性溶胶指的是,胶体粒子分散在水中的溶胶。
在一些实施例中,醇类溶剂在溶胶中的占比为20%~26%,水溶剂在溶胶中的占比为30%~36%。在一些实施例中,醇类溶剂在溶胶中的占比为24%,水溶 剂在溶胶中的占比为34%。
在一些实施例中,溶胶含有二氧化硅纳米粒子,其中至少部分二氧化硅纳米粒子表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH。表面官能团-(CH 2) 3-O-CH 2-CH-OCH 2使得二氧化硅纳米粒子在溶胶中均匀分散,由此形成的涂层中的二氧化硅纳米粒子也均匀分散,从而提升涂层均匀性和一致性。羟基-OH使二氧化硅纳米粒子具有亲水性,从而使有色涂层具有亲水性,从而使涂层表面的水易于排放,减少水大量地在涂层表面聚集,能够减少水中的杂质对涂层侵蚀,从而使涂层能够持久地保持对基底的强粘附力。在一些实施例中,至少部分二氧化硅纳米粒子的粒径为55~65nm。在一些实施例中,溶胶包括醇溶性溶胶,醇溶性溶胶含有二氧化硅纳米粒子,二氧化硅纳米粒子的表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH。醇溶性溶胶指的是,胶体粒子分散在醇类溶剂中。
在一些实施例中,溶胶含有二氧化钛纳米粒子。二氧化钛纳米粒子的加入,使二氧化硅和二氧化钛在溶胶中形成二元氧化物系统,不同配位态的钛、硅原子的相互作用和替代,可稳定Ti-O和Si-O结构,进而使溶胶粘附力增强,并改善涂层的亲水性能。在一些实施例中,至少部分二氧化钛纳米粒子的粒径为5~10nm。
在一些实施例中,颜色添加剂选自有机颜料、无机颜料和染料中的至少一种。在一些实施例中,颜色添加剂选自C 18H 10C l2N 2O 2,C 32C l16CuN 8,C 32H 16CuN 8,C 35H 23C l2N 3O 2,C 12H 10N 6O 4,C 17H 13CaC lN 4O 7S 2,云母、二氧化钛、二氧化锡和三氧化二铁的混合物中的至少一种。也就是说,颜色添加剂可以选自C 18H 10C l2N 2O 2(红色),C 32C l16CuN 8(绿色),C 32H 16CuN 8(蓝色),C 35H 23C l2N 3O 2(紫色),C 12H 10N 6O 4(橙色),C 17H 13CaC lN 4O 7S 2(黄色),云母、二氧化钛、二氧化锡和三氧化二铁的混合物(黄金色)中的任意一种或任意两种及以上的任意比例组成的混合物。在实际着色过程中,对有色涂层颜色的需求可能多种多样,一些颜色的调配可能只需要一种有机颜料、无机颜料或染料,而其他一些颜色的调配可能需要两种以上有机颜料、两种以上无机颜料、两种以上染料,或者需要有机颜料、无机颜料和染料搭配使用。颜色添加剂的选择,以能够与溶胶混合调配出所需要的颜色为准。
本申请的第五方面,提供一种复合材料的制备方法,所述制备方法包括:按质量份计,将90~99份溶胶与1~10份颜色添加剂混合,其中,所述溶胶包括醇类溶剂,醇类溶剂在溶胶中的占比为15%~30%。
本申请的制备方法通过使用具有适当醇类溶剂配比的溶胶,并将溶胶和颜色添加剂以适当的配比混合,使得颜色添加剂在溶胶中分散均匀,减少颜色添加剂发生团聚,从而能够制备涂覆性能优异的复合材料,该复合材料能够形成膜厚、颜色、粘附力一致性好,粘附力强,耐久性好的有色涂层,从而减少由颜料添加剂团聚造成的、部分颜色添加剂或涂层因结合力或粘附力不强而从基材上剥落。
应理解,该复合材料的制备方法与前述复合材料是基于同一发明构思的,关于复合材料的原料组成及配比等相关特征,可参照前述复合材料部分的描述,在此不再赘述。
上述溶胶与颜色添加剂混合的方式包括但不限于机械混合,在其他实施方式中还可以采用本领域熟知的各种常用混合方式,如超声混合方式或机械混合与超声混合结合的方式等,本申请实施例对此不作特殊限制,溶胶能够与颜色添加剂混合均匀即可。
在一些具体的实施例中,复合材料的制备方法包括:将溶胶与颜色添加剂机械混合10~30min。在本申请中,可以将溶胶与颜色添加剂机械混合10min、12min、15min和30min,以溶胶和颜色添加剂混合均匀为准。
在一些实施例中,复合材料的制备方法还包括:在溶胶与颜色添加剂混合后进行砂磨或研磨。
砂磨或研磨可以使颜料添加剂具有较小的粒度,从而使有色涂层色彩更加细腻、均匀。将溶胶与颜色添加剂混合后,细化颜色添加剂粒度的方式不限于砂磨或研磨,也可以用实验室或工业上采用的其他可用于细化颜色添加剂粒度的方式。对于砂磨或研磨而言,通常来说砂磨或研磨时间越久,颜色添加剂的粒度越小,有色涂层越均匀细腻,但是考虑到成本,颜色添加剂的粒度能够达到使用需求即可。
在一些具体的实施例中,复合材料的制备方法包括:在溶胶和颜色添加剂混合后,使用砂磨机砂磨10~60min。在本申请中,具体地,可以根据所需颜色添加剂等的粒度大小,将砂磨或研磨时间设定为10min、11min、15min、20min、 30min、45min、60min以及这些点值中的任意两个所构成的范围中的任意值。
根据本申请实施例,对于溶胶和颜色添加剂的来源不作特殊限制,其可以自行制备或者也可以采用市售商品。在另一些实施方式中,颜色添加剂和溶胶中的至少一者可以通过商购获得。本申请实施例对于颜色添加剂和溶胶的制备顺序也不作限定。例如,在复合材料的制备过程中,可以先制备颜色添加剂,再制备溶胶;或者,也可以先制备溶胶,再制备颜色添加剂;或者,可以同时制备颜色添加剂和溶胶。
在本申请的一些实施例中,复合材料中的溶胶是自行制备得到的。下面对溶胶的制备方法进行说明。
在一些实施例中,复合材料的制备方法还包括制备醇溶性二氧化硅溶胶,醇溶性二氧化硅溶胶包括分散在醇类溶剂中的二氧化硅纳米粒子,二氧化硅纳米粒子表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH,所述醇溶性二氧化硅溶胶的制备方法包括:将硅烷前驱体、醇类溶剂、表面活性剂、水和pH调节剂混合,水浴反应,得到醇溶性二氧化硅溶胶。
在一些实施例中,所述醇溶性二氧化硅溶胶的制备方法包括:按质量份计,将36~40份硅烷前驱体、50~56份的醇类溶剂、0.5~1.5份表面活性剂、5~7份水和0.5~2份pH调节剂混合,水浴反应,得到醇溶性二氧化硅溶胶,其中硅烷前驱体的至少部分含有官能团-(CH 2) 3-O-CH 2-CH-OCH 2。示例性的,硅烷前驱体的质量份例如可以为36份、37份、38份、39份、40份等;醇类溶剂的质量份例如可以为50份、51份、52份、53份、54份、55份、56份等;表面活性剂的质量份例如可以为0.5份、0.8份、1份、1.2份、1.5份等;水的质量份例如可以为5份、5.5份、6.5份、7份等;pH调节剂的质量份例如为0.5份、1份、1.2份、1.5份、1.6份、1.8份、2份等。在一些实施例中,混合的温度为45℃~55℃。示例性地,混合的温度为45℃、46℃、48℃、50℃、52℃、54℃、55℃等。
在一些实施例中,硅烷前驱体包括缩水甘油醚氧丙基三甲氧基硅烷(简称KH-560)和正硅酸乙酯。如此,制备的溶胶所含的二氧化硅纳米粒子表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH。在其他实施例中,硅烷前驱体还可以采用其他的类型。
在一些实施例中,硅烷前驱体包括30~32份的γ-缩水甘油醚氧丙基三甲氧 基硅烷(简称KH-560)和6~8份的正硅酸乙酯。示例性的,KH-560的质量份例如可以为30份、31份、32份等;正硅酸乙酯的质量份例如可以为6份、7份、8份等。
在一些实施例中,醇类溶剂包括碳原子数1~10的醇类溶剂,优选为碳原子数1~8的醇类溶剂,更优选为碳原子数1~4的醇类溶剂。进一步,在一些实施例中,溶剂为甲醇、乙醇、异丙醇、苯甲醇和乙二醇中的任意一种或任意两种及以上的任意比例组成的混合物。由此,来源广泛,容易获得,成本较低。
在一些实施例中,表面活性剂包括但不限于,十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠和十六烷基苯磺酸中的至少一种。进一步,在一些实施例中,表面活性剂为十二烷基硫酸钠。由此,成本较低,来源广泛,使用效果佳。
在一些实施例中,pH调节剂包括有机酸或无机酸。在一些实施例中,pH调节剂包括,但不限于甲酸、乙酸中的至少一种。进一步,在一些实施例中,pH调节剂为甲酸。
本申请制备得到的醇溶性二氧化硅溶胶,所涉及的方程式或反应机理可如下所示:
1)正硅酸乙酯水解缩合:Si(OCH 2CH 3) 4+2H 2O→SiO 2+4C 2H 5OH。
2)KH560水解:R-Si(OCH 3) 3+3H 2O→R-Si(OH) 3+CH 3OH
KH560缩聚:R-Si(OH) 3+R-Si(OH) 3→R-Si(OH) 2-O-Si(OH) 2-R+H 2O
R-Si(OH) 3+R-Si(OCH 3) 3→R-Si(OH) 2-O-Si(OH) 2-R+CH 3OH
其中R代表KH560中的长链基团-(CH 2) 3-O-CH 2-CH-OCH 2,KH560具有如下结构式(I):
Figure PCTCN2022144129-appb-000001
3)KH560与硅羟基的缩合:R-Si(OH) 3+Si(OH) 4→R-Si(OH) 2-O-Si(OH) 3+H 2O。
本申请制备得到的溶胶中的二氧化硅纳米粒子通过原位合成,表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2,使得复合材料形成的涂层中、二氧化硅纳米粒子分布均匀,从而提升涂层的均匀性和一致性。本申请制备得到的醇溶性二氧化硅溶胶在基材表面能够单独成膜。由于二氧化硅纳米粒子表面含有大量的羟基(-OH)亲水基团,羟基与羟基之间脱水缩合形成空间网络结构。由于二氧化硅溶胶是通过醇类溶剂制备的醇溶性溶胶,其中的醇类溶剂能够使颜色添加剂均匀地分散。在复合材料形成有色涂层的过程中,二氧化硅溶胶脱水缩合,能够将颜色添加剂以及二氧化硅纳米粒子自身均匀地粘附在基底表面,形成粘附力强,膜厚、颜色均一,耐久性好的有色涂层。此外,二氧化硅纳米粒子表面的羟基,使涂层表现出亲水性,加强有色涂层的排水效果,减少外界水或空气中杂质对涂层的侵蚀,进一步提升有色涂层的耐久性。
在一些实施例中,所述醇溶性二氧化硅溶胶的制备方法包括:按质量份计,称取50~56份的醇类溶剂和0.5~1.5份表面活性剂,超声分散;加入36~40份的硅烷前驱体,水浴混合;滴加5~7份水和0.5~2份pH调节剂,水浴反应,得到醇溶性二氧化硅溶胶,其中硅烷前驱体的至少部分含有官能团-(CH 2) 3-O-CH 2-CH-OCH 2。本申请实施例制备的醇溶性二氧化硅溶胶与颜色添加剂具有良好的相容性,颜色添加剂能够在其中分散良好,制备工艺简单。
在一些实施例中,所述溶胶的制备方法包括:按质量份计,称取50~56份的醇类溶剂和0.5~1.5份表面活性剂,超声分散5~15min;加入36~40份的硅烷前驱体,40~60℃水浴混合20~40min,搅拌速度200~300rpm;滴加5~7份水和0.5~2份pH调节剂,控制在5~15min内滴加完毕,水浴反应22~26h,得到醇溶性二氧化硅溶胶,其中硅烷前驱体的至少部分含有官能团-(CH 2) 3-O-CH 2-CH-OCH 2
在一些实施例中,溶胶的制备方法还包括在溶胶中加入填料。
在溶胶中加入填料可以增加粘稠度,降低涂层的渗透性、提高涂层的耐久性。通常,将粉末状填料混入涂料来改善涂层的性能,例如粘附性、耐久性等等,但是粉末在溶胶中的分散性不好,容易导致涂料出现均一性差的问题,增加涂层中的填料或颜色添加剂部分剥落的可能性。
本申请将填料通过溶胶混合的方式加入溶胶中,一方面有利于填料的均匀分 散,另一方面由于填料是通过溶胶-凝胶法制备的,其表面附着有官能团,相对于干粉状填料而言,形成涂层后、其本身对基底的粘附力也更强。在一些实施例中,溶胶的制备方法包括:将水溶性二氧化硅溶胶和二氧化钛溶胶与上述制得的醇溶性二氧化硅溶胶混合,其中,水溶性二氧化硅溶胶与二氧化钛溶胶的混合固含量大于醇溶性二氧化硅溶胶的固含量。水溶性二氧化硅溶胶与二氧化钛溶胶的混合固含量指的是,水溶性二氧化硅溶胶与二氧化钛溶胶混合后所得到的混合溶胶的固含量。例如,水溶性二氧化硅溶胶的固含量为x 1%,在混合溶胶中的占比为y 1%,二氧化钛溶胶的固含量为x 2%,在混合溶胶中的占比为y 2%,y 1%与y 2%之和为1,则混合固含量为x 1%·y 1%+x 2%·y 2%。水溶性二氧化硅溶胶中的二氧化硅、二氧化钛溶胶中的二氧化钛作为填料,通过溶胶混合的方式加入醇溶性二氧化硅溶胶中。水溶性二氧化硅溶胶中的水溶剂能够增加复合材料的涂覆性能,防止由于溶剂在喷涂过程中挥发过快,复合材料表干速度过快,从而导致的涂层表面不平整的问题。
在一些实施例中,水溶性二氧化硅溶胶中的二氧化硅纳米粒子的粒径为55~65nm,固含量为45%~55%。在一些实施例中,醇溶性二氧化硅溶胶中二氧化硅纳米粒子的粒径小于水溶性二氧化硅溶胶中的二氧化硅纳米粒子的粒径。在一些实施例中,二氧化硅溶胶中的二氧化硅纳米粒子的粒径为60nm,固含量为50%。在一些实施例中,水溶性二氧化硅溶胶的PH为9。
在一些实施例中,二氧化钛溶胶中的二氧化硅纳米粒子的粒径为5~10nm,固含量为2%~4%。
在一些实施例中,二氧化钛溶胶为水溶性溶胶或醇溶性溶胶。
在一些实施例中,溶胶的制备方法包括:将醇溶性二氧化硅溶胶、水溶性二氧化硅溶胶和二氧化钛溶胶混合,用pH调节剂调节pH至酸性,水浴搅拌。pH调节剂包括有机酸或无机酸。具体地,在一些实施例中,pH调节剂为甲酸。如此,制备的混合溶胶均一性好,其中的二氧化硅纳米粒子和二氧化钛纳米粒子均能够在溶胶中均匀分散。
在一些实施例中,溶胶的制备方法包括:称取水溶性二氧化硅溶胶、醇溶性二氧化硅溶胶和二氧化钛溶胶,用pH调节剂调节pH至3.0~4.0,40~60℃水浴搅拌3~5h。
在一些实施例中,溶胶的制备方法包括:称取34~36份醇溶性二氧化硅溶胶、55~57份水溶性二氧化硅溶胶和4~6份二氧化钛溶胶,用3~5份pH调节剂调节pH至3.0~4.0,40~60℃水浴搅拌3~5h。根据本申请实施例,醇溶性溶胶的质量份为34~36份,典型但非限制性的例如可以为34份、34.5份、34.8份、35份、35.5份、36份以及这些点值中的任意两个所构成的范围中的任意值。根据本申请实施例,二氧化硅溶胶的质量份为55~57,典型但非限制性的例如可以为55.5份、56份、56.5份、57份以及这些点值中的任意两个所构成的范围中的任意值。根据本申请实施例二氧化钛溶胶的质量份4~6份,典型但非限制性的,例如可以为4份、4.5份、5份、5.5份以及这些点值中的任意两个所构成的范围中的任意值。将醇溶性二氧化硅溶胶、水溶性二氧化硅溶胶和二氧化钛溶胶的配比选择在此范围内,综合考虑了复合材料中颜料添加剂和填料在溶胶中的分散性,有色涂层中颜料添加剂和填料与基底的结合力,涂层的致密度、均一性等性能,由此得到的涂层,颜料添加剂和填料分布均匀,均一性好、粘附力强。
为充分说明本申请提供的复合材料的相关性能,便于理解本发明,本申请进行了多组实验验证。下面结合具体实施例、对比例,对本发明作进一步说明。本领域的技术人员将理解,本申请中描述的仅是部分实例,其他任何合适的具体实例均在本申请的范围内。
实施例1
1、复合材料的制备
在本实施例中,溶胶包括醇溶性二氧化硅溶胶、水溶性二氧化硅溶胶和二氧化钛溶胶。其中醇溶性二氧化硅溶胶通过自行制备得到,从外观上看为透明溶胶,醇溶性二氧化硅溶胶中,无水乙醇的含量大致为54%。水溶性二氧化硅溶胶和二氧化钛溶胶,均为市售产品,二氧化钛溶胶也为水溶性溶胶。其中,水溶性二氧化硅溶胶中胶体粒子的粒径为55~65nm,固含量为50%左右,pH值为9。二氧化钛溶胶中的胶体粒子的粒径为5~10nm,二氧化钛溶胶的固含量为3%左右。颜色添加剂为市售的颜料红254,化学组成为C 18H 10C l2N 2O 2
A)制备溶胶
(a1)制备醇溶性溶胶
醇溶性溶胶指的是,胶体粒子分散在醇类溶剂中的溶胶。按质量份计,将54 份无水乙醇和1份十二烷基硫酸钠,超声分散10min;再加入31份KH-560和7份正硅酸乙酯,在50℃水浴条件下机械搅拌30min,搅拌速度250rpm,然后再将6份的水和1份的甲酸滴加到体系中,控制在10min滴加完毕,在50℃水浴条件下反应24h,得到醇溶性二氧化硅溶胶,醇溶性二氧化硅溶胶中所含的二氧化硅纳米粒子表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH。
(a2)将醇溶性溶胶与水溶性溶胶混合
将35份步骤(a1)所制备的醇溶性二氧化硅溶胶、56份水溶性二氧化硅溶胶和5份水溶性二氧化钛溶胶,混合均匀,采用4份pH值调节剂甲酸调节体系的pH值至3.0左右,在约50℃水浴条件下搅拌反应约4h,得到溶胶。混合后,混合溶胶中无水乙醇的占比大约为24%,其中在制备醇溶性溶胶的过程中加入的无水乙醇占比18.9%。
B)将溶胶与颜色添加剂混合
按质量份计,将95份的溶胶和5份的红色颜料机械混合20min,使用砂磨机砂磨30min,得到复合材料。
2、换热器的制备
对待涂覆涂层的换热器的基材表面进行预处理,具体包括:将换热管基材表面进行150目的喷砂处理,再用无水乙醇喷洗换热管和/或翅片表面,40℃烘干备用。
将上述步骤1得到的复合材料喷涂于经预处理后的换热器基材表面,在200℃下经过固化30min后,得到具有红色涂层的换热器。
实施例2-7
以与实施例1相同的方式制备复合材料和换热器,不同之处在于颜色添加剂的种类,和/或,溶胶与颜色添加剂的配比份数。
实施例2中,将95份的溶胶和5份的颜料绿7混合,颜料绿7的主要化学组成为为C 32C l16CuN 8
实施例3中,将95份的溶胶和5份的颜料蓝15:3混合,颜料蓝15:3的主要化学组成为C 32H 16CuN 8
实施例4中,将95份的溶胶和5份的颜料紫23混合,颜料紫23的主要化学组成为C 35H 23Cl 2N 3O 2
实施例5中,将92份溶胶和8份的黄金色颜料混合,其中,黄金色颜料为云母、二氧化钛、二氧化锡、三氧化二铁的混合物。
实施例6中,将90份溶胶和10份的颜料橙64混合,颜料橙64的主要化学组成为C 12H 10N 6O 4
实施例7中,将90份溶胶和10份的颜料黄191混合,颜料黄191的主要化学组成为C 17H 13CaC lN 4O 7S 2
实施例8-9
以与实施例1相同的方式制备复合材料和换热器,不同之处在于溶胶和红色颜料的比例,以及复合材料的固化时间。
实施例8中,复合材料含有90份溶胶与10份颜料红254;将复合材料喷涂于经预处理后的换热器表面,在180℃下经过固化60min后,得到具有有色涂层的换热器。
实施例9中,复合材料含有99份溶胶与1份颜料红254;将复合材料喷涂于经预处理后的换热器表面,在220℃下经过固化10min后,得到具有有色涂层的换热器。
其余均与实施例1相同。
实施例10-11
以与实施例1相同的方式制备复合材料和换热器,不同之处在于:(a1)制备醇溶性溶胶。
实施例10中,与实施例1的不同之处在于:步骤(a1)中,按质量份计,将56份的无水乙醇和1.5份的十二烷基硫酸钠混合,超声分散15min,再加入32份的KH-560和8份的正硅酸乙酯,在55℃水浴条件下机械搅拌40min,搅拌转速为300rpm,再将7份的水和2份的甲酸滴加到体系中,控制在15min滴加完毕,在55℃水浴下反应约26h,得到醇溶性二氧化硅溶胶;其余均与实施例1相同。
实施例11中,与实施例1的不同之处在于:步骤(a1)中,按质量份计,将50份的无水乙醇和0.5份的十二烷基硫酸钠混合,超声分散5min,再加入30份的KH-560和6份的正硅酸乙酯,在45℃水浴条件下机械搅拌20min,搅拌转速为200rpm,再将5份的水和0.5份的甲酸滴加到体系中,控制在5min滴加完 毕,在45℃水浴下反应约22h,得到醇溶性二氧化硅溶胶;其余均与实施例1相同。
实施例12-13
以与实施例1相同的方式制备复合材料和换热器,不同之处在于:(a2)将醇溶性溶胶与水溶性溶胶混合中,醇溶性溶胶和水溶性溶胶的配比。
实施例12中,与实施例1的不同之处在于,步骤(a2)中,将36份步骤(a1)所制备的醇溶性二氧化硅溶胶、57份水溶性二氧化硅溶胶和6份水溶性二氧化钛溶胶,混合均匀,采用5份pH值调节剂甲酸调节体系的pH值至3.0左右,在约55℃水浴条件下搅拌反应约5h,得到溶胶;其余均与实施例1相同。
实施例13中,与实施例10的不同之处在于,步骤(a2)中,将34份步骤(a1)所制备的醇溶性二氧化硅溶胶、55份水溶性二氧化硅溶胶和4份水溶性二氧化钛溶胶,混合均匀,采用3份pH值调节剂甲酸调节体系的pH值至3.0左右,在约45℃水浴条件下搅拌反应约5h,得到溶胶;其余均与实施例1相同。
对比例1
对比例1与实施例1的区别在于,对比例1中的换热器的换热管和/或翅片基材表面已进行150目的喷砂处理,再用无水乙醇喷洗换热器的换热管和/或翅片表面,并晾干。且对比例1中的换热器表面未设有复合材料所形成的有色涂层。
性能测试
1.粘附力测试
对实施例1~13的试验样品进行百格刀测试。百格刀测试是将基材上涂层做格阵图形切割并穿透,划格完成的图形按六级分类,评定涂层从底材分离的抗性。
百格刀测试ISO等级:
0级:切口的边缘完全光滑、格子边缘没有任何剥落;
1级:在切口的相交处有小片剥落,划格区内实际破损不超过5%;
2级:切口的边缘和/或相交处有被剥落,被剥落面积为划格区的5%~15%;
3级:沿切口边缘有部分剥落或整大片剥落,及/或者部分格子被整片剥落,被剥落面积为划格区的15%~35%;
4级:切口边缘大片剥落/或者一些方格子部分或全部剥落,被剥落面积为划 格区的35%~65%;
5级:超过上一等级。
实施例1~13的试验样品的百格刀测试ISO等级均为0级。由此可见,本申请的有色涂层对基底具有很强的粘附力。
2、涂层厚度测试
用高精度图镀层测厚仪对实施例1~7的涂层厚度进行测试,结果如表2所示。
表2
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
厚度(μm) 11.9 14.0 15.7 14.3 15.0 8.1 10.1
从表2的结果可知,在换热器表面固化形成的有色涂层厚度在8~16μm范围内,较薄的有色涂层对换热器换热效率的影响较小。
本申请还对实施例1和实施例5所制备的换热器表面的有色涂层进行膜厚均匀性测试,具体测试方法为:在换热器具有有色涂层的表面随机选取10个测试点,分别进行膜厚度测试。
实施例1的换热器表面测试点所测的红色涂层的厚度分别为:11.2μm、10.2μm、10.1μm、11.8μm、10.4μm、9.6μm、10.5μm、9.4μm、9.7μm、9.5μm、10.2μm。平均膜厚10.2μm,标准差0.736μm。
实施例5的换热器表面测试点所测的黄金色涂层的厚度分别为:11.8μm、12.0μm、11.3μm、11.1μm、12.8μm、12.1μm、12.8μm、11.2μm、10.3μm、12.6μm、11.8μm。平均膜厚11.8μm,标准差0.782μm。
由上述测试结果可知,由于本申请的复合材料中颜色添加剂和填料在涂层中分布均匀,有色涂层在换热器表面的厚度具有良好的一致性,粘附力强且具有良好的一致性。
3.亲水性能测试(接触角测试)
所用测试仪器为接触角测量仪,其采用光学成像原理,采用图像轮廓分析方式测量样品接触角。接触角是指在一固体水平平面上滴一滴液滴,固体表面上的固-液-气三相交界点处,其气-液界面和固-液界面两切线把液相夹在其中时所成的角。
测试时,打开接触角测量仪和与之相连的电脑,打开测试软件。
把试样放在水平工作台上,利用微量进样器调整液滴的量,体积一般为1μL左右,液滴在针头形成液滴,旋转旋钮使工作台上移,让试样表面与液滴接触,再下移工作台,试样上即可留下液滴。
通过测试软件进行测试和数据分析,得到这一区域的接触角。每一实施例和对比例的试样取5个不同的点进行测试后取平均值,记为该实施例和对比例试样的接触角。
经过上述接触角的测试结果表明,实施例1至实施例13的样品表面初始接触角均小于对比例1的样品表面初始接触角为39.114°。由此,说明本申请的涂层中所含的亲水性粒子,例如,二氧化硅、二氧化钛增加了基材表面的亲水性,有利于冷凝水排放,使得样品表面不容易形成潮湿水环境。
在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。本申请实施例所描述的“上”、“下”、“内”、“外”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种换热器,所述换热器具有用于流体流通的通道,其特征在于:所述换热器的至少部分表面覆设有有色涂层,所述有色涂层包括颜色添加剂,所述颜色添加剂选自有机颜料、无机颜料和染料中的至少一种。
  2. 根据权利要求1所述的换热器,其特征在于:所述颜色添加剂选自C 18H 10C l2N 2O 2,C 32C l16CuN 8,C 32H 16CuN 8,C 35H 23C l2N 3O 2,C 12H 10N 6O 4,C 17H 13CaC lN 4O 7S 2,云母、二氧化钛、二氧化锡和三氧化二铁的混合物中的至少一种。
  3. 根据权利要求1所述的换热器,其特征在于:所述有色涂层包括二氧化硅和二氧化钛,其中至少部分所述二氧化硅表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH。
  4. 根据权利要求1所述的换热器,其特征在于:所述有色涂层的厚度为8~16μm,所述换热器为微通道换热器、板式换热器、管壳式换热器中的一种。
  5. 根据权利要求1所述的换热器,其特征在于:所述有色涂层包括第一有色涂层和第二有色涂层,所述第一有色涂层和所述第二有色涂层分别覆设于所述换热器表面的不同位置,所述第一有色涂层的颜色不同于所述第二有色涂层的颜色。
  6. 根据权利要求1~5任一项所述的换热器,其特征在于:所述换热器包括集流管、翅片以及多个换热管,所述换热管与所述集流管相固定,所述换热管的内腔与所述集流管的内腔连通;所述翅片位于相邻的两个换热管之间;
    所述有色涂层覆设于所述集流管、所述翅片和所述换热管的至少一者的至少部分表面。
  7. 根据权利要求6所述的换热器,其特征在于:所述覆设于集流管、翅片和换热管的至少一者的至少部分表面的所述有色涂层具有平均厚度,覆设于所述翅片的至少部分表面的所述有色涂层的至少部分的厚度小于所述平均厚度;和/或,
    覆设于所述换热管的至少部分表面的所述有色涂层的至少部分的厚度小于 所述平均厚度。
  8. 根据权利要求7所述的换热器,其特征在于:所述换热器的所述通道包括用于外部流体流通的外部通道,所述换热管具有用于形成所述外部通道的内侧面,所述内侧面具有边缘区域和中间区域,所述外部通道具有流体入口和流体出口,所述边缘区域包括相对所述中间区域靠近所述流体入口的第一边缘区域和相对所述中间区域靠近所述流体出口的第二边缘区域,所述中间区域位于所述第一边缘区域和所述第二边缘区域之间,所述第一边缘区域和所述第二边缘区域上覆设的有色涂层厚度均大于或等于所述中间区域上覆设的有色涂层厚度;和/或,
    所述翅片具有用于形成所述外部通道的内表面,所述内表面具有外缘区域和中央区域,所述外部通道具有流体入口和流体出口,所述外缘区域包括相对所述中央区域靠近所述流体入口的第一外缘区域和相对所述中央区域靠近所述流体出口的第二外缘区域,所述中央区域位于所述第一外缘区域和所述第二外缘区域之间,所述第一外缘区域和所述第二外缘区域上覆设的有色涂层厚度均大于或等于所述中央区域上覆设的有色涂层厚度。
  9. 一种热管理系统,其特征在于:所述热管理系统包括压缩机、第一换热器、节流装置和第二换热器,所述第一换热器至少部分表面的颜色不同于所述第二换热器至少部分表面的颜色;当所述热管理系统有冷媒流动时,所述冷媒经所述压缩机流入所述第一换热器,并在所述第一换热器发生热交换之后流入所述节流装置,而后所述冷媒流入所述第二换热器并在所述第二换热器发生热交换后再次流入所述压缩机。
  10. 根据权利要求9所述的热管理系统,其特征在于:所述第一换热器和所述第二换热器的其中之一的至少部分表面覆设有有色涂层,所述有色涂层的颜色与所述第一换热器和所述第二换热器基材的颜色均不相同;或者,
    所述第一换热器的至少部分表面覆设有第三有色涂层,所述第二换热器的至少部分表面覆设有第四有色涂层,所述第三有色涂层的颜色不同于所述第四有色涂层的颜色。
  11. 一种复合材料,其特征在于:所述复合材料包括按质量份计90~99份溶胶 和1~10份颜色添加剂,所述溶胶包括醇类溶剂,所述醇类溶剂在所述溶胶中的占比为15%~30%。
  12. 根据权利要求11所述的复合材料,其特征在于:所述溶胶还包括水溶剂,水溶剂在溶胶中的占比为10%~40%。
  13. 根据权利要求11所述的复合材料,其特征在于:所述醇类溶剂是甲醇、乙醇、异丙醇、苯甲醇和乙二醇中的任意一种或任意两种及以上的任意比例组成的混合物。
  14. 根据权利要求11所述的复合材料,其特征在于:所述颜色添加剂选自有机颜料、无机颜料和染料中的至少一种。
  15. 根据权利要求11所述的复合材料,其特征在于:所述溶胶含有二氧化硅纳米粒子,其中至少部分所述二氧化硅纳米粒子表面结合有官能团-(CH 2) 3-O-CH 2-CH-OCH 2和羟基-OH,和/或,所述溶胶含有二氧化钛纳米粒子。
  16. 一种复合材料的制备方法,其特征在于,包括:按质量份计将90~99份溶胶与1~10份颜色添加剂混合,其中,所述溶胶包括醇类溶剂,所述醇类溶剂在所述溶胶中的占比为15%~30%。
  17. 根据权利要求16所述的复合材料的制备方法,其特征在于,所述溶胶的制备方法包括:
    按质量份计,称取50~56份的醇类溶剂和0.5~1.5份表面活性剂,超声分散;加入36~40份的硅烷前驱体,水浴混合;滴加5~7份水和0.5~2份pH调节剂,水浴反应,得到醇溶性二氧化硅溶胶,其中硅烷前驱体的至少部分含有官能团-(CH 2) 3-O-CH 2-CH-OCH 2
  18. 根据权利要求17所述的复合材料的制备方法,其特征在于,所述溶胶的制备方法包括:
    将水溶性二氧化硅溶胶和二氧化钛溶胶与所述醇溶性二氧化硅溶胶混合,其中,水溶性二氧化硅溶胶与二氧化钛溶胶的混合固含量大于所述醇溶性二氧化硅溶胶的固含量。
  19. 根据权利要求18所述的复合材料的制备方法,其特征在于:所述水溶性二氧化硅溶胶中的二氧化硅纳米粒子的粒径为55~65nm,固含量为45%~55%,和/或,所述二氧化钛溶胶中的二氧化钛纳米粒子的粒径为5~10nm,固含量为2%~4%。
  20. 根据权利要求18所述的复合材料的制备方法,其特征在于,所述溶胶的制备方法包括:
    称取34~36份所述醇溶性二氧化硅溶胶、55~57份所述水溶性二氧化硅溶胶和4~6份所述二氧化钛溶胶,用3~5份pH调节剂调节pH至3.0~4.0,40~60℃水浴搅拌3~5h。
PCT/CN2022/144129 2021-12-30 2022-12-30 换热器、热管理系统、复合材料及其制备方法 WO2023125968A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/585,061 US20240200885A1 (en) 2021-12-30 2024-02-23 Heat exchanger and preparation method thereof, and thermal management system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111657197.2 2021-12-30
CN202111657197.2A CN116410620A (zh) 2021-12-30 2021-12-30 复合材料及其制备方法
CN202111657043.3 2021-12-30
CN202111657043.3A CN116412694A (zh) 2021-12-30 2021-12-30 换热器和热管理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/585,061 Continuation-In-Part US20240200885A1 (en) 2021-12-30 2024-02-23 Heat exchanger and preparation method thereof, and thermal management system

Publications (1)

Publication Number Publication Date
WO2023125968A1 true WO2023125968A1 (zh) 2023-07-06

Family

ID=86998185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144129 WO2023125968A1 (zh) 2021-12-30 2022-12-30 换热器、热管理系统、复合材料及其制备方法

Country Status (2)

Country Link
US (1) US20240200885A1 (zh)
WO (1) WO2023125968A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202630495U (zh) * 2012-06-08 2012-12-26 郭琦 一种冷库用制冷机组
CN105623499A (zh) * 2014-11-26 2016-06-01 祝海红 硅树脂耐热涂料
CN105885504A (zh) * 2016-02-02 2016-08-24 山西科启科技有限公司 一种具有抗菌和防霉纳米涂层的热交换器及其制备方法
CN108981133A (zh) * 2018-06-05 2018-12-11 广东美的暖通设备有限公司 换热器组件和具有其的空调室内机
CN109476773A (zh) * 2016-09-16 2019-03-15 株式会社艾迪科 固化性组合物、固化物及固化物的制造方法
CN115325854A (zh) * 2022-07-01 2022-11-11 杭州三花研究院有限公司 换热器及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202630495U (zh) * 2012-06-08 2012-12-26 郭琦 一种冷库用制冷机组
CN105623499A (zh) * 2014-11-26 2016-06-01 祝海红 硅树脂耐热涂料
CN105885504A (zh) * 2016-02-02 2016-08-24 山西科启科技有限公司 一种具有抗菌和防霉纳米涂层的热交换器及其制备方法
CN109476773A (zh) * 2016-09-16 2019-03-15 株式会社艾迪科 固化性组合物、固化物及固化物的制造方法
CN108981133A (zh) * 2018-06-05 2018-12-11 广东美的暖通设备有限公司 换热器组件和具有其的空调室内机
CN115325854A (zh) * 2022-07-01 2022-11-11 杭州三花研究院有限公司 换热器及其制造方法

Also Published As

Publication number Publication date
US20240200885A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
CN103031042B (zh) 一种金属防护涂料及热镀锌金属材料及热镀铝锌金属材料
CN101760057B (zh) 陶瓷涂料、其制备方法、以及防止陶瓷涂膜开裂的方法
CN103031043B (zh) 一种金属防护涂料及热镀锌金属材料及热镀铝锌金属材料
CN1912035B (zh) 彩色镜子用着色涂料、汽车用彩色镜子及其制造方法
CN102378827B (zh) 表面处理剂、使用该表面处理剂的镀覆钢板的制造方法以及镀覆钢板
WO2022148284A1 (zh) 换热器及其制备方法、热管理系统
CN103013337B (zh) 一种金属防护涂料和热镀锌金属材料及热镀铝锌金属材料
CN103359954A (zh) 一种二氧化硅超疏水薄膜的制备方法及一种超疏水材料
CN115325854B (zh) 换热器及其制造方法
CN102675935A (zh) 金属表面用陶晶涂料及其制备方法
CN109321050A (zh) 一种耐候涂液、耐候性汽车玻璃及其制造方法
CN108483934A (zh) 一种钨青铜/二氧化硅凝胶隔热功能材料及其制备方法
WO2023125968A1 (zh) 换热器、热管理系统、复合材料及其制备方法
CN109666313A (zh) 一种耐腐蚀的水性彩色铝颜料的制备方法
JP2012036331A (ja) 塗料組成物及び塗膜形成方法
WO2022148287A1 (zh) 换热器及其制备方法、热管理系统
CN105086527A (zh) 低红外发射率复合颜料及其制备方法
WO2018179579A1 (ja) 銀鏡膜、加飾品並びに銀鏡膜形成液及びその還元液の作製方法
US20230358488A1 (en) Heat exchanger, manufacturing method thereof and thermal management system
CN116410620A (zh) 复合材料及其制备方法
CN116412694A (zh) 换热器和热管理系统
CN103031061B (zh) 一种金属防护涂料和热镀锌金属材料及热镀铝锌金属材料
US20220145152A1 (en) Coating material and preparation method thereof, heat exchanger and method for treating heat exchanger
JP2001158872A (ja) 親水化処理用組成物
CN108885070A (zh) 热交换器用翅片材料以及热交换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022915215

Country of ref document: EP

Effective date: 20240730