WO2023125929A1 - Base station, cleaning system, and method for self-checking thereof - Google Patents

Base station, cleaning system, and method for self-checking thereof Download PDF

Info

Publication number
WO2023125929A1
WO2023125929A1 PCT/CN2022/143920 CN2022143920W WO2023125929A1 WO 2023125929 A1 WO2023125929 A1 WO 2023125929A1 CN 2022143920 W CN2022143920 W CN 2022143920W WO 2023125929 A1 WO2023125929 A1 WO 2023125929A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
drainage
amount
sewage tank
water absorption
Prior art date
Application number
PCT/CN2022/143920
Other languages
French (fr)
Inventor
Xiaolong LIN
Jie QIAN
Original Assignee
Yunjing Intelligence (Shenzhen) Co., Ltd.
Yunjing Intelligence Innovation (Shenzhen) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunjing Intelligence (Shenzhen) Co., Ltd., Yunjing Intelligence Innovation (Shenzhen) Co., Ltd. filed Critical Yunjing Intelligence (Shenzhen) Co., Ltd.
Publication of WO2023125929A1 publication Critical patent/WO2023125929A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4091Storing or parking devices, arrangements therefor; Means allowing transport of the machine when it is not being used
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4008Arrangements of switches, indicators or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • A47L11/4016Contaminants collecting devices, i.e. hoppers, tanks or the like specially adapted for collecting fluids
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • A47L11/4016Contaminants collecting devices, i.e. hoppers, tanks or the like specially adapted for collecting fluids
    • A47L11/4019Fill level sensors; Security means to prevent overflow, e.g. float valves
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4214Water supply, recirculation or discharge arrangements; Devices therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4214Water supply, recirculation or discharge arrangements; Devices therefor
    • A47L15/4223Devices for water discharge, e.g. devices to prevent siphoning, non-return valves
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/46Devices for the automatic control of the different phases of cleaning ; Controlling devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/024Emptying dust or waste liquid containers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/028Refurbishing floor engaging tools, e.g. cleaning of beating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/06Water supply, circulation or discharge information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to a base station, a cleaning system, and a method for self-checking of the base station and the cleaning system.
  • a water drainage operation in the base station and the cleaning system, and self-checking thereof are disclosed herein.
  • Sewage produced by a cleaning apparatus during a daily cleaning process is usually drained through a drainage system of the cleaning apparatus.
  • various types of dirt impurities in sewage which can easily lead to one or more faults such as a pipe blockage in the drainage system of the cleaning apparatus. It is difficult for a user to discover and repair the faults in time when the fault occurs. As a result, a subsequent use of the cleaning apparatus will be affected due to a long time of the faults and an accumulation of some problems, and even the cleaning apparatus may be damaged. Thus, improvement over the existing design is contemplated.
  • Embodiments of the present disclosure provide a drainage detection method, applied to a cleaning apparatus comprising a water drainage assembly, the drainage detection method includes: performing an operation of absorbing water and draining water; acquiring water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water; and determining whether the water drainage assembly is abnormal according to the water absorption and drainage information.
  • Embodiments of the present disclosure provide a cleaning apparatus.
  • the cleaning apparatus includes a memory, a processor, and a computer program stored on the memory and executable by the processor, wherein the computer program, when being executed by the processor, implements the drainage detection method described above.
  • Embodiments of the present disclosure provide a computer-readable storage medium storing a drainage detection program.
  • the drainage detection program being executed by a processor, implements the drainage detection method described above.
  • Embodiments of the present disclosure provide a base station for a mobile cleaner.
  • the base station includes a dock configured to accommodate the mobile cleaner; a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock; a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
  • Embodiments of the present disclosure also provide a cleaning system.
  • the cleaning system includes a base station; a power supply assembly configured to supply power to the base station; and a mobile cleaner.
  • the base station includes: a dock configured to accommodate the mobile cleaner and charge the mobile cleaner via the power supply assembly; a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock; a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
  • Embodiments of the present disclosure further provide a method for self-checking a base station for a mobile cleaner.
  • the base station includes a water drainage assembly configured to drain water absorbed from a cleaning area to outside, the method includes: detect, by a self-checking module, a malfunction regarding drainage of water from the cleaning area to outside.
  • FIG. 1 illustrates a block diagram of an exemplary base station, according to some aspects of the present disclosure.
  • FIG. 2A illustrates an exemplary base station with a front perspective view, according to some aspects of the present disclosure.
  • FIG. 2B illustrates the exemplary base station shown in FIG. 2A with a rear perspective view, according to some aspects of the present disclosure.
  • FIG. 3 illustrates an exemplary water drainage assembly, according to some aspects of the present disclosure.
  • FIG. 4 illustrates a schematic diagram of an exemplary water drainage assembly, according to some aspects of the present disclosure.
  • FIG. 5 illustrates a schematic diagram of another exemplary water drainage assembly, according to some aspects of the present disclosure.
  • FIG. 6 illustrates a flowchart of an exemplary method for self-checking a base station for a mobile cleaner, according to some aspects of the present disclosure.
  • FIG. 7A illustrates a flowchart of an example of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
  • FIG. 7B illustrates a flowchart of another example of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
  • FIG. 7C illustrates a flowchart of yet another example of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
  • FIG. 8 is a schematic flowchart of an exemplary drainage detection method according to some embodiments of the present application.
  • FIG. 9 is a schematic flowchart of another exemplary drainage detection method according to some embodiments of the present application.
  • FIG. 10 is a schematic flowchart of yet another exemplary drainage detection method according to some embodiments of the present application.
  • terminology may be understood at least in part from usage in context.
  • the term “one or more” as used herein, depending at least in part upon context may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense.
  • terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part upon context.
  • the terms “comprises, ” “comprising, ” “including, ” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
  • connection ” “couple, ” “communication with, ” and variations thereof herein are used broadly and encompass direct and indirect connections, communication and mountings, and are not restricted to electrical, physical, or mechanical attachments, connections, or mountings.
  • the automatic water drainage assembly is connected to a cleaning area of the base station and drains water of the cleaning area to outside through a sewage tank of the base station automatically, making the operation simpler and easier for the user.
  • the water drainage assembly connects the cleaning area of the base station with outside.
  • the present disclosure introduces a base station for a mobile cleaner, the base station having a water drainage assembly and a self-checking module.
  • the self-checking module can detect whether there is a malfunction regarding drainage of water from the cleaning area to outside, and identify the specific type and details of the malfunction if there is one.
  • the self-checking module is able to send out a warning signal correlated to the type of malfunction so identified, and to notify the user of the malfunction.
  • the efficiency of malfunction detection is significantly improved and the complexity of operating the cleaning device is mitigated.
  • the cleaning apparatus in embodiments of this application may be a cleaning robot, a base station, a handheld cleaning apparatus, or the like.
  • the base station refers to the cleaning apparatus used in cooperation with the cleaning robot or the handheld cleaning apparatus. Taking the base station as an example, for convenience of users, the base station is often cooperated with the cleaning robot, and the base station can be used for charging the cleaning robot. When the power of the cleaning robot is less than a threshold during a cleaning process, the cleaning robot automatically moves to the base station for charging.
  • the base station may also be used to clean a mopping assembly (such as a mop) of the cleaning robot. Specifically, the cleaning robot can move to the base station, so that a cleaning mechanism of the base station automatically cleans the mopping assembly of the cleaning robot.
  • the base station may further be used to manage the cleaning robot, so that the cleaning robot can be more intelligently controlled during the process of performing the cleaning task, thereby improving the intelligence of robot.
  • a water drainage assembly and a cleaning area is provided inside the base station.
  • the water drainage assembly includes a clean water tank.
  • a water inlet of the clean water tank can receive water of an external water supply, to realize automatic water replenishing of the base station.
  • the water in the clean water tank can be transported to the cleaning areas where water is needed through a water channel.
  • clean water of the clean water tank can be transported to a cleaning area, and sprayed on the mopping assembly in the cleaning area to clean the mopping assembly.
  • the water drainage assembly can drain the sewage in the cleaning area to outside.
  • the water drainage assembly includes a sewage tank. An operation of absorbing water can be performed and the sewage in the cleaning area can be absorbed to the sewage tank.
  • the sewage tank may be used to collect the sewage, and the sewage in the sewage tank can be drained to the outside through the drainage pipe, for example, the operation of draining water can be performed after the sewage amount of the sewage tank reaches a certain sewage threshold, and the sewage of the sewage tank can be drained to the outside through a drainage pipe. For example, while the sewage in the sewage tank reaches a sewage threshold, the sewage in the sewage tank will be drained to the outside. In practical applications, if the water drainage assembly is installed abnormally, damaged, etc., the water drainage assembly cannot drain water normally, normal use of the user and the user experience will be affected.
  • self-checking may be performed on the water drainage assembly of the cleaning apparatus, specifically, the base station may be triggered to perform self-checking after the water drainage assembly is installed by the installer, or when being used by the user, for example, the user may trigger the self-checking function of the base station, and the base station may start self-checking. Alternatively, the base station may periodically perform self-checking.
  • the methods of triggering the base station to perform self-checking are not limited in the present application.
  • FIG. 1 is a block diagram of an exemplary base station 100 for a mobile cleaner, according to some aspects of the present disclosure.
  • the mobile cleaner can be any type of a cleaner that is detachable from the base station 100.
  • the mobile cleaner can be a mobile cleaning robot configured to move automatically above a two-dimensional area and clean up a surfaces it roams over.
  • the mobile cleaner may sweep, mop, wash, or vacuum the surfaces, or perform any combination of two or more of the operations.
  • a mobile cleaner capable of mopping and vacuuming is also known as a vacuum-mop robot.
  • the mobile cleaner may also survey the environment around its working area, plan its traveling trajectory in advance, and conduct obstacle avoidance while roaming.
  • the mobile cleaner can be a handheld vacuum configured to clean up surfaces it passes over or approaches within a certain distance.
  • the handheld vacuum may not be self-movable, but may be carried around by a user.
  • the type of the mobile cleaner is not limited to the above examples. It is noted that the mobile cleaner and the base station 100 are both parts of a cleaning system according to the present disclosure, but each is an independent part from the other.
  • the base station 100 may include a dock 102, a cleaning area 104, a water drainage assembly 106, and a self-checking module 108, as shown in FIG. 1.
  • the dock 102 may be configured to accommodate the mobile cleaner.
  • the dock 102 may confine or fixate the mobile cleaner to the base station 100 to prevent it from unintended detachment from the base station 100.
  • the cleaning area 104 may be configured to provide an area for cleaning the mobile cleaner when it is accommodated in the dock. Sewage produced during the cleaning may be drained by the water drainage assembly 106.
  • the water drainage assembly 106 may drain sewage from the cleaning area 104 to the drain.
  • the drain may be a floor drain or sewer that is external to the base station 100.
  • the drain may be connected to an outlet of the water drainage assembly 106 through, for example, a water hose, a water pipe, or the like.
  • a filter may be installed between the external drain and the water drainage assembly 106 in order to prevent large particle dirts from entering the drain, which could potentially block the drain.
  • the drain may connect to a septic tank or a system connected to a sewage treatment plant.
  • the drain may be a main sewage tank within the base station, and the main sewage tank may collect sewage from the cleaning area via a conduit or the like.
  • the sewage in the cleaning area 104 may be pumped into the main sewage tank.
  • a pressure regulator may be provided between the cleaning area and the water drainage assembly, which is configured to regulate the pressure of the water flowing into the water drainage assembly, so that excessive water pressure damaging the water drainage assembly or insufficient water pressure delaying the water drainage can be avoided.
  • Water e.g., sewage
  • the water drainage assembly 106 may drain water absorbed from the cleaning area to outside of the base station 100. It is understood that the present disclosure is not limited to drainage of water, and other suitable types of liquid or fluid (e.g., soapy water, laundry solution, etc. ) may also be drained. The description herein uses the water as an example, and the same description applies to other types of liquid or fluid as well.
  • the self-checking module 108 may be configured to detect a malfunction regarding drainage of water from the sewage tank to outside.
  • FIG. 2A is a front perspective view of the base station 200.
  • the base station 200 includes a body 210.
  • the body 210 has an upper portion 211 and a lower portion 213.
  • the lower portion 213 can be placed on a substantially flat surface such that the base station 200 becomes stationary and cannot be easily moved around.
  • the dock 202 is positioned at or near the lower portion 213 of the body 210, and may have an open chamber to accommodate the mobile cleaner.
  • the thickness of the bottom of the body 210 is small enough in order not to jeopardize the mobile cleaner from docking into or undocking from the open chamber of the dock 202.
  • the body 210 may include a water container 215 attached to the inner wall of the body 210.
  • the water container 215 may include a water tank and a sewage tank.
  • the water tank is configured to accumulate water, so that the water transported to the cleaning area 104 can be supplied from the water tank with an adjustable inlet velocity and pressure.
  • the sewage tank is configured to absorb and store water from the cleaning area 104 after cleaning the mobile cleaner.
  • a water container 215 is not required in certain types of base stations.
  • a base station without the water tank may have a smaller volume than the base station 200 shown in FIGs. 2A and 2B, while water supply to the cleaning area of the base station will depend on an external water source completely.
  • FIG. 2B is a rear perspective view of the base station 200.
  • the base station 200 further includes a water inlet 212 and a drainage outlet 222 on its rear side.
  • the water inlet 212 and the drainage outlet 222 may be positioned in the middle portion of the rear side and protrudes from the body 210.
  • FIG. 2B only illustrates one exemplary configuration of the water inlet 212 and the drainage outlet 222.
  • the water inlet 212 and the drainage outlet 222 may be embedded inside the body 210 without any protrusion, or positioned in the rear side at a place other than the middle portion.
  • the water inlet 212 may be connected to a water source (not shown in FIGs.
  • the drainage outlet 222 may be connected to outside (not shown in FIGs. 2A or 2B) outside the body 210 of the base station 200.
  • the water inlet 212 is connected to the water tank of the water container 215 so that a water supply route is established, through which clean water from the water source can be conveyed to the water tank.
  • the drainage outlet 222 is connected to the sewage tank of the water container 215 so that a water drainage route is established, through which sewage from the sewage tank can be conveyed to outside.
  • the base station 200 further includes a cleaning area and a water drainage assembly.
  • the cleaning area (not shown in FIGs. 2A or 2B) may be located inside the body 210.
  • the water drainage assembly may include the abovementioned sewage tank and the drainage outlet 222. When the sewage tank is inside the body 210 and the drainage outlet 222 protrudes outside the body 210, an opening 221 that allows the protrusion is provided on a sidewall of the body 210, as shown in FIG. 2B.
  • FIG. 3 illustrates an exemplary water drainage assembly 306, according to some aspects of the present disclosure.
  • the water drainage assembly 306 includes a sewage tank 315, a drainage inlet, and a drainage outlet 322.
  • the sewage tank 315 is similar to the sewage tank of the water container 215, and the drainage outlet 322 is similar to the drainage outlet 222.
  • the drainage inlet is connected to the cleaning area, and the drainage outlet 322 is connected to outside.
  • FIG. 3 also illustrates an exemplary water supply assembly, according to some aspects of the present disclosure.
  • the water supply assembly may include a water tank 325, a water inlet 312, and a water outlet 314.
  • the water tank 325 is similar to the water tank of the water container 215, and the water inlet 312 is similar to the water inlet 212.
  • the configurations of the water tank and the water inlet are described in detail above in conjunction with FIGs. 2A and 2B and thus will not be repeated herein.
  • the water outlet 314 is configured to connect the water supply assembly with the cleaning area (not shown in FIG. 3) .
  • the water outlet 314 may supply water stored in the water tank 325 to the cleaning area so that the mobile cleaner can be washed or sanitized.
  • the inlet velocity and pressure of the water supply can be preset or adjusted manually by the user or automatically by the base station, so that the cleaning efficiency of the cleaning unit can be consistent.
  • the conveyance of water from the water tank 325 to the cleaning area can be realized by a water pump or an air pump. In the example of an air pump, the water is pushed out of the water tank 325 through compression of the air above the water surface in the water tank 325.
  • sewage can be directly let out of the base station via the drainage outlet 322 connected to the sewage tank 315, a process known as a “draining process. ”
  • Water e.g., sewage
  • Water in the cleaning area after cleaning the mobile cleaner may be absorbed into the sewage tank 315 through the drainage inlet.
  • Water in the sewage tank 315 may be drained to outside through the drainage outlet 322.
  • the water outlet 314 may be provided on the same sidewall of the water tank 325 as the water inlet 312, as shown in FIG. 3.
  • the drainage inlet may be provided on the same sidewall of the sewage tank 315 as the drainage outlet 322.
  • the positions of the water inlet 312, the water outlet 314, the drainage inlet and the drainage outlet 322 according to the present disclosure are not limited to those shown in FIG. 3.
  • the outlet velocity and pressure of the water drainage can be preset or adjusted manually by the user or automatically by the base station, so that the cleaning efficiency of the cleaning unit can be consistent.
  • the drainage of water from the sewage tank 315 to outside can be realized by a water pump or an air pump. In the example of an air pump, the water is pushed out of the sewage tank 315 through compression of the air above the water surface in the sewage tank 315.
  • FIG. 4 illustrates a schematic diagram of an exemplary water drainage assembly 406, according to some aspects of the present disclosure.
  • the water drainage assembly 406 includes a sewage tank 415, a drainage inlet 412, and a drainage outlet 414.
  • the drainage outlet 414 is close to the bottom of the sewage tank 415, and the drainage inlet 412 is close to the top thereof. It is understood that the locations of the inlet and the outlet can be at other places of the water tank 415.
  • the sewage tank 415 may accumulate sewage after cleaning the mobile cleaner.
  • the maximum volume of the sewage tank 415 is designed to be at least equal to an amount of water needed to clean up the mobile cleaner for one time. In some embodiments, the maximum volume of the sewage tank 415 is designed to be no more than cleaning up the mobile cleaner twice in order to ensure compactness of the base station. In an example where 500 ml water is needed to clean up the mobile cleaner for one time, the maximum volume of the sewage tank 415 can be set at least equal to 500 ml. Considering that some water may be left in the cleaning area in a last cleaning process, the maximum volume of the sewage tank 415 can be designed to exceed 500 ml, such as any volume within the range between 500 ml and 1,000 ml.
  • the drainage outlet 414 may have a shape of a tube with two open ends.
  • One of the two open ends ( “lower end” ) is positioned close to the bottom of the sewage tank 415.
  • the other of the two open ends ( “upper end” ) extends out of the sewage tank 415 and connects to outside or a drainage pipe 422 connected to outside.
  • the drainage pipe 421 may be made of metal, alloy, plastic, a combination of two or more preceding materials, or any other suitable material. This configuration allows the water to be easily drained from the sewage tank 415 to outside by, for example, water pump, air pump, or capillary action.
  • the drainage inlet 412 may be connected to the cleaning area through a pipe 421.
  • the pipe 421 may be made of metal, alloy, plastic, a combination of two or more preceding materials, or any other suitable material.
  • an anti-spill channel is led to the pipe 421 to drain overflow water in order to protect the base station from being damaged.
  • a filter 423 is interposed on the drainage pipe 422 between the drainage outlet 414 and outside.
  • the filter 423 can collect big piece of rubbish, impurities and harmful substances in the outflow water and prevent them from entering and clogging the drainage pipe 422.
  • the filter 423 may include a collector for the impurities and harmful substances, The collector may be removable for easy dumping of the collected waste and replacement of the collector.
  • a pressure regulator 425 is interposed on the pipe 421 between the drainage inlet 412 and the cleaning area to regulate the water pressure flowing into the sewage tank 415.
  • the pressure regulator 425 can increase the water pressure when the water pressure is insufficient or relieve the water pressure when the water pressure is too high, so that the water pressure of the inflow water becomes controllable and relatively stable.
  • the water pressure can be controlled to generate a desired water flow speed, which translates to the time of filling up the sewage tank 415.
  • the pressure regulator 425 is a component configured to control the fill-up time of the sewage tank 415, and the time can be calculated by knowing the water pressure and the maximum volume of the sewage tank 415.
  • the pressure regulator 425 is a pressure reducer configured to reduce the water pressure of the inflow water when it is over a threshold value, in order to avoid excessive water pressure damaging the drainage inlet 412.
  • the pressure regulator can include multiple components. A portion of the components are located on the pipe 421 while the rest of the components are separately located away from the pipe 421 while being electrically coupled to the components on the pipe 421 through a wired or wireless connection. The user can thus remotely monitor and control the pressure of the water flowing into the sewage tank 415.
  • a first valve 427 is interposed on the pipe 421 between the drainage inlet 412 and the cleaning area.
  • the first valve 427 may be configured with two working states: an “on” state and an “off” state. Water can flow through the first valve 427 when it is in the “on” state. Water can be blocked by the first valve 427 when it is in the “off” state.
  • the first valve 427 may be electrically coupled to and controlled by a first controller of the self-checking module (not shown in FIG. 4) to switch between the “on” and “off” states.
  • the controller is configured to detect the working state of the first valve 427 by receiving signals indicating the state of the first valve 427 and determines whether the valve is in a correct working state. Once an incorrect working state is detected, the first valve 427 is instructed by the first controller to shut down the water flow into the sewage tank 415.
  • a second valve 428 is interposed on the drainage pipe 422 between the drainage outlet 414 and outside.
  • the second valve 428 may be configured with two working states: an “on” state and an “off” state. Water can flow through the second valve 428 when it is in the “on” state. Water can be blocked by the second valve 428 when it is in the “off” state.
  • the second valve 428 may be electrically coupled to and controlled by a second controller of the self-checking module (not shown in FIG. 4) to switch between the “on” and “off” states.
  • the controller is configured to detect the working state of the second valve 428 by receiving signals indicating the state of the second valve 428 and determines whether the valve is in a correct working state. Once an incorrect working state is detected, the second valve 428 is instructed by the second controller to shut down the water flow into the sewage tank 415.
  • sequence of the first valve 427 and the pressure regulator 425 is not limited to the sequence shown in FIG. 4 and can be any other suitable sequence. It is noted that the sequence of the second valve 428 and the filter 423 is not limited to the sequence shown in FIG. 4 and can be any other suitable sequence.
  • sequence of the specific structures shown in FIG. 4 do not constitute exhaustive examples of the water drainage assembly, which may include more or fewer components than illustrated, combine some of the illustrated components, or have a different component arrangement.
  • the self-checking module 108 may include one or more types of the following components or functional units: processor, memory, controller, detector, abnormality alarm, and timer. For each type of the component or functional unit included in the self-checking module 108, there can be one or more of the same type of the component or functional unit.
  • the self-checking module 108 may include one processor, one memory, one controller, four detectors, one abnormality alarm, and one timer.
  • the self-checking module 108 may be a one-piece structure, for example, a system-on-chip (SoC) , that integrates all these components or functional units.
  • SoC system-on-chip
  • the self-checking module 108 may include components or functional units located at different places of the base station of the cleaning system that do not form an integrated structure.
  • the processor may include any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, microcontroller, and graphics processing unit (GPU) .
  • the processor may include one or more hardware units (e.g., portion (s) of an integrated circuit) designed for use with other components or to execute part of a program.
  • the program may be stored on a computer-readable medium, and when executed by the processor, it may perform one or more functions disclosed herein.
  • the processor may be configured as a separate processor module dedicated to performing various methods disclosed herein. Alternatively, the processor may be configured as a shared processor module for performing other functions unrelated to the methods disclosed herein.
  • the memory may include any appropriate type of mass storage provided to store any type of information that the processor may need to operate.
  • the memory may be a volatile or non-volatile, magnetic, semiconductor-based, tape-based, optical, removable, non-removable, or other type of storage device or tangible (i.e., non-transitory) computer-readable medium including, but not limited to, a ROM, a flash memory, a dynamic RAM, and a static RAM.
  • the memory may be configured to store one or more computer programs to be executed by the processor to perform various functions disclosed herein.
  • the memory may be configured to store program (s) that may be executed by the processor to perform various methods disclosed herein.
  • the memory may be further configured to store information and data used by the processor.
  • the controller may be a microcontroller electrically coupled to the processor and the memory.
  • the microcontroller is a small computer on a single very large-scale integration (VLSI) integrated circuit (IC) chip and contains one or more processors along with memory and programmable input/output peripherals.
  • the controller may be a functional unit implemented by the processor and the memory. The controller may be configured to perform various controlling functions disclosed herein.
  • the detector may be a flow meter, an anti-overflow detector, a water amount detector, a water level detector, or the like.
  • the detector may detect one or more of the following types of information: water flow, water amount, water level, infrared signal, electrical signal, trigger signal, ultrasonic signal, timing, duration, etc. Coupled with other components of the base station, the types of abnormality of the water drainage assembly or the types of malfunction regarding conveyance of water from the water source to the cleaning unit (such as detector failure, lack of water supply, pipeline blockage, water leakage, etc. ) can be determined.
  • the flow meter is used to detect the amount of water flowing into or out of the water tank (e.g., sewage tank 415) .
  • the flow meter may be of a mechanical type or an electromagnetic type.
  • the flow meter can be any one of an infrared sensor, a capacitive sensor, a Hall sensor, an ultrasonic sensor, or the like, or any combination of these sensors.
  • the flow meter is provided on or near the pipe 421 or the drainage pipe 422 in order to ensure accurate measurement of the water flow in real time.
  • the flow meter can be positioned between the drainage inlet 412 and any one of the first valve 427, the pressure regulator 425, or the filter 423.
  • a flow meter can also be positioned at or near the drainage outlet 414 in order to measure the water flowing out of the water drainage assembly 406 in real time.
  • the anti-overflow detector (e.g., the anti-overflow detector 441) is to detect whether the water overflows from the water tank (e.g., sewage tank 415) .
  • the anti-overflow detector may be of a mechanical type or an electromagnetic type.
  • the anti-overflow detector can be any one of a float valve, a liquid level meter, an infrared sensor, a capacitive sensor, a Hall sensor, an ultrasonic sensor, or the like, or any combination of the preceding ones.
  • the anti-overflow detector may be positioned inside the water tank or near an overflow outlet of the water tank. In an example where a pressure sensor is used as the anti-overflow detector, once the water starts to flow out of the water tank, the sensor is triggered so that the inflow of the water through the water inlet can be stopped.
  • the water amount detector is used to detect the amount of water stored in the water tank (e.g., water tank 415) .
  • the water level detector is used to detect the level of water stored in the water tank (e.g., water tank 415) , which in turn indicates the amount of water stored therein.
  • the following description will use the water level detector as an example, but it is understood that the water level detector is interchangeable with the water amount detector and thus the same description applies to the water amount detector as well.
  • the water level detector may be of a mechanical type or an electromagnetic type.
  • the water level detector can be any one of a float valve, a liquid level meter, an infrared sensor, a capacitive sensor, a Hall sensor, an ultrasonic sensor, or the like, or any combination of the preceding ones.
  • the water level detector may be provided inside the water tank.
  • a water level detector 537 may be attached to the inside wall of the sewage tank 515.
  • the water level detector 537 may be triggered once the water level reaches level L3.
  • L3 is a water level indicates that enough water has filled in the sewage tank 515 for need to be drained.
  • the water level detector may have multiple parts, and some of the parts may be provided inside or near the water tank while the other parts are remotely coupled to the parts. In some embodiments where the water level detector is submerged in the water, it is designed to be waterproof.
  • the abnormality alarm is used to notify the base station, the cleaning system, or a user of the base station or the cleaning system that there is a malfunction in the station or the system regarding conveyance of water from the water source to the cleaning unit.
  • the station or the system may perform operations corresponding to the type of malfunction so identified.
  • the abnormality alarm may be a component or function unit of the base station or the cleaning system. Alternatively, it may be separately provided and apart from the base station or the cleaning device.
  • the abnormality alarm can be any one of an acousto-optic alarm device, a display screen, a notification application installed on the base station, a notification application installed on a terminal device capable of communication with the base station, or the like, or any combination of the preceding ones.
  • the notification may be a warning light, a buzzer sound, etc.
  • the terminal device may be a cellphone equipped with the application that manifests the abnormality.
  • the timer is a typical component of a computer system. It is configured to calculate time intervals or frequency, and often includes comparison logic to compare the timer value with a preset value that triggers a specific action when the timer value matches or exceeds the preset value.
  • the timer may be coupled to one or more of the processor, the controller, the detector, or the abnormality alarm.
  • the controller e.g., first controller, second controller
  • the valve e.g., first valve 427, second value 428, to turn off.
  • the timer can assist in determining the existence or the velocity of a water flow into the water supply assembly.
  • the timer can assist in determining whether a water level has reached a preset threshold, and if so, a corresponding operation (e.g., turning off the valve) is triggered.
  • FIG. 5 illustrates a schematic diagram of another exemplary water drainage assembly 506, according to some aspects of the present disclosure.
  • the water supply assembly 506 includes a sewage tank 515, a pipe 521, a drainage pipe 522, a filter 523, a pressure regulator 525, a first valve 527, a second valve 528, a drainage inlet 512, and a drainage outlet 514.
  • a first emptying detector 531 of the water drainage assembly is provided inside the sewage tank 515.
  • the first emptying detector 531 is provided at bottom of the sewage tank 515.
  • the first emptying detector 531 is configured to generate an emptying signal in response to the sewage tank being emptied (e.g., level L4) .
  • the first emptying detector 531 detects the amount of water remaining in the sewage tank 515.
  • a second emptying detector 533 of the water drainage assembly is provided inside the drainage pipe 522.
  • the second emptying detector 533 is configured to detect water flow in the drainage pipe 522 connected to the outlet 514 of the sewage tank 515 and generates a water flow signal in response to water flow being detected in the drainage pipe 522. It is understood that this is only one exemplary illustration of the water drainage assembly according to the present disclosure, and is not intended to limit the scope thereof.
  • the self-checking module may include a water level detector 537, which is configured to detect a level of water accumulated in the sewage tank 515.
  • the water level detector 537 generates a first complete signal in response to the level of water accumulated in the sewage tank 515 reaching a first water level (e.g., level L3) .
  • the first water level is a water level indicates that enough water has filled in the sewage tank 515 that needs to be drained.
  • the self-checking module according to the present disclosure may include a water amount detector 535, which is configured to detect an amount of water accumulated in the sewage tank 515.
  • the water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank 515 reaching a first water amount (e.g., level L2) .
  • the first water amount is a water amount indicates that enough water has filled in the sewage tank 515 that needs to be drained.
  • the water amount of the first water amount and the water amount of the first water level is the same.
  • a cleaning system may include both a mobile cleaner and a base station.
  • the base station and the mobile cleaner are not the only parts that constitute the cleaning system.
  • the cleaning system may also include a power supply assembly.
  • the power supply assembly is configured to supply power to the base station.
  • the electrical power could trigger water conveyance mechanism, such as a water pump or an air pump.
  • the base station is able to convey water into, within, or out of the water supply assembly.
  • the power supply assembly may be an internal battery pack (such as a battery pack inside the base station) , or receive AC power from an external power source (such as residential power lines) .
  • the power supply assembly may provide sufficient electrical power for one or more of the following operations: for the cleaning unit to wash or sanitize the mobile cleaner; for the base station to charge the mobile cleaner; for the self-checking module to detect abnormality; for the base station or the cleaning system to notify the malfunction; for the base station or the cleaning system to perform operations corresponding to the type of malfunction so identified.
  • FIG. 6 is a schematic flowchart of an exemplary method 600 for self-checking a base station for a mobile cleaner, according to some aspects of the present disclosure.
  • the method 600 will be described in conjunction with the various parts and components of the base station introduced above.
  • the base station can be any of the base stations described herein, such as the base station 100 or the base station 200.
  • the mobile cleaner can be any of the mobile cleaners described herein, such as a cleaning robot, a handheld vacuum, or a vacuum-mop robot.
  • the self-checking method 600 can be implemented by a self-checking module of the base station, such as the self-checking module 108. It is understood that the operations shown in method 600 are not exhaustive and that other operations can be performed as well before, after, or between any of the illustrated operations. Further, some of the operations may be performed simultaneously, or in a different order than that shown in FIG. 6.
  • the base station includes a dock (e.g., dock 102) that accommodates the mobile cleaner.
  • the mobile cleaner may be cleaned in a cleaning area (e.g., cleaning area 104) with water supplied from a water source to the cleaning area via a water supply assembly.
  • Water e.g., sewage
  • a water drainage assembly e.g., water drainage assembly 106
  • the speed of the water absorbing may be measured by a flow meter provided at or near a drainage inlet (e.g., drainage inlet 412) of the water drainage assembly, also known as the “inlet velocity.
  • the speed of the water drainage may be measured by a flow meter provided at or near a drainage outlet (e.g., drainage outlet 414) of the water supply assembly, thus also known as the “outlet velocity. ”
  • the water drainage assembly may include a first valve controlling the amount and speed of the water filling in the water drainage assembly via the drainage inlet. It may also include a water pump or an air pump at or near the water outlet to drive the water from the water drainage assembly to outside, and the speed of the outgoing water may be controlled by the water pump or the air pump (e.g., depending on the pressure applied to the water by the pump) . It may further include one or more detectors (such as an anti-overflow detector, a water amount detector, a water level detector etc. ) to detect the amount of water stored in the water supply assembly.
  • detectors such as an anti-overflow detector, a water amount detector, a water level detector etc.
  • the valve, the one or more detectors, and the one or more flow meters all work properly to ensure that water is safely conveyed from the cleaning area to the sewage tank or from the sewage tank to outside.
  • the first valve may be controlled to stop absorbing water to the water drainage assembly.
  • the first valve may also be controlled to stop absorbing water to the water drainage assembly.
  • the pressure regulator may be controlled to adjust the velocity so that it returns to the default velocity range.
  • a malfunction may occur, which needs to be addressed in a convenient and efficient manner.
  • the method 600 detects, by the self-checking module, a malfunction regarding drainage of water from the sewage tank to outside.
  • the malfunction is detected by one or more sensors provided in the base station, such as the anti-overflow detector 441, the first emptying detector 531, the second emptying detector 533, the water level detector, the water amount detector, the flow meter, etc.
  • the self-checking module can detect a malfunction by way of lack of output signals from the sensors.
  • the method 600 identifies a type of the detected malfunction.
  • the identification may be performed by the self-checking module or a processor executing computer instructions stored in a memory. With the advanced product design and innovative utilization of various sensors, the present disclosure is capable of recognizing multiple types of malfunction and distinguishing them from each other. The identification may be carried out by the self-checking module.
  • a processor of the self-checking module is able to receive feedbacks from the various sensors, compare the feedbacks with the types of malfunction stored in the memory, and determine if there is a match to any type. If so, the type of malfunction is thus identified.
  • the method 600 generates a warning signal correlated to the identified type of the detected malfunction.
  • the warning signal may be generated by the self-checking module.
  • the warning signal may come from an abnormality alarm. The following describes in detail how each type of the detected malfunction is identified and how each warning signal correlated to the identified type of the detected malfunction is generated, according to certain aspects of the present disclosure.
  • the valve (e.g., valve 427/527/428/528) is checked to see if it is in a correct working state. If not, the valve is determined to malfunction.
  • the method 600 runs a quick diagnosis of the status of the valve, which is supposed to be electrically connected. If no electrical connection is established with the valve, it is determined that the valve is not in a correct working state. Alternatively, when the base station is powered off, the valve is supposed to be disconnected from electrical power. If electrical connection to the valve is detected, it is determined that the valve is not in a correct working state.
  • the diagnosis or the self-checking can be periodically conducted for multiple times, so that any malfunction of the valve can be immediately detected, thereby reducing the impact of malfunction caused by valve failure.
  • the method 600 may generate a first warning signal correlated to the detected result.
  • This type of malfunction may be categorized as a Type I malfunction.
  • the first warning signal is disseminated by the abnormality alarm (e.g., an acousto-optic alarm device) in the form of buzzer sound, warning light, periodical flash, etc. This allows the user to be easily noticed of the abnormality.
  • the abnormality alarm e.g., an acousto-optic alarm device
  • FIG. 7A illustrates a flowchart of an example 605 of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
  • the self-checking module may include an anti-overflow detector (such as the anti-overflow detector 441) , which is configured to generate a spill-over signal in response to the water overflowing from the sewage tank.
  • the anti-overflow detector is installed in the inner top of the sewage tank.
  • the self-checking module is configured to stop absorbing water from the cleaning area.
  • the anti-overflow detector is configured to trigger an overflow prevention operation when water in the sewage tank reaches a preset water level or a preset water amount.
  • the trigger duration is acquired through a timer electrically connected to the anti-overflow detector.
  • the timer can be any of the timers described herein.
  • the first preset period t1 can be set as a time value that the anti-overflow detector generates the spill-over signal or the level of water accumulated in the sewage tank reaches a first water level or the amount of water accumulated in the sewage tank reaches a first water amount under normal conditions. In some embodiments, the first preset period t1 can be adjusted by a user according to actual needs.
  • the water level is supposed to reach L1 (and thus the spill-over signal is received) before the first preset period t1 expires in a process of absorbing water.
  • a malfunction may have occurred.
  • failure of the anti-overflow detector could have resulted in such a malfunction, which may be categorized as a Type II malfunction.
  • some of the causes can be identified as causes for other types of malfunction and thus eliminated from the causes for the current type of malfunction. This saves time of subsequent checking and repairing by the user.
  • the method 600 may generate a second warning signal.
  • This type of malfunction may be categorized as the Type II malfunction.
  • the second warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval.
  • the intensity of the second warning signal may be proportional to the extent of time. For example, the longer it takes the anti-overflow detector to generate the spill-over signal, the louder the buzzer sound is.This enhances the effect of notification in case of emergency.
  • a trigger duration required for the anti-overflow detector to receive the spill-over signal may be acquired and an absolute value of a difference between any two trigger durations (T1) may be calculated.
  • the absolute value of the difference between any two trigger durations (T1) may be compared with a first threshold value (P1) .
  • the first threshold value (P1) can be adjusted by a user according to actual needs.
  • the method 600 may generate a third warning signal.
  • This type of malfunction may be categorized as the Type III malfunction.
  • the third warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I and Type II malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval.
  • the intensity of the third warning signal may be proportional to the extent of time. For example, the greater T1 is, the louder the buzzer sound is. This enhances the effect of notification in case of emergency.
  • the trigger duration required for the anti-overflow detector to receive the spill-over signal may be acquired, one trigger duration from at least two trigger durations may be selected as a reference duration and the absolute value of the difference between each remaining trigger duration and the reference duration (T2) may be calculated. The absolute value of the difference between each remaining trigger duration and the reference duration (T2) may be compared with a second threshold value (P2) . In some embodiments, the second threshold value (P2) can be adjusted by a user according to actual needs.
  • the method 600 may generate a fourth warning signal.
  • This type of malfunction may be categorized as a Type IV malfunction.
  • the Type IV malfunction may be the same as the Type III malfunction.
  • the trigger duration required for the anti-overflow detector to receive the spill-over signal may be acquired, a maximum trigger duration and a minimum trigger duration from at least two trigger durations may be selected and the absolute value of the difference between the maximum duration and the minimum duration (T3) may be calculated.
  • the absolute value of the difference between the maximum duration and the minimum duration (T3) may be compared with a third threshold value (P3) .
  • the third threshold value (P3) can be adjusted by a user according to actual needs.
  • the method 600 may generate a fifth warning signal.
  • This type of malfunction may be categorized as the Type V malfunction.
  • the Type V malfunction may be the same as the Type III malfunction.
  • FIG. 7B illustrates a flowchart of an example 607 of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
  • the self-checking module may include a water level detector (such as the water level detector 537) , which is configured to detect a level of water accumulated in the sewage tank.
  • the water level detector generates a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level (such as the level L3) .
  • the first water level is a water level indicates that enough water has filled in the sewage tank 515 that needs to be drained.
  • the self-checking module may include a water amount detector (such as the water amount detector 535) , which is configured to detect an amount of water accumulated in the sewage tank.
  • the water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount (such as the level L2) .
  • the first water amount is a water amount indicates that enough water has filled in the sewage tank 515 that needs to be drained.
  • the water amount of the first water amount and the water amount of the first water level is the same.
  • an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated may be acquired.
  • an absolute value of a difference between any two amounts of water absorption may be calculated.
  • the absolute value of the difference between any two amounts of water absorption (A1) may be compared with a fourth threshold value (P4) .
  • the fourth threshold value (P4) can be adjusted by a user according to actual needs.
  • the method 600 may generate a sixth warning signal.
  • This type of malfunction may be categorized as the Type VI malfunction.
  • the Type VI malfunction may be the same as the Type III malfunction.
  • one amount of water absorption from at least two amounts of water absorption may be selected as a reference amount of water absorption and the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption may be calculated.
  • the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption (A2) may be compared with a fifth threshold value (P5) .
  • the fifth threshold value (P5) can be adjusted by a user according to actual needs.
  • the method 600 may generate a seventh warning signal.
  • This type of malfunction may be categorized as the Type VII malfunction.
  • the Type VII malfunction may be the same as the Type III malfunction.
  • a maximum amount of water absorption and a minimum amount of water absorption may be selected from at least two amounts of water absorption and the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption may be calculated.
  • the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption (A3) may be compared with a sixth threshold value (P6) .
  • the sixth threshold value (P6) can be adjusted by a user according to actual needs.
  • the method 600 may generate an eighth warning signal.
  • This type of malfunction may be categorized as the Type VIII malfunction.
  • the Type VIII malfunction may be the same as the Type III malfunction.
  • an absolute value of a difference between the amount of water absorption and the amount of water drainage may be calculated.
  • the absolute value of the difference between the amount of water absorption and the amount of water drainage (A4) may be compared with a seventh threshold value (P7) .
  • the seventh threshold value (P7) can be adjusted by a user according to actual needs.
  • the method 600 may generate a ninth warning signal.
  • This type of malfunction may be categorized as the Type IX malfunction.
  • the Type IX malfunction may be the same as the Type III malfunction.
  • the second preset period t2 can be set as a time value that the sewage tank is emptied under normal conditions. In some embodiments, the second preset period t2 can be adjusted by a user according to actual needs.
  • the sewage tank is supposed to be empty (and thus the emptying signal is received) until the second preset period t2 expires in a process of draining water.
  • a malfunction may have occurred. For example, failure of the first emptying detector and blockage of the drainage pipe could have resulted in such a malfunction, which may be categorized as a Type X malfunction.
  • some of the causes can be identified as causes for other types of malfunction and thus eliminated from the causes for the current type of malfunction. This saves time of subsequent checking and repairing by the user.
  • the method 600 may generate a tenth warning signal.
  • This type of malfunction may be categorized as the Type X malfunction.
  • the tenth warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval.
  • the intensity of the second warning signal may be proportional to the extent of time. For example, the longer it takes the first emptying detector to generate the emptying signal, the louder the buzzer sound is.This enhances the effect of notification in case of emergency.
  • the sewage tank is supposed to be empty (and thus the water flow signal is not received) until the third preset period t3 expires in a process of draining water.
  • the self-checking module or any other component of the base station receives the emptying signal until the third preset period t3 expires, a malfunction may have occurred.
  • blockage of the drainage pipe could have resulted in such a malfunction, which may be categorized as a Type XI malfunction.
  • some of the causes can be identified as causes for other types of malfunction and thus eliminated from the causes for the current type of malfunction. This saves time of subsequent checking and repairing by the user.
  • the method 600 may generate an eleventh warning signal.
  • This type of malfunction may be categorized as the Type XI malfunction.
  • the eleventh warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval.
  • the intensity of the second warning signal may be proportional to the extent of time. For example, the longer it takes the second emptying detector to generate the water flow signal, the louder the buzzer sound is. This enhances the effect of notification in case of emergency.
  • method 600 optionally includes an additional step-Step 608-of performing an operation corresponding to the identified type of the detected malfunction.
  • the controller may be controlled to turn off the valve, so that water will not flow into or out the water drainage assembly or water supply assembly, allowing the base station, the cleaning system, or a user of the base station or the cleaning system to inspect the cause for the detected malfunction.
  • the base station or the cleaning system may isolate the failed sensor and notify the user to replace it.
  • the malfunction is related to blockage in drainage pipe, such as Type III, Type IV, Type V, Type VI, Type VII, Type VIII, Type IX, Type X, and Type XI malfunctions
  • the self-checking module or the processor of the base station or the cleaning system may start cleaning or changing the drainage pipe.
  • the third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals are same kind of warning signal
  • the Type III, Type IV, Type V, Type VI, Type VII, Type VIII, Type IX, Type X, and Type XI malfunctions are same kind of malfunction.
  • an embodiment of the present application provides the drainage detection method.
  • the drainage detection method is applied to the cleaning apparatus and includes the following operations.
  • an operation of absorbing water and draining water may be performed.
  • the water drainage assembly may be used on the handheld cleaning apparatus, the cleaning robot, the cleaning base station, the dishwasher or the like which has a washing or cleaning function, so that the sewage produced in the washing or cleaning process of the household device can be drained in a predetermined manner, so as to ensure the continuous operation of the device.
  • the mopping assembly the cleaning mop, the cleaning sponge, or the like.
  • the cleaning robot continuously mop and clean the ground during the movement of the cleaning robot, and it is necessary to return to the base station to clean the mopping assembly (such as mop) .
  • sewage may be produced.
  • the water drainage assembly may pump out the sewage in the cleaning area through a pipe and stores the sewage in the sewage tank. When the stored sewage reaches a certain amount, the sewage will be drained through the water drainage assembly.
  • the operation of absorbing water and draining water may include the operation of absorbing water and the operation of draining water, and both the operation of absorbing water and the operation of draining water may be performed by the water drainage assembly composed of a water pump and a valve (such as a reversing valve) , so as to drain sewage produced in the cleaning area during the cleaning process.
  • water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water may be acquired.
  • the water absorption and drainage information may be the time spent in absorbing a certain amount of sewage (which may be obtained by the anti-overflow device, a timing device, etc. ) , the amount of water absorbed within the preset time (which may be obtained by a flow detector, the water amount detector, the water level detector, etc. ) , the time spent in draining the certain amount of water, the amount of water drained within the preset time, etc.
  • the water absorption and drainage information may be obtained based on one single operation of absorbing water and draining water, or may be obtained based on integrating multiple operations of absorbing water and draining water.
  • the water absorption and drainage information may be flexibly set according to a specific situation of the application scenario or the drainage assembly, as long as a working condition of the water drainage assembly (i.e., whether normal or not) can be indicated, so that the user may determine whether the drainage pipe of the water drainage assembly is blocked or the like, or not, which is not limited herein.
  • whether the water drainage assembly is abnormal may be determined according to the water absorption and drainage information.
  • standards for determining whether the water drainage assembly is abnormal may be set as follows: whether the time it takes to absorb the certain amount of water several times varies greatly (it indicates that the drainage pipe may be blocked if the time spent in the several times varies greatly, the same goes for the following situations) , whether the amount of water absorbed several times within same preset time or when the water level threshold is reached varies greatly, whether the time it takes to draining the certain amount of water several times varies greatly, whether the amount of drained water several times within the same preset time varies greatly, whether the difference between the time spent in the single operation of absorbing water and the time spent in the single operation of draining water is greater, and whether the difference between the amount of water absorption water by the single operation of absorbing water and the amount of water drainage by the single operation of draining water is greater, and so on.
  • the standards for determining whether the water drainage assembly is abnormal according to the acquired water absorption and drainage information may also be flexibly set according to the specific situation of the application scenario or the water drainage assembly, as long as that the standards are relevant to the working condition of the water drainage assembly, for example, as long as whether the drainage pipe of the water drainage assembly is blocked or the like can be inferred, which is not limited herein.
  • the drainage detection method provided by this embodiment, after the operation of absorbing water and draining water is performed, the water absorption and drainage information which can indicate the working condition (abnormal or not) of the water drainage assembly is obtained, and whether the drainage pipe of the drainage assembly is blocked or the like may be judged based on the obtained water absorption and drainage information.
  • the water absorption and drainage information which can indicate the working condition (abnormal or not) of the water drainage assembly is obtained, and whether the drainage pipe of the drainage assembly is blocked or the like may be judged based on the obtained water absorption and drainage information.
  • the method may include the operation S4.
  • the operation of prompting abnormality of the water drainage assembly may be performed in responding to the determination that the water drainage assembly is abnormal according to the water absorption and drainage information.
  • the operation of prompting abnormality of the water drainage assembly may be performed by an acousto-optic alarm device (such as a warning light, a buzzer, etc. ) , and prompt information may also be presented to the user in the form of voice, text, and image.
  • an acousto-optic alarm device such as a warning light, a buzzer, etc.
  • the water drainage assembly may include the sewage tank.
  • the operation S1 may include the operation S11.
  • the operation of absorbing water and draining water may be performed at least twice, and performing the operation of absorbing water and draining water may include: performing the operation of absorbing water of absorbing water to the sewage tank (i.e., absorbing water to the sewage tank) until first detection information of the sewage tank meets a first preset condition, and performing an operation of draining water for draining water from the sewage tank (i.e., draining water from the sewage tank) .
  • the operation S2 may include the operation S21.
  • a piece of operation information may be acquired based on each operation of absorbing water and draining water, to obtain two or more pieces of operation information.
  • the operation S3 may include the operation S31.
  • whether the water drainage assembly is abnormal may be determined according to the two or more pieces of operation information.
  • the operation information may be the time spent in absorbing the preset amount of water or the amount of water absorption, etc.
  • the water drainage assembly being abnormal may be determined.
  • determination according to the operation information may be to compare the plurality of pieces of operation information in a preset manner, or to determine whether any operation information meets a certain preset condition (for example, greater than a certain preset threshold) , which can be set according to actual situations.
  • a certain preset condition for example, greater than a certain preset threshold
  • the sewage tank may include the anti-overflow detector.
  • the first preset condition may be the anti-overflow detector being triggered, that is, the anti-overflow detector generates the spill-over signal.
  • the operation S21 may include the operation S211.
  • the trigger duration from a beginning of each operation of absorbing water and a time of triggering the anti-overflow detector may be acquired and be taken as the piece of operation information.
  • the anti-overflow detector may be configured to trigger an overflow prevention operation when the water in the sewage tank reaches a preset water level (such as the first water level) or a preset water amount (such as the first water amount) .
  • the trigger duration may be acquired through a timer electrically connected to the anti-overflow detector.
  • the anti-overflow detector may be arranged in the sewage tank.
  • the anti-overflow operation may be triggered.
  • the preset water level or the preset water amount may indicate that the water of the sewage tank reaches the preset water amount that needs to be drained.
  • the anti-overflow detector may be triggered when the water of the sewage tank reaches the preset water amount.
  • the operation S31 may include the operations S311 and S312.
  • the absolute value of the difference between any two trigger durations may be calculated to acquire a calculating duration (T1) .
  • abnormal blockage in the drainage pipe of the water drainage assembly may be determined.
  • the calculating durations may include a plurality of absolute values of the differences (the number of the absolute values of the differences may be set according to the actual conditions, preferably, the absolute value of the difference between each two trigger durations may be calculated, i.e., pair-wise comparison manners) .
  • a first operation of absorbing water may be performed.
  • the trigger duration is x1
  • the water amount absorbed by the first operation of absorbing water in the trigger duration x1 is X.
  • a first operation of draining water may be performed. If the drainage pipe is not blocked, the sewage tank may be emptied within a certain period of time.
  • a second operation of absorbing water may be performed. When the water amount of the sewage tank reaches the preset water amount X, the trigger duration is x1, and the water amount absorbed by the second operation of absorbing water in the trigger duration x1 is X.
  • the sewage tank may not be emptied within the certain time duration, and the sewage tank may have a residual water amount X1.
  • the second operation of absorbing water may be performed.
  • the trigger duration is x2
  • the water amount absorbed by the second operation of absorbing water in the trigger duration x2 is L2.
  • X is the sum of X1 and X2, that is, X2 is less than X.
  • the first operation of absorbing water may be performed.
  • the trigger duration is x3
  • the water amount absorbed by the first operation of absorbing water in the trigger duration x3 is X4.
  • the first operation of draining water may be performed. If the drainage pipe is not blocked, the sewage tank may be smoothly drained within the certain duration, however, the sewage tank is not emptied, and the water amount of X3 is left.
  • the second operation of absorbing water may be performed.
  • the trigger duration is x3, and the water amount absorbed by the second operation of absorbing water in the trigger duration x3 is X4. If the drainage pipe is blocked, the sewage tank is not smoothly drained during the certain time duration, and the sewage tank may have a residual water amount X5 which is greater than X3. The second operation of absorbing water may be performed.
  • the trigger duration is x4, and the water amount absorbed by the second operation of absorbing water in the trigger duration x4 is X6.
  • X is the sum of X6 and X5, and X6 is less than X4.
  • the drainage pipe may be blocked (specifically, the pipe at the water outlet of the sewage tank may be blocked, and a certain drainage operation fails to empty the sewage stored in the sewage tank within the certain period of time , and some sewage still remains in the sewage tank, which causes the time spent from the next operation of absorbing water of absorbing water to trigger the anti-overflow operation becomes shorter) , and at this time, it can be determined that the drainage pipe is abnormal, so as to realize the fault location and facilitate the timely maintenance of the user.
  • the water drainage assembly in responding to the determination that all calculating durations are less than or equal to the first threshold value, the water drainage assembly may be determined to be normal.
  • the S31 may include the operations S314, S315 and S316.
  • the trigger duration may be selected from at least two trigger durations as the reference duration.
  • the absolute value of the difference between each remaining trigger duration and the reference duration (T2) may be calculated.
  • the drainage pipe of the water drainage assembly in responding to the determination that at least one the absolute value of the difference is greater than the second threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the reference duration may be the trigger duration obtained to ensure that the drainage assembly is in normal operation (no blockage) .
  • the water drainage assembly in responding to the determination that all absolute values of all differences are not greater than the second threshold value, the water drainage assembly may be determined to be normal.
  • the operation S31 may include the operations S318, S319 and S3110.
  • the maximum trigger duration and the minimum trigger duration may be selected from at least two trigger durations.
  • the absolute value of the difference between the maximum trigger duration and the minimum trigger duration may be calculated to obtain the first target value (T3) .
  • the drainage pipe of the water drainage assembly in responding to the determination that the absolute value of the first target value is greater than the third threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the situation that the drainage pipe is progressively blocked (the dirt gradually accumulates in the drainage pipe) or the trigger duration is progressively shortened in small increments may be directly targeted. Only one calculation may be used to determine whether the drainage pipe is blocked, which further reduce the computation burden.
  • the water drainage assembly in responding to the determination that the first target value is less than or equal to the third threshold value, the water drainage assembly may be determined to be normal.
  • the sewage tank may include a preset detector.
  • the operation S21 may include the operation S212.
  • the amount of water absorption absorbed from the beginning of each operation of absorbing water until the first detection information meets the first preset condition, and the amount of water absorption may be taken as the piece of operation information.
  • the preset detector is the anti-overflow detector, or the water amount detector, or the water level detector.
  • the first preset condition may be: the anti-overflow detector being triggered; or the water amount of the sewage tank detected by the water amount detector reaching the first water amount; or the water level of the sewage tank detected by the water level detector reaching the first water level.
  • each of the anti-overflow detector, the water amount detector, and the water level detector may be a float valve, a flow meter, an infrared detector, an electrical signal detector, a Hall detector, an ultrasonic detector, or the like which can be used to indicate that the water in the sewage tank reaches a certain amount.
  • operation S31 may include the operation S3112.
  • the drainage pipe of the water drainage assembly in responding to the determination that at least one calculation of water absorption is greater than the fourth threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the blockage condition of the drainage pipe may be judged by comparing the amounts of water absorption of two operations of absorbing water. If the difference between the amounts of water absorption of the two operations of absorbing water is great (greater than the fourth threshold value) , it may indicate that the drainage pipe is blocked.
  • the water drainage assembly in responding to the determination that all calculations of water absorption are less than or equal to the fourth threshold value, the water drainage assembly may be determined to be normal.
  • the operation S31 may include the operations S3115, S3116 and S3117.
  • one amount of water absorption may be selected from at least two amounts of water absorption and may be taken as the reference amount of water absorption.
  • the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption (A2) may be calculated.
  • the drainage pipe of the water drainage assembly in responding to the determination that the absolute value of the difference is greater than the fifth threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the reference amount of water absorption may be an obtained water absorption which can ensure that the water drainage assembly is in a normal operating state (no blockage) .
  • the reference amount of water absorption may be an obtained water absorption which can ensure that the water drainage assembly is in a normal operating state (no blockage) .
  • the following operation may also be included.
  • the water drainage assembly in responding to the determination that all absolute values of all differences are not greater than the fifth threshold value, the water drainage assembly may be determined to be normal.
  • the operation S31 may include the operations S3119, S3120 and S3121.
  • the maximum amount of water absorption and the minimum amount of water absorption may be selected from at least two amounts of water absorption.
  • the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption (A3) may be calculated to obtain the second target value.
  • the drainage pipe of the water drainage assembly in responding to the determination that the second target value is greater than the sixth threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the situation that the drainage pipe is progressively blocked (the dirt gradually accumulates in the drainage pipe) or the amount of water absorption is progressively reduced in small increments may be directly targeted. Only one calculation may be used to determine whether the drainage pipe is blocked, which further reduces the computation burden.
  • the drainage assembly in responding to the determination that the second target value is less than or equal to the sixth threshold value, the drainage assembly may be determined to be normal.
  • the water drainage assembly may include the sewage tank.
  • the operation S1 may include the operation S12.
  • one operation of absorbing water and draining water may be performed, and the one operation of absorbing water and draining water may include: performing the operation of absorbing water of absorbing water to the sewage tank (i.e., absorbing water to the sewage tank) until second detection information of the sewage tank meets the second preset condition, and performing the operation of draining water of draining water from the sewage tank (i.e., draining water from the sewage tank) .
  • the second preset condition may be that sewage absorbed by the operation of absorbing water reaches the preset amount, or the duration of the operation of absorbing water reaches the preset time threshold, etc. In the specific implementation process, the second preset condition may be set according to the actual situation
  • the second detection information may be acquired by the anti-overflow detector, the flow detector, the water level detector, or the timer, etc.
  • the operation S2 may include the operations S22 and S23.
  • the amount of water absorption of absorbing water to the sewage tank may be acquired.
  • the amount of water drainage of draining water from the sewage tank may be acquired.
  • the operation S3 may include the operations S32 and S33.
  • the absolute value of the difference between the amount of water absorption and the amount of water drainage may be calculated to obtain the third target value.
  • the drainage pipe of the water drainage assembly in responding to the determination that the third target value is greater than the seventh preset threshold, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the amount of water absorption may be the amount of water absorbed when the second detection information of the sewage tank meets the second preset condition in one operation of absorbing water.
  • the amount of water drainage may be the amount of water drained in one water drainage operation.
  • the amount of water absorption and the amount of water drainage may be obtained through the flow meter, the water amount detector, the water level detector, the infrared detector, the electric signal detector, the Hall detector, the ultrasonic detector and the like.
  • the blockage condition of the drainage pipe may be judged by comparing the amount of water absorption and the amount of water drainage. If the difference between the amount of water absorbed in the sewage tank and the amount of water drained from the sewage tank is great (greater than the seventh preset threshold) , it may indicate that the drainage pipe is blocked.
  • the water drainage assembly in responding to the determination that the third target value is less than or equal to the seventh preset threshold, the water drainage assembly may be determined to be normal.
  • the water drainage assembly may further include the first emptying detector disposed at a bottom of the sewage tank.
  • the operation S3 may include the operation S35.
  • the drainage pipe of the water drainage assembly in responding to the determination that the water drainage operation lasts for the second preset period and the first emptying device is not triggered, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the first emptying detector may be the infrared detector, the electrical signal detector, the Hall detector, the ultrasonic detector, or the like.
  • the first emptying detector When the first emptying detector is triggered, it may indicate that the water in the sewage tank has been emptied, that is, the first emptying detector generates the emptying signal.
  • the water drainage operation lasts for a long time (namely the second preset period, it can be considered that under the normal situation, water in the sewage tank can be emptied after the second preset period) and the emptying detection is not triggered, it is indicated that there is certain amount of water remains in the sewage tank.
  • the drainage pipe may be determined to be blocked, and the water drainage operation cannot empty the sewage tank within the predetermined time.
  • the following operation may also be included.
  • the water drainage assembly in responding to the determination that the first emptying detector is triggered, the water drainage assembly may be determined to be normal.
  • the water drainage assembly may further include the second emptying detector disposed on the drainage pipe of the sewage tank.
  • the operation S3 may include the operation S37.
  • the drainage pipe of the water drainage assembly in responding to the determination that the water drainage operation lasts for the third preset period and the second emptying detector detects the water flow within the third preset period, the drainage pipe of the water drainage assembly may be determined to be blocked.
  • the second emptying detector may be the infrared detector, the electrical signal detector, the Hall detector, the ultrasonic detector, or the like.
  • the second emptying detector When the water drainage operation is performed for a long period of time and the second emptying detector detects a water flow (that is, the second emptying detector generates a water flow signal) , it may indicate that the sewage in the sewage tank flows out through the drainage pipe, that is, the sewage tank may be still not emptied. At this time, the drainage pipe may be determined to be blocked, so that the water drainage operation cannot be emptied within the predetermined time. On the contrary, if the second emptying detector does not detect the water flow after the third preset period, it may indicate that the sewage tank has been emptied within the predetermined time, and it may be determined that the drainage pipe is not blocked.
  • the following operation may also be included.
  • the water drainage assembly in responding to the determination that the water drainage operation lasts for the third preset period and the second emptying detector does not detect the water flow, the water drainage assembly may be determined to be normal.
  • the water drainage assembly may include the sewage tank provided with the anti-overflow detector.
  • the S11 may include the operations S1101 and S1102 performed before the operation of performing the water drainage operation of draining water of the sewage tank.
  • the anti-overflow detector in responding to the determination that the anti-overflow detector is not triggered within the first preset period, the anti-overflow detector may be determined to be abnormal, and the operation of prompting abnormality of the anti-overflow detector may be performed.
  • the anti-overflow detector may be the float valve, the water amount detector or the water level detector (when the preset water amount/preset water level is reached, control the pump to stop absorbing or control the valve to close) which is electrically connected to the water absorption device (which may include the water pump, the valve, etc. ) configured to perform the operation of absorbing water, or the like.
  • the water absorption device which may include the water pump, the valve, etc.
  • the anti-overflow detector is not triggered, it may indicate that the anti-overflow detector is abnormal.
  • the operation of prompting abnormality of the anti-overflow detector may be performed to remind the user to perform maintenance in time.
  • the operation of prompting abnormality of the water drainage assembly may be performed by the acousto-optic alarm device (such as the warning light, the buzzer, etc. ) , and prompt information may also be presented to the user in the form of voice, text, and image.
  • the acousto-optic alarm device such as the warning light, the buzzer, etc.
  • the anti-overflow detector in responding to the determination that the anti-overflow detector is triggered, the anti-overflow detector may be determined to be normal.
  • the method may include the operation S11011.
  • the anti-overflow detector After the operation of absorbing water is performed, if the anti-overflow detector is triggered, it may indicate that the water of the sewage tank is enough to be drained, and the next water drainage operation can be performed. At this time, the operation of absorbing water can be ended manually or by the anti-overflow detector.
  • the floating ball of the float valve may float up as the water level in the sewage tank rises.
  • the floating ball may float up to a highest point and drive a valve body at the other end of the float valve to block the water inlet of the sewage tank, so that water may be prevented from being continuously absorbed into the sewage tank.
  • the anti-overflow detector is the water amount detector or the water level detector (which may be the flow meter, the infrared detector, the electrical signal detector, the Hall detector, the ultrasonic detector, or the like.
  • the anti-overflow detector may be triggered and may control the water absorption device to stop the operation of absorbing water (such as closing the water pump and the valve) .
  • FIGs. 6, 7A, 7B, 7C, 8, 9 and 10 do not necessarily have to be performed in the order shown or all be performed. In some embodiments, the operations can be performed simultaneously, or in a different order. In some embodiments, some of the operations can be omitted.
  • the mobile cleaner or the base station may include a screen.
  • the screen is configured to display various system and operation information, including the notification of the warning signals. For example, when a warning signal is generated by the self-checking module, it can be displayed on such a screen.
  • acousto-optic signals may be emitted from the mobile cleaner, instead of being emitted from the base station as described above, so that the user can hear or see the signal while the mobile cleaner is in his or her proximity and the base station is far away.
  • the notification can be triggered by a wireless signal (such as via Bluetooth, Wi-Fi, WLAN, cellular network, etc. ) transmitted from the self-checking module of the base station to the mobile cleaner. This makes the notification process more flexible and effective.
  • a terminal device e.g., smartphone, tablet, wearable electronics, etc.
  • the terminal device may be pre-installed with software and hardware configured to transmit wireless signals (such as via Bluetooth, Wi-Fi, WLAN, cellular network, etc. ) between itself and the base station, the mobile cleaner, or the cleaning system.
  • the wireless signals may contain control signal, notification signal regarding malfunction, system status signal, etc.
  • the notification signal may be transmitted from the mobile cleaner, the base station, or the cleaning system to the terminal device to notify the user of the specific type of malfunction, according to the type of warning signal so received.
  • the notification signal may trigger a sound, a vibration, or a screen display of the terminal device specifically configured to each type of malfunction, and thus the user can quickly recognize the type of malfunction.
  • a base station for a mobile cleaner includes a dock configured to accommodate the mobile cleaner; a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock; a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
  • the self-checking module is further configured to further configured to identify a type of the detected malfunction and generate a warning signal correlated to the type of the detected malfunction.
  • the water drainage assembly includes: an inlet connected to the cleaning area; an outlet connected to outside; and a sewage tank configured to accumulate water absorbed from the cleaning area through the inlet and to drain water to outside through the outlet.
  • a first valve is positioned between the inlet and the cleaning area and a second valve is positioned between the outlet and outside.
  • the self-checking module includes a first controller electrically coupled to the first valve and configured to control the first valve, and a second controller electrically coupled to the second valve and configured to control the second valve.
  • the self-checking module is configured to detect a correct working state of the first valve or the second value, and generate a first warning signal when the first valve or the second value is not in the correct working state.
  • the self-checking module includes an anti-overflow detector configured to generate a spill-over signal in response to water overflowing from the sewage tank. When the spill-over signal is received, the self-checking module is configured to stop absorbing water from the cleaning area.
  • the self-checking module when the spill-over signal is not received from the anti-overflow detector after a first preset period has passed, the self-checking module is configured to generate a second warning signal.
  • the self-checking module is configured to acquire a trigger duration required for the anti-overflow detector to receive the spill-over signal and calculate an absolute value of a difference between any two trigger durations, and when the absolute value of the difference between any two trigger durations is greater than a first threshold value, the self-checking module is configured to generate a third warning signal.
  • the self-checking module is configured to acquire a trigger duration required for the anti-overflow detector to receive the spill-over signal, select one trigger duration from at least two trigger durations as a reference duration and calculate the absolute value of the difference between each remaining trigger duration and the reference duration. When at least one absolute value of the difference between the remaining trigger duration and the reference duration is greater than a second threshold value, the self-checking module is configured to generate a fourth warning signal.
  • the self-checking module is configured to acquire a trigger duration it takes the anti-overflow detector to receive the spill-over signal, select a maximum trigger duration and a minimum trigger duration from at least two trigger durations and calculate the absolute value of the difference between the maximum duration and the minimum duration. When the absolute value of the difference between the maximum duration and the minimum duration is greater than a third threshold value, the self-checking module is configured to generate a fifth warning signal.
  • the self-checking module includes a water level detector configured to detect a level of water accumulated in the sewage tank, and/or a water amount detector configured to detect an amount of water accumulated in the sewage tank, and/or an anti-overflow detector configured to generate a spill-over signal in response to water overflowing from the sewage tank.
  • the water level detector generates a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level
  • the water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount.
  • the self-checking module is configured to detect an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated.
  • the self-checking module is configured to calculate an absolute value of a difference between any two amounts of water absorption. When the absolute value of the difference between any two amounts of water absorption is greater than a fourth threshold value, the self-checking module is configured to generate a sixth warning signal.
  • the self-checking module is configured to select one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption and calculate the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption. When at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption is greater than a fifth threshold value, the self-checking module is configured to generate a seventh warning signal.
  • the self-checking module is configured to select a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption and calculate the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption. wherein, when the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption is greater than a sixth threshold value, the self-checking module is configured to generate an eighth warning signal.
  • the self-checking module is configured to acquire an amount of water drainage, calculate an absolute value of a difference between the amount of water absorption and the amount of water drainage. when the absolute value of the difference between the amount of water absorption and the amount of water drainage is greater than a seventh threshold value, the self-checking module is configured to generate a ninth warning signal.
  • the self-checking module includes a first emptying detector configured to generate an emptying signal in response to the sewage tank being emptied.
  • the self-checking module is configured to generate a tenth warning signal.
  • the self-checking module includes a second emptying detector configured to detect water flow in a drainage pipe connected to an outlet of the sewage tank.
  • the second emptying detector generates a water flow signal in response to water flow being detected in the drainage pipe connected to the outlet of the sewage tank.
  • the self-checking module is configured to generate an eleventh warning signal.
  • the mobile cleaner is one of a mobile cleaning robot, a handheld vacuum, or a vacuum-mop robot.
  • a user of the mobile cleaner is notified of at least one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals.
  • the notification is in at least one of the following forms: displaying on a screen of the mobile cleaner, displaying on a screen of the base station, emitting an acoustic signal from the mobile cleaner audible by the user, emitting an optic signal from the mobile cleaner viewable by the user, emitting an acoustic signal from the base station audible by the user, emitting an optic signal from the base station viewable by the user, transmitting a wireless signal from the mobile cleaner to a terminal device of the user, or transmitting a wireless signal from the base station to a terminal device of the user.
  • the first controller upon receipt of at least one of the first, second, third, fourth, fifth, sixth, seventh, and eighth warning signals, the first controller turns off the first valve and/or the second controller turns off the second valve.
  • a cleaning system includes a base station, a power supply assembly, and a mobile cleaner.
  • the base station includes a dock, a cleaning area, a water drainage assembly, and a self-checking module.
  • the power supply assembly is configured to supply power to the base station.
  • the dock is configured to accommodate the mobile cleaner and charge the mobile cleaner via the power supply assembly.
  • the cleaning area is configured to provide an area for cleaning the mobile cleaner accommodated in the dock.
  • the water drainage assembly is configured to drain water absorbed from the cleaning area to outside.
  • the self-checking module is configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
  • the self-checking module is further configured to identify a type of the detected malfunction and generate a warning signal correlated to the type of the detected malfunction.
  • the power supply assembly stops one or both of supplying power to the base station or charging the mobile cleaner.
  • a method for self-checking a base station for a mobile cleaner includes a water drainage assembly configured to drain water absorbed from a cleaning area to outside.
  • the method includes detecting, by a self-checking module, a malfunction regarding drainage of water from the sewage tank to outside.
  • the method further includes identifying a type of the detected malfunction, and generating a warning signal correlated to the type of the detected malfunction.
  • the water drainage assembly includes: an inlet connected to the cleaning area, an outlet connected to outside, and a sewage tank configured to accumulate water absorbed from the cleaning area through the inlet and to drain water to outside through the outlet.
  • a first valve is positioned between the inlet and the cleaning area and a second valve is positioned between the outlet and outside
  • the method further includes: detecting a correct working state of the first valve or the second value, and in response to the first valve or the second value not being in the correct working state, generating a first warning signal.
  • the method further includes generating a spill-over signal in response to water overflowing from the sewage tank, and in response to the spill-over signal being not received from the anti-overflow detector after a first preset period has passed, generating a second warning signal.
  • the method further includes acquiring a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level; calculating an absolute value of a difference between any two trigger durations; and generating a third warning signal, in response to the absolute value of the difference between any two trigger durations being greater than a first threshold value.
  • the method further includes acquiring a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level; selecting one trigger duration from at least two trigger durations as a reference duration; calculating the absolute value of the difference between each remaining trigger duration and the reference duration; and generating a fourth warning signal, in response to at least one absolute value of the difference between the remaining trigger duration and the reference duration being greater than a second threshold value.
  • the method further includes acquiring a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level; selecting a maximum trigger duration and a minimum trigger duration from at least two trigger durations; calculating the absolute value of the difference between the maximum duration and the minimum duration; and generating a fifth warning signal, in response to the absolute value of the difference between the maximum duration and the minimum duration being greater than a third threshold value.
  • the method further includes generating a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level, or generate a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount, or generate a spill-over signal in response to water overflowing from the sewage tank; and detecting an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated.
  • the method further includes calculating an absolute value of a difference between any two amounts of water absorption; and generating a sixth warning signal, in response to the absolute value of the difference between any two amounts of water absorption being greater than a fourth threshold value.
  • the method further includes selecting one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption; calculating the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption, and generating a seventh warning signal, in response to at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption being greater than a fifth threshold value.
  • the method further includes selecting a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption; calculating the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption; and generating an eighth warning signal, in response to the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption being greater than a sixth threshold value.
  • the method further includes detecting an amount of water drainage from starting draining water until the sewage tank is emptied; calculating an absolute value of a difference between the amount of water absorption and the amount of water drainage; and generating a ninth warning signal, in response to the absolute value of the difference between the amount of water absorption and the amount of water drainage being greater than a seventh threshold value.
  • the method further includes generating an emptying signal in response to the sewage tank being emptied; and in response to the emptying signal being not received before expiration of a second preset period, generating a tenth warning signal.
  • the method further includes detecting water flow in a drainage pipe connected to an outlet of the sewage tank; generate a water flow signal in response to water flow being detected in the drainage pipe connected to the outlet of the sewage tank; and in response to the water flow signal being received after a third preset period has passed, generating an eleventh warning signal.
  • the method further includes notifying a user of the mobile cleaner of at least one of the first, second, third, fourth, fifth, sixth, seven, eighth, ninth, tenth, and eleventh warning signals.
  • the notification is in at least one of the following forms: displaying on a screen of the mobile cleaner, displaying on a screen of the base station, emitting an acoustic signal from the mobile cleaner audible by the user, emitting an optic signal from the mobile cleaner viewable by the user, emitting an acoustic signal from the base station audible by the user, emitting an optic signal from the base station viewable by the user, transmitting a wireless signal from the mobile cleaner to a terminal device of the user, or transmitting a wireless signal from the base station to a terminal device of the user.
  • the method further includes turning off the valve upon receipt of at least one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals.

Abstract

A base station (100, 200) for a mobile cleaner. The base station (100, 200) includes a dock (102), a cleaning area (104), a water drainage assembly (106), and a self-checking module (108). The dock (102) is configured to accommodate the mobile cleaner. The cleaning area (104) is configured to provide an area for cleaning the mobile cleaner accommodated in the dock (102). The water drainage assembly (106) is configured to drain water absorbed from the cleaning area (104) to outside. The self-checking module (108) is configured to detect a malfunction regarding drainage of water from the cleaning area (104) to outside.

Description

BASE STATION, CLEANING SYSTEM, AND METHOD FOR SELF-CHECKING THEREOF
CROSS REFERENCE TO RELATED APPLICATIONS
The present application claims benefit of Chinese Patent Application No. 202111682959.4, filed on December 31, 2021, and entitled content of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to a base station, a cleaning system, and a method for self-checking of the base station and the cleaning system. In particular, a water drainage operation in the base station and the cleaning system, and self-checking thereof are disclosed herein.
BACKGROUND
Sewage produced by a cleaning apparatus during a daily cleaning process is usually drained through a drainage system of the cleaning apparatus. However, there are various types of dirt impurities in sewage, which can easily lead to one or more faults such as a pipe blockage in the drainage system of the cleaning apparatus. It is difficult for a user to discover and repair the faults in time when the fault occurs. As a result, a subsequent use of the cleaning apparatus will be affected due to a long time of the faults and an accumulation of some problems, and even the cleaning apparatus may be damaged. Thus, improvement over the existing design is contemplated.
SUMMARY
Embodiments of the present disclosure provide a drainage detection method, applied to a cleaning apparatus comprising a water drainage assembly, the drainage detection method includes: performing an operation of absorbing water and draining water; acquiring water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water; and determining whether the water drainage assembly is abnormal according to the water absorption and drainage information.
Embodiments of the present disclosure provide a cleaning apparatus. The cleaning apparatus includes a memory, a processor, and a computer program stored on the memory and executable by the processor, wherein the computer program, when being executed by the processor, implements the drainage detection method described above.
Embodiments of the present disclosure provide a computer-readable storage medium storing a drainage detection program. When the drainage detection program being executed by a processor, implements the drainage detection method described above.
Embodiments of the present disclosure provide a base station for a mobile cleaner. The base station includes a dock configured to accommodate the mobile cleaner; a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock; a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
Embodiments of the present disclosure also provide a cleaning system. The cleaning system includes a base station; a power supply assembly configured to supply power to the base station; and a mobile cleaner. The base station includes: a dock configured to accommodate the mobile cleaner and charge the mobile cleaner via the power supply assembly; a cleaning area  configured to provide an area for cleaning the mobile cleaner accommodated in the dock; a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
Embodiments of the present disclosure further provide a method for self-checking a base station for a mobile cleaner. The base station includes a water drainage assembly configured to drain water absorbed from a cleaning area to outside, the method includes: detect, by a self-checking module, a malfunction regarding drainage of water from the cleaning area to outside.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure, as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to clearly illustrate the technical solutions of the embodiments of the present disclosure or the related art, the drawings required in the description or the related art will be briefly described below. Obviously, the drawings in the following description are merely some embodiments of the present disclosure, and other drawings may be obtained by those of ordinary skill in the art according to the structures shown in these drawings without creative efforts.
FIG. 1 illustrates a block diagram of an exemplary base station, according to some aspects of the present disclosure.
FIG. 2A illustrates an exemplary base station with a front perspective view, according to some aspects of the present disclosure.
FIG. 2B illustrates the exemplary base station shown in FIG. 2A with a rear perspective view, according to some aspects of the present disclosure.
FIG. 3 illustrates an exemplary water drainage assembly, according to some aspects of the present disclosure.
FIG. 4 illustrates a schematic diagram of an exemplary water drainage assembly, according to some aspects of the present disclosure.
FIG. 5 illustrates a schematic diagram of another exemplary water drainage assembly, according to some aspects of the present disclosure.
FIG. 6 illustrates a flowchart of an exemplary method for self-checking a base station for a mobile cleaner, according to some aspects of the present disclosure.
FIG. 7A illustrates a flowchart of an example of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
FIG. 7B illustrates a flowchart of another example of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
FIG. 7C illustrates a flowchart of yet another example of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure.
FIG. 8 is a schematic flowchart of an exemplary drainage detection method according to some embodiments of the present application.
FIG. 9 is a schematic flowchart of another exemplary drainage detection method according to some embodiments of the present application.
FIG. 10 is a schematic flowchart of yet another exemplary drainage detection method according to some embodiments of the present application.
The implementation of the objective, function characteristics and advantages of the present application will be further described with reference to the accompanying drawings.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Although specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purpose only. As such, other configurations and  arrangements can be used without departing from the scope of the present disclosure. Also, the present disclosure can also be employed in a variety of other applications. Functional and structural features as described in the present disclosures can be combined, adjusted, and modified with one another and in ways not specifically depicted in the drawings, such that these combinations, adjustments, and modifications are within the scope of the present disclosure.
In general, terminology may be understood at least in part from usage in context. For example, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part upon context. Further, the terms “comprises, ” “comprising, ” “including, ” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Terms such as “upper, ” “lower, ” “inner, ” “outer, ” “front, ” “rear, ” and variations thereof herein are used for ease of description to explain the positioning of one element relative to a second element, and are not intended to be limiting to a specific orientation or position.
Terms such as “first, ” “second, ” and variations thereof herein are used to describe various elements, regions, sections, etc. and are not intended to be limiting.
Terms such as “connect, ” “couple, ” “communication with, ” and variations thereof herein are used broadly and encompass direct and indirect connections, communication and mountings, and are not restricted to electrical, physical, or mechanical attachments, connections, or mountings.
Now turn to the embodiments of the present disclosure. One way to resolve the above-mentioned problem of manually removing water is to provide the cleaning device with an automatic water drainage assembly. The automatic water drainage assembly is connected to a cleaning area of the base station and drains water of the cleaning area to outside through a sewage tank of the base station automatically, making the operation simpler and easier for the user. For example, the water drainage assembly connects the cleaning area of the base station with outside.
To further enhance the automation of water drainage in such cleaning devices, especially in terms of automatically identifying and notifying the type of malfunction regarding water drainage, the present disclosure introduces a base station for a mobile cleaner, the base station having a water drainage assembly and a self-checking module. The self-checking module can detect whether there is a malfunction regarding drainage of water from the cleaning area to outside, and identify the specific type and details of the malfunction if there is one. When the type of malfunction is identified, the self-checking module is able to send out a warning signal correlated to the type of malfunction so identified, and to notify the user of the malfunction. As a result, the efficiency of malfunction detection is significantly improved and the complexity of operating the cleaning device is mitigated.
The cleaning apparatus in embodiments of this application may be a cleaning robot, a base station, a handheld cleaning apparatus, or the like. The base station refers to the cleaning apparatus used in cooperation with the cleaning robot or the handheld cleaning apparatus. Taking the base station as an example, for convenience of users, the base station is often cooperated with the cleaning robot, and the base station can be used for charging the cleaning robot. When the power of the cleaning robot is less than a threshold during a cleaning process, the cleaning robot automatically moves to the base station for charging. The base station may also be used to clean a mopping assembly (such as a mop) of the cleaning robot. Specifically, the cleaning robot can move to the base station, so that a cleaning mechanism of the base station automatically cleans the mopping assembly of the cleaning robot. In addition to the foregoing functions, the base station may further be used to manage the cleaning robot, so that the cleaning robot can be more intelligently controlled during the process of performing the cleaning task, thereby improving the intelligence of robot. In order to clean the mopping assembly of the cleaning robot, a water drainage assembly and a cleaning area is provided inside the base station. The water drainage assembly includes a clean water tank. A water inlet of the clean water tank can receive water of an external water supply, to realize automatic water replenishing of the base station. The water in the clean water tank can be transported to the  cleaning areas where water is needed through a water channel. For example, when the mopping assembly needs to be cleaned, clean water of the clean water tank can be transported to a cleaning area, and sprayed on the mopping assembly in the cleaning area to clean the mopping assembly. After the cleaning of the mopping assembly is finished, the water drainage assembly can drain the sewage in the cleaning area to outside. The water drainage assembly includes a sewage tank. An operation of absorbing water can be performed and the sewage in the cleaning area can be absorbed to the sewage tank. The sewage tank may be used to collect the sewage, and the sewage in the sewage tank can be drained to the outside through the drainage pipe, for example, the operation of draining water can be performed after the sewage amount of the sewage tank reaches a certain sewage threshold, and the sewage of the sewage tank can be drained to the outside through a drainage pipe. For example, while the sewage in the sewage tank reaches a sewage threshold, the sewage in the sewage tank will be drained to the outside. In practical applications, if the water drainage assembly is installed abnormally, damaged, etc., the water drainage assembly cannot drain water normally, normal use of the user and the user experience will be affected. Therefore, self-checking may be performed on the water drainage assembly of the cleaning apparatus, specifically, the base station may be triggered to perform self-checking after the water drainage assembly is installed by the installer, or when being used by the user, for example, the user may trigger the self-checking function of the base station, and the base station may start self-checking. Alternatively, the base station may periodically perform self-checking. The methods of triggering the base station to perform self-checking are not limited in the present application.
FIG. 1 is a block diagram of an exemplary base station 100 for a mobile cleaner, according to some aspects of the present disclosure. The mobile cleaner can be any type of a cleaner that is detachable from the base station 100. For example, the mobile cleaner can be a mobile cleaning robot configured to move automatically above a two-dimensional area and clean up a surfaces it roams over. The mobile cleaner may sweep, mop, wash, or vacuum the surfaces, or perform any combination of two or more of the operations. A mobile cleaner capable of mopping and vacuuming is also known as a vacuum-mop robot. With the assistance of a processor and various sensors, the mobile cleaner may also survey the environment around its working area, plan its traveling trajectory in advance, and conduct obstacle avoidance while roaming. In another example, the mobile cleaner can be a handheld vacuum configured to clean up surfaces it passes over or approaches within a certain distance. The handheld vacuum may not be self-movable, but may be carried around by a user. The type of the mobile cleaner is not limited to the above examples. It is noted that the mobile cleaner and the base station 100 are both parts of a cleaning system according to the present disclosure, but each is an independent part from the other.
According to the present disclosure, the base station 100 may include a dock 102, a cleaning area 104, a water drainage assembly 106, and a self-checking module 108, as shown in FIG. 1. The dock 102 may be configured to accommodate the mobile cleaner. In some embodiments, the dock 102 may confine or fixate the mobile cleaner to the base station 100 to prevent it from unintended detachment from the base station 100. The cleaning area 104 may be configured to provide an area for cleaning the mobile cleaner when it is accommodated in the dock. Sewage produced during the cleaning may be drained by the water drainage assembly 106. The water drainage assembly 106 may drain sewage from the cleaning area 104 to the drain. In some embodiments, the drain may be a floor drain or sewer that is external to the base station 100. The drain may be connected to an outlet of the water drainage assembly 106 through, for example, a water hose, a water pipe, or the like. A filter may be installed between the external drain and the water drainage assembly 106 in order to prevent large particle dirts from entering the drain, which could potentially block the drain. The drain may connect to a septic tank or a system connected to a sewage treatment plant. In some other embodiments, the drain may be a main sewage tank within the base station, and the main sewage tank may collect sewage from the cleaning area via a conduit or the like. The sewage in the cleaning area 104 may be pumped into the main sewage tank. A pressure regulator may be provided between the cleaning area and the water drainage assembly, which is configured to regulate the pressure of the water flowing into the water drainage assembly, so that excessive water pressure damaging the water drainage assembly or insufficient water pressure delaying the water drainage can be avoided. Water (e.g., sewage) in cleaning area 104 after cleaning the mobile cleaner may be drained in time. The water drainage assembly 106 may drain water absorbed from the cleaning area to outside of the base station 100. It is understood that the present disclosure is not limited  to drainage of water, and other suitable types of liquid or fluid (e.g., soapy water, laundry solution, etc. ) may also be drained. The description herein uses the water as an example, and the same description applies to other types of liquid or fluid as well. The self-checking module 108 may be configured to detect a malfunction regarding drainage of water from the sewage tank to outside.
Hereinafter, embodiments of the base station according to the present disclosure will be described in conjunction with FIGs. 2A and 2B, which illustrate an exemplary base station 200, according to some aspects of the present disclosure. FIG. 2A is a front perspective view of the base station 200. The base station 200 includes a body 210. The body 210 has an upper portion 211 and a lower portion 213. The lower portion 213 can be placed on a substantially flat surface such that the base station 200 becomes stationary and cannot be easily moved around. The dock 202 is positioned at or near the lower portion 213 of the body 210, and may have an open chamber to accommodate the mobile cleaner. The thickness of the bottom of the body 210 is small enough in order not to jeopardize the mobile cleaner from docking into or undocking from the open chamber of the dock 202.
In some embodiments, as shown in FIG. 2A, the body 210 may include a water container 215 attached to the inner wall of the body 210. The water container 215 may include a water tank and a sewage tank. The water tank is configured to accumulate water, so that the water transported to the cleaning area 104 can be supplied from the water tank with an adjustable inlet velocity and pressure. The sewage tank is configured to absorb and store water from the cleaning area 104 after cleaning the mobile cleaner. In some embodiments, a water container 215 is not required in certain types of base stations. A base station without the water tank may have a smaller volume than the base station 200 shown in FIGs. 2A and 2B, while water supply to the cleaning area of the base station will depend on an external water source completely. Although the present embodiments are described with the base station 200 equipped with the water tank 215 as an example, it is understood that these embodiments are not exhaustive of all the embodiments of the present disclosure.
FIG. 2B is a rear perspective view of the base station 200. In some embodiments, as shown in FIG. 2B, the base station 200 further includes a water inlet 212 and a drainage outlet 222 on its rear side. The water inlet 212 and the drainage outlet 222 may be positioned in the middle portion of the rear side and protrudes from the body 210. FIG. 2B only illustrates one exemplary configuration of the water inlet 212 and the drainage outlet 222. In some embodiments, the water inlet 212 and the drainage outlet 222 may be embedded inside the body 210 without any protrusion, or positioned in the rear side at a place other than the middle portion. The water inlet 212 may be connected to a water source (not shown in FIGs. 2A or 2B) outside the body 210 of the base station 200. The drainage outlet 222 may be connected to outside (not shown in FIGs. 2A or 2B) outside the body 210 of the base station 200. Internally, the water inlet 212 is connected to the water tank of the water container 215 so that a water supply route is established, through which clean water from the water source can be conveyed to the water tank. The drainage outlet 222 is connected to the sewage tank of the water container 215 so that a water drainage route is established, through which sewage from the sewage tank can be conveyed to outside.
According to the present disclosure, the base station 200 further includes a cleaning area and a water drainage assembly. The cleaning area (not shown in FIGs. 2A or 2B) may be located inside the body 210. The water drainage assembly may include the abovementioned sewage tank and the drainage outlet 222. When the sewage tank is inside the body 210 and the drainage outlet 222 protrudes outside the body 210, an opening 221 that allows the protrusion is provided on a sidewall of the body 210, as shown in FIG. 2B.
FIG. 3 illustrates an exemplary water drainage assembly 306, according to some aspects of the present disclosure. The water drainage assembly 306 includes a sewage tank 315, a drainage inlet, and a drainage outlet 322. The sewage tank 315 is similar to the sewage tank of the water container 215, and the drainage outlet 322 is similar to the drainage outlet 222. The drainage inlet is connected to the cleaning area, and the drainage outlet 322 is connected to outside. The configurations of the sewage tank 315, the drainage inlet and the drainage outlet 322 are described in detail above in conjunction with FIGs. 2A and 2B and thus will not be repeated herein. On the other hand, FIG. 3 also illustrates an exemplary water supply assembly, according to some aspects of the present disclosure. The water supply assembly may include a water tank 325, a water inlet 312, and a water outlet 314. The water tank 325 is similar to the water tank of the water container 215, and the water inlet 312 is similar to the water inlet 212.  The configurations of the water tank and the water inlet are described in detail above in conjunction with FIGs. 2A and 2B and thus will not be repeated herein.
The water outlet 314 is configured to connect the water supply assembly with the cleaning area (not shown in FIG. 3) . The water outlet 314 may supply water stored in the water tank 325 to the cleaning area so that the mobile cleaner can be washed or sanitized. The inlet velocity and pressure of the water supply can be preset or adjusted manually by the user or automatically by the base station, so that the cleaning efficiency of the cleaning unit can be consistent. The conveyance of water from the water tank 325 to the cleaning area can be realized by a water pump or an air pump. In the example of an air pump, the water is pushed out of the water tank 325 through compression of the air above the water surface in the water tank 325. In some embodiments, sewage can be directly let out of the base station via the drainage outlet 322 connected to the sewage tank 315, a process known as a “draining process. ” Water (e.g., sewage) in the cleaning area after cleaning the mobile cleaner may be absorbed into the sewage tank 315 through the drainage inlet. Water in the sewage tank 315 may be drained to outside through the drainage outlet 322. The water outlet 314 may be provided on the same sidewall of the water tank 325 as the water inlet 312, as shown in FIG. 3. The drainage inlet may be provided on the same sidewall of the sewage tank 315 as the drainage outlet 322. It is understood that the positions of the water inlet 312, the water outlet 314, the drainage inlet and the drainage outlet 322 according to the present disclosure are not limited to those shown in FIG. 3. The outlet velocity and pressure of the water drainage can be preset or adjusted manually by the user or automatically by the base station, so that the cleaning efficiency of the cleaning unit can be consistent. The drainage of water from the sewage tank 315 to outside can be realized by a water pump or an air pump. In the example of an air pump, the water is pushed out of the sewage tank 315 through compression of the air above the water surface in the sewage tank 315.
FIG. 4 illustrates a schematic diagram of an exemplary water drainage assembly 406, according to some aspects of the present disclosure. Similar to the examples of water drainage assembly described above, the water drainage assembly 406 includes a sewage tank 415, a drainage inlet 412, and a drainage outlet 414. In some embodiments, the drainage outlet 414 is close to the bottom of the sewage tank 415, and the drainage inlet 412 is close to the top thereof. It is understood that the locations of the inlet and the outlet can be at other places of the water tank 415.
The sewage tank 415 may accumulate sewage after cleaning the mobile cleaner. The maximum volume of the sewage tank 415 is designed to be at least equal to an amount of water needed to clean up the mobile cleaner for one time. In some embodiments, the maximum volume of the sewage tank 415 is designed to be no more than cleaning up the mobile cleaner twice in order to ensure compactness of the base station. In an example where 500 ml water is needed to clean up the mobile cleaner for one time, the maximum volume of the sewage tank 415 can be set at least equal to 500 ml. Considering that some water may be left in the cleaning area in a last cleaning process, the maximum volume of the sewage tank 415 can be designed to exceed 500 ml, such as any volume within the range between 500 ml and 1,000 ml.
The drainage outlet 414 may have a shape of a tube with two open ends. One of the two open ends ( “lower end” ) is positioned close to the bottom of the sewage tank 415. Thus, when water (such as sewage) is stored in the sewage tank 415, the lower end is submerged in the water. The other of the two open ends ( “upper end” ) extends out of the sewage tank 415 and connects to outside or a drainage pipe 422 connected to outside. The drainage pipe 421 may be made of metal, alloy, plastic, a combination of two or more preceding materials, or any other suitable material. This configuration allows the water to be easily drained from the sewage tank 415 to outside by, for example, water pump, air pump, or capillary action.
The drainage inlet 412 may be connected to the cleaning area through a pipe 421. The pipe 421 may be made of metal, alloy, plastic, a combination of two or more preceding materials, or any other suitable material. In some embodiments, an anti-spill channel is led to the pipe 421 to drain overflow water in order to protect the base station from being damaged.
In some embodiments, a filter 423 is interposed on the drainage pipe 422 between the drainage outlet 414 and outside. The filter 423 can collect big piece of rubbish, impurities and harmful substances in the outflow water and prevent them from entering and clogging the drainage pipe 422. The filter 423 may include a collector for the impurities and harmful substances, The collector may be removable for easy dumping of the collected waste and replacement of the collector.
In some embodiments, a pressure regulator 425 is interposed on the pipe 421 between the drainage inlet 412 and the cleaning area to regulate the water pressure flowing into the sewage tank 415. The pressure regulator 425 can increase the water pressure when the water pressure is insufficient or relieve the water pressure when the water pressure is too high, so that the water pressure of the inflow water becomes controllable and relatively stable. The water pressure can be controlled to generate a desired water flow speed, which translates to the time of filling up the sewage tank 415. Thus, the pressure regulator 425 is a component configured to control the fill-up time of the sewage tank 415, and the time can be calculated by knowing the water pressure and the maximum volume of the sewage tank 415. In some embodiments, the pressure regulator 425 is a pressure reducer configured to reduce the water pressure of the inflow water when it is over a threshold value, in order to avoid excessive water pressure damaging the drainage inlet 412. In some embodiments, the pressure regulator can include multiple components. A portion of the components are located on the pipe 421 while the rest of the components are separately located away from the pipe 421 while being electrically coupled to the components on the pipe 421 through a wired or wireless connection. The user can thus remotely monitor and control the pressure of the water flowing into the sewage tank 415.
In some embodiments, a first valve 427 is interposed on the pipe 421 between the drainage inlet 412 and the cleaning area. The first valve 427 may be configured with two working states: an “on” state and an “off” state. Water can flow through the first valve 427 when it is in the “on” state. Water can be blocked by the first valve 427 when it is in the “off” state. The first valve 427 may be electrically coupled to and controlled by a first controller of the self-checking module (not shown in FIG. 4) to switch between the “on” and “off” states. The controller is configured to detect the working state of the first valve 427 by receiving signals indicating the state of the first valve 427 and determines whether the valve is in a correct working state. Once an incorrect working state is detected, the first valve 427 is instructed by the first controller to shut down the water flow into the sewage tank 415.
In some embodiments, a second valve 428 is interposed on the drainage pipe 422 between the drainage outlet 414 and outside. The second valve 428 may be configured with two working states: an “on” state and an “off” state. Water can flow through the second valve 428 when it is in the “on” state. Water can be blocked by the second valve 428 when it is in the “off” state. The second valve 428 may be electrically coupled to and controlled by a second controller of the self-checking module (not shown in FIG. 4) to switch between the “on” and “off” states. The controller is configured to detect the working state of the second valve 428 by receiving signals indicating the state of the second valve 428 and determines whether the valve is in a correct working state. Once an incorrect working state is detected, the second valve 428 is instructed by the second controller to shut down the water flow into the sewage tank 415.
It is noted that the sequence of the first valve 427 and the pressure regulator 425 is not limited to the sequence shown in FIG. 4 and can be any other suitable sequence. It is noted that the sequence of the second valve 428 and the filter 423 is not limited to the sequence shown in FIG. 4 and can be any other suitable sequence. Those skilled in the art may understand that the specific structures shown in FIG. 4 do not constitute exhaustive examples of the water drainage assembly, which may include more or fewer components than illustrated, combine some of the illustrated components, or have a different component arrangement.
According to the present disclosure, the self-checking module 108 may include one or more types of the following components or functional units: processor, memory, controller, detector, abnormality alarm, and timer. For each type of the component or functional unit included in the self-checking module 108, there can be one or more of the same type of the component or functional unit. In one example, the self-checking module 108 may include one processor, one memory, one controller, four detectors, one abnormality alarm, and one timer. In some embodiments, the self-checking module 108 may be a one-piece structure, for example, a system-on-chip (SoC) , that integrates all these components or functional units. In some embodiments, the self-checking module 108 may include components or functional units located at different places of the base station of the cleaning system that do not form an integrated structure.
The processor may include any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, microcontroller, and graphics processing unit (GPU) . The processor may include one or more hardware units (e.g., portion (s) of an integrated circuit) designed for use with other components or to execute part of a program. The program may be stored on a computer-readable medium, and when executed by the  processor, it may perform one or more functions disclosed herein. The processor may be configured as a separate processor module dedicated to performing various methods disclosed herein. Alternatively, the processor may be configured as a shared processor module for performing other functions unrelated to the methods disclosed herein.
The memory may include any appropriate type of mass storage provided to store any type of information that the processor may need to operate. For example, the memory may be a volatile or non-volatile, magnetic, semiconductor-based, tape-based, optical, removable, non-removable, or other type of storage device or tangible (i.e., non-transitory) computer-readable medium including, but not limited to, a ROM, a flash memory, a dynamic RAM, and a static RAM. The memory may be configured to store one or more computer programs to be executed by the processor to perform various functions disclosed herein. For example, the memory may be configured to store program (s) that may be executed by the processor to perform various methods disclosed herein. The memory may be further configured to store information and data used by the processor.
The controller may be a microcontroller electrically coupled to the processor and the memory. In some embodiments, the microcontroller is a small computer on a single very large-scale integration (VLSI) integrated circuit (IC) chip and contains one or more processors along with memory and programmable input/output peripherals. Alternatively, the controller may be a functional unit implemented by the processor and the memory. The controller may be configured to perform various controlling functions disclosed herein.
The detector may be a flow meter, an anti-overflow detector, a water amount detector, a water level detector, or the like. The detector may detect one or more of the following types of information: water flow, water amount, water level, infrared signal, electrical signal, trigger signal, ultrasonic signal, timing, duration, etc. Coupled with other components of the base station, the types of abnormality of the water drainage assembly or the types of malfunction regarding conveyance of water from the water source to the cleaning unit (such as detector failure, lack of water supply, pipeline blockage, water leakage, etc. ) can be determined.
The flow meter is used to detect the amount of water flowing into or out of the water tank (e.g., sewage tank 415) . The flow meter may be of a mechanical type or an electromagnetic type. The flow meter can be any one of an infrared sensor, a capacitive sensor, a Hall sensor, an ultrasonic sensor, or the like, or any combination of these sensors. In some embodiments, the flow meter is provided on or near the pipe 421 or the drainage pipe 422 in order to ensure accurate measurement of the water flow in real time. For example, the flow meter can be positioned between the drainage inlet 412 and any one of the first valve 427, the pressure regulator 425, or the filter 423. A flow meter can also be positioned at or near the drainage outlet 414 in order to measure the water flowing out of the water drainage assembly 406 in real time.
The anti-overflow detector (e.g., the anti-overflow detector 441) is to detect whether the water overflows from the water tank (e.g., sewage tank 415) . The anti-overflow detector may be of a mechanical type or an electromagnetic type. The anti-overflow detector can be any one of a float valve, a liquid level meter, an infrared sensor, a capacitive sensor, a Hall sensor, an ultrasonic sensor, or the like, or any combination of the preceding ones. The anti-overflow detector may be positioned inside the water tank or near an overflow outlet of the water tank. In an example where a pressure sensor is used as the anti-overflow detector, once the water starts to flow out of the water tank, the sensor is triggered so that the inflow of the water through the water inlet can be stopped.
The water amount detector is used to detect the amount of water stored in the water tank (e.g., water tank 415) . The water level detector is used to detect the level of water stored in the water tank (e.g., water tank 415) , which in turn indicates the amount of water stored therein. The following description will use the water level detector as an example, but it is understood that the water level detector is interchangeable with the water amount detector and thus the same description applies to the water amount detector as well. The water level detector may be of a mechanical type or an electromagnetic type. The water level detector can be any one of a float valve, a liquid level meter, an infrared sensor, a capacitive sensor, a Hall sensor, an ultrasonic sensor, or the like, or any combination of the preceding ones. The water level detector may be provided inside the water tank. In one example shown in FIG. 5, a water level detector 537 may be attached to the inside wall of the sewage tank 515. The water level detector 537 may be triggered once the water level reaches level L3. L3 is a water level indicates that enough water has filled in the sewage tank 515 for need to be drained. The water level detector  may have multiple parts, and some of the parts may be provided inside or near the water tank while the other parts are remotely coupled to the parts. In some embodiments where the water level detector is submerged in the water, it is designed to be waterproof.
The abnormality alarm is used to notify the base station, the cleaning system, or a user of the base station or the cleaning system that there is a malfunction in the station or the system regarding conveyance of water from the water source to the cleaning unit. The station or the system may perform operations corresponding to the type of malfunction so identified. The abnormality alarm may be a component or function unit of the base station or the cleaning system. Alternatively, it may be separately provided and apart from the base station or the cleaning device. The abnormality alarm can be any one of an acousto-optic alarm device, a display screen, a notification application installed on the base station, a notification application installed on a terminal device capable of communication with the base station, or the like, or any combination of the preceding ones. In the example of an acousto-optic alarm device, the notification may be a warning light, a buzzer sound, etc. The terminal device may be a cellphone equipped with the application that manifests the abnormality.
The timer is a typical component of a computer system. It is configured to calculate time intervals or frequency, and often includes comparison logic to compare the timer value with a preset value that triggers a specific action when the timer value matches or exceeds the preset value. The timer may be coupled to one or more of the processor, the controller, the detector, or the abnormality alarm. In some embodiments, when the detector receives an output from the timer indicating that a certain malfunction regarding water conveyance has occurred, the controller (e.g., first controller, second controller) can instruct the valve (e.g., first valve 427, second value 428) to turn off. Coupled with a flow meter, the timer can assist in determining the existence or the velocity of a water flow into the water supply assembly. Coupled with a water level detector, the timer can assist in determining whether a water level has reached a preset threshold, and if so, a corresponding operation (e.g., turning off the valve) is triggered.
FIG. 5 illustrates a schematic diagram of another exemplary water drainage assembly 506, according to some aspects of the present disclosure. Similar to the water drainage assembly 406, the water supply assembly 506 includes a sewage tank 515, a pipe 521, a drainage pipe 522, a filter 523, a pressure regulator 525, a first valve 527, a second valve 528, a drainage inlet 512, and a drainage outlet 514. A first emptying detector 531 of the water drainage assembly is provided inside the sewage tank 515. For example, the first emptying detector 531 is provided at bottom of the sewage tank 515. The first emptying detector 531 is configured to generate an emptying signal in response to the sewage tank being emptied (e.g., level L4) . In other words, the first emptying detector 531 detects the amount of water remaining in the sewage tank 515. A second emptying detector 533 of the water drainage assembly is provided inside the drainage pipe 522. The second emptying detector 533 is configured to detect water flow in the drainage pipe 522 connected to the outlet 514 of the sewage tank 515 and generates a water flow signal in response to water flow being detected in the drainage pipe 522. It is understood that this is only one exemplary illustration of the water drainage assembly according to the present disclosure, and is not intended to limit the scope thereof.
As discussed in FIG. 5, the self-checking module according to the present disclosure may include a water level detector 537, which is configured to detect a level of water accumulated in the sewage tank 515. The water level detector 537 generates a first complete signal in response to the level of water accumulated in the sewage tank 515 reaching a first water level (e.g., level L3) . The first water level is a water level indicates that enough water has filled in the sewage tank 515 that needs to be drained. In some embodiments, the self-checking module according to the present disclosure may include a water amount detector 535, which is configured to detect an amount of water accumulated in the sewage tank 515. The water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank 515 reaching a first water amount (e.g., level L2) . The first water amount is a water amount indicates that enough water has filled in the sewage tank 515 that needs to be drained. In some embodiments, the water amount of the first water amount and the water amount of the first water level is the same.
As discussed above, a cleaning system according to the present disclosure may include both a mobile cleaner and a base station. In some embodiments, the base station and the mobile cleaner are not the only parts that constitute the cleaning system. For example, the cleaning system may also include a power supply assembly. The power supply assembly is configured to supply power to the base station. The electrical power could trigger water  conveyance mechanism, such as a water pump or an air pump. As a result, the base station is able to convey water into, within, or out of the water supply assembly. The power supply assembly may be an internal battery pack (such as a battery pack inside the base station) , or receive AC power from an external power source (such as residential power lines) . According to the present disclosure, the power supply assembly may provide sufficient electrical power for one or more of the following operations: for the cleaning unit to wash or sanitize the mobile cleaner; for the base station to charge the mobile cleaner; for the self-checking module to detect abnormality; for the base station or the cleaning system to notify the malfunction; for the base station or the cleaning system to perform operations corresponding to the type of malfunction so identified.
FIG. 6 is a schematic flowchart of an exemplary method 600 for self-checking a base station for a mobile cleaner, according to some aspects of the present disclosure. The method 600 will be described in conjunction with the various parts and components of the base station introduced above. The base station can be any of the base stations described herein, such as the base station 100 or the base station 200. The mobile cleaner can be any of the mobile cleaners described herein, such as a cleaning robot, a handheld vacuum, or a vacuum-mop robot. The self-checking method 600 can be implemented by a self-checking module of the base station, such as the self-checking module 108. It is understood that the operations shown in method 600 are not exhaustive and that other operations can be performed as well before, after, or between any of the illustrated operations. Further, some of the operations may be performed simultaneously, or in a different order than that shown in FIG. 6.
According to the present disclosure, the base station includes a dock (e.g., dock 102) that accommodates the mobile cleaner. Once docked, the mobile cleaner may be cleaned in a cleaning area (e.g., cleaning area 104) with water supplied from a water source to the cleaning area via a water supply assembly. Water (e.g., sewage) in the cleaning area after cleaning mobile cleaner may be drained via a water drainage assembly (e.g., water drainage assembly 106) . The speed of the water absorbing may be measured by a flow meter provided at or near a drainage inlet (e.g., drainage inlet 412) of the water drainage assembly, also known as the “inlet velocity. ” The speed of the water drainage may be measured by a flow meter provided at or near a drainage outlet (e.g., drainage outlet 414) of the water supply assembly, thus also known as the “outlet velocity. ” The water drainage assembly may include a first valve controlling the amount and speed of the water filling in the water drainage assembly via the drainage inlet. It may also include a water pump or an air pump at or near the water outlet to drive the water from the water drainage assembly to outside, and the speed of the outgoing water may be controlled by the water pump or the air pump (e.g., depending on the pressure applied to the water by the pump) . It may further include one or more detectors (such as an anti-overflow detector, a water amount detector, a water level detector etc. ) to detect the amount of water stored in the water supply assembly.
Under normal conditions, the valve, the one or more detectors, and the one or more flow meters all work properly to ensure that water is safely conveyed from the cleaning area to the sewage tank or from the sewage tank to outside. In one example, when the water level reaches a first set water level, the first valve may be controlled to stop absorbing water to the water drainage assembly. In another example, when the water level reaches a second set water level which is equal to or higher than the first set water level, the first valve may also be controlled to stop absorbing water to the water drainage assembly. In yet another example, when the inlet or outlet velocity of the water drainage assembly deviates from a default velocity range according to the feedback from the one or more flow meters, the pressure regulator may be controlled to adjust the velocity so that it returns to the default velocity range. However, sometimes a malfunction may occur, which needs to be addressed in a convenient and efficient manner.
At Step 602, the method 600 detects, by the self-checking module, a malfunction regarding drainage of water from the sewage tank to outside. In some embodiments, the malfunction is detected by one or more sensors provided in the base station, such as the anti-overflow detector 441, the first emptying detector 531, the second emptying detector 533, the water level detector, the water amount detector, the flow meter, etc. When timing signals are necessary for comparison with a threshold timing value, the timer is also relied upon in carrying out the detection. In some embodiments, when the one or more sensors themselves fail, the self-checking module can detect a malfunction by way of lack of output signals from the sensors. Some examples of the malfunction detectable by the self-checking module according  to the present disclosure are pipeline blockage, water leakage, sensor failure, installation abnormality, etc.
At Step 604, the method 600 identifies a type of the detected malfunction. The identification may be performed by the self-checking module or a processor executing computer instructions stored in a memory. With the advanced product design and innovative utilization of various sensors, the present disclosure is capable of recognizing multiple types of malfunction and distinguishing them from each other. The identification may be carried out by the self-checking module. In some embodiments, a processor of the self-checking module is able to receive feedbacks from the various sensors, compare the feedbacks with the types of malfunction stored in the memory, and determine if there is a match to any type. If so, the type of malfunction is thus identified. At Step 606, the method 600 generates a warning signal correlated to the identified type of the detected malfunction. The warning signal may be generated by the self-checking module. In some embodiments, the warning signal may come from an abnormality alarm. The following describes in detail how each type of the detected malfunction is identified and how each warning signal correlated to the identified type of the detected malfunction is generated, according to certain aspects of the present disclosure.
In some embodiments, the valve (e.g., valve 427/527/428/528) is checked to see if it is in a correct working state. If not, the valve is determined to malfunction. For example, when the base station is powered on, the method 600 runs a quick diagnosis of the status of the valve, which is supposed to be electrically connected. If no electrical connection is established with the valve, it is determined that the valve is not in a correct working state. Alternatively, when the base station is powered off, the valve is supposed to be disconnected from electrical power. If electrical connection to the valve is detected, it is determined that the valve is not in a correct working state. The diagnosis or the self-checking can be periodically conducted for multiple times, so that any malfunction of the valve can be immediately detected, thereby reducing the impact of malfunction caused by valve failure.
In response to the detection result that the valve is not in a correct working state, the method 600 may generate a first warning signal correlated to the detected result. This type of malfunction may be categorized as a Type I malfunction. In some embodiments, the first warning signal is disseminated by the abnormality alarm (e.g., an acousto-optic alarm device) in the form of buzzer sound, warning light, periodical flash, etc. This allows the user to be easily noticed of the abnormality.
FIG. 7A illustrates a flowchart of an example 605 of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure. As discussed in FIG. 4, the self-checking module according to the present disclosure may include an anti-overflow detector (such as the anti-overflow detector 441) , which is configured to generate a spill-over signal in response to the water overflowing from the sewage tank. For example, the anti-overflow detector is installed in the inner top of the sewage tank. When the spill-over signal is received, the self-checking module is configured to stop absorbing water from the cleaning area. In other words, the anti-overflow detector is configured to trigger an overflow prevention operation when water in the sewage tank reaches a preset water level or a preset water amount. The trigger duration is acquired through a timer electrically connected to the anti-overflow detector. The timer can be any of the timers described herein.
As shown in FIG. 7A, at Step 6040, absorbing water from the cleaning area starts. In some embodiments, the first preset period t1 can be set as a time value that the anti-overflow detector generates the spill-over signal or the level of water accumulated in the sewage tank reaches a first water level or the amount of water accumulated in the sewage tank reaches a first water amount under normal conditions. In some embodiments, the first preset period t1 can be adjusted by a user according to actual needs.
At Operation 6041, a determination is made as to whether the spill-over signal generated by the anti-overflow detector is received before expiration of the first time period t1. Under normal conditions, the water level is supposed to reach L1 (and thus the spill-over signal is received) before the first preset period t1 expires in a process of absorbing water. When either the self-checking module or any other component of the base station do not receive the spill-over signal before the first preset period t1 expires, a malfunction may have occurred. For example, failure of the anti-overflow detector could have resulted in such a malfunction, which may be categorized as a Type II malfunction. In some embodiments, some of the causes can be identified as causes for other types of malfunction and thus eliminated from the causes for the current type of malfunction. This saves time of subsequent checking and repairing by the user.
At Operation 6042, in response to the determination that the spill-over signal is not received from the anti-overflow detector after the first preset period t1 has passed, the method 600 may generate a second warning signal. This type of malfunction may be categorized as the Type II malfunction. Same as the Type I malfunction, in some embodiments, the second warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval. Alternatively, the intensity of the second warning signal may be proportional to the extent of time. For example, the longer it takes the anti-overflow detector to generate the spill-over signal, the louder the buzzer sound is.This enhances the effect of notification in case of emergency.
At Operation 6043, a determination is made as to whether T1 is greater than P1. In some embodiments, a trigger duration required for the anti-overflow detector to receive the spill-over signal may be acquired and an absolute value of a difference between any two trigger durations (T1) may be calculated. The absolute value of the difference between any two trigger durations (T1) may be compared with a first threshold value (P1) . In some embodiments, the first threshold value (P1) can be adjusted by a user according to actual needs.
At Operation 6044, in response to the determination that the absolute value of the difference between any two trigger durations is greater than a first threshold value, the method 600 may generate a third warning signal. This type of malfunction may be categorized as the Type III malfunction. Same as the Type I to Type II malfunction, in some embodiments, the third warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I and Type II malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval. Alternatively, the intensity of the third warning signal may be proportional to the extent of time. For example, the greater T1 is, the louder the buzzer sound is. This enhances the effect of notification in case of emergency.
At Operation 6045, a determination is made as to whether T2 is greater than P2. In some embodiments, the trigger duration required for the anti-overflow detector to receive the spill-over signal may be acquired, one trigger duration from at least two trigger durations may be selected as a reference duration and the absolute value of the difference between each remaining trigger duration and the reference duration (T2) may be calculated. The absolute value of the difference between each remaining trigger duration and the reference duration (T2) may be compared with a second threshold value (P2) . In some embodiments, the second threshold value (P2) can be adjusted by a user according to actual needs.
At Operation 6046, in response to the determination that at least one absolute value of the difference between the remaining trigger duration and the reference duration is greater than the second threshold value, the method 600 may generate a fourth warning signal. This type of malfunction may be categorized as a Type IV malfunction. In some embodiments, the Type IV malfunction may be the same as the Type III malfunction.
At Operation 6047, a determination is made as to whether T3 is greater than P3. In some embodiments, the trigger duration required for the anti-overflow detector to receive the spill-over signal may be acquired, a maximum trigger duration and a minimum trigger duration from at least two trigger durations may be selected and the absolute value of the difference between the maximum duration and the minimum duration (T3) may be calculated. The absolute value of the difference between the maximum duration and the minimum duration (T3) may be compared with a third threshold value (P3) . In some embodiments, the third threshold value (P3) can be adjusted by a user according to actual needs.
At Operation 6048, in response to the determination that the absolute value of the difference between any two trigger durations is greater than the third threshold value, the method 600 may generate a fifth warning signal. This type of malfunction may be categorized as the Type V malfunction. In some embodiments, the Type V malfunction may be the same as the Type III malfunction.
FIG. 7B illustrates a flowchart of an example 607 of identifying a type of the detected malfunction and generating a warning signal, according to some aspects of the present disclosure. As discussed in FIG. 5, in some embodiments, the self-checking module according to the present disclosure may include a water level detector (such as the water level detector 537) , which is configured to detect a level of water accumulated in the sewage tank. The water level detector generates a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level (such as the level L3) . The first water level is a  water level indicates that enough water has filled in the sewage tank 515 that needs to be drained. In some embodiments, the self-checking module according to the present disclosure may include a water amount detector (such as the water amount detector 535) , which is configured to detect an amount of water accumulated in the sewage tank. The water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount (such as the level L2) . The first water amount is a water amount indicates that enough water has filled in the sewage tank 515 that needs to be drained. In some embodiments, the water amount of the first water amount and the water amount of the first water level is the same.
At Operation 6050, an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated may be acquired.
At Operation 6053, a determination is made as to whether A1 is greater than P4. In some embodiments, an absolute value of a difference between any two amounts of water absorption may be calculated. The absolute value of the difference between any two amounts of water absorption (A1) may be compared with a fourth threshold value (P4) . In some embodiments, the fourth threshold value (P4) can be adjusted by a user according to actual needs.
At Operation 6054, in response to the determination that the absolute value of the difference between any two amounts of water absorption is greater than the fourth threshold value, the method 600 may generate a sixth warning signal. This type of malfunction may be categorized as the Type VI malfunction. In some embodiments, the Type VI malfunction may be the same as the Type III malfunction.
At Operation 6055, a determination is made as to whether A2 is greater than P5. In some embodiments, one amount of water absorption from at least two amounts of water absorption may be selected as a reference amount of water absorption and the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption may be calculated. The absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption (A2) may be compared with a fifth threshold value (P5) . In some embodiments, the fifth threshold value (P5) can be adjusted by a user according to actual needs.
At Operation 6056, in response to the determination that at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption is greater than the fifth threshold value, the method 600 may generate a seventh warning signal. This type of malfunction may be categorized as the Type VII malfunction. In some embodiments, the Type VII malfunction may be the same as the Type III malfunction.
At Operation 6057, a determination is made as to whether A3 is greater than P6. In some embodiments, a maximum amount of water absorption and a minimum amount of water absorption may be selected from at least two amounts of water absorption and the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption may be calculated. The absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption (A3) may be compared with a sixth threshold value (P6) . In some embodiments, the sixth threshold value (P6) can be adjusted by a user according to actual needs.
At Operation 6058, in response to the determination that the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption is greater than the fourth threshold value, the method 600 may generate an eighth warning signal. This type of malfunction may be categorized as the Type VIII malfunction. In some embodiments, the Type VIII malfunction may be the same as the Type III malfunction.
At Operation 6051, an amount of water drainage from starting draining water from the sewage tank until the sewage tank is emptied.
At Operation 6052, a determination is made as to whether A4 is greater than P7. In some embodiments, an absolute value of a difference between the amount of water absorption and the amount of water drainage may be calculated. The absolute value of the difference between the amount of water absorption and the amount of water drainage (A4) may be compared with a seventh threshold value (P7) . In some embodiments, the seventh threshold value (P7) can be adjusted by a user according to actual needs.
At Operation 6059, in response to the determination that the absolute value of the difference between the amount of water absorption and the amount of water drainage is greater than the seventh threshold value, the method 600 may generate a ninth warning signal. This type of malfunction may be categorized as the Type IX malfunction. In some embodiments, the Type IX malfunction may be the same as the Type III malfunction.
As shown in FIG. 7C, at Step 6060, draining water out of the sewage tank starts. In some embodiments, the second preset period t2 can be set as a time value that the sewage tank is emptied under normal conditions. In some embodiments, the second preset period t2 can be adjusted by a user according to actual needs.
At Operation 6061, a determination is made as to whether the emptying signal generated by the first emptying detector is received before expiration of the second time period t2.Under normal conditions, the sewage tank is supposed to be empty (and thus the emptying signal is received) until the second preset period t2 expires in a process of draining water. When either the self-checking module or any other component of the base station do not receive the emptying signal until the second preset period t2 expires, a malfunction may have occurred. For example, failure of the first emptying detector and blockage of the drainage pipe could have resulted in such a malfunction, which may be categorized as a Type X malfunction. In some embodiments, some of the causes can be identified as causes for other types of malfunction and thus eliminated from the causes for the current type of malfunction. This saves time of subsequent checking and repairing by the user.
At Operation 6062, in response to the determination that the emptying signal is not received from the first emptying detector until expiration of the second preset period t2, the method 600 may generate a tenth warning signal. This type of malfunction may be categorized as the Type X malfunction. Same as the Type I malfunction, in some embodiments, the tenth warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval. Alternatively, the intensity of the second warning signal may be proportional to the extent of time. For example, the longer it takes the first emptying detector to generate the emptying signal, the louder the buzzer sound is.This enhances the effect of notification in case of emergency.
At Operation 6063, a determination is made as to whether the water flow signal generated by the second emptying detector is received after expiration of the third time period t3.Under normal conditions, the sewage tank is supposed to be empty (and thus the water flow signal is not received) until the third preset period t3 expires in a process of draining water. When either the self-checking module or any other component of the base station receives the emptying signal until the third preset period t3 expires, a malfunction may have occurred. For example, blockage of the drainage pipe could have resulted in such a malfunction, which may be categorized as a Type XI malfunction. In some embodiments, some of the causes can be identified as causes for other types of malfunction and thus eliminated from the causes for the current type of malfunction. This saves time of subsequent checking and repairing by the user.
At Operation 6064, in response to the determination that the water flow signal is received from the second emptying detector after the third preset period t3 has passed, the method 600 may generate an eleventh warning signal. This type of malfunction may be categorized as the Type XI malfunction. Same as the Type I malfunction, in some embodiments, the eleventh warning signal is also disseminated by the abnormality alarm, albeit the form of notification may be different from that for the Type I malfunction, such as emitting a different color of warning light or airing a buzzer sound of different pitch or interval. Alternatively, the intensity of the second warning signal may be proportional to the extent of time. For example, the longer it takes the second emptying detector to generate the water flow signal, the louder the buzzer sound is. This enhances the effect of notification in case of emergency.
Referring to FIG. 6, according to the present disclosure, after the type of the detected malfunction is identified, method 600 optionally includes an additional step-Step 608-of performing an operation corresponding to the identified type of the detected malfunction. In some embodiments, after one or more of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals are received, the controller may be controlled to turn off the valve, so that water will not flow into or out the water drainage assembly or water supply assembly, allowing the base station, the cleaning system, or a user of the base station or the cleaning system to inspect the cause for the detected malfunction. In some embodiments, if sensor failure is identified to cause the malfunction, such as Type II  malfunction, the base station or the cleaning system may isolate the failed sensor and notify the user to replace it. In some embodiments, if the malfunction is related to blockage in drainage pipe, such as Type III, Type IV, Type V, Type VI, Type VII, Type VIII, Type IX, Type X, and Type XI malfunctions, the self-checking module or the processor of the base station or the cleaning system may start cleaning or changing the drainage pipe. In some embodiments, the third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals are same kind of warning signal, and the Type III, Type IV, Type V, Type VI, Type VII, Type VIII, Type IX, Type X, and Type XI malfunctions are same kind of malfunction.
Referring to FIG. 8, an embodiment of the present application provides the drainage detection method. The drainage detection method is applied to the cleaning apparatus and includes the following operations.
In S1, an operation of absorbing water and draining water may be performed.
The water drainage assembly may be used on the handheld cleaning apparatus, the cleaning robot, the cleaning base station, the dishwasher or the like which has a washing or cleaning function, so that the sewage produced in the washing or cleaning process of the household device can be drained in a predetermined manner, so as to ensure the continuous operation of the device. Taking the base station as an example, the mopping assembly (the cleaning mop, the cleaning sponge, or the like. ) of the cleaning robot continuously mop and clean the ground during the movement of the cleaning robot, and it is necessary to return to the base station to clean the mopping assembly (such as mop) . After the mopping assembly being cleaned in the cleaning area of the base station, sewage may be produced. The water drainage assembly may pump out the sewage in the cleaning area through a pipe and stores the sewage in the sewage tank. When the stored sewage reaches a certain amount, the sewage will be drained through the water drainage assembly.
As described above, the operation of absorbing water and draining water may include the operation of absorbing water and the operation of draining water, and both the operation of absorbing water and the operation of draining water may be performed by the water drainage assembly composed of a water pump and a valve (such as a reversing valve) , so as to drain sewage produced in the cleaning area during the cleaning process.
In S2, water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water may be acquired.
The water absorption and drainage information may be the time spent in absorbing a certain amount of sewage (which may be obtained by the anti-overflow device, a timing device, etc. ) , the amount of water absorbed within the preset time (which may be obtained by a flow detector, the water amount detector, the water level detector, etc. ) , the time spent in draining the certain amount of water, the amount of water drained within the preset time, etc. The water absorption and drainage information may be obtained based on one single operation of absorbing water and draining water, or may be obtained based on integrating multiple operations of absorbing water and draining water.
In an actual application process, the water absorption and drainage information may be flexibly set according to a specific situation of the application scenario or the drainage assembly, as long as a working condition of the water drainage assembly (i.e., whether normal or not) can be indicated, so that the user may determine whether the drainage pipe of the water drainage assembly is blocked or the like, or not, which is not limited herein.
In S3, whether the water drainage assembly is abnormal may be determined according to the water absorption and drainage information.
Based on the pieces of water absorption and drainage information listed in the above operations, standards for determining whether the water drainage assembly is abnormal may be set as follows: whether the time it takes to absorb the certain amount of water several times varies greatly (it indicates that the drainage pipe may be blocked if the time spent in the several times varies greatly, the same goes for the following situations) , whether the amount of water absorbed several times within same preset time or when the water level threshold is reached varies greatly, whether the time it takes to draining the certain amount of water several times varies greatly, whether the amount of drained water several times within the same preset time varies greatly, whether the difference between the time spent in the single operation of absorbing water and the time spent in the single operation of draining water is greater, and whether the difference between the amount of water absorption water by the single operation of absorbing water and the amount of water drainage by the single operation of draining water is greater, and so on.
In the actual application process, corresponding to the pieces of water absorption and drainage information, the standards for determining whether the water drainage assembly is abnormal according to the acquired water absorption and drainage information may also be flexibly set according to the specific situation of the application scenario or the water drainage assembly, as long as that the standards are relevant to the working condition of the water drainage assembly, for example, as long as whether the drainage pipe of the water drainage assembly is blocked or the like can be inferred, which is not limited herein.
It can be seen therefrom that, the drainage detection method provided by this embodiment, after the operation of absorbing water and draining water is performed, the water absorption and drainage information which can indicate the working condition (abnormal or not) of the water drainage assembly is obtained, and whether the drainage pipe of the drainage assembly is blocked or the like may be judged based on the obtained water absorption and drainage information. Thereby, it helps the user to discover the abnormal condition of the water drainage assembly in time and repair it in time, which improves the user’s control over the water drainage assembly and the convenience of the use, and also improves the intelligence of the device.
In some embodiments, referring to FIG. 8, after operation S3, the method may include the operation S4.
In S4, the operation of prompting abnormality of the water drainage assembly may be performed in responding to the determination that the water drainage assembly is abnormal according to the water absorption and drainage information.
in responding to the determination that the water drainage assembly is determined to be abnormal, it is necessary to remind the user to repair it in time. Specifically, the operation of prompting abnormality of the water drainage assembly may be performed by an acousto-optic alarm device (such as a warning light, a buzzer, etc. ) , and prompt information may also be presented to the user in the form of voice, text, and image.
In some embodiments, referring to FIG. 9, the water drainage assembly may include the sewage tank. The operation S1 may include the operation S11.
In S11, the operation of absorbing water and draining water may be performed at least twice, and performing the operation of absorbing water and draining water may include: performing the operation of absorbing water of absorbing water to the sewage tank (i.e., absorbing water to the sewage tank) until first detection information of the sewage tank meets a first preset condition, and performing an operation of draining water for draining water from the sewage tank (i.e., draining water from the sewage tank) .
In some embodiments, referring to FIG. 9, the operation S2 may include the operation S21.
In S21, a piece of operation information may be acquired based on each operation of absorbing water and draining water, to obtain two or more pieces of operation information.
The operation S3 may include the operation S31.
In S31, whether the water drainage assembly is abnormal may be determined according to the two or more pieces of operation information.
Based on the first preset conditions listed in the above operations, accordingly, the operation information may be the time spent in absorbing the preset amount of water or the amount of water absorption, etc. When there is a fault such as the pipe blockage in the water drainage assembly, there may be differences among the plurality of pieces of operation information, and accordingly, the water drainage assembly being abnormal may be determined. Specifically, determination according to the operation information may be to compare the plurality of pieces of operation information in a preset manner, or to determine whether any operation information meets a certain preset condition (for example, greater than a certain preset threshold) , which can be set according to actual situations. There is no limitation herein.
In some embodiments, the sewage tank may include the anti-overflow detector. The first preset condition may be the anti-overflow detector being triggered, that is, the anti-overflow detector generates the spill-over signal. The operation S21 may include the operation S211.
In S211, the trigger duration from a beginning of each operation of absorbing water and a time of triggering the anti-overflow detector may be acquired and be taken as the piece of operation information.
The anti-overflow detector may be configured to trigger an overflow prevention operation when the water in the sewage tank reaches a preset water level (such as the first water  level) or a preset water amount (such as the first water amount) . The trigger duration may be acquired through a timer electrically connected to the anti-overflow detector.
The anti-overflow detector may be arranged in the sewage tank. When the water in the sewage tank reaches the preset water level or the preset water amount, the anti-overflow operation may be triggered. The preset water level or the preset water amount may indicate that the water of the sewage tank reaches the preset water amount that needs to be drained. In the practical application, each operation of absorbing water, the anti-overflow detector may be triggered when the water of the sewage tank reaches the preset water amount.
In some embodiments, the operation S31 may include the operations S311 and S312.
In S311, the absolute value of the difference between any two trigger durations may be calculated to acquire a calculating duration (T1) .
In S312, in responding to the determination that at least one calculating duration is greater than the first threshold value, abnormal blockage in the drainage pipe of the water drainage assembly may be determined.
The calculating durations may include a plurality of absolute values of the differences (the number of the absolute values of the differences may be set according to the actual conditions, preferably, the absolute value of the difference between each two trigger durations may be calculated, i.e., pair-wise comparison manners) .
In some embodiments, assuming that there is no water in the sewage tank before the first operation of absorbing water, a first operation of absorbing water may be performed. When the water amount of the sewage tank reaches the preset water amount X, the trigger duration is x1, and the water amount absorbed by the first operation of absorbing water in the trigger duration x1 is X. A first operation of draining water may be performed. If the drainage pipe is not blocked, the sewage tank may be emptied within a certain period of time. A second operation of absorbing water may be performed. When the water amount of the sewage tank reaches the preset water amount X, the trigger duration is x1, and the water amount absorbed by the second operation of absorbing water in the trigger duration x1 is X. If the drainage pipe is blocked, the sewage tank may not be emptied within the certain time duration, and the sewage tank may have a residual water amount X1. The second operation of absorbing water may be performed. When the water amount of the sewage tank reaches the preset water amount X, the trigger duration is x2, and the water amount absorbed by the second operation of absorbing water in the trigger duration x2 is L2. X is the sum of X1 and X2, that is, X2 is less than X.
Assuming that there are some residual water remained in the sewage tank before the first operation of absorbing water, and the residual water in the sewage tank is fixed to X3. The first operation of absorbing water may be performed. When the water amount of the sewage tank reaches the preset water amount X, the trigger duration is x3, and the water amount absorbed by the first operation of absorbing water in the trigger duration x3 is X4. The first operation of draining water may be performed. If the drainage pipe is not blocked, the sewage tank may be smoothly drained within the certain duration, however, the sewage tank is not emptied, and the water amount of X3 is left. The second operation of absorbing water may be performed. When the water amount in the sewage tank reaches the preset water amount X, the trigger duration is x3, and the water amount absorbed by the second operation of absorbing water in the trigger duration x3 is X4. If the drainage pipe is blocked, the sewage tank is not smoothly drained during the certain time duration, and the sewage tank may have a residual water amount X5 which is greater than X3. The second operation of absorbing water may be performed. When the water amount of the sewage tank reaches the preset water amount X, the trigger duration is x4, and the water amount absorbed by the second operation of absorbing water in the trigger duration x4 is X6. X is the sum of X6 and X5, and X6 is less than X4.
From the above two cases, it can be seen that if there is at least one absolute value of the difference is greater than the first threshold value, it is indicated that the drainage pipe may be blocked (specifically, the pipe at the water outlet of the sewage tank may be blocked, and a certain drainage operation fails to empty the sewage stored in the sewage tank within the certain period of time , and some sewage still remains in the sewage tank, which causes the time spent from the next operation of absorbing water of absorbing water to trigger the anti-overflow operation becomes shorter) , and at this time, it can be determined that the drainage pipe is abnormal, so as to realize the fault location and facilitate the timely maintenance of the user.
In some embodiments, the following operations may also be included.
In S313, in responding to the determination that all calculating durations are less than or equal to the first threshold value, the water drainage assembly may be determined to be  normal.
In another exemplary embodiment, the S31 may include the operations S314, S315 and S316.
In S314, the trigger duration may be selected from at least two trigger durations as the reference duration.
In S315, the absolute value of the difference between each remaining trigger duration and the reference duration (T2) may be calculated.
In S316, in responding to the determination that at least one the absolute value of the difference is greater than the second threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
In this embodiment, the reference duration may be the trigger duration obtained to ensure that the drainage assembly is in normal operation (no blockage) . By comparing the remaining trigger durations with the reference duration, it is possible to determine whether the drainage pipe is blocked or not, and the computation burden is reduced compared to the pair-wise comparison manners of the previous embodiment.
In some embodiments, the following operations may also be included.
In S317, in responding to the determination that all absolute values of all differences are not greater than the second threshold value, the water drainage assembly may be determined to be normal.
In yet another exemplary embodiment, the operation S31 may include the operations S318, S319 and S3110.
In S318, the maximum trigger duration and the minimum trigger duration may be selected from at least two trigger durations.
In S319, the absolute value of the difference between the maximum trigger duration and the minimum trigger duration may be calculated to obtain the first target value (T3) .
In S3110, in responding to the determination that the absolute value of the first target value is greater than the third threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
In this embodiment, through the comparison of the maximum trigger duration and the minimum trigger duration, the situation that the drainage pipe is progressively blocked (the dirt gradually accumulates in the drainage pipe) or the trigger duration is progressively shortened in small increments may be directly targeted. Only one calculation may be used to determine whether the drainage pipe is blocked, which further reduce the computation burden.
In some embodiments, the following operations may also be included.
In S3111, in responding to the determination that the first target value is less than or equal to the third threshold value, the water drainage assembly may be determined to be normal.
Further, referring to FIG. 4, in some embodiments, the sewage tank may include a preset detector. The operation S21 may include the operation S212.
In S212, the amount of water absorption absorbed from the beginning of each operation of absorbing water until the first detection information meets the first preset condition, and the amount of water absorption may be taken as the piece of operation information.
In some embodiments, the preset detector is the anti-overflow detector, or the water amount detector, or the water level detector. The first preset condition may be: the anti-overflow detector being triggered; or the water amount of the sewage tank detected by the water amount detector reaching the first water amount; or the water level of the sewage tank detected by the water level detector reaching the first water level.
In some embodiments, each of the anti-overflow detector, the water amount detector, and the water level detector may be a float valve, a flow meter, an infrared detector, an electrical signal detector, a Hall detector, an ultrasonic detector, or the like which can be used to indicate that the water in the sewage tank reaches a certain amount.
In some embodiments, operation S31 may include the operation S3112.
In S3112, the absolute value of the difference between any two amounts of water absorption (A1) is calculated to obtain the calculation of water absorption.
In S3113, in responding to the determination that at least one calculation of water absorption is greater than the fourth threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
In responding to the determination that the drainage pipe is blocked, water stored in the sewage tank cannot be completely emptied after the water drainage operation. That is, the  sewage tank still retains the certain amount of water. Thus, the amount of water absorption of the next operation of absorbing water will be less than the total water amount in the sewage tank after the completion of this operation of absorbing water. Based on this, the blockage condition of the drainage pipe may be judged by comparing the amounts of water absorption of two operations of absorbing water. Ifthe difference between the amounts of water absorption of the two operations of absorbing water is great (greater than the fourth threshold value) , it may indicate that the drainage pipe is blocked.
In some embodiments, the following operations may also be included.
In S3114, in responding to the determination that all calculations of water absorption are less than or equal to the fourth threshold value, the water drainage assembly may be determined to be normal.
In some embodiments, the operation S31 may include the operations S3115, S3116 and S3117.
In S3115, one amount of water absorption may be selected from at least two amounts of water absorption and may be taken as the reference amount of water absorption.
In S3116, the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption (A2) may be calculated.
In S3117, in responding to the determination that the absolute value of the difference is greater than the fifth threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
In this embodiment, the reference amount of water absorption may be an obtained water absorption which can ensure that the water drainage assembly is in a normal operating state (no blockage) . Through comparison between each remaining water absorption other than the reference amount of water absorption and the reference amount of water absorption, it can better target the determination of whether the drainage pipe is blocked, and the computation burden may be reduced compared to the pair-wise comparison manners of the previous embodiment.
In some embodiments, the following operation may also be included.
In S3118, in responding to the determination that all absolute values of all differences are not greater than the fifth threshold value, the water drainage assembly may be determined to be normal.
In some embodiments, the operation S31 may include the operations S3119, S3120 and S3121.
In S3119, the maximum amount of water absorption and the minimum amount of water absorption may be selected from at least two amounts of water absorption.
In S3120, the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption (A3) may be calculated to obtain the second target value.
In S3121, in responding to the determination that the second target value is greater than the sixth threshold value, the drainage pipe of the water drainage assembly may be determined to be blocked.
In this embodiment, by comparing the maximum amount of water absorption with the minimum amount of water absorption, the situation that the drainage pipe is progressively blocked (the dirt gradually accumulates in the drainage pipe) or the amount of water absorption is progressively reduced in small increments may be directly targeted. Only one calculation may be used to determine whether the drainage pipe is blocked, which further reduces the computation burden.
In some embodiments, the following operations may also be included.
In 3122, in responding to the determination that the second target value is less than or equal to the sixth threshold value, the drainage assembly may be determined to be normal.
Further, referring to FIG. 3 and FIG. 4, in some embodiments, the water drainage assembly may include the sewage tank. The operation S1 may include the operation S12.
In S12, one operation of absorbing water and draining water may be performed, and the one operation of absorbing water and draining water may include: performing the operation of absorbing water of absorbing water to the sewage tank (i.e., absorbing water to the sewage tank) until second detection information of the sewage tank meets the second preset condition, and performing the operation of draining water of draining water from the sewage tank (i.e., draining water from the sewage tank) .
The second preset condition may be that sewage absorbed by the operation of  absorbing water reaches the preset amount, or the duration of the operation of absorbing water reaches the preset time threshold, etc. In the specific implementation process, the second preset condition may be set according to the actual situation The second detection information may be acquired by the anti-overflow detector, the flow detector, the water level detector, or the timer, etc.
Specifically, referring to FIG. 10, the operation S2 may include the operations S22 and S23.
In S22, the amount of water absorption of absorbing water to the sewage tank may be acquired.
In S23, the amount of water drainage of draining water from the sewage tank may be acquired.
Specifically, referring to FIG. 10, the operation S3 may include the operations S32 and S33.
In S32, the absolute value of the difference between the amount of water absorption and the amount of water drainage may be calculated to obtain the third target value.
In S33, in responding to the determination that the third target value is greater than the seventh preset threshold, the drainage pipe of the water drainage assembly may be determined to be blocked.
The amount of water absorption may be the amount of water absorbed when the second detection information of the sewage tank meets the second preset condition in one operation of absorbing water. The amount of water drainage may be the amount of water drained in one water drainage operation. The amount of water absorption and the amount of water drainage may be obtained through the flow meter, the water amount detector, the water level detector, the infrared detector, the electric signal detector, the Hall detector, the ultrasonic detector and the like.
In responding to the determination that the drainage pipe is blocked, the water stored in the sewage tank cannot be completely emptied after the water drainage operation. That is, the sewage tank still retains the certain amount of water. Thus, the amount of water absorption of the next operation of absorbing water will be less than the total water amount in the sewage tank after the completion of this operation of absorbing water. Based on this, the blockage condition of the drainage pipe may be judged by comparing the amount of water absorption and the amount of water drainage. If the difference between the amount of water absorbed in the sewage tank and the amount of water drained from the sewage tank is great (greater than the seventh preset threshold) , it may indicate that the drainage pipe is blocked.
Optionally, referring to FIG. 10, the following operation may also be included.
In S34, in responding to the determination that the third target value is less than or equal to the seventh preset threshold, the water drainage assembly may be determined to be normal.
Further, in some embodiments, the water drainage assembly may further include the first emptying detector disposed at a bottom of the sewage tank. The operation S3 may include the operation S35.
In S35, in responding to the determination that the water drainage operation lasts for the second preset period and the first emptying device is not triggered, the drainage pipe of the water drainage assembly may be determined to be blocked.
The first emptying detector may be the infrared detector, the electrical signal detector, the Hall detector, the ultrasonic detector, or the like. When the first emptying detector is triggered, it may indicate that the water in the sewage tank has been emptied, that is, the first emptying detector generates the emptying signal. Based on this, when the water drainage operation lasts for a long time (namely the second preset period, it can be considered that under the normal situation, water in the sewage tank can be emptied after the second preset period) and the emptying detection is not triggered, it is indicated that there is certain amount of water remains in the sewage tank. At this time, the drainage pipe may be determined to be blocked, and the water drainage operation cannot empty the sewage tank within the predetermined time.
In some embodiments, the following operation may also be included.
In S36, in responding to the determination that the first emptying detector is triggered, the water drainage assembly may be determined to be normal.
In some embodiments, the water drainage assembly may further include the second emptying detector disposed on the drainage pipe of the sewage tank. The operation S3 may include the operation S37.
In S37, in responding to the determination that the water drainage operation lasts for the third preset period and the second emptying detector detects the water flow within the third preset period, the drainage pipe of the water drainage assembly may be determined to be blocked.
The second emptying detector may be the infrared detector, the electrical signal detector, the Hall detector, the ultrasonic detector, or the like.
When the water drainage operation is performed for a long period of time and the second emptying detector detects a water flow (that is, the second emptying detector generates a water flow signal) , it may indicate that the sewage in the sewage tank flows out through the drainage pipe, that is, the sewage tank may be still not emptied. At this time, the drainage pipe may be determined to be blocked, so that the water drainage operation cannot be emptied within the predetermined time. On the contrary, if the second emptying detector does not detect the water flow after the third preset period, it may indicate that the sewage tank has been emptied within the predetermined time, and it may be determined that the drainage pipe is not blocked.
In some embodiments, the following operation may also be included.
In S38, in responding to the determination that the water drainage operation lasts for the third preset period and the second emptying detector does not detect the water flow, the water drainage assembly may be determined to be normal.
Further, in an exemplary embodiment, the water drainage assembly may include the sewage tank provided with the anti-overflow detector. The S11 may include the operations S1101 and S1102 performed before the operation of performing the water drainage operation of draining water of the sewage tank.
In S1101, whether the anti-overflow detector is triggered may be determined.
In S1102, in responding to the determination that the anti-overflow detector is not triggered within the first preset period, the anti-overflow detector may be determined to be abnormal, and the operation of prompting abnormality of the anti-overflow detector may be performed.
In some embodiments, the anti-overflow detector may be the float valve, the water amount detector or the water level detector (when the preset water amount/preset water level is reached, control the pump to stop absorbing or control the valve to close) which is electrically connected to the water absorption device (which may include the water pump, the valve, etc. ) configured to perform the operation of absorbing water, or the like. After the operation of absorbing water is performed, it can be considered that the water in the sewage tank has reached the preset water level or the preset water amount, if the anti-overflow detector is not triggered, it may indicate that the anti-overflow detector is abnormal. At this time, the operation of prompting abnormality of the anti-overflow detector may be performed to remind the user to perform maintenance in time.
The operation of prompting abnormality of the water drainage assembly may be performed by the acousto-optic alarm device (such as the warning light, the buzzer, etc. ) , and prompt information may also be presented to the user in the form of voice, text, and image.
In some embodiments, the following operations may also be included.
In S1103, in responding to the determination that the anti-overflow detector is triggered, the anti-overflow detector may be determined to be normal.
Specifically, after the operation S1101, the method may include the operation S11011.
In S11011, in responding to the determination that the anti-overflow detector is triggered, the operation of absorbing water may be terminated.
After the operation of absorbing water is performed, if the anti-overflow detector is triggered, it may indicate that the water of the sewage tank is enough to be drained, and the next water drainage operation can be performed. At this time, the operation of absorbing water can be ended manually or by the anti-overflow detector.
In some embodiments, when the anti-overflow detector is the float valve, the floating ball of the float valve may float up as the water level in the sewage tank rises. When the water reaches the preset water level or the preset water amount, the floating ball may float up to a highest point and drive a valve body at the other end of the float valve to block the water inlet of the sewage tank, so that water may be prevented from being continuously absorbed into the sewage tank. When the anti-overflow detector is the water amount detector or the water level detector (which may be the flow meter, the infrared detector, the electrical signal detector, the Hall detector, the ultrasonic detector, or the like. ) which is electrically connected to the  water absorption device (which may include the water pump, the valve, etc. ) configured to perform the operation of absorbing water, when the water reaches the preset water level or the preset water amount, the anti-overflow detector may be triggered and may control the water absorption device to stop the operation of absorbing water (such as closing the water pump and the valve) .
It is noted that the operations shown in FIGs. 6, 7A, 7B, 7C, 8, 9 and 10 do not necessarily have to be performed in the order shown or all be performed. In some embodiments, the operations can be performed simultaneously, or in a different order. In some embodiments, some of the operations can be omitted.
Although the above descriptions use an abnormality alarm as an example of notifying warning signals, it is understood that the present disclosure includes other forms of such notification. In some embodiments, the mobile cleaner or the base station may include a screen. The screen is configured to display various system and operation information, including the notification of the warning signals. For example, when a warning signal is generated by the self-checking module, it can be displayed on such a screen. In some embodiments, acousto-optic signals may be emitted from the mobile cleaner, instead of being emitted from the base station as described above, so that the user can hear or see the signal while the mobile cleaner is in his or her proximity and the base station is far away. The notification can be triggered by a wireless signal (such as via Bluetooth, Wi-Fi, WLAN, cellular network, etc. ) transmitted from the self-checking module of the base station to the mobile cleaner. This makes the notification process more flexible and effective.
In some embodiments, a terminal device (e.g., smartphone, tablet, wearable electronics, etc. ) may be provided to remotely communicate with the base station, the mobile cleaner, or the cleaning system, according to the present disclosure. The terminal device may be pre-installed with software and hardware configured to transmit wireless signals (such as via Bluetooth, Wi-Fi, WLAN, cellular network, etc. ) between itself and the base station, the mobile cleaner, or the cleaning system. The wireless signals may contain control signal, notification signal regarding malfunction, system status signal, etc. With respect to the notification signal regarding malfunction, the wireless signal may be transmitted from the mobile cleaner, the base station, or the cleaning system to the terminal device to notify the user of the specific type of malfunction, according to the type of warning signal so received. In some embodiments, the notification signal may trigger a sound, a vibration, or a screen display of the terminal device specifically configured to each type of malfunction, and thus the user can quickly recognize the type of malfunction.
According to one aspect of the present disclosure, a base station for a mobile cleaner is disclosed. The base station includes a dock configured to accommodate the mobile cleaner; a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock; a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
In some implementations, the self-checking module is further configured to further configured to identify a type of the detected malfunction and generate a warning signal correlated to the type of the detected malfunction.
In some implementations, the water drainage assembly includes: an inlet connected to the cleaning area; an outlet connected to outside; and a sewage tank configured to accumulate water absorbed from the cleaning area through the inlet and to drain water to outside through the outlet.
In some implementations, a first valve is positioned between the inlet and the cleaning area and a second valve is positioned between the outlet and outside. The self-checking module includes a first controller electrically coupled to the first valve and configured to control the first valve, and a second controller electrically coupled to the second valve and configured to control the second valve.
In some implementations, the self-checking module is configured to detect a correct working state of the first valve or the second value, and generate a first warning signal when the first valve or the second value is not in the correct working state.
In some implementations, the self-checking module includes an anti-overflow detector configured to generate a spill-over signal in response to water overflowing from the sewage tank. When the spill-over signal is received, the self-checking module is configured to stop absorbing water from the cleaning area.
In some implementations, when the spill-over signal is not received from the anti-overflow detector after a first preset period has passed, the self-checking module is configured to generate a second warning signal.
In some implementations, the self-checking module is configured to acquire a trigger duration required for the anti-overflow detector to receive the spill-over signal and calculate an absolute value of a difference between any two trigger durations, and when the absolute value of the difference between any two trigger durations is greater than a first threshold value, the self-checking module is configured to generate a third warning signal.
In some implementations, the self-checking module is configured to acquire a trigger duration required for the anti-overflow detector to receive the spill-over signal, select one trigger duration from at least two trigger durations as a reference duration and calculate the absolute value of the difference between each remaining trigger duration and the reference duration. When at least one absolute value of the difference between the remaining trigger duration and the reference duration is greater than a second threshold value, the self-checking module is configured to generate a fourth warning signal.
In some implementations, the self-checking module is configured to acquire a trigger duration it takes the anti-overflow detector to receive the spill-over signal, select a maximum trigger duration and a minimum trigger duration from at least two trigger durations and calculate the absolute value of the difference between the maximum duration and the minimum duration. When the absolute value of the difference between the maximum duration and the minimum duration is greater than a third threshold value, the self-checking module is configured to generate a fifth warning signal.
In some implementations, the self-checking module includes a water level detector configured to detect a level of water accumulated in the sewage tank, and/or a water amount detector configured to detect an amount of water accumulated in the sewage tank, and/or an anti-overflow detector configured to generate a spill-over signal in response to water overflowing from the sewage tank. The water level detector generates a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level, and the water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount. The self-checking module is configured to detect an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated.
In some implementations, the self-checking module is configured to calculate an absolute value of a difference between any two amounts of water absorption. When the absolute value of the difference between any two amounts of water absorption is greater than a fourth threshold value, the self-checking module is configured to generate a sixth warning signal.
In some implementations, the self-checking module is configured to select one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption and calculate the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption. When at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption is greater than a fifth threshold value, the self-checking module is configured to generate a seventh warning signal.
In some implementations, the self-checking module is configured to select a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption and calculate the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption. wherein, when the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption is greater than a sixth threshold value, the self-checking module is configured to generate an eighth warning signal.
In some implementations, the self-checking module is configured to acquire an amount of water drainage, calculate an absolute value of a difference between the amount of water absorption and the amount of water drainage. when the absolute value of the difference between the amount of water absorption and the amount of water drainage is greater than a seventh threshold value, the self-checking module is configured to generate a ninth warning signal.
In some implementations, the self-checking module includes a first emptying detector configured to generate an emptying signal in response to the sewage tank being  emptied. When the emptying signal is not received from the first emptying detector before expiration of a second preset period, the self-checking module is configured to generate a tenth warning signal.
In some implementations, the self-checking module includes a second emptying detector configured to detect water flow in a drainage pipe connected to an outlet of the sewage tank. The second emptying detector generates a water flow signal in response to water flow being detected in the drainage pipe connected to the outlet of the sewage tank. When the water flow signal is received from the second emptying detector after a third preset period has passed, the self-checking module is configured to generate an eleventh warning signal.
In some implementations, the mobile cleaner is one of a mobile cleaning robot, a handheld vacuum, or a vacuum-mop robot.
In some implementations, a user of the mobile cleaner is notified of at least one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals. The notification is in at least one of the following forms: displaying on a screen of the mobile cleaner, displaying on a screen of the base station, emitting an acoustic signal from the mobile cleaner audible by the user, emitting an optic signal from the mobile cleaner viewable by the user, emitting an acoustic signal from the base station audible by the user, emitting an optic signal from the base station viewable by the user, transmitting a wireless signal from the mobile cleaner to a terminal device of the user, or transmitting a wireless signal from the base station to a terminal device of the user.
In some implementations, upon receipt of at least one of the first, second, third, fourth, fifth, sixth, seventh, and eighth warning signals, the first controller turns off the first valve and/or the second controller turns off the second valve.
According to another aspect of the present disclosure, a cleaning system is disclosed. The cleaning system includes a base station, a power supply assembly, and a mobile cleaner. The base station includes a dock, a cleaning area, a water drainage assembly, and a self-checking module. The power supply assembly is configured to supply power to the base station. The dock is configured to accommodate the mobile cleaner and charge the mobile cleaner via the power supply assembly. The cleaning area is configured to provide an area for cleaning the mobile cleaner accommodated in the dock. The water drainage assembly is configured to drain water absorbed from the cleaning area to outside. The self-checking module is configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
In some implementations, the self-checking module is further configured to identify a type of the detected malfunction and generate a warning signal correlated to the type of the detected malfunction.
In some implementations, according to the type of the detected malfunction, the power supply assembly stops one or both of supplying power to the base station or charging the mobile cleaner.
According to yet another aspect of the present disclosure, a method for self-checking a base station for a mobile cleaner is disclosed. The base station includes a water drainage assembly configured to drain water absorbed from a cleaning area to outside. The method includes detecting, by a self-checking module, a malfunction regarding drainage of water from the sewage tank to outside.
In some implementations, the method further includes identifying a type of the detected malfunction, and generating a warning signal correlated to the type of the detected malfunction.
In some implementations, the water drainage assembly includes: an inlet connected to the cleaning area, an outlet connected to outside, and a sewage tank configured to accumulate water absorbed from the cleaning area through the inlet and to drain water to outside through the outlet.
In some implementations, a first valve is positioned between the inlet and the cleaning area and a second valve is positioned between the outlet and outside, the method further includes: detecting a correct working state of the first valve or the second value, and in response to the first valve or the second value not being in the correct working state, generating a first warning signal.
In some implementations, the method further includes generating a spill-over signal in response to water overflowing from the sewage tank, and in response to the spill-over signal being not received from the anti-overflow detector after a first preset period has passed,  generating a second warning signal.
In some implementations, the method further includes acquiring a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level; calculating an absolute value of a difference between any two trigger durations; and generating a third warning signal, in response to the absolute value of the difference between any two trigger durations being greater than a first threshold value.
In some implementations, the method further includes acquiring a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level; selecting one trigger duration from at least two trigger durations as a reference duration; calculating the absolute value of the difference between each remaining trigger duration and the reference duration; and generating a fourth warning signal, in response to at least one absolute value of the difference between the remaining trigger duration and the reference duration being greater than a second threshold value.
In some implementations, the method further includes acquiring a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level; selecting a maximum trigger duration and a minimum trigger duration from at least two trigger durations; calculating the absolute value of the difference between the maximum duration and the minimum duration; and generating a fifth warning signal, in response to the absolute value of the difference between the maximum duration and the minimum duration being greater than a third threshold value.
In some implementations, the method further includes generating a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level, or generate a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount, or generate a spill-over signal in response to water overflowing from the sewage tank; and detecting an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated.
In some implementations, the method further includes calculating an absolute value of a difference between any two amounts of water absorption; and generating a sixth warning signal, in response to the absolute value of the difference between any two amounts of water absorption being greater than a fourth threshold value.
In some implementations, the method further includes selecting one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption; calculating the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption, and generating a seventh warning signal, in response to at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption being greater than a fifth threshold value.
In some implementations, the method further includes selecting a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption; calculating the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption; and generating an eighth warning signal, in response to the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption being greater than a sixth threshold value.
In some implementations, the method further includes detecting an amount of water drainage from starting draining water until the sewage tank is emptied; calculating an absolute value of a difference between the amount of water absorption and the amount of water drainage; and generating a ninth warning signal, in response to the absolute value of the difference between the amount of water absorption and the amount of water drainage being greater than a seventh threshold value.
In some implementations, the method further includes generating an emptying signal in response to the sewage tank being emptied; and in response to the emptying signal being not received before expiration of a second preset period, generating a tenth warning signal.
In some implementations, the method further includes detecting water flow in a drainage pipe connected to an outlet of the sewage tank; generate a water flow signal in response to water flow being detected in the drainage pipe connected to the outlet of the sewage  tank; and in response to the water flow signal being received after a third preset period has passed, generating an eleventh warning signal.
In some implementations, the method further includes notifying a user of the mobile cleaner of at least one of the first, second, third, fourth, fifth, sixth, seven, eighth, ninth, tenth, and eleventh warning signals. The notification is in at least one of the following forms: displaying on a screen of the mobile cleaner, displaying on a screen of the base station, emitting an acoustic signal from the mobile cleaner audible by the user, emitting an optic signal from the mobile cleaner viewable by the user, emitting an acoustic signal from the base station audible by the user, emitting an optic signal from the base station viewable by the user, transmitting a wireless signal from the mobile cleaner to a terminal device of the user, or transmitting a wireless signal from the base station to a terminal device of the user.
In some implementations, the method further includes turning off the valve upon receipt of at least one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals.
The foregoing description of the specific implementations can be readily modified and/or adapted for various applications. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed implementations, based on the teaching and guidance presented herein.
The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary implementations but should be defined only in accordance with the following claims and their equivalents.

Claims (62)

  1. A drainage detection method, applied to a cleaning apparatus comprising a water drainage assembly, the drainage detection method comprising:
    performing an operation of absorbing water and draining water;
    acquiring water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water; and
    determining whether the water drainage assembly is abnormal according to the water absorption and drainage information.
  2. The drainage detection method according to claim 1, wherein the water drainage assembly comprises a sewage tank; and the performing the operation of absorbing water and draining water comprises:
    performing the operation of absorbing water and draining water more than twice, and performing the operation of absorbing water and draining water comprising:
    absorbing water to the sewage tank until first detection information of the sewage tank meets a first preset condition, and
    draining water from the sewage tank.
  3. The drainage detection method according to claim 2, wherein the acquiring the water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water comprises:
    acquiring a piece of operation information based on each operation of absorbing water and draining water, to acquire two or more pieces of operation information; and
    the determining whether the water drainage assembly is abnormal according to the water absorption and drainage information comprises:
    determining whether the water drainage assembly is abnormal according to the two or more pieces of operation information.
  4. The drainage detection method according to claim 3, wherein the sewage tank comprises an anti-overflow detector, and the first preset condition is the anti-overflow detector being triggered,
    the acquiring the piece of operation information based on each operation of absorbing water and draining water comprises:
    acquiring a trigger duration from a start time of each operation of absorbing water to a time of triggering the anti-overflow detector, and
    taking the trigger duration as the piece of operation information.
  5. The drainage detection method according to claim 4, wherein the determining whether the water drainage assembly is abnormal according to the two or more pieces of operation information comprises:
    calculating an absolute value of a difference between any two trigger durations to acquire a calculating duration; and
    in responding to a determination that at least one calculating duration is greater than a first threshold value, determining that a drainage pipe of the water drainage assembly is blocked.
  6. The drainage detection method according to claim 4, wherein the determining whether the water drainage assembly is abnormal according to the two or more pieces of operation information comprises:
    selecting one trigger duration from at least two trigger durations as a reference duration;
    calculating an absolute value of a difference between each remaining trigger duration and the reference duration; and
    in responding to a determination that at least one absolute value of the difference between the trigger duration and the reference duration is greater than a second threshold value, determining that a drainage pipe of the drainage assembly is blocked.
  7. The drainage detection method according to claim 4, wherein the determining whether the water drainage assembly is abnormal according to the two or more pieces of operation information comprises:
    selecting a maximum trigger duration and a minimum trigger duration from at least two trigger durations;
    calculating an absolute value of a difference between the maximum trigger duration and the minimum trigger duration to obtain a first target value; and
    in responding to a determination that the first target value is greater than a third threshold value, determining that a drainage pipe of the drainage assembly is blocked.
  8. The drainage detection method according to claim 3, wherein the sewage tank comprises a preset detector, and the acquiring the piece of operation information based on each operation of absorbing water and draining water comprises:
    acquiring an amount of water absorption from a start time of each operation of absorbing water until the first detection information meets the first preset condition, and
    taking the amount of water absorption as the piece of operation information.
  9. The drainage detection method according to claim 8, wherein the preset detector is an anti-overflow detector, a water amount detector, or a water level detector, and the first preset condition is:
    the anti-overflow detector being triggered;
    a water amount of the sewage tank detected by the water amount detector reaching a first water amount; or
    a water level of the sewage tank detected by the water level detector reaching a first water level.
  10. The drainage detection method according to claim 8, wherein the determining whether the water drainage assembly is abnormal according to the two or more pieces of operation information comprises:
    calculating an absolute value of a difference between any two amounts of water absorption to obtain a calculation of water absorption;
    in responding to a determination that at least one calculation of water absorption is greater than a fourth threshold value, determining that a drainage pipe of the drainage assembly is blocked.
  11. The drainage detection method according to claim 8, wherein the determining whether the water drainage assembly is abnormal according to the two or more pieces of operation information comprises:
    selecting one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption;
    calculating an absolute value of a difference between each remaining water absorption and the reference amount of water absorption; and
    in responding to a determination that at least one absolute value of the difference between each remaining water absorption and the reference amount of water absorption is greater than a fifth threshold value, determining that a drainage pipe of the drainage assembly is blocked.
  12. The drainage detection method according to claim 8, wherein the determining whether the water drainage assembly is abnormal according to the more than two pieces of operation information comprises:
    selecting a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption;
    calculating an absolute value of a difference between the maximum amount of water absorption and the minimum amount of water absorption to obtain a second target value;
    in responding to a determination that the second target value is greater than a sixth threshold value, determining that a drainage pipe of the drainage assembly is blocked.
  13. The drainage detection method according to claim 2, wherein the water drainage assembly comprises a sewage tank provided with an anti-overflow detector, before the draining water from the sewage tank, the method comprises:
    determining whether the anti-overflow detector is triggered within a first preset period; and
    in responding to a determination that the anti-overflow detector is not triggered within the first preset period, determining that the anti-overflow detector is abnormal, and
    performing an operation of prompting abnormality of the anti-overflow detector.
  14. The drainage detection method according to claim 13, wherein after the determining whether the anti-overflow detector is triggered, the method comprises:
    in responding to a determination that the anti-overflow detector is triggered, terminating the operation of absorbing water.
  15. The drainage detection method according to claim 1, wherein the water drainage assembly comprises a sewage tank, and the performing the operation of absorbing water and draining water comprises:
    performing one operation of absorbing water and draining water, wherein the performing one operation of absorbing water and draining water comprises:
    absorbing water to the sewage tank until second detection information of the sewage tank meets a second preset condition, and
    draining water from the sewage tank.
  16. The drainage detection method according to claim 15, wherein the acquiring the water absorption and drainage information corresponding to the performing of the operation of absorbing water and draining water comprises:
    acquiring an amount of water absorption of absorbing water to the sewage tank; and
    acquiring an amount of water drainage of draining water from the sewage tank.
  17. The drainage detection method according to claim 16, wherein the determining whether the water drainage assembly is abnormal according to the water absorption and drainage information comprises:
    calculating an absolute value of a difference between the amount of water absorption and the amount of water drainage to obtain a third target value; and
    in responding to a determination that the third target value is greater than a seventh preset threshold, determining that a drainage pipe of the drainage assembly is blocked.
  18. The drainage detection method according to claim 15, wherein the water drainage assembly further comprises a first emptying detector arranged at a bottom of the sewage tank, and the determining whether the water drainage assembly is abnormal according to the water absorption and drainage information comprises:
    in responding to a determination that the operation of draining water lasts for a second preset period and the first emptying detector is not triggered within the second preset period, determining that a drainage pipe of the drainage assembly is blocked.
  19. The drainage detection method according to claim 15, wherein the water drainage assembly further comprises a second emptying detector arranged on a drainage pipe of the sewage tank, and the determining whether the water drainage assembly is abnormal according to the water absorption and drainage information comprises:
    in responding to a determination that the operation of draining water lasts for a third preset period and the second emptying detector detects a water flow within the third preset period, determining that a drainage pipe of the water drainage assembly is blocked.
  20. The drainage detection method according to claim 1, wherein after the determining whether the water drainage assembly is abnormal according to the water absorption and drainage information, the method comprises:
    in responding to a determination that the water drainage assembly is abnormal according to the water absorption and drainage information, performing the operation of prompting abnormality of the water drainage assembly.
  21. A cleaning apparatus comprising a memory, a processor, and a computer program stored on the memory and executable by the processor, wherein the computer program, when being executed by the processor, implements the drainage detection method according to any one of claims 1 to 20.
  22. A computer-readable storage medium storing a drainage detection program, and wherein when the drainage detection program being executed by a processor, implements the drainage detection method according to any one of claims 1 to 20.
  23. A base station for a mobile cleaner, the base station comprising:
    a dock configured to accommodate the mobile cleaner;
    a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock;
    a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and
    a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
  24. The base station of claim 23, wherein the self-checking module is further configured to identify a type of the detected malfunction and generate a warning signal correlated to the type of the detected malfunction.
  25. The base station of claim 23 or 24, wherein the water drainage assembly comprises:
    an inlet connected to the cleaning area;
    an outlet connected to outside; and
    a sewage tank configured to accumulate water absorbed from the cleaning area through the inlet and to drain water to outside through the outlet.
  26. The base station of claim 25, wherein a first valve is positioned between the inlet and the cleaning area and a second valve is positioned between the outlet and outside, and
    wherein the self-checking module comprises a first controller electrically coupled to the first valve and configured to control the first valve, and a second controller electrically coupled to the second valve and configured to control the second valve.
  27. The base station of claim 26, wherein the self-checking module is configured to detect a correct working state of the first valve or the second value, and generate a first warning signal when the first valve or the second value is not in the correct working state.
  28. The base station of any one of claims 25-27, wherein the self-checking module comprises an anti-overflow detector configured to generate a spill-over signal in response to water overflowing from the sewage tank, and
    wherein, when the spill-over signal is received, the self-checking module is configured to stop absorbing water from the cleaning area.
  29. The base station of claim 28, wherein, when the spill-over signal is not received from the anti-overflow detector after a first preset period has passed, the self-checking module is configured to generate a second warning signal.
  30. The base station of claim 28, wherein the self-checking module is configured to acquire a trigger duration required for the anti-overflow detector to receive the spill-over signal and calculate an absolute value of a difference between any two trigger durations, and
    wherein, when the absolute value of the difference between any two trigger durations is greater than a first threshold value, the self-checking module is configured to generate a third warning signal.
  31. The base station of claim 28, wherein the self-checking module is configured to acquire a trigger duration required for the anti-overflow detector to receive the spill-over signal, select one trigger duration from at least two trigger durations as a reference duration and calculate  the absolute value of the difference between each remaining trigger duration and the reference duration, and
    wherein, when at least one absolute value of the difference between the remaining trigger duration and the reference duration is greater than a second threshold value, the self-checking module is configured to generate a fourth warning signal.
  32. The base station of claim 28, wherein the self-checking module is configured to acquire a trigger duration it takes the anti-overflow detector to receive the spill-over signal, select a maximum trigger duration and a minimum trigger duration from at least two trigger durations and calculate the absolute value of the difference between the maximum duration and the minimum duration, and
    wherein, when the absolute value of the difference between the maximum duration and the minimum duration is greater than a third threshold value, the self-checking module is configured to generate a fifth warning signal.
  33. The base station of any one of claims 25-32, wherein the self-checking module comprises a water level detector configured to detect a level of water accumulated in the sewage tank, and/or a water amount detector configured to detect an amount of water accumulated in the sewage tank, and/or an anti-overflow detector configured to generate a spill-over signal in response to water overflowing from the sewage tank, and
    wherein the water level detector generates a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level, and the water amount detector generates a second complete signal in response to the amount of water accumulated in the sewage tank reaching a first water amount, and
    wherein the self-checking module is configured to detect an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated.
  34. The base station of claim 33, wherein the self-checking module is configured to calculate an absolute value of a difference between any two amounts of water absorption, and
    wherein, when the absolute value of the difference between any two amounts of water absorption is greater than a fourth threshold value, the self-checking module is configured to generate a sixth warning signal.
  35. The base station of claim 33, wherein the self-checking module is configured to select one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption and calculate the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption, and
    wherein, when at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption is greater than a fifth threshold value, the self-checking module is configured to generate a seventh warning signal.
  36. The base station of claim 33, wherein the self-checking module is configured to select a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption and calculate the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption, and
    wherein, when the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption is greater than a sixth threshold value, the self-checking module is configured to generate an eighth warning signal.
  37. The base station of claim 33, wherein the self-checking module is configured to acquire an amount of water drainage, calculate an absolute value of a difference between the amount of water absorption and the amount of water drainage, and
    wherein, when the absolute value of the difference between the amount of water absorption and the amount of water drainage is greater than a seventh threshold value, the self-checking module is configured to generate a ninth warning signal.
  38. The base station of any one of claims 25-37, wherein the self-checking module comprises a first emptying detector configured to generate an emptying signal in response to the sewage tank being emptied; and
    wherein, when the emptying signal is not received from the first emptying detector before expiration of a second preset period, the self-checking module is configured to generate a tenth warning signal.
  39. The base station of any one of claims 25-38, wherein the self-checking module comprises a second emptying detector configured to detect water flow in a drainage pipe connected to an outlet of the sewage tank, and
    wherein the second emptying detector generates a water flow signal in response to water flow being detected in the drainage pipe connected to the outlet of the sewage tank; and
    wherein, when the water flow signal is received from the second emptying detector after a third preset period has passed, the self-checking module is configured to generate an eleventh warning signal.
  40. The base station of any one of claims 23-39, wherein the mobile cleaner is one of a mobile cleaning robot, a handheld vacuum, or a vacuum-mop robot.
  41. The base station of any one of claims 27-40, wherein a user of the mobile cleaner is notified of at least one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals, and
    wherein the notification is in at least one of the following forms:
    displaying on a screen of the mobile cleaner,
    displaying on a screen of the base station,
    emitting an acoustic signal from the mobile cleaner audible by the user,
    emitting an optic signal from the mobile cleaner viewable by the user,
    emitting an acoustic signal from the base station audible by the user,
    emitting an optic signal from the base station viewable by the user,
    transmitting a wireless signal from the mobile cleaner to a terminal device of the user, or
    transmitting a wireless signal from the base station to a terminal device of the user.
  42. The base station of any one of claims 27-40, wherein upon receipt of at least one of the first, second, third, fourth, fifth, sixth, seventh, and eighth warning signals, the first controller turns off the first valve and/or the second controller turns off the second valve.
  43. A cleaning system comprising:
    a base station;
    a power supply assembly configured to supply power to the base station; and
    a mobile cleaner,
    wherein the base station comprises:
    a dock configured to accommodate the mobile cleaner and charge the mobile cleaner via the power supply assembly;
    a cleaning area configured to provide an area for cleaning the mobile cleaner accommodated in the dock;
    a water drainage assembly configured to drain water absorbed from the cleaning area to outside; and
    a self-checking module configured to detect a malfunction regarding drainage of water from the cleaning area to outside.
  44. A cleaning system of claim 43, wherein the self-checking module is further configured to identify a type of the detected malfunction and generate a warning signal correlated to the type of the detected malfunction.
  45. A cleaning system of claim 44, wherein, according to the type of the detected malfunction, the power supply assembly stops one or both of supplying power to the base station or charging the mobile cleaner.
  46. A method for self-checking a base station for a mobile cleaner, wherein the base station comprises a water drainage assembly configured to drain water absorbed from a cleaning area to outside, the method comprising:
    detect, by a self-checking module, a malfunction regarding drainage of water from the cleaning area to outside.
  47. The method of claim 46, further comprising:
    identify a type of the detected malfunction, and
    generate a warning signal correlated to the type of the detected malfunction.
  48. The method of claim 47, wherein the water drainage assembly comprises:
    an inlet connected to the cleaning area,
    an outlet connected to outside, and
    a sewage tank configured to accumulate water absorbed from the cleaning area through the inlet and to drain water to outside through the outlet.
  49. The method of claim 48, wherein a first valve is positioned between the inlet and the cleaning area and a second valve is positioned between the outlet and outside, the method further comprising:
    detect a correct working state of the first valve or the second value, and
    in response to the first valve or the second value not being in the correct working state, generate a first warning signal.
  50. The method of claim 48 or 49, further comprising:
    generate a spill-over signal in response to water overflowing from the sewage tank, and
    in response to the spill-over signal being not received from the anti-overflow detector after a first preset period has passed, generate a second warning signal.
  51. The method of any one of claims 50, further comprising:
    acquire a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level;
    calculate an absolute value of a difference between any two trigger durations; and
    generate a third warning signal, in response to the absolute value of the difference between any two trigger durations being greater than a first threshold value.
  52. The method of claim 50, further comprising:
    acquire a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level;
    select one trigger duration from at least two trigger durations as a reference duration;
    calculate the absolute value of the difference between each remaining trigger duration and the reference duration; and
    generate a fourth warning signal, in response to at least one absolute value of the difference between the remaining trigger duration and the reference duration being greater than a second threshold value.
  53. The method of claim 50, further comprising:
    acquire a trigger duration required for the amount of water in the sewage tank to reach a preset water amount or the level of water in the sewage tank to reach a preset water level;
    select a maximum trigger duration and a minimum trigger duration from at least two trigger durations;
    calculate the absolute value of the difference between the maximum duration and the minimum duration; and
    generate a fifth warning signal, in response to the absolute value of the difference between the maximum duration and the minimum duration being greater than a third threshold value.
  54. The method of any one of claims 48-53, further comprising:
    generate a first complete signal in response to the level of water accumulated in the sewage tank reaching a first water level, or generate a second complete signal in response to the  amount of water accumulated in the sewage tank reaching a first water amount, or generate a spill-over signal in response to water overflowing from the sewage tank; and
    detect an amount of water absorption from starting absorbing water from the cleaning area until at least one of the first complete signal, the second complete signal and the spill-over signal is generated.
  55. The method of claim 54, further comprising:
    calculate an absolute value of a difference between any two amounts of water absorption; and
    generate a sixth warning signal, in response to the absolute value of the difference between any two amounts of water absorption being greater than a fourth threshold value.
  56. The method of claim 54, further comprising:
    select one amount of water absorption from at least two amounts of water absorption as a reference amount of water absorption;
    calculate the absolute value of the difference between each remaining amount of water absorption and the reference amount of water absorption, and
    generate a seventh warning signal, in response to at least one absolute value of the difference between the remaining amount of water absorption and the reference amount of water absorption being greater than a fifth threshold value.
  57. The method of claim 54, further comprising:
    select a maximum amount of water absorption and a minimum amount of water absorption from at least two amounts of water absorption;
    calculate the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption; and
    generate an eighth warning signal, in response to the absolute value of the difference between the maximum amount of water absorption and the minimum amount of water absorption being greater than a sixth threshold value.
  58. The method of any one of claims 54-57, further comprising:
    detect an amount of water drainage from starting draining water until the sewage tank is emptied;
    calculate an absolute value of a difference between the amount of water absorption and the amount of water drainage; and
    generate a ninth warning signal, in response to the absolute value of the difference between the amount of water absorption and the amount of water drainage being greater than a seventh threshold value.
  59. The method of any one of claims 48-58, further comprising:
    generate an emptying signal in response to the sewage tank being emptied; and
    in response to the emptying signal being not received before expiration of a second preset period, generate a tenth warning signal.
  60. The method of any one of claims 48-59, further comprising:
    detect water flow in a drainage pipe connected to an outlet of the sewage tank;
    generate a water flow signal in response to water flow being detected in the drainage pipe connected to the outlet of the sewage tank; and
    in response to the water flow signal being received after a third preset period has passed, generate an eleventh warning signal.
  61. The method of any one of claims 49-60, further comprising:
    notify a user of the mobile cleaner of at least one of the first, second, third, fourth, fifth, sixth, seven, eighth, ninth, tenth, and eleventh warning signals,
    wherein the notification is in at least one of the following forms:
    displaying on a screen of the mobile cleaner,
    displaying on a screen of the base station,
    emitting an acoustic signal from the mobile cleaner audible by the user,
    emitting an optic signal from the mobile cleaner viewable by the user,
    emitting an acoustic signal from the base station audible by the user,
    emitting an optic signal from the base station viewable by the user,
    transmitting a wireless signal from the mobile cleaner to a terminal device of the user, or
    transmitting a wireless signal from the base station to a terminal device of the user.
  62. The method of any one of claims 48-61, further comprising:
    turn off the valve upon receipt of at least one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh warning signals.
PCT/CN2022/143920 2021-12-31 2022-12-30 Base station, cleaning system, and method for self-checking thereof WO2023125929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111682959.4 2021-12-31
CN202111682959.4A CN114431798B (en) 2021-12-31 2021-12-31 Drainage detection method, drainage detection device, cleaning equipment and storage medium

Publications (1)

Publication Number Publication Date
WO2023125929A1 true WO2023125929A1 (en) 2023-07-06

Family

ID=81366639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143920 WO2023125929A1 (en) 2021-12-31 2022-12-30 Base station, cleaning system, and method for self-checking thereof

Country Status (2)

Country Link
CN (1) CN114431798B (en)
WO (1) WO2023125929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117462052A (en) * 2023-12-26 2024-01-30 深圳市普渡科技有限公司 Robot workstation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431798B (en) * 2021-12-31 2023-08-08 云鲸智能(深圳)有限公司 Drainage detection method, drainage detection device, cleaning equipment and storage medium
WO2023220862A1 (en) * 2022-05-16 2023-11-23 广东逸动科技有限公司 Water leakage detection method, water leakage detection apparatus, electronic device, and storage medium
CN114947666A (en) * 2022-06-24 2022-08-30 杭州萤石软件有限公司 Cleaning base station and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160236343A1 (en) * 2015-02-12 2016-08-18 Irobot Corporation Liquid management for floor-traversing robots
CN111973122A (en) * 2019-05-21 2020-11-24 青岛海尔洗衣机有限公司 Dish washer drainage detection method and drainage detection device thereof
CN112779953A (en) * 2019-11-06 2021-05-11 宁波方太厨具有限公司 Drainage device and drainage working method
CN113558539A (en) * 2021-06-24 2021-10-29 深圳甲壳虫智能有限公司 Cleaning robot system, control method, control device, and storage medium
CN215191306U (en) * 2020-12-28 2021-12-17 追觅创新科技(苏州)有限公司 Base station of cleaning robot and intelligent cleaning system with base station
CN114431798A (en) * 2021-12-31 2022-05-06 云鲸智能(深圳)有限公司 Drainage detection method and device, cleaning equipment and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584788Y2 (en) * 1993-04-16 1998-11-05 アマノ株式会社 Tank equipment for floor washer
CN108125648A (en) * 2017-12-29 2018-06-08 宁波欧琳厨具有限公司 A kind of method and system of purification water tank water level detecting
CN111752206A (en) * 2019-03-29 2020-10-09 深圳市源清环境技术服务有限公司 Automatic monitoring and early warning method and device for sewage discharge and computer equipment
CN112043217A (en) * 2020-09-29 2020-12-08 珠海市一微半导体有限公司 Full-automatic cleaning robot system and control method
CN113605050B (en) * 2021-09-06 2023-11-21 海信冰箱有限公司 Alarm method and alarm control device for abnormal drainage of clothes dryer and clothes dryer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160236343A1 (en) * 2015-02-12 2016-08-18 Irobot Corporation Liquid management for floor-traversing robots
CN111973122A (en) * 2019-05-21 2020-11-24 青岛海尔洗衣机有限公司 Dish washer drainage detection method and drainage detection device thereof
CN112779953A (en) * 2019-11-06 2021-05-11 宁波方太厨具有限公司 Drainage device and drainage working method
CN215191306U (en) * 2020-12-28 2021-12-17 追觅创新科技(苏州)有限公司 Base station of cleaning robot and intelligent cleaning system with base station
CN113558539A (en) * 2021-06-24 2021-10-29 深圳甲壳虫智能有限公司 Cleaning robot system, control method, control device, and storage medium
CN114431798A (en) * 2021-12-31 2022-05-06 云鲸智能(深圳)有限公司 Drainage detection method and device, cleaning equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117462052A (en) * 2023-12-26 2024-01-30 深圳市普渡科技有限公司 Robot workstation

Also Published As

Publication number Publication date
CN114431798A (en) 2022-05-06
CN114431798B (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2023125929A1 (en) Base station, cleaning system, and method for self-checking thereof
US20230329504A1 (en) Base station, cleaning system, and method for self-checking thereof
CN102573595B (en) Cleaning machine, such as dish-washing machine or washing machine, and the method for operation cleaning machine
KR101817369B1 (en) Washer such as a dishwasher or a washing machine and method for operating such a washer
US8992694B2 (en) Flow rate sensor and related dishwasher
US20170306608A1 (en) Methods, systems, and software for providing a blocked sewer alert
CN215914461U (en) Cleaning robot base station and cleaning robot system
CN209377467U (en) A kind of sweeping robot that water can be changed by supply stake of supplying water
KR101578206B1 (en) Automatic device of water supply and drain for livestock
CN101999875A (en) Dishwasher and controlling method thereof
JP4831758B2 (en) dishwasher
KR101482023B1 (en) Controlling method and apparatus for washing water drain of dish washer
CN217610880U (en) Base seat
US9637941B2 (en) Method of monitoring a low water volume within a water circulation system
US3198122A (en) Portable pumping station
CN112773264A (en) Maintenance station and sweeping robot
CN116269087A (en) Equipment self-cleaning starting method, cleaning system, base station and cleaning equipment
WO2019205156A1 (en) Cleaning robot, and service station and automatic water supply and drainage system thereof
JP5532644B2 (en) Flush toilet pump
JP2017133201A (en) Cleaning method of sensor and drainage device
CN220724586U (en) Automatic conveying system for liquid medicine
JP6107871B2 (en) Air conditioner with emergency drain function
JP6238193B2 (en) Toilet device
CN218515698U (en) Base station and cleaning system
CN115715654A (en) Base, self-cleaning method of cleaning device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915178

Country of ref document: EP

Kind code of ref document: A1