WO2023125848A1 - 多端口定位参考信号测量方法、装置及通信设备 - Google Patents

多端口定位参考信号测量方法、装置及通信设备 Download PDF

Info

Publication number
WO2023125848A1
WO2023125848A1 PCT/CN2022/143574 CN2022143574W WO2023125848A1 WO 2023125848 A1 WO2023125848 A1 WO 2023125848A1 CN 2022143574 W CN2022143574 W CN 2022143574W WO 2023125848 A1 WO2023125848 A1 WO 2023125848A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning reference
port
teg
port group
Prior art date
Application number
PCT/CN2022/143574
Other languages
English (en)
French (fr)
Inventor
司晔
庄子荀
潘翔
王园园
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023125848A1 publication Critical patent/WO2023125848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the technical field of wireless communication, and in particular relates to a multi-port positioning reference signal measurement method, device and communication equipment.
  • the terminal In the current communication protocol, only a single-port positioning reference signal is supported, which makes the positioning accuracy not accurate enough.
  • AI artificial intelligence
  • the terminal In a sidelink (Sidelink), the terminal may have distributed antennas, and the distributed antennas may correspond to different ports or port groups.
  • AOD Angle Of Departure
  • the multi-port positioning reference signal can accurately obtain the AOD through phase calculation. Therefore, in subsequent positioning schemes based on positioning reference signals, there is a need for designing multiple port positioning reference signals.
  • the vehicle wireless communication technology (New Radio-vehicle to everything, NR-V2X) based on the new air interface defines two resource allocation modes (mode), one is mode1, which schedules resources for the base station; the other is mode2, the terminal ( User Equipment (UE) decides the resources used for transmission by itself.
  • the resource information may come from the broadcast message of the base station or the pre-configured information. If the UE works within the range of the base station and has a radio resource control (Radio Resource Control, RRC) connection with the base station, it can be mode1 and/or mode2. If the UE works within the range of the base station but has no RRC connection with the base station, it can only work in mode2 .
  • RRC Radio Resource Control
  • the UE If the UE is outside the range of the base station, it can only work in mode2, and perform vehicle wireless communication technology (Vehicle to everything, V2X) transmission according to pre-configured information.
  • vehicle wireless communication technology Vehicle to everything, V2X
  • the existing technology does not support sidelink positioning, and there is no related scheme for signal scheduling during sidelink positioning.
  • Embodiments of the present application provide a multi-port positioning reference signal measurement method, device, and communication equipment, which can solve the problem of insufficient positioning accuracy when a single-port positioning reference signal is used for positioning.
  • a method for measuring a multi-port positioning reference signal including:
  • the receiving node receives the positioning reference signal sent by the sending node through multiple positioning reference signal ports;
  • the receiving node measures the positioning reference signal of one or more target ports in the plurality of positioning reference signal ports, obtains a target measurement result, and/or reports the target measurement result.
  • a method for measuring a multi-port positioning reference signal including:
  • the sending node sends the positioning reference signal through multiple positioning reference signal ports.
  • a multi-port positioning reference signal measurement device including:
  • the first receiving module is configured to receive the positioning reference signal sent by the sending node through a plurality of positioning reference signal ports;
  • An execution module configured to measure and/or report target measurement results of positioning reference signals of one or more target ports in the plurality of positioning reference signal ports.
  • a multi-port positioning reference signal measurement device including:
  • the first sending module is configured to send the positioning reference signal to the receiving node through multiple positioning reference signal ports.
  • a communication device in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following is implemented: The steps of the method described in the first aspect or the second aspect.
  • a communication device including a processor and a communication interface, wherein the communication interface is used to receive a positioning reference signal sent by a sending node through a plurality of positioning reference signal ports; the processor is used to measure the A target measurement result of the positioning reference signal of one or more target ports in the plurality of positioning reference signal ports, and/or, report the target measurement result.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the method described in the first aspect or the second aspect step.
  • the positioning reference signals of multiple positioning reference signal ports are measured, and the measurement results are obtained. Since the positioning reference signals of multiple ports are considered, compared with the single-port positioning reference signal positioning, the positioning is improved. precision.
  • FIG. 1 is a block diagram of a wireless communication system applicable to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a typical positioning reference signal (Positioning Reference Signal, PRS) pattern under different comb (comb) structures;
  • PRS Positioning Reference Signal
  • FIG. 3 is a schematic flowchart of a method for measuring a multi-port positioning reference signal in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for measuring a multi-port positioning reference signal in another embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a multi-port positioning reference signal measurement device in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a multi-port positioning reference signal measurement device in another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a network side device in an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Networks, WLAN) access point or a WiFi node, etc., and the base station may be called a node B, an evolved node B (eNB), an access point, or a base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home node B, home evolved node B, sending and receiving point (Transmission Reception Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User
  • NR redesigned the downlink positioning reference signal NR DL PRS based on the NR system including the following:
  • the positioning reference signal only supports a single port.
  • Positioning Reference Signal can come from multiple transmission and reception points (Transmission Reception Point, TRP), and multiple TRPs can come from serving cells or non-serving cells.
  • TRP Transmission Reception Point
  • the UE measures the PRSs of multiple TRPs, and then performs positioning measurement reporting or positioning calculation.
  • PRS supports a maximum of 100M in FR1 and a maximum of 400M in FR2.
  • NR PRS bandwidth configuration has nothing to do with the bandwidth part (Bandwidth Part, BWP) configuration.
  • BWP Bandwidth Part
  • the user equipment User Equipment, UE
  • Measurement Gap Measurement Gap
  • PRS supports beamforming, so the concept of PRS resource (resource) is introduced.
  • the PRS resource ID can correspond to 1 beam in 1 TRP.
  • One or more PRS resources can form a PRS resource set (resource set), or a PRS resource set can contain one or more PRS resources.
  • a TRP can contain one or more PRS resources.
  • PRS beam scanning and PRS beam repetition are supported.
  • PRS is supported to refer to adjacent cell Reference Signals (Reference Signals, RS) as spatial quasi-co-location (Quasi Co-Location, QCL) reference signals.
  • PRS supports staggered patterns and supports flexible pattern configuration.
  • the comb structure of PRS resource can support ⁇ 2,4,6,12 ⁇ ; the number of symbols can support ⁇ 2,4,6,12 ⁇ .
  • the currently supported combinations of symbol number and comb size are shown in Table 1:
  • LTE Long Term Evolution
  • NR Rel-16 positioning discusses whether to support single-port and two-port PRS transmission.
  • the two-port PRS will introduce more resource overhead, and there is not enough argumentation, in the end Rel-16 only supports the single-port PRS.
  • the UE shall assume that the reference signal sequence r(m) is defined as:
  • pseudo-random sequence generator should be initialized as:
  • l is the OFDM symbol in the slot to which the sequence is mapped.
  • the PRS sequence is a Gold sequence and is obtained by performing quadrature phase shift keying (Quadrature Phase Shift Keying, QPSK) modulation.
  • QPSK Quadrature Phase Shift Keying
  • the initialization function of the Gold sequence is c init , and its design requires distinguishing the PRS of each TRP, and maintaining the interference randomization and good sequence cross-correlation characteristics between the DL PRS of each TRP.
  • the UE For each downlink PRS resource configured, the UE shall assume that the sequence r(m) is scaled with a factor ⁇ _"PRS" and mapped to resource elements (k,l) p, ⁇ according to the following equation:
  • the resource unit (k, l) p, ⁇ is located in the resource block occupied by the downlink PRS resource for which the UE is configured;
  • the symbol l is not used by the serving cell for any synchronization signal/physical broadcast channel block ((Synchronization Signal, SS)/(Physical Broadcast Channel, PBCH)) block of the downlink PRS transmitted from the same serving cell or any SS/PBCH block usage, whose time-frequency position is provided by higher layers to the UE for downlink PRS sent from the same non-serving cell;
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • Multi-port channel state information reference signal (Channel State Information Reference Signal, CSI-RS) design
  • the CSI-RS of multiple ports can be divided into different code division multiplexing (Code Domain Multiplexing, CDM) groups, where the CSI-RS time-frequency positions of different CDM groups can be different; a CDM group occupies time domain and/or frequency
  • CDM groups occupies time domain and/or frequency
  • the resource element (Resource Element, RE) position with continuous domain, and different ports in a CDM group are distinguished by frequency domain orthogonal code (FD-OCC) and/or time domain orthogonal code (TD-OCC), occupying the same
  • FD-OCC frequency domain orthogonal code
  • TD-OCC time domain orthogonal code
  • the UE shall assume that the reference signal sequence r(m) is defined as:
  • pseudo-random sequence generator should be initialized as:
  • each OFDM symbol where is the slot number in the radio frame, is the OFDM symbol number in the slot, and is equal to the high-level parameter scramblingID or sequenceGenerationConfig.
  • the UE For each configured CSI-RS, the UE shall assume that the sequence r(m) is mapped to resource elements (k,l) p, ⁇ according to:
  • the value of ⁇ is given by the high-level parameter in CSI-RS-ResourceMapping IE or CSI-RS-CellMobility IE, and the number of ports X is given by the high-level parameter nrofPorts.
  • the embodiment of the present application provides a multi-port positioning reference signal measurement method, including:
  • Step 31 The receiving node receives the positioning reference signal sent by the sending node through multiple positioning reference signal ports;
  • Step 32 The receiving node measures the positioning reference signal of one or more target ports in the plurality of positioning reference signal ports, obtains a target measurement result, and/or reports the target measurement result.
  • the sending node includes but is not limited to: TRP, base station, UE, road side unit (Road Side Unit, RSU) in sidelink, base station in sidelink, and/or, sidelink UE in.
  • the receiving node includes but not limited to: UE, TRP, RSU in sidelink, base station in sidelink, and/or UE in sideilnk.
  • the downlink positioning sending node is TRP or base station, and the receiving node is UE; in uplink positioning, the sending node is UE, and the receiving node is TRP or base station.
  • the sending node is a Sidelink UE, and the receiving node is another sidelink UE; or, the sending node is an RSU or UE, and the receiving node is a UE or RSU.
  • the positioning reference signal includes but is not limited to: PRS, channel sounding reference signal (Sounding Reference Signal, SRS), CSI-RS, demodulation reference signal (Demodulation Reference Signal, DMRS), synchronization Signal block (Synchronization Signal and PBCH block, SSB), and/or, sidelink PRS (SL-PRS), etc. are used for radio access technology (Radio Access Technology, RAT) dependence/independence (RAT-dependent/ independent) or reference signal for sidelink positioning.
  • RAT Radio Access Technology
  • the positioning reference signal resource corresponding to the measurement result is a positioning reference signal resource within a positioning reference signal measurement window.
  • the receiving node needs to report the measurement results of multiple positioning reference signal ports (ports) (of a certain positioning reference signal sending node), it can use the measurement results of a certain reference port as a reference and report in a differential manner Measurements at multiple ports and/or measurements at a reference port as a reference.
  • positioning reference signals of multiple positioning reference signal ports are measured to obtain measurement results, thereby improving positioning accuracy.
  • the receiving node measures the positioning reference signal of one or more target ports in the plurality of positioning reference signal ports according to the configuration information of the positioning reference signal.
  • the configuration information includes at least one of the following:
  • N is a positive integer greater than 1.
  • the configuration information of the N positioning reference signal ports includes at least one of the following:
  • the configuration information of the positioning reference signal port group includes at least one of the following: the number of positioning reference signal port groups, the positioning reference signal port group index, the number of positioning reference signal ports in the positioning reference signal port group, the positioning reference Positioning reference signal port index in a signal port group, positioning reference signal port group position identifier, number of CDM port groups in a positioning reference signal port group, CDM port group index in a positioning reference signal port group, positioning reference in a CDM port group The number of signal ports and the positioning reference signal port index in the CDM port group.
  • association relationship between the N positioning reference signal ports and the positioning reference signal resource set and/or positioning reference signal resources includes one of the following:
  • the number of positioning reference signal ports associated with each positioning reference signal resource set is less than or equal to N, and all positioning reference signal resource sets are associated with the N positioning reference signal ports;
  • the target measurement result includes at least one of the following:
  • the power-related measurement results include at least one of the following: Reference Signal Received Power (Reference Signal Receiving Power, RSRP), reference signal received power of a path (RSRP path, RSRPP) and Reference Signal Received Quality (Reference Signal Receiving Power) Quality, RSRQ).
  • RSRP Reference Signal Received Power
  • RSRPP Reference Signal Received Power of a path
  • RSRQ Reference Signal Received Quality
  • the time-related measurement results include at least one of the following: a reference signal time difference (Reference Signal Time Difference, RSTD), a time of arrival (Time of Arrival, TOA), a relative time of arrival (Relative time of arrival, RTOA), Receive and transmit time difference (Rx-Tx time difference).
  • RSTD Reference Signal Time Difference
  • TOA Time of Arrival
  • RTOA relative time of arrival
  • Rx-Tx time difference Receive and transmit time difference
  • the angle-related measurement results include: angle of arrival (angle of arrival, AOA) or angle of departure (AOD).
  • the receiving node measures the positioning reference signals of multiple ports, obtains the channel responses of different ports, and performs the codebook traversal process to obtain the optimal codebook that matches the channel, and the optimal codebook Index is Locating PMIs.
  • the target measurement result further includes: identification information of the target port, indicating which port or ports the target measurement result is measured on; the identification information includes at least one of the following: Node identifier (ID), positioning reference signal port index, positioning reference signal port group index where the target port is located, code division multiplexing CDM port group index where the target port is located, positioning reference signal resource set ID, positioning reference signal Resource ID.
  • ID Node identifier
  • positioning reference signal port index positioning reference signal port group index where the target port is located
  • code division multiplexing CDM port group index where the target port is located
  • positioning reference signal resource set ID positioning reference signal Resource ID
  • the positioning reference signal port index may also be an index within a group, such as an index within a positioning reference signal port group, or an index within a CDM port group.
  • the phase measurement result includes at least one of the following:
  • phase difference of multiple ports may also be called port relative phase (port relative phase).
  • the phase difference includes at least one of the following:
  • phase of the first path of the target port i.e. the first path in the target port time-domain channel impulse response (Channel Impulse Response, CIR)
  • phase of the first path of the phase reference port i.e. the first path in the target port time-domain channel impulse response (Channel Impulse Response, CIR)
  • the selection of other paths can be determined in at least one way according to other node indications, protocol agreements, and selection of the receiving node.
  • other nodes indicate the number of other paths (additional paths), and the receiving node reports the number of other paths according to the implementation. diameter measurement results.
  • the nth path of the target port corresponds to the nth path of the reference port, or the path of the target port time t corresponds to the reference port time t diameter.
  • the multiple target ports used to calculate the phase difference belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resources, and/or, the same positioning reference signal resource set, and/or, the same sending node.
  • the phase measurement result further includes: identification information of the phase reference port; the identification information includes at least one of the following: sending node ID, positioning reference signal port index, the phase The positioning reference signal port group index where the reference port is located, the CDM port group index where the phase reference port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • the phase measurement result further includes: identification information of the target port; the identification information includes at least one of the following: sending node identification (ID), positioning reference signal port index (index or ID), the positioning reference signal port group index where the target port is located, the code division multiplexing CDM port group index where the target port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • ID sending node identification
  • ID positioning reference signal port index
  • ID positioning reference signal port index
  • CDM port group index where the target port is located
  • the positioning reference signal resource set ID the positioning reference signal resource ID
  • the phase reference port is determined by at least one of the following manners: indication from other nodes, protocol agreement, or selection by the receiving node.
  • the identification information of the phase reference port is indicated; the indicated identification information includes at least one of the following: sending node ID, positioning reference signal A port index, a positioning reference signal port group index where the phase reference port is located, a CDM port group index where the phase reference port is located, a positioning reference signal resource set ID, and a positioning reference signal resource ID.
  • the phase of the target port includes at least one of the following:
  • the average phase of the REs of the target port that is, the average of the phases of the REs occupied by the target port
  • the phase of the first path of the target port that is, the phase corresponding to the first path in the time domain channel impulse response (CIR) of the target port;
  • Phases of other paths of the target port that is, phases corresponding to other paths in the time-domain channel impulse response (CIR) of the target port.
  • the multiple target ports used to calculate the phase belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource , and/or, the same positioning reference signal resource set, and/or, the same sending node.
  • the receiving node measuring positioning reference signals of multiple target ports among the multiple positioning reference signal ports includes:
  • the receiving node uses the same Rx branch (Rx branch).
  • Rx branch can also be replaced with 'Rx Antenna', 'Rx Antenna Array', 'Rx Panel' or 'Rx Receive Beam' and so on.
  • the coefficient of the weighted average is indicated by other nodes, stipulated in a protocol, or selected by the receiving node.
  • phase measurement result may be determined by at least one of the following methods: other node indication, protocol agreement, or selection of the receiving node.
  • the power-related measurement results include at least one of the following:
  • the PRS receiving node measures RSRP and/or RSRPP measurement results on each PRS port. Further, report the measurement results of each PRS port.
  • DL PRS-RSRP DL PRS Reference Signal Received Power
  • W the linear average over the power contribution (in[W]) of the resource elements of the antenna port, the antenna
  • the resource elements of a port carry the DL-PRS reference signals configured for RSRP measurements within the considered measurement band. That is, the definition is modified as follows:
  • DL PRS reference signal received power (DL PRS-RSRP),is defined as the linear average over the power contributions(in[W])of the resource elements of the antenna port(s)that carry DL PRS reference signals configured for RSRP me assurements within the considered measurement frequency bandwidth.
  • the coefficient of the weighted average is indicated by other nodes, stipulated in a protocol, or selected by the receiving node.
  • the power-related measurement results include RSRPP
  • the power-related measurement results include a weighted average or average value of the power-related measurement results of the multiple target ports
  • the multiple target There is a corresponding relationship between the port diameter and time.
  • the nth path of port0 corresponds to the weighted average of the nth path of port1
  • the path of the target port time t corresponds to the weighted average of the path of the reference port time t.
  • the measurement result corresponding to the PRS resource is the weighted average measurement result of the x ports by the PRS receiving node. Further, the measurement result is reported.
  • DL PRS-RSRP DL PRS Reference Signal Received Power
  • the resource elements carry the DL-PRS reference signals configured for RSRP measurement within the bandwidth of the considered measurement band, averaged (weighted) over the antenna ports. That is, the definition is modified as follows:
  • DL PRS-RSRP DL PRS reference signal received power
  • the power-related measurement results include RSRPP
  • the power-related measurement results include the sum of the power-related measurement results of the multiple target ports
  • the paths of the multiple target ports There is a corresponding relationship with time.
  • the nth path of port0 corresponds to the weighted average of the nth path of port1
  • the path of the target port time t corresponds to the weighted average of the path of the reference port time t.
  • the measurement result corresponding to the PRS resource is the measurement result of summing the x PRS ports by the PRS receiving node. Further, report the measurement results
  • DL PRS-RSRP DL PRS Reference Signal Received Power
  • W the linear average value of the power contribution (in [W]) of the resource elements of the antenna port
  • DL PRS reference signal received power (DL PRS-RSRP),is defined as the linear average over the power contributions(in[W])of the resource elements of the antenna port(s)that carry DL PRS reference signals configured for RSRP me assurements within the considered measurement frequency bandwidth, summed over the antenna port(s).
  • the multiple target ports belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource, and/or, The same positioning reference signal resource set, and/or, the same sending node.
  • the power-related measurement result further includes: identification information of the target port; the identification information includes at least one of the following: a sending node identification (ID), a positioning reference signal port index, The positioning reference signal port group index where the target port is located, the code division multiplexing CDM port group index where the target port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • ID sending node identification
  • positioning reference signal port index The positioning reference signal port group index where the target port is located
  • CDM port group index where the target port is located
  • the positioning reference signal resource set ID the positioning reference signal resource set ID
  • which of the above contents are included in the power-related measurement result may be determined by at least one of the following methods: other node indication, protocol agreement, or selection of the receiving node.
  • the time-related measurement results include at least one of the following:
  • the PRS receiving node measures RSTD and/or TOA and/or RTOA and/or Rx-Tx time difference at each PRS port to obtain the measurement result. Further, report the measurement results of each PRS port.
  • DL Reference Signal Time Difference is the DL relative timing difference between transmission point (TP) j and reference TP i, defined as TSubframeRxj–TSubframeRxi;
  • TSubframeRxj is the time when UE receives a subframe from TP j;
  • TSubframeRxi is the time at which the UE receives from TP i the corresponding start of a subframe that is closest in time to the subframe received from TP j.
  • Multiple DL-PRS ports in a DL-PRS resource can be used to determine the start of a subframe from a TP. That is, the definition is modified as follows:
  • DL reference signal time difference(DL RSTD) is the DL relative timing difference between the Transmission Point(TP)j and the reference TP i, defined as TSubframeRxj–TSubframeRxi,
  • TSubframeRxj is the time when the UE receives the start of one subframe from TP j.
  • TSubframeRxi is the time when the UE receives the corresponding start of one subframe from TP i that is closest in time to the subframe received from TP j.
  • Multiple DL PRS ports within DL PRS resources can be used to determine the start of one subframe from a TP.
  • DL Reference Signal Time Difference is the DL relative timing difference between transmission point (TP) j and reference tpi, defined as TSubframeRxj–TSubframeRxi,
  • TSubframeRxj is the time when UE receives a subframe from TP j;
  • TSubframeRxi is the time at which the UE receives from TP i the corresponding start of a subframe that is closest in time to the subframe received from TP j.
  • Multiple DL-PRS resources can be used to determine the start of a subframe from a TP. And/or, multiple DL-PRS ports (of DL-PRS resources) may be used to determine the start of a subframe from a TP. That is, the definition is modified as follows:
  • DL reference signal time difference(DL RSTD) is the DL relative timing difference between the Transmission Point(TP)j and the reference TP i, defined as TSubframeRxj–TSubframeRxi,
  • TSubframeRxj is the time when the UE receives the start of one subframe from TP j.
  • TSubframeRxi is the time when the UE receives the corresponding start of one subframe from TP i that is closest in time to the subframe received from TP j.
  • Multiple DL PRS resources can be used to determine the start of one subframe from a TP.And/or
  • Multiple DL PRS ports(of DL PRS resources) can be used to determine the start of one subframe from a TP.
  • the coefficient of the weighted average is indicated by other nodes, stipulated in a protocol, or selected by the receiving node.
  • the measurement result corresponding to the PRS resource is the weighted average measurement result of the x PRS ports by the PRS receiving node. Further, the measurement result is reported.
  • DL Reference Signal Time Difference is the DL relative timing difference between transmission point (TP) j and reference TP i, defined as TSubframeRxj–TSubframeRxi;
  • TSubframeRxj is the time when UE receives a subframe from TP j;
  • TSubframeRxi is the time at which the UE receives from TP i the corresponding start of a subframe that is closest in time to the subframe received from TP j.
  • Multiple DL-PRS resources can be used to determine the start of a subframe from a TP. and / or,
  • Multiple DL-PRS ports may be used to determine the start of a subframe from a TP.
  • the multiple target ports belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource, and/or, The same positioning reference signal resource set, and/or, the same sending node.
  • the time-related measurement result further includes: identification information of the target port; the identification information includes at least one of the following: sending node identification (ID), positioning reference signal port index, The positioning reference signal port group index where the target port is located, the code division multiplexing CDM port group index where the target port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • ID sending node identification
  • positioning reference signal port index The positioning reference signal port group index where the target port is located
  • CDM port group index where the target port is located
  • the positioning reference signal resource set ID the positioning reference signal resource set ID
  • which of the above contents are included in the time-related measurement results may be determined by at least one of the following methods: other node indications, protocol agreement, or the selection of the receiving node.
  • the multiple target ports can be used to determine the starting point of a subframe (subframe) of a transmitting node (TP).
  • the angle-related measurement results include at least one of the following:
  • a weighted average or average of the angle-dependent measurements of the plurality of target ports is provided.
  • the angle-related measurement results of the target port include at least one of the following:
  • the first path measurement results include at least one of the following: one RSRP, one RSRPP (that is, the first path RSRPP), multiple UL-AOAs (AoA/ZoA pairs), one UL-RTOA, one-gNB Rx-Tx time difference, one UL-RTOA.
  • path measurement results include at least one of the following: one RSRPP, multiple UL-AOAs (AoA/ZoA pairs), one UL-RTOA, one-gNB Rx-Tx time difference, one UL-RTOA.
  • which of the above contents included in the angle-related measurement result may be determined by at least one of the following methods: other node indication, protocol agreement, or selection of the receiving node.
  • the angle-related measurement result further includes: identification information of the target port; the identification information includes at least one of the following: sending node identification (ID), positioning reference signal port index, The positioning reference signal port group index where the target port is located, the code division multiplexing CDM port group index where the target port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • ID sending node identification
  • positioning reference signal port index The positioning reference signal port group index where the target port is located
  • CDM port group index where the target port is located
  • the positioning reference signal resource set ID the positioning reference signal resource ID.
  • the multiple target ports belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource, and/or, The same positioning reference signal resource set, and/or, the same sending node.
  • the multiple target ports are stipulated in a protocol, indicated by other nodes, or selected by the receiving node.
  • the PMI measurement results can be used in the AOD calculation method.
  • the terminal measures the PRS of multiple ports, obtains the channel responses of different ports, and performs the codebook traversal process to obtain the optimal codebook and/or the optimal AOD angle matching the channel.
  • the best codebook Index reported or indicated by the terminal is the positioning PMI here.
  • the PMI measurement result further includes: identification information of the target port; the identification information includes at least one of the following: a sending node identification (ID), a positioning reference signal port index, the The positioning reference signal port group index where the target port is located, the code division multiplexing CDM port group index where the target port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • ID sending node identification
  • positioning reference signal port index the The positioning reference signal port group index where the target port is located
  • CDM port group index where the target port is located
  • the positioning reference signal resource set ID the positioning reference signal resource set ID
  • the receiving node may also report frequency domain information associated with the PMI measurement result, indicating which frequency domain position the PMI measurement result corresponds to.
  • the frequency domain information includes at least one of the following: subband identification (indicating which subband the PMI measurement result comes from, and the measurement results corresponding to different subbands may be different), BWP identification, component carrier (CC) identification, positioning Frequency layer identifier, frequency domain location information (identify which frequency domain location the measurement result is associated with, including but not limited to starting location, bandwidth, etc.).
  • multiple target ports used for PMI measurement results belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource, And/or, the same positioning reference signal resource set, and/or, the same sending node.
  • the receiving node measures the positioning reference signal of one or more target ports in the plurality of positioning reference signal ports.
  • the sent first indication information determines to perform a specific type of measurement on a target port among the plurality of positioning reference signal ports, so that the utilization efficiency of the positioning reference signal ports can be improved.
  • the specific type of measurement includes but is not limited to at least one of the following: phase measurement, power-related measurement, time-related measurement, angle-related measurement, and positioning precoding matrix indication measurement.
  • other nodes instruct the PRS receiving node to perform phase measurement on port0-port3, and/or perform RSTD measurement on port0-port1, and/or perform PMI measurement on port4-port5, and so on.
  • different specific types of measurements correspond to different target ports, or there are at least two specific types of measurements that share the same target port.
  • the positioning reference signal port used for a specific type of measurement may be indicated by at least one of the following identification information: sending node identifier (ID), positioning reference signal port index, positioning reference signal port group index, CDM port group index , the positioning reference signal resource set ID, the positioning reference signal resource ID, the number of ports required for the specific type of measurement, and the index of the starting port required for the specific type of measurement.
  • ID sending node identifier
  • positioning reference signal port index positioning reference signal port index
  • positioning reference signal port group index positioning reference signal port group index
  • CDM port group index the positioning reference signal resource set ID
  • the positioning reference signal resource ID the number of ports required for the specific type of measurement
  • the index of the starting port required for the specific type of measurement may be indicated by at least one of the following identification information: sending node identifier (ID), positioning reference signal port index, positioning reference signal port group index, CDM port group index , the positioning reference signal resource set ID, the positioning reference signal resource ID, the number of ports required for the specific type of measurement, and the index of the
  • the ports corresponding to the measurement are port 3 and port 4 .
  • the first indication information indicates a specific positioning reference signal resource and/or a specific positioning reference signal resource set for performing a specific type of measurement. That is, performing a specific type of measurement on a specific positioning reference signal port may be replaced by indicating that a specific type of measurement is performed on a specific positioning reference signal resource and/or a specific positioning reference signal resource set.
  • Another implementation manner other nodes instruct the PRS receiving node to perform RSTD measurement on PRS resource set 0, perform phase measurement on PRS resource set 1, perform PMI measurement on PRS resource set 2, and so on.
  • the method further includes: the receiving node receiving second indication information, where the second indication information is used to indicate one or more reference ports, and the reference port group is used to obtain the following At least one of the references: the target measurement result, the receiving time of the positioning reference signal, and the measurement window parameter of the receiving time of the positioning reference signal (using the expected RSTD or expectedRSTD-uncertain parameter).
  • the second indication information may be sent by the sending node, the control node, or the location server.
  • the expected RSTD or expectedRSTD-uncertain parameter is used to determine the positioning reference signal receiving time, that is, the receiving time of at least one positioning reference signal port is used as a reference, combined with the expected RSTD in the auxiliary data or expectedRSTD-uncertain and other parameters to determine the receiving time of other positioning reference signals (such as the PRS of the non-serving cell) for measurement.
  • At least one positioning reference signal port is used as a reference for the measurement result of at least one of RSTD, RSRP, RSRPP, Rx-Tx measurement, AOA measurement, and phase, that is, the receiving time of at least one positioning reference signal port For reference, the receiving time of other positioning reference signals is determined, and the positioning reference signal is further measured according to the receiving time to obtain the measurement result.
  • At least one positioning reference signal port is used as a reference for obtaining the RSTD measurement result, that is, the receiving time of at least one positioning reference signal port is used as a reference to calculate RSTD (because RSTD means reference signal time difference).
  • At least one positioning reference signal port is used as a reference for obtaining at least one measurement result of RSRP, RSRPP, Rx-Tx measurement, AOA measurement and phase, that is, the measurement result of at least one positioning reference signal port (such as RSRP, RSRPP, Rx-Tx time difference, AOA, phase) as a reference, calculate the differential measurement results of other positioning reference signals.
  • the foregoing at least one positioning reference signal port may be referred to as a reference port.
  • the number of reference ports indicated by the second indication information may be one, or may be a list (list) of positioning reference signal ports (that is, the number of reference ports may be multiple).
  • the second indication information includes: identification information of the reference port, and the identification information of the reference port includes at least one of the following: sending node ID, reference port index (or identification ), reference port index list, positioning reference signal port group index where the reference port is located, CDM port group index where the reference port is located, CDM port group list where the reference port is located, positioning reference signal resource set ID, positioning Reference signal resource ID, a list of positioning reference signal resource IDs.
  • the reference port index may be an index within a port group or within a CDM port group.
  • the CDM port index may be a CDM group index within the port group.
  • An implementation manner of an indication manner of a reference port is as follows:
  • the reference port includes one of the following:
  • One or more positioning reference signal ports for each sending node are One or more positioning reference signal ports for each sending node.
  • the one or more positioning reference signal ports of the target sending node or each sending node include at least one of the following:
  • the sending node is a reference sending node, such as a reference TRP;
  • the corresponding positioning reference signal resource set is a reference resource set ;
  • the corresponding positioning reference signal resource is a reference resource;
  • the corresponding positioning reference signal resource list is a reference positioning reference signal resource list.
  • the reference port corresponding to each sending node is used to obtain the target measurement result of the positioning reference signal of the sending node .
  • the receiving node receives the second indication information, and then further includes: the receiving node selects a reference port from the multiple reference ports indicated by the second indication information as the final reference port port.
  • the one or more reference ports belong to a positioning reference signal port group or a CDM port group.
  • the one or more reference ports are part or all of the positioning reference signal ports in the positioning reference signal port group or the CDM port group.
  • the positioning reference signal port group or the CDM port group is a reference port group.
  • the one or more reference ports belong to a positioning reference signal resource, or a positioning reference signal resource set, or a sending node.
  • the one or more reference ports are a part or all of the positioning reference signal ports of the corresponding positioning reference signal resource or positioning reference signal resource set or sending node.
  • different sending nodes or different types of measurements correspond to different reference ports.
  • the reference port actually used by the receiving node to obtain the target measurement result is the same as or different from the reference port indicated by the second indication information.
  • the method further includes: reporting the identification information of the actually used reference port, where the identification information includes at least one of the following: sending node ID, reference port index, reference port list, positioning reference Signal port group index, CDM port group index, CDM port group list, positioning reference signal resource set ID, positioning reference signal resource ID, positioning reference signal resource ID list.
  • the target measurement result includes a time-related measurement result
  • the time-related measurement result includes a reference signal time difference (RSTD) measurement result
  • the receiving node is actually used to obtain the target measurement result
  • RSTD reference signal time difference
  • the receiving node measures target measurement results of positioning reference signals of one or more target ports in the plurality of positioning reference signal ports, and/or reports the target measurement results , comprising: the receiving node determining the target port according to priority information of the plurality of positioning reference signal ports.
  • the priority information is determined by at least one of the following methods: protocol agreement, other node instructions, and the receiving node selection.
  • the priority information of the plurality of positioning reference signal ports includes at least one of the following:
  • priorities of positioning reference signal ports associated with different sending nodes are determined according to priorities of the sending nodes.
  • the priority information of the plurality of positioning reference signal ports includes at least one of the following:
  • Multiple positioning reference signal ports associated with a sending node are sorted according to priority
  • Multiple positioning reference signal port groups associated with a sending node are sorted according to priority
  • Multiple positioning reference signal ports of a positioning reference signal port group are sorted according to priority
  • CDM port groups of a positioning reference signal port group are sorted according to priority
  • the priorities of the positioning reference signal ports or CDM port groups of different positioning reference signal port groups are determined according to the priority of the positioning reference signal port groups;
  • Multiple positioning reference signal ports of a CDM port group are sorted according to priority
  • the priorities of the positioning reference signal ports of different CDM port groups are determined according to the priorities of the CDM port groups
  • Multiple positioning reference signal resource sets associated with a sending node are sorted according to priority
  • Multiple positioning reference signal ports associated with a positioning reference signal resource set are sorted according to priority
  • Multiple positioning reference signal port groups associated with a positioning reference signal resource set are sorted according to priority
  • the priority of the positioning reference signal port between different positioning reference signal resource sets is determined according to the priority of the positioning reference signal resource set
  • Multiple positioning reference signal resources associated with a positioning reference signal resource set are sorted according to priority
  • Multiple positioning reference signal ports associated with one positioning reference signal resource are sorted according to priority
  • Multiple positioning reference signal port groups associated with one positioning reference signal resource are sorted according to priority
  • the priority of positioning reference signal ports between different positioning reference signal resources is determined according to the priority of positioning reference signal resources
  • the priority of positioning reference signal ports of different frequency bands is determined according to the priority of bandwidth
  • the priorities of the positioning reference signal ports of different frequency layers are determined according to the priorities of the frequency layers.
  • the reference port has the highest priority in the measurement of the positioning reference signal, or has the highest priority in the measurement of the positioning reference signal of the target sending node, and the reference port is obtained as A reference to at least one of the following: the target measurement result, the receiving time of the positioning reference signal, and the measurement window parameter of the receiving time of the positioning reference signal.
  • the priority of the positioning reference signal port of the reference sending node (such as the reference TRP) is higher than the priority of the positioning reference signal port of other sending nodes;
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource set is higher than the priority of the positioning reference signal port associated with other positioning reference signal resource sets;
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource is higher than the priority of the positioning reference signal port associated with other positioning reference signal resources.
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource list is higher than the priority of the positioning reference signal port associated with other positioning reference signal resources.
  • the priority information is expressed in at least one of the following ways:
  • the information elements (IE) of the target object are arranged according to the priority
  • the ID of the target object is arranged according to the priority
  • the IEs or IDs of target objects with the same priority are listed as a group;
  • the target object is a positioning reference signal port, a positioning reference signal port group or a CDM port group.
  • the receiving node measures target measurement results of positioning reference signals of one or more target ports in the plurality of positioning reference signal ports, and/or reports the target measurement results ,include:
  • the receiving node measures and/or reports target measurement results of positioning reference signals of one or more target ports above a preset priority.
  • the time-frequency resource occupied by the positioning reference signal port or positioning reference signal port group or CDM port group with the highest priority is not different from that of other positioning reference signal port groups. Positioning reference signal port sharing.
  • multiple ports of a certain PRS sending node through frequency division multiplexing (Frequency Division Multiplexing, FDM), time division multiplexing (Time division multiplexing, TDM), code division multiplexing (Code Division Multiplexing, CDM) At least one way to distinguish.
  • Multiple ports of a CDM group share the same time-frequency resource location (called a CDM group), and different CDM groups are distinguished by FDM and/or TDM. Then, for the PRS port with the highest priority, it can occupy a piece of time-frequency resource independently, and does not have a CDM relationship with other ports; or, the CDM port group corresponding to the PRS port with the highest priority contains only one port.
  • the method further includes: the receiving node receives the association relationship between the positioning reference signal port sent by the sending node and a transmission time error group (Tx timing error group, TEG), and the TEG is At least one of Tx TEG and RxTx TEG.
  • Tx timing error group TEG
  • the sending node may send the association relationship between the positioning reference signal port and the TEG to the receiving node or the location server.
  • the sending node includes UE or TRP; the receiving node includes UE.
  • the sending and receiving nodes are all UEs.
  • the association relationship between the positioning reference signal port and the TEG includes at least one of the following: the association relationship between the positioning reference signal port and the TEG, the association relationship between the positioning reference signal port group and the TEG, and the CDM port Association between groups and TEGs.
  • the association relationship between the positioning reference signal port group and the Tx TEG includes: one positioning reference signal port group corresponds to one Tx TEG, or multiple positioning reference signal ports of one positioning reference signal port group correspond to multiple Tx TEGs.
  • the form of the association relationship between the positioning reference signal port and the TEG includes at least one of the following:
  • Tx TEG ID, port ID, port group ID/CDM port group ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port group or positioning reference signal port in CDM port group;
  • Tx TEG ID, port ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port
  • Tx TEG ID ⁇ Tx TEG ID, port group ID/CDM port group ID ⁇ , indicating the relationship between Tx TEG and positioning reference signal port group or CDM port group;
  • Tx TEG ID ⁇ Tx TEG ID, CDM port group ID, port group ID ⁇ , indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group;
  • ⁇ RxTx TEG ID, Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicates the relationship between RxTx TEG, Tx TEG and positioning reference signal ports in the CDM port group in the positioning reference signal port group.
  • one TEG is associated with one or more positioning reference signal ports.
  • the receiving node receives the information sent by the sending node in at least one of the following ways:
  • the embodiment of the present application also provides a multi-port positioning reference signal measurement method, including:
  • Step 41 The sending node sends the positioning reference signal through multiple positioning reference signal ports.
  • the method of the embodiment of the present application also includes:
  • the sending node sends an association relationship between a positioning reference signal port and a TEG, and the TEG is at least one of Tx TEG and RxTx TEG.
  • the association relationship between the positioning reference signal port and the TEG includes at least one of the following: the association relationship between the positioning reference signal port and the TEG, the association relationship between the positioning reference signal port group and the TEG, and the association relationship between the CDM port group and the TEG .
  • the form of the association relationship between the positioning reference signal port and the TEG includes at least one of the following:
  • Tx TEG ID, port ID, port group ID/CDM port group ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port group or positioning reference signal port in CDM port group;
  • Tx TEG ID, port ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port
  • Tx TEG ID ⁇ Tx TEG ID, port group ID/CDM port group ID ⁇ , indicating the relationship between Tx TEG and positioning reference signal port group or CDM port group;
  • Tx TEG ID ⁇ Tx TEG ID, CDM port group ID, port group ID ⁇ , indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group;
  • ⁇ RxTx TEG ID, Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicates the relationship between RxTx TEG, Tx TEG and positioning reference signal ports in the CDM port group in the positioning reference signal port group.
  • one TEG is associated with one or more positioning reference signal ports.
  • other nodes include but not limited to at least one of receiving node, control node, location server, and serving gNB; for receiving node, other nodes include but not limited to sending node, control node At least one of a node, a location server, and a serving gNB.
  • the information indicated or reported by the sending node to at least one of the receiving node, the control node, the location server, and the serving gNB may be sent in at least one of the following ways:
  • the sending node indicates or reports to the receiving node and/or the control node and/or the serving gNB through at least one of broadcast, multicast, and unicast methods, including at least one of the following methods:
  • UU interface including but not limited to: RRC, MAC CE, DCI/PDCCH, Uplink Control Information (UCI), PUCCH, SIB1, SIBx, SDT, PRACH, paging (paging), msg1, mgs2 , msg3, msg4, msg5, msgA, msgB, at least one of NR Positioning Protocol A (NRPPa), LPPa, LPP, Xn, and X2.
  • NRPPa NR Positioning Protocol A
  • UU interface including but not limited to: at least one of RRC, MAC CE, UCI/PUCCH, NRPPa, LPPa, LPP, Xn, and X2.
  • the information (such as measurement results) indicated or reported by the receiving node to at least one of the sending node, the control node, the location server, and the serving gNB may be sent in at least one of the following ways:
  • the receiving node indicates or reports to the sending node and/or the control node and/or the serving gNB through at least one of broadcast, multicast, and unicast methods, including at least one of the following methods:
  • PC5 interface including but not limited to at least one of the first-level SCI through the sidelink, the second-level SCI, PC5-RRC, PC5-MAC CE, PC5-LPP, PC5-LPPa, etc.;
  • UU interface including but not limited to: RRC, MAC CE, DCI/PDCCH, UCI, PUCCH, SIB1, SIBx, SDT, PRACH, paging, msg1, mgs2, msg3, msg4, msg5, msgA, msgB, NRPPa, LPPa, At least one of LPP, Xn, X2;
  • UU interface including but not limited to: at least one of RRC, MAC CE, UCI/PUCCH, NRPPa, LPPa, LPP, Xn, and X2.
  • the PRS receiving node receives the information (such as PRS configuration) sent/indicated by at least one of the PRS sending node, location server, control node, and serving gNB in at least one of the following ways:
  • Signaling of the PC5 interface including but not limited to: at least one of sidelink's first-level SCI, second-level SCI, PC5-RRC, PC5-MAC CE, PC5-LPP, PC5-LPPa, etc.;
  • Signaling in the UU interface including but not limited to: RRC, MAC CE, DCI/PDCCH, UCI, PUCCH, SIB1, SIBx, SDT, PRACH, paging, msg1, mgs2, msg3, msg4, msg5, msgA, msgB, NRPPa , at least one of LPPa, LPP, Xn, X2.
  • the signaling in the UU interface includes but is not limited to: at least one of RRC, MAC CE, DCI/PDCCH, NRPPa, LPPa, LPP, paging, SIB1, SIBx, msg2, msg4, and msgB.
  • the embodiment of the present application also provides a multi-port positioning reference signal measurement device 40, including:
  • the first receiving module 51 is configured to receive the positioning reference signal sent by the sending node through multiple positioning reference signal ports;
  • the processing module 52 is configured to measure target measurement results of positioning reference signals of one or more target ports in the plurality of positioning reference signal ports, and/or report the target measurement results.
  • the target measurement result includes at least one of the following:
  • the positioning precoding matrix indicates the measurement result.
  • the power-related measurement results include at least one of the following: RSRP, RSRPP, and RSRQ.
  • the time-related measurement results include at least one of the following: reference signal time difference, time of arrival, RTOA, and receiving and sending Rx-Tx time difference.
  • the angle-related measurement results include at least one of the following: angle of arrival, angle of departure.
  • the target measurement result further includes: identification information of the target port; the identification information includes at least one of the following: sending node ID, positioning reference signal port index, positioning reference signal port where the target port is located Group index, CDM port group index where the target port is located, positioning reference signal resource set ID, positioning reference signal resource ID.
  • the phase measurement result includes at least one of the following:
  • a weighted average or average of the phases of the plurality of target ports is
  • the phase difference includes at least one of the following:
  • the target measurement result further includes: identification information of the phase reference port; the identification information includes at least one of the following: sending node ID, positioning reference signal port index, positioning reference port where the phase reference port is located The signal port group index, the CDM port group index where the phase reference port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • the phase reference port is determined by at least one of the following manners: indication from other nodes, protocol agreement, or selection by the receiving node.
  • the phase reference port when the phase reference port is indicated by other nodes, it indicates identification information of the phase reference port; the identification information includes at least one of the following: sending node ID, positioning reference signal port index, and the phase reference port The positioning reference signal port group index where the phase reference port is located, the CDM port group index where the phase reference port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • the phase of the target port includes at least one of the following:
  • the processing module 52 is configured to use the same Rx branch when measuring the phases of the multiple target ports.
  • the power-related measurement results include at least one of the following:
  • a sum of power-related measurement results of the plurality of target ports is a sum of power-related measurement results of the plurality of target ports.
  • the power-related measurement results include a reference signal received power of a path
  • the power-related measurement results include a weighted average or average value of the power-related measurement results of the multiple target ports, and/or, include the When the power-related measurement results of multiple target ports are summed, there is a corresponding relationship between the paths and times of the multiple target ports.
  • the time-related measurement results include at least one of the following:
  • a weighted average or mean of the time-correlated measurements of the plurality of target ports is a weighted average or mean of the time-correlated measurements of the plurality of target ports.
  • the multiple target ports can be used to determine the starting point of a subframe of a sending node.
  • the coefficients of the weighted average are indicated by other nodes, stipulated in an agreement, or selected by the receiving node.
  • the angle-related measurement results include at least one of the following:
  • a weighted average or average of the angle-dependent measurements of the plurality of target ports is provided.
  • the angle-related measurement results of the target port include at least one of the following:
  • the multiple target ports belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource, and/or, the same positioning reference signal resource set, and/or, the same sending node.
  • the multiple target ports are stipulated in a protocol, indicated by other nodes, or selected by the receiving node.
  • the multi-port positioning reference signal measurement device 50 also includes:
  • a determining module configured to determine to perform a specific type of measurement on a target port among the plurality of positioning reference signal ports according to a protocol agreement or first indication information sent by other nodes.
  • the specific type of measurement includes at least one of the following: phase measurement, power-related measurement, time-related measurement, angle-related measurement, and positioning precoding matrix indication measurement.
  • different specific types of measurements correspond to different target ports, or there are at least two specific types of measurements sharing the same target port.
  • the first indication information indicates a specific positioning reference signal resource and/or a specific positioning reference signal resource set for performing a specific type of measurement.
  • the multi-port positioning reference signal measurement device 40 also includes:
  • the second receiving module is configured to receive second indication information, where the second indication information is used to indicate one or more reference ports, and the reference port group serves as a reference for obtaining at least one of the following: the target measurement result, the The receiving time of the positioning reference signal, and the measurement window parameter of the receiving time of the positioning reference signal.
  • the second indication information includes: identification information of the reference port, and the identification information of the reference port includes at least one of the following: sending node ID, reference port index, reference port list, and reference port Positioning reference signal port group index where the reference port is located, CDM port group index where the reference port is located, CDM port group list where the reference port is located, positioning reference signal resource set ID, positioning reference signal resource ID, positioning reference signal resource ID list .
  • the reference port includes one of the following:
  • One or more positioning reference signal ports for each sending node are One or more positioning reference signal ports for each sending node.
  • the one or more positioning reference signal ports of the target sending node or each sending node include at least one of the following:
  • One or more positioning reference signal ports associated with one positioning reference signal resource set of the sending node are One or more positioning reference signal ports associated with one positioning reference signal resource set of the sending node;
  • One or more positioning reference signal ports associated with one positioning reference signal resource in one positioning reference signal resource set of the sending node
  • One or more positioning reference signal ports associated with a positioning reference signal resource list in a positioning reference signal resource set of the sending node are associated with a positioning reference signal resource list in a positioning reference signal resource set of the sending node.
  • one or more positioning reference signal ports associated with a positioning reference signal resource list may be one of the following: all positioning reference signal ports associated with positioning reference signal resources in the positioning reference signal resource list can be used as reference ports; Specify one or more specific ports as reference ports among the positioning reference signal ports associated with all positioning reference signal resources in the positioning reference signal resource list; the positioning reference port associated with each positioning reference signal resource in the positioning reference signal resource list Specify one or more ports in Signal Ports as reference ports.
  • each sending node is reference ports
  • the corresponding reference port of each sending node is used to obtain the target measurement result of the positioning reference signal of the sending node.
  • the multi-port positioning reference signal measurement device 50 also includes:
  • a selection module configured to select a reference port from the multiple reference ports indicated by the second indication information as the final reference port.
  • the one or more reference ports belong to a positioning reference signal port group or a CDM port group.
  • the one or more reference ports are part or all of the positioning reference signal ports in the positioning reference signal port group or the CDM port group.
  • the positioning reference signal port group or the CDM port group is a reference port group.
  • the one or more reference ports belong to a positioning reference signal resource, or a positioning reference signal resource set, or a sending node.
  • the one or more reference ports are some or all of the positioning reference signal ports of the corresponding positioning reference signal resource or positioning reference signal resource set or sending node.
  • different sending nodes or different types of measurement correspond to different reference ports.
  • the reference port actually used by the receiving node to obtain the target measurement result is the same as or different from the reference port indicated by the second indication information.
  • the multi-port positioning reference signal measurement device 50 also includes:
  • the reporting module is used to report the identification information of the reference port actually used, and the identification information includes at least one of the following: sending node ID, reference port index, reference port list, positioning reference signal port group index, CDM port group index, CDM Port group list, positioning reference signal resource set ID, positioning reference signal resource ID, positioning reference signal resource ID list.
  • the target measurement result includes a time-related measurement result
  • the time-related measurement result includes a reference signal time difference measurement result
  • the reference port actually used by the receiving node to obtain the target measurement result is used for reference signal time difference measurement
  • the reference signal time difference measurement result of the reference port actually used to obtain the target measurement result is 0.
  • the processing module 52 is further configured to determine the target port according to priority information of the multiple positioning reference signal ports.
  • the priority information is determined by at least one of the following methods: protocol agreement, indication by other nodes, and selection by the receiving node.
  • the priority information of the plurality of positioning reference signal ports includes at least one of the following:
  • priorities of positioning reference signal ports associated with different sending nodes are determined according to the priority of the sending node.
  • the priority information of the plurality of positioning reference signal ports includes at least one of the following:
  • Multiple positioning reference signal ports associated with a sending node are sorted according to priority
  • Multiple positioning reference signal port groups associated with a sending node are sorted according to priority
  • Multiple positioning reference signal ports of a positioning reference signal port group are sorted according to priority
  • CDM port groups of a positioning reference signal port group are sorted according to priority
  • the priorities of the positioning reference signal ports or CDM port groups of different positioning reference signal port groups are determined according to the priority of the positioning reference signal port groups;
  • Multiple positioning reference signal ports of a CDM port group are sorted according to priority
  • the priorities of the positioning reference signal ports of different CDM port groups are determined according to the priorities of the CDM port groups
  • Multiple positioning reference signal resource sets associated with a sending node are sorted according to priority
  • Multiple positioning reference signal ports associated with a positioning reference signal resource set are sorted according to priority
  • Multiple positioning reference signal port groups associated with a positioning reference signal resource set are sorted according to priority
  • the priority of the positioning reference signal port between different positioning reference signal resource sets is determined according to the priority of the positioning reference signal resource set
  • Multiple positioning reference signal resources associated with a positioning reference signal resource set are sorted according to priority
  • Multiple positioning reference signal ports associated with one positioning reference signal resource are sorted according to priority
  • Multiple positioning reference signal port groups associated with one positioning reference signal resource are sorted according to priority
  • the priority of positioning reference signal ports between different positioning reference signal resources is determined according to the priority of positioning reference signal resources
  • the priority of positioning reference signal ports in different frequency bands is determined according to the priority of bandwidth
  • the priorities of the positioning reference signal ports of different frequency layers are determined according to the priorities of the frequency layers.
  • the reference port has the highest priority in the measurement of the positioning reference signal, or has the highest priority in the measurement of the positioning reference signal of the target sending node, and the reference port is used as a reference for obtaining at least one of the following : the target measurement result, the receiving time of the positioning reference signal, and the measurement window parameter of the receiving time of the positioning reference signal.
  • the priority of the positioning reference signal port of the reference sending node is higher than that of the positioning reference signal ports of other sending nodes
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource set is higher than the priority of the positioning reference signal port associated with other positioning reference signal resource sets;
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource is higher than the priority of the positioning reference signal port associated with other positioning reference signal resources
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource list is higher than the priority of the positioning reference signal port associated with other positioning reference signal resources.
  • the priority information is expressed in at least one of the following ways:
  • the information elements IE of the target object are arranged according to the priority
  • the ID of the target object is arranged according to the priority
  • the IEs or IDs of target objects with the same priority are listed as a group;
  • the target object is a positioning reference signal port, a positioning reference signal port group or a CDM port group.
  • the processing module 52 is further configured to measure and/or report target measurement results of positioning reference signals of one or more target ports above a preset priority.
  • the behavior of reporting measurement and/or reporting target measurement results of positioning reference signals of one or more target ports above a preset priority, and/or, the preset priority is indicated by other nodes, protocol agreed upon or selected by the receiving node.
  • the time-frequency resources occupied by the positioning reference signal port or positioning reference signal port group or CDM port group with the highest priority are not shared with other positioning reference signal ports.
  • the multi-port positioning reference signal measurement device 50 also includes:
  • the third receiving module is used to receive the association relationship between the positioning reference signal port sent by the sending node and the sending time error group TEG, and the TEG is at least one of Tx TEG and RxTx TEG.
  • the association relationship between the positioning reference signal port and the TEG includes at least one of the following: the association relationship between the positioning reference signal port and the TEG, the association relationship between the positioning reference signal port group and the TEG, and the association relationship between the CDM port group and the TEG .
  • the form of the association relationship between the positioning reference signal port and the TEG includes at least one of the following:
  • Tx TEG ID, port ID, port group ID/CDM port group ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port group or positioning reference signal port in CDM port group;
  • Tx TEG ID, port ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port
  • Tx TEG ID ⁇ Tx TEG ID, port group ID/CDM port group ID ⁇ , indicating the relationship between Tx TEG and positioning reference signal port group or CDM port group;
  • Tx TEG ID ⁇ Tx TEG ID, CDM port group ID, port group ID ⁇ , indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group;
  • Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group
  • ⁇ RxTx TEG ID, Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicates the relationship between RxTx TEG, Tx TEG and positioning reference signal ports in the CDM port group in the positioning reference signal port group.
  • one TEG is associated with one or more positioning reference signal ports.
  • the multi-port positioning reference signal measuring device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the multi-port positioning reference signal measuring device provided in the embodiment of the present application can realize various processes realized by the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a multi-port positioning reference signal measurement device 60, including:
  • the first sending module 61 is configured to send a positioning reference signal to a receiving node through multiple positioning reference signal ports.
  • the multi-port positioning reference signal measuring device 60 also includes:
  • the second sending module is used to send the association relationship between the positioning reference signal port and the TEG, and the TEG is at least one of the Tx TEG and the RxTx TEG.
  • the association relationship between the positioning reference signal port and the TEG includes at least one of the following: the association relationship between the positioning reference signal port and the TEG, the association relationship between the positioning reference signal port group and the TEG, and the association relationship between the CDM port group and the TEG .
  • the form of the association relationship between the positioning reference signal port and the TEG includes at least one of the following:
  • Tx TEG ID, port ID, port group ID/CDM port group ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port group or positioning reference signal port in CDM port group;
  • Tx TEG ID, port ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port
  • Tx TEG ID ⁇ Tx TEG ID, port group ID/CDM port group ID ⁇ , indicating the relationship between Tx TEG and positioning reference signal port group or CDM port group;
  • Tx TEG ID ⁇ Tx TEG ID, CDM port group ID, port group ID ⁇ , indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group;
  • Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group
  • ⁇ RxTx TEG ID, Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicates the relationship between RxTx TEG, Tx TEG and positioning reference signal ports in the CDM port group in the positioning reference signal port group.
  • one TEG is associated with one or more positioning reference signal ports.
  • the multi-port positioning reference signal measurement device provided in the embodiment of the present application can realize various processes realized by the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 70, including a processor 71 and a memory 72, and the memory 72 stores programs or instructions that can run on the processor 71.
  • the programs or instructions are executed by the processor 71, the various steps of the above-mentioned multi-port positioning reference signal measurement method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to receive the positioning reference signal sent by the sending node through multiple positioning reference signal ports; the processor is used to measure the Target measurement results of positioning reference signals of one or more target ports, and/or, report the target measurement results.
  • the communication interface is used to send the positioning reference signal to the receiving node at multiple positioning reference signal ports.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 80 includes but not limited to: a radio frequency unit 81, a network module 82, an audio output unit 83, an input unit 84, a sensor 85, a display unit 86, a user input unit 87, an interface unit 88, a memory 89 and a processor 810, etc. At least some parts.
  • the terminal 80 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 810 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 84 may include a graphics processing unit (Graphics Processing Unit, GPU) 841 and a microphone 842, and the graphics processor 841 is compatible with the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 86 may include a display panel 861 , and the display panel 861 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 87 includes at least one of a touch panel 871 and other input devices 872 .
  • the touch panel 871 is also called a touch screen.
  • the touch panel 871 may include two parts, a touch detection device and a touch controller.
  • Other input devices 872 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 81 may transmit it to the processor 810 for processing; in addition, the radio frequency unit 81 may send uplink data to the network side device.
  • the radio frequency unit 81 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 89 can be used to store software programs or instructions as well as various data.
  • Memory 89 can mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area can store operating systems, application programs or instructions required by at least one function (such as sound playback functions, image playback function, etc.), etc.
  • memory 89 may include volatile memory or nonvolatile memory, or, memory 89 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 810 may include one or more processing units; optionally, the processor 810 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 810 .
  • the radio frequency unit 81 is used for the receiving node to receive the positioning reference signal sent by the sending node through multiple positioning reference signal ports;
  • the processor 810 is configured to measure positioning reference signals of one or more target ports in the plurality of positioning reference signal ports, obtain target measurement results, and/or report the target measurement results.
  • the target measurement result includes at least one of the following:
  • the positioning precoding matrix indicates the measurement result.
  • the power-related measurement results include at least one of the following: RSRP, RSRPP, and RSRQ.
  • the time-related measurement results include at least one of the following: reference signal time difference, time of arrival, RTOA, and Rx-Tx time difference.
  • the angle-related measurement results include at least one of the following: angle of arrival, angle of departure.
  • the target measurement result further includes: identification information of the target port; the identification information includes at least one of the following: a sending node ID, a positioning reference signal port index, and a positioning reference signal port where the target port is located.
  • the phase measurement result includes at least one of the following:
  • a weighted average or average of the phases of the plurality of target ports is
  • the phase difference includes at least one of the following:
  • the target measurement result further includes: identification information of the phase reference port; the identification information includes at least one of the following: sending node ID, positioning reference signal port index, positioning reference port where the phase reference port is located The signal port group index, the CDM port group index where the phase reference port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • the phase reference port is determined by at least one of the following manners: indication from other nodes, protocol agreement, or selection by the receiving node.
  • the phase reference port when the phase reference port is indicated by other nodes, it indicates identification information of the phase reference port; the identification information includes at least one of the following: sending node ID, positioning reference signal port index, and the phase reference port The positioning reference signal port group index where the phase reference port is located, the CDM port group index where the phase reference port is located, the positioning reference signal resource set ID, and the positioning reference signal resource ID.
  • the phase of the target port includes at least one of the following:
  • the processor 810 is configured to use the same Rx branch when measuring the phases of the multiple target ports.
  • the power-related measurement results include at least one of the following:
  • a sum of power-related measurement results of the plurality of target ports is a sum of power-related measurement results of the plurality of target ports.
  • the power-related measurement results include a reference signal received power of a path
  • the power-related measurement results include a weighted average or average value of the power-related measurement results of the multiple target ports, and/or, include the When the power-related measurement results of multiple target ports are summed, there is a corresponding relationship between the paths and times of the multiple target ports.
  • the time-related measurement results include at least one of the following:
  • a weighted average or mean of the time-correlated measurements of the plurality of target ports is a weighted average or mean of the time-correlated measurements of the plurality of target ports.
  • the multiple target ports can be used to determine the starting point of a subframe of a sending node.
  • the coefficients of the weighted average are indicated by other nodes, stipulated in an agreement, or selected by the receiving node.
  • the angle-related measurement results include at least one of the following:
  • a weighted average or average of the angle-dependent measurements of the plurality of target ports is provided.
  • the angle-related measurement results of the target port include at least one of the following:
  • the multiple target ports belong to the same positioning reference signal port group, and/or, the same CDM port group, and/or, the same positioning reference signal resource, and/or, the same positioning reference signal resource set, and/or, the same sending node.
  • the multiple target ports are stipulated in a protocol, indicated by other nodes, or selected by the receiving node.
  • the processor 810 is further configured to determine to perform a specific type of measurement on a target port among the plurality of positioning reference signal ports according to a protocol agreement or first indication information sent by other nodes.
  • the specific type of measurement includes at least one of the following: phase measurement, power-related measurement, time-related measurement, angle-related measurement, and positioning precoding matrix indication measurement.
  • different specific types of measurements correspond to different target ports, or there are at least two specific types of measurements sharing the same target port.
  • the first indication information indicates a specific positioning reference signal resource and/or a specific positioning reference signal resource set for performing a specific type of measurement.
  • the radio frequency unit 81 is further configured to receive second indication information, where the second indication information is used to indicate one or more reference ports, and the reference port group serves as a reference for obtaining at least one of the following: The target measurement result, the receiving time of the positioning reference signal, and the measurement window parameter of the receiving time of the positioning reference signal.
  • the second indication information includes: identification information of the reference port, and the identification information of the reference port includes at least one of the following: sending node ID, reference port index, reference port list, and reference port Positioning reference signal port group index where the reference port is located, CDM port group index where the reference port is located, CDM port group list where the reference port is located, positioning reference signal resource set ID, positioning reference signal resource ID, positioning reference signal resource ID list .
  • the reference port includes one of the following:
  • One or more positioning reference signal ports for each sending node are One or more positioning reference signal ports for each sending node.
  • the one or more positioning reference signal ports of the target sending node or each sending node include at least one of the following:
  • One or more positioning reference signal ports associated with one positioning reference signal resource set of the sending node are One or more positioning reference signal ports associated with one positioning reference signal resource set of the sending node;
  • One or more positioning reference signal ports associated with one positioning reference signal resource in one positioning reference signal resource set of the sending node
  • One or more positioning reference signal ports associated with a positioning reference signal resource list in a positioning reference signal resource set of the sending node are associated with a positioning reference signal resource list in a positioning reference signal resource set of the sending node.
  • one or more positioning reference signal ports associated with a positioning reference signal resource list may be one of the following: all positioning reference signal ports associated with positioning reference signal resources in the positioning reference signal resource list can be used as reference ports; Specify one or more specific ports as reference ports among the positioning reference signal ports associated with all positioning reference signal resources in the positioning reference signal resource list; the positioning reference port associated with each positioning reference signal resource in the positioning reference signal resource list Specify one or more ports in Signal Ports as reference ports.
  • each sending node is reference ports
  • the corresponding reference port of each sending node is used to obtain the target measurement result of the positioning reference signal of the sending node.
  • the processor 810 is further configured to select a reference port from the multiple reference ports indicated by the second indication information as the final reference port.
  • the one or more reference ports belong to a positioning reference signal port group or a CDM port group.
  • the one or more reference ports are part or all of the positioning reference signal ports in the positioning reference signal port group or the CDM port group.
  • the positioning reference signal port group or the CDM port group is a reference port group.
  • the one or more reference ports belong to a positioning reference signal resource, or a positioning reference signal resource set, or a sending node.
  • the one or more reference ports are some or all of the positioning reference signal ports of the corresponding positioning reference signal resource or positioning reference signal resource set or sending node.
  • different sending nodes or different types of measurement correspond to different reference ports.
  • the reference port actually used to obtain the target measurement result is the same as or different from the reference port indicated by the second indication information.
  • the radio frequency unit 81 is further configured to report the identification information of the actually used reference port, where the identification information includes at least one of the following: sending node ID, reference port index, reference port list, positioning reference signal port group Index, CDM port group index, CDM port group list, positioning reference signal resource set ID, positioning reference signal resource ID, positioning reference signal resource ID list.
  • the target measurement result includes a time-related measurement result
  • the time-related measurement result includes a reference signal time difference measurement result
  • the reference port actually used by the receiving node to obtain the target measurement result is used for reference signal time difference measurement
  • the reference signal time difference measurement result of the reference port actually used to obtain the target measurement result is 0.
  • the processor 810 is configured to determine the target port according to priority information of the multiple positioning reference signal ports.
  • the priority information is determined by at least one of the following methods: protocol agreement, indication by other nodes, and selection by the receiving node.
  • the priority information of the plurality of positioning reference signal ports includes at least one of the following:
  • priorities of positioning reference signal ports associated with different sending nodes are determined according to the priority of the sending node.
  • the priority information of the plurality of positioning reference signal ports includes at least one of the following:
  • Multiple positioning reference signal ports associated with a sending node are sorted according to priority
  • Multiple positioning reference signal port groups associated with a sending node are sorted according to priority
  • Multiple positioning reference signal ports of a positioning reference signal port group are sorted according to priority
  • CDM port groups of a positioning reference signal port group are sorted according to priority
  • the priority of the positioning reference signal port or the CDM port group of different positioning reference signal port groups is determined according to the priority of the positioning reference signal port group;
  • Multiple positioning reference signal ports of a CDM port group are sorted according to priority
  • the priorities of the positioning reference signal ports of different CDM port groups are determined according to the priorities of the CDM port groups
  • Multiple positioning reference signal resource sets associated with a sending node are sorted according to priority
  • Multiple positioning reference signal ports associated with a positioning reference signal resource set are sorted according to priority
  • Multiple positioning reference signal port groups associated with a positioning reference signal resource set are sorted according to priority
  • the priority of the positioning reference signal port between different positioning reference signal resource sets is determined according to the priority of the positioning reference signal resource set
  • Multiple positioning reference signal resources associated with a positioning reference signal resource set are sorted according to priority
  • Multiple positioning reference signal ports associated with one positioning reference signal resource are sorted according to priority
  • Multiple positioning reference signal port groups associated with one positioning reference signal resource are sorted according to priority
  • the priority of positioning reference signal ports between different positioning reference signal resources is determined according to the priority of positioning reference signal resources
  • the priority of positioning reference signal ports in different frequency bands is determined according to the priority of bandwidth
  • the priorities of the positioning reference signal ports of different frequency layers are determined according to the priorities of the frequency layers.
  • the reference port has the highest priority in the measurement of the positioning reference signal, or has the highest priority in the measurement of the positioning reference signal of the target sending node, and the reference port is used as a reference for obtaining at least one of the following : the target measurement result, the receiving time of the positioning reference signal, and the measurement window parameter of the receiving time of the positioning reference signal.
  • the priority of the positioning reference signal port of the reference sending node is higher than that of the positioning reference signal ports of other sending nodes
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource set is higher than the priority of the positioning reference signal port associated with other positioning reference signal resource sets;
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource is higher than the priority of the positioning reference signal port associated with other positioning reference signal resources
  • the priority of the positioning reference signal port associated with the reference positioning reference signal resource list is higher than the priority of the positioning reference signal port associated with other positioning reference signal resources.
  • the priority information is expressed in at least one of the following ways:
  • the information elements IE of the target object are arranged according to the priority
  • the ID of the target object is arranged according to the priority
  • the IEs or IDs of target objects with the same priority are listed as a group;
  • the target object is a positioning reference signal port, a positioning reference signal port group or a CDM port group.
  • the processor 810 is configured to measure and/or report target measurement results of positioning reference signals of one or more target ports above a preset priority.
  • the behavior of reporting measurement and/or reporting target measurement results of positioning reference signals of one or more target ports above a preset priority, and/or, the preset priority is indicated by other nodes, protocol agreement or selection of the receiving node.
  • the time-frequency resources occupied by the positioning reference signal port or positioning reference signal port group or CDM port group with the highest priority are not shared with other positioning reference signal ports.
  • the radio frequency unit 81 is further configured to receive the association relationship between the positioning reference signal port sent by the sending node and the sending time error group TEG, where the TEG is at least one of Tx TEG and RxTx TEG.
  • the association relationship between the positioning reference signal port and the TEG includes at least one of the following: the association relationship between the positioning reference signal port and the TEG, the association relationship between the positioning reference signal port group and the TEG, and the association relationship between the CDM port group and the TEG .
  • the form of the association relationship between the positioning reference signal port and the TEG includes at least one of the following:
  • Tx TEG ID, port ID, port group ID/CDM port group ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port group or positioning reference signal port in CDM port group;
  • Tx TEG ID, port ID ⁇ indicating the relationship between Tx TEG and positioning reference signal port
  • Tx TEG ID ⁇ Tx TEG ID, port group ID/CDM port group ID ⁇ , indicating the relationship between Tx TEG and positioning reference signal port group or CDM port group;
  • Tx TEG ID ⁇ Tx TEG ID, CDM port group ID, port group ID ⁇ , indicating the relationship between Tx TEG and the CDM port group in the positioning reference signal port group;
  • ⁇ RxTx TEG ID, Tx TEG ID, port ID, CDM port group ID, port group ID ⁇ indicates the relationship between RxTx TEG, Tx TEG and positioning reference signal ports in the CDM port group in the positioning reference signal port group.
  • one TEG is associated with one or more positioning reference signal ports.
  • the radio frequency unit 81 receives the information sent by the sending node in at least one of the following ways:
  • the radio frequency unit is configured to send a positioning reference signal through a plurality of positioning reference signal ports.
  • the embodiment of the present application also provides a network side device.
  • the network side device 90 includes: an antenna 91 , a radio frequency device 92 , a baseband device 93 , a processor 94 and a memory 95 .
  • the antenna 91 is connected to a radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
  • the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 93, where the baseband device 93 includes a baseband processor.
  • the baseband device 93 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 96, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 96 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 900 in this embodiment of the present application further includes: instructions or programs stored in the memory 95 and operable on the processor 94, and the processor 94 calls the instructions or programs in the memory 95 to execute FIG. 5 or FIG. 6
  • the methods executed by each module shown in the figure achieve the same technical effect, so in order to avoid repetition, they are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the multi-port positioning reference signal measurement method is implemented, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the above-mentioned multi-port positioning reference signal measurement
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to realize the above-mentioned multi-port positioning reference signal measurement
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement each of the above embodiments of the multi-port positioning reference signal measurement method. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种多端口定位参考信号测量方法、装置及通信设备,属于无线通信技术领域,本申请实施例的多端口定位参考信号测量方法包括:接收节点接收发送节点通过多个定位参考信号端口发送的定位参考信号;所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,得到目标测量结果,和/或,上报所述目标测量结果。

Description

多端口定位参考信号测量方法、装置及通信设备
相关申请的交叉引用
本申请主张在2021年12月30日在中国提交的中国专利申请No.202111658923.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于无线通信技术领域,具体涉及一种多端口定位参考信号测量方法、装置及通信设备。
背景技术
目前的通信协议中,仅支持单端口的定位参考信号,这使得定位精度不够准确。人工智能(Artificial Intelligence,AI)定位中,需要测量多个端口的定位参考信号,多个端口的定位参考信号的测量结果有利于提升定位精度。旁链路(Sidelink)中,终端可能存在分布式天线,分布式天线可能对应不同端口或端口组。离开角(Angle Of Departure,AOD)定位场景中,多端口的定位参考信号能够通过相位计算的方式,精确地得到AOD。因此,后续的基于定位参考信号的定位方案中,对多个端口的定位参考信号设计有需求。
基于新空口的车用无线通信技术(New Radio-vehicle to everything,NR-V2X)定义了两种资源分配模式(mode),一种是mode1,为基站调度资源;另一种是mode2,终端(User Equipment,UE)自己决定进行传输时使用的资源,此时资源信息可能来自基站的广播消息或者预配置的信息。UE如果工作在基站范围内并且与基站有无线资源控制(Radio Resource Control,RRC)连接,可以是mode1和/或mode2,UE如果工作在基站范围内但与基站没有RRC连接,只能工作在mode2。如果UE在基站范围外,则只能工作在mode2,根据预配置的信息来进行车用无线通信技术(Vehicle to everything,V2X)传输。在mode1情况下,现有技术不支持sidelink定位,且也没有sidelink定位时信号调度的相关方案。
发明内容
本申请实施例提供一种多端口定位参考信号测量方法、装置及通信设备,能够解决单端口的定位参考信号用于定位时,定位精度不够的问题。
第一方面,提供了一种多端口定位参考信号测量方法,包括:
接收节点接收发送节点通过多个定位参考信号端口发送的定位参考信号;
所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,得到目标测量结果,和/或,上报所述目标测量结果。
第二方面,提供了一种多端口定位参考信号测量方法,包括:
发送节点通过多个定位参考信号端口发送定位参考信号。
第三方面,提供了一种多端口定位参考信号测量装置,包括:
第一接收模块,用于接收发送节点通过多个定位参考信号端口发送的定位参考信号;
执行模块,用于测量和/或上报所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果。
第四方面,提供了一种多端口定位参考信号测量装置,包括:
第一发送模块,用于在多个定位参考信号端口向接收节点发送定位参考信号。
第五方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口用于接收发送节点通过多个定位参考信号端口发送的定位参考信号;所述处理器用于测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方 面所述的方法,或实现如第二方面所述的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
在本申请实施例中,对多个定位参考信号端口的定位参考信号进行测量,得到测量结果,由于考虑了多个端口的定位参考信号,与单端口的定位参考信号定位相比,从而提高定位精度。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为不同梳状(comb)结构下典型的定位参考信号(Positioning Reference Signal,PRS)图形的示意图;
图3为本申请一实施例中的多端口定位参考信号测量方法的流程示意图;
图4为本申请另一实施例中的多端口定位参考信号测量方法的流程示意图;
图5为本申请一实施例中的多端口定位参考信号测量装置的结构示意图;
图6为本申请另一实施例中的多端口定位参考信号测量装置的结构示意图;
图7为本申请实施例中的通信设备的结构示意图;
图8为本申请实施例中的终端的硬件结构示意图;
图9为本申请实施例中的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术 语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链 等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的多端口定位参考信号测量方法、装置及通信设备进行详细地说明。
下面首先对本申请相关的通信名词进行简单介绍。
(1)新无线(New Radio,NR)定位标准化进展
NR重新设计了基于NR系统的下行定位参考信号NR DL PRS,包括以下内容:
1)目前协议中,定位参考信号仅支持单端口。
2)定位参考信号(Positioning Reference Signal,PRS)可以来自多个发送接收点(Transmission Reception Point,TRP),多个TRP可以来自服务小区或非服务小区。UE对多个TRP的PRS进行测量,随后进行定位测量上报或进行定位计算。
3)PRS支持在FR1最大100M以及FR2最大400M传输。NR PRS带宽配置与带宽部分(Bandwidth Part,BWP)配置无关,当PRS带宽大于BWP带宽时,支持用户设备(User Equipment,UE)使用测量间隔(Measurement Gap)对PRS进行测量。
4)PRS支持波束赋形,因此引入了PRS资源(resource)的概念。PRS resource ID可以对应1个TRP中的1个波束。1个或多个PRS resource可以组成1个PRS资源集(resource set),或者说1个PRS resource set内可以包含1个或多个PRS resource。一个TRP可以包含1个或多个PRS resource。同时,为了增加UE的可听性,支持PRS波束扫描以及PRS波束重复。另外,支持PRS参考邻小区参考信号(Reference Signals,RS)作为空间准共址(Quasi Co-Location,QCL)参考信号。
5)PRS支持交错的图样(pattern)并且支持灵活的pattern配置。PRS resource的梳状(comb)结构可以支持{2,4,6,12};符号(symbol)数可以支持{2,4,6,12}。目前支持的symbol数与comb size的组合如表1所示:
表1
  2 symbols 4 symbols 6 symbols 12 symbols
Comb-2 {0,1} {0,1,0,1} {0,1,0,1,0,1} {0,1,0,1,0,1,0,1,0,1,0,1}
Comb-4 NA {0,2,1,3} NA {0,2,1,3,0,2,1,3,0,2,1,3}}
Comb-6 NA NA {0,3,1,4,2,5} {0,3,1,4,2,5,0,3,1,4,2,5}
Comb-12 NA NA NA {0,6,3,9,1,7,4,10,2,8,5,11}
不同comb结构下典型的PRS pattern如图2所示。
(2)PRS端口
长期演进(Long Term Evolution,LTE)只支持单端口的PRS发送,NR Rel-16定位讨论了是否支持单端口和两端口PRS的发送。但由于两端口的PRS将引入更多的资源开销,且并没有足够的论证,最后Rel-16只通过了支持单端口的PRS。
(3)PRS序列
UE应假设参考信号序列r(m)定义为:
Figure PCTCN2022143574-appb-000001
其中,伪随机序列c(i)在第5.2.1节中定义。伪随机序列发生器应初始化为:
Figure PCTCN2022143574-appb-000002
其中,
Figure PCTCN2022143574-appb-000003
为时隙号,下行链路PRS序列ID
Figure PCTCN2022143574-appb-000004
由高层参数dl-PRS-SequenceID给出,l是序列映射到的时隙内的OFDM符号。
PRS序列为Gold序列并进行正交相移键控(Quadrature Phase Shift Keying,QPSK)调制获得。其中,Gold序列的初始化函数为c init,它的设计要求区分每个TRP的PRS,保持各个TRP的DL PRS之间的干扰随机化和良好的序列互相关特性。
(4)PRS映射
对于配置的每个下行链路PRS资源,UE应假设序列r(m)用因子β_"PRS"缩放,并根据以下等式映射到资源单元(k,l) p,μ:
Figure PCTCN2022143574-appb-000005
当满足以下条件时:
资源单元(k,l) p,μ位于为其配置UE的下行链路PRS资源所占用的资源块内;
符号l不被服务小区用于从同一服务小区发送的下行链路PRS的任何同步信号/物理广播信道块((Synchronization Signal,SS)/(Physical Broadcast Channel,PBCH))块或非服务小区的任何SS/PBCH块使用,其时频位置由更高层提供给UE用于从同一非服务小区发送的下行链路PRS;
时隙号满足第7.4条中的条件7.4.1.7.4.
(5)多端口信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)设计
多个端口的CSI-RS可以分为不同的码分复用(Code Domain Multiplexing,CDM)group,其中不同的CDM group的CSI-RS时频位置可以不同;一个CDM group占用时域和/或频域连续的资源单元(Resource Element,RE)位置,且一个CDM group中不同的端口通过频域正交码(FD-OCC)和/或时域正交码(TD-OCC)区分,占用相同的时域和频域位置,请参考表2:
表2
Figure PCTCN2022143574-appb-000006
(6)CSI-RS序列设计
UE应假设参考信号序列 r(m)定义为:
Figure PCTCN2022143574-appb-000007
其中,伪随机序列c(i)在第5.2.1节中定义。伪随机序列发生器应初始化为:
Figure PCTCN2022143574-appb-000008
在每个OFDM符号的开头,其中
Figure PCTCN2022143574-appb-000009
是无线电帧内的时隙编号,是时隙内的OFDM符号编号,等于高层参数scramblingID或sequenceGenerationConfig。
(7)CSI-RS映射
对于每个配置的CSI-RS,UE应假设序列r(m)被映射到资源元素(k,l) p,μ,根据:
Figure PCTCN2022143574-appb-000010
当满足以下条件时:
资源单元(k,l) p,μ在UE配置的CSI-RS资源占用的资源块内k=0的参考点是公共资源块0中的子载波0。ρ的值由CSI-RS-ResourceMapping IE或CSI-RS-CellMobility IE中的高层参数给出,端口数X由高层参数nrofPorts给出。
为解决单端口的定位参考信号用于定位时,定位精度不够的问题,请参考图3,本申请实施例提供一种多端口定位参考信号测量方法,包括:
步骤31:接收节点接收发送节点通过多个定位参考信号端口发送的定位参考信号;
步骤32:所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,得到目标测量结果,和/或,上报所述目标测量结果。
本申请实施例中,可选的,发送节点包含但不限于:TRP,基站,UE,旁链路(sidelink)中路侧单元(Road Side Unit,RSU),sidelink中的基站,和/或,sidelink中的UE。接收节点包含但不限于:UE,TRP,sidelink中的RSU,sidelink中的基站,和/或,sideilnk中的UE。比如:基于UU接口中的定位,下行定位发送节点为TRP或基站,接收节点为UE;上行定位中发送节点为UE,接收节点为TRP或基站。基于PC5接口的定位,发送节点为Sidelink UE, 接收节点为另一个sidelink UE;或者,发送节点为RSU或UE,接收节点为UE或RSU。
本申请实施例中,可选的,定位参考信号包含但不限于:PRS,信道探测用参考信号(Sounding Reference Signal,SRS),CSI-RS,解调参考信号(Demodulation Reference Signal,DMRS),同步信号块(Synchronization Signal and PBCH block,SSB),和/或,旁链路PRS(SL-PRS)等用于无线接入技术(Radio Access Technology,RAT)依赖性/非依赖性(RAT-dependent/independent)或sidelink定位(positioning)的参考信号。
本申请实施例中,可选的,所述测量结果对应的定位参考信号资源为定位参考信号测量窗内的定位参考信号资源。
可选的,若接收节点需要上报(某个定位参考信号发送节点的)多个定位参考信号端口(port)的测量结果,那么可以以某个参考端口的测量结果为参考,通过差分的方式上报多个端口的测量结果和/或作为参考的参考端口的测量结果。
在本申请实施例中,对多个定位参考信号端口的定位参考信号进行测量,得到测量结果,从而提高定位精度。
本申请实施例中,可选的,所述接收节点根据定位参考信号的配置信息,测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号。
本申请实施例中,可选的,所述配置信息包括以下至少之一:
N个定位参考信号端口的配置信息;
N个定位参考信号端口与定位参考信号资源集和/或定位参考信号资源的关联关系;
其中,N为大于1的正整数。
可选的,所述N个定位参考信号端口的配置信息包括以下至少之一:
端口数;
端口索引;
定位参考信号端口组;
端口位置标识。
可选的,所述定位参考信号端口组的配置信息包括以下至少之一:定位 参考信号端口组的数目、定位参考信号端口组索引、定位参考信号端口组内的定位参考信号端口数、定位参考信号端口组内的定位参考信号端口索引、定位参考信号端口组位置标识、定位参考信号端口组内的CDM端口组数、定位参考信号端口组内的CDM端口组索引、CDM端口组内的定位参考信号端口数、CDM端口组内的定位参考信号端口索引。
可选的,所述N个定位参考信号端口与定位参考信号资源集和/或定位参考信号资源的关联关系包括以下之一:
每个定位参考信号资源集关联的定位参考信号端口数小于或等于N,且全部的定位参考信号资源集共关联所述N个定位参考信号端口;
每个定位参考信号资源集关联所述N个定位参考信号端口。本申请实施例中,可选的,所述目标测量结果包括以下至少之一:
1)相位测量结果;
2)功率相关测量结果;
可选的,所述功率相关测量结果包括以下至少之一:参考信号接收功率(Reference Signal Receiving Power,RSRP)、径的参考信号接收功率(RSRP path,RSRPP)和参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
3)时间相关测量结果;
可选的,所述时间相关测量结果包括以下至少之一:参考信号时间差(Reference Signal Time Difference,RSTD),到达时间(Time of Arrival,TOA),相对到达时间(Relative time of arrival,RTOA),接收发射时间差(Rx-Tx time difference)。
4)角度相关测量结果;
可选的,所述角度相关测量结果包括:到达角(angle of arrival,AOA)或离开角(AOD)。
5)定位预编码矩阵指示(Precoding Matrix Indicator,PMI)测量结果。
本申请实施例中,接收节点测量多个端口的定位参考信号,获得不同端口的信道响应,执行码本遍历过程,以获得与信道匹配的最佳码本,所述最佳码本Index即为定位PMI。
本申请实施例中,可选的,所述目标测量结果还包括:所述目标端口的标识信息,表示目标测量结果是根据哪个或哪些端口测量所得;所述标识信息包括以下至少之一:发送节点标识(ID),定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
本申请实施例中,定位参考信号端口索引(index)也可以是组内index,比如定位参考信号端口组内Index,或者CDM端口组内index。
下面分别对上述各种类型的测量结果进行说明。
(1)相位测量结果
本申请实施例中,可选的,所述相位测量结果包括以下至少之一:
1)所述多个目标端口的相位差;
本申请实施例中,多个端口的相位差又可以称为端口相对相位(port relative phase)。
本申请实施例中,可选的,所述相位差包括以下至少之一:
所述多个目标端口的RE的平均相位与相位参考端口的RE的平均相位之差;
所述多个目标端口的RE与所述相位参考端口的RE的相位差的平均值;
所述目标端口的首径(即目标端口时域信道冲激响应(Channel Impulse Response,CIR)中首径)的相位与相位参考端口的首径的相位之差;
所述目标端口的其他径(即目标端口时域信道冲激响应(CIR)中其他径(additional path))的相位与相位参考端口的其他径的相位之差。
本申请实施例中,其他径的选择可以根据其他节点指示、协议约定、接收节点选择至少一种方式确定,比如其他节点指示其他径(additional path)的数目,接收节点根据实现上报该数量的其他径的测量结果。
可选的,计算相位差时,目标port与参考port的多径的时间有对应关系,比如目标port第n条径对应参考port第n条径,或者目标port时间t的径对应参考Port时间t的径。
本申请实施例中,可选的,用于计算所述相位差的多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位 参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。本申请实施例中,可选的,所述相位测量结果还包括:所述相位参考端口的标识信息;所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述相位参考端口所在的定位参考信号端口组索引,所述相位参考端口所在的CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
本申请实施例中,可选的,所述相位测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点标识(ID),定位参考信号端口索引(index或ID),所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
本申请实施例中,可选的,所述相位参考端口由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选择。
本申请实施例中,可选的,所述相位参考端口由其他节点指示时,指示所述相位参考端口的标识信息;指示的所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述相位参考端口所在的定位参考信号端口组索引,所述相位参考端口所在的CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
2)所述多个目标端口中每个所述目标端口的相位;
3)所述多个目标端口的相位的加权平均或平均值。
本申请实施例中,可选的,所述目标端口的相位包括以下至少之一:
所述目标端口的RE的平均相位;即,该目标端口占据的RE的相位的平均;
所述目标端口的首径的相位;即,该目标端口时域信道冲激响应(CIR)中首径对应的相位;
所述目标端口的其他径的相位;即该目标端口时域信道冲激响应(CIR)中其他径对应的相位。
本申请实施例中,可选的,用于计算所述相位的多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参 考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
本申请实施例中,可选的,所述接收节点测量所述多个定位参考信号端口中的多个目标端口的定位参考信号,包括:
所述接收节点测量所述多个目标端口的相位时,使用相同的Rx分支(Rx branch)。这里,Rx分支还可以换成‘Rx天线’,‘Rx天线阵列’,‘Rx面板’或者‘Rx接收波束’等等。
本申请实施例中,可选的,所述加权平均的系数由其他节点指示、协议约定或所述接收节点选择。
本申请实施例中,可选的,相位测量结果包含以上哪些内容,可以由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选择。
(2)功率相关测量结果
本申请实施例中,可选的,所述功率相关测量结果包括以下至少之一:
1)所述多个目标端口中每个所述目标端口的功率相关测量结果;
一种实施方式:对于某个PRS resource,包含x个PRS port,PRS接收节点在每个PRS port测量RSRP和/或RSRPP测量结果。进一步的,上报每个PRS port的测量结果。
另一实施方式中,PRS-RSRP的定义修改如下:DL PRS参考信号接收功率(DL PRS-RSRP)被定义为天线端口的资源单元的功率贡献(in[W])上的线性平均值,天线端口的资源单元携带在所考虑的测量频带内为RSRP测量配置的DL-PRS参考信号。即,定义修改如下:
DL PRS reference signal received power(DL PRS-RSRP),is defined as the linear average over the power contributions(in[W])of the resource elements of the antenna port(s)that carry DL PRS reference signals configured for RSRP measurements within the considered measurement frequency bandwidth.
2)所述多个目标端口的功率相关测量结果的加权平均或平均值;
本申请实施例中,可选的,所述加权平均的系数由其他节点指示、协议约定或所述接收节点选择。
本申请实施例中,可选的,所述功率相关测量结果包括RSRPP,所述功率相关测量结果包括所述多个目标端口的功率相关测量结果的加权平均或平 均值时,所述多个目标端口的径的时间存在对应关系。比如port0的第n条径对应port1第n条径加权平均,或者目标port时间t的径对应参考Port时间t的径加权平均。
一种实施方式:对于某个PRS resource,包含x个PRS port,该PRS resource对应的测量结果为PRS接收节点对x个port加权平均的测量结果。进一步的,上报所述测量结果。
另一实施方式中,PRS-RSRP的定义修改如下:DL PRS参考信号接收功率(DL PRS-RSRP)被定义为天线端口的资源单元的功率贡献(in[W])上的线性平均值,这些资源单元在所考虑的测量频带带宽内携带为RSRP测量配置的DL-PRS参考信号,在天线端口上平均(加权)。即,定义修改如下:
DL PRS reference signal received power(DL PRS-RSRP),is defined as the linear average over the power contributions(in[W])of the resource elements of the antenna port(s)that carry DL PRS reference signals configured for RSRP measurements within the considered measurement frequency bandwidth,(weighted)averaged over the antenna port(s).
3)所述多个目标端口的功率相关测量结果之和。
本申请实施例中,可选的,所述功率相关测量结果包括RSRPP,所述功率相关测量结果包括所述多个目标端口的功率相关测量结果之和时,所述多个目标端口的径的时间存在对应关系。比如port0的第n条径对应port1第n条径加权平均,或者目标port时间t的径对应参考Port时间t的径加权平均。
一种实施方式:对于某个PRS resource,包含x个PRS port,该PRS resource对应的测量结果为PRS接收节点对x个PRS port求和的测量结果。进一步的,上报所述测量结果
另一实施方式中,PRS-RSRP的定义修改如下:DL PRS参考信号接收功率(DL PRS-RSRP)被定义为天线端口的资源单元的功率贡献(单位为[W])上的线性平均值,这些资源单元在考虑的测量频率带宽内携带配置用于RSRP测量的DL PRS参考信号,在天线端口上求和。即,定义修改如下:
DL PRS reference signal received power(DL PRS-RSRP),is defined as the linear average over the power contributions(in[W])of the resource elements of  the antenna port(s)that carry DL PRS reference signals configured for RSRP measurements within the considered measurement frequency bandwidth,summed over the antenna port(s).
本申请实施例中,可选的,所述多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
本申请实施例中,可选的,所述功率相关测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点标识(ID),定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
本申请实施例中,可选的,功率相关测量结果包含以上哪些内容,可以由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选择。
(3)时间相关测量结果;
本申请实施例中,可选的,所述时间相关测量结果包括以下至少之一:
1)所述多个目标端口中每个所述目标端口的时间相关测量结果;
一种实施方式:对于某个PRS resource,包含x个PRS port,PRS接收节点在每个PRS port测量RSTD和/或TOA和/或RTOA和/或Rx-Tx time difference,得到测量结果。进一步的,上报每个PRS port的测量结果。
另一种实施方式,以RSTD为例,RSTD的定义更改如下:
DL参考信号时间差(DL RSTD)是传输点(TP)j和参考TP i之间的DL相对定时差,定义为TSubframeRxj–TSubframeRxi;
其中,TSubframeRxj是UE从TP j接收到一个子帧开始的时间;
TSubframeRxi是UE从TP i接收到与从TP j接收的子帧在时间上最接近的一个子帧的相应开始的时间。
DL-PRS资源中的多个DL-PRS端口可用于确定来自TP的一个子帧的开始。即,定义修改如下:
DL reference signal time difference(DL RSTD)is the DL relative timing  difference between the Transmission Point(TP)j and the reference TP i,defined as TSubframeRxj–TSubframeRxi,
Where:
TSubframeRxj is the time when the UE receives the start of one subframe from TP j.
TSubframeRxi is the time when the UE receives the corresponding start of one subframe from TP i that is closest in time to the subframe received from TP j.
Multiple DL PRS ports within DL PRS resources can be used to determine the start of one subframe from a TP.
或者
DL参考信号时间差(DL RSTD)是传输点(TP)j和参考tpi之间的DL相对定时差,定义为TSubframeRxj–TSubframeRxi,
其中,TSubframeRxj是UE从TP j接收到一个子帧开始的时间;
TSubframeRxi是UE从TP i接收到与从TP j接收的子帧在时间上最接近的一个子帧的相应开始的时间。
多个DL-PRS资源可用于确定来自TP的一个子帧的开始。和/或,(DL-PRS资源的)多个DL-PRS端口可用于确定来自TP的一个子帧的开始。即,定义修改如下:
DL reference signal time difference(DL RSTD)is the DL relative timing difference between the Transmission Point(TP)j and the reference TP i,defined as TSubframeRxj–TSubframeRxi,
Where:
TSubframeRxj is the time when the UE receives the start of one subframe from TP j.
TSubframeRxi is the time when the UE receives the corresponding start of one subframe from TP i that is closest in time to the subframe received from TP j.
Multiple DL PRS resources can be used to determine the start of one subframe from a TP.And/or
Multiple DL PRS ports(of DL PRS resources)can be used to determine the  start of one subframe from a TP.
上述仅以RSTD为例,TOA和/或RTOA和/或Rx-Tx time difference等的定义同样需要做上述修改。即,多个定位参考信号端口可以确定TP的子帧起点,子帧起点用于计算TOA和/或RTOA和/或Rx-Tx time difference。
2)所述多个目标端口的时间相关测量结果的加权平均或平均值。
本申请实施例中,可选的,所述加权平均的系数由其他节点指示、协议约定或所述接收节点选择。
一种种实施方式中:对于某个PRS resource,包含x个PRS port,该PRS resource对应的测量结果为PRS接收节点对x个PRS port加权平均的测量结果。进一步的,上报所述测量结果。
另一种实施方式,RSTD的定义更改如下:
DL参考信号时间差(DL RSTD)是传输点(TP)j和参考TP i之间的DL相对定时差,定义为TSubframeRxj–TSubframeRxi;
其中,TSubframeRxj是UE从TP j接收到一个子帧开始的时间;
TSubframeRxi是UE从TP i接收到与从TP j接收的子帧在时间上最接近的一个子帧的相应开始的时间。
多个DL-PRS资源可用于确定来自TP的一个子帧的开始。和/或,
(DL-PRS资源的)多个DL-PRS端口可用于确定来自TP的一个子帧的开始。
本申请实施例中,可选的,所述多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
本申请实施例中,可选的,所述时间相关测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点标识(ID),定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
本申请实施例中,可选的,时间相关测量结果包含以上哪些内容,可以由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选 择。
本申请实施例中,可选的,所述多个目标端口能够用来确定一个发送节点(TP)的子帧(subframe)的起点。
(4)角度相关测量结果
本申请实施例中,可选的,所述角度相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的角度相关测量结果;
所述多个目标端口的角度相关测量结果的加权平均或平均值。
本申请实施例中,可选的,所述目标端口的角度相关测量结果包括以下至少之一:
所述目标端口的首径测量结果;
所述目标端口的其他径测量结果。
其中,首径测量结果包括以下至少之一:one RSRP,one RSRPP(即首径的RSRPP),multiple UL-AOAs(AoA/ZoA pairs),one UL-RTOA,one-gNB Rx-Tx time difference,one UL-RTOA。
其他径测量结果包括以下至少之一:one RSRPP,multiple UL-AOAs(AoA/ZoA pairs),one UL-RTOA,one-gNB Rx-Tx time difference,one UL-RTOA。
本申请实施例中,可选的,角度相关测量结果包含以上哪些内容,可以由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选择。
本申请实施例中,可选的,所述角度相关测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点标识(ID),定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
本申请实施例中,可选的,所述多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
本申请实施例中,可选的,所述多个目标端口由协议约定、其他节点指示或所述接收节点选择。
(5)PMI测量结果
可选的,PMI测量结果可以用于AOD计算方法。终端测量多个端口的PRS,获得不同端口的信道响应,执行码本遍历过程,以获得与信道匹配的最佳码本和/或最佳AOD角度。终端上报或指示的最佳码本Index即为这里的定位PMI。
本申请实施例中,可选的,所述PMI测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点标识(ID),定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
可选的,接收节点还可以上报PMI测量结果关联的频域信息,表示该PMI测量结果对应哪个频域位置。所述频域信息包含以下至少之一:子带标识(表示PMI测量结果来自哪个子带,不同的子带对应的测量结果可能不同)、BWP标识、载波单元(component carrier,CC)标识、定位频率层标识、频域位置信息(标识测量结果关联哪个频域位置,包含但不限于起始位置、带宽等等)。
本申请实施例中,可选的,用于PMI测量结果的多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
本申请实施例中,可选的,所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,之前还包括:所述接收节点根据协议约定或其他节点发送的第一指示信息,确定在所述多个定位参考信号端口中的目标端口上执行特定类型的测量,从而可以提高定位参考信号端口的利用效率。
本申请实施例中,可选的,所述特定类型的测量包括但不限于以下至少之一:相位测量,功率相关测量,时间相关测量,角度相关测量,定位预编码矩阵指示测量。
一种实施方式中:其他节点指示PRS接收节点,在port0~port3执行相位测量,和/或,在port0~port1执行RSTD测量,和/或,在port4~port5执行PMI测量等。
本申请实施例中,可选的,不同特定类型的测量对应不同的目标端口,或者,存在至少两个特定类型的测量共享相同的目标端口。
可选的,对于特定类型的测量使用的定位参考信号端口,可以通过以下标识信息至少之一指示:发送节点标识(ID),定位参考信号端口索引,定位参考信号端口组索引,CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID,所述特定类型的测量需要的端口数,所述特定类型的测量需要的起始端口索引。
一种实施方式,所述测量需要的端口数,所述测量需要的起始端口索引指示,比如指示端口数为2,起始端口索引为Port 3,那么测量对应的端口为port 3及port 4。
本申请实施例中,可选的,所述第一指示信息中指示用于执行特定类型的测量的特定定位参考信号资源和/或特定定位参考信号资源集。即,在特定定位参考信号端口上执行特定类型的测量,可以通过指示在特定定位参考信号资源和/或特定定位参考信号资源集执行特定类型的测量替代。
一种实施方式:其他节点指示PRS接收节点,在PRS resource 0~PRS resource 3执行相位测量,在PRS resource0~5执行RSTD测量等。
另一种实施方式:其他节点指示PRS接收节点,在PRS resource set0执行RSTD测量,在PRS resource set 1执行相位测量,在PRS resource set 2执行PMI测量等。
下面对本申请实施例中涉及的参考端口进行说明。
本申请实施例中,可选的,所述方法还包括:所述接收节点接收第二指示信息,所述第二指示信息用于指示一个或多个参考端口,所述参考端口组作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数(应用expected RSTD或expectedRSTD-uncertain参数)。
本申请实施例中,上述第二指示信息可以由发送节点、控制节点或位置服务器发送。
可选的,若至少一个定位参考信号端口作为参考应用expected RSTD或expectedRSTD-uncertain参数、确定定位参考信号接收时间,即以至少一个定 位参考信号端口的接收时间为参考,结合辅助数据中的expected RSTD或expectedRSTD-uncertain等参数,确定其他定位参考信号的接收时间(如非服务小区的PRS),以进行测量。
可选的,若至少一个定位参考信号端口作为RSTD、RSRP、RSRPP、Rx-Tx measurement测量、AOA测量以及相位中的至少之一的测量结果的参考,即以至少一个定位参考信号端口的接收时间为参考,确定其他定位参考信号的接收时间,进一步的根据接收时间对定位参考信号测量,获得所述测量结果。
可选的,若至少一个定位参考信号端口作为获得RSTD测量结果的参考,即以至少一个定位参考信号端口的接收时间为参考,计算RSTD(因为RSTD的意思是参考信号时间差)。
可选的,若至少一个定位参考信号端口作为获得RSRP、RSRPP、Rx-Tx measurement测量、AOA测量和相位中的至少之一的测量结果的参考,即以至少一个定位参考信号端口的测量结果(如RSRP,RSRPP,Rx-Tx time difference,AOA,相位)为参考,计算其他定位参考信号的差分测量结果。
本申请实施例中,上述至少一个定位参考信号端口可以称为参考端口。
本申请实施例中,第二指示信息指示的参考端口的数量可以是一个,也可以是一个列表(list)的定位参考信号端口(即参考端口的数量可以是多个)。
本申请实施例中,可选的,所述第二指示信息中包括:所述参考端口的标识信息,所述参考端口的标识信息包括以下至少之一:发送节点ID,参考端口索引(或标识),参考端口索引列表,所述参考端口所在的定位参考信号端口组索引,所述参考端口所在的CDM端口组索引,所述参考端口所在的CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。可选的,若指示了端口组或CDM端口组,所述参考端口索引可以是端口组内或CDM端口组内索引。可选的,若指示了CDM端口组和端口组,所述CDM端口索引可以是端口组内的CDM组索引。
参考端口的一种指示方式的实施方式如下:
Figure PCTCN2022143574-appb-000011
Figure PCTCN2022143574-appb-000012
本申请实施例中,可选的,所述参考端口包括以下之一:
目标发送节点的一个或多个定位参考信号端口;
每个发送节点的一个或多个定位参考信号端口。
本申请实施例中,可选的,所述目标发送节点或每个发送节点的一个或多个定位参考信号端口包括以下至少之一:
1)发送节点的一个或多个定位参考信号端口;
2)发送节点的一个定位参考信号资源集合关联的一个或多个定位参考信号端口;
3)发送节点的一个定位参考信号资源集合中的一个定位参考信号资源关联的一个或多个定位参考信号端口;
4)发送节点的一个定位参考信号资源集合中的一个定位参考信号资源列表关联的一个或多个定位参考信号端口;可选的,一个定位参考信号资源列表关联的一个或多个定位参考信号端口可以是以下之一:定位参考信号资源列表中的所有定位参考信号资源关联的定位参考信号端口都可以作为参考端口;在定位参考信号资源列表中的所有定位参考信号资源关联的定位参考信号端口中指定特定的一个或多个端口作为参考端口;在定位参考信号资源列表中的每个定位参考信号资源关联的定位参考信号端口中指定特定的一个或多个端口作为参考端口。
本申请实施例中,可选的,若指示某个发送节点的至少一个定位参考信号端口为参考端口,该发送节点为参考发送节点,如参考TRP;对应的定位参考信号资源集为参考resource set;对应的定位参考信号资源为参考资源; 对应的定位参考信号资源列表为参考定位参考信号资源列表。
本申请实施例中,可选的,若每个发送节点的一个或多个定位参考信号端口为参考端口,每个发送节点对应的参考端口用于获取该发送节点的定位参考信号的目标测量结果。
本申请实施例中,可选的,所述接收节点接收第二指示信息,之后还包括:所述接收节点从所述第二指示信息指示的多个参考端口中选择一个参考端口作为最终的参考端口。
本申请实施例中,可选的,所述一个或多个参考端口属于一个定位参考信号端口组或CDM端口组。
本申请实施例中,可选的,所述一个或多个参考端口是所述定位参考信号端口组或CDM端口组内的部分或全部定位参考信号端口。
本申请实施例中,可选的,所述定位参考信号端口组或CDM端口组为参考端口组。
本申请实施例中,可选的,所述一个或多个参考端口属于一个定位参考信号资源,或一个定位参考信号资源集,或一个发送节点。
本申请实施例中,可选的,所述一个或多个参考端口是所属的定位参考信号资源或定位参考信号资源集或发送节点的部分或全部定位参考信号端口。
本申请实施例中,可选的,不同发送节点或不同类型的测量对应的参考端口不同。
本申请实施例中,可选的,所述接收节点实际用于获得所述目标测量结果的参考端口与所述第二指示信息指示的参考端口相同或不同。
本申请实施例中,可选的,所述方法还包括:上报实际使用的参考端口的标识信息,所述标识信息包括以下至少之一:发送节点ID,参考端口索引,参考端口列表,定位参考信号端口组索引,CDM端口组索引,CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。
本申请实施例中,可选的,所述目标测量结果包括时间相关测量结果,所述时间相关测量结果包括参考信号时间差(RSTD)测量结果;所述接收节点实际用于获得所述目标测量结果的参考端口用于参考信号时间差测量时, 所述实际用于获得所述目标测量结果的参考端口的参考信号时间差测量结果为0。
下面对本申请实施例中的如何从多个定位参考信号端口中选取一个或多个目标端口进行说明。
本申请实施例中,可选的,所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果,包括:所述接收节点根据所述多个定位参考信号端口的优先级信息,确定所述目标端口。
本申请实施例中,可选的,所述优先级信息由以下方式中的至少之一确定:协议约定,其他节点指示,所述接收节点选择。
本申请实施例中,可选的,所述多个定位参考信号端口的优先级信息包括以下至少之一:
定位参考信号端口的优先级;
定位参考信号端口所在的定位参考信号端口组的优先级;
定位参考信号端口所在的CDM端口组的优先级。
本申请实施例中,可选的,不同的发送节点关联的定位参考信号端口优先级根据该发送节点的优先级确定。
本申请实施例中,可选的,所述多个定位参考信号端口的优先级信息包括以下至少之一:
一个发送节点关联的多个定位参考信号端口按照优先级排序;
一个发送节点关联的多个定位参考信号端口组按照优先级排序;
一个定位参考信号端口组的多个定位参考信号端口按照优先级排序;
一个定位参考信号端口组的多个CDM端口组按照优先级排序;
不同定位参考信号端口组的定位参考信号端口或CDM端口组的优先级,按照定位参考信号端口组的优先级确定;
一个CDM端口组的多个定位参考信号端口按照优先级排序;
不同CDM端口组的定位参考信号端口的优先级按照CDM端口组的优先级确定;
一个发送节点关联的多个定位参考信号资源集按照优先级排序;
一个定位参考信号资源集关联的多个定位参考信号端口按照优先级排序;
一个定位参考信号资源集关联的多个定位参考信号端口组按照优先级排序;
不同定位参考信号资源集之间定位参考信号端口的优先级按照定位参考信号资源集的优先级确定;
一个定位参考信号资源集关联的多个定位参考信号资源按照优先级排序;
一个定位参考信号资源关联的多个定位参考信号端口按照优先级排序;
一个定位参考信号资源关联的多个定位参考信号端口组按照优先级排序;
不同定位参考信号资源之间定位参考信号端口的优先级按照定位参考信号资源的优先级确定;
不同的频带(band)的定位参考信号端口的优先级按照带宽的优先级确定;
不同的频率层的定位参考信号端口的优先级按照频率层的优先级确定。
本申请实施例中,可选的,参考端口在定位参考信号的测量中具有最高的优先级,或者,在目标发送节点的定位参考信号的测量中具有最高的优先级,所述参考端口作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
本申请实施例中,可选的,所述参考发送节点(如参考TRP)的定位参考信号端口的优先级高于其他发送节点的定位参考信号端口的优先级;
和/或
所述参考定位参考信号资源集关联的定位参考信号端口的优先级高于其他定位参考信号资源集的关联的定位参考信号端口的优先级;
和/或
所述参考定位参考信号资源关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级。
和/或
所述参考参考定位参考信号资源列表关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级。
本申请实施例中,可选的,所述优先级信息按照以下方式中的至少之一 表示:
在目标对象的配置信息中,目标对象的信息单元(IE)根据优先级排列;
在目标对象的配置信息中,目标对象的ID根据优先级排列;
具有相同优先级的目标对象的IE或ID列为一组;
其中,所述目标对象为定位参考信号端口、定位参考信号端口组或CDM端口组。
本申请实施例中,可选的,所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果,包括:
所述接收节点测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果。
本申请实施例中,可选的,上报测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果的行为,和/或,所述预设优先级,由其他节点指示、协议约定或者所述接收节点选择。
本申请实施例中,可选的,目标发送节点下的多个定位参考信号端口映射时,优先级最高的定位参考信号端口或定位参考信号端口组或CDM端口组占用的时频资源不与其他定位参考信号端口共享。
一种实施方式,某个PRS发送节点的多个端口,通过频分复用(Frequency Division Multiplexing,FDM)、时分复用(Time division multiplexing,TDM)、码分复用(Code Division Multiplexing,CDM)至少一种方式区分。一个CDM group的多个端口共享相同的时频资源位置(称为一个CDM group),不同的CDM group通过FDM和/或TDM区分。那么对于优先级最高的PRS端口,可单独的占用一块时频资源,并不与其他端口有CDM的关系;或者,优先级最高的PRS端口对应的CDM端口组中只包含唯一一个端口。
本申请实施例中,可选的,所述方法还包括:所述接收节点接收发送节点发送的定位参考信号端口与发送时间误差组(Tx timing error group,TEG)的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
本申请实施例中,可选的,所述发送节点可以将定位参考信号端口与TEG的关联关系发送给所述接收节点或位置服务器。所述发送节点包含UE或TRP; 接收节点包含UE。比如sidelink中,收发节点都是UE。
本申请实施例中,可选的,所述定位参考信号端口与TEG的关联关系包括以下至少之一:定位参考信号端口与TEG的关联关系,定位参考信号端口组与TEG的关联关系,CDM端口组与TEG的关联关系。定位参考信号端口组与Tx TEG的关联关系包含:一个定位参考信号端口组对应一个Tx TEG,或者一个定位参考信号端口组的多个定位参考信号端口对应多个Tx TEG。
本申请实施例中,可选的,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
{Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
{Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
{RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
本申请实施例中,可选的,一个TEG关联一个或多个定位参考信号端口。
本申请实施例中,可选的,所述接收节点通过以下方式中的至少之一接收发送节点发送的信息:
通过PC5接口;
通过UU接口。
请参考图4,本申请实施例还提供一种多端口定位参考信号测量方法,包括:
步骤41:发送节点通过多个定位参考信号端口发送定位参考信号。
可选的,本申请实施例的方法还包括:
所述发送节点发送定位参考信号端口与TEG的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
可选的,所述定位参考信号端口与TEG的关联关系包括以下至少之一:定位参考信号端口与TEG的关联关系,定位参考信号端口组与TEG的关联关系,CDM端口组与TEG的关联关系。
可选的,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
{Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与 定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
{Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
{RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
可选的,一个TEG关联一个或多个定位参考信号端口。
上述实施例中,对于发送节点来说,其他节点包含但不限于接收节点、控制节点、位置服务器、服务gNB中的至少之一;对于接收节点来说,其他节点包含但不限于发送节点、控制节点、位置服务器、服务gNB中的至少之一。
上述实施例中,由发送节点向接收节点、控制节点、位置服务器、服务gNB中的至少之一指示或上报的信息可以通过以下方式中的至少之一发送:
1)由发送节点通过广播、组播、单播中的至少一种方式指示或报告给接收节点和/或控制节点和/或服务gNB,包含以下方式至少之一:
1a)通过PC5接口,包含但不限于通过sidelink的第一级旁链路控制信息(Sidelink Control Information,SCI),第二级SCI,PC5-RRC,PC5-MAC CE,PC5-LPP,PC5-LPPa等至少之一。
1b)通过UU接口,包含但不限于:RRC,MAC CE,DCI/PDCCH,上行控制信息(Uplink Control Information,UCI),PUCCH,SIB1,SIBx,SDT,PRACH,寻呼(paging),msg1,mgs2,msg3,msg4,msg5,msgA,msgB,NR定位协议A(NRPPa),LPPa,LPP,Xn,X2中的至少之一。
2)由发送节点指示或报告给位置服务器,包含以下方式至少之一:
通过UU接口,包含但不限于:RRC,MAC CE,UCI/PUCCH,NRPPa,LPPa,LPP,Xn,X2至少之一。
由接收节点向发送节点、控制节点、位置服务器、服务gNB中的至少之一指示或报告的信息(如测量结果)可以通过以下方式中的至少之一发送:
1)由接收节点通过广播、组播、单播中的至少一种方式指示或报告给发送节点和/或控制节点和/或服务gNB,包含以下方式至少之一:
通过PC5接口,包含但不限于通过sidelink的第一级SCI,第二级SCI,PC5-RRC,PC5-MAC CE,PC5-LPP,PC5-LPPa等至少之一;
通过UU接口,包含但不限于:RRC,MAC CE,DCI/PDCCH,UCI,PUCCH, SIB1,SIBx,SDT,PRACH,paging,msg1,mgs2,msg3,msg4,msg5,msgA,msgB,NRPPa,LPPa,LPP,Xn,X2至少之一;
2)由PRS接收节点指示/报告给位置服务器,包含以下方式至少之一:
通过UU接口,包含但不限于:RRC,MAC CE,UCI/PUCCH,NRPPa,LPPa,LPP,Xn,X2至少之一。
PRS接收节点接收从PRS发送节点、位置服务器、控制节点、服务gNB至少之一发送/指示的信息(如PRS配置)可以通过以下方式至少之一接收:
1)接收从PRS发送节点和/或控制节点和/或服务gNB通过广播、组播、单播至少一种方式发送/指示的信息,包含以下信令方式至少之一:
PC5接口的信令,包含但不限于:sidelink的第一级SCI,第二级SCI,PC5-RRC,PC5-MAC CE,PC5-LPP,PC5-LPPa等至少之一;
UU接口中的信令,包含但不限于:RRC,MAC CE,DCI/PDCCH,UCI,PUCCH,SIB1,SIBx,SDT,PRACH,paging,msg1,mgs2,msg3,msg4,msg5,msgA,msgB,NRPPa,LPPa,LPP,Xn,X2至少之一。
2)接收从位置服务器发送/指示的信息,包含以下信令方式至少之一:
UU接口中的信令,包含但不限于:RRC,MAC CE,DCI/PDCCH,NRPPa,LPPa,LPP,paging,SIB1,SIBx,msg2,msg4,msgB至少之一。
请参考图5,本申请实施例还提供一种多端口定位参考信号测量装置40,包括:
第一接收模块51,用于接收发送节点通过多个定位参考信号端口发送的定位参考信号;
处理模块52,用于测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果。
可选的,所述目标测量结果包括以下至少之一:
相位测量结果;
功率相关测量结果;
时间相关测量结果;
角度相关测量结果;
定位预编码矩阵指示测量结果。
可选的,所述功率相关测量结果包括以下至少之一:RSRP、RSRPP和RSRQ。
可选的,所述时间相关测量结果包括以下至少之一:参考信号时间差,到达时间,RTOA,接收发送Rx-Tx时间差。
可选的,所述角度相关测量结果包括以下至少之一:到达角,离开角。
可选的,所述目标测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
可选的,所述相位测量结果包括以下至少之一:
所述多个目标端口的相位差;
所述多个目标端口中每个所述目标端口的相位;
所述多个目标端口的相位的加权平均或平均值。
可选的,所述相位差包括以下至少之一:
所述多个目标端口的资源单元RE的平均相位与相位参考端口的RE的平均相位之差;
所述多个目标端口的RE与所述相位参考端口的RE的相位差的平均值;
所述目标端口的首径的相位与相位参考端口的首径的相位之差;
所述目标端口的其他径的相位与相位参考端口的其他径的相位之差。
可选的,所述目标测量结果还包括:所述相位参考端口的标识信息;所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述相位参考端口所在的定位参考信号端口组索引,所述相位参考端口所在的CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
可选的,所述相位参考端口由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选择。
可选的,所述相位参考端口由其他节点指示时,指示所述相位参考端口的标识信息;所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述相位参考端口所在的定位参考信号端口组索引,所述相位参考端口所在的CDM端口组索引,定位参考信号资源集ID,定位参考信号资 源ID。
可选的,所述目标端口的相位包括以下至少之一:
所述目标端口的RE的平均相位;
所述目标端口的首径的相位;
所述目标端口的其他径的相位。
可选的,所述处理模块52,用于测量所述多个目标端口的相位时,使用相同的Rx分支。
可选的,所述功率相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的功率相关测量结果;
所述多个目标端口的功率相关测量结果的加权平均或平均值;
所述多个目标端口的功率相关测量结果之和。
可选的,所述功率相关测量结果包括径的参考信号接收功率,所述功率相关测量结果包括所述多个目标端口的功率相关测量结果的加权平均或平均值,和/或,包括所述多个目标端口的功率相关测量结果之和时,所述多个目标端口的径的时间存在对应关系。
可选的,所述时间相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的时间相关测量结果;
所述多个目标端口的时间相关测量结果的加权平均或平均值。
可选的,所述多个目标端口能够用来确定一个发送节点的子帧的起点。
可选的,所述加权平均的系数由其他节点指示、协议约定或所述接收节点选择。
可选的,所述角度相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的角度相关测量结果;
所述多个目标端口的角度相关测量结果的加权平均或平均值。
可选的,所述目标端口的角度相关测量结果包括以下至少之一:
所述目标端口的首径测量结果;
所述目标端口的其他径测量结果。
可选的,所述多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参 考信号资源集,和/或,相同的发送节点。
可选的,所述多个目标端口由协议约定、其他节点指示或所述接收节点选择。
可选的,所述多端口定位参考信号测量装置50还包括:
确定模块,用于根据协议约定或其他节点发送的第一指示信息,确定在所述多个定位参考信号端口中的目标端口上执行特定类型的测量。
可选的,所述特定类型的测量包括以下至少之一:相位测量,功率相关测量,时间相关测量,角度相关测量,定位预编码矩阵指示测量。
可选的,不同特定类型的测量对应不同的目标端口,或者,存在至少两个特定类型的测量共享相同的目标端口。
可选的,所述第一指示信息中指示用于执行特定类型的测量的特定定位参考信号资源和/或特定定位参考信号资源集。
可选的,所述多端口定位参考信号测量装置40还包括:
第二接收模块,用于接收第二指示信息,所述第二指示信息用于指示一个或多个参考端口,所述参考端口组作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
可选的,所述第二指示信息中包括:所述参考端口的标识信息,所述参考端口的标识信息包括以下至少之一:发送节点ID,参考端口索引,参考端口列表,所述参考端口所在的定位参考信号端口组索引,所述参考端口所在的CDM端口组索引,所述参考端口所在的CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。
可选的,所述参考端口包括以下之一:
目标发送节点的一个或多个定位参考信号端口;
每个发送节点的一个或多个定位参考信号端口。
可选的,所述目标发送节点或每个发送节点的一个或多个定位参考信号端口包括以下至少之一:
发送节点的一个或多个定位参考信号端口;
发送节点的一个定位参考信号资源集合关联的一个或多个定位参考信号 端口;
发送节点的一个定位参考信号资源集合中的一个定位参考信号资源关联的一个或多个定位参考信号端口;
发送节点的一个定位参考信号资源集合中的一个定位参考信号资源列表关联的一个或多个定位参考信号端口。
可选的,一个定位参考信号资源列表关联的一个或多个定位参考信号端口可以是以下之一:定位参考信号资源列表中的所有定位参考信号资源关联的定位参考信号端口都可以作为参考端口;在定位参考信号资源列表中的所有定位参考信号资源关联的定位参考信号端口中指定特定的一个或多个端口作为参考端口;在定位参考信号资源列表中的每个定位参考信号资源关联的定位参考信号端口中指定特定的一个或多个端口作为参考端口。
可选的,若每个发送节点的一个或多个定位参考信号端口为参考端口,每个发送节点对应的参考端口用于获取该发送节点的定位参考信号的目标测量结果。
可选的,所述多端口定位参考信号测量装置50还包括:
选择模块,用于从所述第二指示信息指示的多个参考端口中选择一个参考端口作为最终的参考端口。
可选的,所述一个或多个参考端口属于一个定位参考信号端口组或CDM端口组。
可选的,所述一个或多个参考端口是所述定位参考信号端口组或CDM端口组内的部分或全部定位参考信号端口。
可选的,所述定位参考信号端口组或CDM端口组为参考端口组。
可选的,所述一个或多个参考端口属于一个定位参考信号资源,或一个定位参考信号资源集,或一个发送节点。
可选的,所述一个或多个参考端口是所属的定位参考信号资源或定位参考信号资源集或发送节点的部分或全部定位参考信号端口。
可选的,不同发送节点或不同类型的测量对应的参考端口不同。
可选的,所述接收节点实际用于获得所述目标测量结果的参考端口与所述第二指示信息指示的参考端口相同或不同。
可选的,所述多端口定位参考信号测量装置50还包括:
上报模块,用于上报实际使用的参考端口的标识信息,所述标识信息包括以下至少之一:发送节点ID,参考端口索引,参考端口列表,定位参考信号端口组索引,CDM端口组索引,CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。
可选的,所述目标测量结果包括时间相关测量结果,所述时间相关测量结果包括参考信号时间差测量结果;所述接收节点实际用于获得所述目标测量结果的参考端口用于参考信号时间差测量时,所述实际用于获得所述目标测量结果的参考端口的参考信号时间差测量结果为0。
可选的,所述处理模块52,还用于根据所述多个定位参考信号端口的优先级信息,确定所述目标端口。
可选的,所述优先级信息由以下方式中的至少之一确定:协议约定,其他节点指示,所述接收节点选择。
可选的,所述多个定位参考信号端口的优先级信息包括以下至少之一:
定位参考信号端口的优先级;
定位参考信号端口所在的定位参考信号端口组的优先级;
定位参考信号端口所在的CDM端口组的优先级。
可选的,不同的发送节点关联的定位参考信号端口优先级根据该发送节点的优先级确定。
可选的,所述多个定位参考信号端口的优先级信息包括以下至少之一:
一个发送节点关联的多个定位参考信号端口按照优先级排序;
一个发送节点关联的多个定位参考信号端口组按照优先级排序;
一个定位参考信号端口组的多个定位参考信号端口按照优先级排序;
一个定位参考信号端口组的多个CDM端口组按照优先级排序;
不同定位参考信号端口组的定位参考信号端口或CDM端口组的优先级,按照定位参考信号端口组的优先级确定;
一个CDM端口组的多个定位参考信号端口按照优先级排序;
不同CDM端口组的定位参考信号端口的优先级按照CDM端口组的优先级确定;
一个发送节点关联的多个定位参考信号资源集按照优先级排序;
一个定位参考信号资源集关联的多个定位参考信号端口按照优先级排序;
一个定位参考信号资源集关联的多个定位参考信号端口组按照优先级排序;
不同定位参考信号资源集之间定位参考信号端口的优先级按照定位参考信号资源集的优先级确定;
一个定位参考信号资源集关联的多个定位参考信号资源按照优先级排序;
一个定位参考信号资源关联的多个定位参考信号端口按照优先级排序;
一个定位参考信号资源关联的多个定位参考信号端口组按照优先级排序;
不同定位参考信号资源之间定位参考信号端口的优先级按照定位参考信号资源的优先级确定;
不同的频带的定位参考信号端口的优先级按照带宽的优先级确定;
不同的频率层的定位参考信号端口的优先级按照频率层的优先级确定。
可选的,参考端口在定位参考信号的测量中具有最高的优先级,或者,在目标发送节点的定位参考信号的测量中具有最高的优先级,所述参考端口作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
可选的,参考发送节点的定位参考信号端口的优先级高于其他发送节点的定位参考信号端口的优先级;
和/或
参考定位参考信号资源集关联的定位参考信号端口的优先级高于其他定位参考信号资源集的关联的定位参考信号端口的优先级;
和/或
参考定位参考信号资源关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级;
和/或
所述参考参考定位参考信号资源列表关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级。
可选的,所述优先级信息按照以下方式中的至少之一表示:
在目标对象的配置信息中,目标对象的信息单元IE根据优先级排列;
在目标对象的配置信息中,目标对象的ID根据优先级排列;
具有相同优先级的目标对象的IE或ID列为一组;
其中,所述目标对象为定位参考信号端口、定位参考信号端口组或CDM端口组。
可选的,所述处理模块52,还用于测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果。
可选的,上报测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果的行为,和/或,所述预设优先级,由其他节点指示、协议约定或者所述接收节点选择。
可选的,目标发送节点下的多个定位参考信号端口映射时,优先级最高的定位参考信号端口或定位参考信号端口组或CDM端口组占用的时频资源不与其他定位参考信号端口共享。
可选的,所述多端口定位参考信号测量装置50还包括:
第三接收模块,用于接收发送节点发送的定位参考信号端口与发送时间误差组TEG的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
可选的,所述定位参考信号端口与TEG的关联关系包括以下至少之一:定位参考信号端口与TEG的关联关系,定位参考信号端口组与TEG的关联关系,CDM端口组与TEG的关联关系。
可选的,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
{Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
{Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与 定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
{RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
可选的,一个TEG关联一个或多个定位参考信号端口。
可选的,通过以下方式中的至少之一接收发送节点发送的信息:
通过PC5接口;
通过UU接口。
本申请实施例中的多端口定位参考信号测量装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的多端口定位参考信号测量装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参考图6,本申请实施例还提供一种多端口定位参考信号测量装置60,包括:
第一发送模块61,用于在多个定位参考信号端口向接收节点发送定位参考信号。
可选的,多端口定位参考信号测量装置60还包括:
第二发送模块,用于发送定位参考信号端口与TEG的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
可选的,所述定位参考信号端口与TEG的关联关系包括以下至少之一:定位参考信号端口与TEG的关联关系,定位参考信号端口组与TEG的关联关系,CDM端口组与TEG的关联关系。
可选的,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
{Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
{Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与 定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
{RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
可选的,一个TEG关联一个或多个定位参考信号端口。
本申请实施例提供的多端口定位参考信号测量装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备70,包括处理器71和存储器72,存储器72上存储有可在所述处理器71上运行的程序或指令,该程序或指令被处理器71执行时实现上述多端口定位参考信号测量方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收发送节点通过多个定位参考信号端口发送的定位参考信号;处理器用于测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果。或者,通信接口用于在多个定位参考信号端口向接收节点发送定位参考信号。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端80包括但不限于:射频单元81、网络模块82、音频输出单元83、输入单元84、传感器85、显示单元86、用户输入单元87、接口单元88、存储器89以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端80还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元84可以包括图形处理单元(Graphics Processing Unit,GPU)841和麦克风842,图形处理器841对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元86可包括显示面板861,可以采用液晶显示器、有机发光二极管等形式来配置显示面板861。用户输入单元87包括触控面板871以及其他输入设备872中的至少一种。触控面板871,也称为触摸屏。触控面板871可包括触摸检测装置和触摸控制器两个部分。其他输入设备872可以包括但不限于物理键盘、功能键(比如音量控制按键、 开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元81接收来自网络侧设备的下行数据后,可以传输给处理器810进行处理;另外,射频单元81可以向网络侧设备发送上行数据。通常,射频单元81包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器89可用于存储软件程序或指令以及各种数据。存储器89可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器89可以包括易失性存储器或非易失性存储器,或者,存储器89可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器89包括但不限于这些和任意其它适合类型的存储器。
处理器810可包括一个或多个处理单元;可选的,处理器810集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,射频单元81,用于接收节点接收发送节点通过多个定位参考信号端口发送的定位参考信号;
所述处理器810,用于测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,得到目标测量结果,和/或,上报所述目标测量结 果。
可选的,所述目标测量结果包括以下至少之一:
相位测量结果;
功率相关测量结果;
时间相关测量结果;
角度相关测量结果;
定位预编码矩阵指示测量结果。
可选的,所述功率相关测量结果包括以下至少之一:RSRP、RSRPP和RSRQ。
可选的,所述时间相关测量结果包括以下至少之一:参考信号时间差,到达时间,RTOA,Rx-Tx时间差。
可选的,所述角度相关测量结果包括以下至少之一:到达角,离开角。
可选的,所述目标测量结果还包括:所述目标端口的标识信息;所述标识信息包括以下至少之一:发送节点标识ID,定位参考信号端口索引,所述目标端口所在的定位参考信号端口组索引,所述目标端口所在的码分复用CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
可选的,所述相位测量结果包括以下至少之一:
所述多个目标端口的相位差;
所述多个目标端口中每个所述目标端口的相位;
所述多个目标端口的相位的加权平均或平均值。
可选的,所述相位差包括以下至少之一:
所述多个目标端口的资源单元RE的平均相位与相位参考端口的RE的平均相位之差;
所述多个目标端口的RE与所述相位参考端口的RE的相位差的平均值;
所述目标端口的首径的相位与相位参考端口的首径的相位之差;
所述目标端口的其他径的相位与相位参考端口的其他径的相位之差。
可选的,所述目标测量结果还包括:所述相位参考端口的标识信息;所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述相位参考端口所在的定位参考信号端口组索引,所述相位参考端口所在的 CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
可选的,所述相位参考端口由以下方式中的至少之一确定:其他节点指示、协议约定或所述接收节点选择。
可选的,所述相位参考端口由其他节点指示时,指示所述相位参考端口的标识信息;所述标识信息包括以下至少之一:发送节点ID,定位参考信号端口索引,所述相位参考端口所在的定位参考信号端口组索引,所述相位参考端口所在的CDM端口组索引,定位参考信号资源集ID,定位参考信号资源ID。
可选的,所述目标端口的相位包括以下至少之一:
所述目标端口的RE的平均相位;
所述目标端口的首径的相位;
所述目标端口的其他径的相位。
可选的,所述处理器810,用于测量所述多个目标端口的相位时,使用相同的Rx分支。
可选的,所述功率相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的功率相关测量结果;
所述多个目标端口的功率相关测量结果的加权平均或平均值;
所述多个目标端口的功率相关测量结果之和。
可选的,所述功率相关测量结果包括径的参考信号接收功率,所述功率相关测量结果包括所述多个目标端口的功率相关测量结果的加权平均或平均值,和/或,包括所述多个目标端口的功率相关测量结果之和时,所述多个目标端口的径的时间存在对应关系。
可选的,所述时间相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的时间相关测量结果;
所述多个目标端口的时间相关测量结果的加权平均或平均值。
可选的,所述多个目标端口能够用来确定一个发送节点的子帧的起点。
可选的,所述加权平均的系数由其他节点指示、协议约定或所述接收节点选择。
可选的,所述角度相关测量结果包括以下至少之一:
所述多个目标端口中每个所述目标端口的角度相关测量结果;
所述多个目标端口的角度相关测量结果的加权平均或平均值。
可选的,所述目标端口的角度相关测量结果包括以下至少之一:
所述目标端口的首径测量结果;
所述目标端口的其他径测量结果。
可选的,所述多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
可选的,所述多个目标端口由协议约定、其他节点指示或所述接收节点选择。
可选的,所述处理器810,还用于根据协议约定或其他节点发送的第一指示信息,确定在所述多个定位参考信号端口中的目标端口上执行特定类型的测量。
可选的,所述特定类型的测量包括以下至少之一:相位测量,功率相关测量,时间相关测量,角度相关测量,定位预编码矩阵指示测量。
可选的,不同特定类型的测量对应不同的目标端口,或者,存在至少两个特定类型的测量共享相同的目标端口。
可选的,所述第一指示信息中指示用于执行特定类型的测量的特定定位参考信号资源和/或特定定位参考信号资源集。
可选的,所述射频单元81,还用于接收第二指示信息,所述第二指示信息用于指示一个或多个参考端口,所述参考端口组作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
可选的,所述第二指示信息中包括:所述参考端口的标识信息,所述参考端口的标识信息包括以下至少之一:发送节点ID,参考端口索引,参考端口列表,所述参考端口所在的定位参考信号端口组索引,所述参考端口所在的CDM端口组索引,所述参考端口所在的CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。
可选的,所述参考端口包括以下之一:
目标发送节点的一个或多个定位参考信号端口;
每个发送节点的一个或多个定位参考信号端口。
可选的,所述目标发送节点或每个发送节点的一个或多个定位参考信号端口包括以下至少之一:
发送节点的一个或多个定位参考信号端口;
发送节点的一个定位参考信号资源集合关联的一个或多个定位参考信号端口;
发送节点的一个定位参考信号资源集合中的一个定位参考信号资源关联的一个或多个定位参考信号端口;
发送节点的一个定位参考信号资源集合中的一个定位参考信号资源列表关联的一个或多个定位参考信号端口。
可选的,一个定位参考信号资源列表关联的一个或多个定位参考信号端口可以是以下之一:定位参考信号资源列表中的所有定位参考信号资源关联的定位参考信号端口都可以作为参考端口;在定位参考信号资源列表中的所有定位参考信号资源关联的定位参考信号端口中指定特定的一个或多个端口作为参考端口;在定位参考信号资源列表中的每个定位参考信号资源关联的定位参考信号端口中指定特定的一个或多个端口作为参考端口。
可选的,若每个发送节点的一个或多个定位参考信号端口为参考端口,每个发送节点对应的参考端口用于获取该发送节点的定位参考信号的目标测量结果。
可选的,所述处理器810,还用于从所述第二指示信息指示的多个参考端口中选择一个参考端口作为最终的参考端口。
可选的,所述一个或多个参考端口属于一个定位参考信号端口组或CDM端口组。
可选的,所述一个或多个参考端口是所述定位参考信号端口组或CDM端口组内的部分或全部定位参考信号端口。
可选的,所述定位参考信号端口组或CDM端口组为参考端口组。
可选的,所述一个或多个参考端口属于一个定位参考信号资源,或一个定位参考信号资源集,或一个发送节点。
可选的,所述一个或多个参考端口是所属的定位参考信号资源或定位参考信号资源集或发送节点的部分或全部定位参考信号端口。
可选的,不同发送节点或不同类型的测量对应的参考端口不同。
可选的,实际用于获得所述目标测量结果的参考端口与所述第二指示信息指示的参考端口相同或不同。
可选的,所述射频单元81,还用于上报实际使用的参考端口的标识信息,所述标识信息包括以下至少之一:发送节点ID,参考端口索引,参考端口列表,定位参考信号端口组索引,CDM端口组索引,CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。
可选的,所述目标测量结果包括时间相关测量结果,所述时间相关测量结果包括参考信号时间差测量结果;所述接收节点实际用于获得所述目标测量结果的参考端口用于参考信号时间差测量时,所述实际用于获得所述目标测量结果的参考端口的参考信号时间差测量结果为0。
可选的,所述处理器810,用于根据所述多个定位参考信号端口的优先级信息,确定所述目标端口。
可选的,所述优先级信息由以下方式中的至少之一确定:协议约定,其他节点指示,所述接收节点选择。
可选的,所述多个定位参考信号端口的优先级信息包括以下至少之一:
定位参考信号端口的优先级;
定位参考信号端口所在的定位参考信号端口组的优先级;
定位参考信号端口所在的CDM端口组的优先级。
可选的,不同的发送节点关联的定位参考信号端口优先级根据该发送节点的优先级确定。
可选的,所述多个定位参考信号端口的优先级信息包括以下至少之一:
一个发送节点关联的多个定位参考信号端口按照优先级排序;
一个发送节点关联的多个定位参考信号端口组按照优先级排序;
一个定位参考信号端口组的多个定位参考信号端口按照优先级排序;
一个定位参考信号端口组的多个CDM端口组按照优先级排序;
不同定位参考信号端口组的定位参考信号端口或CDM端口组的优先级, 按照定位参考信号端口组的优先级确定;
一个CDM端口组的多个定位参考信号端口按照优先级排序;
不同CDM端口组的定位参考信号端口的优先级按照CDM端口组的优先级确定;
一个发送节点关联的多个定位参考信号资源集按照优先级排序;
一个定位参考信号资源集关联的多个定位参考信号端口按照优先级排序;
一个定位参考信号资源集关联的多个定位参考信号端口组按照优先级排序;
不同定位参考信号资源集之间定位参考信号端口的优先级按照定位参考信号资源集的优先级确定;
一个定位参考信号资源集关联的多个定位参考信号资源按照优先级排序;
一个定位参考信号资源关联的多个定位参考信号端口按照优先级排序;
一个定位参考信号资源关联的多个定位参考信号端口组按照优先级排序;
不同定位参考信号资源之间定位参考信号端口的优先级按照定位参考信号资源的优先级确定;
不同的频带的定位参考信号端口的优先级按照带宽的优先级确定;
不同的频率层的定位参考信号端口的优先级按照频率层的优先级确定。
可选的,参考端口在定位参考信号的测量中具有最高的优先级,或者,在目标发送节点的定位参考信号的测量中具有最高的优先级,所述参考端口作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
可选的,参考发送节点的定位参考信号端口的优先级高于其他发送节点的定位参考信号端口的优先级;
和/或
参考定位参考信号资源集关联的定位参考信号端口的优先级高于其他定位参考信号资源集的关联的定位参考信号端口的优先级;
和/或
参考定位参考信号资源关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级;
和/或
所述参考参考定位参考信号资源列表关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级。
可选的,所述优先级信息按照以下方式中的至少之一表示:
在目标对象的配置信息中,目标对象的信息单元IE根据优先级排列;
在目标对象的配置信息中,目标对象的ID根据优先级排列;
具有相同优先级的目标对象的IE或ID列为一组;
其中,所述目标对象为定位参考信号端口、定位参考信号端口组或CDM端口组。
可选的,所述处理器810,用于测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果。
可选的,上报测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果的行为,和/或,所述预设优先级,由其他节点指示、协议约定或者所述接收节点选择。
可选的,目标发送节点下的多个定位参考信号端口映射时,优先级最高的定位参考信号端口或定位参考信号端口组或CDM端口组占用的时频资源不与其他定位参考信号端口共享。
可选的,所述射频单元81,还用于接收发送节点发送的定位参考信号端口与发送时间误差组TEG的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
可选的,所述定位参考信号端口与TEG的关联关系包括以下至少之一:定位参考信号端口与TEG的关联关系,定位参考信号端口组与TEG的关联关系,CDM端口组与TEG的关联关系。
可选的,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
{Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
{Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考 信号端口组或者CDM端口组的关联关系;
{Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
{RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
{RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
{RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
可选的,一个TEG关联一个或多个定位参考信号端口。
可选的,所述射频单元81通过以下方式中的至少之一接收发送节点发送的信息:
通过PC5接口;
通过UU接口。
或者,
在另一实施例中,所述射频单元,用于通过多个定位参考信号端口发送定位参考信号。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备90包括:天线91、射频装置92、基带装置93、处理器94和存储器95。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括基带处理器。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口96,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备900还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图5或图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述多端口定位参考信号测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述多端口定位参考信号测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述多端口定位参考信号测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁 碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (40)

  1. 一种多端口定位参考信号测量方法,包括:
    接收节点接收发送节点通过多个定位参考信号端口发送的定位参考信号;
    所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,得到目标测量结果,和/或,上报所述目标测量结果。
  2. 根据权利要求1所述的方法,其中,所述目标测量结果包括以下至少之一:
    相位测量结果;
    功率相关测量结果;
    时间相关测量结果;
    角度相关测量结果;
    定位预编码矩阵指示测量结果。
  3. 根据权利要求2所述的方法,其中,所述相位测量结果包括以下至少之一:
    所述多个目标端口的相位差;
    所述多个目标端口中每个所述目标端口的相位;
    所述多个目标端口的相位的加权平均或平均值。
  4. 根据权利要求3所述的方法,其中,所述相位差包括以下至少之一:
    所述多个目标端口的资源单元RE的平均相位与相位参考端口的RE的平均相位之差;
    所述多个目标端口的RE与所述相位参考端口的RE的相位差的平均值;
    所述目标端口的首径的相位与相位参考端口的首径的相位之差;
    所述目标端口的其他径的相位与相位参考端口的其他径的相位之差。
  5. 根据权利要求3所述的方法,其中,所述目标端口的相位包括以下至少之一:
    所述目标端口的RE的平均相位;
    所述目标端口的首径的相位;
    所述目标端口的除所述首径之外的其他径的相位。
  6. 根据权利要求2所述的方法,其中,所述功率相关测量结果包括以下至少之一:
    所述多个目标端口中每个所述目标端口的功率相关测量结果;
    所述多个目标端口的功率相关测量结果的加权平均或平均值;
    所述多个目标端口的功率相关测量结果之和。
  7. 根据权利要求2所述的方法,其中,所述时间相关测量结果包括以下至少之一:
    所述多个目标端口中每个所述目标端口的时间相关测量结果;
    所述多个目标端口的时间相关测量结果的加权平均或平均值。
  8. 根据权利要求2所述的方法,其中,所述角度相关测量结果包括以下至少之一:
    所述多个目标端口中每个所述目标端口的角度相关测量结果;
    所述多个目标端口的角度相关测量结果的加权平均或平均值。
  9. 根据权利要求8所述的方法,其中,所述目标端口的角度相关测量结果包括以下至少之一:
    所述目标端口的首径测量结果;
    所述目标端口的其他径测量结果。
  10. 根据权利要求1所述的方法,其中,所述多个目标端口属于相同的定位参考信号端口组,和/或,相同的CDM端口组,和/或,相同的定位参考信号资源,和/或,相同的定位参考信号资源集,和/或,相同的发送节点。
  11. 根据权利要求1所述的方法,其中,所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号,之前还包括:
    所述接收节点根据协议约定或其他节点发送的第一指示信息,确定在所述多个定位参考信号端口中的目标端口上执行特定类型的测量。
  12. 根据权利要求1所述的方法,其中,还包括:
    所述接收节点接收第二指示信息,所述第二指示信息用于指示一个或多个参考端口,所述参考端口组作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
  13. 根据权利要求12所述的方法,其中,所述参考端口包括以下之一:
    目标发送节点的一个或多个定位参考信号端口;
    每个发送节点的一个或多个定位参考信号端口。
  14. 根据权利要求13所述的方法,其中,所述目标发送节点或每个发送节点的一个或多个定位参考信号端口包括以下至少之一:
    发送节点的一个或多个定位参考信号端口;
    发送节点的一个定位参考信号资源集合关联的一个或多个定位参考信号端口;
    发送节点的一个定位参考信号资源集合中的一个定位参考信号资源关联的一个或多个定位参考信号端口;
    发送节点的一个定位参考信号资源集合中的一个定位参考信号资源列表关联的一个或多个定位参考信号端口。
  15. 根据权利要求13所述的方法,其中,若每个发送节点的一个或多个定位参考信号端口为参考端口,每个发送节点对应的参考端口用于获取该发送节点的定位参考信号的目标测量结果。
  16. 根据权利要求12所述的方法,其中,所述接收节点接收第二指示信息,之后还包括:
    所述接收节点从所述第二指示信息指示的多个参考端口中选择一个参考端口作为最终的参考端口。
  17. 根据权利要求12所述的方法,其中,所述一个或多个参考端口属于一个定位参考信号端口组或CDM端口组。
  18. 根据权利要求12所述的方法,其中,所述一个或多个参考端口属于一个定位参考信号资源,或一个定位参考信号资源集,或一个发送节点。
  19. 根据权利要求18所述的方法,其中,所述一个或多个参考端口是所属的定位参考信号资源或定位参考信号资源集或发送节点的部分或全部定位参考信号端口。
  20. 根据权利要求12所述的方法,其中,不同发送节点或不同类型的测量对应的参考端口不同。
  21. 根据权利要求12所述的方法,其中,所述接收节点实际用于获得所 述目标测量结果的参考端口与所述第二指示信息指示的参考端口相同或不同。
  22. 根据权利要求21所述的方法,其中,还包括:
    上报实际使用的参考端口的标识信息,所述标识信息包括以下至少之一:发送节点ID,参考端口索引,参考端口列表,定位参考信号端口组索引,CDM端口组索引,CDM端口组列表,定位参考信号资源集ID,定位参考信号资源ID,定位参考信号资源ID列表。
  23. 根据权利要求1或12所述的方法,其中,所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果,包括:
    所述接收节点根据所述多个定位参考信号端口的优先级信息,确定所述目标端口。
  24. 根据权利要求23所述的方法,其中,所述多个定位参考信号端口的优先级信息包括以下至少之一:
    定位参考信号端口的优先级;
    定位参考信号端口所在的定位参考信号端口组的优先级;
    定位参考信号端口所在的CDM端口组的优先级。
  25. 根据权利要求23所述的方法,其中,不同的发送节点关联的定位参考信号端口优先级根据该发送节点的优先级确定。
  26. 根据权利要求23所述的方法,其中,所述多个定位参考信号端口的优先级信息包括以下至少之一:
    一个发送节点关联的多个定位参考信号端口按照优先级排序;
    一个发送节点关联的多个定位参考信号端口组按照优先级排序;
    一个定位参考信号端口组的多个定位参考信号端口按照优先级排序;
    一个定位参考信号端口组的多个CDM端口组按照优先级排序;
    不同定位参考信号端口组的定位参考信号端口或CDM端口组的优先级,按照定位参考信号端口组的优先级确定;
    一个CDM端口组的多个定位参考信号端口按照优先级排序;
    不同CDM端口组的定位参考信号端口的优先级按照CDM端口组的优先级确定;
    一个发送节点关联的多个定位参考信号资源集按照优先级排序;
    一个定位参考信号资源集关联的多个定位参考信号端口按照优先级排序;
    一个定位参考信号资源集关联的多个定位参考信号端口组按照优先级排序;
    不同定位参考信号资源集之间定位参考信号端口的优先级按照定位参考信号资源集的优先级确定;
    一个定位参考信号资源集关联的多个定位参考信号资源按照优先级排序;
    一个定位参考信号资源关联的多个定位参考信号端口按照优先级排序;
    一个定位参考信号资源关联的多个定位参考信号端口组按照优先级排序;
    不同定位参考信号资源之间定位参考信号端口的优先级按照定位参考信号资源的优先级确定;
    不同的频带的定位参考信号端口的优先级按照带宽的优先级确定;
    不同的频率层的定位参考信号端口的优先级按照频率层的优先级确定。
  27. 根据权利要求23所述的方法,其中,参考端口在定位参考信号的测量中具有最高的优先级,或者,在目标发送节点的定位参考信号的测量中具有最高的优先级,所述参考端口作为获得以下至少之一的参考:所述目标测量结果,所述定位参考信号的接收时间,所述定位参考信号的接收时间的测量窗参数。
  28. 根据权利要求23所述的方法,其中,参考发送节点的定位参考信号端口的优先级高于其他发送节点的定位参考信号端口的优先级;
    和/或
    参考定位参考信号资源集关联的定位参考信号端口的优先级高于其他定位参考信号资源集的关联的定位参考信号端口的优先级;
    和/或
    参考定位参考信号资源关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级;
    和/或
    所述参考参考定位参考信号资源列表关联的定位参考信号端口的优先级高于其他定位参考信号资源的关联的定位参考信号端口的优先级。
  29. 根据权利要求23所述的方法,其中,所述优先级信息按照以下方式中的至少之一表示:
    在目标对象的配置信息中,目标对象的信息单元IE根据优先级排列;
    在目标对象的配置信息中,目标对象的ID根据优先级排列;
    具有相同优先级的目标对象的IE或ID列为一组;
    其中,所述目标对象为定位参考信号端口、定位参考信号端口组或CDM端口组。
  30. 根据权利要求23所述的方法,其中,所述接收节点测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果,包括:
    所述接收节点测量和/或上报预设优先级以上的一个或多个目标端口的定位参考信号的目标测量结果。
  31. 根据权利要求23所述的方法,其中,目标发送节点下的多个定位参考信号端口映射时,优先级最高的定位参考信号端口或定位参考信号端口组或CDM端口组占用的时频资源不与其他定位参考信号端口共享。
  32. 根据权利要求1所述的方法,其中,还包括:
    所述接收节点接收发送节点发送的定位参考信号端口与发送时间误差组TEG的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
  33. 根据权利要求32所述的方法,其中,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
    {Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
    {Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
    {Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
    {Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
    {Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
    {RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
    {RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
    {RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
    {RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
    {RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
    {RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
    {RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
    {RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
    {RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
    {RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
  34. 一种多端口定位参考信号测量方法,包括:
    发送节点通过多个定位参考信号端口发送定位参考信号。
  35. 根据权利要求34所述的方法,其中,还包括:
    所述发送节点发送定位参考信号端口与TEG的关联关系,所述TEG为Tx TEG和RxTx TEG中的至少之一。
  36. 根据权利要求35所述的方法,其中,所述定位参考信号端口与TEG的关联关系的形式包括以下至少之一:
    {Tx TEG ID,port ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
    {Tx TEG ID,port ID},表示Tx TEG与定位参考信号端口的关联关系;
    {Tx TEG ID,port group ID/CDM port group ID},表示Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
    {Tx TEG ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
    {Tx TEG ID,port ID,CDM port group ID,port group ID},表示Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
    {RxTx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
    {RxTx TEG ID,port ID},表示RxTx TEG与定位参考信号端口的关联关系;
    {RxTx TEG ID,port group ID/CDM port group ID},表示RxTx TEG与定位参考信号端口组或者CDM端口组的关联关系;
    {RxTx TEG ID,CDM port group ID,port group ID},表示RxTx TEG与PRS port group内的CDM port group的关联关系
    {RxTx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系;
    {RxTx TEG ID,Tx TEG ID,port ID,port group ID/CDM port group ID},表示RxTx TEG和Tx TEG,与定位参考信号端口组或CDM端口组内的定位参考信号端口的关联关系;
    {RxTx TEG ID,Tx TEG ID,port ID},表示RxTx TEG,Tx TEG与定位参考信号端口的关联关系;
    {RxTx TEG ID,Tx TEG ID,port group ID/CDM port group ID},表示RxTx  TEG,Tx TEG与定位参考信号端口组或者CDM端口组的关联关系;
    {RxTx TEG ID,Tx TEG ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组内的CDM端口组的关联关系;
    {RxTx TEG ID,Tx TEG ID,port ID,CDM port group ID,port group ID},表示RxTx TEG,Tx TEG与定位参考信号端口组组内的CDM端口组内的定位参考信号端口的关联关系。
  37. 一种多端口定位参考信号测量装置,包括:
    第一接收模块,用于接收发送节点通过多个定位参考信号端口发送的定位参考信号;
    处理模块,用于测量所述多个定位参考信号端口中的一个或多个目标端口的定位参考信号的目标测量结果,和/或,上报所述目标测量结果。
  38. 一种多端口定位参考信号测量装置,包括:
    第一发送模块,用于在多个定位参考信号端口向接收节点发送定位参考信号。
  39. 一种通信设备,其特征在于,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至33任一项所述的多端口定位参考信号测量方法的步骤,或者,所述程序或指令被所述处理器执行时实现如权利要求34至36任一项所述的多端口定位参考信号测量方法的步骤。
  40. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至33任一项所述的多端口定位参考信号测量方法的步骤,或者,所述程序或指令被处理器执行时实现如权利要求34至36任一项所述的多端口定位参考信号测量方法的步骤。
PCT/CN2022/143574 2021-12-30 2022-12-29 多端口定位参考信号测量方法、装置及通信设备 WO2023125848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111658923.2A CN116418468A (zh) 2021-12-30 2021-12-30 多端口定位参考信号测量方法、装置及通信设备
CN202111658923.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125848A1 true WO2023125848A1 (zh) 2023-07-06

Family

ID=86998047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143574 WO2023125848A1 (zh) 2021-12-30 2022-12-29 多端口定位参考信号测量方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116418468A (zh)
WO (1) WO2023125848A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
WO2021167722A1 (en) * 2020-02-18 2021-08-26 Qualcomm Incorporated Multi-port-measurement feedback

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
WO2021167722A1 (en) * 2020-02-18 2021-08-26 Qualcomm Incorporated Multi-port-measurement feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUPT ET AL.: "DL Reference Signals for NR Positioning", 3GPP TSG RAN WG1 MEETING #98 R1-190XXXX, 4 October 2019 (2019-10-04), XP051789768 *
BUPT, ZTE, CAICT: "DL Reference Signals for NR Positioning", 3GPP TSG RAN WG1 MEETING #99 R1-1912137, 9 November 2019 (2019-11-09), XP051823218 *

Also Published As

Publication number Publication date
CN116418468A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US20210306895A1 (en) Measurement and reporting method and apparatus
US10574304B2 (en) Method, system and apparatus of beam selection
US9692584B2 (en) Methods of radio communications using different subframe configurations and related radio and/or network nodes
CN110535578B (zh) 信号传输方法及装置
US20210410097A1 (en) Methods, Apparatus and Machine-Readable Mediums Relating to Reference Signals for Positioning in a Wireless Network
US20170273015A1 (en) Cell and mobile terminal discovery method
CN103931244A (zh) 用于comp和c-ran的精确上行链路功率控制
CN112134664B (zh) 资源确定方法及装置
CN113711556B (zh) 生成参考信号的方法、检测参考信号的方法和通信装置
JP2023521117A (ja) 位置決定信号処理方法及び装置
CN114365537A (zh) 一种上行传输的方法及装置
CN111372308B (zh) 一种通信方法及装置
CN110383705B (zh) 一种训练传输波束的方法、装置及系统
WO2023125848A1 (zh) 多端口定位参考信号测量方法、装置及通信设备
WO2022194144A1 (zh) 定位方法、终端及网络侧设备
WO2023125656A1 (zh) 多端口定位参考信号配置方法、装置及通信设备
WO2020154923A1 (zh) 一种drs发送方法及装置
WO2023125786A1 (zh) 定位参考信号端口区分方法、装置及通信设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2024027537A1 (zh) 感知方法、装置、通信设备及可读存储介质
WO2023116684A1 (zh) 旁链路定位信号调度方法、装置、终端及网络侧设备
WO2023207510A1 (zh) 用于sidelink的定位方法、装置及可读存储介质
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
WO2023088300A1 (zh) 感知测量方法、感知测量指示方法、终端及网络侧设备
WO2023006015A1 (zh) 定位参考信号处理方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915097

Country of ref document: EP

Kind code of ref document: A1