WO2023125725A1 - 一种深井泵及其电机 - Google Patents
一种深井泵及其电机 Download PDFInfo
- Publication number
- WO2023125725A1 WO2023125725A1 PCT/CN2022/143033 CN2022143033W WO2023125725A1 WO 2023125725 A1 WO2023125725 A1 WO 2023125725A1 CN 2022143033 W CN2022143033 W CN 2022143033W WO 2023125725 A1 WO2023125725 A1 WO 2023125725A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- sealing
- pressure
- carbon fiber
- shielding sleeve
- Prior art date
Links
- 238000007789 sealing Methods 0.000 claims abstract description 103
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 47
- 239000004917 carbon fiber Substances 0.000 claims abstract description 47
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000012530 fluid Substances 0.000 claims abstract description 17
- 238000005452 bending Methods 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 239000003292 glue Substances 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 14
- 230000000712 assembly Effects 0.000 abstract 3
- 238000000429 assembly Methods 0.000 abstract 3
- 238000000034 method Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/12—Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
- H02K5/132—Submersible electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/08—Units comprising pumps and their driving means the pump being electrically driven for submerged use
- F04D13/10—Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/10—Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/22—Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
- H02K5/225—Terminal boxes or connection arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2205/00—Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
- H02K2205/09—Machines characterised by drain passages or by venting, breathing or pressure compensating means
Definitions
- the invention relates to the technical field of deep well pumps, in particular to a deep well pump and its motor.
- the deep well pump includes a motor and a pump body, the two are axially connected as one, and it is a pump that is immersed in a groundwater well to suck and deliver water.
- Deep well pumps are widely used in agricultural irrigation, industrial and mining enterprises, urban water supply and drainage, and sewage treatment. Deep well pumps need to work deep underground. Since the motor is submerged into the water at the same time, the structural requirements for the motor are special compared to ordinary motors.
- the inner ring of the stator of the motor is isolated from the outer side of the rotor by a shielding sleeve, and the shielding sleeve is a non-metallic part and is usually sealed by epoxy resin.
- the pressure of the water entering the rotor is high, while the pressure at the stator is low, which will affect the sealing effect of the epoxy resin, and then cause the stator of the motor to be filled with liquid, affecting the normal operation of the motor use.
- the present invention provides a motor of a deep well pump, which realizes the sealing between the stator of the motor and the casing, so as to prevent water and impurities from entering the inner cavity of the stator.
- the present invention also provides a deep well pump with the above motor.
- the present invention provides the following technical solutions:
- a motor for a deep well pump comprising:
- a first sealing assembly for sealing between the first end of the carbon fiber shielding sleeve and the motor barrel and a second sealing assembly for sealing between the second end of the carbon fiber shielding sleeve and the motor barrel,
- the carbon fiber shielding sleeve divides the motor barrel into an inner cavity and an outer cavity through the first sealing assembly and the second sealing assembly, the rotor is located in the inner cavity, and the stator is located in the outer cavity,
- the outer cavity is filled with insulating fluid;
- the inner cavity When entering deep water, the inner cavity is a high-pressure cavity, the outer cavity is a low-pressure cavity, and the first sealing assembly and/or the second sealing assembly can transmit the pressure of the inner cavity to the outer cavity, The pressure difference between the inside and outside of the carbon fiber shielding sleeve is reduced.
- the first sealing assembly includes:
- the first side and the second side of the pressure balancing rubber member are bent surfaces.
- the bending portion of the first side of the pressure balancing rubber member close to the opening is connected to the carbon fiber shielding sleeve through glue injection and sealing.
- the motor barrel has a stepped structure, and the bend of the second side of the pressure balance rubber member close to the opening is crimped and sealed with the stepped structure through a rubber compression ring. .
- the rubber compression ring is an annular seal installed inside the pressure balance rubber part, and the middle through hole of the rubber compression ring can communicate with the opening and the pressure balance Inside the rubber piece.
- the above-mentioned motor further includes a retaining ring sealed between the pressure balance rubber part and the motor upper cover of the motor barrel, the retaining ring is sealed and press-fitted at the step structure, and the The middle through hole of the retaining ring can communicate with the inner cavity.
- the second seal includes an annular oil seal arranged between the lower motor cover of the motor barrel and the carbon fiber shielding sleeve for sealing the outer cavity, and the oil seal and The carbon fiber shielding sleeve is sealed and bonded by injecting glue.
- a deep well pump including a motor, wherein the motor is the motor described in any one of the above.
- the motor also includes a cable channel opened on the lower cover of the motor for connecting the motor cable and the controller cable and a cable connection for sealing the cable channel components.
- the invention provides a motor of a deep well pump, which transmits the high water pressure in the inner cavity to the insulating fluid in the outer cavity through the first sealing assembly and/or the second sealing assembly, and because the pressure has little influence on the insulating fluid,
- the influence of the motor is small, and at the same time, the high pressure of water is transmitted to the insulating fluid to ensure the pressure balance between the inner and outer sides of the carbon fiber shielding sleeve, thereby effectively ensuring the sealing effect, and can solve the high sealing requirements in the case of internal and external pressure differences, namely Reduced sealing requirements.
- the sealing components will shrink, achieving the pressure balance between the inner and outer chambers and effectively ensuring the sealing effect.
- the above arrangement can effectively prevent the carbon fiber shielding sleeve from being squeezed, deformed or even damaged due to the pressure difference between the inside and outside.
- Fig. 1 is the structural representation of the deep well pump disclosed in the embodiment of the present invention.
- Fig. 2 is a partial enlarged view of A in Fig. 1;
- FIG. 3 is a partially enlarged view of B in FIG. 1 .
- the invention discloses a motor of a deep well pump, which realizes the sealing between the stator of the motor and the housing to prevent water and impurities from entering the inner cavity of the stator.
- the present invention also provides a deep well pump with the above motor.
- first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
- the present application discloses a motor for a deep well pump, including a motor barrel 1 , a rotor 2 and a stator 3 , a carbon fiber shielding sleeve 6 , a first sealing assembly and a second sealing assembly.
- a motor barrel 1 a motor barrel 1 , a rotor 2 and a stator 3 , a carbon fiber shielding sleeve 6 , a first sealing assembly and a second sealing assembly.
- one end of the motor cylinder 1 is connected with the motor upper cover 4, and the other end is connected with the motor lower cover 5, which can be welded specifically, and the direction of the motor is distinguished here for convenience.
- the rotor 2 and the stator 3 are the main parts of the motor.
- a carbon fiber shielding sleeve is provided in this application, and the motor barrel 1 is divided into two parts by the first sealing assembly and the second sealing assembly.
- the rotor 3 is arranged in the inner chamber
- the stator 2 is arranged in the outer chamber.
- the first sealing assembly is used to seal between the first end of the carbon fiber shielding sleeve 6 and the motor barrel 1
- the second sealing assembly is used to seal the second end of the carbon fiber shielding sleeve 6. end and motor barrel 1.
- the outer cavity is filled with insulating fluid.
- At least one of the first sealing component and the second sealing component is an elastic pressure transmitting member capable of transmitting pressure.
- the high pressure of the inner cavity is transmitted to the insulating fluid of the outer cavity through the first sealing assembly and/or the second sealing assembly, and because the pressure has little influence on the insulating fluid, the influence on the motor is small, and at the same time, the water After the high pressure is transmitted to the insulating fluid, it can ensure the pressure balance between the inner and outer sides of the carbon fiber shielding sleeve, thereby effectively ensuring the sealing effect, and can solve the high sealing requirements in the case of internal and external pressure differences, that is, reduce the sealing requirements.
- the above arrangement can effectively prevent the carbon fiber shielding sleeve 6 from being squeezed, deformed or even damaged due to the pressure difference between the inside and outside.
- the above-mentioned first sealing assembly includes a pressure-balancing rubber member 71 disposed in the outer cavity, that is, the first sealing member is set as a structural member capable of transmitting pressure in this application, specifically, the pressure-balancing rubber member 71 is a telescopic part with an opening, which can withstand the deformation of pressure through expansion and contraction, so as to ensure the sealing effect.
- the opening of the pressure balance rubber part 71 can communicate with the inner cavity, and the first side of the pressure balance rubber part 71 is in sealing connection with the outer side of the carbon fiber shielding sleeve 6, and the second side of the pressure balance rubber part 71 is connected to the motor.
- Cartridge 1 is hermetically connected. That is, the sealing between the motor barrel 1 and the carbon fiber shielding sleeve 6 is realized.
- the sealing components When the motor is working, due to the heating of the stator and the expansion of the insulating fluid, the sealing components will shrink, achieving the pressure balance between the inner and outer chambers and effectively ensuring the sealing effect.
- the first side and the second side of the above-mentioned pressure-balancing rubber member 71 are both bent surfaces, and the bending structure realizes elongation when subjected to pressure. On the one hand, the pressure is guaranteed. On the other hand, avoid excessive pressure and damage the pressure balance rubber part 71.
- the above-mentioned pressure balancing rubber member 71 may also be configured as an elastic member that can expand under pressure, such as a relatively elastic rubber member. The number of bending needs to be set according to the required stretching displacement of the pressure balance rubber member 71, and all of them are within the protection range.
- the bent shape is not particularly limited as long as stretching and contraction can be achieved.
- the first side of the pressure balance rubber part 71 is realized by injecting glue in this application
- the bend near the opening is connected to the carbon fiber shielding sleeve 6 , and after cooling, a first injection part 74 is formed between the bend near the opening of the first side of the pressure balance rubber part 71 and the carbon fiber shielding sleeve 6 .
- connection position between the first side of the pressure balance rubber member 71 and the carbon fiber shielding sleeve 6 can be set according to different needs. In practice, multiple glue seals can also be provided between the first side and the carbon fiber shielding sleeve 6 according to sealing requirements.
- the sealing method between the pressure balance rubber part 71 and the motor barrel 1 can be adapted through the step structure on the motor barrel 1 and the bending part of the second side of the pressure balance rubber part 71, and the rubber compression ring 72 is crimped. seal.
- the sealing connection with the pressure balancing rubber part 71 can be realized by crimping the sealing ring.
- a stepped structure is provided on the motor barrel 1 to fit the bending part of the second side to increase the contact area and improve the sealing effect.
- the above-mentioned rubber compression ring 72 is an annular seal installed inside the pressure balance rubber part 71 , and the middle through hole of the rubber compression ring 72 can communicate with the opening and the pressure balance rubber part 71 . In this way, high-pressure water can enter the pressure-balancing rubber member 71 through the opening and the rubber compression ring 72 to realize pressure transmission.
- the motor in this application is also provided with a retaining ring 73 sealed between the pressure balance rubber part 71 and the motor upper cover 4 of the motor barrel 1 at the first seal, and the retaining ring 73 is sealed Press-fitted at the step, the middle through hole of the retaining ring 73 can communicate with the inner cavity.
- the inner cavity of the rotor 2 will be filled with water, that is, the high-pressure water can enter the opening through the middle through hole of the retaining ring 73 and finally enter the pressure balance rubber part 71, and the pressure balance is realized through the pressure balance rubber part 71. transfer.
- the above-mentioned second sealing member includes an oil seal 82 arranged between the lower motor cover 5 of the motor barrel 1 and the carbon fiber shielding sleeve 6 for sealing the outer cavity, and the oil seal 82 and the carbon fiber shielding sleeve 6
- the second glue injection part 81 is formed between the oil seal 82 and the carbon fiber shielding sleeve 6 through glue injection sealing and bonding.
- the first end of the carbon fiber shielding sleeve 6 has achieved pressure balance between the inner chamber and the outer chamber through the pressure balancing rubber member 71, it can only be connected by a simple oil seal here.
- the specific structure and shape of the oil seal are not limited here.
- both the first end and the second end of the carbon fiber shielding sleeve 6 can be set as the structure of the pressure balance rubber member 71, and the first end and the second end of the carbon fiber shielding sleeve 6 can also be arranged The structures of the second end are exchanged, and both are within the scope of protection.
- the specific structure of the pressure balance rubber part 71 includes the first side, the connecting side and the second side connected in sequence, and the first side, the connecting side and the second side are connected to form a ring with an opening, and the ring
- the cross-section is a U-shaped structure; the core is that both the first side and the second side are elastic bending parts.
- the first side, the second side and the connecting side are of an integral structure and are all rubber parts.
- the sealing element can also be set as silica gel or the like. Adopting an integrated structure can ensure the strength of the pressure balance rubber part 71 .
- the above-mentioned sharp corner of the bend of the first side is opposite to the sharp corner of the bend of the second side, and the groove at the looper of the first side and the bend of the second side The grooves at the position are opposite, so that the first side and the second side are stretched and contracted synchronously.
- the bending position of the first side and the bending position of the second side can be arranged as radially symmetrical structures with respect to the sealing member.
- the present application also discloses a deep well pump, including a motor, specifically, the motor is the motor disclosed in the above embodiment, therefore, the deep well pump with the motor also has all the technical effects mentioned above, which will not be repeated here repeat.
- the present application also includes a cable channel opened on the motor lower cover 5 for connecting the motor cable and the controller cable and a wire for sealing the cable channel. Cable connection components.
- the cable sealing assembly includes a motor end connector 97 , a controller end connector 91 and a pin 93 .
- the motor end connector 97 is used to electrically connect the cable of the motor, that is, the motor end connector 97 can be equivalent to a connection terminal, and correspondingly, the controller end connector 91 is used for the cable of the controller.
- the controller end connector 91 can be equivalent to a terminal block.
- a pin 93 is provided, that is, the motor end connector 97 and the controller end connector 91 are realized by the pin 93.
- the electrical connection between, that is, the pin 93 is equivalent to a conductor.
- the motor end connector 97, the controller end connector 91 and the pin 93 are all solid structures, they can be used to block the connection channel, and can ensure that liquid cannot enter the controller through the connection seal assembly.
- the connection sealing component In order to ensure the sealing effect, when installing the connection sealing component, it needs to be sealed and installed in the connection channel to avoid liquid leakage between the connection channel and the connection sealing component, thereby effectively preventing water and impurities from entering the controller and protecting the controller normal use.
- the cable sealing assembly also includes an insulating locking sleeve 96 , and the motor end connector 97 is sealed and connected to the wiring channel through the insulating locking sleeve 96 .
- the insulating locking sleeve 96 is a plastic cylinder structure, its inner side is bonded and sealed with the outer surface of the motor end connector 97, and its outer side is screwed to realize its sealing with the connection channel.
- the cable sealing assembly further includes an insulating bushing 92 , and the controller end connector 91 is sealed and connected to the connection channel through the insulating bushing 92 .
- a sealing method between the connector 91 at the controller end and the connection channel is disclosed here, and the insulating bush 92 is adopted with a simple structure and easy assembly.
- the controller end connector 91 can be made of plastic or rubber to achieve insulation.
- the cable sealing assembly further includes an elastic sealing member 94, and the elastic sealing member 94 fits and seals with the outer surface of the pin 93, and the elastic sealing member 94 fits and seals with the connection channel.
- the elastic sealing member 94 is in sealing connection with the insulating locking sleeve 96 through the insulating gasket 95 , and the elastic sealing member 94 is in sealing connection with the insulating bushing 92 .
- the elastic sealing member 94 can be a rubber member, that is, the sealing is realized by extruding the rubber member.
- a fit seal is adopted, which can specifically be achieved by an interference fit.
- the sealing method is simple and the cost is low. Due to the thread sealing method adopted between the insulating locking sleeve 96 and the connection channel, the sealing effect is not good.
- An insulating gasket 95 is provided, and the sealing is realized through the insulating gasket 95, further improving the sealing effect.
- the terms “a”, “an”, “an” and/or “the” do not refer to the singular and may include the plural unless the context clearly indicates an exception.
- the terms “comprising” and “comprising” only suggest the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list, and the method or device may also contain other steps or elements.
- An element qualified by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or device that includes the element.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Motor Or Generator Frames (AREA)
Abstract
提供了一种深井泵及其电机,包括:设置在电机筒(1)内的转子(2)和定子(3);用于密封碳纤维屏蔽套(6)的第一端与电机筒(1)之间的第一密封组件和用于密封碳纤维屏蔽套(6)的第二端与电机筒(1)之间的第二密封组件,电机筒(1)分为内腔和外腔,外腔内填充有绝缘流体;密封组件能够将高压腔的压力传递至低压腔,减小碳纤维屏蔽套(6)内外压力差。将内腔的高压力通过密封组件传递至外腔的绝缘流体,由于压力对绝缘流体的影响较小,对电机的影响小,同时将水的高压传递至绝缘流体后可保证碳纤维屏蔽套(6)内侧和外侧的压力平衡,有效保证密封的效果,能够解决在内外具有压差情况下的密封高要求。由于定子(3)发热,绝缘流体膨胀,密封组件收缩,达到了内外腔的压力平衡,保证密封效果。
Description
本申请要求于2021年12月31日提交中国专利局、申请号为202111676111.0、发明名称为“一种深井泵及其电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及深井泵技术领域,特别涉及一种深井泵及其电机。
深井泵包括电机和泵体,二者轴向连接为一体,它是浸入地下水井中进行抽吸和输送水的一种泵。
深井泵被广泛用于农业灌溉、工矿企业、城市给排水以及污水处理。深井泵需要深入地下作业,由于电机同时潜入水中,故对于电机的结构要求比一般电动机特殊。
目前,电机的定子的内圈与转子的外侧通过屏蔽套隔离,而屏蔽套为非金属件通常通过环氧树脂实现密封。但是,当深井泵位于深水处时,进入转子处的水的压力较高,而定子处的压力较低,从而会影响环氧树脂的密封效果,进而导致电机定子处充液,影响电机的正常使用。
因此,如何实现电机的定子与壳体之间的密封,以防止水和杂质进入定子内腔,是本技术领域人员亟待解决的问题。
发明内容
有鉴于此,本发明提供了一种深井泵的电机,实现电机的定子与壳体之间的密封,以防止水和杂质进入定子内腔。此外,本发明还提供了一种具有上述电机的深井泵。
为实现上述目的,本发明提供如下技术方案:
一种深井泵的电机,其包括:
电机筒,设置在所述电机筒内的转子和定子;
碳纤维屏蔽套;
用于密封所述碳纤维屏蔽套的第一端与所述电机筒之间的第一密封组件和用于密封所述碳纤维屏蔽套的第二端与所述电机筒之间的第二密封组件,所述碳纤维屏蔽套通过所述第一密封组件和所述第二密封组件将所述电机筒分为内腔和外腔,所述转子位于所述内腔,所述定子位于所述外腔,所述外腔内填充有绝缘流体;
进入深水时,所述内腔为高压腔,所述外腔为低压腔,所述第一密封组件和/或所述第二密封组件能够将所述内腔的压力传递至所述外腔,减小所述碳纤维屏蔽套内外压力差。
优选的,上述的电机中,所述第一密封组件包括:
套设在所述碳纤维屏蔽套外侧的压力平衡橡胶件,所述压力平衡橡胶件为具有开口的伸缩件,所述开口能够与所述内腔连通,所述压力平衡橡胶件的第一侧边与所述碳纤维屏蔽套的外侧密封连接,所述压力平衡橡胶件的第二侧边与所述电机筒密封连接。
优选的,上述的电机中,所述压力平衡橡胶件的第一侧边和第二侧边均为弯折的弯折面。
优选的,上述的电机中,所述压力平衡橡胶件的第一侧边靠近所述开口处的弯折处与所述碳纤维屏蔽套通过注胶密封连接。
优选的,上述的电机中,所述电机筒上具有台阶结构,所述压力平衡橡胶件的第二侧边靠近所述开口处的弯折处通过橡胶压紧圈与所述台阶结构压接密封。
优选的,上述的电机中,所述橡胶压紧圈为安装在所述压力平衡橡胶件内部的环形密封件,且所述橡胶压紧圈的中间通孔能够连通所述开口与所述压力平衡橡胶件内侧。
优选的,上述的电机中,还包括密封在所述压力平衡橡胶件与所述电机筒的电机上盖之间的挡圈,所述挡圈密封压装在所述台阶结构处,并且所述挡圈的中间通孔能够与所述内腔连通。
优选的,上述的电机中,所述第二密封件包括设置在所述电机筒的电机下盖与所述碳纤维屏蔽套之间的用于密封外腔的环形的油封件,所述油封件与所述碳纤维屏蔽套通过注胶密封粘接。
一种深井泵,包括电机,其中,所述电机为上述任一项所述的电机。
优选的,上述的深井泵中,所述电机还包括开设在所述电机下盖上用于电机线缆和控制器线缆连接的线缆通道以及用于密封所述线缆通道的线缆连接组件。
本发明提供了一种深井泵的电机,将内腔的水高压力通过第一密封组件和/或第二密封组件传递至外腔的绝缘流体,而由于压力对绝缘流体的影响较小,对电机的影响小,同时将水的高压传递至绝缘流体后可保证碳纤维屏蔽套内侧和外侧的压力平衡,从而有效保证密封的效果,并能够解决在内外具有压差情况下的密封高要求,即降低密封要求。在电机工作时,由于定子发热,绝缘流体膨胀,密封组件将收缩,达到了内外腔的压力平衡,有效保证密封效果。
此外,由于碳纤维屏蔽套硬度较小,在上述设置可有效避免碳纤维屏蔽套因内外压差而被挤压变形甚至损坏的情况。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中公开的深井泵的结构示意图;
图2为图1中A的局部放大图;
图3为图1中B的局部放大图。
本发明公开了一种深井泵的电机,实现电机的定子与壳体之间的密封,以防止水和杂质进入定子内腔。此外,本发明还提供了一种具有上述电机的深井泵。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
如图1和图3所示,本申请公开了一种深井泵的电机,包括电机筒1、转子2和定子3、碳纤维屏蔽套6、第一密封组件以及第二密封组件。其中,电机筒1的一端与电机上盖4连接,另一端与电机下盖5连接,具体可为焊接,此处为了方便对电机的方向进行区分。而转子2和定子3则为电机的主要部件,为了实现定子2和转子3的相对密封,本申请中设置了碳纤维屏蔽套,并通过第一密封组件和第二密封组件将电机筒1分为内腔和外腔内,其中,转子3设置在内腔中,而定子2设置在外腔中。为了实现内腔和外腔的相对密封,本申请中第一密封组件用于密封碳纤维屏蔽套6的第一端与电机筒1之间,第二密封组件用于密封碳纤维屏蔽套6的第二端与电机筒1之间。并在外腔内填充绝缘流体。
需要说明的上,其中,第一密封组件和第二密封组件中至少一者为能 够传递压力的弹性压力传递件。工作时,将内腔的高压力通过第一密封组件和/或第二密封组件传递至外腔的绝缘流体,而由于压力对绝缘流体的影响较小,对电机的影响小,同时将水的高压传递至绝缘流体后可保证碳纤维屏蔽套内侧和外侧的压力平衡,从而有效保证密封的效果,并能够解决在内外具有压差情况下的密封高要求,即降低密封要求。
此外,由于碳纤维屏蔽套6硬度较小,在上述设置可有效避免碳纤维屏蔽套6因内外压差而被挤压变形甚至损坏的情况。
优选的实施例中,上述的第一密封组件包括设置在外腔内的压力平衡橡胶件71,即本申请中将第一密封件设置为能够传递压力的结构件,具体的,该压力平衡橡胶件71为具有开口的伸缩件,通过伸缩可承受压力的变形,保证密封效果。
具体的,该压力平衡橡胶件71的开口能够与内腔连通,而压力平衡橡胶件71的第一侧边与碳纤维屏蔽套6的外侧密封连接,压力平衡橡胶件71的第二侧边与电机筒1密封连接。即实现了电机筒1与碳纤维屏蔽套6之间的密封。
在深水时,内腔的水通过开口进入压力平衡橡胶件71后,将压力通过压力平衡橡胶件71传递给外腔中的绝缘流体,即释放内腔的压力至外腔,直至内腔和外腔的压力相同,从而保证压力平衡橡胶件71的稳定,避免变形,并保证密封效果的稳定性。
在电机工作时,由于定子发热,绝缘流体膨胀,密封组件将收缩,达到了内外腔的压力平衡,有效保证密封效果。
优选的实施例中,上述的压力平衡橡胶件71的第一侧边和第二侧边均为弯折的弯折面,通过弯折结构实现在受到压力时进行伸长,一方面保证压力的传递,另一方面避免压力过大而使压力平衡橡胶件71损坏。在实际中,也可将上述的压力平衡橡胶件71设置为可受压膨胀的弹性件,例如弹性较大的橡胶件。对于弯折的数量需要根据压力平衡橡胶件71需要伸缩的位移进行设置,且均在保护范围内。此外,对于弯折的形状也不做具体限 定,只要能够实现拉伸和收缩即可。
由于压力平衡橡胶件71与碳纤维屏蔽套6均为软性材料,不能焊接,为了实现两者的固定以及密封,优选的,本申请中采用注胶密封方式实现压力平衡橡胶件71的第一侧边靠近开口的弯折处与碳纤维屏蔽套6连接,冷却后在压力平衡橡胶件71的第一侧边靠近开口的弯折处与碳纤维屏蔽套6之间形成第一注胶件74。
对于压力平衡橡胶件71的第一侧边与碳纤维屏蔽套6之间的连接位置,可根据不同的需要设置。在实际中也可根据密封要求在第一侧边与碳纤维屏蔽套6之间设置多处胶封。
而压力平衡橡胶件71与电机筒1的密封方式可采用通过电机筒1上的台阶结构与压力平衡橡胶件71的第二侧边的弯折处适配,并通过橡胶压紧圈72压接密封。
由于电机筒1为金属件,不会因压力变化而发生形变,因此,可通过密封圈压接的方式实现与压力平衡橡胶件71的密封连接。在电机筒1上设置台阶结构与第二侧边的弯折处贴合,以增大接触面积,提高密封效果。
具体的实施例中,上述的橡胶压紧圈72为安装在压力平衡橡胶件71内部的环形密封件,而橡胶压紧圈72的中间通孔能够连通开口与压力平衡橡胶件71。如此可实现高压水通过开口和橡胶压紧圈72进入压力平衡橡胶件71,实现压力的传递。
在上述技术方案的基础上,本申请中的电机在第一密封件处还设置了密封在压力平衡橡胶件71与电机筒1的电机上盖4之间的挡圈73,并且挡圈73密封压装在台阶处,挡圈73的中间通孔能够与内腔连通。通过上述设置,电机置于深水中时,转子2内腔会充满水,即高压水可经过挡圈73的中间通孔进入开口最终进入压力平衡橡胶件71,通过压力平衡橡胶件71实现压力的传递。
进一步的实施例中,上述的第二密封件包括设置在电机筒1的电机下盖5与碳纤维屏蔽套6之间的用于密封外腔的油封件82,并且油封件82 与碳纤维屏蔽套6通过注胶密封粘接,冷却后在油封件82与碳纤维屏蔽套6之间形成了第二注胶件81。
由于碳纤维屏蔽套6的第一端已经通过压力平衡橡胶件71实现了内腔和外腔压力的平衡,因此,此处可仅通过简单的油封连接即可。对于油封的具体结构和形状在此不限定。
本领域技术人员可以理解的是,在实际中也可将碳纤维屏蔽套6的第一端和第二端均设置为压力平衡橡胶件71的结构,也可将碳纤维屏蔽套6的第一端和第二端的结构互换,且均在保护范围内。
对于压力平衡橡胶件71的具体结构包括依次连接的第一侧边、连接边和第二侧边,且第一侧边、连接边和第二侧边连接成具有开口的环形件,且环形件的截面为U型结构;核心在于,第一侧边和第二侧边均为弹性弯折件。
具体的,该第一侧边、第二侧边和连接边为一体结构,且均为橡胶件。在实际中也可将密封件设置为硅胶等。采用一体结构可保证压力平衡橡胶件71的强度。
优选的,上述的第一侧边的弯折处的尖角和第二侧边的弯折处的尖角相对,并且第一侧边的弯针处的凹槽和第二侧边的弯折处的凹槽相对,如此可保证第一侧边和第二侧边拉伸和收缩时同步。进一步的,可将第一侧边的弯折处和第二侧边的弯折处设置为关于密封件径向对称的结构。
此外,本申请还公开了一种深井泵,包括电机,具体的,该电机为上述实施例中公开的电机,因此,具有该电机的深井泵也具有上述所有技术效果,在此不再一一赘述。
如图2所示,在上述技术方案的基础上,本申请中还包括开设在电机下盖5上用于电机线缆和控制器线缆连接的线缆通道以及用于密封线缆通道的线缆连接组件。
其中,线缆密封组件包括电机端插接件97、控制器端插接件91和插针93。其中,电机端插接件97用于电机的线缆与之电连接,即该电机端 插接件97可相当于接线端子,相应的,控制器端插接件91用于控制器的线缆电连接,该控制器端插接件91可相当于接线端子。为了实现电机端插接件97与控制器端插接件91之间的电连接,因此,设置了插针93,即通过插针93实现电机端插接件97与控制器端插接件91之间的电连接,即该插针93相当于导体。
由于电机端插接件97、控制器端插接件91和插针93均为实体结构,可用于封堵连线通道,并能够保证液体无法通过连线密封组件进入控制器。为了保证密封效果,在安装连接密封组件时需要将其密封安装在连线通道内,以避免连线通道与连线密封组件之间漏液,进而有效避免水及杂质进入控制器,保护控制器的正常使用。
该线缆密封组件还包括绝缘锁紧套96,并且该电机端插接件97通过绝缘锁紧套96与连线通道密封连接。具体的,该绝缘锁紧套96为塑料圆筒结构,其内侧与电机端插接件97外表面贴合密封,外侧通过螺纹连接实现其与连线通道的密封。
此外,该线缆密封组件还包括绝缘衬套92,并且控制器端插接件91通过绝缘衬套92与连线通道密封连接。此处公开了一种控制器端插接件91与连线通道之间的密封方式,采用绝缘衬套92结构简单,易于装配。优选的,该控制器端插接件91可为塑料材质或橡胶材质,以实现绝缘性。
进一步的实施例中,该线缆密封组件还包括弹性密封件94,并且该弹性密封件94与插针93的外表面贴合密封,而弹性密封件94与连线通道贴合密封,此外,弹性密封件94与绝缘锁紧套96通过绝缘垫片95密封连接,弹性密封件94与绝缘衬套92密封连接。优选的,该弹性密封件94可为橡胶件,即通过挤压橡胶件实现密封。
本申请中采用贴合密封,具体可为过盈配合实现密封,密封方式简单,成本低。由于绝缘锁紧套96与连线通道之间采用的螺纹密封的方式,密封效果并不好,为了防止水和杂质流向弹性密封件,因此,在弹性密封件94与绝缘锁紧套96之间设置了绝缘垫片95,并通过绝缘垫片95实现密封, 进一步提高密封效果。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种深井泵的电机,其特征在于,包括:电机筒,设置在所述电机筒内的转子和定子;碳纤维屏蔽套;用于密封所述碳纤维屏蔽套的第一端与所述电机筒之间的第一密封组件和用于密封所述碳纤维屏蔽套的第二端与所述电机筒之间的第二密封组件,所述碳纤维屏蔽套通过所述第一密封组件和所述第二密封组件将所述电机筒分为内腔和外腔,所述转子位于所述内腔,所述定子位于所述外腔,所述外腔内填充有绝缘流体;进入深水时,所述内腔为高压腔,所述外腔为低压腔,所述第一密封组件和/或所述第二密封组件能够将所述高压腔的压力传递至所述低压腔,减小所述碳纤维屏蔽套内外压力差。
- 根据权利要求1所述的电机,其特征在于,所述第一密封组件包括:套设在所述碳纤维屏蔽套外侧的压力平衡橡胶件,所述压力平衡橡胶件为具有开口的伸缩件,所述开口能够与所述内腔连通,所述压力平衡橡胶件的第一侧边与所述碳纤维屏蔽套的外侧密封连接,所述压力平衡橡胶件的第二侧边与所述电机筒密封连接。
- 根据权利要求2所述的电机,其特征在于,所述压力平衡橡胶件的第一侧边和第二侧边均为弯折的弯折面。
- 根据权利要求3所述的电机,其特征在于,所述压力平衡橡胶件的第一侧边靠近所述开口处的弯折处与所述碳纤维屏蔽套通过注胶密封连接。
- 根据权利要求3所述的电机,其特征在于,所述电机筒上具有台阶结构,所述压力平衡橡胶件的第二侧边靠近所述开口处的弯折处通过橡胶压紧圈与所述台阶结构压接密封。
- 根据权利要求5所述的电机,其特征在于,所述橡胶压紧圈为安装在所述压力平衡橡胶件内部的环形密封件,且所述橡胶压紧圈的中间通孔 能够连通所述开口与所述压力平衡橡胶件内侧。
- 根据权利要求6所述的电机,其特征在于,还包括密封在所述压力平衡橡胶件与所述电机筒的电机上盖之间的挡圈,所述挡圈密封压装在所述台阶结构处,并且所述挡圈的中间通孔能够与所述内腔连通。
- 根据权利要求1-7任一项所述的电机,其特征在于,所述第二密封件包括设置在所述电机筒的电机下盖与所述碳纤维屏蔽套之间的用于密封外腔的环形的油封件,所述油封件与所述碳纤维屏蔽套通过注胶密封粘接。
- 一种深井泵,包括电机,其特征在于,所述电机为如权利要求1-8任一项所述的电机。
- 根据权利要求9所述的深井泵,其特征在于,所述电机还包括开设在所述电机下盖上用于电机线缆和控制器线缆连接的线缆通道以及用于密封所述线缆通道的线缆连接组件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111676111.0 | 2021-12-31 | ||
CN202111676111.0A CN114793031A (zh) | 2021-12-31 | 2021-12-31 | 一种深井泵及其电机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023125725A1 true WO2023125725A1 (zh) | 2023-07-06 |
Family
ID=82460782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/143033 WO2023125725A1 (zh) | 2021-12-31 | 2022-12-28 | 一种深井泵及其电机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114793031A (zh) |
WO (1) | WO2023125725A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114793030A (zh) * | 2021-12-31 | 2022-07-26 | 温岭正峰数字机电科技有限公司 | 一种深井泵的电机及其密封件 |
CN114793031A (zh) * | 2021-12-31 | 2022-07-26 | 温岭正峰数字机电科技有限公司 | 一种深井泵及其电机 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1002944A (en) * | 1963-07-19 | 1965-09-02 | Mather & Platt Ltd | Improvements in or relating to submersible electric motors |
CN1146653A (zh) * | 1995-09-28 | 1997-04-02 | 陈启星 | 密封、充液、密封层内外压力自动衡定平衡的电机—泵系统 |
CN101340117A (zh) * | 2007-07-03 | 2009-01-07 | 天津甘泉集团有限公司 | 屏蔽式充油潜水电机 |
CN104682608A (zh) * | 2015-03-03 | 2015-06-03 | 青蛙泵业有限公司 | 深井泵用多重密封电机 |
CN105591485A (zh) * | 2014-11-11 | 2016-05-18 | 无锡清杨机械制造有限公司 | 一种屏蔽电机 |
CN210985813U (zh) * | 2019-12-11 | 2020-07-10 | 海城三鱼泵业有限公司 | 一种井用潜水电机调压装置 |
CN113691080A (zh) * | 2021-08-31 | 2021-11-23 | 苏州优德通力科技有限公司 | 一种密封型浸水式永磁变频深井泵电机结构 |
CN114793031A (zh) * | 2021-12-31 | 2022-07-26 | 温岭正峰数字机电科技有限公司 | 一种深井泵及其电机 |
-
2021
- 2021-12-31 CN CN202111676111.0A patent/CN114793031A/zh active Pending
-
2022
- 2022-12-28 WO PCT/CN2022/143033 patent/WO2023125725A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1002944A (en) * | 1963-07-19 | 1965-09-02 | Mather & Platt Ltd | Improvements in or relating to submersible electric motors |
CN1146653A (zh) * | 1995-09-28 | 1997-04-02 | 陈启星 | 密封、充液、密封层内外压力自动衡定平衡的电机—泵系统 |
CN101340117A (zh) * | 2007-07-03 | 2009-01-07 | 天津甘泉集团有限公司 | 屏蔽式充油潜水电机 |
CN105591485A (zh) * | 2014-11-11 | 2016-05-18 | 无锡清杨机械制造有限公司 | 一种屏蔽电机 |
CN104682608A (zh) * | 2015-03-03 | 2015-06-03 | 青蛙泵业有限公司 | 深井泵用多重密封电机 |
CN210985813U (zh) * | 2019-12-11 | 2020-07-10 | 海城三鱼泵业有限公司 | 一种井用潜水电机调压装置 |
CN113691080A (zh) * | 2021-08-31 | 2021-11-23 | 苏州优德通力科技有限公司 | 一种密封型浸水式永磁变频深井泵电机结构 |
CN114793031A (zh) * | 2021-12-31 | 2022-07-26 | 温岭正峰数字机电科技有限公司 | 一种深井泵及其电机 |
Also Published As
Publication number | Publication date |
---|---|
CN114793031A (zh) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023125725A1 (zh) | 一种深井泵及其电机 | |
US7264494B2 (en) | Electrical connector and socket assemblies | |
CN101673899B (zh) | 耐高压密封连接器及其转接插座 | |
AU2015328429B2 (en) | Crushed seal arrangement for motor electrical connection of submersible well pump | |
US20180094492A1 (en) | Metal-to-Metal Sealed Power Connection For Submersible Pump Motor | |
CN108832379B (zh) | 一种水下湿插拔变换装置 | |
CN105428874A (zh) | 一种液压密封电连接器 | |
CN103490220A (zh) | 一种防塑料软化后流动的高温高压密封电连接器 | |
CN110676781A (zh) | 一种水密穿舱接头的耐压密封结构及制作方法 | |
CN105186439B (zh) | 一种高温潜油电泵的电缆接头密封结构 | |
WO2023125726A1 (zh) | 一种深井泵的电机及其密封件 | |
CN112031971B (zh) | 一种高压油管总成 | |
US20170018989A1 (en) | Sealing method for insulated conductors in electric submersible pump pothead connectors | |
US20230050137A1 (en) | Watertight joint and plug-in device | |
CN202176330U (zh) | 一种用于地层流体取样工具的液压动力装置 | |
EP3955404B1 (en) | Sealing structure of cylinder penetrating wire harness | |
US6362428B1 (en) | System for attaching and sealing a gauge housing assembly to the end of an armored insulated electrical conductor | |
CN209516609U (zh) | 一种穿缸线束密封结构 | |
CN219393853U (zh) | 一种井口穿越器结构 | |
CN114597696B (zh) | 一种密封电连接器及液位计 | |
CN218728183U (zh) | 一种耐高压光纤滑环 | |
CN220769421U (zh) | 机械桥塞 | |
RU2684547C1 (ru) | Узел герметичного кабельного соединения скважинного оборудования системы управления буровым устройством | |
CN115085440A (zh) | 一种深井泵电机总成的密封结构 | |
CN114370515B (zh) | 流道板结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22914975 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |