WO2023125617A1 - 一种电动汽车的充电系统、充电方法和电动汽车 - Google Patents

一种电动汽车的充电系统、充电方法和电动汽车 Download PDF

Info

Publication number
WO2023125617A1
WO2023125617A1 PCT/CN2022/142642 CN2022142642W WO2023125617A1 WO 2023125617 A1 WO2023125617 A1 WO 2023125617A1 CN 2022142642 W CN2022142642 W CN 2022142642W WO 2023125617 A1 WO2023125617 A1 WO 2023125617A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
charging
turned
charging system
electric vehicle
Prior art date
Application number
PCT/CN2022/142642
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Priority to MX2024008205A priority Critical patent/MX2024008205A/es
Publication of WO2023125617A1 publication Critical patent/WO2023125617A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to the field of electric vehicle charging, and in particular, relates to a charging system and a charging method for an electric vehicle and the electric vehicle.
  • the principle of new energy electric vehicle movement is to convert electric energy into kinetic energy through the motor to drive the movement of the vehicle.
  • the energy storage system is a battery. To ensure the normal operation of the motor, the battery must be charged.
  • a charging system is required for charging.
  • the core component of the charging system is the power supply.
  • the power supply converts the alternating current on the grid into direct current to charge the battery of the electric vehicle.
  • the output power of the power supply in the charging system is generally relatively small, and the charging is relatively slow.
  • the most obvious advantage of “super charging” is the fast charging speed (current Large and high power), which requires the charging system to have a large current and high power output function, and the output power should reach 100kw or 200kw. There is currently no power supply capable of outputting this power.
  • the purpose of the embodiment of this paper is to provide a charging system, charging method and electric vehicle for electric vehicles, which have the function of high current and high power output, and can also control the internal part of the power supply according to the charging demand, which can reduce a large amount of unnecessary energy loss , to achieve the purpose of energy saving, and has an automatic adjustment function.
  • the embodiment of this paper provides a charging system for electric vehicles, including: a human-computer interaction module, a power supply module and a main control module;
  • the human-computer interaction module is connected to the main control module, and is used to receive the charging demand information of the electric vehicle, and send the charging demand information to the main control module;
  • the power supply module includes a plurality of power supply branches, and each power supply branch includes a switch unit and a power supply unit, and the switch unit is used to switch on or off the power supply branch where it is located according to the opening signal or closing signal of the main control module;
  • the main control module is configured to determine the power supply unit to be turned on or the power supply unit to be turned off in the power module according to the charging demand information when receiving the charging demand of the electric vehicle, and send an opening signal or a closing signal to the power supply unit to be turned on or to be turned off
  • the power supply branch where the power supply unit is located controls the switch unit to be turned on or off, and the power supply unit to be turned on or off.
  • the embodiments herein provide a charging method for an electric vehicle, which is applied to the main control module of the charging system of any one of the above-mentioned electric vehicles, and the charging method includes:
  • the embodiments herein also provide a computer device, including a memory, a processor, and a computer program stored on the memory.
  • a computer program stored on the memory.
  • the embodiments herein also provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is run by a processor of a computer device, the method according to any one of the above-mentioned items is executed.
  • the embodiments herein also provide an electric vehicle, including any charging system for the electric vehicle described above.
  • the embodiments of this paper receive the charging demand information of the electric vehicle; when receiving the charging demand information of the electric vehicle, according to the charging demand information, determine whether the power module is to be turned on or to be turned off Power supply unit: send an open signal or close to the power supply branch where the power supply unit to be opened is located, has the function of large current and high power output, and can also control the internal part of the power supply according to the charging demand, which can reduce a large amount of unnecessary energy loss , to achieve the purpose of energy saving, and has an automatic adjustment function.
  • FIG. 1 shows a schematic diagram of a module structure of a charging system for an electric vehicle provided in an embodiment of this document;
  • FIG. 2 shows a schematic structural diagram of a power module provided by an embodiment of this document
  • FIG. 3 shows a schematic structural diagram of the main control module provided by the embodiment of this paper
  • FIG. 4 shows a schematic flow chart of a charging method for an electric vehicle provided in an embodiment of this document
  • FIG. 5 shows a schematic diagram of a module structure of a charging device for an electric vehicle provided in an embodiment of this document
  • FIG. 6 shows a schematic structural diagram of a computer device provided by an embodiment of this document.
  • the core component of the charging system is the power supply, which converts the alternating current on the grid into direct current to charge the battery of the electric vehicle.
  • the output power of the power supply in the charging system is generally relatively small, and the charging is relatively slow.
  • the most obvious advantage of “super charging” is the fast charging speed (current Large and high power), which requires the charging system to have a large current and high power output function, and the output power should reach 100kw or 200kw. There is currently no power supply capable of outputting this power.
  • the embodiment of this paper provides a charging system for electric vehicles, including: a human-computer interaction module 200, a power module 300 and a main control module 100;
  • the human-computer interaction module 200 is connected to the main control module 100, and is used to receive the charging demand information of the electric vehicle, and send the charging demand information to the main control module 100;
  • the power supply module 300 includes a plurality of power supply branches, and each power supply branch includes a switch unit and a power supply unit, and the switch unit is used to switch on or off the power supply branch where it is located according to the opening signal or closing signal of the main control module 100;
  • the main control module 100 is configured to determine the power supply unit to be turned on or the power supply unit to be turned off in the power supply module 300 according to the charging demand information when receiving the charging demand of the electric vehicle, and send a start signal or a close signal to the power supply unit to be turned on
  • the human-computer interaction module 200 can be a display screen with an operable interface, and the owner can input the charging demand of the electric vehicle through the operable interface of the display screen.
  • the human-computer interaction module 200 can also be integrated on a handheld terminal, such as a mobile phone or a tablet computer, and the car owner can directly input the charging demand of the electric vehicle through the handheld terminal.
  • the charging demand information includes charging current and charging power, and the charging power may also be charging time.
  • the human-computer interaction module 200 After the vehicle owner inputs the charging requirement into the human-computer interaction module 200 , the human-computer interaction module 200 sends the charging requirement information to the main control module 100 .
  • a plurality of power supply branches are connected in parallel. It should be noted that the parallel connection shown in this article does not mean that multiple power supply branches are connected in parallel, but that multiple power supply branches are connected in parallel in connection structure, that is, the lines of multiple power supply branches are in the form of parallel connection .
  • Power supply branch 1 includes switch unit 1 and power supply unit 1, and subsequent other power supply branches Road is the same. It can be further understood that, in some embodiments, multiple power supply units can be connected in series in each power supply branch. Taking the power supply branch 1 as an example, 2 or 3 or any suitable number of power supply units can be connected in series in the power supply branch 1. Therefore, in some embodiments, the following situation may exist: the power supply branch 1 includes a switch unit and 2 power supply units; a switch unit and a power supply unit are included in the other power branch.
  • each power supply branch has Connect multiple power supply units in series.
  • the power supply unit is a power supply (AC/DC) for charging electric vehicles
  • the switch unit can be an electromagnetic relay arranged outside the power supply unit and connected to the power supply unit, or an electromagnetic relay integrated on the power supply unit.
  • the power supply branch on which on/off is achieved.
  • the main control module 100 can determine the power supply unit to be turned on or to be turned off according to the charging demand information. Among them, there can be multiple power supply units to be turned on.
  • the switch units of the multiple power supply units to be turned on receive the start signal of the main control module, and multiple power supply branches will be opened. Since each power supply branch is set in parallel, the meaning of the parallel setting is: if If any two or more power supply branches are opened, then these opened power supply branches are connected in parallel. Therefore, after receiving the start signal of the main control module, the multiple power supply branches are connected in parallel to charge the electric vehicle.
  • the car owner can input the charging demand of the electric vehicle through the human-computer interaction module 200 according to his own needs.
  • the main control module 100 can determine the corresponding power supply to be turned on or to be turned off.
  • the power supply can not only realize the high current and high power output function, but also control the internal part of the power supply work according to the charging demand, which can reduce a lot of unnecessary energy loss and achieve the purpose of energy saving. At the same time, it has an automatic adjustment function.
  • the charging system further includes: a state detection module 400;
  • the state detection module 400 is connected to the main control module 100 for detecting the state of the charging system in real time, and sending the state information of the charging system to the main control module 100;
  • the main control module 100 is also configured to analyze the charging state information of the charging system when receiving the charging demand of the electric vehicle, and when the analysis result is normal, determine the power supply unit to be turned on in the power module 300 according to the charging demand information, and issue a power-on
  • the step of sending the signal to the power supply branch where the power supply unit is to be turned on is to control the switch unit to be turned on and the power supply unit to be turned on.
  • the state detection module 400 includes a system temperature sensor, a system ADC sampling unit, etc.
  • the temperature sensor can collect the temperature information of the charging system
  • the ADC sampling unit can collect current and voltage information of the charging system
  • the state detection module 400 can be directly installed in the charging system.
  • the temperature, current and voltage information of the power supply unit can be collected through the temperature sensor and ADC sampling unit integrated on the power supply unit.
  • the charging status information of the charging system can be obtained by directly integrating the detected charging status of each power supply unit, or the charging status of multiple power supply units can be used to remove the charging unit with the worst charging status and the best charging status, and then the removed
  • the charging states of the remaining power supply units are integrated to obtain the charging state information of the charging system.
  • the charging state information of the charging system can also be obtained through other methods, and it is not necessary to be limited to the method defined herein.
  • the main control module 100 When the main control module 100 receives the charging demand of the electric vehicle, it analyzes the charging state information of the charging system, and only executes the subsequent steps if the analysis result is normal.
  • the state information of the charging system includes: the input voltage of the charging system, the temperature of the charging system, and the properties of each power supply unit;
  • the main control module 100 includes a judgment unit 500 and a selection unit 600;
  • the judging unit 500 is configured to perform the following state judging process after receiving the charging demand of the electric vehicle: judging whether the input voltage of the charging system is within the standard voltage range, whether the temperature of the charging system is below the system standard temperature, and whether the properties of all power supply units normal;
  • the selection unit 600 is configured to determine the power supply unit to be turned on in the power module 300 according to the charging demand information, send a start signal to the power branch where the power supply unit to be turned on is located, and control the switch unit to be turned on and the power supply unit to be turned on.
  • the input voltage of the charging system refers to the voltage input to the charging system.
  • the electric energy in the grid is input to multiple power supply units, and then output to the electric vehicle for charging by the multiple power supply units.
  • the input voltage can be detected by the system ADC sampling unit, and the temperature of the charging system can be detected by the system temperature sensor.
  • the power attribute of the power supply unit may include but not limited to the temperature of the power supply unit, the communication state of the power supply unit, and the discharge state of the power supply unit.
  • most of the fans are integrated in each power supply unit, and the power supply attribute of the power supply unit can also be Includes the fan status of the power supply unit. Different sensors, detectors, or detectors may be used to detect the above-mentioned different power supply attributes.
  • the normal power attribute of the power supply unit may be that the temperature of the power supply unit is below the standard temperature of the power supply unit, the communication status with the power supply unit is normal, the discharge status of the power supply unit is normal, and the fan status of the power supply unit is normal.
  • the judging unit 500 is further configured to perform the following steps to determine whether the state of the charging system is abnormal when the judging result of a certain item is no: continuously judging the item and counting the number of times the judging result is no, when counting the number of times When the preset number of times is not reached, the judgment result of this item becomes yes, then it is determined that the state of the charging system is normal; The status is abnormal.
  • the above judging unit 500 only performs the status judging process once, and judges the status of the charging system according to the result of the status judging this time.
  • this method has risks. Since there are many states that need to be judged in the state judgment process, it is impossible to avoid one or several states being affected by other factors and causing the state to be abnormal, which leads to the failure of the entire charging system.
  • the status judgment result is abnormal.
  • the state judgment process can be executed multiple times in a loop. When the number of consecutive judgment results of a certain item is negative is greater than a preset value, it is determined that the state of the charging system is abnormal.
  • the preset value is 3 times.
  • the temperature of the charging system is higher than the system standard temperature; if the result of the judgment is no for 1 consecutive time, if it is less than 3 times, the status judgment process can be executed for the second time.
  • the temperature of the charging system is higher than the standard temperature of the system; the result of the statistics is no for 2 consecutive times, and less than 3 times, and the third time the status judgment process is performed, the temperature of the charging system is still higher than the standard temperature of the system; the result of the 3 consecutive times of statistics is no, If it is equal to 3 times, it is determined that the state of the charging system is abnormal.
  • the state judging process is executed for the third time and the temperature of the charging system is lower than the system standard temperature, it is determined that the state of the charging system is normal.
  • the abnormal information can be sent to the human-computer interaction module 200, and then the car owner is reminded to pay attention to the situation.
  • the judging unit 500 is further configured to judge whether the charging demand information of the electric vehicle meets the preset range after receiving the charging demand information of the electric vehicle;
  • the required charging current it is necessary to determine whether the charging current is within the set current range; for the determination method of the required number N of power supply units, it can be determined by the method described above.
  • the maximum value of the set current range should be the maximum allowable charging current of the electric vehicle.
  • the charging voltage of electric vehicles is generally the set voltage at the factory.
  • the state judgment process is executed, and if not, a prompt message is sent to the human-computer interaction module 200 that the charging demand exceeds the range.
  • the car owner can re-input the charging demand, and repeat the above process of judging whether the charging demand information meets the preset range until the charging demand information meets the preset range.
  • a prompt message that the charging demand exceeds the range can be sent to the human-computer interaction module 200, and at the same time, an appropriate preset range can be sent to allow the car owner to re-input the charging demand within the appropriate preset range, so as to save execution time and improve charging efficiency.
  • the selection unit 600 is further configured to filter out normal power supply units according to the attributes of all power supply units in the power supply module 300;
  • the selection unit 600 determining the power supply unit to be turned on in the power supply module 300 according to the charging demand information further includes: determining the power supply unit to be turned on from the screened power supply units according to the charging demand information.
  • the charging demand information is a charging current and a charging quantity. Since the output current of the power supply unit is the set current, for the charging current, the number N of required power supply units can be obtained by dividing the charging current by the set current; for all power supply units, they are numbered in the order of 1, 2, 3...M , select the power supply unit numbered 1-N as the power supply unit to be turned on.
  • the charging power is the charging power required by the car owner, and may also be the charging time.
  • the selection unit 600 is also configured to filter out normal power supply units according to the attributes of all power supply units in the power supply module 300;
  • the selection unit 600 determines the power supply unit to be turned on in the power module 300 according to the charging demand information and further includes: determining the power supply unit to be turned on from the screened power supply units according to the charging demand information and power supply performance.
  • the power performance includes the number of failures and the duration of use
  • the selection unit 600 is also configured to sort the screened power supplies according to the order of the number of failures from small to large and the time of use from small to large; according to the number N of power supply units to be turned on in the power module, select and sort The first N power supply units are used as power supply units to be turned on.
  • the number of failures and the used time can be obtained from the historical data of the power unit. You can first sort the fault times from small to large and the used time from small to large to get the fault sorting and duration sorting, and fine-tune the fault sorting through duration sorting. Fine-tuning means: if there are multiple power supply units with the same fault times, Then check the duration ranking of multiple power supply units. The fault ranking corresponding to the power supply unit with the higher duration ranking is the first, and the fault ranking corresponding to the power supply unit with the lower duration ranking is the last.
  • the main control module 100 is further configured to calculate the difference between the input power and the output power of the charging system in real time during the electric vehicle charging process;
  • the input power of the charging system is the product of the input voltage of the charging system and the input current of the charging system
  • the output power of the charging system is the product of the output voltage of the charging system and the output current of the charging system.
  • the input voltage and input current are the voltage and current input from the grid to the charging system
  • the output voltage and output current are the voltage and current output from the charging system to the electric vehicle.
  • the difference between the input power and the output power is the loss value of the charging system itself. If the loss value is less than the set value, it means normal loss. If the loss value is greater than the set value, it means abnormal loss, and charging needs to be stopped. After the charging is stopped, abnormal information can be sent to the human-computer interaction module 200 to prompt the car owner to pay attention.
  • the main control module 100 is also configured to determine whether the temperature of all turned-on power supply units exceeds the standard power supply temperature during the charging process of the electric vehicle;
  • the output current of other turned-on power supply units is increased, and the output current of the power supply unit is reduced.
  • the output current of the turned-on power supply unit can be reduced according to the current-temperature change curve configured when the power supply unit leaves the factory.
  • the abscissa is the temperature
  • the ordinate is the output current.
  • the curve reflects Trend of the output current of the power supply unit as a function of temperature.
  • the main control module 100 is further configured to determine whether there is an unactivated power supply unit before increasing the output current of other activated power supply units;
  • the output current of the power supply unit is reduced so that the output current of the power supply unit is lower than the maximum output current of the power supply at the temperature.
  • the power supply unit that is not turned on can also be turned on.
  • the screened power supplies are sorted in descending order of the number of failures and the ascending order of the used time. You can select the N+1th power supply unit to turn on according to this sorting order. If the output current of the entire charging system cannot be guaranteed to be constant after turning on the N+1th power supply unit, you can continue to turn on the N+2th power supply unit... Of course, during the turn-on process It is necessary to ensure that the temperature of all powered-on power supply units does not exceed the standard temperature of the power supply.
  • the charging system also includes a cooling fan
  • the main control module 100 is also configured to determine whether the temperature of the charging system is greater than the system standard temperature during the electric vehicle charging process;
  • the main control module 100 is further configured to determine whether the output current of the charging system is greater than the current threshold during the electric vehicle charging process
  • the output current of the charging system can be detected by the system ADC sampling unit, and the current threshold can be the smaller value of the maximum allowable charging current of the electric vehicle and the maximum allowable output current of the charging system. If the output current of the charging system is greater than the current threshold, a prompt message is sent to the human-computer interaction module 200 to prompt the car owner to pay attention to this situation.
  • user information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • the embodiment of this document also provides a charging method for an electric vehicle, which is applied to the main control module 100 of the charging system for any one of the above electric vehicles.
  • the charging methods described above include:
  • S101 receiving charging demand information of electric vehicles
  • S102 Determine the power supply unit to be turned on or the power supply unit to be turned off in the power module according to the charging demand information when receiving the charging demand of the electric vehicle;
  • S103 Sending an on signal or an off signal to the power supply unit to be turned on or the power branch circuit where the power supply unit to be turned off is located.
  • the charging demand information of the electric vehicle is the charging current and the charging quantity.
  • the determining the power supply unit to be turned on in the power supply module 300 according to the charging demand information when receiving the charging demand of the electric vehicle is specifically: since the output current of the power supply unit is the set current determined when leaving the factory, the output voltage is The set voltage determined at the factory.
  • the number N of power supply units required can be obtained by dividing the charging current by the set current; for all power supply units, they are numbered sequentially in the order of 1, 2, 3...M, and the power supply units numbered 1-N are selected as The power supply unit is to be switched on.
  • the charging power is the charging power required by the car owner, and may also be the charging time.
  • the embodiments herein further provide a charging device for an electric vehicle.
  • the device may include a system (including a distributed system), software (application), module, component, server, client, etc. using the methods described in the embodiments herein combined with necessary hardware for implementation.
  • the devices in one or more embodiments provided in the embodiments herein are as described in the following embodiments. Since the implementation of the device to solve the problem is similar to the method, the implementation of the specific device in the embodiment of this paper can refer to the implementation of the aforementioned method, and the repetition will not be repeated.
  • the term "unit” or "module” may be a combination of software and/or hardware that realizes a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware are also possible and contemplated.
  • FIG. 5 is a schematic diagram of a module structure of an embodiment of a charging device for an electric vehicle provided in this embodiment.
  • the charging device for an electric vehicle provided in this embodiment includes: a receiving unit 700 and Select unit 600 .
  • a receiving unit 700 configured to receive charging demand information of electric vehicles
  • the selection unit 600 is configured to determine the power supply unit to be turned on or the power supply unit to be turned off in the power module according to the charging demand information when receiving the charging demand of the electric vehicle; The unit or the power supply branch where the power supply unit to be turned off is located.
  • the embodiments herein further provide an electric vehicle, the electric vehicle includes any one of the charging systems for the electric vehicle described above.
  • an embodiment of the present invention also provides a computer device 602 , wherein the above-mentioned method runs on the computer device 602 .
  • Computer device 602 may include one or more processors 604 , such as one or more central processing units (CPUs) or graphics processing units (GPUs), each of which may implement one or more hardware threads.
  • the computer device 602 may also include any memory 606 for storing any kind of information such as codes, settings, data, etc.
  • the computer program on the memory 606 and executable on the processor 604 When the computer program is run by the processor 604, it can execute instructions according to the above method.
  • the memory 606 may include any one or a combination of the following: any type of RAM, any type of ROM, flash memory device, hard disk, optical disk, and so on. More generally, any memory can use any technology to store information. Further, any memory may provide volatile or non-volatile retention of information. Further, any memory may represent a fixed or removable component of computer device 602 . In one instance, when processor 604 executes the associated instructions stored in any memory or combination of memories, computer device 602 may perform any operation of the associated instructions.
  • the computer device 602 also includes one or more drive mechanisms 608 for interfacing with any memory, such as a hard disk drive, an optical disk drive, or the like.
  • Computer device 602 may also include an input/output module 610 (I/O) for receiving various inputs (via input device 612 ) and for providing various outputs (via output device 614 ).
  • I/O input/output module
  • One particular output mechanism may include a presentation device 616 and an associated graphical user interface 618 (GUI).
  • GUI graphical user interface
  • the input/output module 610 (I/O), the input device 612 and the output device 614 may not be included, and it is only used as a computer device in the network.
  • Computer device 602 may also include one or more network interfaces 620 for exchanging data with other devices via one or more communication links 622 .
  • One or more communication buses 624 couple together the components described above.
  • Communication link 622 can be implemented in any manner, for example, through a local area network, wide area network (eg, the Internet), point-to-point connection, etc., or any combination thereof.
  • Communication link 622 may include any combination of hardwired links, wireless links, routers, gateway functions, name servers, etc. governed by any protocol or combination of protocols.
  • the embodiment of this document further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the steps of the above-mentioned method are executed.
  • the embodiments herein also provide a computer-readable instruction, wherein when the processor executes the instruction, the program therein causes the processor to execute the method as shown in FIG. 4 .
  • Embodiments herein also provide an electric vehicle, including the electric vehicle charging system described in any one of the above embodiments.
  • sequence numbers of the above-mentioned processes do not mean the sequence of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the implementation of the embodiments herein. process constitutes any qualification.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solutions in the embodiments herein.
  • each functional unit in each of the embodiments herein may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution in this article is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments herein.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车的充电系统、充电方法和电动汽车,系统包括人机交互模块(200)、电源模块(300)和主控模块(100);人机交互模块(200)连接主控模块(100),接收电动汽车的充电需求信息,并将充电需求信息发送至主控模块(100);电源模块(300)包括多个电源支路,每一电源支路均包括开关单元及电源单元,开关单元根据主控模块(100)的开启或关闭信号接通或切断所在的电源支路;主控模块(100),配置为在接收到电动汽车的充电需求时根据充电需求信息,确定电源模块(300)中待开启或待关闭电源单元,发出开启或关闭信号至待开启电源单元或待关闭电源单元所在的电源支路,控制开关单元接通或切断、电源单元开启或关闭。具有大电流、大功率输出功能,还可根据充电需求控制内部部分电源工作,有调节功能。

Description

一种电动汽车的充电系统、充电方法和电动汽车
本申请要求享有2021年12月30日递交、申请号为202111660752.7、发明名称为“一种电动汽车的充电系统、充电方法和电动汽车”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本发明涉及电动汽车充电领域,特别地,涉及一种电动汽车的充电系统、充电方法和电动汽车。
背景技术
随着汽车工业进程的快速发展,以及人们社会环保意识的增强,新能源电动汽车越来越受到人们的青睐。新能源电动汽车运动的原理是通过电机将电能转化为动能推动汽车运动,其储能系统是蓄电池,要想保证电机正常运转,就必须对蓄电池进行充电。
充电时需要用到充电系统,充电系统中的核心部件是电源,电源将电网上的交流电转换成直流电,为电动汽车蓄电池充电。目前,充电系统中的电源输出功率一般比较小,充电比较慢,随着电动汽车充电方面的发展,有了“超级充电”概念的问世,“超级充电”最明显的优势是充电速度快(电流大、功率大),这就需要充电系统具有大电流、大功率输出功能,输出功率应达到100kw或200kw。目前还没有电源能输出此功率。
发明内容
本文实施例的目的在于提供一种电动汽车的充电系统、充电方法和电动汽车,以具有大电流、大功率输出功能,还可根据充电需求控制内部部分电源开启,可以减少大量不必要的能量损失,达到节能目的,同时具有自动调节功能。
为达到上述目的,一方面,本文实施例提供了一种电动汽车的充电系统,包括:人机交互模块、电源模块和主控模块;
人机交互模块连接所述主控模块,用于接收电动汽车的充电需求信息,并将充电需求信息发送至主控模块;
电源模块包括多个电源支路,每一电源支路均包括开关单元及电源单元,开关单元用于根据主控模块的开启信号或关闭信号接通或切断所在的电源支路;
主控模块,配置为在接收到电动汽车的充电需求时根据所述充电需求信息,确定电源模块中待开启电源单元或待关闭电源单元,发出开启信号或关闭信号至待开启电源单元或待关闭电源单元所在的电源支路,控制开关单元接通或切断、电源单元开启或关闭。
另一方面,本文实施例提供了一种电动汽车的充电方法,应用于上述任一项的电动汽车的充电系统的主控模块中,充电方法包括:
接收电动汽车的充电需求信息;
在接收到电动汽车的充电需求时根据充电需求信息,确定电源模块中待开启电源单元或待关闭电源单元;
发出开启信号或关闭信号至待开启电源单元或所述待关闭电源单元所在的电源支路。
又一方面,本文实施例还提供了一种计算机设备,包括存储器、处理器、以及存储在所述存储器上的计算机程序,计算机程序被所述处理器运行时,执行上述任一项的方法。
又一方面,本文实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被计算机设备的处理器运行时,执行根据上述任一项的方法。
又一方面,本文实施例还提供了一种电动汽车,包括上述任一项的电动汽车的充电系统。
由以上本文实施例提供的技术方案可见,本文实施例通过接收电动汽车的充电需求信息;在接收到电动汽车的充电需求时根据所述充电需求信息,确定所述电源模块中待开启或待关闭电源单元;发出开启信号或关闭至所述待开启电源单元所在的电源支路,具有了大电流、大功率输出功能,还可根据充电需求控制内部部分电源工作,可以减少大量不必要的能量损失,达到节能目的,同时具有自动调节功能。
为让本文的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本文实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本文的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本文实施例提供的一种电动汽车的充电系统的模块结构示意图;
图2示出了本文实施例提供的电源模块的结构示意图;
图3示出了本文实施例提供的主控模块的结构示意图;
图4示出了本文实施例提供的一种电动汽车的充电方法的流程示意图;
图5示出了本文实施例提供的一种电动汽车的充电装置的模块结构示意图;
图6示出了本文实施例提供的计算机设备的结构示意图。
具体实施方式
下面将结合本文实施例中的附图,对本文实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。
电动汽车充电时需要用到充电系统,充电系统中的核心部件是电源,电源将电网上的交流电转换成直流电,为电动汽车蓄电池充电。目前,充电系统中的电源输出功率一般比较小,充电比较慢,随着电动汽车充电方面的发展,有了“超级充电”概念的问世,“超级充电”最明显的优势是充电速度快(电流大、功率大),这就需要充电系统具有大电流、大功率输出功能,输出功率应达到100kw或200kw。目前还没有电源能输出此功率。
参照图1,为了解决上述问题,本文实施例提供了一种电动汽车的充电系统,包括:人机交互模块200、电源模块300和主控模块100;
人机交互模块200连接所述主控模块100,用于接收电动汽车的充电需求信息,并将充电需求信息发送至主控模块100;
电源模块300包括多个电源支路,每一电源支路均包括开关单元及电源单元,开关单元用于根据所述主控模块100的开启信号或关闭信号接通或切断所在的电源支路;
主控模块100,配置为在接收到电动汽车的充电需求时根据所述充电需求信息,确定电源模块300中待开启电源单元或待关闭电源单元,发出开启信号或关闭信号至所述 待开启电源单元或待关闭电源单元所在的电源支路,控制开关单元接通或切断、电源单元开启或关闭。
其中,人机交互模块200可以为显示屏,显示屏上有可操作界面,车主可以通过显示屏的可操作界面输入电动汽车的充电需求。除此之外,人机交互模块200也可以集成在手持端上,例如集成在手机或者平板电脑上,车主可以直接通过手持端输入电动汽车的充电需求。
具体的,充电需求信息包括充电电流、充电电量,充电电量也可以为充电时间。车主将充电需求输入至人机交互模块200后,人机交互模块200将该充电需求信息发送至主控模块100。
多个电源支路并联连接。需要注意的是,本文所示的并联连接并非指多个电源支路均并联连通,而是指多个电源支路在连接结构上为并联,即多个电源支路的线路为并联连接的形式。
参照图2,在一实施例中,可以对所有并联连接的电源支路进行编号,编号为1、2、3……电源支路1中包括开关单元1和电源单元1,后续的其他电源支路同理。进一步可以理解,在一些实施例中,每一电源支路中均可以串联多个电源单元。以电源支路1举例,电源支路1中可以串联2个或3个或任意合适数量的电源单元,因此,在一些实施例中,可以存在如下情况:电源支路1中包括一个开关单元和2个电源单元;其他电源支路中包括一个开关单元和一个电源单元。即,在多个电源支路中,至少存在一个串联有多个电源单元的电源支路与其余只具有一个电源单元的电源支路并联;或者多个电源支路中,每个电源支路均串联多个电源单元。其中的电源单元为用于给电动汽车充电的电源(AC/DC),开关单元可以为设置在电源单元外部且与电源单元连接的电磁继电器,也可以为集成在电源单元上的电磁继电器。实现接通/断开所在的电源支路。
主控模块100可以根据充电需求信息,确定待开启或待关闭电源单元。其中待开启电源单元可以为多个,多个待开启电源单元的开关单元接收主控模块的开启信号,多个电源支路会开通,由于各电源支路并联设置,并联设置的含义为:若开通任意两个以上的电源支路,那这些开通的电源支路之间为并联连接。因此接收主控模块的开启信号开通后的多个电源支路为并联状态,为电动汽车进行充电。
车主可以根据自己的需求通过人机交互模块200输入电动汽车的充电需求,接收到电动汽车的充电需求时根据不同的充电需求信息,主控模块100可以确定对应的待开启的电源或待关闭的电源,进而既可以实现大电流、大功率输出功能,还可根据充电需求 控制内部部分电源工作,可以减少大量不必要的能量损失,达到节能目的,同时具有自动调节功能。
参照图1,在本文实施例中,充电系统还包括:状态检测模块400;
状态检测模块400连接所述主控模块100,用于实时检测充电系统的状态,并将充电系统的状态信息发送至主控模块100;
主控模块100还配置为在接收到电动汽车的充电需求时分析充电系统的充电状态信息,在分析结果为状态正常时,执行根据充电需求信息,确定电源模块300中待开启电源单元,发出开启信号至待开启电源单元所在的电源支路的步骤,控制开关单元接通、电源单元开启。
具体的,状态检测模块400包括系统温度传感器、系统ADC采样单元等,温度传感器可以采集充电系统的温度信息,ADC采样单元可以采集充电系统的电流和电压信息,系统温度传感器和系统ADC采样单元等状态检测模块400可以直接安装在充电系统中。
除了状态检测模块400检测充电系统的充电状态,对于每个电源单元的充电状态来说,可以通过集成在电源单元上的温度传感器和ADC采样单元进行电源单元的温度、电流和电压信息的采集。可以通过检测到的每个电源单元充电状态直接整合,得到充电系统的充电状态信息,也可以通过多个电源单元充电状态,将其中充电状态最差和最好的充电单元剔除后,将剔除后剩余的电源单元的充电状态进行整合,进而得到充电系统的充电状态信息。当然,还可以通过其他的方法得到充电系统的充电状态信息,不必拘泥于本文所限定的方式。
主控模块100在接收到电动汽车的充电需求时分析充电系统的充电状态信息,在分析结果为状态正常的前提下才会执行后续的步骤。
参照图3,在本文实施例中,充电系统的状态信息包括:充电系统的输入电压、充电系统的温度和各电源单元的属性;
主控模块100包括判断单元500和选择单元600;
判断单元500配置为接收到电动汽车的充电需求后执行如下状态判断过程:判断充电系统的输入电压是否在标准电压范围内、充电系统的温度是否在系统标准温度以下,且是否所有电源单元的属性正常;
若所有项的判断结果均为是,则确定充电系统的状态正常;
若某一项的判断结果为否,则确定充电系统的状态异常;
选择单元600配置为根据所述充电需求信息,确定电源模块300中待开启电源单元,发出开启信号至所述待开启电源单元所在的电源支路,控制开关单元接通、电源单元开启。
其中,充电系统的输入电压指的是输入充电系统的电压,一般来说,电网中的电能输入至多个电源单元,再由多个电源单元输出至电动汽车进行充电。输入电压可以通过系统ADC采样单元检测得到,充电系统的温度可以通过系统温度传感器检测得到。电源单元的电源属性可以包括但不限于电源单元的温度、电源单元的通信状态以及电源单元的泄放状态,除此之外,每个电源单元中大都集成有风扇,电源单元的电源属性还可以包括电源单元的风扇状态。针对上述所述的不同电源属性,可以通过不同的传感器、检测器或者探测器等进行检测。
进一步的,电源单元的电源属性正常可以为电源单元的温度在电源单元标准温度以下,与电源单元的通信状态正常、电源单元的泄放状态正常以及电源单元中的风扇状态正常。
在执行状态判断过程时,只要上述某一项的判断结果为否,则充电系统的状态即为异常。
在本文实施例中,判断单元500还配置为当某一项的判断结果为否时,执行如下步骤以确定充电系统状态是否异常:连续判断该项并统计判断结果为否的次数,当统计次数未达到预设次数时,该项的判断结果变为是,则确定所述充电系统的状态正常;当统计次数达到预设次数时,该项的判断结果还为否,则确定所述充电系统状态异常。
具体的,上文的判断单元500只进行一次状态判断过程,根据这一次的状态判断的结果,断定充电系统的状态。但这种方法是有风险存在的,由于状态判断过程中需要判断的状态较多,因此无法避免其中某一个或某几个状态受到其他因素的影响导致状态不正常,这就导致整个充电系统的状态判断结果为异常。为了避免这种情况的发生,可以循环执行多次状态判断过程,当其中某一项的判断结果连续为否的次数大于预设数值时,才确定充电系统的状态异常。
例如预设数值为3次,在第1次执行状态判断过程时,充电系统的温度大于系统标准温度;统计连续1次判断结果为否,小于3次,可以再第2次执行状态判断过程,充电系统的温度大于系统标准温度;统计连续2次判断结果为否,小于3次,再第3次执行状态判断过程,充电系统的温度仍旧大于系统标准温度;统计连续3次判断结果为否,等于3次,则确定充电系统状态异常。
当然,如果第3次执行状态判断过程,充电系统的温度小于系统标准温度,则确定充电系统的状态正常。
但是,同样无法避免的是,对于某一项的判断结果来说,在连续多次判断结果均为否后,后续的一次判断结果为是可能是由于特殊的原因造成的,特殊原因包括该次判断在状态采集时出现偏差,或者由于其他突发情况导致该次判断结果为是。因此,对应任一判断结果来说,可以在连续A次判断结果为否后,需要再连续B次判断结果为是,才可以确定充电系统的状态正常。其中A和B的取值可以根据实际情况进行设定,本文不做具体限定。
若充电系统的状态异常,可以将异常信息发送至人机交互模块200,进而提示车主注意该情况。
在本文实施例中,判断单元500还配置为在接收到电动汽车充电需求信息后,判断所述充电需求信息是否满足预设范围;
若是,则根据充电需求信息执行所述判断过程,并确定电源模块中待开启电源单元的个数N;
若否,则向人机交互模块200发送充电需求超范围的提示信息。
对于需求充电电流,需要判断充电电流是否在设定电流范围内;对于所需电源单元个数N的确定方法,可以通过上文所述的方法确定。
其中由于电动汽车的性能决定了其具有最大允许充电电流,而充电系统中每个电源单元在出厂时也决定了充电系统具有最大输出电流,设定电流范围的最大值应当为电动汽车最大允许充电电流和充电系统最大允许输出电流中的较小值,设定电流范围的最小值应当至少为0安培。
电动汽车的充电电压一般为出厂时的设定电压。
只有充电需求信息满足预设范围,才执行状态判断过程,若不满足,则向所述人机交互模块200发送充电需求超范围的提示信息。车主通过人机交互模块200看到提示信息后,可以重新输入充电需求,再次进行上述判断所述充电需求信息是否满足预设范围的过程,直至充电需求信息满足预设范围。或者可以向所述人机交互模块200发送充电需求超范围的提示信息,同时发送合适的预设范围,让车主在合适的预设范围内重新输入充电需求,以节省执行时间,提高充电效率。
在本文实施例中,选择单元600还配置为根据所述电源模块300中所有电源单元的属性,筛选出正常的电源单元;
选择单元600根据所述充电需求信息,确定电源模块300中待开启电源单元进一步为:根据充电需求信息,从筛选出的电源单元中,确定待开启电源单元。
具体的,充电需求信息为充电电流和充电电量。由于电源单元的输出电流为设定电流,对于充电电流,通过充电电流除以设定电流,可以得到所需电源单元个数N;对于所有电源单元按照1、2、3…M的顺序依次编号,选取编号为1-N的电源单元作为待开启电源单元。充电电量为车主需要的充电电量,也可以为充电时间。
除此之外,选择单元600还配置为根据电源模块300中所有电源单元的属性,筛选出正常的电源单元;
选择单元600根据所述充电需求信息,确定电源模块300中待开启电源单元进一步为:根据充电需求信息和电源性能,从筛选出的电源单元中,确定待开启电源单元。
具体的,电源性能包括故障次数和已使用时长;
选择单元600还配置为按照所述故障次数由小至大以及已使用时长由小至大的顺序,对筛选出的电源进行排序;根据所述电源模块中待开启电源单元个数N,选取排序中前N个电源单元作为待开启电源单元。
其中故障次数和已使用时长可以通过电源单元的历史数据得到。可以先按照故障次数由小至大,以及已使用时长由小至大排序,得到故障排序和时长排序,通过时长排序对故障排序进行微调,微调即:若存在多个电源单元的故障次数相同,则查看多个电源单元的时长排序,时长排序靠前的电源单元对应的故障排序排在前,时长排序靠后的电源单元对应的故障排序排在后。
在本文实施例中,主控模块100还配置为在电动汽车充电过程中实时计算充电系统的输入功率与输出功率之间的差值;
若差值小于设定数值,则继续对电动汽车进行充电;
若差值大于设定数值,则停止对电动汽车进行充电。
在充电过程中,需要实时计算充电系统的输入功率与输出功率。其中充电系统的输入功率为充电系统的输入电压与充电系统的输入电流之积,所述充电系统的输出功率为充电系统的输出电压与充电系统的输出电流之积。输入电压和输入电流为电网输入至充电系统的电压和电流,输出电压和输出电流为充电系统输出至电动汽车的电压和电流。
输入功率与输出功率之间的差值为充电系统自身的损耗值,若损耗值小于设定数值,则说明为正常损耗,若损耗值大于设定数值,则说明为异常损耗,需要停止充电,停止充电后可以将异常信息发送至人机交互模块200来提示车主关注。
在本文实施例中,主控模块100还配置为在电动汽车充电过程中判断所有已开启电源单元的温度是否超过电源标准温度;
若某一已开启电源单元的温度超过电源标准温度,则增大其他已开启电源单元的输出电流,减小该电源单元的输出电流。
具体的,可以根据电源单元出厂时配置的电流-温度变化曲线来减小该已开启电源单元的输出电流,在电流-温度变化曲线中,横坐标为温度,纵坐标为输出电流,曲线体现了电源单元的输出电流随温度变化的趋势。当已开启电源单元的温度超过电源标准温度,则依据电流-温度变化曲线,降低该电源单元的输出电流,使得该电源单元的输出电流低于电源在该温度下的最大输出电流。而为保证整个充电系统的输出电流恒定,则需要增大其他已开启电源单元的输出电流,但是同样需要依据电流-温度变化曲线,保证其他已开启电源单元的输出电流不超过电源的最大输出电流。
在本文实施例中,主控模块100还配置为在增大其他已开启电源单元的输出电流之前,判断是否存在未开启电源单元;
若是,则发出开启信号至所述未开启电源单元所在的电源支路,发出所述关闭信号至温度超过所述电源标准温度的所述电源单元所在的电源支路;
若否,则增大其他已开启电源单元的输出电流,减小温度超过所述电源标准温度的所述电源单元的输出电流。
当然,若存在某一已开启电源单元的温度超过所述电源标准温度,降低该电源单元的输出电流,使得该电源单元的输出电流低于电源在该温度下的最大输出电流后。为保证整个充电系统的输出电流恒定,还可以将未开启电源单元开启。
优选的,上文已经描述过:按照故障次数由小至大以及已使用时长由小至大的顺序,对筛选出的电源进行排序。可以按照该排序顺序选取第N+1个电源单元开启,若开启第N+1个电源单元后无法保证整个充电系统的输出电流恒定,则可以继续开启第N+2个……当然在开启过程中需要确保所有已开启电源单元的温度均不超过电源标准温度。
在本文实施例中,充电系统还包括降温风扇;
主控模块100还配置为在电动汽车充电过程中判断所述充电系统的温度是否大于系统标准温度;
若是,则增大降温风扇的转速;
若否,则保持降温风扇的转速不变。
在本文实施例中,主控模块100还配置为在电动汽车充电过程中判断充电系统的输出电流是否大于电流阈值;
若是,则向人机交互模块200发送故障的提示信息,并停止对电动汽车进行充电;
若否,则继续对电动汽车进行充电。
其中,充电系统的输出电流可以通过系统ADC采样单元检测得到,电流阈值可以为电动汽车最大允许充电电流和充电系统最大允许输出电流中的较小值。若充电系统的输出电流大于电流阈值,则向人机交互模块200发送提示信息,用于提示车主注意该情况。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据。
参照图4,基于上述所述的一种电动汽车的充电系统,本文实施例还提供一种电动汽车的充电方法,应用于上述任一项的电动汽车的充电系统的主控模块100中,所述充电方法包括:
S101:接收电动汽车的充电需求信息;
S102:在接收到电动汽车的充电需求时根据所述充电需求信息,确定所述电源模块中待开启电源单元或待关闭电源单元;
S103:发出开启信号或关闭信号至所述待开启电源单元或所述待关闭电源单元所在的电源支路。
其中,电动汽车的充电需求信息为充电电流和充电电量。所述在接收到电动汽车的充电需求时根据所述充电需求信息,确定所述电源模块300中待开启电源单元具体为:由于电源单元的输出电流为出厂时确定的设定电流,输出电压为出厂时确定的设定电压。对于充电电流,通过充电电流除以设定电流,可以得到所需电源单元个数N;对于所有电源单元按照1、2、3…M的顺序依次编号,选取编号为1-N的电源单元作为待开启电源单元。
充电电量为车主需要的充电电量,也可以为充电时间。
基于上述的一种电动汽车的充电方法,本文实施例还提供一种电动汽车的充电装置。装置可以包括使用了本文实施例所述方法的系统(包括分布式系统)、软件(应用)、模块、组件、服务器、客户端等并结合必要的实施硬件的装置。基于同一创新构思,本文实施例提供的一个或多个实施例中的装置如下面的实施例所述。由于装置解决 问题的实现方案与方法相似,因此本文实施例具体的装置的实施可以参见前述方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
具体地,图5是本文实施例提供的一种电动汽车的充电装置一个实施例的模块结构示意图,参照图5所示,本文实施例提供的一种电动汽车的充电装置包括:接收单元700和选择单元600。
接收单元700,用于接收电动汽车的充电需求信息;
选择单元600,用于在接收到电动汽车的充电需求时根据所述充电需求信息,确定所述电源模块中待开启电源单元或待关闭电源单元;发出开启信号或关闭信号至所述待开启电源单元或所述待关闭电源单元所在的电源支路。
基于上述的一种电动汽车的充电方法,本文实施例还提供一种电动汽车,所述电动汽车包括上述任一所述的电动汽车的充电系统。
参照图6所示,基于上述一种电动汽车的充电方法,本文一实施例中还提供一种计算机设备602,其中上述方法运行在计算机设备602上。计算机设备602可以包括一个或多个处理器604,诸如一个或多个中央处理单元(CPU)或图形处理器(GPU),每个处理单元可以实现一个或多个硬件线程。计算机设备602还可以包括任何存储器606,其用于存储诸如代码、设置、数据等之类的任何种类的信息,一具体实施方式中,存储器606上并可在处理器604上运行的计算机程序,所述计算机程序被所述处理器604运行时,可以执行根据上述方法的指令。非限制性的,比如,存储器606可以包括以下任一项或多种组合:任何类型的RAM,任何类型的ROM,闪存设备,硬盘,光盘等。更一般地,任何存储器都可以使用任何技术来存储信息。进一步地,任何存储器可以提供信息的易失性或非易失性保留。进一步地,任何存储器可以表示计算机设备602的固定或可移除部件。在一种情况下,当处理器604执行被存储在任何存储器或存储器的组合中的相关联的指令时,计算机设备602可以执行相关联指令的任一操作。计算机设备602还包括用于与任何存储器交互的一个或多个驱动机构608,诸如硬盘驱动机构、光盘驱动机构等。
计算机设备602还可以包括输入/输出模块610(I/O),其用于接收各种输入(经由输入设备612)和用于提供各种输出(经由输出设备614)。一个具体输出机构可以包括呈现设备616和相关联的图形用户接口618(GUI)。在其他实施例中,还可以不包括输入/输出 模块610(I/O)、输入设备612以及输出设备614,仅作为网络中的一台计算机设备。计算机设备602还可以包括一个或多个网络接口620,其用于经由一个或多个通信链路622与其他设备交换数据。一个或多个通信总线624将上文所描述的部件耦合在一起。
通信链路622可以以任何方式实现,例如,通过局域网、广域网(例如,因特网)、点对点连接等、或其任何组合。通信链路622可以包括由任何协议或协议组合支配的硬连线链路、无线链路、路由器、网关功能、名称服务器等的任何组合。
对应于图4中的方法,本文实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法的步骤。
本文实施例还提供一种计算机可读指令,其中当处理器执行所述指令时,其中的程序使得处理器执行如图4所示的方法。
本文实施例还提供一种电动车辆,包括上述任一实施例所述的电动汽车的充电系统。
应理解,在本文的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本文实施例的实施过程构成任何限定。
还应理解,在本文实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本文的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本文所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元 的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本文实施例方案的目的。
另外,在本文各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本文的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本文各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体实施例对本文的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本文的方法及其核心思想;同时,对于本领域的一般技术人员,依据本文的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本文的限制。

Claims (18)

  1. 一种电动汽车的充电系统,其特征在于,包括:人机交互模块、电源模块和主控模块;
    所述人机交互模块连接所述主控模块,用于接收电动汽车的充电需求信息,并将所述充电需求信息发送至所述主控模块;
    所述电源模块包括多个电源支路,每一电源支路均包括开关单元及电源单元,所述开关单元用于根据所述主控模块的开启信号或关闭信号接通或切断所在的电源支路;
    所述主控模块,配置为在接收到电动汽车的充电需求时根据所述充电需求信息,确定所述电源模块中待开启电源单元或待关闭电源单元,发出开启信号或关闭信号至所述待开启电源单元或待关闭电源单元所在的电源支路,控制开关单元接通或切断、电源单元开启或关闭。
  2. 根据权利要求1所述的充电系统,其特征在于,多个所述电源支路并联连接。
  3. 根据权利要求1所述的充电系统,其特征在于,所述充电系统还包括:状态检测模块;
    所述状态检测模块连接所述主控模块,用于实时检测充电系统的状态,并将所述充电系统的状态信息发送至所述主控模块;
    所述主控模块还配置为在接收到电动汽车的充电需求时分析所述充电系统的充电状态信息,在分析结果为状态正常时,执行根据所述充电需求信息,确定所述电源模块中待开启电源单元,发出开启信号至所述待开启电源单元所在的电源支路的步骤,控制开关单元接通、电源单元开启。
  4. 根据权利要求3所述的充电系统,其特征在于,所述充电系统的状态信息包括:充电系统的输入电压、充电系统的温度和各电源单元的属性;
    所述主控模块包括判断单元和选择单元;
    所述判断单元配置为接收到电动汽车的充电需求后执行如下状态判断过程:判断所述充电系统的输入电压是否在标准电压范围内、所述充电系统的温度是否在系统标准温度以下,且是否所有电源单元的属性正常;
    若所有项的判断结果均为是,则确定所述充电系统的状态正常;
    若某一项的判断结果为否,则确定所述充电系统的状态异常;
    所述选择单元配置为根据所述充电需求信息,确定所述电源模块中待开启电源单元,发出开启信号至所述待开启电源单元所在的电源支路,控制开关单元接通、电源单元开启。
  5. 根据权利要求4所述的充电系统,其特征在于,
    所述判断单元还配置为当某一项的判断结果为否时,执行如下步骤以确定所述充电系统状态是否异常:连续判断该项并统计判断结果为否的次数,当统计次数未达到预设次数时,该项的判断结果变为是,则确定所述充电系统的状态正常;当统计次数达到预设次数时,该项的判断结果还为否,则确定所述充电系统状态异常。
  6. 根据权利要求4所述的充电系统,其特征在于,
    所述判断单元还配置为在接收到电动汽车充电需求信息后,判断所述充电需求信息是否满足预设范围;
    若是,则根据所述充电需求信息执行所述判断过程,并确定所述电源模块中待开启电源单元的个数N;
    若否,则向所述人机交互模块发送充电需求超范围的提示信息。
  7. 根据权利要求4所述的充电系统,其特征在于,所述选择单元还配置为根据所述电源模块中所有电源单元的属性,筛选出正常的电源单元;
    所述选择单元根据所述充电需求信息,确定所述电源模块中待开启电源单元进一步为:根据所述充电需求信息,从筛选出的电源单元中,确定待开启电源单元。
  8. 根据权利要求6所述的充电系统,其特征在于,所述选择单元还配置为根据所述电源模块中所有电源单元的属性,筛选出正常的电源单元;
    所述选择单元根据所述充电需求信息,确定所述电源模块中待开启电源单元进一步为:根据所述充电需求信息和电源性能,从筛选出的电源单元中,确定待开启电源单元。
  9. 根据权利要求8所述的充电系统,其特征在于,所述电源性能包括故障次数和已使用时长;
    所述选择单元还配置为按照所述故障次数由小至大以及已使用时长由小至大的顺序,对筛选出的电源进行排序;根据所述电源模块中待开启电源单元个数N,选取排序中前N个电源单元作为待开启电源单元。
  10. 根据权利要求1所述的充电系统,其特征在于,
    所述主控模块还配置为在电动汽车充电过程中实时计算所述充电系统的输入功率与输出功率之间的差值;
    若所述差值小于设定数值,则继续对电动汽车进行充电;
    若所述差值大于设定数值,则停止对电动汽车进行充电。
  11. 根据权利要求1所述的充电系统,其特征在于,
    所述主控模块还配置为在电动汽车充电过程中判断所有已开启电源单元的温度是否超过电源标准温度;
    若某一已开启电源单元的温度超过所述电源标准温度,则增大其他已开启电源单元的输出电流,减小该电源单元的输出电流。
  12. 根据权利要求11所述的充电系统,其特征在于,
    所述主控模块还配置为在增大其他已开启电源单元的输出电流之前,判断是否存在未开启电源单元;
    若是,则发出开启信号至所述未开启电源单元所在的电源支路,发出所述关闭信号至温度超过所述电源标准温度的所述电源单元所在的电源支路;
    若否,则增大其他已开启电源单元的输出电流,减小温度超过所述电源标准温度的所述电源单元的输出电流。
  13. 根据权利要求1所述的充电系统,其特征在于,所述充电系统还包括降温风扇;
    所述主控模块还配置为在电动汽车充电过程中判断所述充电系统的温度是否大于系统标准温度;
    若是,则增大所述降温风扇的转速;
    若否,则保持所述降温风扇的转速不变。
  14. 根据权利要求1所述的充电系统,其特征在于,
    所述主控模块还配置为在电动汽车充电过程中判断所述充电系统的输出电流是否大于电流阈值;
    若是,则向所述人机交互模块发送故障的提示信息,并停止对电动汽车进行充电;
    若否,则继续对电动汽车进行充电。
  15. 一种电动汽车的充电方法,其特征在于,应用于权利要求1至14任一项所述的电动汽车的充电系统的主控模块中,所述充电方法包括:
    接收电动汽车的充电需求信息;
    在接收到电动汽车的充电需求时根据所述充电需求信息,确定所述电源模块中待开启电源单元或待关闭电源单元;
    发出开启信号或关闭信号至所述待开启电源单元或所述待关闭电源单元所在的电源支路。
  16. 一种计算机设备,包括存储器、处理器、以及存储在所述存储器上的计算机程序,其特征在于,所述计算机程序被所述处理器运行时,执行根据权利要求15所述的方法。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机设备的处理器运行时,执行根据权利要求15所述的方法。
  18. 一种电动汽车,其特征在于,包括权利要求1至14任一项所述的电动汽车的充电系统。
PCT/CN2022/142642 2021-12-30 2022-12-28 一种电动汽车的充电系统、充电方法和电动汽车 WO2023125617A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2024008205A MX2024008205A (es) 2021-12-30 2022-12-28 Sistema de carga y metodo de carga para vehiculo electrico y vehiculo electrico.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111660752.7 2021-12-30
CN202111660752.7A CN114148203A (zh) 2021-12-30 2021-12-30 一种电动汽车的充电系统、充电方法和电动汽车

Publications (1)

Publication Number Publication Date
WO2023125617A1 true WO2023125617A1 (zh) 2023-07-06

Family

ID=80449449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142642 WO2023125617A1 (zh) 2021-12-30 2022-12-28 一种电动汽车的充电系统、充电方法和电动汽车

Country Status (3)

Country Link
CN (1) CN114148203A (zh)
MX (1) MX2024008205A (zh)
WO (1) WO2023125617A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388749A (zh) * 2023-12-13 2024-01-12 深圳市顺源科技有限公司 一种电源模块检测方法及检测系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148203A (zh) * 2021-12-30 2022-03-08 长春捷翼汽车零部件有限公司 一种电动汽车的充电系统、充电方法和电动汽车

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119334A (zh) * 2015-08-31 2015-12-02 深圳驿普乐氏科技有限公司 一种宽电压输出范围的变压电路和直流充电桩
CN106856341A (zh) * 2016-12-26 2017-06-16 浙江万马新能源有限公司 一种低设备损耗的电动汽车充电控制方法
CN106899081A (zh) * 2017-03-27 2017-06-27 深圳市前海中电新能源科技有限公司 一种直流充电机监控系统
CN107933340A (zh) * 2017-11-06 2018-04-20 深圳市沃尔新能源电气科技股份有限公司 液冷大功率充电装置及其监测方法
CN110544966A (zh) * 2019-07-25 2019-12-06 宁波三星智能电气有限公司 一种基于链表的充电桩自动功率分配方法
CN110596486A (zh) * 2019-08-26 2019-12-20 国创新能源汽车能源与信息创新中心(江苏)有限公司 一种充电桩智能预警运维的方法和系统
JP6629482B1 (ja) * 2019-08-02 2020-01-15 株式会社日立パワーソリューションズ 電動移動体及び電動移動体充電システム
CN111478399A (zh) * 2020-05-07 2020-07-31 易事特集团股份有限公司 一种充电桩直流配电装置、系统及方法
CN111641239A (zh) * 2020-06-16 2020-09-08 深圳英飞源技术有限公司 一种充电模块过温保护方法、装置、电子设备及存储介质
CN113036831A (zh) * 2019-12-25 2021-06-25 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 充电系统的控制方法和装置
CN114148203A (zh) * 2021-12-30 2022-03-08 长春捷翼汽车零部件有限公司 一种电动汽车的充电系统、充电方法和电动汽车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109821A (ja) * 2009-11-18 2011-06-02 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法
CN106143196A (zh) * 2016-08-04 2016-11-23 安徽卓越电气有限公司 一种电动汽车充电桩系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119334A (zh) * 2015-08-31 2015-12-02 深圳驿普乐氏科技有限公司 一种宽电压输出范围的变压电路和直流充电桩
CN106856341A (zh) * 2016-12-26 2017-06-16 浙江万马新能源有限公司 一种低设备损耗的电动汽车充电控制方法
CN106899081A (zh) * 2017-03-27 2017-06-27 深圳市前海中电新能源科技有限公司 一种直流充电机监控系统
CN107933340A (zh) * 2017-11-06 2018-04-20 深圳市沃尔新能源电气科技股份有限公司 液冷大功率充电装置及其监测方法
CN110544966A (zh) * 2019-07-25 2019-12-06 宁波三星智能电气有限公司 一种基于链表的充电桩自动功率分配方法
JP6629482B1 (ja) * 2019-08-02 2020-01-15 株式会社日立パワーソリューションズ 電動移動体及び電動移動体充電システム
CN110596486A (zh) * 2019-08-26 2019-12-20 国创新能源汽车能源与信息创新中心(江苏)有限公司 一种充电桩智能预警运维的方法和系统
CN113036831A (zh) * 2019-12-25 2021-06-25 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 充电系统的控制方法和装置
CN111478399A (zh) * 2020-05-07 2020-07-31 易事特集团股份有限公司 一种充电桩直流配电装置、系统及方法
CN111641239A (zh) * 2020-06-16 2020-09-08 深圳英飞源技术有限公司 一种充电模块过温保护方法、装置、电子设备及存储介质
CN114148203A (zh) * 2021-12-30 2022-03-08 长春捷翼汽车零部件有限公司 一种电动汽车的充电系统、充电方法和电动汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388749A (zh) * 2023-12-13 2024-01-12 深圳市顺源科技有限公司 一种电源模块检测方法及检测系统
CN117388749B (zh) * 2023-12-13 2024-03-12 深圳市顺源科技有限公司 一种电源模块检测方法及检测系统

Also Published As

Publication number Publication date
CN114148203A (zh) 2022-03-08
MX2024008205A (es) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2023125617A1 (zh) 一种电动汽车的充电系统、充电方法和电动汽车
US9141421B2 (en) Reducing power grid noise in a processor while minimizing performance loss
US9105249B2 (en) Energy conservation in a controller using dynamic frequency selection
US20130283083A1 (en) Maintaining operational stability on a system on a chip
JP2012524328A (ja) イベントトリガーを使用したアクティブ電源セットの適応
CN106528237B (zh) Mcu启动模式选择电路和基于该电路的mcu代码更新方法
CN111475009A (zh) 一种服务器内gpu的降功耗电路及服务器
CN104536321B (zh) 一种实现掉电检测及继电器状态控制的系统及方法
WO2010094170A1 (zh) 一种管理电源的方法、装置及供电系统
US20230011671A1 (en) Driverless power supply system, power supply control method, power domain controller and vehicle
CN102981905B (zh) 一种应用程序控制方法及电子设备
TW201411325A (zh) 電子系統、電子裝置以及電源管理方法
WO2018036238A1 (zh) 一种控制电路、方法及计算机存储介质
CN106371540A (zh) 系统电源管理方法、芯片及电子设备
CN113835508A (zh) 一种服务器的功耗管理方法、装置、bmc及存储介质
WO2016180241A1 (zh) 终端节能管理方法、装置及终端
CN114156999A (zh) 电池充放电电路缓启动方法及装置、电池充放电系统
CN106292987A (zh) 一种处理器掉电时序控制系统及方法
CN211509272U (zh) 一种充电盒
CN108391261A (zh) 一种蓝牙搜索检测方法、检测设备、存储介质及移动终端
CN110427089A (zh) 适用于led显示屏芯片中的上电复位系统及方法
CN106681199B (zh) 一种电源输出控制系统、方法及车辆
CN111092418B (zh) 直流供电回路、及其电压波动处理方法、装置及控制器
WO2021115110A1 (zh) 一种发动机控制方法、系统及车辆
CN105375858A (zh) 光伏系统控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/008205

Country of ref document: MX

Ref document number: 2401004298

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022914869

Country of ref document: EP

Effective date: 20240730