WO2023125575A1 - 通信方法、网络设备及存储介质 - Google Patents
通信方法、网络设备及存储介质 Download PDFInfo
- Publication number
- WO2023125575A1 WO2023125575A1 PCT/CN2022/142517 CN2022142517W WO2023125575A1 WO 2023125575 A1 WO2023125575 A1 WO 2023125575A1 CN 2022142517 W CN2022142517 W CN 2022142517W WO 2023125575 A1 WO2023125575 A1 WO 2023125575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user equipment
- interference
- signal
- user
- base station
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 188
- 238000000034 method Methods 0.000 title claims abstract description 106
- 238000005259 measurement Methods 0.000 claims abstract description 255
- 230000015654 memory Effects 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the present application relates to but not limited to the technical field of communication, and in particular relates to a communication method, network equipment and storage medium.
- Embodiments of the present application provide a communication method, a network device, and a storage medium.
- an embodiment of the present application provides a communication method, which is applied to a first user equipment, and the method includes: receiving a first reference signal sent by a second user equipment, and obtaining a first signal according to the first reference signal A strength measurement value; receiving a second reference signal sent by the first base station device, and obtaining a second signal strength measurement value according to the second reference signal; obtaining a second signal strength measurement value according to the first signal strength measurement value and the second signal strength measurement value measurement information, sending the measurement information to the first base station device, so that the first base station device obtains a signal-to-interference-noise ratio through the measurement information, and generates a scheduling instruction according to the signal-to-interference-noise ratio, and the scheduling The instruction is used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource; receive the scheduling instruction sent by the first base station equipment, and perform communication according to the scheduling instruction.
- an embodiment of the present application provides a communication method, which is applied to a first base station device, and the method includes: sending a second reference signal to a first user equipment, so that the first user equipment according to the first Two reference signals to obtain a second signal strength measurement value; receive measurement information sent by the first user equipment, the measurement information includes a first signal strength measurement value and the second signal strength measurement value, and the first signal strength The measurement value is obtained by the first user equipment according to the first reference signal sent by the second user equipment; the signal-to-interference-noise ratio between the first user equipment and the second user equipment is obtained according to the measurement information, and according to the The SINR generates a scheduling instruction, the scheduling instruction is used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource; to the first user equipment and the second user equipment The device sends the scheduling instruction, so that the first user equipment and the second user equipment communicate according to the scheduling instruction.
- the embodiment of the present application provides a communication method, which is applied to a second user equipment, and the method includes: sending a first reference signal to a first user equipment, so that the first user equipment transmits a first reference signal according to the first user equipment.
- an embodiment of the present application provides a network device, including: a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, the implementation of the first embodiment of the present application, The communication method described in any one of the embodiments of the second aspect and the embodiments of the third aspect.
- the embodiment of the present application provides a computer-readable storage medium, which is characterized in that the storage medium stores a program, and the program is executed by a processor to implement the first aspect of the application and the second aspect.
- FIG. 1 is a schematic flowchart of a communication method applied to a first user equipment provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of a basic communication scenario provided by an embodiment of the present application.
- FIG. 3 is a schematic flow diagram of obtaining measurement information by a first user equipment provided by an embodiment of the present application
- FIG. 4 is a schematic flow diagram of obtaining a first signal strength measurement value by a first user equipment provided by an embodiment of the present application
- FIG. 5 is a schematic diagram of a communication scenario with empty packets provided by an embodiment of the present application.
- FIG. 6 is a schematic diagram of a multi-cell communication scenario provided by an embodiment of the present application.
- FIG. 7 is a schematic flow diagram of communication scheduling performed by a first user equipment provided by an embodiment of the present application.
- FIG. 8 is a schematic flowchart of a communication method applied to a first base station device provided by an embodiment of the present application.
- FIG. 9 is a schematic flow chart of obtaining noise power by a first base station device provided by an embodiment of the present application.
- FIG. 10 is a schematic flowchart of generating a scheduling instruction by a first base station device according to an embodiment of the present application
- Fig. 11 is a schematic flow diagram of a first base station device obtaining different scheduling according to a threshold value provided by an embodiment of the present application;
- FIG. 12 is a schematic flow diagram of a first base station device generating a scheduling instruction according to a first user interference list provided by an embodiment of the present application;
- FIG. 13 is a schematic flow diagram of exchanging interference lists between multiple cells provided by an embodiment of the present application.
- FIG. 14 is a schematic flow diagram of communication scheduling when multiple users meet pairing provided by an embodiment of the present application.
- FIG. 15 is a schematic flowchart of a multi-user communication scenario provided by an embodiment of the present application.
- FIG. 16 is a schematic flow diagram of a first base station device generating a scheduling instruction according to an empty packet according to an embodiment of the present application
- FIG. 17 is a schematic flowchart of a communication method applied to a second user equipment provided by an embodiment of the present application.
- FIG. 18 is a schematic flowchart of communication scheduling performed by a second user equipment provided by an embodiment of the present application.
- Fig. 19 is a schematic diagram of a network device provided by an embodiment of the present application.
- orientation descriptions such as up, down, front, back, left, right, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only For the convenience of describing the present application and simplifying the description, it does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as limiting the embodiments of the present application.
- the embodiment of the present application provides a communication method, network equipment, and storage medium, which can effectively eliminate interference between users and improve network performance.
- the communication method in the embodiment of the present application is applied to user equipment and base station equipment in a communication cell.
- the user equipment may be referred to as a user for short, and may be a communication terminal such as a mobile phone or a mobile computer.
- the base station device is a device that configures time-frequency resources between users.
- the base station is referred to as the base station, which can include the first base station equipment and the second base station equipment.
- the base station can configure time-frequency resources for users.
- Uplink users send uplink information to the base station through the uplink channel, and the base station sends downlink information to the downlink user through the downlink channel.
- the embodiment of the application does not specifically limit it.
- the embodiment of the present application provides a communication method, which is applied to the first user equipment.
- the communication method in the embodiment of the present application includes but not limited to step S110, step S120, step S130 and step S140.
- Step S110 receiving a first reference signal sent by a second user equipment, and obtaining a first signal strength measurement value according to the first reference signal.
- Step S120 receiving a second reference signal sent by the first base station device, and obtaining a second signal strength measurement value according to the second reference signal.
- Step S130 obtain measurement information according to the first signal strength measurement value and the second signal strength measurement value, and send the measurement information to the first base station equipment, so that the first base station equipment can obtain the signal-to-interference-noise ratio through the measurement information, and obtain the signal-to-interference-noise ratio according to the signal-to-interference-noise ratio Then generate a scheduling instruction, the scheduling instruction is used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource.
- Step S140 receiving a scheduling instruction sent by the first base station device, and performing communication according to the scheduling instruction.
- the first user equipment and the second user equipment may communicate through the first base station equipment, and the first user equipment may receive the first reference signal sent by the second user equipment and the second reference signal sent by the first base station equipment. reference signal, and obtain the first signal strength measurement value and the second signal strength measurement value respectively according to the first reference signal and the second reference signal, and send the measurement information obtained by the first signal strength measurement value and the second signal strength measurement value
- the first base station equipment calculates the signal to interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) between the first user equipment and the second user equipment according to the measurement information.
- SINR Signal to Interference plus Noise Ratio
- the scheduling instruction can be used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource, and the first base station device sends the scheduling instruction to the first user equipment. and the second user equipment, when it is determined that the first user equipment and the second user equipment communicate under the same time-frequency resource, the first user equipment and the second user equipment may respond to the scheduling instruction and perform full dual Otherwise, full-duplex communication is not scheduled on the same time-frequency resource.
- the first user equipment and the second user equipment are downlink users and uplink users in the cell respectively, and the communication method in the embodiment of the present application can effectively eliminate inter-user interference through user measurement reporting and base station scheduling, Uplink and downlink users with little mutual interference are scheduled to use the same time-frequency resource for full-duplex communication, so that the signal-to-interference-noise ratio of user terminals in the cell is greatly improved, thereby greatly improving the communication spectrum efficiency.
- the implementation of the embodiment of the application is simple and the interference The elimination is accurate, the configuration is flexible and convenient, and the application of the full-duplex technology in the cell system is promoted.
- the second user equipment is an uplink user
- the first reference information is the uplink reference information sent by the uplink user
- the second reference information is the downlink reference information sent by the first base station equipment. information.
- the transmission signal of the full-duplex transmitter will generate strong self-interference (SI) on the local receiver.
- SI self-interference
- the primary task of using full-duplex is Suppression of self-interference, self-interference cancellation capability will directly affect the communication quality of the full-duplex system.
- self-interference is effectively suppressed through interference cancellation technologies such as antenna domain, radio frequency domain, and digital domain, making full-duplex mode possible. Due to the complexity of self-interference cancellation and high hardware requirements, full-duplex Duplex transmission is generally not implemented on the user side.
- Such a simple and effective full-duplex mode is that the base station uses full-duplex to send and receive data of two different users at the same time, while the traditional half-duplex is still implemented on the user side.
- the first base station equipment receives the data sent by user 1 of the uplink user on a certain time-frequency resource, and at the same time, the first base station equipment sends data to the downlink user on the same time-frequency resource user2 of the user. In this way, on the user side, the inter-user interference between the uplink transmitting user 1 and the downlink receiving user 2 becomes the main problem.
- the inter-user interference can be effectively eliminated through user measurement reporting and base station scheduling , uplink and downlink users with little mutual interference are scheduled to use the same time-frequency resource for full-duplex communication, so that the signal-to-interference-noise ratio of user terminals in the cell is greatly improved, thereby greatly improving the communication spectrum efficiency.
- the implementation of the embodiment of the present application is simple, Accurate interference elimination, flexible and easy configuration.
- the first reference signal is an uplink measurement reference signal (Uplink Reference Signal, URS) sent periodically or aperiodically by an uplink user.
- the URS can be used for interference measurement, and the periodicity or aperiodicity of its transmission can be determined according to The actual communication needs to be set.
- the URS can be a demodulation reference signal (Demodulation Reference Signal, DMRS) or a sounding reference signal (Sounding Reference Signal, SRS), or other specifically designed reference signals, which can be used to improve Interference channel measurement accuracy
- the sequence and time-frequency position information of all uplink measurement reference signals can be preset or broadcast to all users by the base station, so each user also knows the sequence and time-frequency position of measurement reference signals sent by other user terminals.
- the first signal strength measurement value can be the reference signal receiving power (Reference Signal Receiving Power, RSRP) obtained according to the URS or other measurement values that can reflect the signal strength, such as the reference signal receiving quality (Reference Signal Receiving Quality, RSRQ), etc., this
- RSRP Reference Signal Receiving Power
- RSRQ Reference Signal Receiving Quality
- the embodiment of the application does not limit the type of the first signal strength measurement value.
- the embodiment of the application uses the first signal strength measurement value as RSRP for illustration. The interference between them has reciprocity within a certain coherence time.
- the second reference signal is a downlink measurement reference signal (Downlink Reference Signal, DRS) sent periodically or aperiodically by the first base station equipment, and the DRS can be used for interference measurement, and the periodic or aperiodic transmission of the DRS It can be set according to actual communication needs. It is understandable that DRS can be Channel State Information Reference Signal (CSI-RS), or other specifically designed reference signals.
- DRS can be Channel State Information Reference Signal (CSI-RS), or other specifically designed reference signals.
- the second reference signal is used for user measurement
- the expected signal of the base station can be used to improve the measurement accuracy of the interference channel.
- the sequence and time-frequency position information of all downlink measurement reference signals are also preset or broadcast to all users by the base station.
- the second signal strength measurement value may be RSRP or RSRQ obtained according to DRS.
- the embodiment of the present application does not limit the type of the second signal strength measurement value. In the embodiment of the present application, the second signal strength measurement value is RSRP for illustration.
- step S130 may also include but not limited to step S210 and step S220.
- Step S210 acquiring noise power, and obtaining measurement information according to the first signal strength measurement value, the second signal strength measurement value and the noise power.
- Step S220 alternatively, acquire communication environment information, and obtain measurement information according to the first signal strength measurement value, the second signal strength measurement value, and the communication environment information.
- the measurement information may also include noise power and communication environment information
- the downlink first user equipment may send the measurement information including noise power or communication environment information to the first base station equipment for the first base station
- the device obtains the signal-to-interference-noise ratio according to the measurement information.
- the first downlink user equipment can obtain the noise power set according to its own communication needs, and obtain measurement information according to the first signal strength measurement value, the second signal strength measurement value and the noise power, and can also obtain the environment of the first user equipment
- the information obtains communication environment information, which may include environmental noise information, terrain information, or other information that affects communication quality, and obtains measurement information based on the first signal strength measurement value, the second signal strength measurement value, and communication environment information.
- the measurement information obtained according to the above multiple information can be processed by the first base station equipment, and the measurement information can be a general term for the first signal strength measurement value, the second signal strength measurement value, noise power and communication environment information, and does not Redundant calculations are required, that is, the measurement information sent by the first user equipment to the first base station is regarded as sending the first signal strength measurement value, the second signal strength measurement value, noise power and communication environment information to the first base station equipment, and Alternatively, the measurement information may be information obtained through processing based on the first signal strength measurement value, the second signal strength measurement value, noise power, and communication environment information. After analyzing the measurement information, the first base station device may obtain the information representing the first The conditions of the signal strength measurement value, the second signal strength measurement value, the noise power, and the communication environment information are not specifically limited here.
- step S110 may also include but not limited to steps S310 and S320.
- Step S310 receiving a plurality of first reference signals sent by a plurality of second user equipments in a second empty group.
- Step S320 combining multiple first reference signals of the second empty packet to obtain a first signal strength measurement value.
- some of the multiple uplink users in the same cell will transmit uplink data on the same time-frequency resource, that is, the uplink MU (Multi-User) space division.
- the same time-frequency resource receives downlink data, that is, downlink MU space division.
- Figure 5 is a communication scenario of multiple uplink and downlink users with MU space division, in which users 1 to 3 are uplink users, uplink users 2 and 3 are in the same uplink empty group, users 4 to 7 are downlink users, and downlink users 5 and 6 are in the same downlink empty group , the base station in the embodiment of the present application can decide that the behavior of empty grouping is prior to full-duplex scheduling.
- the base station first determines the uplink and downlink empty allocation pairs, and then determines the full-duplex pairing according to the measurement information to maximize spectral efficiency.
- the multiple second user equipments in the second uplink empty group are in the same uplink empty group, the multiple second user equipments have no effect on the downlink first user equipment.
- the interference caused by the device is an overall interference.
- full-duplex pairing multiple second user equipments are also paired as a whole.
- the first user equipment can receive the first reference sent by all the second user equipment in the second empty group.
- the second empty packet is an uplink empty packet, and the first signal strength measurement value is obtained according to the multiple first reference signals.
- the downlink user can receive multiple uplink user transmissions in the uplink empty packet.
- the uplink measurement reference signal of the user in the uplink empty group is considered as a whole, so the RSRP is obtained based on the uplink measurement reference signal in the uplink empty group.
- step S320 may also include but not limited to the following steps:
- the first signal strength measurement value is obtained by weighting the plurality of first reference signals in the second empty group.
- the interference caused by the plurality of second user equipments in the second empty group to the first downlink user equipment is an overall interference, and the plurality of second user equipments are also paired as a whole during full-duplex pairing, Therefore, when the first user equipment obtains the first signal strength measurement value, it is obtained by weighting the multiple first reference signals in the second empty group.
- the first signal strength measurement value is obtained according to the first reference signal in the second empty group.
- the first reference signals sent by multiple second user equipments are added together. For example, as shown in FIG. power Where X ⁇ [U1,U2U3], Y ⁇ [D4,D5,D6,D7], users 2 and 3 belong to the same uplink empty group, so the reference signal received power of the uplink empty group containing users 2 and 3 can be obtained as
- the second user equipment may also include uplink users of adjacent cells.
- the first base station device is The base station in the base station
- the second user equipment can be multiple, including the uplink user in cell 1 and the uplink user in the adjacent cell 2, the first user equipment will be interfered with by the uplink user
- the interference of uplink users of adjacent cells so the communication method in the embodiment of the present application needs to eliminate the interference of adjacent cells, and the first signal strength measurement value is obtained according to the first reference signal of different uplink users.
- the first A signal strength measurement value is also obtained by weighting the first reference signals sent by the second user equipment in multiple different cells.
- the communication according to the scheduling instruction in step S140 may include but not limited to at least one of the following steps of step S410 and step S420.
- Step S410 when the SINR is greater than or equal to the threshold value, communicate with the second user equipment under the same time-frequency resource according to the scheduling instruction.
- Step S420 when the signal-to-interference-noise ratio is smaller than the threshold value, communicate with the second user equipment under different time-frequency resources according to the scheduling instruction.
- the first user equipment performs communication scheduling according to the scheduling instruction sent by the first base station equipment, and when the first base station equipment determines that the scheduling instruction is obtained, it obtains the minimum signal-to-interference-noise ratio (SINR) acceptable to the communication requirements between user equipments.
- SINR signal-to-interference-noise ratio
- the threshold value is judged based on the relationship between the signal-to-interference and noise ratio and the threshold value.
- the first downlink user equipment and the second uplink user equipment can communicate at the same time and frequency
- the resource performs full-duplex communication, so the first user equipment communicates with the second user equipment under the same time-frequency resource according to the scheduling instruction.
- the user equipment cannot schedule full-duplex communication on the same time-frequency resource, so the first user equipment communicates with the second user equipment under different time-frequency resources according to the scheduling instruction, and can be scheduled by judging the signal-to-interference-noise ratio and the minimum threshold value Uplink and downlink users with little mutual interference use the same time-frequency resource for full-duplex communication, so that the signal-to-interference-noise ratio of user terminals in the cell is greatly improved, thereby greatly improving the communication spectrum efficiency.
- the embodiment of the present application also provides a communication method, which is applied to the first base station device.
- the communication method in the embodiment of the present application includes but not limited to step S510, step S520, step S530 and step S540.
- Step S510 sending a second reference signal to the first user equipment, so that the first user equipment obtains a second signal strength measurement value according to the second reference signal.
- Step S520 receiving measurement information sent by the first user equipment, the measurement information includes a first signal strength measurement value and a second signal strength measurement value, the first signal strength measurement value is determined by the first user equipment according to the first reference of the second user equipment signal to get.
- Step S530 obtain the signal-to-interference and noise ratio of the first user equipment and the second user equipment according to the measurement information, and generate a scheduling instruction according to the signal-to-interference-noise ratio, and the scheduling instruction is used to determine whether the first user equipment and the second user equipment are in the same time-frequency Communication under resources.
- Step S540 sending a scheduling instruction to the first user equipment and the second user equipment, so that the first user equipment and the second user equipment communicate according to the scheduling instruction.
- the communication between the first user equipment and the second user equipment can be through the first base station equipment, and the first base station equipment sends the second reference signal to the first user equipment, so that the first user equipment can transmit the second reference signal according to the second reference signal. signal to obtain the second signal strength measurement value respectively, and the first user equipment will also obtain the first signal strength measurement value according to the first reference signal sent by the second user equipment, so the first base station device can receive the measurement information sent by the first user equipment , the measurement information includes a first signal strength measurement value and a second signal strength measurement value, the first base station device calculates the SINR between the first user equipment and the second user equipment according to the measurement information, and calculates the SINR between the first user equipment and the second user equipment according to the SINR
- the scheduling instruction can be obtained from the comparison, and the scheduling instruction can be used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource, and the first base station equipment sends the scheduling instruction to the first user equipment and the second user equipment.
- the first user equipment and the second user equipment can respond to the scheduling instruction and perform full-duplex communication under the same time-frequency resource; otherwise, they do not communicate under the same time-frequency resource Schedule full-duplex communication.
- the first user equipment and the second user equipment are downlink users and uplink users in the cell respectively, and the communication method in the embodiment of the present application can effectively eliminate inter-user interference through user measurement reporting and base station scheduling, Uplink and downlink users with little mutual interference are scheduled to use the same time-frequency resource for full-duplex communication, so that the signal-to-interference-noise ratio of user terminals in the cell is greatly improved, thereby greatly improving the communication spectrum efficiency.
- the implementation of the embodiment of the application is simple and the interference The elimination is accurate, the configuration is flexible and convenient, and the application of the full-duplex technology in the cell system is promoted.
- the first user equipment in the embodiment of the present application is a downlink user
- the second user equipment is an uplink user
- the first reference information is the uplink reference information sent by the uplink user
- the second reference information is the downlink reference information sent by the first base station equipment.
- the first reference signal is a URS sent periodically or aperiodically by an uplink user.
- the URS can be used for interference measurement, and the periodicity or aperiodicity of its transmission can be set according to actual communication needs. It can be understood that, URS can be demodulation reference signal or sounding reference signal, or other specifically designed reference signal, which can be used to improve the accuracy of interference channel measurement.
- the sequence and time-frequency position information of all uplink measurement reference signals can be preset or determined by The base station broadcasts to all users, so each user also knows the sequence and time-frequency position of measurement reference signals sent by other user terminals.
- the first signal strength measurement value can be RSRP obtained according to URS or other measurement values that can reflect signal strength, such as RSRQ, etc.
- the embodiment of the present application does not limit the type of the first signal strength measurement value.
- the embodiment of the present application uses the first The signal strength measurement value is described as RSRP. It can be understood that since the antennas of the user terminal are not separated from transmitting and receiving and have the same frequency at the same time, the interference between users has reciprocity within a certain coherence time.
- the second reference signal is a DRS sent periodically or aperiodically by the first base station equipment.
- the DRS can be used for interference measurement, and the periodicity or aperiodicity of its transmission can be set according to actual communication needs. It can be understood that Yes, DRS can be channel state information reference signal, or other specifically designed reference signal.
- the second reference signal is used for users to measure the desired signal of the base station, which can be used to improve the accuracy of interference channel measurement. All downlink measurement reference signals Sequence and time-frequency position information is also preset or broadcast to all users by the base station.
- the second signal strength measurement value may be RSRP or RSRQ obtained according to DRS.
- the embodiment of the present application does not limit the type of the second signal strength measurement value. In the embodiment of the present application, the second signal strength measurement value is RSRP for illustration.
- the measurement information includes the noise power of the first user equipment
- the above step S510 may also include but not limited to the following steps:
- a signal-to-interference-noise ratio is obtained according to the first signal strength measurement value, the second signal strength measurement value, and the noise power represented by the measurement information.
- the measurement information includes the noise power of the first user equipment
- the first base station equipment obtains the signal-to-interference-noise ratio according to the first signal strength measurement value, the second signal strength measurement value, and the noise power represented by the measurement information
- the signal-to-interference-noise ratio is the value obtained by dividing the second signal strength measurement value by the sum of the first signal strength measurement value and the noise power
- the signal-to-interference-noise ratio obtained after combining the noise power can more accurately reflect communication interference, Improve scheduling accuracy.
- the noise power in the embodiment of the present application is obtained according to at least one of the following steps, including but not limited to step S610 and step S620.
- Step S610 receiving noise power sent by the first user equipment.
- Step S620 alternatively, acquire communication environment information of the first user equipment and obtain noise power.
- the noise power used by the first base station device in the process of calculating the SINR may be sent by the first user equipment, and the measurement information sent by the first user equipment may include the noise power , the first base station equipment can obtain the noise power according to the measurement information, or the first user equipment can directly send the noise power to the first base station equipment, so that the first base station equipment can calculate the SINR according to the noise power, and in another
- the noise power may be preset by the first base station device, and the first base station device may set a fixed noise floor value according to communication requirements.
- the first base station device may obtain the first user equipment
- the communication environment information may include environmental noise information, terrain information or other information that affects communication quality, and the noise power is obtained according to the communication environment information.
- the environment is well stored, or it can be judged by other environmental factors, or it can be sent by the first user equipment.
- the first user equipment can obtain its own communication environment information and send it to the first base station equipment.
- the first user equipment can also send the measurement information including its own communication environment information to the first base station device.
- the first base station device can obtain the communication environment information according to the measurement information, and obtain the noise power according to the communication environment information. The origin of the noise power
- the embodiments of this application do not make specific limitations.
- the measurement information may be a general term for the first signal strength measurement value, the second signal strength measurement value, noise power, and communication environment information, and redundant calculations are not required, that is, the first user equipment sends the first base station
- the measurement information is regarded as sending the first signal strength measurement value, the second signal strength measurement value, the noise power and the communication environment information to the first base station device, or the measurement information may be based on the first signal strength measurement value, the second A piece of information obtained by processing the signal strength measurement value, noise power and communication environment information.
- the first base station equipment analyzes the measurement information, it can obtain the first signal strength measurement value, the second signal strength measurement value, noise power and communication environment information.
- the situation of the environmental information is not specifically limited here.
- the generation of scheduling instructions according to the SINR in step S530 may further include, but not limited to, steps S710 and S720.
- Step S710 acquiring a threshold value of the signal-to-interference-noise ratio set according to the communication requirement of the first user equipment.
- Step S720 generating a scheduling instruction according to the relationship between the SINR and the threshold value.
- the first base station device when it determines to obtain the scheduling instruction, it obtains the threshold value of the minimum signal-to-interference-noise ratio acceptable to the communication requirements between user equipments.
- the specific value can be flexibly configured according to the scene environment.
- the relationship between the noise ratio and the threshold value is judged, through the judgment of the signal-to-interference-noise ratio and the minimum threshold value, and the scheduling instruction is generated according to the relationship between the signal-to-interference-noise ratio and the threshold value, and the uplink and downlink with little mutual interference can be scheduled.
- Users use the same time-frequency resource for full-duplex communication, which greatly improves the signal-to-interference-noise ratio of user terminals in the cell, thereby greatly improving communication spectrum efficiency.
- step S720 may also include but not limited to step S810 and step S820.
- Step S810 when the SINR is greater than or equal to the threshold value, generate a scheduling instruction and determine that the first user equipment and the second user equipment communicate under the same time-frequency resource.
- Step S820 when the SINR is smaller than the threshold value, generate a scheduling instruction and determine that the first user equipment and the second user equipment communicate under different time-frequency resources.
- the first user equipment and the second user equipment perform communication scheduling according to the scheduling instruction sent by the first base station equipment, and when the first base station equipment determines that the scheduling instruction is obtained, it obtains the minimum acceptable communication requirement between the user equipment.
- the threshold value of the SINR is judged based on the relationship between the SINR and the threshold value.
- the downlink first user equipment and the uplink second user equipment can Full-duplex communication is performed on the same time-frequency resource, so the first base station device generates a scheduling instruction and determines that the first user equipment and the second user equipment communicate under the same time-frequency resource, and when the SINR is less than the threshold value, the downlink The first user equipment and the uplink second user equipment cannot schedule full-duplex communication on the same time-frequency resource, so the first base station device generates a scheduling instruction and determines that the first user equipment and the second user equipment communicate under different time-frequency resources,
- the SINR and the minimum threshold value uplink and downlink users with little mutual interference can be scheduled to use the same time-frequency resource for full-duplex communication, so that the SINR of user terminals in the cell is greatly improved, thereby greatly improving The communication spectrum efficiency is improved.
- step S720 may also include but not limited to step S910 and step S920.
- Step S910 establishing a first inter-user interference list according to the relationship between the SINR and the threshold value.
- Step S920 generating a scheduling instruction based on the first inter-user interference list.
- the base station obtains the scheduling instruction according to the established inter-user interference list, so as to perform communication scheduling.
- the first base station equipment establishes a first inter-user interference list based on the calculated relationship between the SINR and the threshold value, generates a scheduling instruction based on the first inter-user interference list, and judges whether downlink users can be scheduled according to the list Carry out full-duplex communication with the uplink user on the same time-frequency resource, and judge the scheduling by establishing a list, which is beneficial to the storage of data and the judgment of the base station.
- the size relationship stored in the list is easy to be obtained by the base station, and it is intuitive.
- the first base station device may update and maintain the first inter-user interference list periodically or aperiodically.
- the second user equipment communicates with the second base station device.
- the communication method may further include but not limited to step S1010 and step S1020.
- Step S1010 sending the first inter-user interference list to the second base station device, so that the second base station device performs communication scheduling according to the first inter-user interference list.
- Step S1020 receiving the second inter-user interference list sent by the second base station device, and updating the first inter-user interference list according to the second inter-user interference list, the second inter-user interference list is determined by the second base station device according to the corresponding first user device and a second user device are obtained.
- the first base station equipment belongs to cell 1, the first user equipment in cell 1 will be interfered by cell 2 of the adjacent cell, cell 2 is provided with second base station equipment, and cell 2 also has a downlink second Two user equipments and the first uplink user equipment, the first user equipment in the cell 1 is interfered by the uplink first user equipment of the cell 1, and is also interfered by the uplink first user equipment of the adjacent cell 2 Therefore, the communication method in the embodiment of the present application needs to eliminate the interference of adjacent cells.
- the second base station device can obtain the second inter-user interference list according to the corresponding first user equipment and second user equipment in cell 2,
- the first base station device may send a first inter-user interference list to the second base station device, where the first inter-user interference list is based on the first user equipment and Obtained by the second user equipment, after the second base station equipment obtains the first inter-user interference list, it can update the second inter-user interference list according to the first inter-user interference list, and the first base station equipment can also receive the The second inter-user interference list, and update the first inter-user interference list according to the second inter-user interference list, and finally form a multi-cell joint interference list as shown in the table, which improves the communication scheduling capability between multiple cells.
- the first base station device may periodically or aperiodically send the first inter-user interference list to the second base station device, and the second base station device may also periodically or aperiodically send the second inter-user interference list to the first base station device.
- step S810 may also include but not limited to step S1110 , step S1120 and step S1130 .
- Step S1110 when the SINR is greater than or equal to the threshold value, determine that the first user equipment and the second user equipment are in a pairable relationship.
- Step S1120 among the plurality of first user equipments and second user equipments satisfying the pairable relationship, obtain the device according to at least one of the paired object represented by the pairable relationship, the number of pairs, and the relationship between the signal-to-interference and noise ratio and the threshold value priority.
- Step S1130 generating a scheduling instruction according to the device priority to schedule the corresponding first user equipment and second user equipment to communicate under the same time-frequency resource.
- the first base station equipment belongs to cell 1, and multiple first user equipments and second user equipments in cell 1 can be configured.
- the first base station equipment can first determine the first user equipment and the second user equipment that meet the scheduling requirements
- the two user equipments are in a pairable relationship, and among the plurality of first user equipments and second user equipments satisfying the pairable relationship, according to the pairing objects represented by the pairable relationship, the number of pairs, and the relationship between the signal-to-interference and noise ratio and the threshold value At least one of them gets the device priority
- the pairing object is which first user equipment and which second user equipment are in a pairable relationship
- the number of pairings is whether one first user equipment is in a pairable relationship with several second user equipments, or several A first user equipment is in a pairable relationship with
- the first base station equipment can design a pairing selection scheme by itself to achieve full-duplex pairing.
- the principle is to make as many uplink and downlink users as possible full-duplex pairing.
- the embodiment of this application does not limit the method , in the scheduling of an embodiment, if a downlink first user equipment has only one uplink second user equipment that can be paired, the pair of uplink and downlink users is preferentially paired, and then the pair of users is removed.
- the downlink first user equipment with the largest absolute value of the signal-to-interference-noise ratio minus the threshold value is paired with the uplink second user equipment, and then moves to
- the pair of users if a downlink first user equipment has multiple uplink second user equipment that can be paired, select the corresponding one with the largest signal-to-interference-to-noise ratio or the largest absolute value of the signal-to-interference-to-noise ratio minus the threshold value
- the paired uplink second user equipment is paired, and then the pair of users is removed until there are only uplink and downlink users that meet the pairing conditions.
- the generation of scheduling instructions according to the SINR in step S530 may also include, but not limited to, steps S1210 and S1220.
- Step S1210 when there are multiple first user equipments, multiple first user equipments belong to the first empty group, and generate scheduling instructions according to the signal-to-interference-noise ratio of each first user equipment and second user equipment in the first empty group .
- Step S1220 when there are multiple second user equipments, multiple second user equipments belong to the second empty group, and generate a scheduling instruction according to the signal-to-interference-noise ratio between the first user equipment and each second user equipment in the second empty group .
- some of the multiple uplink users in the same cell will transmit uplink data on the same time-frequency resource, that is, uplink MU space division, and some of the multiple downlink users will receive data on the same time-frequency resource.
- the downlink data that is, the downlink MU space division
- the base station in the embodiment of this application can decide that the behavior of the empty packet is prioritized over the full-duplex scheduling. to improve spectral efficiency.
- the scheduling instruction is generated according to the signal-to-interference-noise ratio of each first user equipment and the second user equipment in the first empty group
- the first base station device regards the first downlink empty group as a whole to perform scheduling, and when the signal-to-interference-noise ratios of each first user equipment and second user equipment in the first empty group are greater than a threshold value , the scheduling instruction for scheduling the full-duplex communication between the first empty packet and the second user equipment under the same time-frequency resource is generated.
- the first user equipment can receive the first reference information sent by all the second user equipment in the second empty group, the second empty group is an uplink empty group, and according to the multiple first reference signals To obtain the first signal strength measurement value, when the first base station device obtains the signal-to-interference-noise ratio according to the first signal strength measurement value, it considers the situation of each second user equipment in the second empty group as a whole, and in an implementation In the example, the downlink user can receive the uplink measurement reference signal sent by multiple uplink users in the
- the embodiment of the present application also provides a communication method, which is applied to the second user equipment.
- the communication method in the embodiment of the present application includes but not limited to step S1310 and step S1320.
- Step S1310 sending a first reference signal to the first user equipment, so that the first user equipment obtains a first signal strength measurement value according to the first reference signal.
- Step S1320 receiving a scheduling instruction sent by the first base station device, and performing communication according to the scheduling instruction.
- the scheduling instruction is obtained by the first base station device according to the SINR of the first user equipment and the second user equipment, and the scheduling instruction is used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource, and the signal
- the interference-to-noise ratio is obtained by the first base station device according to the measurement information, and the measurement information includes a first signal strength measurement value and a second signal strength measurement value, and the second signal strength measurement value is obtained by the first user equipment according to the second signal strength measurement value sent by the first base station device.
- the reference signal is obtained.
- the first user equipment and the second user equipment may communicate through a first base station device, and the second user equipment may send a first reference signal to the first user equipment, so that the first user equipment may transmit a first reference signal according to the first Obtaining the first signal strength measurement value by referring to the signal, the first user equipment sends the measurement information obtained by the first signal strength measurement value and the second signal strength measurement value to the first base station equipment for scheduling control, and the first base station equipment according to the measurement information Calculate the signal-to-interference-noise ratio between the first user equipment and the second user equipment, and obtain a scheduling instruction according to the signal-to-interference-noise ratio, and the scheduling instruction can be used to determine whether the first user equipment and the second user equipment are in the same time-frequency resource
- the first base station device sends a scheduling instruction to the first user equipment and the second user equipment, and when it is determined that the first user equipment and the second user equipment communicate under the same time-frequency resource, the first user equipment and the second user equipment Full-duplex communication
- the first user equipment and the second user equipment are downlink users and uplink users in the cell respectively, and the communication method in the embodiment of the present application can effectively eliminate inter-user interference through user measurement reporting and base station scheduling, Uplink and downlink users with little mutual interference are scheduled to use the same time-frequency resource for full-duplex communication, so that the signal-to-interference-noise ratio of user terminals in the cell is greatly improved, thereby greatly improving the communication spectrum efficiency.
- the implementation of the embodiment of the application is simple and the interference The elimination is accurate, the configuration is flexible and convenient, and the application of the full-duplex technology in the cell system is promoted.
- the first user equipment in the embodiment of the present application is a downlink user
- the second user equipment is an uplink user
- the first reference information is the uplink reference information sent by the uplink user
- the second reference information is the downlink reference information sent by the first base station equipment.
- the first reference signal is a URS sent periodically or aperiodically by an uplink user.
- the URS can be used for interference measurement, and the periodicity or aperiodicity of its transmission can be set according to actual communication needs. It can be understood that, URS can be demodulation reference signal or sounding reference signal, or other specifically designed reference signal, which can be used to improve the accuracy of interference channel measurement.
- the sequence and time-frequency position information of all uplink measurement reference signals can be preset or determined by The base station broadcasts to all users, so each user also knows the sequence and time-frequency position of measurement reference signals sent by other user terminals.
- the first signal strength measurement value can be RSRP obtained according to URS or other measurement values that can reflect signal strength, such as RSRQ, etc.
- the embodiment of the present application does not limit the type of the first signal strength measurement value.
- the embodiment of the present application uses the first The signal strength measurement value is described as RSRP. It can be understood that since the antennas of the user terminal are not separated from transmitting and receiving and have the same frequency at the same time, the interference between users has reciprocity within a certain coherence time.
- the second reference signal is a DRS sent periodically or aperiodically by the first base station equipment.
- the DRS can be used for interference measurement, and the periodicity or aperiodicity of its transmission can be set according to actual communication needs. It can be understood that Yes, DRS can be channel state information reference signal, or other specifically designed reference signal.
- the second reference signal is used for users to measure the desired signal of the base station, which can be used to improve the accuracy of interference channel measurement. All downlink measurement reference signals Sequence and time-frequency position information is also preset or broadcast to all users by the base station.
- the second signal strength measurement value may be RSRP or RSRQ obtained according to DRS.
- the embodiment of the present application does not limit the type of the second signal strength measurement value. In the embodiment of the present application, the second signal strength measurement value is RSRP for illustration.
- the communication according to the scheduling instruction in the above step S1320 may include but not limited to at least one of the following steps of step S1410 and step S1420
- Step S1410 when the SINR is greater than or equal to the threshold value, communicate with the first user equipment under the same time-frequency resource according to the scheduling instruction.
- Step S1420 when the signal-to-interference-noise ratio is smaller than the threshold value, communicate with the first user equipment under different time-frequency resources according to the scheduling instruction.
- the second user equipment performs communication scheduling according to the scheduling instruction sent by the first base station equipment, and when the first base station equipment determines that the scheduling instruction is obtained, it obtains the minimum signal-to-interference-noise ratio that is acceptable for the communication requirements between user equipment
- the threshold value is judged based on the relationship between the signal-to-interference and noise ratio and the threshold value.
- the signal-to-interference-noise ratio is greater than or equal to the threshold value
- the first downlink user equipment and the second uplink user equipment can communicate at the same time and frequency
- the resource performs full-duplex communication, so the second user equipment communicates with the first user equipment under the same time-frequency resource according to the scheduling instruction.
- the user equipment cannot schedule full-duplex communication on the same time-frequency resource, so the second user equipment communicates with the first user equipment under different time-frequency resources according to the scheduling instruction, and can be scheduled by judging the signal-to-interference-noise ratio and the minimum threshold value.
- Uplink and downlink users with little mutual interference use the same time-frequency resource for full-duplex communication, so that the signal-to-interference-noise ratio of user terminals in the cell is greatly improved, thereby greatly improving the communication spectrum efficiency.
- the communication method performed in the second user equipment may correspond to the communication method performed in the first user equipment and the first base station device in the foregoing embodiments, and details are not described here.
- Fig. 2 is an embodiment of a communication method for eliminating interference between users in full-duplex communication according to an embodiment of the present application
- the base station in a single cell is a full-duplex base station
- the user terminal works in Time Division Duplexing (Time Division Duplexing, TDD) mode
- user 1 is an uplink user
- user 2 is a downlink user.
- TDD Time Division Duplexing
- Step 1.1 The uplink user 1 periodically or aperiodically sends the first reference signal, namely URS.
- Step 1.2 The downlink user 2 detects the URS from the uplink user 1, and calculates the first signal strength measurement value, that is, the reference signal received power, which is identified as Where U1 represents uplink user 1, and D2 represents downlink user 2. Since the antennas of the user terminal are not separated for transmitting and receiving and have the same frequency at the same time, the interference between users has reciprocity within a certain coherence time, that is, at a certain moment within a certain coherence time, if user 1 receives downlink data, user 2 sends uplink data. data, then downlink user 1 detects the received power of the measured reference signal from uplink user 2:
- Step 1.3 The first base station device periodically or aperiodically sends the second reference signal, that is, DRS, and the downlink user 2 detects the DRS from the first base station device, and calculates the second signal strength measurement value, that is, the reference signal received power, identified as Where B1 represents the first base station device.
- DRS the second reference signal
- B1 the reference signal received power
- Step 1.4 Downlink user 2 reports measurement information and For the first base station equipment, the first base station equipment calculates the Wherein N D2 is the noise power of the downlink user 2.
- N D2 can be measured and reported by the downlink user 2 or can be fixed as a noise floor value.
- the embodiment of the present application does not limit its acquisition method. For the sake of brevity and convenience, the Simplified to The same goes for the following.
- Step 1.5 If Then the first base station device can schedule downlink user 2 and uplink user 1 to perform full-duplex communication on the same time-frequency resource, where TH D2 is the minimum SINR threshold acceptable to the communication requirements of downlink user 2, and the specific value can be adjusted according to the scene environment Flexible configuration. if Then the first base station device schedules the downlink user 2 and the uplink user 1 to communicate in different time-frequency resources.
- TH D2 is the minimum SINR threshold acceptable to the communication requirements of downlink user 2
- the specific value can be adjusted according to the scene environment Flexible configuration.
- Step 1.6 The first base station device generates and maintains a first inter-user interference list according to the received measurement information, and the first base station device judges whether the downlink user 2 and the uplink user 1 can perform full-duplex pairing according to the list, and the downlink user cycle or The measurement value is reported aperiodically, and the first base station equipment periodically or aperiodically updates the interference list, as shown in Table 1:
- FIG. 15 is an embodiment of a communication method for eliminating interference between users in full-duplex communication according to an embodiment of the present application.
- Embodiment 2 there is only one uplink user and one downlink user in a single cell, and more generally, there are M uplink users and N downlink users.
- FIG. 15 is a communication scenario of multiple uplink and downlink users in Embodiment 2, where users 1 to 3 are uplink users, and users 4 to 5 are downlink users.
- Step 2.1 Uplink users 1 to 3 periodically or aperiodically send the first reference signal, ie URS, at different time-frequency positions.
- Step 2.2 Downlink users 4 to 5 respectively detect URS from uplink users 1 to 3 at the corresponding time-frequency positions and calculate the first signal strength measurement value, that is, the reference signal received power, identified as where X ⁇ [U1, U2, U3], Y ⁇ [D4, D5]. For the same reason, since the antennas of the user terminal are not separated from transmitting and receiving, and have the same frequency at the same time, the interference between users has reciprocity within a certain coherence time.
- Step 2.3 The first base station device periodically or aperiodically sends the second reference signal, that is, DRS, and the downlink users 4 to 5 detect the DRS from the first base station device and calculate the second signal strength measurement value, that is, the reference signal received power, identification for Where B1 represents the first base station device.
- Step 2.4 Downlink users 4 to 5 report measurement information to the first base station equipment, and the first base station equipment calculates the downlink users 4 to 5
- NY is the noise power of the downlink user Y.
- NY can be measured and reported by the user Y or can be fixed as a noise floor value.
- the embodiment of the present application does not limit its acquisition method.
- Step 2.5 If Then the first base station device can schedule downlink user Y and uplink user X to perform full-duplex communication on the same time-frequency resource, where T Y is the minimum SINR threshold acceptable to the communication requirements of downlink user Y, and the specific value can be adjusted according to the scene environment Flexible configuration. if Then the first base station equipment schedules the downlink user Y and the uplink user X to communicate in different time-frequency resources.
- Step 2.6 The first base station equipment generates and maintains a first inter-user interference list according to the received measurement information, and the base station judges whether the downlink user Y and the uplink user X can perform full-duplex pairing according to the list, whether the downlink user is periodic or aperiodic Report the measurement value, and the base station updates the interference list periodically or aperiodically.
- Step 2.7 In a multi-user scenario, it is possible that one uplink user can perform full-duplex pairing with multiple downlink users. For example, in Table 2, uplink user 2 can be paired with downlink user 4 or 5 in full-duplex. Similarly, a downlink user may also Satisfy full-duplex pairing with multiple uplink users. For example, downlink user 4 can be full-duplex paired with uplink user 1 or 2. At this time, the base station can design a pairing selection scheme to achieve full-duplex pairing. The principle is to make more Uplink and downlink users can be paired in full duplex, and this embodiment of the present application does not limit the method.
- FIG. 5 is an embodiment of a communication method for eliminating interference between users in full-duplex communication according to an embodiment of the present application.
- the more general situation is that among the M uplink users in the same cell, there will be m users in The same time-frequency resource transmits uplink data, that is, the uplink MU space division.
- the N downlink users there will be n users receiving downlink data on the same time-frequency resource, that is, the downlink MU space division.
- Communication scenario of user MU space separation in which users 1 to 3 are uplink users, and uplink users 2 and 3 are in the same uplink empty group. Users 4 to 7 are downlink users, and downlink users 5 and 6 are in the same downlink empty group.
- the behavior of the first base station device determining the empty group is prior to the full-duplex scheduling, that is to say, the first base station device first determines the uplink and downlink empty allocation pairs, and then determines the full-duplex pairing according to the measurement information to maximize spectral efficiency.
- Step 3.1 Uplink users 1 to 3 send the first reference signal periodically or aperiodically at different time-frequency positions, that is, URS. Since uplink users 2 and 3 are in the same uplink empty group, the interference caused by uplink users 2 and 3 to downlink users is A whole interferes, and uplink users 2 and 3 are also paired as a whole during full-duplex pairing.
- Step 3.2 Downlink users 4 to 7 respectively detect URS from uplink users 1 to 3 at corresponding time-frequency positions and calculate the first signal strength measurement value, that is, the reference signal received power, identified as where X ⁇ [U1,U2U3], Y ⁇ [D4,D5,D6,D7], Since downlink users 5 and 6 are in the same downlink empty group, during full-duplex pairing, downlink users 5 and 6 are also paired as a whole, that is, downlink users 5 and 6 need to meet the full-duplex pairing conditions at the same time before they can be paired.
- the first signal strength measurement value that is, the reference signal received power
- Step 3.3 The first base station device periodically or aperiodically sends the second reference signal, that is, DRS, and the downlink users 4 to 7 detect the DRS from the first base station device and calculate the second signal strength measurement value, that is, the reference signal received power, identification for Where B1 represents the first base station device.
- DRS the second reference signal
- Step 3.4 Downlink users 4 to 7 report measurement information to the first base station equipment, and the first base station equipment calculates the downlink users 4 to 7 Similarly, NY is the noise power of the downlink user Y.
- Step 3.5 If Then the first base station equipment can schedule the downlink user Y and the uplink user X to perform full-duplex communication on the same time-frequency resource, T Y is the minimum SINR threshold acceptable to the communication requirements of the downlink user Y, and the specific value can be flexible according to the scene environment configuration. if Then the first base station equipment schedules the downlink user Y and the uplink user X to communicate in different time-frequency resources.
- Step 3.6 The first base station device generates and maintains an interference list according to the received measurement information, and the base station judges whether the downlink user Y and the uplink user X can perform full-duplex pairing according to the list.
- Downlink users report measurement values periodically or aperiodically, and the base station updates the interference list periodically or aperiodically.
- uplink user 1 satisfies the threshold condition for downlink users 5 and 6 at the same time, uplink user 1 can be paired with downlink users 5 and 6 in full duplex, uplink users 2 and 3 meet the threshold condition for downlink user 6, but for downlink User 5 does not meet the threshold condition.
- uplink users 2 and 3 Since downlink users 5 and 6 are in the same downlink empty group, uplink users 2 and 3 cannot be paired with downlink users 5 and 6 in full duplex. Uplink users 2 and 3 can be paired with downlink user 7 in full duplex. Table 3 is as follows:
- FIG. 6 is an embodiment of a communication method for eliminating interference between users in full-duplex communication according to an embodiment of the present application.
- This embodiment 4 considers a communication scenario of multiple uplink and downlink users in multiple cells, and cell 1 has three uplink users 1 To 3, uplink users 2 and 3 are in the same uplink empty group, 4 downlink users 4 to 7, downlink users 5 and 6 are in the same downlink empty group, cell 2 has three uplink users 8 to 10, uplink users 8 and 9 are in the same uplink empty group Grouping, 2 downlink users 11 to 12.
- the downlink users in cell 1 will not only be interfered by the uplink users in the own cell 1, but also be interfered by the uplink users in the adjacent cell 2, especially when the downlink users are at the edge of the cell. Cell user interference may be more serious.
- Step 4.1 Uplink users send the first reference signal periodically or aperiodically at different time-frequency positions, that is, URS.
- uplink users 2 and 3 are in the same uplink empty group, so the interference caused by uplink users 2 and 3 to downlink users is One overall interference, when full-duplex pairing, uplink users 2 and 3 are paired as a whole.
- uplink users 8 and 9 in cell 2 are in the same uplink air group, and the interference caused by uplink users 8 and 9 to downlink users is a whole interference, and uplink users 8 and 9 are also paired as a whole during full-duplex pairing.
- Step 4.2 The downlink user detects the URS from the uplink user at the corresponding time-frequency position and calculates the first signal strength measurement value, that is, the reference signal received power, identified as Among them, X ⁇ [U1,U2U3,U8U9,U10], Y ⁇ [D4,D5,D6,D7D11,D12].
- Downlink users 5 and 6 are in the same downlink empty group, so downlink users 5 and 6 are paired as a whole during full-duplex pairing, that is, downlink users 5 and 6 must meet the full-duplex pairing conditions at the same time before they can be paired.
- Step 4.3 The first base station equipment and the second base station equipment periodically or aperiodically transmit the second reference signal, namely DRS, and the downlink users 4 to 7 detect the DRS from the first base station equipment and calculate the second signal strength measurement value, namely the reference Signal received power, identified as Where B1 represents the first base station equipment, downlink users 11 to 12 detect the DRS from the second base station equipment and calculate the reference signal received power Wherein B2 represents the second base station equipment.
- B1 represents the first base station equipment
- B2 represents the second base station equipment.
- Step 4.4 Downlink users 4 to 7 report measurement information to the first base station equipment, and the first base station equipment calculates the downlink users 4 to 7
- the downlink users 11 to 12 report measurement information to the second base station equipment, and the second base station equipment calculates the measurement information of the downlink users 11 to 12
- Step 4.5 If Then the first base station equipment can schedule the downlink user Y and the uplink user X to perform full-duplex communication on the same time-frequency resource, T Y is the minimum SINR threshold acceptable to the communication requirements of the downlink user Y, and the specific value can be flexible according to the scene environment configuration. if Then the first base station equipment schedules the downlink user Y and the uplink user X to communicate in different time-frequency resources.
- Step 4.6 The first base station device generates and maintains a first inter-user interference list according to the received measurement information, and the base station judges whether downlink user Y and uplink user X can perform full-duplex pairing according to the list. Downlink users report measurement values periodically or aperiodically, and the base station updates the interference list periodically or aperiodically.
- the first base station equipment and the second base station equipment exchange the interference list information of this cell (such as through the X2 interface, multi-cell cooperation, etc.), and finally form the interference list 4 of the multi-cell joint, as shown in Table 4:
- FIG. 19 shows a network device 100 provided by an embodiment of the present application.
- the network device 100 includes: a processor 101 , a memory 102 , and a computer program stored on the memory 102 and operable on the processor 101 , and the computer program is used to execute the above-mentioned communication method when running.
- the processor 101 and the memory 102 may be connected through a bus or in other ways.
- the memory 102 as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs and non-transitory computer executable programs, such as the communication method described in the embodiment of the present application.
- the processor 101 implements the above communication method by running the non-transitory software programs and instructions stored in the memory 102 .
- the memory 102 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store and execute the communication method described above.
- the memory 102 may include a high-speed random access memory 102, and may also include a non-transitory memory 102, such as at least one storage device, a flash memory device or other non-transitory solid-state storage devices.
- the memory 102 includes memory 102 remotely located relative to the processor 101 , and these remote memories 102 may be connected to the network device 100 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
- the non-transitory software programs and instructions required to realize the above-mentioned communication method are stored in the memory 102, and when executed by one or more processors 101, the above-mentioned communication method is executed, for example, method steps S110 to Step S140, method step S210 to step S220 in FIG. 3, method step S310 to step S320 in FIG. 4, method step S410 to step S420 in FIG. 7, method step S510 to step S540 in FIG. method step S610 to step S620, method step S710 to step S720 in FIG. 10, method step S810 to step S820 in FIG. 11, method step S910 to step S920 in FIG. 12, method step S1010 to step in FIG. S1020, method step S1110 to step S1130 in FIG. 14 , method step S1210 to step S1220 in FIG. 16 , method step S1310 to step S1320 in FIG. 17 , method step S1410 to step S1420 in FIG. 18 .
- the embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned communication method.
- the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, executing steps S110 to S140 of the method in FIG. Method step S210 to step S220 in the method, method step S310 to step S320 in Fig. 4, method step S410 to step S420 in Fig. 7, method step S510 to step S540 in Fig. 8, method step S610 to step S540 in Fig. 9 Step S620, method step S710 to step S720 in FIG. 10, method step S810 to step S820 in FIG. 11, method step S910 to step S920 in FIG. 12, method step S1010 to step S1020 in FIG. method step S1110 to step S1130, the method step S1210 to step S1220 in FIG. 16 , the method step S1310 to step S1320 in FIG. 17 , and the method step S1410 to step S1420 in FIG. 18 .
- the embodiment of the present application at least includes the following beneficial effects:
- the first user equipment and the second user equipment can communicate through the first base station equipment, and the first user equipment can receive the information sent by the second user equipment.
- the first reference signal and the second reference signal sent by the first base station equipment and obtain the first signal strength measurement value and the second signal strength measurement value respectively according to the first reference signal and the second reference signal, and use the first signal strength measurement value value and the measurement information obtained by the second signal strength measurement value is sent to the first base station equipment for scheduling control
- the first base station equipment obtains the signal-to-interference-noise ratio between the first user equipment and the second user equipment according to the measurement information, and according to The signal-to-interference-noise ratio obtains the scheduling instruction, which can be used to determine whether the first user equipment and the second user equipment communicate under the same time-frequency resource, and the first base station equipment sends the scheduling instruction to the first user equipment and the second user equipment, through this
- the communication method in the embodiment of the application effectively eliminate
- the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- Computer storage media including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, storage device storage or other magnetic storage devices, or Any other medium that can be used to store desired information and that can be accessed by a computer.
- communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种通信方法、网络设备及存储介质,其中第一用户设备可接收第二用户设备发送的第一参考信号和第一基站设备发送的第二参考信号,并根据第一参考信号和第二参考信号分别得到第一信号强度测量值(S110)和第二信号强度测量值(S120),并将由第一信号强度测量值和第二信号强度测量值得到的测量信息发送给第一基站设备以供调度控制,第一基站设备根据测量信息得到第一用户设备与第二用户设备之间的信干噪比,并根据信干噪比得到调度指令,用于确定第一用户设备和第二用户设备是否在同一时频资源下通信(S130)。
Description
相关申请的交叉引用
本申请基于申请号为202111623340.6、申请日为2021年12月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及但不限于通信技术领域,特别是涉及一种通信方法、网络设备及存储介质。
随着第五代移动通信技术(5th-Generation,5G)进入商业化阶段,无线用户终端数量不断增加,无线通信业务需求持续增长,频谱资源匮乏的问题日益突出,而现有用于无线移动通信的频谱资源已经十分短缺,因此如何更高效的利用现有有限的通信频谱资源成为无线移动通信亟待解决的一个重要问题。通过同频同时全双工(Co-frequency Co-time Full Duplex,CCFD)技术可以有效提高频谱的利用效率,但是目前使用CCFD技术的通信系统中,小区内的用户设备之间会互相造成干扰,这种用户间干扰会降低全双工系统的容量,从而影响网络性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种通信方法、网络设备及存储介质。
第一方面,本申请实施例提供了一种通信方法,应用于第一用户设备,所述方法包括:接收第二用户设备发送的第一参考信号,根据所述第一参考信号得到第一信号强度测量值;接收第一基站设备发送的第二参考信号,根据所述第二参考信号得到第二信号强度测量值;根据所述第一信号强度测量值和所述第二信号强度测量值得到测量信息,向所述第一基站设备发送所述测量信息,以使所述第一基站设备通过所述测量信息得到信干噪比,并根据所述信干噪比生成调度指令,所述调度指令用于确定所述第一用户设备和所述第二用户设备是否在同一时频资源下通信;接收所述第一基站设备发送的所述调度指令,根据所述调度指令进行通信。
第二方面,本申请实施例提供了一种通信方法,应用于第一基站设备,所述方法包括:向第一用户设备发送第二参考信号,以使所述第一用户设备根据所述第二参考信号得到第二信号强度测量值;接收所述第一用户设备发送的测量信息,所述测量信息包括第一信号强度测量值和所述第二信号强度测量值,所述第一信号强度测量值由所述第一用户设备根据第二用户设备发送的第一参考信号得到;根据所述测量信息得到所述第一用户设备与所述第二用户设备的信干噪比,根据所述信干噪比生成调度指令,所述调度指令用于确定所述第一用户设备和所述第二用户设备是否在同一时频资源下通信;向所述第一用户设备和所述第二用户设备发送所述调度指令,以使所述第一用户设备和所述第二用户设备根据所述调度指令进行通信。
第三方面,本申请实施例提供了一种通信方法,应用于第二用户设备,所述方法包括:向第一用户设备发送第一参考信号,以使所述第一用户设备根据所述第一参考信号得到第一信号强度测量值;接收第一基站设备发送的调度指令,根据所述调度指令进行通信;其中, 所述调度指令由所述第一基站设备根据所述第一用户设备与所述第二用户设备的信干噪比得到,所述调度指令用于确定所述第一用户设备和所述第二用户设备是否在同一时频资源下通信,所述信干噪比由所述第一基站设备根据测量信息得到,所述测量信息包括所述第一信号强度测量值和第二信号强度测量值,所述第二信号强度测量值由所述第一用户设备根据所述第一基站设备发送的第二参考信号得到。
第四方面,本申请实施例提供了一种网络设备,包括:存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如本申请第一方面实施例、第二方面实施例和第三方面实施例中任意一项所述的通信方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,所述存储介质存储有程序,所述程序被处理器执行实现如本申请第一方面实施例、第二方面实施例和第三方面实施例中任意一项所述的通信方法。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的应用在第一用户设备的通信方法的流程示意图;
图2是本申请一个实施例提供的基本通信场景的示意图;
图3是本申请一个实施例提供的第一用户设备得到测量信息的流程示意图;
图4是本申请一个实施例提供的第一用户设备得到第一信号强度测量值的流程示意图;
图5是本申请一个实施例提供的存在空分组的通信场景的示意图;
图6是本申请一个实施例提供的多小区的通信场景的示意图;
图7是本申请一个实施例提供的第一用户设备执行通信调度的流程示意图;
图8是本申请一个实施例提供的应用在第一基站设备的通信方法的流程示意图;
图9是本申请一个实施例提供的第一基站设备得到噪声功率的流程示意图;
图10是本申请一个实施例提供的第一基站设备生成调度指令的流程示意图;
图11是本申请一个实施例提供的第一基站设备根据门限值得到不同调度的流程示意图;
图12是本申请一个实施例提供的第一基站设备根据第一用户干扰列表生成调度指令的流程示意图;
图13是本申请一个实施例提供的多小区间交换干扰列表的流程示意图;
图14是本申请一个实施例提供的多用户满足配对时通信调度的流程示意图;
图15是本申请一个实施例提供的多用户的通信场景的流程示意图;
图16是本申请一个实施例提供的第一基站设备根据空分组生成调度指令的流程示意图;
图17是本申请一个实施例提供的应用在第二用户设备的通信方法的流程示意图;
图18是本申请一个实施例提供的第二用户设备执行通信调度的流程示意图;
图19是本申请一个实施例提供的网络设备的示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请的技术方案详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请的范围。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
应了解,在本申请实施例的描述中,若干的含义为一个以上,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请实施例的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请实施例中的具体含义。
本申请实施例提供了一种通信方法、网络设备及存储介质,能够有效消除用户间的干扰,提高网络性能,本申请实施例中的通信方法应用在通信小区中的用户设备和基站设备中,用户设备可简称用户,可以为手机、移动电脑等通信终端,基站设备为起到为用户之间配置时频资源的设备,可以理解的是,本申请实施例中的基站设备为通信基站,可简称基站,可以包括第一基站设备和第二基站设备,基站可以为用户配置时频资源,上行用户通过上行信道发送上行信息给基站,基站通过下行信道发送下行信息给下行用户,对通信小区本申请实施例不对其做具体限制。
下面进行详细说明。
本申请实施例提供了一种通信方法,应用于第一用户设备,参照图1所示,本申请实施例中的通信方法包括但不限于步骤S110、步骤S120、步骤S130和步骤S140。
步骤S110,接收第二用户设备发送的第一参考信号,根据第一参考信号得到第一信号强度测量值。
步骤S120,接收第一基站设备发送的第二参考信号,根据第二参考信号得到第二信号强度测量值。
步骤S130,根据第一信号强度测量值和第二信号强度测量值得到测量信息,向第一基站设备发送测量信息,以使第一基站设备通过测量信息得到信干噪比,并根据信干噪比生成调度指令,调度指令用于确定第一用户设备和第二用户设备是否在同一时频资源下通信。
步骤S140,接收第一基站设备发送的调度指令,根据调度指令进行通信。
在一实施例中,第一用户设备和第二用户设备之间可通过第一基站设备通信,第一用户设备可接收第二用户设备发送的第一参考信号和第一基站设备发送的第二参考信号,并根据第一参考信号和第二参考信号分别得到第一信号强度测量值和第二信号强度测量值,并将由第一信号强度测量值和第二信号强度测量值得到的测量信息发送给第一基站设备以供调度控制,第一基站设备根据测量信息计算得到第一用户设备与第二用户设备之间的信号与干扰加 噪声比(Signal to Interference plus Noise Ratio,SINR),简称信干噪比,并根据信干噪比得到调度指令,调度指令可以用于确定第一用户设备和第二用户设备是否在同一时频资源下通信,第一基站设备发送调度指令给第一用户设备和第二用户设备,当确定第一用户设备和第二用户设备在同一时频资源下通信时,第一用户设备和第二用户设备可响应于调度指令并在同一时频资源下进行全双工通信,否则不在同一时频资源调度全双工通信。
需要说明的是,第一用户设备和第二用户设备分别为小区内的下行用户和上行用户,通过本申请实施例中的通信方法,能通过用户测量上报和基站调度有效地消除用户间干扰,调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率,本申请实施例实现简单,干扰消除准确,配置灵活简便,促进全双工技术在蜂窝小区系统中的应用。当本申请实施例中的第一用户设备为下行用户,第二用户设备为上行用户,因此第一参考信息为上行用户发送的上行参考信息,第二参考信息为第一基站设备发送的下行参考信息。
在使用CCFD技术的通信系统中,由于收发同时同频,全双工发射机的发射信号会对本地接收机产生很强的自干扰(Self-Interference,SI),使用全双工的首要工作是抑制自干扰,自干扰消除能力将直接影响全双工系统的通信质量。在一些情况下,通过天线域、射频域和数字域等干扰消除技术对自干扰进行了有效的抑制使得全双工模式成为可能,由于自干扰消除的复杂程度以及对硬件要求较高,因此全双工传输一般不在用户端实现,这样一个简单而有效的全双工模式是基站使用全双工同时收发两个不同用户的数据,而在用户侧还是实现传统的半双工。根据图2所示的全双工传输方案,第一基站设备在某一时频资源上接收上行用户的用户1发送的数据,与此同时第一基站设备在同样的时频资源上发送数据给下行用户的用户2。这样在用户侧,上行发射用户1对下行接收用户2的用户间干扰成为主要问题,有鉴于此,通过本申请实施例中的通信方法,能通过用户测量上报和基站调度有效的消除用户间干扰,调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率,本申请实施例实现简单,干扰消除准确,配置灵活简便。
在一实施例中,第一参考信号为上行用户周期性或非周期性发送的上行测量参考信号(Uplink Reference Signal,URS),URS可用于干扰测量,其发送的周期性或非周期性可根据实际通信需要设置,可以理解的是,URS可以是解调参考信号(Demodulation Reference Signal,DMRS)或者探测参考信号(Sounding Reference Signal,SRS),也可以是其他特定设计的参考信号,可以用来提高干扰信道测量准确度,所有上行测量参考信号的序列和时频位置信息可以预先设定或者由基站广播给所有用户,因此各用户也知道其他用户终端发送测量参考信号的序列和时频位置。第一信号强度测量值可以为根据URS得到的参考信号接收功率(Reference Signal Receiving Power,RSRP)或其它能反应信号强度的测量值,如参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等,本申请实施例并不限定第一信号强度测量值的类型,本申请实施例以第一信号强度测量值为RSRP进行说明,可以理解的是,由于用户终端天线非收发分离且同时同频,因此用户间的干扰在一定相干时间内具有互易性。
在一实施例中,第二参考信号为第一基站设备周期性或非周期性发送的下行测量参考信号(Downlink Reference Signal,DRS),DRS可用于干扰测量,其发送的周期性或非周期性可根据实际通信需要设置,可以理解的是,DRS可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),也可以是其他特定设计的参考信号,第二参考信号用于用户测量基站的期望信号,可以用来提高干扰信道测量准确度,所有下行测量参考信号的序列和时频位置信息也是预先设定或者由基站广播给所有用户。第二信号强度测量值可以为根据DRS得到的RSRP或RSRQ,本申请实施例并不限定第二信号强度测量值的类型,本申请实施例以第二信号强度测量值为RSRP进行说明。
参照图3所示,在一实施例中,上述步骤S130中还可以包括但不限于步骤S210和步骤S220。
步骤S210,获取噪声功率,并根据第一信号强度测量值、第二信号强度测量值和噪声功率得到测量信息。
步骤S220,或者,获取通信环境信息,并根据第一信号强度测量值、第二信号强度测量值和通信环境信息得到测量信息。
在一实施例中,测量信息还可以包含有噪声功率和通信环境信息,下行的第一用户设备可以将包含有噪声功率或者通信环境信息的测量信息发送给第一基站设备,以供第一基站设备根据测量信息来得到信干噪比。例如,下行的第一用户设备可以获取根据自身通信需求设置的噪声功率,并根据第一信号强度测量值、第二信号强度测量值和噪声功率得到测量信息,还可以获取第一用户设备的环境信息得到通信环境信息,可以包括环境杂音的信息、地形信息或其他方面影响通信质量的信息,并根据第一信号强度测量值、第二信号强度测量值和通信环境信息得到测量信息,可以理解的是,根据以上多个信息得到的测量信息,可以供第一基站设备进行处理,测量信息可以是第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息的统称,并不需要进行多余的计算,即第一用户设备发送给第一基站的测量信息视为将第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息发送给第一基站设备,又或者,测量信息可以是基于第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息处理得到的一个信息,第一基站设备在根据测量信息进行解析后,可以得到表征第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息的情况,在此不做具体限制。
在一实施例中,第二用户设备的数量为多个,多个第二用户设备归属第二空分组,参照图4所示,上述步骤S110中还可以包括但不限于步骤S310和步骤S320。
步骤S310,接收第二空分组内多个第二用户设备发送的多个第一参考信号。
步骤S320,结合第二空分组的多个第一参考信号得到第一信号强度测量值。
在一实施例中,同一小区内多个上行用户中会有部分用户在同一时频资源传输上行数据,即上行MU(Multi-User)空分,同理多个下行用户中会有部分用户在同一时频资源接收下行数据,即下行MU空分。图5是多上下行用户MU空分的通信场景,其中用户1至3为上行用户,上行用户2和3同一上行空分组,用户4至7为下行用户,下行用户5和6同一下行空分组,本申请实施例中的基站可以决定空分组的行为优先于全双工调度,基站先确定上下行的空分配对,再根据测量信息决定全双工配对以便最大化提升频谱效率。在实施例中,上行的第二用户设备处于第二空分组时,由于上行第二空分组内的多个第二用户设备处于同一上行空分组,多个第二用户设备对下行的第一用户设备造成的干扰是一个整体干扰,全双工配对时多个第二用户设备也作为一个整体进行配对,第一用户设备可以接收第二空分组内的所有第二用户设备发送过来的第一参考信息,第二空分组为上行空分组,并根据这多个第一 参考信号来得到第一信号强度测量值,在一实施例中,下行的用户可以接收上行空分组内的多个上行用户发送的上行测量参考信号,对上行空分组内的用户作为一个整体来考虑,因此基于上行空分组内的上行测量参考信号来得到RSRP。
在一实施例中,上述步骤S320中还可以包括但不限于以下步骤:
根据第二空分组内的多个第一参考信号加权得到第一信号强度测量值。
在一实施例中,第二空分组内多个第二用户设备对下行的第一用户设备造成的干扰是一个整体干扰,全双工配对时多个第二用户设备也作为一个整体进行配对,因此第一用户设备在得到第一信号强度测量值时,根据第二空分组内的多个第一参考信号加权得到,在一实施例中,第一信号强度测量值根据第二空分组内的多个第二用户设备发送的第一参考信号相加之后得到,例如,参照图5所示,下行用户4至7分别在对应时频位置检测来自上行用户1至3的URS并计算参考信号接收功率
其中X∈[U1,U2U3],Y∈[D4,D5,D6,D7],用户2和3同属一个上行空分组内,因此可以得到包含用户2和3的上行空分组的参考信号接收功率为
需要说明的是,第二用户设备还可以包括相邻小区的上行用户,参照图6所示,当本申请实施例中的第一用户设备为小区1的下行用户,第一基站设备为小区1中的基站,第二用户设备可以为多个,包括小区1中的上行用户以及相邻的小区2中的上行用户,第一用户设备在受到本小区的上行用户的干扰的同时,还会受到相邻小区的上行用户的干扰,因此本申请实施例中的通信方法需要消除相邻小区的干扰,第一信号强度测量值根据不同的上行用户的第一参考信号得到,可以理解的是,第一信号强度测量值也根据多个不同小区的第二用户设备发送的第一参考信号加权得到。
参照图7所示,在一实施例中,上述步骤S140中的根据调度指令进行通信,可以包括但不限于以下步骤至少之一的步骤S410和步骤S420。
步骤S410,当信干噪比大于或等于门限值,根据调度指令与第二用户设备在同一时频资源下通信。
步骤S420,当信干噪比小于门限值,根据调度指令与第二用户设备在不同时频资源下通信。
在一实施例中,第一用户设备根据第一基站设备发送的调度指令执行通信调度,第一基站设备在确定得到调度指令时,获取用户设备之间通信需求能接受的最小信干噪比的门限值,基于信干噪比与门限值的大小关系进行判断,当信干噪比大于或等于门限值,该下行的第一用户设备与上行的第二用户设备能在同一时频资源进行全双工通信,因此第一用户设备根据调度指令与第二用户设备在同一时频资源下通信,当信干噪比小于门限值,该下行的第一用户设备与上行的第二用户设备不能在同一时频资源调度全双工通信,因此第一用户设备根据调度指令与第二用户设备在不同时频资源下通信,通过信干噪比与最小门限值的判断,能够调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率。
本申请实施例还提供了一种通信方法,应用于第一基站设备,参照图8所示,本申请实施例中的通信方法包括但不限于步骤S510、步骤S520、步骤S530和步骤S540。
步骤S510,向第一用户设备发送第二参考信号,以使第一用户设备根据第二参考信号得到第二信号强度测量值。
步骤S520,接收第一用户设备发送的测量信息,测量信息包括第一信号强度测量值和第二信号强度测量值,第一信号强度测量值由第一用户设备根据第二用户设备的第一参考信号得到。
步骤S530,根据测量信息得到第一用户设备与第二用户设备的信干噪比,根据信干噪比生成调度指令,调度指令用于确定第一用户设备和第二用户设备是否在同一时频资源下通信。
步骤S540,向第一用户设备和第二用户设备发送调度指令,以使第一用户设备和第二用户设备根据调度指令进行通信。
在一实施例中,第一用户设备和第二用户设备之间可通过第一基站设备通信,第一基站设备发送第二参考信号给第一用户设备,以使第一用户设备根据第二参考信号分别得到第二信号强度测量值,第一用户设备还将根据第二用户设备发送的第一参考信号得到第一信号强度测量值,因此第一基站设备可以接收第一用户设备发送的测量信息,测量信息包括了第一信号强度测量值和第二信号强度测量值,第一基站设备根据测量信息计算得到第一用户设备与第二用户设备之间的信干噪比,并根据信干噪比得到调度指令,调度指令可以用于确定第一用户设备和第二用户设备是否在同一时频资源下通信,第一基站设备发送调度指令给第一用户设备和第二用户设备,当确定第一用户设备和第二用户设备在同一时频资源下通信时,第一用户设备和第二用户设备可响应于调度指令并在同一时频资源下进行全双工通信,否则不在同一时频资源调度全双工通信。
需要说明的是,第一用户设备和第二用户设备分别为小区内的下行用户和上行用户,通过本申请实施例中的通信方法,能通过用户测量上报和基站调度有效地消除用户间干扰,调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率,本申请实施例实现简单,干扰消除准确,配置灵活简便,促进全双工技术在蜂窝小区系统中的应用。当本申请实施例中的第一用户设备为下行用户,第二用户设备为上行用户,因此第一参考信息为上行用户发送的上行参考信息,第二参考信息为第一基站设备发送的下行参考信息,与上述实施例中应用在第一用户设备的通信方法的实施例中的表述一致,在此不对通信网络做过多赘述。
在一实施例中,第一参考信号为上行用户周期性或非周期性发送的URS,URS可用于干扰测量,其发送的周期性或非周期性可根据实际通信需要设置,可以理解的是,URS可以是解调参考信号或者探测参考信号,也可以是其他特定设计的参考信号,可以用来提高干扰信道测量准确度,所有上行测量参考信号的序列和时频位置信息可以预先设定或者由基站广播给所有用户,因此各用户也知道其他用户终端发送测量参考信号的序列和时频位置。第一信号强度测量值可以为根据URS得到的RSRP或其它能反应信号强度的测量值,如RSRQ等,本申请实施例并不限定第一信号强度测量值的类型,本申请实施例以第一信号强度测量值为RSRP进行说明,可以理解的是,由于用户终端天线非收发分离且同时同频,因此用户间的干扰在一定相干时间内具有互易性。
在一实施例中,第二参考信号为第一基站设备周期性或非周期性发送的DRS,DRS可用于干扰测量,其发送的周期性或非周期性可根据实际通信需要设置,可以理解的是,DRS可以是信道状态信息参考信号,也可以是其他特定设计的参考信号,第二参考信号用于用户测量基站的期望信号,可以用来提高干扰信道测量准确度,所有下行测量参考信号的序列和时频位置信息也是预先设定或者由基站广播给所有用户。第二信号强度测量值可以为根据DRS 得到的RSRP或RSRQ,本申请实施例并不限定第二信号强度测量值的类型,本申请实施例以第二信号强度测量值为RSRP进行说明。
在一实施例中,测量信息包括第一用户设备的噪声功率,上述步骤S510中还可以包括但不限于以下步骤:
根据测量信息表征的第一信号强度测量值、第二信号强度测量值和噪声功率得到信干噪比。
在一实施例中,测量信息包含有第一用户设备的噪声功率,第一基站设备根据测量信息表征的第一信号强度测量值、第二信号强度测量值和噪声功率得到信干噪比,例如,信干噪比为第二信号强度测量值除以第一信号强度测量值和噪声功率的和后得到的值,在结合噪声功率后得到的信干噪比,能够更准确反映通信的干扰,提高调度的准确性。
参照图9所示,本申请实施例中的噪声功率根据以下至少一个步骤得到,包括但不限于步骤S610和步骤S620。
步骤S610,接收第一用户设备发送的噪声功率。
步骤S620,或者,获取第一用户设备的通信环境信息并得到噪声功率。
在一实施例中,第一基站设备在计算信干噪比的过程中所用的噪声功率,可以是第一用户设备发送的,第一用户设备在发送的测量信息中,可以包含有该噪声功率,第一基站设备根据测量信息就可以得到噪声功率,或者,第一用户设备可以直接发送噪声功率给第一基站设备,以供第一基站设备根据噪声功率来计算得到信干噪比,在另一实施例中,噪声功率可以是第一基站设备预先设置好的,第一基站设备可以根据通信需求设置一个固定的底噪值,在一实施例中,第一基站设备可以获取第一用户设备的通信环境信息,可以包括环境杂音的信息、地形信息或其他方面影响通信质量的信息,根据该通信环境信息来得到噪声功率,通信环境信息可以是第一基站设备预先根据第一用户设备所处的环境存储好的,也可以是通过其他环境因素判断得到,还可以是第一用户设备发送过来的,第一用户设备可以获取自身的通信环境信息,并发送给第一基站设备,第一用户设备还可以将包含自身的通信环境信息的测量信息发送给第一基站设备,第一基站设备根据测量信息就可以得到通信环境信息,并根据该通信环境信息来得到噪声功率,对噪声功率的由来本申请实施例不做具体限制。
需要说明的是,测量信息可以是第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息的统称,并不需要进行多余的计算,即第一用户设备发送给第一基站的测量信息视为将第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息发送给第一基站设备,又或者,测量信息可以是基于第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息处理得到的一个信息,第一基站设备在根据测量信息进行解析后,可以得到表征第一信号强度测量值、第二信号强度测量值、噪声功率和通信环境信息的情况,在此不做具体限制。
参照图10所示,在一实施例中,上述步骤S530中的根据信干噪比生成调度指令,还可以包括但不限于步骤S710和步骤S720。
步骤S710,获取根据第一用户设备通信需求设定的信干噪比的门限值。
步骤S720,根据信干噪比与门限值的大小关系生成调度指令。
在一实施例中,第一基站设备在确定得到调度指令时,获取用户设备之间通信需求能接受的最小信干噪比的门限值,具体数值可根据场景环境做灵活配置,基于信干噪比与门限值 的大小关系进行判断,通过信干噪比与最小门限值的判断,并根据信干噪比与门限值的大小关系生成调度指令,能够调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率。
参照图11所示,在一实施例中,上述步骤S720中还可以包括但不限于步骤S810和步骤S820。
步骤S810,当信干噪比大于或等于门限值,生成调度指令并确定第一用户设备与第二用户设备在同一时频资源下通信。
步骤S820,当信干噪比小于门限值,生成调度指令并确定第一用户设备和第二用户设备在不同时频资源下通信。
在一实施例中,第一用户设备和第二用户设备根据第一基站设备发送的调度指令执行通信调度,第一基站设备在确定得到调度指令时,获取用户设备之间通信需求能接受的最小信干噪比的门限值,基于信干噪比与门限值的大小关系进行判断,当信干噪比大于或等于门限值,下行的第一用户设备与上行的第二用户设备能在同一时频资源进行全双工通信,因此第一基站设备生成调度指令并确定第一用户设备与第二用户设备在同一时频资源下通信,当信干噪比小于门限值,下行的第一用户设备与上行的第二用户设备不能在同一时频资源调度全双工通信,因此第一基站设备生成调度指令并确定第一用户设备和第二用户设备在不同时频资源下通信,通过信干噪比与最小门限值的判断,能够调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率。
参照图12所示,在一实施例中,上述步骤S720中还可以包括但不限于步骤S910和步骤S920。
步骤S910,根据信干噪比与门限值的大小关系建立第一用户间干扰列表。
步骤S920,基于第一用户间干扰列表生成调度指令。
在一实施例中,基站根据建立的用户间干扰列表来得到调度指令,从而进行通信调度。例如,第一基站设备根据计算得到的信干噪比与门限值的大小关系来建立第一用户间干扰列表,并基于第一用户间干扰列表生成调度指令,依据列表判断是否能调度下行用户与上行用户在同一时频资源进行全双工通信,通过建立列表来进行调度的判断,有利于数据的存储,也有助于基站的判断,列表中存放的大小关系容易被基站获取,且直观,在一实施例中,当下行的第一用户设备周期或非周期性上报测量信息时,第一基站设备可以周期或非周期性的更新和维护第一用户间干扰列表。
在一实施例中,第二用户设备与第二基站设备通信,参照图13所示,上述步骤S910之后,通信方法还可以包括但不限于步骤S1010和步骤S1020。
步骤S1010,向第二基站设备发送第一用户间干扰列表,以使第二基站设备根据第一用户间干扰列表进行通信调度。
步骤S1020,接收第二基站设备发送的第二用户间干扰列表,并根据第二用户间干扰列表更新第一用户间干扰列表,第二用户间干扰列表由第二基站设备根据对应的第一用户设备和第二用户设备得到。
在一实施例中,第一基站设备属于小区1内,小区1内的第一用户设备会受到相邻小区的小区2的干扰,小区2设置有第二基站设备,小区2同样具有下行的第二用户设备和上行 的第一用户设备,小区1内的第一用户设备在受到本小区的上行的第一用户设备的干扰的同时,还会受到相邻小区2的上行的第一用户设备的干扰,因此本申请实施例中的通信方法需要消除相邻小区的干扰,同理,第二基站设备根据小区2内对应的第一用户设备和第二用户设备可以得到第二用户间干扰列表,为了提高多小区之间的通信调度能力,第一基站设备可以向第二基站设备发送第一用户间干扰列表,第一用户间干扰列表是第一基站设备基于小区1内的第一用户设备和第二用户设备得到的,第二基站设备在得到第一用户间干扰列表后,可以根据第一用户间干扰列表更新第二用户间干扰列表,而第一基站设备还可以接收第二基站设备发送的第二用户间干扰列表,并根据第二用户间干扰列表更新第一用户间干扰列表,最终形成多小区联合的干扰列表如表,提高了多小区之间的通信调度能力,可以理解的是,第一基站设备可以周期性或非周期性向第二基站设备发送第一用户间干扰列表,第二基站设备也可以周期性或非周期性向第一基站设备发送第二用户间干扰列表。
在一实施例中,第一用户设备和/或第二用户设备的数量为多个,参照图14所示,上述步骤S810之中还可以包括但不限于步骤S1110、步骤S1120和步骤S1130。
步骤S1110,当信干噪比大于或等于门限值,确定第一用户设备和第二用户设备为可配对关系。
步骤S1120,在满足可配对关系的多个第一用户设备和第二用户设备中,根据可配对关系表征的配对对象、配对数量和信干噪比与门限值的大小关系中的至少一个得到设备优先级。
步骤S1130,根据设备优先级生成调度指令以调度对应的第一用户设备和第二用户设备在同一时频资源下通信。
在一实施例中,参照图15所示,第一基站设备属于小区1内,小区1内的第一用户设备和第二用户设备均可以设置有多个,当信干噪比大于或等于门限值,说明此时用户之间已经满足调度的条件,因此为了优化调度,使得更多的上下行用户能够全双工配对,第一基站设备可以先确定满足调度要求的第一用户设备和第二用户设备为可配对关系,并在满足可配对关系的多个第一用户设备和第二用户设备中,根据可配对关系表征的配对对象、配对数量和信干噪比与门限值的大小关系中的至少一个得到设备优先级,配对对象为哪个第一用户设备与哪个第二用户设备为可配对关系,配对数量为一个第一用户设备与若干个第二用户设备为可配对关系,还是若干个第一用户设备与一个第二用户设备为可配对关系,又或者是多个第一用户设备与多个第二用户设备为可配关系,信干噪比与门限值的大小关系为信干噪比减去门限值的绝对值大小,根据可配对关系表征的配对对象、配对数量和信干噪比与门限值的大小关系可以设置不同的设备优先级等级,对此本申请实施例不对其做具体限制,第一基站设备基于设备优先级生成调度指令以调度对应的第一用户设备和第二用户设备在同一时频资源下通信。
需要说明的是,在多用户场景中有一个上行的第二用户设备满足与多个下行的第二用户设备为可配对关系,同样一个下行的第一用户设备也可能满足与多个上行的第二用户设备为可配对关系,此时第一基站设备可自行设计配对选择方案实现全双工配对,原则是尽量使更多的上下行用户能够全双工配对,本申请实施例不限定其方法,在一实施例的调度中,某下行的第一用户设备只有一个上行的第二用户设备为可配对关系则优先配对该对上下行用户,然后移除该对用户,如果多个下行的第一用户设备都只有同一个上行的第二用户设备为可配对关系,则取信干噪比减去门限值的绝对值最大的那个下行第一用户设备与该上行第二用户 设备配对,然后移除该对用户,如果某下行的第一用户设备有多个上行的第二用户设备为可配对关系,则选择信干噪比最大或信干噪比减去门限值的绝对值最大的对应的上行第二用户设备进行配对,然后移除该对用户,直到只存在无满足配对条件的上下行用户。
参照图16所示,在一实施例中,上述步骤S530中的根据信干噪比生成调度指令,还可以包括但不限于步骤S1210和步骤S1220。
步骤S1210,当第一用户设备的数量为多个,多个第一用户设备归属第一空分组,根据第一空分组内各个第一用户设备与第二用户设备的信干噪比生成调度指令。
步骤S1220,当第二用户设备的数量为多个,多个第二用户设备归属第二空分组,根据第一用户设备与第二空分组内各个第二用户设备的信干噪比生成调度指令。
在一实施例中,同一小区内多个上行用户中会有部分用户在同一时频资源传输上行数据,即上行MU空分,同理多个下行用户中会有部分用户在同一时频资源接收下行数据,即下行MU空分,本申请实施例中的基站可以决定空分组的行为优先于全双工调度,基站先确定上下行的空分配对,再根据测量信息决定全双工配对以便最大化提升频谱效率。例如,当第一用户设备的数量为多个,多个第一用户设备归属第一空分组,根据第一空分组内各个第一用户设备与第二用户设备的信干噪比生成调度指令,第一基站设备在调度的时候将下行的第一空分组看成一个整体来执行调度,当第一空分组内的各个第一用户设备与第二用户设备的信干噪比均大于门限值,才生成调度第一空分组与第二用户设备在同一时频资源下全双工通信的调度指令。当第二用户设备的数量为多个,多个第二用户设备归属第二空分组,根据第一用户设备与第二空分组内各个第二用户设备的信干噪比生成调度指令,由于上行第二空分组内的多个第二用户设备处于同一上行空分组,多个第二用户设备对下行的第一用户设备造成的干扰是一个整体干扰,全双工配对时多个第二用户设备也作为一个整体进行配对,第一用户设备可以接收第二空分组内的所有第二用户设备发送过来的第一参考信息,第二空分组为上行空分组,并根据这多个第一参考信号来得到第一信号强度测量值,第一基站设备在根据第一信号强度测量值得到信干噪比时,即为考虑了第二空分组内各个第二用户设备作为整体的情况,在一实施例中,下行的用户可以接收上行空分组内的多个上行用户发送的上行测量参考信号,对上行空分组内的用户作为一个整体来考虑,因此基于上行空分组内的上行测量参考信号来得到RSRP。
本申请实施例还提供了一种通信方法,应用于第二用户设备,参照图17所示,本申请实施例中的通信方法包括但不限于步骤S1310和步骤S1320。
步骤S1310,向第一用户设备发送第一参考信号,以使第一用户设备根据第一参考信号得到第一信号强度测量值。
步骤S1320,接收第一基站设备发送的调度指令,根据调度指令进行通信。
其中,调度指令由第一基站设备根据第一用户设备与第二用户设备的信干噪比得到,调度指令用于确定第一用户设备和第二用户设备是否在同一时频资源下通信,信干噪比由第一基站设备根据测量信息得到,测量信息包括第一信号强度测量值和第二信号强度测量值,第二信号强度测量值由第一用户设备根据第一基站设备发送的第二参考信号得到。
在一实施例中,第一用户设备和第二用户设备之间可通过第一基站设备通信,第二用户设备可向第一用户设备发送第一参考信号,以使第一用户设备根据第一参考信号得到第一信号强度测量值,第一用户设备将由第一信号强度测量值和第二信号强度测量值得到的测量信 息发送给第一基站设备以供调度控制,第一基站设备根据测量信息计算得到第一用户设备与第二用户设备之间的信干噪比,并根据信干噪比得到调度指令,调度指令可以用于确定第一用户设备和第二用户设备是否在同一时频资源下通信,第一基站设备发送调度指令给第一用户设备和第二用户设备,当确定第一用户设备和第二用户设备在同一时频资源下通信时,第一用户设备和第二用户设备可响应于调度指令并在同一时频资源下进行全双工通信,否则不在同一时频资源调度全双工通信。
需要说明的是,第一用户设备和第二用户设备分别为小区内的下行用户和上行用户,通过本申请实施例中的通信方法,能通过用户测量上报和基站调度有效地消除用户间干扰,调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率,本申请实施例实现简单,干扰消除准确,配置灵活简便,促进全双工技术在蜂窝小区系统中的应用。当本申请实施例中的第一用户设备为下行用户,第二用户设备为上行用户,因此第一参考信息为上行用户发送的上行参考信息,第二参考信息为第一基站设备发送的下行参考信息,与上述实施例中应用在第一用户设备的通信方法的实施例中的表述一致,在此不对通信网络做过多赘述。
在一实施例中,第一参考信号为上行用户周期性或非周期性发送的URS,URS可用于干扰测量,其发送的周期性或非周期性可根据实际通信需要设置,可以理解的是,URS可以是解调参考信号或者探测参考信号,也可以是其他特定设计的参考信号,可以用来提高干扰信道测量准确度,所有上行测量参考信号的序列和时频位置信息可以预先设定或者由基站广播给所有用户,因此各用户也知道其他用户终端发送测量参考信号的序列和时频位置。第一信号强度测量值可以为根据URS得到的RSRP或其它能反应信号强度的测量值,如RSRQ等,本申请实施例并不限定第一信号强度测量值的类型,本申请实施例以第一信号强度测量值为RSRP进行说明,可以理解的是,由于用户终端天线非收发分离且同时同频,因此用户间的干扰在一定相干时间内具有互易性。
在一实施例中,第二参考信号为第一基站设备周期性或非周期性发送的DRS,DRS可用于干扰测量,其发送的周期性或非周期性可根据实际通信需要设置,可以理解的是,DRS可以是信道状态信息参考信号,也可以是其他特定设计的参考信号,第二参考信号用于用户测量基站的期望信号,可以用来提高干扰信道测量准确度,所有下行测量参考信号的序列和时频位置信息也是预先设定或者由基站广播给所有用户。第二信号强度测量值可以为根据DRS得到的RSRP或RSRQ,本申请实施例并不限定第二信号强度测量值的类型,本申请实施例以第二信号强度测量值为RSRP进行说明。
参照图18所示,在一实施例中,上述步骤S1320中的根据调度指令进行通信,可以包括但不限于以下步骤至少之一的步骤S1410和步骤S1420
步骤S1410,当信干噪比大于或等于门限值,根据调度指令与第一用户设备在同一时频资源下通信。
步骤S1420,当信干噪比小于门限值,根据调度指令与第一用户设备在不同时频资源下通信。
在一实施例中,第二用户设备根据第一基站设备发送的调度指令执行通信调度,第一基站设备在确定得到调度指令时,获取用户设备之间通信需求能接受的最小信干噪比的门限值,基于信干噪比与门限值的大小关系进行判断,当信干噪比大于或等于门限值,该下行的第一 用户设备与上行的第二用户设备能在同一时频资源进行全双工通信,因此第二用户设备根据调度指令与第一用户设备在同一时频资源下通信,当信干噪比小于门限值,该下行的第一用户设备与上行的第二用户设备不能在同一时频资源调度全双工通信,因此第二用户设备根据调度指令与第一用户设备在不同时频资源下通信,通过信干噪比与最小门限值的判断,能够调度互干扰小的上下行用户使用同一时频资源进行全双工通信,使得小区内用户终端的信干噪比大大提高,从而极大的提高了通信频谱效率。
需要说明的是,第二用户设备中执行的通信方法可与上述实施例中在第一用户设备和第一基站设备中执行的通信方法相对应,在此不做赘述。
下面为本申请实施例中的具体应用场景:
实施例一
图2是根据本申请实施例的全双工通信中用户间干扰消除的通信方法的一个实施例,单小区中基站是全双工基站,用户终端工作在时分双工(Time Division Duplexing,TDD)模式,用户1为上行用户,用户2为下行用户。
该实施例包括以下步骤:
步骤1.1:上行用户1周期或非周期性发送第一参考信号,即URS。
步骤1.2:下行用户2检测来自上行用户1的URS,计算第一信号强度测量值,即参考信号接收功率,标识为
其中U1表示上行用户1,D2表示下行用户2。由于用户终端天线非收发分离且同时同频,因此用户间的干扰在一定相干时间内具有互易性,也就是说在一定相干时间内的某一刻,如果用户1接收下行数据,用户2发送上行数据,那么下行用户1检测来自上行用户2的测量参考信号接收功率:
步骤1.4:下行用户2上报测量信息
及
给第一基站设备,第一基站设备计算下行用户2的
其中N
D2为下行用户2的噪声功率,N
D2可以通过下行用户2测量上报也可以固定为一底噪值,本申请实施例不限定其获取方法。为后述简洁方便将
简化为
以下同理。
步骤1.5:如果
则第一基站设备可调度下行用户2与上行用户1在同一时频资源进行全双工通信,其中TH
D2为下行用户2通信需求能接受的最小SINR门限值,具体数值可根据场景环境做灵活配置。如果
则第一基站设备调度下行用户2与上行用户1在不同的时频资源进行通信。
步骤1.6:第一基站设备根据接收到的测量信息生成维护一张第一用户间干扰列表,第一基站设备依据列表判断下行用户2与上行用户1是否能进行全双工配对,下行用户周期或非周期性上报测量数值,第一基站设备周期或非周期性的更新干扰列表,表1如下所示:
表1 实施例一的第一用户间干扰列表
实施例二
图15是根据本申请实施例的全双工通信中用户间干扰消除的通信方法的一个实施例,实施例二单小区中只有一个上行用户和一个下行用户,更一般的情况是同一小区内有M个上行用户和N个下行用户。图15是实施例二多上下行用户的通信场景,其中用户1至3为上行用户,用户4至5为下行用户。
该实施例包括以下步骤:
步骤2.1:上行用户1至3在不同时频位置周期或非周期性发送第一参考信号,即URS。
步骤2.2:下行用户4至5分别在对应时频位置检测来自上行用户1至3的URS并计算第一信号强度测量值,即参考信号接收功率,标识为
其中X∈[U1,U2,U3],Y∈[D4,D5]。同理由于用户终端天线非收发分离且同时同频,因此用户间的干扰在一定相干时间内具有互易性。
步骤2.4:下行用户4至5上报测量信息给第一基站设备,第一基站设备计算下行用户4至5的
其中N
Y为下行用户Y的噪声功率,N
Y可以通过用户Y测量上报也可以固定为一底噪值,本申请实施例不限定其获取方法。
步骤2.5:如果
则第一基站设备可调度下行用户Y与上行用户X在同一时频资源进行全双工通信,其中TH
Y为下行用户Y通信需求能接受的最小SINR门限值,具体数值可根据场景环境做灵活配置。如果
则第一基站设备调度下行用户Y与上行用户X在不同的时频资源进行通信。
步骤2.6:第一基站设备根据接收到的测量信息生成维护一张第一用户间干扰列表,基站依据列表判断下行用户Y与上行用户X是否能进行全双工配对,下行用户周期或非周期性上报测量数值,基站周期或非周期性的更新干扰列表。
步骤2.7:在多用户场景中有可能一个上行用户满足与多个下行用户进行全双工配对,如表2中上行用户2可与下行用户4或5全双工配对,同样一个下行用户也可能满足与多个上行用户进行全双工配对,如下行用户4可与上行用户1或2全双工配对,此时基站可自行设计配对选择方案实现全双工配对,原则是尽量使更多的上下行用户能够全双工配对,本申请实施例不限定其方法。例如,某下行用户只有一个上行用户满足配对条件则优先配对该对上下行用户,然后移除该对用户,如果多个下行用户都只有同一个上行用户满足配对条件,则取
最大的那个下行用户与该上行用户配对然后移除,然后如果某下行用户有多个上行用户满足配对条件,则选择最大的对应的上行用户进行配对然后移除,直到只存在无满足配对条件的上下行用户,表2如下所示:
表2 实施例二的第一用户间干扰列表
实施例三
图5是根据本申请实施例的全双工通信中用户间干扰消除的通信方法的一个实施例,针对实施例二,更一般的情况是同一小区内M个上行用户中会有m个用户在同一时频资源传输上行数据,即上行MU空分,同理N个下行用户中会有n个用户在同一时频资源接收下行数据,即下行MU空分,图5是实施例三多上下行用户MU空分的通信场景,其中用户1至3为上行用户,上行用户2和3同一上行空分组。用户4至7为下行用户,下行用户5和6同一下行空分组。第一基站设备决定空分组的行为优先于全双工调度,也就是说第一基站设备先确定上下行的空分配对,再根据测量信息决定全双工配对以便最大化提升频谱效率。
该实施例包括以下步骤:
步骤3.1:上行用户1至3在不同时频位置周期或非周期性发送第一参考信号,即URS,由于上行用户2和3同一上行空分组,上行用户2和3对下行用户造成的干扰是一个整体干扰,全双工配对时上行用户2和3也作为一个整体进行配对。
步骤3.2:下行用户4至7分别在对应时频位置检测来自上行用户1至3的URS并计算第一信号强度测量值,即参考信号接收功率,标识为
其中X∈[U1,U2U3],Y∈[D4,D5,D6,D7],
由于下行用户5和6同一下行空分组,因此全双工配对时下行用户5和6也作为一个整体进行对配,即下行用户5和6需同时满足全双工配对条件才可进行配对。
步骤3.5:如果
则第一基站设备可调度下行用户Y与上行用户X在同一时频资源进行全双工通信,TH
Y为下行用户Y通信需求能接受的最小SINR门限值,具体数值可根据场景环境做灵活配置。如果
则第一基站设备调度下行用户Y与上行用户X在不同的时频资源进行通信。
步骤3.6:第一基站设备根据接收到的测量信息生成维护一张干扰列表,基站依据列表判断下行用户Y与上行用户X是否能进行全双工配对。下行用户周期或非周期性上报测量数值,基站周期或非周期性的更新干扰列表。如表3所示上行用户1对下行用户5和6同时满足门限条件,上行用户1可与下行用户5和6全双工配对,上行用户2和3对下行用户6满足门限条件,但是对下行用户5不满足门限条件,由于下行用户5和6同一下行空分组因 此上行用户2和3不能与下行用户5和6全双工配对,上行用户2和3可与下行用户7全双工配对,表3如下所示:
表3 实施例三的第一用户间干扰列表
实施例四
图6是根据本申请实施例的全双工通信中用户间干扰消除的通信方法的一个实施例,本实施例四考虑多小区的多上下行用户的通信场景,小区1有3个上行用户1至3,上行用户2和3同一上行空分组,4个下行用户4至7,下行用户5和6同一下行空分组,小区2有3个上行用户8至10,上行用户8和9同一上行空分组,2个下行用户11至12。如图6所示全双工通信时小区1中的下行用户不仅会受到本小区1上行用户的干扰,同时会受到邻小区2中上行用户的干扰,尤其是在下行用户处于小区边缘的时候邻小区用户干扰可能更加严重。
该实施例包括以下步骤:
步骤4.1:上行用户在不同时频位置周期或非周期性发送第一参考信号,即URS,小区1中上行用户2和3同一上行空分组,因此上行用户2和3对下行用户造成的干扰是一个整体干扰,全双工配对时上行用户2和3作为一个整体进行配对。同理小区2中上行用户8和9同一上行空分组,上行用户8和9对下行用户造成的干扰是一个整体干扰,全双工配对时上行用户8和9也作为一个整体进行配对。
步骤4.2:下行用户分别在对应时频位置检测来自上行用户的URS并计算第一信号强度测量值,即参考信号接收功率,标识为
其中,X∈[U1,U2U3,U8U9,U10],Y∈[D4,D5,D6,D7D11,D12]。下行用户5和6同一下行空分组,因此全双工配对时下行用户5和6作为一个整体进行对配,即下行用户5和6需同时满足全双工配对条件才可进行配对。
步骤4.3:第一基站设备和第二基站设备周期或非周期性发送第二参考信号,即DRS,下行用户4至7检测来自第一基站设备的DRS并计算第二信号强度测量值,即参考信号接收功率,标识为
其中B1表示第一基站设备,下行用户11至12检测来自第二基站设备的DRS并计算参考信号接收功率
其中B2表示第二基站设备。
步骤4.5:如果
则第一基站设备可调度下行用户Y与上行用户X在同一时频资源进行全双工通信,TH
Y为下行用户Y通信需求能接受的最小SINR门限值,具体数值可根据场景环境做灵活配置。如果
则第一基站设备调度下行用户Y与上行用户X 在不同的时频资源进行通信。
步骤4.6:第一基站设备根据接收到的测量信息生成维护一张第一用户间干扰列表,基站依据列表判断下行用户Y与上行用户X是否能进行全双工配对。下行用户周期或非周期性上报测量数值,基站周期或非周期性的更新干扰列表。第一基站设备和第二基站设备相互交换本小区干扰列表信息(如通过X2接口、多小区协作等),最终形成多小区联合的干扰列表4,表4如下所示:
表4 实施例四的第一用户间干扰列表
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
图19示出了本申请实施例提供的网络设备100。网络设备100包括:处理器101、存储器102及存储在存储器102上并可在处理器101上运行的计算机程序,计算机程序运行时用于执行上述的通信方法。
处理器101和存储器102可以通过总线或者其他方式连接。
存储器102作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请实施例描述的通信方法。处理器101通过运行存储在存储器102中的非暂态软件程序以及指令,从而实现上述的通信方法。
存储器102可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的通信方法。此外,存储器102可以包括高速随机存取存储器102,还可以包括非暂态存储器102,例如至少一个储存设备存储器件、闪存器件或其他非暂态固态存储器件。在一些实施方式中,存储器102包括相对于处理器101远程设置的存储器102,这些远程存储器102可以通过网络连接至该网络设备100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的通信方法所需的非暂态软件程序以及指令存储在存储器102中,当被一个或者多个处理器101执行时,执行上述的通信方法,例如,执行图1中的方法步骤S110至步 骤S140、图3中的方法步骤S210至步骤S220、图4中的方法步骤S310至步骤S320、图7中的方法步骤S410至步骤S420、图8中的方法步骤S510至步骤S540、图9中的方法步骤S610至步骤S620、图10中的方法步骤S710至步骤S720、图11中的方法步骤S810至步骤S820、图12中的方法步骤S910至步骤S920、图13中的方法步骤S1010至步骤S1020、图14中的方法步骤S1110至步骤S1130、图16中的方法步骤S1210至步骤S1220、图17中的方法步骤S1310至步骤S1320、图18中的方法步骤S1410至步骤S1420。
本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的通信方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,执行图1中的方法步骤S110至步骤S140、图3中的方法步骤S210至步骤S220、图4中的方法步骤S310至步骤S320、图7中的方法步骤S410至步骤S420、图8中的方法步骤S510至步骤S540、图9中的方法步骤S610至步骤S620、图10中的方法步骤S710至步骤S720、图11中的方法步骤S810至步骤S820、图12中的方法步骤S910至步骤S920、图13中的方法步骤S1010至步骤S1020、图14中的方法步骤S1110至步骤S1130、图16中的方法步骤S1210至步骤S1220、图17中的方法步骤S1310至步骤S1320、图18中的方法步骤S1410至步骤S1420。
本申请实施例至少包括以下有益效果:本申请实施例中的通信方法,第一用户设备和第二用户设备之间可通过第一基站设备通信,第一用户设备可接收第二用户设备发送的第一参考信号和第一基站设备发送的第二参考信号,并根据第一参考信号和第二参考信号分别得到第一信号强度测量值和第二信号强度测量值,并将由第一信号强度测量值和第二信号强度测量值得到的测量信息发送给第一基站设备以供调度控制,第一基站设备根据测量信息得到第一用户设备与第二用户设备之间的信干噪比,并根据信干噪比得到调度指令,可以用于确定第一用户设备和第二用户设备是否在同一时频资源下通信,第一基站设备发送调度指令给第一用户设备和第二用户设备,通过本申请实施例中的通信方法,通过用户设备测量上报和基站设备调度有效地消除用户间干扰,干扰消除准确,配置灵活简便,可以提高网络性能。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、储存设备存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或 者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
还应了解,本发明实施例提供的各种实施方式可以任意进行组合,以实现不同的技术效果。
以上是对本申请实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。
Claims (18)
- 一种通信方法,应用于第一用户设备,所述方法包括:接收第二用户设备发送的第一参考信号,根据所述第一参考信号得到第一信号强度测量值;接收第一基站设备发送的第二参考信号,根据所述第二参考信号得到第二信号强度测量值;根据所述第一信号强度测量值和所述第二信号强度测量值得到测量信息,向所述第一基站设备发送所述测量信息,以使所述第一基站设备通过所述测量信息得到信干噪比,并根据所述信干噪比生成调度指令,所述调度指令用于确定所述第一用户设备和所述第二用户设备是否在同一时频资源下通信;接收所述第一基站设备发送的所述调度指令,根据所述调度指令进行通信。
- 根据权利要求1所述的通信方法,其中,所述根据所述第一信号强度测量值和所述第二信号强度测量值得到测量信息,包括:获取噪声功率,并根据所述第一信号强度测量值、所述第二信号强度测量值和所述噪声功率得到测量信息;或者,获取通信环境信息,并根据所述第一信号强度测量值、所述第二信号强度测量值和所述通信环境信息得到测量信息。
- 根据权利要求1所述的通信方法,其中,所述第二用户设备的数量为多个,多个所述第二用户设备归属第二空分组,所述接收第二用户设备发送的第一参考信号,根据所述第一参考信号得到第一信号强度测量值,包括:接收所述第二空分组内多个所述第二用户设备发送的多个所述第一参考信号;结合所述第二空分组的多个所述第一参考信号得到所述第一信号强度测量值。
- 根据权利要求3所述的通信方法,其中,所述结合所述第二空分组的多个所述第一参考信号得到所述第一信号强度测量值,包括:根据所述第二空分组内的多个所述第一参考信号加权得到所述第一信号强度测量值。
- 根据权利要求1所述的通信方法,其中,所述根据所述调度指令进行通信,包括以下至少之一:当所述信干噪比大于或等于门限值,根据所述调度指令与所述第二用户设备在同一时频资源下通信;或当所述信干噪比小于门限值,根据所述调度指令与所述第二用户设备在不同时频资源下通信。
- 一种通信方法,应用于第一基站设备,所述方法包括:向第一用户设备发送第二参考信号,以使所述第一用户设备根据所述第二参考信号得到第二信号强度测量值;接收所述第一用户设备发送的测量信息,所述测量信息包括第一信号强度测量值和所述第二信号强度测量值,所述第一信号强度测量值由所述第一用户设备根据第二用户设备发送的第一参考信号得到;根据所述测量信息得到所述第一用户设备与所述第二用户设备的信干噪比,根据所述信 干噪比生成调度指令,所述调度指令用于确定所述第一用户设备和所述第二用户设备是否在同一时频资源下通信;向所述第一用户设备和所述第二用户设备发送所述调度指令,以使所述第一用户设备和所述第二用户设备根据所述调度指令进行通信。
- 根据权利要求6所述的通信方法,其中,所述测量信息包括所述第一用户设备的噪声功率,所述根据所述测量信息得到所述第一用户设备与所述第二用户设备的信干噪比,包括:根据所述测量信息表征的所述第一信号强度测量值、所述第二信号强度测量值和所述噪声功率得到所述信干噪比。
- 根据权利要求7所述的通信方法,其中,所述噪声功率根据以下至少一个步骤得到:接收所述第一用户设备发送的所述噪声功率;或者,获取所述第一用户设备的通信环境信息并得到所述噪声功率。
- 根据权利要求6所述的通信方法,其中,所述根据所述信干噪比生成调度指令,包括:获取根据所述第一用户设备通信需求设定的所述信干噪比的门限值;根据所述信干噪比与所述门限值的大小关系生成所述调度指令。
- 根据权利要求9所述的通信方法,其中,所述根据所述信干噪比与所述门限值的大小关系生成所述调度指令,包括:当所述信干噪比大于或等于所述门限值,生成所述调度指令并确定所述第一用户设备与所述第二用户设备在同一时频资源下通信;当所述信干噪比小于所述门限值,生成所述调度指令并确定所述第一用户设备和所述第二用户设备在不同时频资源下通信。
- 根据权利要求9所述的通信方法,其中,所述根据所述信干噪比与所述门限值的大小关系生成所述调度指令,包括:根据所述信干噪比与所述门限值的大小关系建立第一用户间干扰列表;基于所述第一用户间干扰列表生成所述调度指令。
- 根据权利要求11所述的通信方法,其中,所述第二用户设备与第二基站设备通信,所述根据所述信干噪比与所述门限值的大小关系建立第一用户间干扰列表之后,所述通信方法还包括:向所述第二基站设备发送所述第一用户间干扰列表,以使所述第二基站设备根据所述第一用户间干扰列表进行通信调度;接收所述第二基站设备发送的第二用户间干扰列表,并根据所述第二用户间干扰列表更新所述第一用户间干扰列表,所述第二用户间干扰列表由所述第二基站设备根据对应的所述第一用户设备和所述第二用户设备得到。
- 根据权利要求10所述的通信方法,其中,所述第一用户设备和/或所述第二用户设备的数量为多个,所述当所述信干噪比大于或等于所述门限值,生成所述调度指令并确定所述第一用户设备与所述第二用户设备在同一时频资源下通信,包括:当所述信干噪比大于或等于所述门限值,确定所述第一用户设备和所述第二用户设备为可配对关系;在满足所述可配对关系的多个所述第一用户设备和所述第二用户设备中,根据所述可配对关系表征的配对对象、配对数量和所述信干噪比与所述门限值的大小关系中的至少一个得 到设备优先级;根据所述设备优先级生成所述调度指令以调度对应的所述第一用户设备和所述第二用户设备在同一时频资源下通信。
- 根据权利要求6所述的通信方法,其中,所述根据所述信干噪比生成调度指令,包括:当所述第一用户设备的数量为多个,多个所述第一用户设备归属第一空分组,根据所述第一空分组内各个所述第一用户设备与所述第二用户设备的所述信干噪比生成所述调度指令;当所述第二用户设备的数量为多个,多个所述第二用户设备归属第二空分组,根据所述第一用户设备与所述第二空分组内各个所述第二用户设备的所述信干噪比生成所述调度指令。
- 一种通信方法,应用于第二用户设备,所述方法包括:向第一用户设备发送第一参考信号,以使所述第一用户设备根据所述第一参考信号得到第一信号强度测量值;接收第一基站设备发送的调度指令,根据所述调度指令进行通信;其中,所述调度指令由所述第一基站设备根据所述第一用户设备与所述第二用户设备的信干噪比得到,所述调度指令用于确定所述第一用户设备和所述第二用户设备是否在同一时频资源下通信,所述信干噪比由所述第一基站设备根据测量信息得到,所述测量信息包括所述第一信号强度测量值和第二信号强度测量值,所述第二信号强度测量值由所述第一用户设备根据所述第一基站设备发送的第二参考信号得到。
- 根据权利要求15所述的通信方法,其中,所述根据所述调度指令进行通信,包括以下至少之一:当所述信干噪比大于或等于门限值,根据所述调度指令与所述第一用户设备在同一时频资源下通信;或当所述信干噪比小于门限值,根据所述调度指令与所述第一用户设备在不同时频资源下通信。
- 一种网络设备,包括:存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时如实现权利要求1至16中任意一项所述的通信方法。
- 一种计算机可读存储介质,所述存储介质存储有程序,所述程序被处理器执行实现如权利要求1至16中任意一项所述的通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22914827.5A EP4451779A1 (en) | 2021-12-28 | 2022-12-27 | Communication method, network device and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111623340.6 | 2021-12-28 | ||
CN202111623340.6A CN116419415A (zh) | 2021-12-28 | 2021-12-28 | 通信方法、网络设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023125575A1 true WO2023125575A1 (zh) | 2023-07-06 |
Family
ID=86997973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/142517 WO2023125575A1 (zh) | 2021-12-28 | 2022-12-27 | 通信方法、网络设备及存储介质 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4451779A1 (zh) |
CN (1) | CN116419415A (zh) |
WO (1) | WO2023125575A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018036305A1 (zh) * | 2016-08-21 | 2018-03-01 | 华为技术有限公司 | 全双工信道干扰控制的方法与设备 |
CN111835442A (zh) * | 2019-04-18 | 2020-10-27 | 北京三星通信技术研究有限公司 | 干扰测量方法及相应设备 |
CN112235095A (zh) * | 2020-12-16 | 2021-01-15 | 京信通信系统(中国)有限公司 | 信道质量的反馈方法、装置、基站、终端设备和介质 |
CN112383367A (zh) * | 2020-11-16 | 2021-02-19 | 杭州电子科技大学上虞科学与工程研究院有限公司 | 一种同时同频全双工系统mcs选择方法和装置 |
CN112867031A (zh) * | 2019-03-30 | 2021-05-28 | 华为技术有限公司 | 通信方法及装置 |
-
2021
- 2021-12-28 CN CN202111623340.6A patent/CN116419415A/zh active Pending
-
2022
- 2022-12-27 WO PCT/CN2022/142517 patent/WO2023125575A1/zh active Application Filing
- 2022-12-27 EP EP22914827.5A patent/EP4451779A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018036305A1 (zh) * | 2016-08-21 | 2018-03-01 | 华为技术有限公司 | 全双工信道干扰控制的方法与设备 |
CN112867031A (zh) * | 2019-03-30 | 2021-05-28 | 华为技术有限公司 | 通信方法及装置 |
CN111835442A (zh) * | 2019-04-18 | 2020-10-27 | 北京三星通信技术研究有限公司 | 干扰测量方法及相应设备 |
CN112383367A (zh) * | 2020-11-16 | 2021-02-19 | 杭州电子科技大学上虞科学与工程研究院有限公司 | 一种同时同频全双工系统mcs选择方法和装置 |
CN112235095A (zh) * | 2020-12-16 | 2021-01-15 | 京信通信系统(中国)有限公司 | 信道质量的反馈方法、装置、基站、终端设备和介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116419415A (zh) | 2023-07-11 |
EP4451779A1 (en) | 2024-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10743195B2 (en) | Communication method and apparatus | |
Xu et al. | Performance enhanced transmission in device-to-device communications: Beamforming or interference cancellation? | |
US9432221B2 (en) | Methods and systems for adaptive channel estimation/prediction filter design | |
CN111770509B (zh) | 通信方法及装置 | |
US9379827B2 (en) | Method, system, and apparatus for notifying and determining antenna port position relationship | |
CN103339873B (zh) | 多节点系统中的信道状态信息反馈方法和装置 | |
EP3876565A1 (en) | Data transmission method and device, and readable storage medium | |
US11817929B2 (en) | Channel state information measurement method and apparatus and network side device | |
US10880906B2 (en) | Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme | |
CN112544101B (zh) | 调度方法、装置、存储介质及通信系统 | |
CN106793047B (zh) | 一种上行功率控制方法及基站 | |
JP6119031B2 (ja) | 無線通信システム、無線端末、無線基地局、および無線通信方法 | |
CN113543083A (zh) | 一种用于确定旁路资源的方法和设备 | |
CN110024462A (zh) | 基于动态时分双工的传输装置、方法以及通信系统 | |
KR102535608B1 (ko) | 전력 제어 방법 및 장치 | |
CN110800367B (zh) | 直连通信操作处理方法、装置及存储介质 | |
CN110832891A (zh) | 用于通信中继发现的技术和装置 | |
CN101820680B (zh) | 一种中继网络中的调度方法 | |
CN102325375A (zh) | 资源分配方法及装置 | |
WO2023125575A1 (zh) | 通信方法、网络设备及存储介质 | |
CN116437458A (zh) | 一种资源分配方法及装置 | |
CN109275182B (zh) | 一种下行功率分配参数的通知方法及装置 | |
CN105050193B (zh) | 一种信号发送、解调方法以及设备和系统 | |
WO2013123886A1 (zh) | 移动性测量的方法和设备 | |
WO2017020162A1 (zh) | 资源调度方法、装置和基站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22914827 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022914827 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022914827 Country of ref document: EP Effective date: 20240715 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |