WO2018036305A1 - 全双工信道干扰控制的方法与设备 - Google Patents

全双工信道干扰控制的方法与设备 Download PDF

Info

Publication number
WO2018036305A1
WO2018036305A1 PCT/CN2017/093406 CN2017093406W WO2018036305A1 WO 2018036305 A1 WO2018036305 A1 WO 2018036305A1 CN 2017093406 W CN2017093406 W CN 2017093406W WO 2018036305 A1 WO2018036305 A1 WO 2018036305A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
terminal
network device
information
Prior art date
Application number
PCT/CN2017/093406
Other languages
English (en)
French (fr)
Inventor
李荣鹏
陈雁
权威
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018036305A1 publication Critical patent/WO2018036305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and more specifically, to a method for controlling inter-terminal interference by using uplink pilot detection in full-duplex wireless communication.
  • the current wireless communication technology has been developed into a long-term evolution (English full name: Long Term Evolution; English abbreviation: LTE) system, taking FIG. 1 as an example.
  • the existing LTE system includes multiple cells, one in each cell.
  • the network device 11 and a plurality of terminals 12, the network device 11 transmit common control information and data to the terminal 12, and reference signals for detecting common control information and data.
  • the network device sends signals to the terminal and the terminal sends signals to the network device to utilize independent resources.
  • the independent resources may be the same time but different frequencies, that is, frequency division duplex (English full name: Frequency Division Duplexing; English abbreviation: FDD), or at the same frequency but at different times, instant duplex (English full name: Time Division Duplexing; English abbreviation: TDD).
  • frequency division duplex English full name: Frequency Division Duplexing; English abbreviation: FDD
  • instant duplex English full name: Time Division Duplexing; English abbreviation: TDD
  • full-duplex Fel Duplex; English abbreviation: FD
  • full-duplex uses the same spectrum on the transceiver channel that works at the same time. That is, at the same time, the same frequency can double the spectrum efficiency.
  • the transmission signal of the network device itself overlaps with the signal transmitted by the terminal and the power is much larger than the signal of the terminal, the signal of the terminal forms self-interference.
  • the prior art effectively suppresses self-interference signals by means of antenna isolation, analog cancellation and digital cancellation self-interference cancellation techniques, making full-duplex mode possible.
  • the subframes seen by the network device side are FD subframes, and the uplink and downlink are no longer distinguished, and each FD subframe is on the terminal side. It may be an uplink subframe or a downlink subframe. Different terminals may no longer be in a consistent uplink and downlink configuration.
  • interference there are various types of interference in a full-duplex system.
  • the system may be more serious than the non-full-duplex system, for example, the uplink terminal (hereinafter referred to as the uplink terminal) signal pair may be more serious than the non-full-duplex system.
  • the downlink terminal (hereinafter referred to as the downlink terminal) generates interference, which exists in different terminals in the same cell and also in different terminals in different cells. How to coordinate interference between terminals becomes an important issue.
  • Embodiments of the present invention provide methods, network devices, and terminals for coordinating terminal interference in a full duplex system.
  • an embodiment of the present application provides a method for acquiring interference information. Specifically, a terminal detects N time-frequency resource locations in a time-frequency resource of an uplink RS used for transmitting another terminal, where the N-group is The interference generated by the RS at the location of the frequency resource is less than or equal to a preset threshold, and the N is an integer; the terminal feeds back the information of the N sets of time-frequency resource locations to the network device. Through such feedback information, the terminal can inform the network device that the terminal will not be interfered by the uplink terminal corresponding to the N sets of time-frequency resource locations, that is, notify the network device of a possible set of paired terminals, thus avoiding the specific uplink terminal. The identification effectively reduces the amount of feedback.
  • the interference generated by the RSs of the N sets of time-frequency resource locations on the terminal is less than or equal to a preset threshold value, where the terminal is in the uplink RS for sending other terminals.
  • the time-frequency resource cannot detect the uplink RS, or the detected signal strength or energy of the uplink RS is lower than or equal to the preset threshold.
  • the information of the N sets of time-frequency resource locations is an index value of the N sets of time-frequency resource locations. This will ensure a small amount of feedback.
  • the terminal feeds back the information of the N sets of time-frequency resource locations to the network device, where the N meets N ⁇ Q, where Q is a preset uplink RS corresponding to the feedback that needs to be fed back.
  • Q is a preset uplink RS corresponding to the feedback that needs to be fed back.
  • the number of time-frequency resource locations This will ensure an upper limit on the amount of feedback.
  • an embodiment of the present application provides a method for acquiring interference information, where specifically, a network device receives information of N sets of time-frequency resource locations sent by a terminal or sent by another network device, and the N sets of time-frequency resources The location is used by the other terminal to send the uplink RS, where the N is an integer, and the interference of the RS on the N-th time-frequency resource location to the terminal is less than or equal to a preset threshold; At least one of the other terminals corresponding to the N sets of time-frequency resource locations is determined as the paired terminal of the terminal, and pairing information is generated and sent to the terminal and the paired terminal, so that the paired terminal of the terminal and The terminal can communicate on the same time-frequency resource.
  • a network device receives information of N sets of time-frequency resource locations sent by a terminal or sent by another network device, and the N sets of time-frequency resources The location is used by the other terminal to send the uplink RS, where the N is an integer, and the interference of the RS on the N-th
  • the information of the N sets of time-frequency resource locations is an index value of the N sets of time-frequency resource locations.
  • the network device receives information of the N sets of time-frequency resource locations sent by the another network device to the network device by using a backhaul mechanism. This ensures that the uplink terminal of the neighboring cell does not interfere with the downlink terminal of the local cell.
  • the network device sends the information of the N sets of time-frequency resource locations to the another network device by using a backhaul mechanism (for example, an X2 interface) or an air interface.
  • a backhaul mechanism for example, an X2 interface
  • an air interface for example, an air interface
  • an embodiment of the present application provides a method for acquiring interference information, where, in particular, a terminal detects an M group time-frequency resource location in a time-frequency resource used for transmitting an uplink RS of another terminal, where the M group is used.
  • the interference of the RS on the frequency resource location to the terminal is greater than a preset threshold, and the M is an integer; the terminal feeds back the information of the M group time-frequency resource location to the network device.
  • the terminal can inform the network device that the terminal will be interfered by the uplink terminal corresponding to the M group time-frequency resource location, that is, the network device is required to avoid the paired terminal set, thus avoiding the specific uplink terminal. Identification, effectively reducing the amount of feedback.
  • the interference generated by the RS of the M group of time-frequency resource locations to the terminal is greater than a preset threshold value, where the terminal is used to send an uplink RS of another terminal. Upstream detected by frequency resources The signal strength or energy of the RS is greater than the predetermined threshold.
  • the information of the M group time-frequency resource location is an index value of the M group time-frequency resource location. This will ensure a small amount of feedback.
  • an embodiment of the present application provides a method for acquiring interference information, where specifically, a network device receives information of M group time-frequency resource locations sent by a terminal or sent by another network device, and the M group time-frequency resources The location is used by the other terminal to send the uplink RS, where the M is an integer, and the interference of the RS on the M-group time-frequency resource location to the terminal is greater than a preset threshold; the network device will use the M At least one of the other terminals corresponding to the uplink RS time-frequency resource location other than the group time-frequency resource location is determined as the pairing terminal of the terminal, and the pairing information is generated and sent to the terminal and the pairing terminal, so that The paired terminal and the terminal can communicate on the same time-frequency resource.
  • the information of the M group time-frequency resource location is an index value of the M group time-frequency resource location.
  • the information that the network device receives the M group time-frequency resource location sent by another network device includes: the network device receiving, by the network device, the network device, by using a backhaul mechanism Information about the location of the M group of time-frequency resources. This ensures that the uplink terminal of the neighboring cell does not interfere with the downlink terminal of the local cell.
  • the network device sends the information of the N sets of time-frequency resource locations to the another network device by using a backhaul mechanism (for example, an X2 interface) or an air interface.
  • a backhaul mechanism for example, an X2 interface
  • an air interface for example, an air interface
  • an embodiment of the present application provides a terminal, where the terminal includes an antenna, a transmitter, a receiver, a memory, and a processor, where the antenna is coupled to the transmitter and the receiver, and the processor is coupled to The transmitter is coupled to the receiver, the memory is coupled to the processor; the memory is configured to store an uplink RS of another terminal and a time-frequency resource location of an uplink RS for transmitting the other terminal Corresponding relationship; the receiver is configured to receive, by the antenna, the time-frequency resource location of the uplink RS for transmitting another terminal according to the correspondence; the processor is configured to use the receiver according to the And detecting, by the time-frequency resource location, the N sets of time-frequency resource locations from the time-frequency resource locations, and transmitting information of the N sets of time-frequency resource locations to the transmitter; The interference generated by the RS on the time-frequency resource location to the terminal is less than or equal to a preset threshold; the transmitter is configured to send, by using the antenna, information about the N sets of time-frequency frequency
  • the interference generated by the RSs of the N sets of time-frequency resource locations on the terminal is less than or equal to a preset threshold value, where the receiver is on the N sets of time-frequency resources.
  • the uplink RS or signal strength or energy detection result of the other terminal cannot be detected to be lower than or equal to a preset threshold.
  • the information of the N sets of time-frequency resource locations is an index value of the N sets of time-frequency resource locations; and the memory is further configured to store an index value and a location of the time-frequency resource locations. Corresponding relationship of the time-frequency resource location; the processor is further configured to acquire the N group according to the correspondence between the index value of the time-frequency resource location and the time-frequency resource location stored in the memory The index value of the time-frequency resource location.
  • the N satisfies N ⁇ Q, where Q is a preset number of time-frequency resource locations corresponding to the uplink RS that needs to feed back the information.
  • the embodiment of the present application provides a network device, where the network device includes an antenna, a transmitter, a memory, and a processor, where the antenna is coupled to the transmitter, and the processor is coupled to the transmitter.
  • the memory and The processor is coupled to: the memory is configured to store a correspondence between all uplink terminals, uplink RSs, and time-frequency resource locations; and the processor receives N sets of time-frequency resource locations sent from another network device or terminal. Information that the interference of the RSs at the N sets of time-frequency resource locations on the terminal is less than or equal to a preset threshold, where N is an integer; the processor is further configured to store according to the memory.
  • the processor is further configured to generate pairing information, and Transmitting the pairing information to the transmitter; the transmitter is configured to send the pairing information to the terminal and the pairing terminal of the terminal by the antenna, so that the paired terminal of the terminal and the The terminal can communicate on the same time-frequency resource.
  • the information of the N sets of time-frequency resource locations is an index value of the N sets of time-frequency resource locations; the memory is further configured to store an index value of the time-frequency resource locations and the The correspondence of time-frequency resource locations.
  • the network device further includes a receiver, the receiver is coupled to the processor and the antenna, and the receiver receives, by using the antenna, N sets of time-frequency resource locations sent by the terminal. Information and information of the location of the time-frequency resource is communicated to the processor.
  • the receiver and the transmitter are combined into a transceiver.
  • the network device further includes a backhaul device (eg, an X2 interface) coupled to the processor for transmitting the N sets of time-frequency to the another network device Information about the location of the resource.
  • a backhaul device eg, an X2 interface
  • the network device further includes a backhaul device (eg, an X2 interface) coupled to the processor for acquiring the N sets of time-frequency from the another network device Information about the location of the resource.
  • a backhaul device eg, an X2 interface
  • the transmitter is further configured to send information of the N sets (or M sets) of time-frequency resource locations to another network device through the antenna.
  • the receiver is further configured to acquire information of the N sets (or M sets) of time-frequency resource locations from another network device through an antenna.
  • an embodiment of the present application provides a terminal, where the terminal includes an antenna, a transmitter, a receiver, a memory, and a processor, where the antenna is coupled to the transmitter and the receiver, and the processor is coupled to The transmitter is coupled to the receiver, the memory is coupled to the processor; the memory is configured to store an uplink RS of another terminal and a time-frequency resource location of an uplink RS for transmitting the other terminal Corresponding relationship; the receiver is configured to receive, by the antenna, the time-frequency resource location of the uplink RS for transmitting another terminal according to the correspondence; the processor is configured to use the receiver according to the The M-group time-frequency resource location is detected from the time-frequency resource location, and the M-group time-frequency resource location information is transmitted to the transmitter; the M-group The interference generated by the RS at the time-frequency resource location on the terminal is greater than a preset threshold; the transmitter is configured to send, by using the antenna, information about the M-group time-frequency resource location to the network device, where M is
  • the interference generated by the RS of the M group of time-frequency resource locations to the terminal is greater than a preset threshold, and the receiver detects that the M group of time-frequency resources are detected.
  • the uplink RS or signal strength or energy detection result of the other terminal is greater than a preset threshold.
  • the information of the M group time-frequency resource location is an index value of the N sets of time-frequency resource locations; and the memory is further configured to store an index value and location of the time-frequency resource location. Corresponding relationship of the time-frequency resource location; the processor is further configured to acquire the M group according to the correspondence between the index value of the time-frequency resource location and the time-frequency resource location stored in the memory The index value of the time-frequency resource location.
  • an embodiment of the present application provides a network device, where the network device includes an antenna, a transmitter, and a storage. And a processor coupled to the transmitter, the processor coupled to the transmitter, the memory coupled to the processor; the memory for storing all uplink terminals, uplink RS and time Corresponding relationship between frequency resource locations; the processor receives information of M group time-frequency resource locations sent by another network device or terminal, and the RSs of the M group time-frequency resource locations are generated by the terminal The interference is greater than a preset threshold, and the M is an integer; the processor is further configured to find a time-frequency resource of an uplink RS that is different from the M-group time-frequency resource location according to the stored relationship of the memory.
  • the processor is further configured to generate pairing information, and transmit the pairing information to the transmitter;
  • the transmitter is configured to send the pairing information to the terminal and the pairing terminal of the terminal by using the antenna, so that the paired terminal of the terminal and the terminal can access the same time-frequency resource Line communication.
  • the information of the M group time-frequency resource location is an index value of the M group time-frequency resource location; the memory is further configured to store an index value of the time-frequency resource location and the The correspondence of time-frequency resource locations.
  • the network device further includes a receiver, the receiver is coupled to the processor and the antenna, and the receiver receives, by using the antenna, the M group time-frequency resource locations sent by the terminal. Information and information of the location of the time-frequency resource is communicated to the processor.
  • the receiver and the transmitter are combined into a transceiver.
  • the network device further includes a backhaul device (eg, an X2 interface) coupled to the processor for transmitting the M group time-frequency to the another network device Information about the location of the resource.
  • a backhaul device eg, an X2 interface
  • the network device further includes a backhaul device (eg, an X2 interface) coupled to the processor for acquiring the M group time-frequency from the another network device Information about the location of the resource.
  • a backhaul device eg, an X2 interface
  • the transmitter is further configured to send information of the N sets (or M sets) of time-frequency resource locations to another network device through the antenna.
  • the receiver is further configured to acquire information of the N sets (or M sets) of time-frequency resource locations from another network device through an antenna.
  • a computer program and a memory may also be included, the computer program being stored in the memory, the processor running the computer program to perform the above-described method of acquiring interference information.
  • the number of processors is at least one, and is used to execute an execution instruction of the memory storage, that is, a computer program.
  • the memory can also be integrated inside the processor.
  • a computer program and a memory may also be included, the computer program being stored in the memory, the processor running the computer program to perform the method of acquiring interference information as described above.
  • the number of processors is at least one, and is used to execute an execution instruction of the memory storage, that is, a computer program.
  • the memory can also be integrated inside the processor.
  • the present application further provides a storage medium, including: a readable storage medium and a computer program, the computer program for implementing a method for acquiring interference information on a terminal side.
  • the application further provides a storage medium, comprising: a readable storage medium and a computer program, wherein the computer program is used to implement a method for acquiring interference information on a network device side.
  • the application further provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the terminal can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the encoding device implements the various embodiments described above The encoding method provided.
  • the present application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the network device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the decoding device implements the coding methods provided by the various embodiments described above.
  • the network device can schedule the uplink and downlink transmission of the paired terminal according to the detection result of the signal strength or energy of the uplink pilot and the feedback of the terminal to the interference situation, and control the interference of the uplink terminal to the downlink terminal, thereby fully utilizing Full-duplex features improve the spectral efficiency of the system.
  • FIG. 2 is a schematic diagram of a full-duplex interference type in the prior art.
  • FIG. 3 is a schematic flowchart of acquiring interference information according to an embodiment of the present invention.
  • Figure 4 shows an example of an uplink RS.
  • FIG. 5 is a schematic flowchart of another method for acquiring interference information according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another method for acquiring interference information according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • both the network device and the terminal need to acquire the channel information of the interference channel.
  • the network device can find a suitable uplink terminal pairing for the downlink terminal.
  • the so-called pairing means that the terminal in the uplink transmission does not cause interference or at least interferes with the terminal in the downlink transmission on the same time-frequency resource. Does not affect the reception of the downlink terminal.
  • the transmit power of the pilot is at least not lower than the transmit power of the data
  • the pilot of an uplink terminal cannot be detected on the downlink terminal side, or the detected signal strength or energy of the pilot of the uplink terminal is small
  • the uplink terminal does not affect the downlink communication of the downlink terminal, that is, there is no interference or less interference.
  • the solution to the inter-terminal interference is to let the network device pair the downlink terminal with the uplink terminal that has no interference or less interference to the downlink terminal, and the problem is transformed into how the network device finds zero interference or small interference to the downlink terminal.
  • Uplink terminal Different implementation methods are discussed below by different embodiments according to different situations within a cell and between cells.
  • an uplink terminal and a downlink terminal are taken as examples, but in fact, these principles and methods are also applicable to multi-user and multi-user MIMO (Chinese full name: multiple input and multiple output; English full name: Multiple-Input-Multiple- Output) and other multiplexing technologies are not described here.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the terminal 1 (downlink terminal) in FIG. 2 is taken as an example, and it may be interfered by the terminal 2 (uplink terminal), and may also be paired with the terminal 2.
  • Network device in this application, a network device refers to a base station or a device having a similar function of a base station or a similar function of a base station), and can acquire interference between users and perform pairing and time-frequency resources according to the process shown in FIG. Scheduling:
  • Step 310 The uplink terminal (here, the terminal 2 is taken as an example) sends an uplink reference signal on the time-frequency resource allocated by the network device (here, the network device 1 is taken as an example).
  • the uplink reference signal here may be an uplink RS (Reference Signal) in the prior art, such as a demodulation pilot (English name: Demodulation RS), a probe pilot (English name: Sounding RS), or a new reference signal. It is used to improve the accuracy of interference channel quality measurement.
  • RS Reference Signal
  • different uplink RSs have different time-frequency positions (without loss of generality, and the following time-frequency positions are simply referred to as positions), or the sequences are different (the sequence here may be a code, that is, the RS of the same position is coded) The way to distinguish.)
  • the sequence and/or location information of all uplink RSs may be preset or broadcast by the network device to all terminals served by the network device, so each terminal also knows the sequence and/or location of the RSs transmitted by other terminals, but does not know (and does not need Knowing the correspondence between other terminals and the RS sequence and the transmitted location, only the network device can uniquely determine the uplink terminal by the location and/or sequence of the uplink RS. In other words, under the scheduling of the network device, Allow different upstream terminals to multiplex the same RS.
  • the network device side stores the correspondence between the sequence of the RS and the time-frequency position of the RS, and the correspondence between the sequence of the RS or the time-frequency position of the RS and the terminal, and the terminal side stores the RS-sequence and the time-frequency position of the RS. Correspondence between the two. This precondition also applies to other embodiments of the present application.
  • FIG. 4 shows a schematic diagram of an uplink RS in an RB (English full name: Resource Block; Chinese full name: resource block).
  • the abscissa in FIG. 4 represents the time domain, the ordinate represents the frequency domain, and the symbol in the time domain is Unit, in the frequency domain, in subcarriers.
  • RB is usually the smallest granularity of resource allocation. It consists of multiple basic resource units (English name: Resource Element, RE for short). An RE occupies one symbol in the time domain and one subcarrier in the frequency domain.
  • the RB in FIG. 4 is composed of 20 consecutive symbols in the time domain and 12 consecutive subcarriers in the frequency domain (ie, 12 ⁇ 20).
  • one RB is composed of 12 consecutive subcarriers in the frequency domain and 7 consecutive symbols in the time domain (ie, 12 ⁇ 7), which is different from the present example, but the principle is the same, so the present application
  • the RB shown in FIG. 4 is taken as an example for illustration.
  • FIG. 3 there are a total of five sets of RSs, each set of RSs consisting of two discrete REs, in which the two discrete REs (of course, the two REs can of course also be designed to be continuous) can be coded.
  • the split mode accommodates two RSs, and the two RSs respectively correspond to two terminals.
  • the RS of the terminal 1 is the symbol sequence a1a2
  • the RS of the terminal 2 is the symbol sequence b1b2, where a1a2 and b1b2 are orthogonal, and a1 and b1 are mapped to the same.
  • a2 and b2 are mapped to the same RE.
  • the network device notifies the two terminals of the time-frequency resource positions of the two RSs, it may be broadcast or unicast, but the correspondence between the RS group number (including the RS sequence number) and the location of the time-frequency resource is predetermined. Therefore, all terminals know that the 0th group RS occupies two discrete REs corresponding to the 0th group as shown in FIG.
  • Step 320 The network device detects the RS sent by the uplink terminal to determine which uplink terminals are performing uplink transmission.
  • Step 330 The downlink terminal (here, the terminal 1 is taken as an example) periodically or aperiodically listens to the time-frequency resource location of the uplink RS, and performs blind detection on the uplink RS.
  • the blind detection here refers to the time-frequency according to the RS.
  • the allocation rule of the resource is detected, that is, whether the time-frequency resource to be detected has a corresponding uplink RS, or whether the detection result of the signal strength or energy detected on the time-frequency resource to be detected is higher than a preset threshold. . For example, as shown in FIG.
  • the downlink terminal since the correspondence between the time-frequency resource location of the uplink RS corresponding to each terminal and the RS sequence is predetermined, the downlink terminal knows At which time-frequency resource locations, the channel will have uplink RS transmission, but the downlink terminal does not know and need to know the correspondence between each uplink RS and other terminals, that is, it does not know which terminal each RS is sent by. .
  • the terminal 1 can detect that an RS is included in a certain RB, it means that the terminal 2 corresponding to the RS is in the vicinity of the terminal 1, and the terminal 2 has a serious interference to the terminal 1 when performing uplink transmission.
  • the terminal 1 generally causes serious interference to the terminal 2, and the principle is the same, and details are not described herein again.
  • the terminal 1 detects an RB, it only knows that there is a signal transmission at the time-frequency resource location corresponding to the RS of the terminal 2, but does not know which terminal the signal is sent, that is, the terminal 1 It is not known that the terminal 2 has transmitted an RS having strong interference with the terminal 1.
  • the terminal 1 does not detect the uplink RS of the terminal 2 at the time-frequency resource location corresponding to the uplink RS of the terminal 2, or the detected signal strength or energy is low, the terminal corresponding to the time-frequency resource location is not considered to be
  • the terminal 1 is formed with interference or less interference.
  • Step 340 The terminal 1 determines the time-frequency resource location suitable for pairing and feeds back to the network device based on the detection result of the uplink RS.
  • the pairing in the present application refers to the terminal that the network device schedules an uplink transmission when the terminal 1 performs downlink transmission. If the terminal does not interfere with the terminal 1, it is said that the two terminals are paired. Therefore, the time-frequency resource location suitable for pairing herein refers to that the uplink terminal corresponding to the time-frequency resource location does not interfere or interfere with the downlink terminal. Small, the description will not be repeated in the following description.
  • the terminal 1 can detect an uplink RS on a certain time-frequency resource, or if it fails to detect any RS, it detects that the signal strength or energy transmitted on a certain time-frequency resource exceeds a preset.
  • the threshold means that there is strong interference between the downlink terminal and the terminal that uses the time-frequency resource to send the uplink RS.
  • the downlink terminal does not detect the uplink RS at a certain time-frequency resource location, or the detected signal strength or energy of the uplink RS is lower than a preset threshold, it indicates that the uplink is sent at the time-frequency resource location.
  • the terminals of the RS (considering that there may be different RSs multiplexing the same time-frequency resources, so the terminals corresponding to the same time-frequency resource may have more than one) have no interference or less interference with the terminal 1.
  • the terminal 1 performs detection at each location where the uplink RS is located, determines N groups (N is a positive integer) time-frequency resources without interference or small interference, and feeds back the location information of the N groups of time-frequency resources to the network device.
  • the location information of the time-frequency resource may also be an index value corresponding to the time-frequency location.
  • the network device side and the terminal side may also store an index value corresponding to the time-frequency resource location of the uplink RS, so that the downlink terminal detects that the RS on the N-time time-frequency resource location does not interfere or interfere with the downlink terminal during the interception process. After the small value, only the index value corresponding to the N group time-frequency resource location needs to be fed back to the network device.
  • the index value corresponding to the time-frequency resource location of the uplink RS may be the group number corresponding to the RS in FIG. 4, and there are 5 groups of RSs in FIG. 4, and if the index value is used to feed back the time-frequency position of the RS, only It takes 3 bits. If the specific time-frequency position of the RS is to be directly fed back, it is obvious that 3 bits are not enough, so it is preferable to use the index value to refer to the time-frequency position of the RS.
  • the above-mentioned interception generally refers to the operation of the RS sequence and the received signal stored by the downlink terminal or the network device (English name: correlation), and the obtained correlation value is higher than the preset threshold value.
  • the preset threshold value and the detection threshold of the signal strength or energy may be consistent, or may be higher than the detection threshold of the signal strength or energy.
  • the threshold here can be determined by the downlink terminal itself, or by the network device configuration, or by the network device and the downlink terminal in advance.
  • the method for feeding back the time-frequency position suitable for pairing to the network device is also equivalent to the N groups of uplink RSs that notify the network device that the downlink terminal does not interfere with each other (that is, N groups of uplink terminals, each group of time-frequency resources corresponding to a group of uplink RSs. ).
  • N in this case, N ⁇ Q
  • the downlink terminal by setting a threshold, the downlink terminal detects that the threshold is exceeded and interferes with a large time-frequency resource location (may be set to M, M is a positive integer) and feeds back to the network device, which is The downlink terminal is required to detect the time-frequency position of all possible RSs, and it is necessary to feed back all the time-frequency resource positions or index numbers that detect the RS or exceed the signal strength or energy detection threshold.
  • This type of feedback may result in increased overhead, and the overhead is also uncertain due to the uncertainty of the M value.
  • the downlink terminal can also directly feed back the detected RS sequence information, which is similar to the M time-frequency resource locations with the M-frequency resource positions with large feedback interference, and therefore needs to detect all the RSs, and Feedback all detected RSs.
  • This type of feedback also causes an increase in overhead, and the uncertainty is also caused by the uncertainty of the number of RSs fed back.
  • Step 350 The network device determines the downlink terminal and the uplink terminal that are suitable for pairing according to the feedback result of the downlink terminal and the QoS (English name: Quality of Service; full name: quality of service) requirements, and the allocation of the uplink RS by the network device itself.
  • the paired scheduling operation of the subsequent downlink terminal and the uplink terminal is completed to avoid interference to the downlink terminal.
  • the downlink terminal feeds back information about the resource location of the N group of RSs with little or no interference to the downlink terminal to the network device, so that the network device is based on the resource location of the N group of RSs and the terminal.
  • the corresponding relationship finds the corresponding N sets of uplink terminals.
  • the network device finds at least N groups of uplink terminals according to the uplink RS sequence and/or the correspondence between the uplink RS location and the uplink terminal stored in the network device, and according to the load and service information of the network device in the subsequent scheduling.
  • One or more of the various information reported by all the terminals fed back are selected from the N sets of uplink terminals to be paired with the downlink terminal, so as to ensure no interference or less interference.
  • a downlink terminal cannot find an RS time-frequency resource location without interference or interference, and according to a scheduling principle (such as round-robin allocation, fairness, delay requirement, etc.), it must serve the downlink terminal, the network The device can only schedule the uplink transmission of other terminals when the downlink terminal performs downlink transmission. Of course, at the same time, these other terminals can be scheduled for downlink transmission.
  • a scheduling principle such as round-robin allocation, fairness, delay requirement, etc.
  • the downlink terminal feeds back the M-group RS information (including the time-frequency location and the sequence information) with the largest interference
  • a similar method may be adopted, that is, the transmission time slot of the uplink terminal corresponding to the M-group RS is adjusted, so that the M-group is
  • the uplink transmission of the uplink terminal and the downlink transmission of the downlink terminal are staggered in time to avoid interference.
  • the network device needs to avoid pairing the uplink terminal corresponding to the M time-frequency positions with the downlink terminal when scheduling the pairing. Or avoiding that the uplink terminal corresponding to the RS information is paired with the downlink terminal, that is, the time-frequency bit of the uplink RS outside the M time-frequency positions.
  • the corresponding terminal is paired with the downlink terminal.
  • Step 360 The terminal 2 performs uplink communication according to the scheduling result of the network device. For example, the network device determines that the terminal 1 and the terminal 2 can be paired, and when the terminal 2 performs uplink communication, the terminal 1 can perform downlink communication at the same time.
  • Step 370 The terminal 1 performs downlink communication according to the scheduling result of the network device.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the interference of the uplink terminal in the same cell to the downlink terminal is considered, but when the downlink terminal is at the cell edge, it is preferable to consider the interference of the uplink terminal of the neighboring cell.
  • FIG. 2 it is assumed that terminal 1 and terminal 2 are located in cell 1, terminal 3 is located in cell 2, network device 1 provides services for terminals in cell 1, and network device 2 provides services for terminals in cell 2. Since the terminal 1 is at the edge of the cell 1, the terminal 1 may be interfered by neighboring terminals in the cell 2 in addition to interference from neighboring terminals in the cell 1.
  • FIG. 5 is a flow chart showing the interference of the uplink terminal of the neighboring cell.
  • the terminal 2 transmits the uplink RS to the network device 1 in the cell 1 in the step 1, and the terminal 3 is in the cell.
  • the uplink RS is sent to the network device 2
  • the network device 1 detects the RS sent by the uplink terminal in step 520
  • the terminal 1 listens as the downlink terminal in step 530 and performs feedback in step 540, because steps 511, 520, 530, 540 is similar to steps 310, 320, 330, 340, respectively. Therefore, reference may be made to the description of related parts in Embodiment 1, and details are not described herein again, but it is noted that in step 530, the uplink RS in which the terminal 1 is listening is detected.
  • the operation performed by the network device 1 in step 561 is the same as the step 350 in the first embodiment, but on the basis of this, the network device 2 receives the detection of the uplink RS transmitted by the terminal 3 in the cell 2 in step 512. And receiving, in step 550, the reporting information of the downlink terminal 1 transmitted by the network device 1 through the backhaul mechanism (X2 interface, microwave transmission, or other backhaul mechanism) or directly through the air interface, where the reporting information includes the requirement of complying with the requirement of the terminal 1.
  • the backhaul mechanism X2 interface, microwave transmission, or other backhaul mechanism
  • the network device 2 can use the information notified by the network device 1 in step 562, and can also determine an uplink terminal (for example, terminal 3) that is paired with the downlink terminal (for example, the terminal 1) in the current cell to ensure the present.
  • the uplink terminal of the cell also does not interfere with the terminal 1 or only generates small interference.
  • Each terminal then performs corresponding communications in steps 571, 572, 580, respectively.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the uplink and downlink of the downlink terminal are camped on the same network device.
  • the uplink and downlink of the same terminal may be different.
  • Network equipment Taking the terminal 1 in FIG. 2 as an example, it is assumed that the downlink is in the cell 1 and the uplink (including the feedback and the transmission) is in the cell 2.
  • the whole process is slightly adjusted compared with the second embodiment, and the schematic diagram is shown in FIG. It is seen that, compared with the second embodiment and FIG. 5, the difference is that the N time-frequency resource location information that the terminal 1 feeds back in step 640 is sent to the network device 2, and correspondingly, the step 650 is performed by the network device.
  • the network device 1 is transmitted through the backhaul mechanism (X2 interface, microwave transmission or other backhaul mechanism) or the air interface.
  • the other steps are similar to the second embodiment. For details, refer to the related description in the second embodiment, and details are not described herein again.
  • FIG. 7 is a structural block diagram of a terminal in Embodiments 1 to 3 of the present application. For convenience of description, only parts related to the embodiment of the present application are shown.
  • the terminal 100 shown in FIG. 7 includes an antenna 110, a transmitter 120, and a receiver.
  • Antenna 110 is coupled to transmitter 120 and receiver 130.
  • Processor 140 is coupled to transmitter 120 and receiver 130, and memory 150 is coupled to processor 140.
  • transmitter 120 and receiver 130 may also be combined into transceiver 160.
  • Antenna 110 is used to transmit and receive signals.
  • the memory 150 is configured to store a correspondence between uplink CRs of other terminals and time-frequency resource locations of uplink RSs for transmitting other terminals.
  • the receiver 130 is configured to receive, by the antenna 110, a signal at a time-frequency resource location of an uplink RS for transmitting another terminal according to the correspondence.
  • the processor 140 is further configured to detect N sets of time-frequency resource locations from the time-frequency resource locations according to the receiver 130 receiving the signals at the time-frequency resource location, and transmit the information of the N-group time-frequency resource locations to the sending.
  • the device 120 wherein the interference of the RSs of the N sets of time-frequency resource locations on the terminal is less than or equal to a preset threshold, the information may be a specific description of the location of the N sets of time-frequency resources, or may be The index value of the position of the N sets of time-frequency resources.
  • the M group time-frequency resource location may be detected, and the information of the M group time-frequency resource location is transmitted to the transmitter 120, where the RS of the M-group time-frequency resource location is generated by the terminal
  • the interference is greater than a preset threshold, and the information may be a specific description of the location of the M group of time-frequency resources, or may be an index of the location of the M-group time-frequency resources.
  • the transmitter 120 is configured to send, by using the antenna 110, information about the N sets of time-frequency resource locations to the network device.
  • FIG. 8 is a structural block diagram of a network device in Embodiments 1 to 3 of the present application. For convenience of description, only parts related to the embodiment of the present application are shown.
  • the illustrated network device 200 includes an antenna 210, a transmitter 220, a receiver 230, a processor 240, a memory 250, and an X2 interface 270.
  • Antenna 210 is coupled to transmitter 220 and receiver 230.
  • transmitter 220 and receiver 230 may also be combined into transceiver 260.
  • Antenna 210 is used to transmit and receive signals.
  • the receiver 230 is configured to receive, by using the antenna 210, information about N sets of time-frequency resource locations sent by the downlink terminal, and transmit the information of the time-frequency resource location to the processor 240, where the RS pairs of the N sets of time-frequency resource locations are The interference generated by the terminal is less than or equal to a preset threshold, and the N is an integer.
  • the receiver 230 is configured to receive, by using the antenna 210, information about the M group time-frequency resource locations sent by the downlink terminal, and transmit the information of the time-frequency resource location to the processor 240, where the M-group time-frequency resource locations are located.
  • the interference generated by the RS on the terminal is greater than a preset threshold, and the M is an integer.
  • the X2 interface 270 (which may also be other backhaul devices) is configured to receive information from N sets (or groups of M) of time-frequency resource locations of other network devices and to communicate information of the time-frequency resource locations to the processor 240.
  • the memory 250 is configured to store a correspondence between the terminal, the uplink RS of the terminal, and the time-frequency resource location.
  • the processor 240 is configured to find other terminals corresponding to the information of the N sets of time-frequency resource locations according to the correspondence stored by the memory 250, and determine at least one of the other terminals as the paired terminal of the downlink terminal.
  • the processor 240 is also operative to generate pairing information and pass the pairing information to the transmitter 220. Or, when the terminal feeds back the time-frequency resource location information of the M group that is greater than the interference threshold, the processor 240 avoids pairing all the other terminals corresponding to the M group time-frequency resource location with the downlink terminal, and sets the M group time-frequency resource location.
  • Other terminals corresponding to the uplink RSs are paired with the downlink terminals.
  • the transmitter 220 is configured to send the pairing information to the downlink terminal and the terminal paired with the downlink terminal through the antenna 210, so that the paired terminal and the downlink terminal can communicate on the same time-frequency resource.
  • the processor 240 is further configured to send location information of N groups (or groups of M) of time-frequency resources to the neighboring network device through the X2 interface 270 (which may also be other backhaul devices).
  • the transmitter 220 is further configured to send, by using the antenna 210, information of the N sets (or M sets) of time-frequency resource locations to another network device.
  • the receiver 220 is further configured to acquire, by using the antenna 210, information of the N sets (or M sets) of time-frequency resource locations from another network device.
  • the antenna 110 or the antenna 210 in the fourth embodiment described above may be a single antenna or a multiple antenna.
  • a computer program and a memory may also be included, the computer program being stored in the memory, the processor running the computer program to perform the above-described method of acquiring interference information.
  • the number of processors is at least one, and is used to execute an execution instruction of the memory storage, that is, a computer program.
  • the memory can also be integrated inside the processor.
  • a computer program and a memory may also be included, the computer program being stored in the memory, the processor running the computer program to perform the method of acquiring interference information as described above.
  • the number of processors is at least one, and is used to execute an execution instruction of the memory storage, that is, a computer program.
  • the memory can also be integrated inside the processor.
  • the present application also provides a storage medium comprising: a readable storage medium and a computer program for implementing a method of acquiring interference information on the terminal side.
  • the present application also provides a storage medium comprising: a readable storage medium and a computer program for implementing a method of acquiring interference information on a network device side.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the terminal can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the encoding device implements the encoding methods provided by the various embodiments described above.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the network device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the decoding device implements the coding methods provided by the various embodiments described above.
  • the device embodiments described above are merely illustrative, for example, the division of individual devices, and a part of them may be integrated together as technology advances.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种全双工信道干扰控制的方法与设备,下行终端根据对上行导频的信号强度检测找到适合配对的时频资源位置并反馈给网络设备,网络设备根据时频资源位置与上行终端的对应关系以及下行终端反馈的信息找到与下行终端适合配对的上行终端,有效地控制了上行终端对下行终端的干扰。

Description

全双工信道干扰控制的方法与设备
本申请要求于2016年8月21日提交中国专利局、申请号为201610698254.4、申请名称为“全双工信道干扰控制的方法与设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,并且更具体地,涉及全双工无线通信中利用上行导频的检测来控制终端间干扰的方法。
背景技术
当前的无线通信技术已经发展到长期演进(英文全称:Long Term Evolution;英文缩写:LTE)系统,以附图1为例,现有的LTE系统中包括多个小区,每个小区中都有一个网络设备11和多个终端12,网络设备11向终端12发送公共控制信息和数据,以及用于检测公共控制信息和数据的参考信号。一般地,为了防止互相干扰,网络设备向终端发送信号与终端向网络设备发送信号都利用独立的资源,这个独立的资源可以是相同的时间但不同的频率,即频分双工(英文全称:Frequency Division Duplexing;英文缩写:FDD),或者在相同的频率但不同的时间,即时分双工(英文全称:Time Division Duplexing;英文缩写:TDD)。
随着通信技术的发展,全双工(英文全称:Full Duplex;英文缩写:FD)技术应运而生,相比于FDD和TDD,全双工因在同时工作的收发信道上使用相同的频谱,即同时同频,可以使频谱效率最大提升一倍。然而,由于网络设备自身的发射信号与终端发送的信号在频谱上重叠且功率远远大于终端的信号,因此会对终端的信号形成自干扰。现有技术通过天线隔离,模拟消除和数字消除等自干扰消除技术,对自干扰信号进行了有效的抑制,使得全双工模式成为可能。
由于自干扰消除实现较为复杂,在终端侧实现的成本过高,因此一个常用的折中方案是仅在网络设备实现全双工,而在终端侧还是实现传统的半双工。在这种网络设备采用全双工,终端采用半双工的组网模式中,网络设备侧看到的子帧均是FD子帧,不再区分上下行,而每一个FD子帧在终端侧可能是上行子帧,也可能是下行子帧,不同的终端可以不再是一致的上下行配置。
全双工系统中存在各种不同类型的干扰,例如,参见图2所示,包括网络设备的自干扰、小区间干扰(包括网络设备间干扰、终端间干扰、相邻小区网络设备与终端间干扰)和小区内终端间干扰。其中,相对于非全双工的系统,由于终端的上下行配置可能不一致,终端间的干扰相比非全双工的系统会更加严重,例如处于上行的终端(以下简称为上行终端)信号对处于下行的终端(以下简称为下行终端)产生干扰,这种干扰既存在于同一小区内的不同终端,也存在于不同小区的不同终端。如何协调终端间的干扰就成为一个重要问题。
发明内容
本发明的实施例提供在全双工系统中协调终端干扰的方法,网络设备和终端。
第一方面,本申请的实施例提供一种获取干扰信息的方法,具体为,终端在用于发送其他终端的上行RS的时频资源中检测出N组时频资源位置,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值,所述N为整数;所述终端将所述N组时频资源位置的信息反馈给网络设备。通过这样的反馈信息,终端可以告知网络设备该终端将不会受到该N组时频资源位置对应的上行终端的干扰,也即告知网络设备可能的配对终端的集合,这样避免了对具体上行终端的识别,有效地降低了反馈量。
在一个可能的设计中,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值包括:所述终端在所述用于发送其他终端的上行RS的时频资源检测不到上行RS,或者检测到的上行RS的信号强度或能量低于或等于所述预设的门限值。
在一个可能的设计中,所述N组时频资源位置的信息为所述的N组时频资源位置的索引值。这样可以保证较小的反馈量。
在一个可能的设计中,所述终端将所述N组时频资源位置的信息反馈给网络设备包括:所述N满足N≤Q,其中Q为预先设定的需要反馈的所述上行RS对应的时频资源位置的个数。这样可以确保反馈量有个上限。
第二方面,本申请的实施例提供一种获取干扰信息的方法,具体为,网络设备接收终端发送的或另一网络设备发送的N组时频资源位置的信息,所述N组时频资源位置被其他终端用于发送上行RS,所述N为整数,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值;所述网络设备将所述N组时频资源位置对应的所述其他终端中的至少一个确定为所述终端的配对终端,并生成配对信息发送给所述终端和所述配对终端,以使所述终端的配对终端和所述终端可以在相同的时频资源上进行通信。通过这样的接收反馈和调度过程,可以确保配对的上行终端和下行终端间没有干扰或者干扰较小,有利于充分发挥全双工的优势,提高总的频谱效率。
在一个可能的设计中,所述N组时频资源位置的信息为所述的N组时频资源位置的索引值。
在一个可能的设计中,所述网络设备接收所述另一网络设备通过回传机制向所述网络设备发送的所述N组时频资源位置的信息。这样可以确保相邻小区的上行终端也不会对本小区的下行终端产生干扰。
在一个可能的设计中,所述网络设备通过回传机制(例如X2接口)或空口向所述另一网络设备发送所述N组时频资源位置的信息。
第三方面,本申请的实施例提供一种获取干扰信息的方法,具体为,终端在用于发送其他终端的上行RS的时频资源中检测出M组时频资源位置,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值,所述M为整数;所述终端将所述M组时频资源位置的信息反馈给网络设备。通过这样的反馈信息,终端可以告知网络设备该终端将会受到该M组时频资源位置对应的上行终端的干扰,也即告知网络设备需要回避配对的终端集合,这样避免了对具体上行终端的识别,有效地降低了反馈量。
在一个可能的设计中,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值包括:所述终端在所述用于发送其他终端的上行RS的时频资源检测到的上行 RS的信号强度或能量大于所述预设的门限值。
在一个可能的设计中,所述M组时频资源位置的信息为所述的M组时频资源位置的索引值。这样可以保证较小的反馈量。
第四方面,本申请的实施例提供一种获取干扰信息的方法,具体为,网络设备接收终端发送的或另一网络设备发送的M组时频资源位置的信息,所述M组时频资源位置被其他终端用于发送上行RS,所述M为整数,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值;所述网络设备将所述M组时频资源位置之外的上行RS时频资源位置对应的所述其他终端中的至少一个确定为所述终端的配对终端,并生成配对信息发送给所述终端和所述配对终端,以使所述配对终端和所述终端可以在相同的时频资源上进行通信。通过这样的接收反馈和调度过程,可以确保配对的上行终端和下行终端间没有干扰或者干扰较小,有利于充分发挥全双工的优势,提高总的频谱效率。
在一个可能的设计中,所述M组时频资源位置的信息为所述的M组时频资源位置的索引值。
在一个可能的设计中,所述网络设备接收另一网络设备发送的M组时频资源位置的信息包括:所述网络设备接收所述另一网络设备通过回传机制向所述网络设备发送的所述M组时频资源位置的信息。这样可以确保相邻小区的上行终端也不会对本小区的下行终端产生干扰。
在一个可能的设计中,所述网络设备通过回传机制(例如X2接口)或空口向所述另一网络设备发送所述N组时频资源位置的信息。
第五方面,本申请实施例提供一种终端,所述终端包括天线、发送器、接收器、存储器和处理器,所述天线与所述发送器和所述接收器耦合,所述处理器与所述发送器和所述接收器耦合,所述存储器与所述处理器耦合;所述存储器用于存储其他终端的上行RS和用于发送所述其他终端的上行RS的时频资源位置之间的对应关系;所述接收器用于根据所述对应关系通过所述天线在所述用于发送其他终端的上行RS的时频资源位置上接收信号;所述处理器用于根据所述接收器在所述时频资源位置上接收信号的情况从所述时频资源位置中检测出N组时频资源位置,并将所述N组时频资源位置的信息传递至所述发送器;所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值;所述发送器用于通过所述天线向网络设备发送所述N组时频资源位置的信息。
在一个可能的设计中,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值是指,所述接收器在所述N组时频资源上不能检测到所述其他终端的上行RS或者信号强度或能量检测结果低于或等于预先设定的门限。
在一个可能的设计中,所述的N组时频资源位置的信息为所述的N组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系;所述处理器还用于根据所述存储器存储的所述所述时频资源位置的索引值与所述的时频资源位置的对应关系获取所述N组时频资源位置的索引值。
在一个可能的设计中,所述N满足N≤Q,其中Q为预先设定的需要反馈所述信息的所述上行RS对应的时频资源位置的个数。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括天线、发送器、存储器和处理器,所述天线与所述发送器耦合,所述处理器与所述发送器耦合,所述存储器与 所述处理器耦合;所述存储器用于存储所有上行终端、上行RS和时频资源位置之间的对应关系;所述处理器接收来自于另一网络设备或者终端发送的N组时频资源位置的信息,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值,所述N为整数;所述处理器还用于根据所述存储器存储的对应关系找到与所述N组时频资源位置的信息对应的其他终端,并将所述其他终端中的至少一个确定为所述终端的配对终端;所述处理器还用于生成配对信息,并将所述配对信息传递至所述发送器;所述发送器用于通过所述天线将所述配对信息发送给所述终端和所述终端的配对终端,以使所述终端的配对终端和所述终端可以在相同的时频资源上进行通信。
在一个可能的设计中,所述N组时频资源位置的信息为所述N组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系。
在一个可能的设计中,所述网络设备还包括接收器,所述接收器与所述处理器和所述天线耦合,所述接收器通过所述天线接收终端发送的N组时频资源位置的信息并将所述时频资源位置的信息传递到所述处理器。
在一个可能的设计中,所述接收器和所述发送器合并为收发器。
在一个可能的设计中,所述网络设备还包括回传器件(例如X2接口),所述回传器件与所述处理器耦合,用于向所述另一网络设备发送所述N组时频资源位置的信息。
在一个可能的设计中,所述网络设备还包括回传器件(例如X2接口),所述回传器件与所述处理器耦合,用于从所述另一网络设备获取所述N组时频资源位置的信息。
在一个可能的设计中,发送器还用于通过天线向另一网络设备发送该N组(或M组)时频资源位置的信息。
在一个可能的设计中,接收器还用于通过天线从另一网络设备获取该N组(或M组)时频资源位置的信息。
第七方面,本申请实施例提供一种终端,所述终端包括天线、发送器、接收器、存储器和处理器,所述天线与所述发送器和所述接收器耦合,所述处理器与所述发送器和所述接收器耦合,所述存储器与所述处理器耦合;所述存储器用于存储其他终端的上行RS和用于发送所述其他终端的上行RS的时频资源位置之间的对应关系;所述接收器用于根据所述对应关系通过所述天线在所述用于发送其他终端的上行RS的时频资源位置上接收信号;所述处理器用于根据所述接收器在所述时频资源位置上接收信号的情况从所述时频资源位置中检测出M组时频资源位置,并将所述M组时频资源位置的信息传递至所述发送器;所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值;所述发送器用于通过所述天线向网络设备发送所述M组时频资源位置的信息,M为整数。
在一个可能的设计中,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值是指,所述接收器在所述M组时频资源上检测到所述其他终端的上行RS或者信号强度或能量检测结果大于预先设定的门限。
在一个可能的设计中,所述的M组时频资源位置的信息为所述的N组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系;所述处理器还用于根据所述存储器存储的所述所述时频资源位置的索引值与所述的时频资源位置的对应关系获取所述M组时频资源位置的索引值。
第八方面,本申请实施例提供一种网络设备,所述网络设备包括天线、发送器、存储 器和处理器,所述天线与所述发送器耦合,所述处理器与所述发送器耦合,所述存储器与所述处理器耦合;所述存储器用于存储所有上行终端、上行RS和时频资源位置之间的对应关系;所述处理器接收来自于另一网络设备或者终端发送的M组时频资源位置的信息,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值,所述M为整数;所述处理器还用于根据所述存储器存储的对应关系找到与所述M组时频资源位置的之外的上行RS的时频资源位置对应的其他终端,并将所述其他终端中的至少一个确定为所述终端的配对终端;所述处理器还用于生成配对信息,并将所述配对信息传递至所述发送器;所述发送器用于通过所述天线将所述配对信息发送给所述终端和所述终端的配对终端,以使所述终端的配对终端和所述终端可以在相同的时频资源上进行通信。
在一个可能的设计中,所述M组时频资源位置的信息为所述M组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系。
在一个可能的设计中,所述网络设备还包括接收器,所述接收器与所述处理器和所述天线耦合,所述接收器通过所述天线接收终端发送的M组时频资源位置的信息并将所述时频资源位置的信息传递到所述处理器。
在一个可能的设计中,所述接收器和所述发送器合并为收发器。
在一个可能的设计中,所述网络设备还包括回传器件(例如X2接口),所述回传器件与所述处理器耦合,用于向所述另一网络设备发送所述M组时频资源位置的信息。
在一个可能的设计中,所述网络设备还包括回传器件(例如X2接口),所述回传器件与所述处理器耦合,用于从所述另一网络设备获取所述M组时频资源位置的信息。
在一个可能的设计中,发送器还用于通过天线向另一网络设备发送该N组(或M组)时频资源位置的信息。
在一个可能的设计中,接收器还用于通过天线从另一网络设备获取该N组(或M组)时频资源位置的信息。
在上述终端的具体实现中,还可包括计算机程序和存储器,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行上述的获取干扰信息的方法。处理器的数量为至少一个,用来执行存储器存储的执行指令,即计算机程序。可选的,存储器还可以集成在处理器内部。
在上述网络设备的具体实现中,还可包括计算机程序和存储器,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行上述的获取干扰信息的方法。处理器的数量为至少一个,用来执行存储器存储的执行指令,即计算机程序。可选的,存储器还可以集成在处理器内部。
第九方面,本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现终端侧的获取干扰信息的方法。
第十方面,本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现网络设备侧的获取干扰信息的方法。
第十一方面,本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。终端的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得编码设备实施前述的各种实施方式提 供的编码方法。
第十二方面,本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得译码设备实施上述的各种实施方式提供的译码方法。
通过本发明的实施例,网络设备可以根据上行导频的信号强度或能量的检测结果以及终端对干扰情况的反馈来调度配对终端的上下行传输,控制上行终端对下行终端的干扰,从而充分利用全双工的特性,提高系统的频谱效率。
附图说明
图1为现有技术中的LTE系统结构示意图
图2为现有技术中的全双工干扰类型示意图
图3为本发明实施例中一种获取干扰信息的流程示意图
图4为上行RS示例
图5为本发明实施例中另一种获取干扰信息的流程示意图
图6为本发明实施例中另一种获取干扰信息的流程示意图
图7为本发明实施例中终端的结构示意图
图8为本发明实施例中网络设备的结构示意图
具体实施方式
为了能有效地控制终端间的干扰,降低甚至消除终端间干扰,无论是网络设备还是终端,都需要获取干扰信道的信道信息。这样网络设备就可以为下行终端找到合适的上行终端配对,这里所谓的配对是指在相同的时频资源上,处于上行传输的终端不会对处于下行传输的终端造成干扰或者至少干扰较小,不影响下行终端的接收。考虑到导频的发送功率至少不低于数据的发送功率,那么如果在下行终端侧不能检测到某个上行终端的导频,或者检测到的上行终端的导频的信号强度或能量较小,也就意味着该上行终端不会对该下行终端的下行通信产生影响,也即没有干扰或者干扰较小。这样,解决终端间干扰的思路就在于让网络设备将下行终端和对该下行终端没有干扰或者干扰较小的上行终端配对,问题就转化为网络设备如何找到这些对下行终端零干扰或者小干扰的上行终端。下面通过不同实施例根据小区内和小区间的不同情况来讨论不同的实现方法。
本申请中均以一个上行终端和一个下行终端为例,但实际上,这些原则和方法也适用于多用户、多用户MIMO(中文全称:多入多出;英文全称:Multiple-Input-Multiple-Output)等复用技术,这里不再赘述。
实施例一:
一般地,对于控制小区内的终端间干扰,以图2中的终端1(下行终端)为例,它有可能会受到终端2(上行终端)的干扰,也有可能会与终端2配对。网络设备(本申请中,网络设备指基站或具有基站类似功能或者包括基站类似功能的设备)可以按照如图3所示的流程获取用户间的干扰情况并对终端进行配对以及对时频资源进行调度:
步骤310:上行终端(这里以终端2为例)在网络设备(这里以网络设备1为例)分配的时频资源上发送上行参考信号。这里的上行参考信号可以是现有技术中的上行RS(Reference Signal),如解调导频(英文名:Demodulation RS)、探测导频(英文名:Sounding RS),也可以是新的参考信号用来提高干扰信道质量测量准确度。一般地,不同的上行RS之间要么时频位置(不失一般性,以下将时频位置简称为位置)不同,要么序列不同(此处的序列可以是指码,即相同位置的RS以码分的方式区分)。所有上行RS的序列和/或位置信息可以预先设定或者由网络设备广播给网络设备服务的所有终端,因此各终端也知道其他终端发送RS的序列和/或位置,但不知道(也不需要知道)其他终端和RS序列、发送的位置之间的对应关系,只有网络设备可以通过上行RS的位置和/或序列唯一地确定出上行终端,换而言之,在网络设备的调度下,可以允许不同的上行终端复用相同的RS。
网络设备侧保存有RS的序列和RS的时频位置的对应关系,以及RS的序列或RS的时频位置与终端之间的对应关系,而终端侧保存有RS序列、RS的时频位置之间的对应关系。这个前提条件也适用于本申请其他实施例。
例如,图4给出了一个RB(英文全称:Resource Block;中文全称:资源块)中上行RS的示意图,图4中的横坐标代表时域,纵坐标代表频域,时域上以符号为单位,频域上以子载波为单位。RB通常是资源分配的最小粒度,它由多个基本的资源单元(英文名称:Resource Element,简称RE)组成。一个RE在时域上占一个符号,在频域上占一个子载波。参见图4所示,图4中的RB由时域上连续的20个符号、频域上连续的12个子载波(即12×20)组成。需要注意的是,在LTE系统中,一个RB由频域上连续12个子载波和时域上连续7个符号(即12×7)组成,与本例不同,但原则是一致的,因此本申请中还是以图4所示的RB为例说明。如图3所示,总共有5组RS,每一组RS由两个离散的RE组成,在该两个离散的RE(实际应用中这两个RE当然也可以设计成连续)上可以以码分的方式容纳2个RS,这2个RS分别对应2个终端,例如终端1的RS为符号序列a1a2,终端2的RS为符号序列b1b2,其中a1a2和b1b2正交,a1和b1映射到相同的RE上,a2和b2映射到相同的RE上。网络设备将这2个RS的时频资源位置通知给这2个终端时可以是广播也可以是单播,但RS的组号(包括RS序号)与时频资源的位置的对应关系是预先规定的,因此所有终端都知道第0组RS占用了如图4所示的第0组对应的两个离散的RE,且最多有2个终端利用第0组的时频资源位置发送它们的上行RS。至于网络设备如何将RS的时频资源位置发送给相应的终端并非本申请重点,因此不再赘述。
步骤320:网络设备检测上行终端发来的RS,以确定有哪些上行终端在进行上行传输。
步骤330:下行终端(这里以终端1为例)周期性或者非周期性的侦听上行RS的时频资源位置,对上行RS进行盲检测,这里的盲检测指的是指按照RS在时频资源上的分配规律进行检测,即在待检测的时频资源检测是否有对应的上行RS,或者在待检测的时频资源上检测到的信号强度或能量的检测结果是否高于预设的门限。例如,参见图4所示,由于每个终端对应的上行RS的时频资源位置与RS序列的对应关系都是预先规定的,因此下行终端知 道在哪些时频资源位置上会有上行RS发送,但是该下行终端不知道也不需要知道每个上行RS与其他终端之间的对应关系,即不知道每个RS具体是由哪个终端发送的。
如果终端1能在某一RB上检测到包含有一个RS,则意味着该RS对应的终端2在该终端1附近,该终端2在进行上行传输时会对终端1有较为严重的干扰(反过来说,当终端2进行下行传输而终端1进行上行传输时,终端1一般也会对终端2造成严重的干扰,原理相同,这里不再赘述)。不过如前所述,当终端1对某一RB进行检测时,其只知道终端2的RS对应的时频资源位置上有信号发送,但不知道这个信号是哪个终端发送的,即终端1并不知道是终端2发送了对终端1有较强干扰的RS。反之,如果终端1在终端2的上行RS对应的时频资源位置上检测不到终端2的上行RS,或者检测到的信号强度或能量很低,则认为该时频资源位置对应的终端不会对终端1形成干扰或者干扰较小。
步骤340:终端1基于对上行RS的检测结果,确定适合配对的时频资源位置并向网络设备反馈,本申请中的配对是指当终端1进行下行传输时,网络设备调度一个上行传输的终端,该终端对终端1没有干扰,则称将这两个终端配对,因此这里指的适合配对的时频资源位置指的是这些时频资源位置对应的上行终端对该下行终端没有干扰或者干扰较小,在以下叙述中不再重复赘述。如步骤330所述,如果终端1能在某一时频资源上检测到一个上行RS,或者虽然未能检测到任一RS但检测到某个时频资源上发送的信号强度或能量超过一个预设的门限,则意味着这个下行终端与使用该时频资源发送上行RS的终端间存在较强的干扰。反之,如果下行终端在某个时频资源位置检测不到上行RS,或者检测到的上行RS的信号强度或能量低于预先设定的门限值,则说明在该时频资源位置上发送上行RS的终端(考虑到可能有不同的RS复用相同的时频资源,因此同一时频资源对应的终端可能不止一个)与终端1之间没有干扰或者干扰较小。终端1在上行RS所在的各个位置进行检测,确定没有干扰或者较小干扰的N组(N为正整数)时频资源,并将该N组时频资源的位置信息反馈给网络设备。
上述时频资源的位置信息还可以是时频位置对应的索引值。网络设备侧和终端侧还可以保存上行RS的时频资源位置对应的索引值,这样,下行终端在侦听过程中检测到N组时频资源位置上的RS对该下行终端没有干扰或干扰较小后,只需要将该N组时频资源位置对应的索引值反馈给网络设备即可。
参见图4所示,上行RS的时频资源位置对应的索引值可以是图4中RS对应的组号,图4中共有5组RS,如果采用索引值来反馈RS的时频位置,则只需要3个比特。而如果要直接反馈RS的具体时频位置,显然3个比特是远远不够的,因此优选用索引值来指代RS的时频位置。
特别地,上述所说的侦听通常是指用下行终端保存或者网络设备通知的RS序列与接收信号进行相关操作(英文名称:correlation),得到的相关值高于预设的门限值即认为存在该RS,这个预设的门限值和信号强度或能量的检测门限值可以一致,也可以高于信号强度或能量的检测门限值,这里不做限制,但为陈述简便起见,这里假定两个门限值一致,即有无干扰以是否能检测到RS来区分。这里的门限可以由下行终端自行决定,也可以由网络设备配置决定,或者由网络设备和下行终端事先约定。
这种向网络设备反馈适合配对的时频位置的方法也相当于告知网络设备对该下行终端不构成干扰的N组上行RS(也即N组上行终端,每组时频资源对应一组上行RS)。
在另外一种实施例中,下行终端不需要检测其所有可能的RS的时频位置,例如,当检测到预定个数的时频资源位置上的信号对该下行终端没有干扰或干扰较小时就可以停止检测。例如,在下行终端上预先设定需要反馈Q个时频资源位置或者网络设备通知该下行终端反馈Q个时频位置,则下行终端只需找到N=Q个对该下行终端干扰较小的RS对应的时频资源位置即可停止检测。这种反馈方式的另外一个好处在于下行终端并不需要关心干扰是来自本小区还是相邻小区。而且,即使预先设定或者网络设备通知该下行终端反馈Q个时频位置,那么如果在遍历所有可能的时频资源位置但依旧只能找到N组符合要求的时频位置,也可以只反馈符合要求的N(这时N<Q)个时频位置的信息,因此可以认为下行终端最多反馈Q个时频位置的信息。
在另外一种实施例中,可以通过设置一个门限来让下行终端检测出超出门限从而干扰较大的时频资源位置(不妨设为M个,M为正整数)并向网络设备反馈,这就需要下行终端检测其所有可能的RS的时频位置,且需要反馈所有检测到RS或超过信号强度或能量检测门限的时频资源位置或者索引号。这种反馈方式可能会导致开销增大,并且由于M值不确定会导致开销也不确定。
除此之外,下行终端还可以直接反馈检测到的RS序列信息,该方法类似于上述反馈干扰较大的M个时频资源位置M个时频资源位置,因此也需要检测所有的RS,并且反馈所有检测到的RS。这种反馈方式同样会导致开销增大,并且由于反馈的RS的数量不确定会导致开销也不确定。
步骤350:网络设备根据下行终端的反馈结果及其QoS(英文全称:Quality of Service;中文全称:服务质量)需求,结合网络设备自身对上行RS的分配情况,确定适合配对的下行终端和上行终端,完成后续下行终端和上行终端的配对调度操作,以避免对该下行终端产生干扰。如步骤340所述,下行终端将对该下行终端干扰较小甚至不构成干扰的N组RS所在的资源位置的信息反馈给网络设备,从而网络设备根据N组RS所在的资源位置与终端之间的对应关系找到相应的N组上行终端。例如,网络设备根据网络设备中保存的上行RS序列和/或上行RS位置与上行终端之间的对应关系找到至少N组上行终端,并在随后的调度中根据网络设备的负载、业务信息、收到的所有终端反馈上报的各种信息中的一种或多种信息从这N组上行终端中挑选出一个或者多个与该下行终端配对,这样可以确保没有干扰或者干扰较小。例如如图4所示,如果终端1将该5组时频资源位置索引值反馈给网络设备,则意味着网络设备可以将这5(N=5)组索引值对应的10个终端(每组有2个)的任意一个或者多个与终端1进行配对而不对终端1产生干扰。
特别地,如果一个下行终端找不到没有干扰或者干扰较小的RS时频资源位置而根据调度原则(比如轮循分配、公平性、时延要求等)又必须服务于该下行终端时,网络设备只能安排在该下行终端进行下行传输时停止其他终端的上行传输,当然,与此同时可以调度这些其他终端进行下行传输。或者,当下行终端反馈干扰最大的M组RS信息(包括时频位置和序列信息)时,也可以采用类似的方法,即调整该M组RS对应的上行终端的发送时隙,使得该M组上行终端的上行发送与下行终端的下行传输在时间上错开,避免干扰。
当下行终端反馈的是M个干扰较大的时频位置的信息或者RS信息时,网络设备在调度配对的时候就需要尽量避免将该M个时频位置对应的上行终端与该下行终端配对,或者避免RS信息对应的上行终端与该下行终端配对,即将该M个时频位置之外的上行RS的时频位 置对应的终端与下行终端配对。
步骤360:终端2根据网络设备的调度结果进行上行通信。例如,网络设备确定终端1与终端2能够配对,则终端2在进行上行通信时,终端1可以同时进行下行通信。
步骤370:终端1根据网络设备的调度结果进行下行通信。
实施例二:
实施例一中,仅考虑了同一小区中的上行终端对下行终端的干扰,但当下行终端在小区边缘的时候,最好再考虑相邻小区的上行终端的干扰。仍以图2为例,假设终端1和终端2位于小区1,终端3位于小区2,网络设备1为小区1内的终端提供服务,网络设备2为小区2内的终端提供服务。由于终端1处于小区1的边缘,因此终端1除了有可能受到小区1中相邻终端的干扰外,还有可能会受到小区2中相邻终端的干扰。图5给出了考虑相邻小区上行终端干扰的流程图,可以看到,与实施例一类似,终端2在小区1中于步骤511向网络设备1发送上行RS,与此同时终端3在小区2中于步骤512向网络设备2发送上行RS,网络设备1于步骤520检测上行终端发送的RS,终端1作为下行终端于步骤530进行侦听并于步骤540进行反馈,由于步骤511,520,530,540分别与步骤310,320,330,340类似,因此可以参见实施例一中相关部分的描述,此处不再赘述,但要注意,在步骤530中,终端1侦听的上行RS中,不仅来自于本小区的终端2,也来自于相邻小区的终端3,这也意味着终端1也需要知道小区2中的RS分配规律。而网络设备1在步骤561中所进行的操作与实施例一中的步骤350也一样,但是在此基础上,网络设备2除了接收检测终端3在小区2中于步骤512发送的上行RS之外,还于步骤550接收由网络设备1通过回传机制(X2接口、微波传送或者其他回传机制)或直接通过空口传送过来的下行终端1的上报信息,该上报信息中包括符合终端1要求的N个时频资源位置信息,这样网络设备2于步骤562中利用网络设备1告知的信息,也可以确定本小区中与下行终端(例如终端1)配对的上行终端(例如终端3),确保本小区的上行终端对终端1也不产生干扰或者只产生较小干扰。随后各终端分别于步骤571、572、580进行相应的通信。
实施例三:
实施例二中,只考虑了下行终端(终端1)的上下行都驻留于同一网络设备的情况,但在小区边缘,随着网络架构的演进,同一个终端的上行、下行可能分属不同的网络设备。还是以图2中的终端1为例,假设其下行在小区1,而上行(包括反馈与传输)在小区2,这时整个流程与实施例二相比略有调整,示意图见图6,可以看到,与实施例二和图5相比,不同之处在于步骤640中终端1反馈的符合要求的N个时频资源位置信息是向网络设备2发送,相应地,步骤650是由网络设备2向网络设备1通过回传机制(X2接口、微波传送或者其他回传机制)或空口传送,其余步骤与实施例二类似,具体可以参见实施例二中的相关描述,此处不再赘述。
在上述实施例二和三中,当终端反馈的是M组大于干扰门限的时频资源位置时,原理与方法均与实施例一中反馈M组大于干扰门限的时频资源位置类似,因此不再赘述。
实施例四
图7给出了本申请实施例一至三中的终端的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。图7所示的终端100包括:天线110,发送器120,接收 器130,处理器140,存储器150。天线110与发送器120和接收器130耦合。处理器140与发送器120和接收器130耦合,存储器150与处理器140耦合,特别地,发送器120和接收器130还可以合并成收发器160。
天线110用于发送和接收信号。
存储器150用于存储其他终端的上行RS和用于发送其他终端的上行RS的时频资源位置之间的对应关系。
接收器130用于根据该对应关系通过天线110在用于发送其他终端的上行RS的时频资源位置上接收信号。
处理器140还用于根据接收器130在时频资源位置上接收信号的情况从这些时频资源位置中检测出N组时频资源位置,并将该N组时频资源位置的信息传递至发送器120,其中该N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值,该信息可以是该N组时频资源的位置的具体描述,也可以是该N组时频资源的位置的索引值。或者,根据需要,也可以检测出M组时频资源位置,并将该M组时频资源位置的信息传递至发送器120,其中该M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值,该信息可以是该M组时频资源的位置的具体描述,也可以是该M组时频资源的位置的索引值。
发送器120用于通过天线110向网络设备发送该N组时频资源位置的信息。
图8给出了本申请实施例一至三中的网络设备的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。所示的网络设备200包括:天线210,发送器220,接收器230,处理器240,存储器250,X2接口270。天线210与发送器220和接收器230耦合。特别地,发送器220和接收器230还可以合并成收发器260。
天线210用于发送和接收信号。
接收器230用于通过天线210接收下行终端发送的N组时频资源位置的信息并将所述时频资源位置的信息传递到处理器240,该N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值,所述N为整数。或者,根据需要,接收器230用于通过天线210接收下行终端发送的M组时频资源位置的信息并将所述时频资源位置的信息传递到处理器240,该M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值,所述M为整数。
X2接口270(还可以是其他回传设备)用于接收来自其他网络设备的N组(或者M组)时频资源位置的信息并将所述时频资源位置的信息传递到处理器240。
存储器250用于存储终端、终端的上行RS和时频资源位置之间的对应关系。
处理器240用于根据存储器250存储的对应关系找到与所述N组时频资源位置的信息对应的其他终端,并将其他终端中的至少一个确定为下行终端的配对终端。处理器240还用于生成配对信息,并将配对信息传递至发送器220。或者,当终端反馈的是M组大于干扰门限的时频资源位置信息时,处理器240将回避把M组时频资源位置对应的所有其他终端与下行终端配对,而将M组时频资源位置之外的上行RS对应的其他终端与下行终端配对。
发送器220用于通过天线210将配对信息发送给下行终端和与该下行终端配对的终端,以使该配对终端和该下行终端可以在相同的时频资源上进行通信。
处理器240还用于通过X2接口270(还可以是其他回传设备)向相邻网络设备发送N组(或M组)时频资源的位置信息。
可选地,发送器220还用于通过天线210向另一网络设备发送该N组(或M组)时频资源位置的信息。
可选地,接收器220还用于通过天线210从另一网络设备获取该N组(或M组)时频资源位置的信息。
上述实施例四中的天线110或天线210,既可以是单天线也可以是多天线。
在上述终端的具体实现中,还可包括计算机程序和存储器,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行上述的获取干扰信息的方法。处理器的数量为至少一个,用来执行存储器存储的执行指令,即计算机程序。可选的,存储器还可以集成在处理器内部。
在上述网络设备的具体实现中,还可包括计算机程序和存储器,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行上述的获取干扰信息的方法。处理器的数量为至少一个,用来执行存储器存储的执行指令,即计算机程序。可选的,存储器还可以集成在处理器内部。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现终端侧的获取干扰信息的方法。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现网络设备侧的获取干扰信息的方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。终端的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得编码设备实施前述的各种实施方式提供的编码方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得译码设备实施上述的各种实施方式提供的译码方法。
在本申请所提供的几个实施例中,应该理解到,以上所描述的设备实施例仅仅是示意性的,例如,各个器件的划分,随着技术的发展可以将其中的一部分集成在一起形成一个新的器件。所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其他的形式。

Claims (38)

  1. 一种获取干扰信息的方法,具体为,
    终端在用于发送其他终端的上行RS的时频资源中检测出N组时频资源位置,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值,所述N为整数;
    所述终端将所述N组时频资源位置的信息反馈给网络设备。
  2. 如权利要求1所述的方法,其特征在于,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值包括:所述终端在所述用于发送其他终端的上行RS的时频资源检测不到上行RS或者检测到的上行RS的信号强度低于或等于所述预设的门限值。
  3. 如权利要求1所述的方法,其特征在于,所述N组时频资源位置的信息为所述的N组时频资源位置的索引值。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,所述N≤Q,其中Q为预先设定的需要反馈的所述上行RS对应的时频资源位置的个数
  5. 一种获取干扰信息的方法
    Figure PCTCN2017093406-appb-100001
    具体为,
    网络设备接收终端或另一网络设备发送的N组时频资源位置的信息,所述N组时频资源位置被其他终端用于发送上行RS,所述N为整数,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值;
    所述网络设备将所述N组时频资源位置对应的所述其他终端中的至少一个确定为所述终端的配对终端,并生成配对信息发送给所述终端和所述配对终端,所述终端的配对终端和所述终端可以在相同的时频资源上进行通信。
  6. 如权利要求5所述的方法,其特征在于,所述N组时频资源位置的信息为所述的N组时频资源位置的索引值。
  7. 如权利要求5或6所述的方法,其特征在于,所述网络设备接收另一网络设备发送的N组时频资源位置的信息包括:
    所述网络设备接收所述另一网络设备通过回传机制向所述网络设备发送的所述N组时频资源位置的信息。
  8. 一种获取干扰信息的方法,具体为,终端在用于发送其他终端的上行RS的时频资源中检测出M组时频资源位置,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值,所述M为整数;所述终端将所述M组时频资源位置的信息反馈给网络设备。
  9. 如权利要求8所述的方法,其特征在于,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值包括:所述终端在所述用于发送其他终端的上行RS的时频资源检测到的上行RS的信号强度或能量大于所述预设的门限值。
  10. 如权利要求8或9所述的方法,其特征在于,在一个可能的设计中,所述M组时频资源位置的信息为所述的M组时频资源位置的索引值。
  11. 一种获取干扰信息的方法,具体为,
    网络设备接收终端发送的或另一网络设备发送的M组时频资源位置的信息,所述M组时频资源位置被其他终端用于发送上行RS,所述M为整数,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值;所述网络设备将所述M组时频资源位置之外的上行RS时频资源位置对应的所述其他终端中的至少一个确定为所述终端的配对终端,并生成配对信息发送给所述终端和所述配对终端,以使所述配对终端和所述终端可以在相同的时频资源上进行通信。
  12. 如权利要求11所述的方法,其特征在于,所述M组时频资源位置的信息为所述的M组时频资源位置的索引值。
  13. 如权利要求11所述的方法,其特征在于,所述网络设备接收另一网络设备发送的M组时频资源位置的信息包括:所述网络设备接收所述另一网络设备通过回传机制向所述网络设备发送的所述M组时频资源位置的信息。
  14. 如权利要求11-13中任一权利要求所述的方法,其特征在于,所述网络设备通过回传机制(例如X2接口)或空口向所述另一网络设备发送所述N组时频资源位置的信息。
  15. 一种终端,且所述终端包括天线、发送器、接收器、存储器和处理器,所述天线与所述发送器和所述接收器耦合,所述处理器与所述发送器和所述接收器耦合,所述存储器与所述处理器耦合;所述存储器用于存储其他终端的上行RS和用于发送所述其他终端的上行RS的时频资源位置之间的对应关系;
    所述接收器用于根据所述对应关系通过所述天线在所述用于发送其他终端的上行RS的时频资源位置上接收信号;
    所述处理器用于根据所述接收器在所述时频资源位置上接收信号的情况从所述时频资源位置中检测出N组时频资源位置,并将所述N组时频资源位置的信息传递至所述发送器;所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值;
    所述发送器用于通过所述天线向网络设备发送所述N组时频资源位置的信息,所述N为整数。
  16. 如权利要求15所述的终端,其特征在于,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值具体为:所述接收器在所述N组时频资源上不能检测到所述其他终端的上行RS或者信号强度检测结果低于或等于预先设定的门限。
  17. 如权利要求15或16所述的终端,其特征在于,所述的N组时频资源位置的信息为所述的N组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系;所述处理器还用于根据所述存储器存储的所述所述时频资源位置的索引值与所述的时频资源位置的对应关系获取所述N组时频资源位置的索引值。
  18. 如权利要求15或16或17所述的方法,其特征在于,所述N≤Q,其中Q为预先设定的需要反馈的所述上行RS对应的时频资源位置的个数。
  19. 一种网络设备,所述网络设备包括天线、发送器、存储器和处理器,所述天线与所述发送器耦合,所述处理器与所述发送器耦合,所述存储器与所述处理器耦合;
    所述存储器用于存储所有上行终端、上行RS和时频资源位置之间的对应关系;
    所述处理器用于获取另一网络设备或者终端发送的N组时频资源位置的信息,所述N组时频资源位置上的RS对所述终端产生的干扰小于或等于预设的门限值,所述N为整数;
    所述处理器还用于根据所述存储器存储的对应关系找到与所述N组时频资源位置的信息对应的其他终端,并将所述其他终端中的至少一个确定为所述终端的配对终端;
    所述处理器还用于生成配对信息,并将所述配对信息传递至所述发送器;
    所述发送器用于通过所述天线将所述配对信息发送给所述终端和所述配对终端,以使所述配对终端和所述终端可以在相同的时频资源上进行通信。
  20. 如权利要求19所述的网络设备,其特征在于,所述N组时频资源位置的信息为所述N组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系。
  21. 如权利要求19或20所述的网络设备,其特征在于,所述网络设备还包括接收器,所述接收器与所述处理器和所述天线耦合,所述处理器用于获取终端发送的N组时频资源位置的信息包括:所述接收器通过所述天线接收终端发送的N组时频资源位置的信息并将所述时频资源位置的信息传递到所述处理器。
  22. 如权利要求19-21中任一权利要求所述的网络设备,所述接收器和所述发送器合并为收发器。
  23. 如权利要求19-22中任意一项所述的网络设备,其特征在于,所述发送器还用于通过天线向另一网络设备发送该N组时频资源位置的信息。
  24. 如权利要求19-23中任意一项所述的网络设备,其特征在于,所述网络设备还包括回传器件,所述回传器件与所述处理器耦合,用于向所述另一网络设备发送所述N组时频资源位置的信息。
  25. 如权利要求19-22中任意一项所述的网络设备,其特征在于,所述网络设备还包括回传器件,所述回传器件与所述处理器耦合,所述处理器用于获取另一网络设备发送的N组时频资源位置的信息包括:所述处理器用于通过所述回传器件获取另一网络设备发送的N组时频资源位置的信息。
  26. 一种终端,所述终端包括天线、发送器、接收器、存储器和处理器,所述天线与所述发送器和所述接收器耦合,所述处理器与所述发送器和所述接收器耦合,所述存储器与所述处理器耦合;所述存储器用于存储其他终端的上行RS和用于发送所述其他终端的上行RS的时频资源位置之间的对应关系;所述接收器用于根据所述对应关系通过所述天线在所述用于发送其他终端的上行RS的时频资源位置上接收信号;所述处理器用于根据所述接收器在所述时频资源位置上接收信号的情况从所述时频资源位置中检测出M组时频资源位置,并将所述M组时频资源位置的信息传递至所述发送器;所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值;所述发送器用于通过所述天线向网络设备发送所述M组时频资源位置的 信息,M为整数。
  27. 如权利要求26所述的终端,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值是指,所述接收器在所述M组时频资源上检测到所述其他终端的上行RS或者信号强度或能量检测结果大于预先设定的门限。
  28. 如权利要求26或27所述的终端,所述的M组时频资源位置的信息为所述的N组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系;所述处理器还用于根据所述存储器存储的所述所述时频资源位置的索引值与所述的时频资源位置的对应关系获取所述M组时频资源位置的索引值。
  29. 一种网络设备,所述网络设备包括天线、发送器、存储器和处理器,所述天线与所述发送器耦合,所述处理器与所述发送器耦合,所述存储器与所述处理器耦合;所述存储器用于存储所有上行终端、上行RS和时频资源位置之间的对应关系;所述处理器接收来自于另一网络设备或者终端发送的M组时频资源位置的信息,所述M组时频资源位置上的RS对所述终端产生的干扰大于预设的门限值,所述M为整数;所述处理器还用于根据所述存储器存储的对应关系找到与所述M组时频资源位置的之外的上行RS的时频资源位置对应的其他终端,并将所述其他终端中的至少一个确定为所述终端的配对终端;所述处理器还用于生成配对信息,并将所述配对信息传递至所述发送器;所述发送器用于通过所述天线将所述配对信息发送给所述终端和所述终端的配对终端,以使所述终端的配对终端和所述终端可以在相同的时频资源上进行通信。
  30. 如权利要求29所述的网络设备,所述M组时频资源位置的信息为所述M组时频资源位置的索引值;所述存储器还用于存储所述时频资源位置的索引值与所述的时频资源位置的对应关系。
  31. 如权利要求29或30所述的网络设备,所述网络设备还包括接收器,所述接收器与所述处理器和所述天线耦合,所述接收器通过所述天线接收终端发送的M组时频资源位置的信息并将所述时频资源位置的信息传递到所述处理器。
  32. 如权利要求29-31中任一权利要求所述的网络设备,所述接收器和所述发送器合并为收发器。
  33. 如权利要求29-32中任一权利要求所述的网络设备,所述发送器还用于通过天线向另一网络设备发送所述M组时频资源位置的信息。
  34. 如权利要求29-33中任一权利要求所述的网络设备,所述网络设备还包括回传器件,所述回传器件与所述处理器耦合,用于向所述另一网络设备发送所述M组时频资源位置的信息。
  35. 如权利要求29-32中任一权利要求所述的网络设备,所述网络设备还包括回传器件,所述回传器件与所述处理器耦合,用于从所述另一网络设备获取所述M组时频资源位置的信息。
  36. 如权利要求29-32中任一权利要求所述的网络设备,所述接收器还用于通过天线从另一网络设备获取所述M组时频资源位置的信息。
  37. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序 用于实现权利要求1至4任一项所述的获取干扰信息的方法,或者权利要求8至10任一项所述的获取干扰信息的方法。
  38. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现权利要求权利要求5至7任一项所述的获取干扰信息的方法,或者权利要求11至14任一项所述的获取干扰信息的方法。
PCT/CN2017/093406 2016-08-21 2017-07-18 全双工信道干扰控制的方法与设备 WO2018036305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610698254.4 2016-08-21
CN201610698254.4A CN107769884B (zh) 2016-08-21 2016-08-21 全双工信道干扰控制的方法与设备

Publications (1)

Publication Number Publication Date
WO2018036305A1 true WO2018036305A1 (zh) 2018-03-01

Family

ID=61245449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093406 WO2018036305A1 (zh) 2016-08-21 2017-07-18 全双工信道干扰控制的方法与设备

Country Status (2)

Country Link
CN (1) CN107769884B (zh)
WO (1) WO2018036305A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673666A (zh) * 2018-12-04 2021-04-16 Oppo广东移动通信有限公司 无线链路的检测方法及终端设备
EP3934354A4 (en) * 2019-03-27 2022-04-13 Huawei Technologies Co., Ltd. USER PAIRING METHOD AND ASSOCIATED APPARATUS
WO2023125575A1 (zh) * 2021-12-28 2023-07-06 中兴通讯股份有限公司 通信方法、网络设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248415B (zh) * 2018-03-09 2021-06-08 华为技术有限公司 一种时隙格式指示方法、设备及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553035A (zh) * 2008-04-03 2009-10-07 中兴通讯股份有限公司 时频资源分配方法
CN102045728A (zh) * 2009-10-12 2011-05-04 华为技术有限公司 分配参考信号的方法和基站
WO2014112916A1 (en) * 2013-01-17 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Determining signal transmission bandwidth
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672769B1 (ko) * 2010-02-09 2016-11-04 삼성전자주식회사 겹치는 무선 자원을 이용하여 업링크 통신 및 다운링크 통신을 수행하는 통신 시스템
CN102572920B (zh) * 2010-12-23 2014-11-05 普天信息技术研究院有限公司 异构网下的干扰协调方法
CN103313413B (zh) * 2012-03-16 2017-09-08 中国移动通信集团公司 一种srs干扰协调方法、装置及基站设备
CN104052700B (zh) * 2014-05-27 2017-07-28 北京创毅视讯科技有限公司 一种lte系统抗干扰方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553035A (zh) * 2008-04-03 2009-10-07 中兴通讯股份有限公司 时频资源分配方法
CN102045728A (zh) * 2009-10-12 2011-05-04 华为技术有限公司 分配参考信号的方法和基站
WO2014112916A1 (en) * 2013-01-17 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Determining signal transmission bandwidth
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673666A (zh) * 2018-12-04 2021-04-16 Oppo广东移动通信有限公司 无线链路的检测方法及终端设备
EP3934354A4 (en) * 2019-03-27 2022-04-13 Huawei Technologies Co., Ltd. USER PAIRING METHOD AND ASSOCIATED APPARATUS
WO2023125575A1 (zh) * 2021-12-28 2023-07-06 中兴通讯股份有限公司 通信方法、网络设备及存储介质

Also Published As

Publication number Publication date
CN107769884A (zh) 2018-03-06
CN107769884B (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN106664591B (zh) 在无线通信系统中报告用于确定位置的测量结果的方法及其设备
US11129195B2 (en) Techniques and apparatuses for positioning reference signal (PRS) management
CN106716899B (zh) 用于在无线通信系统中接收参考信号的方法及其设备
US10313073B2 (en) Transmission of reference signals
RU2635545C2 (ru) Способ подавления помех в системе беспроводной связи и соответствующее устройство
CN113169830B (zh) 用于配置nr v2x资源分配中的资源感测的方法和设备
CN109478971B (zh) 用于报告无线通信系统中的信道状态的方法及其设备
US9706517B2 (en) Position calculation method and apparatus in wireless communication system
US10764007B2 (en) Method and apparatus for transmitting uplink sounding reference signal
JP2023052546A (ja) 動的ul/dl構成を備えたlte tddのためのチャネル状態情報の構成、測定、及びレポートのための方法及び装置
CN115174319B (zh) 无线蜂窝通信系统中的信道发送方法和设备
EP3557787A1 (en) Method and device for reporting semi-persistent channel state in mobile communication system
US10310051B2 (en) Method for receiving reference signal in wireless communication system and apparatus therefor
CN118101013A (zh) 用于高级无线通信系统中的基于资源的csi获取的方法和装置
US20160323901A1 (en) Method for channel measurement and report in wireless communication system and apparatus therefor
US9774430B2 (en) Method and apparatus for channel estimation in wireless communication system
WO2018201284A1 (en) Port group indication and port subsets in a csi-rs resource for new radio (nr)
CN104798329A (zh) 用于发送数据的方法和设备以及用于发送数据的方法和设备
CN103650368A (zh) 信道状态信息发射方法和用户设备以及信道状态信息接收方法和基站
WO2014071638A1 (zh) 上报信道状态信息的方法、用户设备及基站
CN116133135A (zh) 上行链路传输的预编码信息信令方法和装置
WO2014123386A1 (en) Method and apparatus for reporting downlink channel state
WO2014107001A1 (ko) 무선 통신 시스템에서 간섭을 측정하기 위한 방법 및 이를 위한 장치
WO2018036305A1 (zh) 全双工信道干扰控制的方法与设备
WO2014115946A1 (ko) 무선 통신 시스템에서 협력 다중 송수신 기법을 지원하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842728

Country of ref document: EP

Kind code of ref document: A1