WO2023125447A1 - 天线结构和电子设备 - Google Patents

天线结构和电子设备 Download PDF

Info

Publication number
WO2023125447A1
WO2023125447A1 PCT/CN2022/142065 CN2022142065W WO2023125447A1 WO 2023125447 A1 WO2023125447 A1 WO 2023125447A1 CN 2022142065 W CN2022142065 W CN 2022142065W WO 2023125447 A1 WO2023125447 A1 WO 2023125447A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
shifting network
network circuit
antenna
circuit
Prior art date
Application number
PCT/CN2022/142065
Other languages
English (en)
French (fr)
Inventor
王君翊
董运峰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023125447A1 publication Critical patent/WO2023125447A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present application belongs to the technical field of terminals, and specifically relates to an antenna structure and electronic equipment.
  • the design of the antenna is limited to the change of the wiring of these antenna forms and the layout, and the processing of the ground structure of the entire terminal is only limited to adjusting the clearance and height of the antenna wiring.
  • the ground structure itself can be used as an antenna. When the RF end feeder directly feeds the ground, the input impedance characteristics of the ground are too poor, which easily causes energy reflection and cannot effectively stimulate the ground to radiate efficiently, resulting in low overall radiation efficiency of the antenna.
  • the purpose of the embodiments of the present application is to provide an antenna structure and electronic equipment to solve the problem that the radiation efficiency of the ground structure in the antenna is low, resulting in low radiation efficiency of the antenna as a whole.
  • an antenna structure including:
  • an antenna stub the antenna stub is connected to the ground structure
  • phase-shifting network circuit the first end of the phase-shifting network circuit is electrically connected to the antenna stub;
  • the second end of the phase-shifting network circuit is connected to the coupling structure, and the coupling structure is coupled to the ground structure;
  • the third terminal of the phase-shifting network circuit is used for electrical connection with the feeding structure.
  • the coupling structure includes a coupling patch spaced apart from the ground structure and/or a slot provided on the ground structure, and the second end of the phase-shifting network circuit is electrically connected to the coupling patch And/or the second end of the phase-shifting network circuit is disposed adjacent to the slot.
  • the coupling structure is disposed at an edge region of the ground structure.
  • the width of the slot is greater than or equal to 1 mm and less than or equal to 5 mm, and the length of the slot is less than or equal to 20 mm.
  • the coupling patch is disposed on one side of the ground structure, and the distance between the coupling patch and the ground structure is less than or equal to 5mm.
  • the antenna structure also includes:
  • phase-shifting network circuit includes:
  • a first phase-shifting network circuit the first end of the first phase-shifting network circuit is electrically connected to the antenna stub, and the second end of the first phase-shifting network circuit is used to electrically connect to the feeding structure;
  • a second phase-shifting network circuit the first end of the second phase-shifting network circuit is connected to the non-resonant structure, and the second end of the second phase-shifting network circuit is used to electrically connect to the feeding structure.
  • the coupling structure includes coupling patches arranged at intervals from the ground structure and slots arranged on the ground structure
  • the phase-shifting network circuit includes:
  • the first phase-shifting network circuit and the second matching circuit the first end of the first phase-shifting network circuit is electrically connected to the antenna stub through the second matching circuit, the second phase-shifting network circuit of the first phase-shifting network circuit is electrically connected
  • the terminal is used for electrical connection with the feed structure
  • a second phase-shifting network circuit the first end of the second phase-shifting network circuit is disposed adjacent to the slot, and the second end of the second phase-shifting network circuit is used for electrical connection with the feeding structure;
  • a third phase-shifting network circuit the first end of the third phase-shifting network circuit is electrically connected to the coupling patch, and the second end of the third phase-shifting network circuit is used to electrically connect to the feeding structure.
  • phase-shifting network circuit includes:
  • the first end of the second matching circuit is electrically connected to the antenna stub, and the second end of the second matching circuit is used to electrically connect to the feeding structure;
  • a fourth phase-shifting network circuit the first end of the fourth phase-shifting network circuit is connected to the coupling structure, and the second end of the fourth phase-shifting network circuit is used to electrically connect to the feeding structure.
  • phase-shifting network circuit includes:
  • the phase-shifting network circuit includes a switch
  • the fourth phase-shifting network circuit includes a plurality of sixth phase-shifting network circuits, each of the sixth phase-shifting network circuits has a different phase shift, and each of the sixth phase-shifting network circuits has a different phase shift.
  • the first ends of the six phase-shifting network circuits are connected to the coupling structure, the second ends of each of the sixth phase-shifting network circuits are electrically connected to one end of the switch, and the other end of the switch is used to communicate with
  • the feed structure is electrically connected, and the switch can connect the feed structure with the second end of any sixth phase-shifting network circuit.
  • the phase-shifting network circuit includes a first phase-shifting network circuit and a first switch
  • the first phase-shifting network circuit includes a plurality of first sub-phase-shifting network circuits, and each of the first sub-phase-shifting network circuits The phase shift of the circuit is different, the first end of each of the first sub-phase-shifting network circuits is connected to the coupling structure, and the second end of each of the first sub-phase-shifting network circuits is connected to the first switch
  • One end of the first switch is electrically connected to the feed structure, and the other end of the first switch is used to connect the feed structure to any one of the first sub-phase-shifting network circuits.
  • the phase-shifting network circuit includes a second phase-shifting network circuit and a second switch
  • the second phase-shifting network circuit includes a plurality of second sub-phase-shifting network circuits, each of the second sub-phase-shifting network circuits The phase shifts are different, the first end of each of the second sub-phase shifting network circuits is connected to the coupling structure, the second end of each of the second sub-phase shifting network circuits is connected to one end of the second switch
  • the other end of the second switch is used for electrical connection with the feed structure, and the second switch can connect the feed structure with any second sub-phase-shifting network circuit. end.
  • the antenna structure also includes:
  • the operating frequency range of the antenna structure is 700MHz to 960MHz or 1710MHz to 1880MHz; and/or
  • the size of the coupling structure is smaller than 1/8 of the wavelength corresponding to the working frequency.
  • the antenna structure also includes:
  • a feed structure, the third end of the phase-shifting network circuit is electrically connected to the feed structure.
  • the embodiments of the present application provide an electronic device, including the antenna structure described in the foregoing embodiments.
  • the electronic device includes a frame, and the frame serves as the ground structure.
  • the antenna structure in the embodiment of the present application includes: a ground structure; an antenna branch, the antenna branch is connected to the ground structure; a phase-shifting network circuit, the first end of the phase-shifting network circuit is electrically connected to the antenna branch connection; coupling structure, the second end of the phase-shifting network circuit is connected to the coupling structure, and the coupling structure is coupled to the ground structure; the third end of the phase-shifting network circuit is used to connect with the feeding structure connect.
  • the phase of the signal of the feed structure can be adjusted through the phase-shifting network circuit, and the phase difference between the phase-shifting network circuit and the antenna branch and the coupling structure can be adjusted through the phase-shifting network circuit.
  • the coupling structure couples and feeds the ground structure separately.
  • the excitation to the ground structure can be enhanced, the radiation efficiency of the ground structure can be improved, and the overall radiation efficiency of the antenna structure can be improved.
  • Figure 1a is a schematic structural diagram of the antenna structure in the embodiment of the present application.
  • Fig. 1b is another structural schematic diagram of the antenna structure in the embodiment of the present application.
  • Fig. 1c is another structural schematic diagram of the antenna structure in the embodiment of the present application.
  • Fig. 1d is another structural schematic diagram of the antenna structure in the embodiment of the present application.
  • Fig. 1e is another structural schematic diagram of the antenna structure in the embodiment of the present application.
  • Figure 2a is a schematic diagram of the connection of the phase-shifting network circuit in the embodiment of the present application.
  • Figure 2b is another schematic diagram of the connection of the phase-shifting network circuit in the embodiment of the present application.
  • Figure 2c is another schematic diagram of the connection of the phase-shifting network circuit in the embodiment of the present application.
  • FIG. 3a is a schematic structural diagram of an antenna structure in an embodiment of the present application.
  • Fig. 3b is a schematic structural diagram of an antenna structure in another embodiment of the present application.
  • Fig. 4 is the partial connection schematic diagram of slot
  • Fig. 5 is a structural schematic diagram of the direct feed of the antenna branch and the slot respectively;
  • Figure 6a is a dual-antenna S-parameter curve corresponding to Figure 5;
  • Fig. 6b is the return loss curve corresponding to the slot direct feed in Fig. 6a;
  • Fig. 7 is a schematic diagram of the IFA antenna structure in the benchmark comparison example.
  • Fig. 8a is the comparison of the return loss curves of the embodiment 1 of the present application and the benchmark comparative example in Long Term Evolution (Long Term Evolution, LTE) B12;
  • Fig. 8 b is the efficiency curve comparison of the embodiment 1 of the present application and the benchmark comparative example in LTE B12;
  • Fig. 9b is the efficiency curve comparison of the embodiment 1 of the present application and the reference comparison ratio in LTE B5;
  • Fig. 10a is the comparison of the return loss curves of the embodiment 1 of the present application and the benchmark comparative example in LTE B8;
  • Fig. 10b is the comparison of the efficiency curve of the embodiment 1 of the present application and the reference comparison ratio in LTE B8;
  • Figure 11 is a comparison diagram of the radiation efficiency of the antenna working in LTE B8 when the two phase-shifting network circuits in Figure 3a have different phase differences;
  • Figure 12b is a current distribution diagram of the antenna working in LTE B8 when the two phase-shifting network circuits in Figure 3a differ by -15°;
  • Figure 12c is a current distribution diagram of the antenna working in LTE B8 corresponding to the difference of 180° between the two phase-shifting network circuits in Figure 3a.
  • ground structure 10 electrical connection structure 11; printed circuit board 12;
  • Feed structure 30 Feed 31; Feed 32; Switch 33;
  • coupling structure 40 slot 41; coupling patch 42;
  • Phase-shifting network circuit 60
  • the antenna structure of the embodiment of the present application includes: a ground structure 10, an antenna branch 20, a phase-shifting network circuit 60 and a coupling structure 40, the ground structure 10 can be a conductive member, and the antenna branch 20 can be The wiring structure, the antenna stub 20 is connected to the ground structure 10, the antenna stub 20 and the ground structure 10 can be electrically connected, and the ground structure 10 can be a metal frame or a metal frame of an electronic device.
  • One end of the antenna branch 20 can be electrically connected to the ground structure 10
  • the other end of the antenna branch 20 can be spaced apart from the metal frame, and the antenna branch 20 can be arranged on the edge of the metal frame.
  • the phase of the signal of the feeding structure 30 can be adjusted through the phase shifting network circuit 60, and the phase of the phase shifting network circuit 60 to the antenna branch 20 and the coupling structure 40 can be adjusted through the phase shifting network circuit 60
  • the ground structure 10 is coupled and fed through the antenna branch 20 and the coupling structure 40, and by adjusting the phase difference between the phase shifting network circuit 60 and the antenna branch 20 and the coupling structure 40, the excitation to the ground structure 10 can be enhanced and the ground structure can be improved.
  • the radiation efficiency of the structure improves the overall radiation efficiency of the antenna structure.
  • the coupling structure 40 may be a non-resonant structure, and the coupling structure 40 may include a coupling patch 42 spaced apart from the ground structure 10 and/or a coupling patch 42 disposed on the ground structure 10.
  • the slot 41, the coupling structure 40 can include the coupling patch 42 or the slot 41, and can also include the coupling patch 42 and the slot 41 at the same time, the slot 41 can be strip-shaped or T-shaped, and the coupling patch 42 can be Rectangular or square, the first end of the phase-shifting network circuit 60 and the coupling patch 42 can be electrically connected and/or the first end of the phase-shifting network circuit 60 can be arranged adjacent to the slot 41, such as the first end of the phase-shifting network circuit 60 One end can be connected across the slot 41, the second end of the phase shifting network circuit 60 can be connected to the coupling structure 40, and the connection between the second end of the phase shifting network circuit 60 and the coupling structure 40 can include the phase shifting network circuit 60
  • the electrical connection between the second end and the coupling patch 42 and/or the second end of the phase-shifting network circuit 60 is arranged adjacent to the slot 41, for example, the second end of the phase-shifting network circuit 60 can be connected across the slot 41, and the coupling structure 40
  • the slot 41 can be T-shaped, the slot 41 can be located at the edge of the ground structure 10, the slot 41 can run through the edge of the ground structure 10, and form two branches on the edge of the ground structure 10 through the slot 41, the two branches It can be coupled with other partial structures of the ground structure 10 to improve the radiation efficiency of the ground structure 10 .
  • the phase-shifting network circuit 60 can adjust the phase of the output signal, and the phase difference between the phase-shifting network circuit 60 and the antenna stub 20 and the coupling structure 40 can be adjusted through the phase-shifting network circuit 60 to enhance the excitation to the ground structure 10 .
  • the antenna structure in this application can improve some problems of low radiation efficiency of the antenna caused by poor positions, and can increase the proportion of the weight of the high-efficiency radiation mode of the ground structure 10 at these positions in the entire antenna current mode, and adjust the appropriate phase difference. , can greatly increase the weight of the efficient radiation mode of the ground structure 10, thereby improving the overall radiation efficiency of the antenna, requiring very few structural changes and occupying less space.
  • the antenna branch 20 can be a planar inverted F antenna (Planar Inverted F-shaped Antenna, PIFA) antenna structure, an inverted F antenna (Inverted-F Antenna, IFA) antenna structure or a loop antenna (Loop antenna) antenna structure or the above antenna structure plus parasitic Antenna form of the structure.
  • the feeding structure 30 may include an antenna feeder.
  • the phase-shifting network circuit can be composed of a transmission line, a capacitive inductive element, a switch, or a patchable phase shifter.
  • a printed circuit board 12 (Printed Circuit Board, PCB) on the ground structure 10, and there is a feeding structure on the PCB, which can send and receive antenna signals.
  • a tuning element on the PCB generally including a switch or a variable capacitor, which can be connected to the antenna branch 20 through an electrical connection structure, which can be a metal shrapnel, conductive foam or screw structure, to realize the tuning of the working frequency.
  • the side of the printed circuit board 12 close to the ground structure 10 can be a ground layer, which can be electrically connected to the ground structure 10 through an electrical connection structure 11 (or more connection points), and the electrical connection structure 11 can be a metal layer.
  • connection line of the phase-shifting network circuit can cross the opening of the T-shaped slot 41 , and can pass through the PCB to be electrically connected to the electrical connection structure 11 , and the electrical connection structure 11 is then electrically connected to the ground structure 10 .
  • a coupling structure 40 can be provided on the ground structure 10, and the coupling structure 40 and the ground structure 10 can exhibit electromagnetic coupling, and the first end of the phase-shifting network circuit can be connected to the coupling structure 40.
  • the network circuit can adjust the phase of the signal of the feeding structure 30, and the phase difference between the phase shifting network circuit and the antenna branch 20 and the coupling structure 40 can be adjusted through the phase shifting network circuit, and the phase difference between the phase shifting network circuit and the antenna branch 20 and the coupling structure 40 can be adjusted.
  • the ground structure 10 can be coupled and fed through the antenna stub 20 and the coupling structure 40, which can enhance the excitation of the ground structure 10, improve the radiation efficiency of the ground structure 10, and improve the overall radiation efficiency of the antenna structure.
  • the coupling structure 40 may be disposed on the edge region of the ground structure 10, the ground structure 10 may be in a rectangular shape, the coupling structure 40 may include a coupling patch 42 and/or a slot 41, and the coupling patch 42 and the slot 41 can be arranged at intervals, the slot 41 can be arranged at the edge region of the long side of the ground structure 10 , and the coupling patch 42 can be arranged at the edge region of the long side of the ground structure 10 to facilitate the radiation of the antenna signal.
  • the coupling structure 40 can be a non-resonant structure, and the size of the non-resonant structure is less than 1/8 of the wavelength corresponding to the operating frequency, for example, the width and length of the slot 41 are less than 1/8 of the wavelength corresponding to the operating frequency.
  • the width of the slot 41 may be greater than or equal to 1 mm and less than or equal to 5 mm, the length of the slot 41 may be less than or equal to 20 mm, the slot 41 may be electromagnetically coupled with the ground structure 10, and may excite the ground structure 10 radiation, improving the radiation efficiency of the ground structure 10 .
  • the coupling patch 42 can be arranged on one side of the ground structure 10, the distance between the coupling patch 42 and the ground structure 10 can be less than or equal to 5mm, the coupling patch 42 can be electromagnetically coupled with the ground structure 10, and can stimulate The radiation of the ground structure 10 improves the radiation efficiency of the ground structure 10 .
  • the antenna structure may further include: a first matching circuit 50, the feeding structure 30 and the third end of the phase-shifting network circuit may be connected through the first matching circuit 50, the first matching circuit 50 may include Adjusting components, such as switches or variable capacitors, can achieve impedance optimization through the first matching circuit 50 .
  • the phase-shifting network circuit may include: a first phase-shifting network circuit 61 and a second phase-shifting network circuit 62, the first end of the first phase-shifting network circuit 61 may be electrically connected to the antenna branch 20, the first The second end of the phase shifting network circuit 61 can be electrically connected with the feed structure 30; the first end of the second phase shifting network circuit 62 can be connected with the coupling structure 40, and the first end of the second phase shifting network circuit 62 can be coupled with
  • the patch 42 is electrically connected and/or the first end of the second phase-shifting network circuit 62 can be arranged adjacent to the slot 41, for example, the first end of the second phase-shifting network circuit 62 can be connected across the slot 41, and the second phase-shifting network circuit 62 can be connected to the slot 41.
  • a second end of the phase network circuit 62 may be electrically connected to the feed structure 30 .
  • the phase of the signal of the feed structure 30 can be adjusted by the first phase-shifting network circuit 61 and the second phase-shifting network circuit 62, and the phase difference between the phase-shifting network circuit and the antenna branch 20 and the coupling structure 40 can be adjusted.
  • the phase difference between the circuit and the antenna stub 20 and the coupling structure 40 can enhance the excitation to the ground structure 10 and improve the radiation efficiency of the ground structure 10 .
  • the coupling structure 40 may include a coupling patch 42 and a slot 41, and the coupling structure 40 may include a coupling patch 42 arranged at intervals from the ground structure 10 and a slot 41 arranged on the ground structure 10,
  • Described phase-shifting network circuit can comprise: the first phase-shifting network circuit 71, the second phase-shifting network circuit 72, the 3rd phase-shifting network circuit 73 and the second matching circuit 81, the first end of the first phase-shifting network circuit 71 It can be electrically connected with the antenna branch 20 through the second matching circuit 81, and the impedance optimization can be carried out through the second matching circuit 81.
  • the phase difference between the phase-shifting network circuit and the antenna branch 20 and the coupling structure 40 can be adjusted by the first phase-shifting network circuit 71, the second phase-shifting network circuit 72 and the third phase-shifting network circuit 73.
  • the phase difference between the branch 20 and the coupling structure 40 can enhance the excitation to the ground structure 10 and improve the radiation efficiency of the ground structure 10 .
  • the phase-shifting network circuit may include: a second matching circuit 82 and a fourth phase-shifting network circuit 74, the first end of the second matching circuit 82 may be electrically connected to the antenna branch 20, and the second matching circuit 82 may be
  • the second end of the second matching circuit 82 can be electrically connected to the feed structure 30
  • the first end of the fourth phase shifting network circuit 74 can be connected to the coupling structure 40
  • the second end of the fourth phase shifting network circuit 74 Terminals may be electrically connected to the feed structure 30 .
  • the connection between the first end of the fourth phase shifting network circuit 74 and the coupling structure 40 may include the electrical connection between the first end of the fourth phase shifting network circuit 74 and the coupling patch 42 and/or the first end of the fourth phase shifting network circuit 74 It is disposed adjacent to the slot 41 , for example, the first end of the fourth phase-shifting network circuit 74 may be connected across the slot 41 .
  • the phase of the signal of the feed structure 30 can be adjusted by the fourth phase-shifting network circuit 74, and the phase difference between the phase-shifting network circuit to the antenna branch 20 and the coupling structure 40 can be adjusted.
  • the phase difference of 40 can enhance the excitation to the ground structure 10 and improve the radiation efficiency of the ground structure 10 .
  • the phase-shifting network circuit may include: a fifth phase-shifting network circuit 75, the second end of the second matching circuit 82 is electrically connected to the feeding structure 30 through the fifth phase-shifting network circuit 75,
  • the phase can be adjusted through the fifth phase-shifting network circuit 75, and then the phase difference between the phase-shifting network circuit and the antenna branch 20 and the coupling structure 40 can be adjusted, and the phase difference between the phase-shifting network circuit and the antenna branch 20 and the coupling structure 40 can be adjusted.
  • the excitation to the ground structure 10 is enhanced, and the radiation efficiency of the ground structure 10 is improved.
  • the phase-shifting network circuit may include a switch 77, and the fourth phase-shifting network circuit 74 may include a plurality of sixth phase-shifting network circuits 76.
  • the fourth phase-shifting network circuit 74 may include three sixth phase-shifting network circuits.
  • each sixth phase-shifting network circuit 76 the phase shift of each sixth phase-shifting network circuit 76 can be different, the first end of each sixth phase-shifting network circuit 76 can be connected with the coupling structure 40, the sixth phase-shifting network circuit 76 Connecting the first end to the coupling structure 40 may include electrically connecting the first end of the sixth phase-shifting network circuit 76 to the coupling patch 42 and/or setting the first end of the sixth phase-shifting network circuit 76 adjacent to the slot 41, such as the first end of the sixth phase-shifting network circuit 76. The first end of the six-phase shift network circuit 76 is connected across the slot 41 .
  • each sixth phase-shifting network circuit 76 can be electrically connected to one end of the switch 77, and the other end of the switch 77 can be electrically connected to the feed structure 30, and the switch 77 can connect the feed structure 30 to any A second terminal of a sixth phase-shifting network circuit 76 , by switching the switch 77 , the feed structure 30 can be connected to the second terminal of one of the sixth phase-shifting network circuits 76 .
  • the second end of different sixth phase-shifting network circuits 76 can be selected to be turned on by switching switch 77 to optimize the situation requirements of different operating frequency bands (such as antenna low, medium and high frequency bands) to achieve the best radiation effect.
  • different phase difference It is also possible to realize the adjustable pattern of the antenna as a whole, and the adjustable near-field characteristics, which is conducive to coping with different environments, such as the situation where the human body is close.
  • the phase-shifting network circuit includes a first phase-shifting network circuit and a first switch
  • the first phase-shifting network circuit 61 includes a plurality of first sub-phase-shifting network circuits, each of the first sub-phase-shifting network circuits
  • the phase shifting of the phase-shifting network circuit is different, the first end of each of the first sub-phase-shifting network circuits is connected to the coupling structure 40, and the second end of each first sub-phase-shifting network circuit can be connected to the first switching switch.
  • One end is electrically connected, and the other end of the first switch can be electrically connected to the feed structure.
  • the first switch can connect the feed structure 30 with the second end of any one of the first sub-phase-shifting network circuits.
  • the connection between the first end of the first sub-phase-shifting network circuit and the coupling structure 40 may include electrically connecting the first end of the first sub-phase-shifting network circuit to the coupling patch 42 and/or the first end of the first sub-phase-shifting network circuit It is disposed adjacent to the slot 41 , for example, the first end of the first sub-phase-shifting network circuit is connected across the slot 41 .
  • the first switch can conduct the second end of the feed structure 30 and any first sub-phase-shifting network circuit, and the first switch can make the feed structure 30 and the second end of one of the first sub-phase-shifting network circuits.
  • the two terminals are turned on, so as to switch to the phase-shifting network circuit of different phases.
  • the second end of different first sub-phase-shifting network circuits can be selected and turned on through the first switch to optimize the situation requirements of different operating frequency bands and achieve the best radiation effect. Different phase differences can also realize that the antenna's overall pattern can be adjusted Adjustable, near-field characteristics can be adjusted, which is beneficial to deal with different environments.
  • the phase-shifting network circuit may include a second phase-shifting network circuit and a second switch
  • the second phase-shifting network circuit 62 includes a plurality of second sub-phase-shifting network circuits, each of the second sub-phase-shifting The phase shift of the phase network circuit is different, and the first end of each second sub-phase shift network circuit is connected to the coupling structure 40, and the second end of each second sub-phase shift network circuit can be connected to one end of the second switch.
  • the other end of the second switch can be electrically connected to the feed structure, and the second switch can connect the feed structure 30 to the second end of any second sub-phase-shifting network circuit.
  • the connection between the first end of the second sub-phase-shifting network circuit and the coupling structure 40 may include the electrical connection between the first end of the second sub-phase-shifting network circuit and the coupling patch 42 and/or the first end of the second sub-phase-shifting network circuit It is arranged adjacent to the slot 41 , for example, the first end of the second sub-phase-shifting network circuit is connected across the slot 41 .
  • the second switch can conduct the second end of the feed structure 30 and any second sub-phase-shifting network circuit, and the second switch can make the feed structure 30 and the second end of one of the second sub-phase-shifting network circuits The two terminals are turned on, so as to switch to the phase-shifting network circuit of different phases.
  • the second end of different second sub-phase-shifting network circuits can be selected to be turned on through the second switch to optimize the situational requirements of different operating frequency bands and achieve the best radiation effect. Different phase differences can also realize that the overall antenna pattern can be adjusted Adjustable, near-field characteristics can be adjusted, which is beneficial to deal with different environments.
  • the antenna structure may further include: a tuning element 78, which may be electrically connected to the antenna branch 20, and the operating frequency may be tuned through the tuning element 78.
  • Tuning element 78 may include a switch or a variable capacitance element for tuning the antenna frequency.
  • the operating frequency range of the antenna structure may be 700 MHz to 960 MHz or 1710 MHz to 1880 MHz, and the radiation efficiency of the ground structure may be effectively improved in the low frequency band.
  • the size of the coupling structure 40 is smaller than 1/8 of the wavelength of the corresponding operating frequency, for example, the width and length of the slot 41 are less than 1/8 of the wavelength of the corresponding operating frequency, and the length and width of the coupling patch 42 are smaller than the corresponding operating frequency. 1/8 of the wavelength.
  • the antenna structure may further include: a feed structure 30 , the third end of the phase-shifting network circuit may be electrically connected to the feed structure 30 , and the phase-shifting network circuit may be fed with power through the feed structure 30 .
  • the structure schematic diagram of the direct feed of the T-shaped slot 41 on the antenna branch 20 and the ground structure 10 is fed to the antenna branch 20 through the feed point 31, fed to the slot 41 through the feed point 32, and the switch 33 is an off state, and the antenna can work in the Long Term Evolution (LTE) B8 frequency band.
  • LTE Long Term Evolution
  • the solid line a2 is the return loss curve corresponding to the antenna stub 20
  • the dotted line a1 is the return loss curve corresponding to the T-shaped slot 41
  • the dotted line a3 is the transmission curve between the two (negative value of isolation)
  • the antenna stub 20 has a better standing wave in LTE B8, and the return loss is small, while the standing wave of the slot 41 is very shallow.
  • Figure 6b is the return loss curve corresponding to the direct feed of the slot 41 in Figure 6a, which is equivalent to zooming in on the dotted line. It can be seen that in the LTE B8 frequency band, the return loss of the slot 41 is less than -1dB, and almost all energy is reflected Feedback port. Looking at Fig.
  • the slot 41 corresponds to the antenna with high radiation efficiency, but the antenna input impedance is very poor, and the antenna stub 20 has low radiation efficiency, but the antenna input impedance is very good, and the two have complementary characteristics, such as By making use of the advantages of both, antenna characteristics with good input impedance and high radiation efficiency can be obtained.
  • the return loss of the non-resonant slot 41 or the coupling patch 42 is greater than -1dB in the working frequency band when it is fed directly, and the isolation between the slot 41 or the coupling patch 42 and the antenna branch 20 is greater than 10dB when it is fed directly.
  • This condition can ensure that the return loss of the antenna after the phase-shift matching network circuit is connected has a small change, which is close to the return loss of the original antenna wiring structure, and the radiation efficiency can be higher than that of the single antenna wiring structure through phase difference adjustment, which is close to Radiation efficiency of non-resonant structures.
  • FIG. 7 is a schematic diagram of the IFA antenna structure of the benchmark comparison example, which can be used to compare this antenna structure with the antenna structure of Example 1 in Figure 1a, the only difference is that there are T-shaped slots on the edge of the ground structure 10 in Figure 1a 41.
  • the phase-shifting matching network circuit corresponding to FIG. 3a is adopted.
  • the second phase-shifting network circuit 62 is 11° at a frequency of 880 MHz, which can be realized by connecting with a microstrip line, and the first phase-shifting network circuit 61 is 0°.
  • FIG 8a it is a comparison of the return loss curves of Embodiment 1 of the present application and the benchmark comparative example in LTE B12; referring to Figure 8b, it is a comparison of the efficiency curves of Embodiment 1 of the present application and the benchmark comparative example in LTE B12.
  • Solid line c2 corresponds to the phase-shifting matching network circuit in embodiment 1
  • dotted line c1 corresponds to the single IFA antenna of the reference comparison example.
  • the return losses of the two are basically the same, but in the B12 frequency band, the radiation efficiency of embodiment 1 (square solid line d2) is 0.5-1 dB higher than single IFA (square dotted line d1), and the total efficiency of Example 1 (triangular solid line d4) is also 0.5-1 dB higher than single IFA (triangular dotted line d3).
  • Fig. 9a the return loss curve comparison between Embodiment 1 of the present application and the benchmark comparative example in LTE B5; referring to Fig. 9b, the efficiency curve comparison between Embodiment 1 of the present application and the benchmark comparative example in LTE B5.
  • Solid line e2 corresponds to the phase-shifting matching network circuit of embodiment 1
  • dotted line e1 corresponds to the single IFA antenna of the benchmark comparative example.
  • ) is 0.5-1dB higher than the single IFA (square dotted line f1)
  • the total efficiency of Example 1 triangle solid line f4 is also 0.5-1dB higher than the single IFA (triangular dotted line f3).
  • FIG 10a it is a comparison of the return loss curves of Embodiment 1 of the present application and the benchmark comparative example in LTE B8; referring to Figure 10b, it is a comparison of the efficiency curves of Embodiment 1 of the present application and the benchmark comparative example in LTE B8.
  • Solid line g2 corresponds to the phase-shifting matching network circuit of embodiment 1
  • dotted line g1 corresponds to the single IFA antenna of the benchmark comparative example.
  • the return losses of the two are basically the same, but in the B8 frequency band, the radiation efficiency of embodiment 1 (square solid line h2 ) is 0.5-1.5dB higher than the single IFA (square dotted line h1), and the total efficiency of Example 1 (triangle solid line h4) is also 0.5-1.5dB higher than the single IFA (triangular dotted line h3).
  • the dotted line k1 is the radiation efficiency curve at B8 corresponding to the IFA antenna of the benchmark comparative example in FIG. 7 , which serves as a benchmark for comparison.
  • the phase difference between the antenna stub 20 and the slot 41 is controlled by the phase shifting network circuit shown in FIG.
  • the dotted solid line k2 in Figure 11 can be obtained, and the antenna has the best radiation efficiency, which is 1-1.5dB higher than the reference efficiency.
  • a phase difference of 11° corresponds to the square solid line k3, and a phase difference of 50° corresponds to the equilateral triangle solid line k4, and the advantage over the benchmark efficiency decreases.
  • the difference is 180°, corresponding to the inverted triangle solid line k5
  • the efficiency will become lower than the reference value. Therefore, by controlling the phase difference between the antenna stub 20 and the slot 41, the efficiency of the antenna can be improved.
  • Figure 12a is a current distribution diagram of a single IFA antenna working in LTE B8, it can be seen that the current on the ground structure 10 has both horizontal (short side) and vertical (long side), the current on the ground structure 10 converges to the ground terminal of the IFA, the ground current on the left side of the IFA is not strong, and the excitation of the longitudinal current mode is insufficient.
  • Figure 12b is a current distribution diagram corresponding to the phase difference between the second phase-shifting network circuit 62 and the first phase-shifting network circuit 61 of Figure 3a when the antenna works in LTE B8 at -15°, and the -15° phase difference makes the ground current distribution on the ground structure 10 Wider, the effective radiation volume of the antenna increases.
  • Fig. 12c is a current distribution diagram corresponding to Fig. 3a when the second phase-shifting network circuit 62 and the first phase-shifting network circuit 61 differ by 180°. It can be seen that the edge current of the ground structure 10 is opposite to the original IFA current. In fact, the weight of the original part of the longitudinal current mode is offset, and the proportion of the horizontal direction is increased, resulting in a decrease in the radiation efficiency of the antenna.
  • An embodiment of the present application provides an electronic device, including the antenna structure described in the foregoing embodiments.
  • the electronic device with the antenna structure in the above embodiments the overall radiation efficiency of the antenna is high, which improves user experience.
  • the electronic device may include a mobile phone, a tablet, a computer, and the like.
  • the electronic device may include a frame body, and the frame body may be a piece of conductive material, for example, the frame body may be a metal frame body, and the frame body may serve as the ground structure 10 .

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线结构和电子设备,天线结构包括:地结构;天线枝节,所述天线枝节与所述地结构连接;移相网络电路,所述移相网络电路的第一端和所述天线枝节电连接;耦合结构,所述移相网络电路的第二端与所述耦合结构连接,所述耦合结构与所述地结构耦合;所述移相网络电路的第三端用于与馈电结构电连接。

Description

天线结构和电子设备
相关申请的交叉引用
本申请主张在2021年12月31日在中国提交的中国专利申请No.202111666166.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于终端技术领域,具体涉及一种天线结构和电子设备。
背景技术
移动终端中的天线大多采用平面倒F天线(Planar Inverted F-shaped Antenna,PIFA)、倒F天线(Inverted-F Antenna,IFA)、环形天线(Loop antenna)、单极天线(Monopole antenna)等形式,对天线的设计局限于这些天线形式的走线改变以及布局上面,对整个终端的地结构处理,也仅仅局限于调整天线走线的净空和高度。地结构本身可以作为天线,当射频端馈线直接给地馈电时,由于地的输入阻抗特性太差,容易造成能量反射,无法有效激励起地板高效辐射,导致天线整体的辐射效率不高。
发明内容
本申请实施例的目的是提供一种天线结构和电子设备,用以解决天线中的地结构辐射效率低,导致天线整体的辐射效率不高的问题。
第一方面,本申请实施例提供了一种天线结构,包括:
地结构;
天线枝节,所述天线枝节与所述地结构连接;
移相网络电路,所述移相网络电路的第一端和所述天线枝节电连接;
耦合结构,所述移相网络电路的第二端与所述耦合结构连接,所述耦合结构与所述地结构耦合;
所述移相网络电路的第三端用于与馈电结构电连接。
其中,所述耦合结构包括与所述地结构间隔设置的耦合贴片和/或设置于 所述地结构上的槽缝,所述移相网络电路的第二端与所述耦合贴片电连接和/或所述移相网络电路的第二端邻近所述槽缝设置。
其中,所述耦合结构设置于所述地结构的边缘区域。
其中,所述槽缝的宽度大于或等于1mm且小于或等于5mm,所述槽缝的长度小于或等于20mm。
其中,所述耦合贴片设置于所述地结构的一侧,所述耦合贴片与所述地结构之间的间距小于或等于5mm。
其中,天线结构还包括:
第一匹配电路,所述移相网络电路的第三端连接有所述第一匹配电路,所述第一匹配电路用于与馈电结构电连接。
其中,所述移相网络电路包括:
第一移相网络电路,所述第一移相网络电路的第一端与所述天线枝节电连接,所述第一移相网络电路的第二端用于与馈电结构电连接;
第二移相网络电路,所述第二移相网络电路的第一端与所述非谐振结构连接,所述第二移相网络电路的第二端用于与馈电结构电连接。
其中,所述耦合结构包括与所述地结构间隔设置的耦合贴片和设置于所述地结构上的槽缝,所述移相网络电路包括:
第一移相网络电路与第二匹配电路,所述第一移相网络电路的第一端与所述天线枝节通过所述第二匹配电路电连接,所述第一移相网络电路的第二端用于与馈电结构电连接;
第二移相网络电路,所述第二移相网络电路的第一端邻近所述槽缝设置,所述第二移相网络电路的第二端用于与馈电结构电连接;
第三移相网络电路,所述第三移相网络电路的第一端与所述耦合贴片电连接,所述第三移相网络电路的第二端用于与馈电结构电连接。
其中,所述移相网络电路包括:
第二匹配电路,所述第二匹配电路的第一端与所述天线枝节电连接,所述第二匹配电路的第二端用于与馈电结构电连接;
第四移相网络电路,所述第四移相网络电路的第一端与所述耦合结构连接,所述第四移相网络电路的第二端用于与馈电结构电连接。
其中,所述移相网络电路包括:
第五移相网络电路,所述第二匹配电路的第二端连接有所述第五移相网络电路,所述第五移相网络电路用于与馈电结构电连接。
其中,所述移相网络电路包括切换开关,所述第四移相网络电路包括多个第六移相网络电路,每个所述第六移相网络电路的相移不同,每个所述第六移相网络电路的第一端与所述耦合结构连接,每个所述第六移相网络电路的第二端与所述切换开关的一端电连接,所述切换开关的另一端用于与馈电结构电连接,所述切换开关可导通所述馈电结构与任一所述第六移相网络电路的第二端。
其中,所述移相网络电路包括第一移相网络电路与第一切换开关,所述第一移相网络电路包括多个第一子移相网络电路,每个所述第一子移相网络电路的相移不同,每个所述第一子移相网络电路的第一端与所述耦合结构连接,每个所述第一子移相网络电路的第二端与所述第一切换开关的一端电连接,所述第一切换开关的另一端用于与馈电结构电连接,所述第一切换开关可导通所述馈电结构与任一所述第一子移相网络电路的第二端;
和/或
所述移相网络电路包括第二移相网络电路与第二切换开关,所述第二移相网络电路包括多个第二子移相网络电路,每个所述第二子移相网络电路的相移不同,每个所述第二子移相网络电路的第一端与所述耦合结构连接,每个所述第二子移相网络电路的第二端与所述第二切换开关的一端电连接,所述第二切换开关的另一端用于与馈电结构电连接,所述第二切换开关可导通所述馈电结构与任一所述第二子移相网络电路的第二端。
其中,天线结构还包括:
调谐元件,所述调谐元件与所述天线枝节电连接。
其中,所述天线结构的工作频段范围为700MHz至960MHz或1710MHz至1880MHz;和/或
所述耦合结构的尺寸小于对应工作频率波长的1/8。
其中,所述天线结构还包括:
馈电结构,所述移相网络电路的第三端与所述馈电结构电连接。
第二方面,本申请实施例提供了一种电子设备,包括上述实施例中所述的天线结构。
其中,所述电子设备包括框体,所述框体作为所述地结构。
本申请实施例中的天线结构,包括:地结构;天线枝节,所述天线枝节与所述地结构连接;移相网络电路,所述移相网络电路的第一端和所述天线枝节电连接;耦合结构,所述移相网络电路的第二端与所述耦合结构连接,所述耦合结构与所述地结构耦合;所述移相网络电路的第三端用于与馈电结构电连接。在本申请实施例的天线结构中,通过移相网络电路可以调节馈电结构的信号的相位,通过移相网络电路可以调节移相网络电路到天线枝节和耦合结构的相位差,通过天线枝节和耦合结构分别对地结构进行耦合馈电,通过调节移相网络电路到天线枝节和耦合结构的相位差,可以增强对于地结构的激励,提高地结构的辐射效率,提高天线结构的整体辐射效率。
附图说明
图1a为本申请实施例中天线结构的一个结构示意图;
图1b为本申请实施例中天线结构的另一个结构示意图;
图1c为本申请实施例中天线结构的又一个结构示意图;
图1d为本申请实施例中天线结构的又一个结构示意图;
图1e为本申请实施例中天线结构的又一个结构示意图;
图2a为本申请实施例中移相网络电路的一个连接示意图;
图2b为本申请实施例中移相网络电路的另一个连接示意图;
图2c为本申请实施例中移相网络电路的又一个连接示意图;
图3a为本申请一实施例中天线结构的结构示意图;
图3b为本申请另一实施例中天线结构的结构示意图;
图4为槽缝的局部连接示意图;
图5为天线枝节和槽缝分别直馈的一个结构示意图;
图6a为对应图5的双天线S参数曲线;
图6b为对应图6a中槽缝直馈的回波损耗曲线;
图6c为对应图5的双天线辐射效率曲线;
图7为基准对比例中IFA天线结构的一个示意图;
图8a为本申请实施例1与基准对比例在长期演进(Long Term Evolution,LTE)B12的回波损耗曲线对比;
图8b为本申请实施例1与基准对比例在LTE B12的效率曲线对比;
图9a为本申请实施例1与基准对比例在LTE B5的回波损耗曲线对比;
图9b为本申请实施例1与基准对比例在LTE B5的效率曲线对比;
图10a为本申请实施例1与基准对比例在LTE B8的回波损耗曲线对比;
图10b为本申请实施例1与基准对比例在LTE B8的效率曲线对比;
图11为对应图3a中两个移相网络电路不同相差时天线工作在LTE B8的辐射效率对比图;
图12a为单IFA天线工作在LTE B8的电流分布图;
图12b为对应图3a中两个移相网络电路相差-15°时天线工作在LTE B8的电流分布图;
图12c为对应图3a中两个移相网络电路相差180°时天线工作在LTE B8的电流分布图。
附图标记
地结构10;电连接结构11;印刷电路板12;
天线枝节20;
馈电结构30;馈电31;馈电32;开关33;
耦合结构40;槽缝41;耦合贴片42;
第一匹配电路50;
移相网络电路60;
第一移相网络电路61;第二移相网络电路62;
第一移相网络电路71;第二移相网络电路72;
第三移相网络电路73;第四移相网络电路74;
第五移相网络电路75;第六移相网络电路76;
切换开关77;调谐元件78;
第二匹配电路81;第二匹配电路82。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图1a至图12c所示,通过具体的实施例及其应用场景对本申请实施例提供的天线结构进行详细地说明。
如图1a至图3b所示,本申请实施例的天线结构,包括:地结构10、天线枝节20、移相网络电路60和耦合结构40,地结构10可以为导电件,天线枝节20可以为走线结构,天线枝节20与地结构10连接,天线枝节20与地结构10可以电连接,地结构10可以为金属框体,可以为电子设备的金属框体。天线枝节20的一端可以与地结构10电连接,天线枝节20的另一端可以与金属框体间隔设置,天线枝节20可以设置于金属框体的边沿。移相网络电路60的第一端可以和天线枝节20电连接,移相网络电路60的第二端可以与耦合结构40连接,耦合结构40与地结构10耦合,馈电结构30与移相网络电路60的第三端可以电连接,馈电结构30馈出的信号可以经过移相网络电路60调节相位,移相网络电路60可以向天线枝节20与耦合结构40馈入电信号,通过天线枝节20与耦合结构40可以分别和地结构10进行耦合馈电,可以提高天线整体的辐射效率。
在本申请实施例的天线结构中,通过移相网络电路60可以调节馈电结构30的信号的相位,通过移相网络电路60可以调节移相网络电路60到天线枝节20和耦合结构40的相位差,通过天线枝节20和耦合结构40分别对地结构10进行耦合馈电,通过调节移相网络电路60到天线枝节20和耦合结构 40的相位差,可以增强对于地结构10的激励,提高地结构的辐射效率,提高天线结构的整体辐射效率。
在一些实施例中,如图1a至图1e所示,耦合结构40可以为非谐振结构,耦合结构40可以包括与地结构10间隔设置的耦合贴片42和/或设置于地结构10上的槽缝41,耦合结构40可以包括耦合贴片42或槽缝41,还可以同时包括耦合贴片42和槽缝41,槽缝41可以为长条状或T字型,耦合贴片42可以为长方体状或正方体状,移相网络电路60的第一端与耦合贴片42可以电连接和/或移相网络电路60的第一端可以邻近槽缝41设置,比如移相网络电路60的第一端可以跨接在槽缝41上,移相网络电路60的第二端可以与耦合结构40连接,移相网络电路60的第二端与耦合结构40的连接可以包括移相网络电路60的第二端与耦合贴片42的电连接和/或移相网络电路60的第二端邻近槽缝41设置,比如移相网络电路60的第二端可以跨接在槽缝41上,耦合结构40与地结构10可以呈现电磁耦合。槽缝41可以为T字型,槽缝41可以位于地结构10的边缘,槽缝41可以贯穿地结构10的边沿,通过槽缝41在地结构10的边缘上形成两个枝节,两个枝节可以与地结构10的其他部分结构进行耦合,可以提高地结构10的辐射效率。
移相网络电路60可以调节输出的信号的相位,通过移相网络电路60可以调节移相网络电路60到天线枝节20和耦合结构40的相位差,增强对于地结构10的激励。本申请中的天线结构可以改善一些由于位置不佳导致的天线的辐射效率低的问题,可以提高这些位置下地结构10高效辐射模式权重在整个天线电流模式中的占比,在调节合适的相差下,能大大提高地结构10高效的辐射模式权重,从而提高天线整体的辐射效率,结构上需要做的改动非常少,空间占用少。
天线枝节20可以为平面倒F天线(Planar Inverted F-shaped Antenna,PIFA)天线结构、倒F天线(Inverted-F Antenna,IFA)天线结构或环形天线(Loop antenna)天线结构或上述天线结构加寄生结构的天线形式。馈电结构30可以包括天线馈线,天线馈线单独馈入非谐振T型槽缝41或非谐振的耦合贴片42时,在工作频段的天线回波损耗大于-1dB,天线馈线馈入非谐振T型的槽缝41或非谐振的耦合贴片42时,与馈入天线枝节20之间的隔离度大于10dB。 在应用过程中,多天线可以共用一个槽缝41或耦合贴片42。移相网络电路可以由传输线、电容电感元件、开关或可贴片的移相器构成,通过移相网络电路可以向天线枝节20和耦合结构40输出不同相位的信号,可以调节移相网络电路到天线枝节和耦合结构的相位差,增强对于地结构10的激励。移相网络电路可以包括至少一个移相装置,移相装置可以包括传输线或可SMT的移相元件,耦合结构40可以连接有移相网络电路中的一个移相装置,天线枝节20可以连接移相网络电路中的另一个移相装置。
如图3a和图3b所示,在地结构10上可以有印刷电路板12(Printed Circuit Board,PCB),PCB上有馈电结构,可以收发天线信号。PCB上还有调谐元件,一般包括开关或可变电容,可以通过电连接结构连接到天线枝节20上,电连接结构可以为金属弹片、导电泡棉或螺钉结构,实现工作频率的调谐。如图4所示,印刷电路板12靠近地结构10的一侧可以为地层,其上可以通过电连接结构11(或更多连接点)与地结构10电连接,电连接结构11可以为金属弹片或螺钉结构或导电泡棉。移相网络电路的连接线可以跨过T型槽缝41的开口处,可以通过金属过孔穿过PCB电连接到电连接结构11上,电连接结构11再与地结构10电连接。
在本申请实施例的天线结构中,地结构10上可以设置耦合结构40,耦合结构40与地结构10可以呈现电磁耦合,移相网络电路的第一端可以与耦合结构40连接,通过移相网络电路可以调节馈电结构30的信号的相位,通过移相网络电路可以调节移相网络电路到天线枝节20和耦合结构40的相位差,通过调节移相网络电路到天线枝节20和耦合结构40的相位差,可以分别通过天线枝节20和耦合结构40对地结构10进行耦合馈电,可以增强对于地结构10的激励,提高地结构10的辐射效率,提高天线结构的整体辐射效率。
在一些实施例中,耦合结构40可以设置于地结构10的边缘区域,地结构10可以为长方形状,耦合结构40可以包括耦合贴片42和/或槽缝41,耦合贴片42和槽缝41可以间隔设置,槽缝41可以设置于地结构10的长边的边缘区域,耦合贴片42可以设置于地结构10的长边的边缘区域,以便于天线信号的辐射。耦合结构40可以为非谐振结构,非谐振结构的尺寸小于对应 工作频率波长的1/8,比如,槽缝41的宽度和长度小于对应工作频率波长的1/8。
在另一些实施例中,槽缝41的宽度可以大于或等于1mm且小于或等于5mm,槽缝41的可以长度小于或等于20mm,槽缝41可以与地结构10电磁耦合,可以激励地结构10的辐射,提高地结构10的辐射效率。
可选地,耦合贴片42可以设置于地结构10的一侧,耦合贴片42与地结构10之间的间距可以小于或等于5mm,耦合贴片42可以与地结构10电磁耦合,可以激励地结构10的辐射,提高地结构10的辐射效率。
在一些实施例中,天线结构还可以包括:第一匹配电路50,馈电结构30与移相网络电路的第三端之间可以通过第一匹配电路50连接,第一匹配电路50可以包括可调元件,比如开关或可变电容,通过第一匹配电路50可以实现阻抗的优化。
在一些实施例中,移相网络电路可以包括:第一移相网络电路61与第二移相网络电路62,第一移相网络电路61的第一端可以与天线枝节20电连接,第一移相网络电路61的第二端可以与馈电结构30电连接;第二移相网络电路62的第一端可以与耦合结构40连接,第二移相网络电路62的第一端可以与耦合贴片42电连接和/或第二移相网络电路62的第一端可以邻近槽缝41设置,比如第二移相网络电路62的第一端可以跨接在槽缝41上,第二移相网络电路62的第二端可以与馈电结构30电连接。通过第一移相网络电路61与第二移相网络电路62可以调节馈电结构30的信号的相位,可以调节移相网络电路到天线枝节20和耦合结构40的相位差,通过调节移相网络电路到天线枝节20和耦合结构40的相位差,可以增强对于地结构10的激励,提高地结构10的辐射效率。
在本申请的实施例中,耦合结构40可以包括耦合贴片42和槽缝41,耦合结构40可以包括与地结构10间隔设置的耦合贴片42和设置于地结构10上的槽缝41,所述移相网络电路可以包括:第一移相网络电路71、第二移相网络电路72、第三移相网络电路73和第二匹配电路81,第一移相网络电路71的第一端与天线枝节20可以通过第二匹配电路81电连接,通过第二匹配电路81可以进行阻抗优化,第一移相网络电路71的第二端可以与馈电结构 30电连接,第二移相网络电路72的第一端可以邻近槽缝41设置,比如第二移相网络电路72的第一端可以跨接在槽缝41上,第二移相网络电路72的第二端可以与馈电结构30电连接,第三移相网络电路73的第一端可以与耦合贴片42电连接,第三移相网络电路73的第二端可以与馈电结构30电连接。通过第一移相网络电路71、第二移相网络电路72与第三移相网络电路73可以调节移相网络电路到天线枝节20和耦合结构40的相位差,通过调节移相网络电路到天线枝节20和耦合结构40的相位差,可以增强对于地结构10的激励,提高地结构10的辐射效率。
在一些实施例中,移相网络电路可以包括:第二匹配电路82与第四移相网络电路74,第二匹配电路82的第一端可以与天线枝节20电连接,第二匹配电路82可以进行阻抗优化,第二匹配电路82的第二端可以与馈电结构30电连接,第四移相网络电路74的第一端可以与耦合结构40连接,第四移相网络电路74的第二端可以与馈电结构30电连接。第四移相网络电路74的第一端与耦合结构40连接可以包括第四移相网络电路74的第一端与耦合贴片42电连接和/或第四移相网络电路74的第一端邻近槽缝41设置,比如第四移相网络电路74的第一端可以跨接在槽缝41上。通过第四移相网络电路74可以调节馈电结构30的信号的相位,可以调节移相网络电路到天线枝节20和耦合结构40的相位差,通过调节移相网络电路到天线枝节20和耦合结构40的相位差,可以增强对于地结构10的激励,提高地结构10的辐射效率。
在一些实施例中,所述移相网络电路可以包括:第五移相网络电路75,所述第二匹配电路82的第二端与馈电结构30通过第五移相网络电路75电连接,通过第五移相网络电路75可以调节相位,进而可以调节移相网络电路到天线枝节20和耦合结构40的相位差,通过调节移相网络电路到天线枝节20和耦合结构40的相位差,可以增强对于地结构10的激励,提高地结构10的辐射效率。
在本申请的实施例中,移相网络电路可以包括切换开关77,第四移相网络电路74可以包括多个第六移相网络电路76,比如第四移相网络电路74可以包括三个第六移相网络电路76,每个第六移相网络电路76的相移可以不同,每个第六移相网络电路76的第一端可以与耦合结构40连接,第六移相 网络电路76的第一端与耦合结构40连接可以包括第六移相网络电路76的第一端与耦合贴片42电连接和/或第六移相网络电路76的第一端邻近槽缝41设置,比如第六移相网络电路76的第一端跨接在槽缝41上。每个第六移相网络电路76的第二端可以与切换开关77的一端电连接,切换开关77的另一端可以与馈电结构30电连接,切换开关77可导通馈电结构30与任一第六移相网络电路76的第二端,通过切换开关77可以使得馈电结构30与其中的一个第六移相网络电路76的第二端导通。可以通过切换开关77选择导通不同的第六移相网络电路76的第二端,以优化不同工作频段(比如天线低中高频段)的情形需求,实现最佳的辐射效果,同时,不同相差也可以实现天线整体的方向图可调,近场特性可调,有利于应对不同的环境,比如人体接近的情况。
在一些实施例中,所述移相网络电路包括第一移相网络电路与第一切换开关,第一移相网络电路61包括多个第一子移相网络电路,每个所述第一子移相网络电路的相移不同,每个所述第一子移相网络电路的第一端与耦合结构40连接,每个第一子移相网络电路的第二端可以与第一切换开关的一端电连接,第一切换开关的另一端可以与馈电结构电连接。所述第一切换开关可导通馈电结构30与任一所述第一子移相网络电路的第二端。第一子移相网络电路的第一端与耦合结构40连接可以包括第一子移相网络电路的第一端与耦合贴片42电连接和/或第一子移相网络电路的第一端邻近槽缝41设置,比如第一子移相网络电路的第一端跨接在槽缝41上。第一切换开关可导通馈电结构30与任一第一子移相网络电路的第二端,通过第一切换开关可以使得馈电结构30与其中的一个第一子移相网络电路的第二端导通,从而切换至不同相位的移相网络电路。可以通过第一切换开关选择导通不同的第一子移相网络电路的第二端,以优化不同工作频段的情形需求,实现最佳的辐射效果,不同相差也可以实现天线整体的方向图可调,近场特性可调,有利于应对不同的环境。
可选地,所述移相网络电路可以包括第二移相网络电路与第二切换开关,第二移相网络电路62包括多个第二子移相网络电路,每个所述第二子移相网络电路的相移不同,每个所述第二子移相网络电路的第一端与耦合结构40连 接,每个第二子移相网络电路的第二端可以与第二切换开关的一端电连接,第二切换开关的另一端可以与馈电结构电连接,所述第二切换开关可导通馈电结构30与任一所述第二子移相网络电路的第二端。
第二子移相网络电路的第一端与耦合结构40连接可以包括第二子移相网络电路的第一端与耦合贴片42电连接和/或第二子移相网络电路的第一端邻近槽缝41设置,比如第二子移相网络电路的第一端跨接在槽缝41上。第二切换开关可导通馈电结构30与任一第二子移相网络电路的第二端,通过第二切换开关可以使得馈电结构30与其中的一个第二子移相网络电路的第二端导通,从而切换至不同相位的移相网络电路。可以通过第二切换开关选择导通不同的第二子移相网络电路的第二端,以优化不同工作频段的情形需求,实现最佳的辐射效果,不同相差也可以实现天线整体的方向图可调,近场特性可调,有利于应对不同的环境。
在一些实施例中,天线结构还可以包括:调谐元件78,调谐元件78可以与天线枝节20电连接,通过调谐元件78可以实现工作频率的调谐。调谐元件78可以包括开关或可变电容元件,以用于调谐天线频率。
可选地,天线结构的工作频段范围可以为700MHz至960MHz或1710MHz至1880MHz,在低频段可以有效提高地结构的辐射效率。
可选地,耦合结构40的尺寸小于对应工作频率波长的1/8,比如,槽缝41的宽度和长度小于对应工作频率波长的1/8,耦合贴片42的长度和宽度小于对应工作频率波长的1/8。
可选地,天线结构可以还包括:馈电结构30,移相网络电路的第三端与馈电结构30可以电连接,通过馈电结构30可以向移相网络电路馈电。如图5所示,天线枝节20和地结构10上的T型的槽缝41分别直馈的结构示意图,通过馈点31馈到天线枝节20,通过馈点32馈到槽缝41上,开关33为断开状态,天线可以工作在长期演进(Long Term Evolution,LTE)B8频段。参看图6a,对应图5的双天线S参数曲线。其中,实线a2为天线枝节20对应的回波损耗曲线,虚线a1为T型槽缝41对应的回波损耗曲线,点线a3为两者之间的传输曲线(隔离度的负值),容易看到,天线枝节20在LTE B8有较好的驻波,回波损耗小,而槽缝41驻波很浅。图6b是对应图6a中槽缝41 直馈的回波损耗曲线,相当于把虚线拉近来看,可见,在LTE B8频段,槽缝41的回波损耗不到-1dB,能量几乎都反射回馈电端口。再看图6c,对应图5的双天线辐射效率曲线,其中,实线b2对应天线枝节20,虚线b1对应槽缝41,容易看出,槽缝41对应天线的辐射效率要比天线枝节20的要高2dB左右。
从图6a至图6c中的曲线图可知,槽缝41对应天线辐射效率高,但天线输入阻抗很差,天线枝节20辐射效率低,但天线输入阻抗很好,两种具有互补的特性,如能利用两种的长处,就能得到输入阻抗好,辐射效率高的天线特性。非谐振的槽缝41或耦合贴片42直馈时在工作频段的回波损耗大于-1dB,槽缝41或耦合贴片42直馈时与天线枝节20直馈时隔离度大于10dB,以上两个条件可以确保通过移相匹配网络电路连接后天线回波损耗变化小,接近于原始天线走线结构回波损耗,而辐射效率通过相差调控可以做到比单天线走线结构时高,接近于非谐振结构的辐射效率。
图7为基准对比例的IFA天线结构示意图,可以用这个天线结构与图1a中的实施例1的天线结构做对比,差别只在于图1a中的地结构10的边缘开有T型的槽缝41,通过不同频段LTE B12、B5和B8的切换,可以来验证本申请的优势。实施例1中采用图3a所对应的移相匹配网络电路,第二移相网络电路62为11°在880MHz频率,可以通过微带线连接实现,第一移相网络电路61为0°。
参看图8a,为本申请实施例1与基准对比例在LTE B12的回波损耗曲线对比;参看图8b,为本申请实施例1与基准对比例在LTE B12的效率曲线对比。实线c2对应实施例1中的移相匹配网络电路,虚线c1对应基准对比例的单IFA天线,两种的回波损耗基本一样,但在B12频段,实施例1的辐射效率(正方形实线d2)比单IFA(正方形虚线d1)高0.5-1dB,实施例1的总效率(三角形实线d4)也比单IFA(三角形虚线d3)高0.5-1dB。
参看图9a,本申请实施例1与基准对比例在LTE B5的回波损耗曲线对比;参看图9b,本申请实施例1与基准对比例在LTE B5的效率曲线对比。实线e2对应实施例1的移相匹配网络电路,虚线e1对应基准对比例的单IFA天线,两种的回波损耗基本一样,但在B5频段,实施例1的辐射效率(正方 形实线f2)比单IFA(正方形虚线f1)高0.5-1dB,实施例1的总效率(三角形实线f4)也比单IFA(三角形虚线f3)高0.5-1dB。
参看图10a,为本申请实施例1与基准对比例在LTE B8的回波损耗曲线对比;参看图10b,为本申请实施例1与基准对比例在LTE B8的效率曲线对比。实线g2对应实施例1的移相匹配网络电路,虚线g1对应基准对比例的单IFA天线,两种的回波损耗基本一样,但在B8频段,实施例1的辐射效率(正方形实线h2)比单IFA(正方形虚线h1)高0.5-1.5dB,实施例1的总效率(三角形实线h4)也比单IFA(三角形虚线h3)高0.5-1.5dB。
参看图11,对应图3a中两个移相网络电路不同相差时天线工作在LTE B8的辐射效率对比图,两个移相匹配网络到天线枝节20和耦合结构(T型的槽缝41或耦合贴片42)的相位差,会对最终的天线辐射效果有影响,单激励IFA时,其在地结构10上会耦合多种电流模式,在低频段长边模式的辐射效率要高于短边模式的辐射效率,单IFA的激励这些电流模式的权重不一样。设置非谐振的T型的槽缝41或耦合贴片42,主要用于增强长边模式权重,是线性叠加到原来单IFA模式权重上去的。如图11中所示,虚线k1为对应图7基准对比例IFA天线在B8的辐射效率曲线,作为对比的基准。实施例1中通过图3a的移相网络电路控制到天线枝节20和槽缝41的相位差,当第二移相网络电路62相位减第一移相网络电路61的相位差为-15°,可以得到图11中圆点实线k2,天线有最佳的辐射效率,比基准效率高1-1.5dB。相差变为11°则对应正方形实线k3,相差为50°对应正三角实线k4,相对于基准效率优势下降。而相差为180°时,对应倒三角实线k5,效率会变得比基准值还低。因此,控制到天线枝节20和槽缝41的相位差,可以提高天线的效率。
针对图11,不同相差有不同辐射效率,参见图12a至图12c,其中,图12a为单IFA天线工作在LTE B8的电流分布图,可以看到地结构10上的电流既有横向的(短边的)也有纵向的(长边的),地结构10上的电流往IFA接地端汇聚,IFA左侧地电流不强,纵向电流模式激励不足。图12b为对应图3a第二移相网络电路62与第一移相网络电路61的相差-15°时天线工作在LTE B8的电流分布图,-15°相差使得地结构10上的地电流分布更广,天 线的有效辐射体积增大,同时可以看到,IFA左侧纵向地电流增强,天线辐射效率提高。图12c为对应图3a第二移相网络电路62与第一移相网络电路61相差180°时天线工作在LTE B8的电流分布图,可以看到,地结构10的边缘电流与原始IFA电流反向,实际就抵消了原始部分纵向电流模式的权重,增大了横向的比例,造成了天线辐射效率下降。
本申请实施例的天线结构,通过调节移相网络电路到天线枝节20和耦合结构40的相位差,可以增强对于地结构10的激励,提高地结构10的辐射效率,提高天线结构的整体辐射效率。
本申请实施例提供一种电子设备,包括上述实施例中所述的天线结构。具有上述实施例中天线结构的电子设备,天线的整体辐射效率高,提高用户的使用体验。其中,电子设备可以包括手机、平板、电脑等。
可选地,电子设备可以包括框体,框体可以为导电材料件,比如框体可以为金属框体,框体可以作为地结构10。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (17)

  1. 一种天线结构,包括:
    地结构;
    天线枝节,所述天线枝节与所述地结构连接;
    移相网络电路,所述移相网络电路的第一端和所述天线枝节电连接;
    耦合结构,所述移相网络电路的第二端与所述耦合结构连接,所述耦合结构与所述地结构耦合;
    所述移相网络电路的第三端用于与馈电结构电连接。
  2. 根据权利要求1所述的天线结构,其中,所述耦合结构包括与所述地结构间隔设置的耦合贴片和/或设置于所述地结构上的槽缝,所述移相网络电路的第二端与所述耦合贴片电连接和/或所述移相网络电路的第二端邻近所述槽缝设置。
  3. 根据权利要求1或2所述的天线结构,其中,所述耦合结构设置于所述地结构的边缘区域。
  4. 根据权利要求2所述的天线结构,其中,所述槽缝的宽度大于或等于1mm且小于或等于5mm,所述槽缝的长度小于或等于20mm。
  5. 根据权利要求2所述的天线结构,其中,所述耦合贴片设置于所述地结构的一侧,所述耦合贴片与所述地结构之间的间距小于或等于5mm。
  6. 根据权利要求1所述的天线结构,其中,还包括:
    第一匹配电路,所述移相网络电路的第三端连接有所述第一匹配电路,所述第一匹配电路用于与馈电结构电连接。
  7. 根据权利要求1所述的天线结构,其中,所述移相网络电路包括:
    第一移相网络电路,所述第一移相网络电路的第一端与所述天线枝节电连接,所述第一移相网络电路的第二端用于与馈电结构电连接;
    第二移相网络电路,所述第二移相网络电路的第一端与所述耦合结构连接,所述第二移相网络电路的第二端用于与馈电结构电连接。
  8. 根据权利要求1所述的天线结构,其中,所述耦合结构包括与所述地结构间隔设置的耦合贴片和设置于所述地结构上的槽缝,所述移相网络电路 包括:
    第一移相网络电路与第二匹配电路,所述第一移相网络电路的第一端与所述天线枝节通过所述第二匹配电路电连接,所述第一移相网络电路的第二端用于与馈电结构电连接;
    第二移相网络电路,所述第二移相网络电路的第一端邻近所述槽缝设置,所述第二移相网络电路的第二端用于与馈电结构电连接;
    第三移相网络电路,所述第三移相网络电路的第一端与所述耦合贴片电连接,所述第三移相网络电路的第二端用于与馈电结构电连接。
  9. 根据权利要求1所述的天线结构,其中,所述移相网络电路包括:
    第二匹配电路,所述第二匹配电路的第一端与所述天线枝节电连接,所述第二匹配电路的第二端用于与馈电结构电连接;
    第四移相网络电路,所述第四移相网络电路的第一端与所述耦合结构连接,所述第四移相网络电路的第二端用于与馈电结构电连接。
  10. 根据权利要求9所述的天线结构,其中,所述移相网络电路包括:
    第五移相网络电路,所述第二匹配电路的第二端连接有所述第五移相网络电路,所述第五移相网络电路用于与馈电结构电连接。
  11. 根据权利要求9所述的天线结构,其中,所述移相网络电路包括切换开关,所述第四移相网络电路包括多个第六移相网络电路,每个所述第六移相网络电路的相移不同,每个所述第六移相网络电路的第一端与所述耦合结构连接,每个所述第六移相网络电路的第二端与所述切换开关的一端电连接,所述切换开关的另一端用于与馈电结构电连接,所述切换开关可导通所述馈电结构与任一所述第六移相网络电路的第二端。
  12. 根据权利要求1所述的天线结构,其中,所述移相网络电路包括第一移相网络电路与第一切换开关,所述第一移相网络电路包括多个第一子移相网络电路,每个所述第一子移相网络电路的相移不同,每个所述第一子移相网络电路的第一端与所述耦合结构连接,每个所述第一子移相网络电路的第二端与所述第一切换开关的一端电连接,所述第一切换开关的另一端用于与馈电结构电连接,所述第一切换开关可导通所述馈电结构与任一所述第一子移相网络电路的第二端;
    和/或
    所述移相网络电路包括第二移相网络电路与第二切换开关,所述第二移相网络电路包括多个第二子移相网络电路,每个所述第二子移相网络电路的相移不同,每个所述第二子移相网络电路的第一端与所述耦合结构连接,每个所述第二子移相网络电路的第二端与所述第二切换开关的一端电连接,所述第二切换开关的另一端用于与馈电结构电连接,所述第二切换开关可导通所述馈电结构与任一所述第二子移相网络电路的第二端。
  13. 根据权利要求1所述的天线结构,其中,还包括:
    调谐元件,所述调谐元件与所述天线枝节电连接。
  14. 根据权利要求1所述的天线结构,其中,所述天线结构的工作频段范围为700MHz至960 MHz或1710MHz至1880 MHz;和/或
    所述耦合结构的尺寸小于对应工作频率波长的1/8。
  15. 根据权利要求1所述的天线结构,其中,还包括:
    馈电结构,所述移相网络电路的第三端与所述馈电结构电连接。
  16. 一种电子设备,包括权利要求1至15中任一项所述的天线结构。
  17. 根据权利要求16所述的电子设备,其中,所述电子设备包括框体,所述框体作为所述地结构。
PCT/CN2022/142065 2021-12-31 2022-12-26 天线结构和电子设备 WO2023125447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111666166.3A CN114142228A (zh) 2021-12-31 2021-12-31 天线结构和电子设备
CN202111666166.3 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125447A1 true WO2023125447A1 (zh) 2023-07-06

Family

ID=80384218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142065 WO2023125447A1 (zh) 2021-12-31 2022-12-26 天线结构和电子设备

Country Status (2)

Country Link
CN (1) CN114142228A (zh)
WO (1) WO2023125447A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142228A (zh) * 2021-12-31 2022-03-04 维沃移动通信有限公司 天线结构和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701890A (zh) * 2017-02-27 2018-10-23 华为技术有限公司 一种nfc天线及终端设备
CN112002992A (zh) * 2016-11-29 2020-11-27 株式会社村田制作所 天线装置以及电子设备
WO2020238996A1 (zh) * 2019-05-31 2020-12-03 华为技术有限公司 一种天线及移动终端
CN112531330A (zh) * 2019-09-18 2021-03-19 青岛海信移动通信技术股份有限公司 一种移动终端及移动终端附属设备
CN113745804A (zh) * 2020-05-30 2021-12-03 荣耀终端有限公司 天线装置及电子设备
CN113809517A (zh) * 2020-06-15 2021-12-17 华为技术有限公司 天线装置与电子设备
CN114142228A (zh) * 2021-12-31 2022-03-04 维沃移动通信有限公司 天线结构和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002992A (zh) * 2016-11-29 2020-11-27 株式会社村田制作所 天线装置以及电子设备
CN108701890A (zh) * 2017-02-27 2018-10-23 华为技术有限公司 一种nfc天线及终端设备
WO2020238996A1 (zh) * 2019-05-31 2020-12-03 华为技术有限公司 一种天线及移动终端
CN112531330A (zh) * 2019-09-18 2021-03-19 青岛海信移动通信技术股份有限公司 一种移动终端及移动终端附属设备
CN113745804A (zh) * 2020-05-30 2021-12-03 荣耀终端有限公司 天线装置及电子设备
CN113809517A (zh) * 2020-06-15 2021-12-17 华为技术有限公司 天线装置与电子设备
CN114142228A (zh) * 2021-12-31 2022-03-04 维沃移动通信有限公司 天线结构和电子设备

Also Published As

Publication number Publication date
CN114142228A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
EP1506594B1 (en) Antenna arrangement and module including the arrangement
JP7103556B2 (ja) アンテナシステム及び端末デバイス
TWI675507B (zh) 天線結構
US20140313089A1 (en) Multi-antenna system
WO2020133111A1 (zh) 天线装置及终端
US7505006B2 (en) Antenna arrangement
WO2006011008A1 (en) A multi-band antenna arrangement
CN104396086A (zh) 一种天线及移动终端
CN114512827B (zh) 一种超宽带斜45度极化紧耦合阵列天线
US8773320B2 (en) Planar CRLH antenna
WO2023125447A1 (zh) 天线结构和电子设备
CN104882677A (zh) 具有高共模抑制比的差分缝隙mimo天线
WO2019223318A1 (zh) 室内基站及其pifa天线
CN207925662U (zh) 天线和便携式电信设备
Wang et al. Compact MIMO antenna for 5G portable device using simple neutralization line structures
CN205122763U (zh) 一种应用于l波段和c波段的双波段双频微带贴片天线
CN204651491U (zh) 具有高共模抑制比的差分缝隙mimo天线
CN108321514B (zh) 一种一体化、小型化同轴馈电圆极化整流天线
KR20090030116A (ko) Dvb―h 안테나
CN211088517U (zh) 一种频率可调谐的微带天线及终端通信设备
WO2023035866A1 (zh) 一种多天线系统及无线通信设备
Alja’afreh et al. A dual-port, dual-polarized and wideband slot rectenna for ambient RF energy harvesting
CN207852905U (zh) 一种lte天线和移动终端
Li et al. A compact DVB‐H antenna with varactor‐tuned matching circuit
Prakash et al. MIMO antenna for mobile terminals with enhanced isolation in LTE band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914701

Country of ref document: EP

Kind code of ref document: A1