WO2023125398A1 - 一种保持长管状的植入式医疗器械平直的方法 - Google Patents

一种保持长管状的植入式医疗器械平直的方法 Download PDF

Info

Publication number
WO2023125398A1
WO2023125398A1 PCT/CN2022/141879 CN2022141879W WO2023125398A1 WO 2023125398 A1 WO2023125398 A1 WO 2023125398A1 CN 2022141879 W CN2022141879 W CN 2022141879W WO 2023125398 A1 WO2023125398 A1 WO 2023125398A1
Authority
WO
WIPO (PCT)
Prior art keywords
implantable medical
medical device
long tubular
magnetic
keeping
Prior art date
Application number
PCT/CN2022/141879
Other languages
English (en)
French (fr)
Inventor
张万谦
李海锋
Original Assignee
元心科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元心科技(深圳)有限公司 filed Critical 元心科技(深圳)有限公司
Priority to CN202280086831.8A priority Critical patent/CN118660679A/zh
Priority to KR1020247023881A priority patent/KR20240125617A/ko
Publication of WO2023125398A1 publication Critical patent/WO2023125398A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0207Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the work being an elongated body, e.g. wire or pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0285Stands for supporting individual articles to be sprayed, e.g. doors, vehicle body parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Definitions

  • the invention belongs to the technical field of medical devices, and in particular relates to a method for keeping long tubular implantable medical devices straight.
  • implantable medical devices have gradually entered everyone's field of vision, mainly playing a supporting role in the affected part of the patient. Re-expanding the narrowed blood vessels and restoring the normal blood supply, so as to achieve the purpose of revascularization, is currently the most effective way to treat diseases caused by vascular stenosis and insufficient blood supply (such as coronary heart disease, lower extremity arteriosclerosis obliterans). Since implantable medical devices are implanted into the human body, if some factors in the production process lead to problems such as low pass rate and unstable quality of the device, it is easy to cause a large number of safety problems, which will cause very serious problems in the patient's body. Obvious side effects bring pain to patients. Therefore, at present, countries have set high standards and strengthened corresponding supervision on the quality and safety of implantable medical devices. When producing products, manufacturers must ensure that the products meet the corresponding standards and try to avoid corresponding safety risks after they are implanted in the body.
  • the technical solution of the present invention provides a method for keeping the long tubular implantable medical device straight, which can ensure that the long tubular implantable medical device, especially the hollowed out long tubular implantable medical device, is In the process of processing or testing, it is always kept in a relatively straight state, and the line formed between the highest point or lowest point and the fixed point of the fixed end of the instrument during the swinging process is formed by the straight line where the center line of the fixing device is located.
  • the included angle is ⁇ 5° or even ⁇ 3°, and at the same time, the qualification rate of the appearance and size of the workpiece in the processing process and the detection accuracy in the detection process can reach 90% or even 95%.
  • the technical solution of the present invention provides a method for keeping a long tubular implantable medical device straight.
  • the long tubular implantable medical device includes a fixed end and a suspended end, wherein an external force is applied to the suspended end to ensure that the instrument remains straight.
  • the long tubular implantable medical device in the present invention has smaller specifications, the longer the tubular device, the longer the suspended part, and the more serious the tail flick phenomenon.
  • the device Due to gravity and its own inertia, a large tail flick will occur, and the angle of the tail flick can reach 120°, that is, between the highest point and the lowest point of the instrument during the flick process and the fixed point of the fixed end of the instrument.
  • the angle formed by the connecting lines is 2 ⁇ , and the value of 2 ⁇ can reach the range of 10°-120° during the swinging process, especially when the long tubular implantable medical device has a hollow structure, the degree of tail flicking is more serious , the swinging angle 2 ⁇ can even reach 180°. Therefore, it is necessary to apply sufficient force on the surface of the instrument to achieve the effect of "straightening" the tail of the instrument.
  • highest point and “lowest point” both refer to the center point of the section of the end of the instrument when the instrument reaches the highest position or the lowest position during the swinging process.
  • the external force provided is the magnetic field traction force;
  • the magnitude of the magnetic field traction force acting on the implantable medical device is
  • the long tubular implantable medical device described in the present invention can be induced by a magnetic field to generate a corresponding force, but there is no limit to the way in which the surface of the device is subjected to the traction force of the magnetic field.
  • the long tubular implantable medical device itself has magnetic conductivity, such as in some embodiments, the entire suspended part of the device or even the entire device can be magnetically conductive and can be subjected to the force of the magnetic field; while in other implementations
  • a certain part of the device has magnetic permeability, such as the coating of the device or the main material of the device has magnetic permeability, or there is a substance with magnetic permeability (such as a developing structure, etc.) on a certain section of the device, so that the device is subjected to
  • the force of the magnetic field ensures that the instrument can maintain a straight state.
  • the instrument itself is not magnetically conductive, but with the help of some external magnetically permeable materials, the instrument can also be subjected to the force of the magnetic field to keep it straight, such as some magnetically conductive materials on the outer surface of the instrument. patch etc.
  • the area S of the magnetic field and the instrument's action surface refers to the area of the covering material of any circumferential section of the instrument that is subjected to magnetic force.
  • the area S refers to the area of the instrument support rod on the section, that is, the S support rod section .
  • the calculation formula is the circumferential cross-sectional area S of the outer diameter of the device multiplied by the coverage rate S of the material covered by the cross- section of the device, that is:
  • the coverage rate S of the material covered by the instrument on the section refers to the ratio of the area S occupied by the support rod on the entire circumferential section to the circumferential cross -sectional area S of the outer diameter of the support rod, that is:
  • S -section coverage S- circumferential direction , and S- support rod section are all average values, and they are all areas in the state of device processing/processing, not when the device is implanted in the body and used in the body. area.
  • the formula of the above traction force can be:
  • the magnitude of the magnetic field traction force experienced by the instrument is only related to the area of the magnetically permeable material in the direction of the circumferential section.
  • the magnetic induction intensity generated by the magnetic source can also meet the requirements at 100mT.
  • the magnetic induction intensity B of the magnetic field generated by the magnetic source is ⁇ 1000mT, including but not limited to 200mT, 300mT, 400mT, 500mT, 600mT, 700mT, 800mT, 900mT, etc. Any value below 1000, Further, the magnetic induction intensity of the magnetic field generated by the magnetic source is B ⁇ 750mT or B ⁇ 600mT, etc.
  • the magnetic source that produces magnetic field pulling force can be any device and/or equipment that can generate magnetic field, can be natural itself and can produce magnetism, as commonly used permanent magnet, also can be in A device or device that can produce a magnetic field under the action of an external force, such as a magnetic field that can be generated when energized.
  • the magnetic source mentioned in the present invention includes but not limited to permanent magnets and electromagnets, which can be magnets, magnets, coils for generating magnetic fields, and the like. It may also be any one or more of a constant magnetic field, an alternating magnetic field, a pulsating magnetic field, and a pulsed magnetic field.
  • the number of magnetic field sources is not limited to one, and may be one or a combination of multiple sources.
  • the value range of the distance x between the magnetic source and the most extended surface of the suspended end of the implantable medical device is 0.1mm-100mm (including but not limited to 0.5mm, 1mm, 3mm, 5mm, 7mm, 9mm, 15mm, 20mm, 25mm30mm, 35mm, 40mm, 45mm, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm, 80mm, 85mm, 90mm, 95mm, 98mm, etc.); further, the distance between the magnetic source and the implanted medical
  • the distance x of the most extended surface of the suspended end of the instrument can be an interval composed of any two values between 0.1-100mm, such as 0.1mm-10mm, 0.1mm-15mm, 0.1mm-25mm, 0.1mm-50mm, 0.1 mm-60mm, 0.1mm-70mm, 0.1mm-80mm, 0.15mm-80mm, 0.15mm-90mm, etc.
  • the most extended action surface of the suspended end of the implantable medical device in the present invention is the point on the magnetic conductive material closest to the magnetic source along the circumferential section perpendicular to the radial plane of the device.
  • the most extended surface of the suspended end of the implantable medical device refers to a circumferential section perpendicular to the radial plane where the suspended end of the device contacts air.
  • the present invention is a technical solution specially provided for the processing procedure of the implantable medical device with a long length and a tubular shape.
  • the present invention is suitable for long tubular devices with a length of 5mm-200mm in the suspended part ( Including but not limited to 10mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 45mm, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm, 80mm, 85mm, 90mm, 95mm, 100mm, 110mm, 120mm, 130mm, 140mm, 150mm, 160mm, 170mm, 180mm, 190mm, 200mm, etc.) to keep straight, further suitable for the length of the suspended part of 38mm-150mm, 38mm-140mm, 15mm-150mm, 15mm-140mm, 20mm-150mm, 20mm-140mm and other long tubular devices within the new interval formed by any two values in the interval of 5mm-200mm.
  • the included angle in order to ensure that the instruments are basically maintained in a straight state, that is, to ensure that the value of the included angle ⁇ formed by the most inclined position of the instrument and the centerline of the fixing device is as small as possible, the included angle can be controlled
  • the value of ⁇ is within 5° and below 5°, and can even reach below 3°, so as to ensure the pass rate of the appearance and size of the workpiece in the processing process and the detection accuracy in the detection process can reach more than 90%, so it must be Apply sufficient external force or magnetic traction to the free end of the bracket.
  • the magnetic field traction force applied to the implantable medical device should not be too large.
  • the long tubular implantable medical device in the present invention is a hollow structure, if the applied external force is too large, it is easy to move The instrument is stretched and deformed. Therefore, in the invention, it is necessary to limit the magnitude of the magnetic field traction force applied to the implantable medical device to ensure that the magnitude of the magnetic field traction force acting on the device is moderate.
  • the magnitude of the magnetic field traction force acting on the device is 1-40 times the gravity of the implanted medical device, including but not limited to 2 times, 3 times, 5 times, 7 times, 10 times Times, 12 times, 15 times, 18 times, 20 times, 23 times, 25 times, 28 times, 30 times, 35 times, 38 times, 40 times, etc.
  • the magnetic field traction force acting on the implantable medical device is 1-28 times, 1-20 times, 5-35 times, 3-35 times, 3-40 times, etc. of the gravity of the implanted medical device .
  • the spray liquid In the spraying process of long tubular implantable medical devices, the spray liquid is very viscous. If the spray liquid is sprayed on the end of the bracket with the clamp during spraying, it is easy to cause the device and the clamp to bond together, resulting in coating on the surface of the device. It is torn during the process of separating from the fixture. Therefore, it is commonly used to spray the device in two or more times, which also requires that the length of the clamping end of the implantable medical device should not exceed the length of the device, that is, the device must be longer than the length of the fixture.
  • the length of the clamp is the length of the implantable medical device The following can also be the following, the following, the following, Below, even the length of the clamp inside the instrument may be 0 mm.
  • the fixed end of the implantable medical device can be fixed in various ways, which can be clamped by a clamp, fixed by physical interference fit, or fixed by magnetic force or chemical means. fixed. That is, the fixing methods of the fixed end of the instrument in the technical solution provided by the present invention include but are not limited to clamping, physical interference fit, magnetic fixing, and chemical fixing.
  • the above-mentioned preparation method provided by the present invention is suitable for the processing of long tubular implantable medical devices with all outer diameters, wall thicknesses and coverages, especially suitable for the processing of hollowed out long tubular implantable medical devices, ensuring that the long tubular Implantable medical devices remain flat during processing.
  • the outer diameter of the long tubular implantable medical device is 1.0mm-20.0mm; further, the outer diameter of the long tubular implantable medical device is 1.0mm-15.0mm; Furthermore, the outer diameter of the long tubular implantable medical device is 1.0mm-10.0mm.
  • the wall thickness of the long tubular implantable medical device is 10 ⁇ m-600 ⁇ m (including but not limited to 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 175 ⁇ m, 200 ⁇ m, 225 ⁇ m, 250 ⁇ m, 280 ⁇ m, 300 ⁇ m, 320 ⁇ m, 350 ⁇ m, 380 ⁇ m, 400 ⁇ m, 425 ⁇ m, 450 ⁇ m, 475 ⁇ m, 500 ⁇ m, 520 ⁇ m, 550 ⁇ m, 560 ⁇ m, 580 ⁇ m, 600 ⁇ m, etc.); further, the wall thickness of the long tubular implantable medical device 10 ⁇ m-500 ⁇ m; further, the wall thickness of the long tubular implantable medical device is 15 ⁇ m-450 ⁇ m.
  • the coverage rate of the section of the long tubular implantable medical device is 0.1%-35% (including but not limited to 1%, 5%, 8%, 10%, 12%, 14% %, 16%, 18%, 20%, 22.5%, 25%, 28%, 30%, 33%, 34.5%, etc.); further, the coverage rate of the section of the long tubular implantable medical device is 0.1% -30%; further, the coverage rate of the section of the long tubular implantable medical device is 0.1%-25%.
  • the long tubular implantable medical device has a hollow design, and the coverage rate of the device surface is 5%-60% (including but not limited to 6%, 8%, 10%, 12% , 14%, 16%, 18%, 20%, 22.5%, 25%, 28%, 30%, 33%, 36, 40%, 45%, 50%, 55%, 58%, etc.), further, The coverage rate of the long tubular implantable medical device is 5%-55%; further, the coverage rate of the long tubular implantable medical device is 5%-50%, 8%-55%, 8% -50%, 10%-55%, 10%-50%, 8%-45%, 8%-40%, 5%-45%, 5%-40%, 10%-45%, 10%-40 %, 8%-35% or 10%-35% and other values within the interval formed by any two values within the range of 5%-60%.
  • the "coverage of the device surface” in the present invention refers to the surface coverage of the device material under the condition of the device diameter during processing, that is, the surface area covered by the device material and the total cylindrical side area of the stent covering section ratio, the formula is as follows:
  • the "outer diameter”, “wall thickness”, “section coverage” and “surface coverage” of the long tubular implantable medical device in the present invention all refer to the length of the long tubular implantable medical device. Corresponding value in processing state. That is, the values of "outer diameter”, “wall thickness”, “section coverage” and “surface coverage” of the tubing to be processed or being processed into a tubular implantable medical device.
  • the long tubular implantable medical device is a lumen prosthesis, further, the long tubular implantable medical device is a blood flow guiding device, further, The long tubular implantable medical device is a vascular support.
  • the long tubular implantable medical device is a stent; and in other embodiments, the long tubular implantable medical device is a tube to be processed into a stent.
  • the long tubular implantable medical device is a semi-processed product that is processed into the final finished stent; in some other embodiments, the long tubular implantable medical device can be any implantable long and light medical device used in the body. Devices; In still some embodiments, the long tubular implantable medical device is a raw material, a semi-finished product, or a finished stent to be processed into a stent.
  • the implantable medical device itself has magnetic conductivity; or a magnetic patch is added to the implantable medical device, and the magnetic patch can be attached to any position on the device, but when The effect is better if it is attached to the part that is not supported by a fixture and is closer to the magnetic source, including but not limited to adding magnetically conductive developing points at both ends of the bracket, or coating the surface of the bracket with a magnetically conductive coating. Further, the smaller the average distance between the magnetic patch and the magnetic source, the better.
  • the number of magnetic stickers pasted in the present invention can be one or more, and the shape of the magnetic stickers is not limited, but it can cooperate with the magnetic field intensity generated by the magnetic source, the distance between the active surface of the instrument and the magnetic source, etc. The magnetic force keeps the stand straight.
  • This method is applicable to multiple processes in the production process of hollow-out design long-tube devices, including but not limited to processes such as spraying, cutting, testing, and coating.
  • the material of the instrument can be pure iron-based, iron-based alloy, or any other pure metal or alloy material with magnetic permeability; in other embodiments ,
  • the material of the device can be a material such as polylactic acid that does not have magnetic conductivity itself.
  • the "fixing" mentioned in the present invention can be to fix the fixed end of the instrument at a specific position through the force generated by the interaction between the clamp and the instrument; it can also be to fix the fixed end of the instrument at a certain position by external force such as magnetic force A specific position; it can also be fixed through interference fit, or through the chemical action of a magnetic field.
  • the "long tubular implantable medical device” is simplified for the convenience of description, that is, the “device”, “medical device” and “implantable medical device” mentioned in the present invention Both refer to “long tubular implantable medical devices”.
  • the "long tubular" implantable medical device mentioned in the present invention refers to a device whose length is greater than its outer diameter, especially refers to a device whose length of the suspended part is greater than or equal to 5 mm, and further refers to a device whose length of the suspended part is greater than 10 mm. instrument.
  • “Flicking” in the present invention means that the central axes of the front end of the bracket and the rear end of the bracket do not overlap during processing.
  • straight in the present invention refers to the angle ⁇ 5° between the most inclined position of the implantable medical device and the centerline of the fixing device.
  • Fig. 1 is the state schematic diagram of stent spraying in embodiment 1;
  • Fig. 2 is the schematic diagram of the combination mode of embodiment 5 developing hole and support
  • FIG. 3 is a schematic diagram of the state of the stent cutting process in Example 6.
  • FIG. 3 is a schematic diagram of the state of the stent cutting process in Example 6.
  • the stent was placed under the ultrasonic atomizing nozzle and sprayed so that the surface of the stent was covered with a layer of coating, and the thickness of the coating on the surface of the stent was measured by using the sensofar-non-contact 3D optical profiler through the principle of white light interference technology. By measuring the coating thickness at multiple locations throughout the stent, comparing the maximum and minimum values of the coating thickness, the difference between the two is not expected to exceed 2 ⁇ m.
  • Qualified rate of cut size number of yin and yang rod brackets/number of cut brackets.
  • the qualified rate of cut appearance the number of incomplete blanking brackets/the number of cut brackets.
  • An iron-based absorbable drug-eluting peripheral stent with a length of 118 mm (the outer diameter of the stent processing is 1.58 mm, the surface coverage rate of the stent is 30%, the wall thickness of the stent is 70 ⁇ m, and the support rod coverage rate of the circumferential section of the stent is 5%,
  • One end of the stent with a mass m of 112.53 mg) is fixed by a physical interference fit with a clamp with a length of 59 mm.
  • the length h of the non-clamped section is 59 mm, and a magnet that can emit a maximum magnetic induction intensity B max of 400 mT is used as the magnetic source pair.
  • the bracket exerts a magnetic traction force, and the bracket can be in a relatively straight state when the magnet is set at a distance of 1mm from the most extended surface of the bracket's free end.
  • the coating thickness of the sprayed stent was measured using a sensofar-non-contact 3D optical profiler, and the difference between the maximum coating thickness and the minimum coating thickness was 0.5 ⁇ m.
  • An iron-based absorbable drug-eluting peripheral stent with a length of 200mm (the outer diameter of the stent processing is 1.58mm, the surface coverage of the stent is 30%, the wall thickness of the stent is 60 ⁇ m, and the support rod coverage of the circumferential section of the stent is 4%,
  • One end of the stent with a mass m of 152.16 mg) is fixed by a physical interference fit with a clamp with a length of 100 mm.
  • the length h of the non-clamped section is 100 mm, and a magnet with a maximum magnetic induction intensity B max of 600 mT is used as the magnetic source pair.
  • the bracket exerts a magnetic traction force, and the bracket can be in a relatively straight state when the magnet is set at a distance of 1mm from the most extended surface of the bracket's free end.
  • the iron-based absorbable drug-eluting peripheral stent with a length of 38 mm (the external diameter of the stent processing is 1.2 mm, the surface coverage rate of the stent is 40%, the wall thickness of the stent is 80 ⁇ m, and the support rod coverage rate of the circumferential section of the stent is 10%
  • One end of the stent with a mass m of 22.83mg) is fixed by a physical interference fit with a clamp with a length of 15mm.
  • the length h of the non-clamped section is 23mm, and a magnet that can emit a maximum magnetic induction intensity B max of 300mT is used as the magnetic source pair.
  • the bracket exerts a magnetic traction force, and the bracket can be in a relatively straight state when the magnet is set at a distance of 3mm from the most extended surface of the suspension end of the bracket.
  • a cobalt alloy stent with a length of 118mm (the outer diameter of the stent processing is 2.4mm, the surface coverage of the stent is 20%, the wall thickness of the stent is 100 ⁇ m, the support rod coverage of the circumferential section of the stent is 4%, and the mass m of the stent is 98.8mg ) is fixed by a physical interference fit with a clamp with a length of 50 mm.
  • the length h of the non-clamped section is 68 mm.
  • a magnet that can emit a maximum magnetic induction intensity B max of 300 mT is used as a magnetic source to apply magnetic traction to the bracket.
  • the support can be in a relatively straight state when the magnet is arranged at a distance of 1mm from the most extended action surface of the free end of the support.
  • the coating thickness of the sprayed stent was measured using a sensofar-non-contact 3D optical profiler, and the difference between the maximum coating thickness and the minimum coating thickness was 0.5 ⁇ m.
  • the iron-based absorbable drug-eluting stent with a length of 58mm (the outer diameter of the stent processing is 8.0mm, the surface coverage of the stent is 11%, the wall thickness of the stent is 150 ⁇ m, and the support rod coverage of the circumferential section of the stent is 0.8%, the stent One end with a mass m of 215.98mg) is fixed by a physical interference fit with a clamp with a length of 15mm.
  • the length h of the non-clamped section is 43mm, and a magnet that can emit a maximum magnetic induction intensity B max of 600mT is used as the magnetic source for the bracket.
  • the bracket When the magnetic traction force is applied and the magnet is set at a distance of 3mm from the most extended surface of the hanging end of the bracket, the bracket can be in a relatively straight state.
  • the coating thickness of the sprayed stent was measured using a sensofar-non-contact 3D optical profiler, and the difference between the maximum coating thickness and the minimum coating thickness was 0.5 ⁇ m.
  • An iron-based absorbable drug-eluting peripheral stent with a length of 38mm (the outside diameter of the stent processing is 1.58mm, the surface coverage of the stent is 30%, the wall thickness of the stent is 70 ⁇ m, and the support rod coverage of the circumferential section of the stent is 5%,
  • the mass m of the bracket is 36.24 mg) and one end is sucked and fixed with a magnet.
  • the length h of the non-clamping section is 38 mm.
  • a magnet capable of emitting a maximum magnetic induction intensity B max of 400 mT is used as a magnetic source to apply a magnetic traction force to the bracket.
  • the support can be in a relatively straight state when it is set at a distance of 1 mm from the most extended surface of the free end of the support.
  • the coating thickness of the sprayed stent was measured using a sensofar-non-contact 3D optical profiler, and the difference between the maximum coating thickness and the minimum coating thickness was 0.5 ⁇ m.
  • the metal iron pipe to be cut with an outer diameter of 1.6mm and a length of 200mm is clamped on the fixture, the left side rotates and feeds the material at a constant speed of 6mm/s, and the right side laser cuts the metal into a specific shape. floral branch.
  • the stent When cutting a long stent, such as state 1, when only a small section of the stent has been cut with patterns, due to the hardness of the metal tube material itself, the stent remains at a certain straightness, which does not affect the energy of the laser reaching the surface of the material.
  • the bracket When the bracket is cut to state 2, the length of the bracket cut reaches a certain value, and when the length of the suspended hollow bracket is longer, the bracket at the suspended end is tilted to a certain extent due to the action of gravity. At this time, the tilt angle ⁇ increases with the pattern cutting Part of the stent grows and becomes larger, causing the distance between the laser source and the original laser cutting setting to be offset on the surface of the stent to be cut. The larger the offset, the weaker the laser energy reaching the surface of the material, and failure will occur. The phenomenon that the bracket pattern size deviation is large after cutting through or after cutting. At this time, a variable electromagnetic source that can emit a magnetic field with a maximum magnetic induction intensity of 1000mT is added to the suspended end of the bracket.
  • the magnetic induction intensity can be adjusted by the magnetic source, and/or the distance between the magnetic source and the metal tube can be adjusted.
  • the distance is used to adjust the magnetic induction intensity of the suspended end of the metal pipe.
  • the magnetic source is set 5mm away from the end of the bracket at the initial stage of cutting. As the metal tube moves toward the magnetic source, on the one hand, the hollowed out bracket becomes longer gradually, and on the other hand, the distance between the bracket and the magnetic source becomes shorter. , the magnetic source can not be adjusted at this time. As the subsequent metal rods are cut and the length of the suspended end becomes longer, the magnetic field will be adjusted according to the distance/angle of the bracket from the original center position to ensure that the bracket deviates from the central axis. Always keep within 5°.
  • An iron-based absorbable drug-eluting peripheral stent with a length of 118 mm (the outer diameter of the stent processing is 1.58 mm, the surface coverage rate of the stent is 30%, the wall thickness of the stent is 70 ⁇ m, and the support rod coverage rate of the circumferential section of the stent is 5%,
  • One end of the stent whose mass m is 112.53mg) is fixed with a clamp with a length of 59mm, and the length h of the non-clamping section is 59mm.
  • the coating thickness of the sprayed stent was measured using a sensofar-non-contact 3D optical profiler, and the difference between the maximum coating thickness and the minimum coating thickness was 7 ⁇ m.
  • the above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited thereto, but any person familiar with the technical field can easily think of it within the technical scope disclosed in the present invention. Changes or substitutions should fall within the protection scope of the present invention.
  • the stent is only used as an example in this application document, which does not mean that the method provided in the present invention is only applicable to the processing of the stent, and any other long tubular implantable device can be kept straight by magnetic force.
  • the protection scope of the present invention should be based on the protection scope of the claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Plasma & Fusion (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本发明属于医疗器械技术领域,具体涉及一种保持长管状的植入式医疗器械平直的方法,该方法将长管状植入式医疗器械的一端固定,同时在另一端施加外力确保器械保持平直。本发明所提供的方法简单、方便,同时能确保长管状植入式医疗器械最倾斜位置与固定装置中心线所形成的角度θ≤5°,从而提高加工工件的均匀度、加工产品的合格率以及检测的精准度。

Description

一种保持长管状的植入式医疗器械平直的方法 技术领域
本发明属于医疗器械技术领域,具体涉及一种保持长管状的植入式医疗器械平直的方法。
背景技术
随着医疗技术的发展,植入式医疗器械逐渐进入大家的视野,主要在病人患部起支撑等作用,如目前血管病变中常用的支架置入术,是将支架置入血管的病变部位,使狭窄血管重新扩起,恢复正常供血,从而达到血运重建的目的,是目前治疗血管狭窄、供血不足引起的疾病(如冠心病、下肢动脉硬化闭塞症)的最有效途径。而由于植入式医疗器械是植入人体内部的,如果因为生产工艺中的某些因素导致器械的合格率不高、质量不稳定等问题,容易引发大量的安全问题,在患者体内会产生非常明显的副作用,给病人带去痛苦。因此,目前各国对植入式医疗器械的质量、安全性等方面都设置了很高的标准和加强了相应的监管。厂家在生产产品时必须确保产品符合相应的标准并尽可能的避免其植入体内后出现相应的安全风险问题。
医疗器械在生产过程中大多会涉及喷涂、切割、检测等工序,在上述工序中,目前常用的方法为医疗器械一端由夹具夹持,另一端悬空,再进行喷涂、切割、检测等相应的操作。当医疗器械的长度比较短时,悬空的一端不会因为重力的作用弯曲和下垂,因此在加工过程中基本不会因为重力的原因导致器械生产工艺不稳定,产品合格率不高等问题。而当管状的医疗器械的长度增长到一定值时,尤其是针对有镂空设计的长管状医疗器械,由于其表面材料的覆盖率低,整个器械轻且薄,因此悬空部分的支架在重力的作用下很容易向下弯曲,尤其在喷涂、切割、检测等工序,器械需要在一定的速度和范围内旋转,从而导致器械的前端和后端中心轴不重叠而发生明显的“甩尾”,由于悬空部分的极速甩动,导致在生产工艺中出现一系列的问题,如在喷涂工艺中器械的表面无法喷涂均匀,激光切割时能量不均匀造成无法切透或切割的杆的粗细不一致、或者切割位置发生偏差造成尺寸不均匀、加工精度不高等。从而使得最终生产 出来的支架成品在体内使用时会发生一系列的问题,如血栓等。基于此,有必要提供一种确保支架在加工过程中始终保持平直的方法,确保支架表面的涂层均匀,切割的花纹匀称,检测结果精准度高等。
发明内容
针对上述技术问题,本发明的技术方案提供了一种保持长管状植入式医疗器械平直的方法,该方法能确保长管状植入式医疗器械尤其是镂空的长管状植入式医疗器械在加工或检测的工序中始终保持在一个比较平直的状态,其在甩动过程中经过的最高点或最低点和器械固定末端的固定点之间的连线与固定装置中心线所在直线形成的夹角θ≤5°甚至θ≤3°,同时使得加工工序中工件的外观和尺寸的合格率以及检测工序中的检测精准度可达到90%甚至95%以上。
本发明的技术方案提供了一种保持长管状的植入式医疗器械平直的方法,该方法中长管状植入式医疗器械包括固定端和悬空端,其中,悬空端施加有外力确保器械保持平直。
本发明中的长管状的植入式医疗器械规格较小,管状器械越长,悬空部分越长,甩尾现象越严重,在某些加工工序中,由于被加工的器械需要不断的转动,器械由于受到重力以及其本身的惯性等会发生大幅度的甩尾,甩尾的角度可以达到120°,也即甩动过程中器械经过的最高点和最低点分别与器械固定末端的固定点之间连线所形成的夹角为2θ,在甩动过程中2θ的值可以达到10°-120°范围内,尤其当长管状的植入式医疗器械是镂空结构时,甩尾的程度更为严重,甩动的夹角2θ甚至可以达到180°。因此需要在器械表面上施加足够的力,达到将器械尾部“扯直”的效果。
需要说明的是,上述“最高点”、“最低点”均指器械在甩动过程中达到最高位置或最低位置处器械末端截面的中心点。
本发明所提供的上述技术方案中,所提供的外力为磁场牵引力;磁场牵引力作用于植入式医疗器械上的大小为
Figure PCTCN2022141879-appb-000001
其中,μ 0为磁介质在真空状态下的磁导率(即真空磁导率,其中μ 0=4 π×10 -7N·A -2),x为磁源距器械悬空端中的导磁材料最外延作用面的距离,dx为磁 源到导磁材料作用面距离的积分,h为器械上导磁材料在垂直于作用面方向上的长度,F 为器械上受磁场总的牵引力,B为磁场在导磁材料作用面处的磁感应强度,S为磁场与导磁材料作用面的面积。
本发明中所述长管状植入式医疗器械可以受磁场的感应产生相应的作用力,但具体使器械表面受到磁场的牵引力的方式不限。在一些情况下,长管状的植入式医疗器械本身就具有导磁性,如一些实施例中器械的整个悬空部分甚至整个器械都能导磁,都能受到磁场的作用力;而在另一些实施例中,器械的某一部分具有导磁性,如器械的涂层或器械的主材质具有导磁性,或者在器械的某一个截面上存在具有导磁性能的物质(如显影结构等),使得器械受到磁场的作用力,从而确保器械能够保持平直的状态。在另外一些情况下,器械本身不导磁,而是借助一些外部的具有导磁性的材料使得器械也能受到磁场的作用力进而保持平直,如在器械的外表面上贴有一些导磁的贴片等。
当器械本身就具有导磁性且其悬空部分或整个器械均能导磁时,如器械是纯铁或铁合金材质制成的,此时本发明中器械上所受到磁场的作用力为
Figure PCTCN2022141879-appb-000002
其中μ 0为磁介质在真空状态下的磁导率,即真空磁导率,μ 0=4 π×10 -7N·A -2,x为磁源距器械悬空端中最外延作用面的距离,dx为磁源到器械作用面距离的积分,h为器械悬空部分的长度,F 为器械上受磁场总的牵引力,B为磁场与在器械作用面处的磁感应强度,S为磁场与器械作用面的面积。
本发明中“磁场与器械作用面的面积S”是指器械受磁力作用的任一周向截面的覆盖材料的面积,当本发明中的器械是镂空的管状结构时,“磁场与器械作用面的面积S”指截面上器械支撑杆的面积,也即S 支撑杆截面。其计算公式为器械外径的周向截面积S 周向乘以器械截面所覆盖的材料的覆盖率S 截面覆盖率,即:
S 器械杆截面=S 周向×S 截面覆盖率        公式II
其中截面上器械所覆盖的材料的覆盖率S 截面覆盖率是指在整个周向截面上支撑杆所占面积S 支撑杆截面与支架外径的周向截面积S 周向之比,即:
Figure PCTCN2022141879-appb-000003
需要说明的是,上述的S 截面覆盖率、S 周向、S 支撑杆截面均为平均值,且均为器械加工状态下/加工过程中的面积,而非器械植入体内在体内使用状态下的面积。
当本发明中的器械本身只是部分导磁(内部导磁)或者其外表面上附着有导磁材料(外部导磁)时,尤其当器械内部或外部导磁处的导磁材料在器械长度方向上的长度很短甚至可以忽略不计时,上述牵引力的公式可以为:
Figure PCTCN2022141879-appb-000004
即器械所受到的磁场牵引力的大小仅仅与导磁材料在周向截面方向上的面积有关。
由于磁场随着距离增加而逐渐衰减,在某一磁源对外发射的恒定磁场中,距磁源越远的地方,磁场磁感应强度越小,因此当磁场与植入式医疗器械悬空端最外延作用面间的距离越大时,为了确保最终作用于器械表面的力保持恒定,需要相应的增加磁源所发射的磁感应强度。当磁源距植入式医疗器械悬空端最外延作用面的距离较远时,所需要的磁感应强度可以达到1000mT,当磁源距植入式医疗器械悬空端最外延作用面的距离较近时,磁源所产生的磁感应强度在100mT也可以满足要求。即本发明所提供的上述技术方案中,磁源所产生磁场的磁感应强度B≤1000mT,包括但不限于200mT、300mT、400mT、500mT、600mT、700mT、800mT、900mT等1000以下的任意一值,进一步的,磁源所产生磁场的磁感应强度B≤750mT或B≤600mT等。
本发明所提供的上述技术方案中,产生磁场牵引力的磁源可以是任何可以产生磁场的装置和/或设备,可以是天然的本身就可以产生磁性的,如常用的永磁铁,也可以是在外力作用下可以产品磁场的装置或者设备,如在通电的情况下可以产生磁场。进一步的,本发明说所述的磁源包括但不限于永磁铁和电磁铁,可以是磁石、磁铁、产生磁场的线圈等等。也可以是恒定的磁场、交变磁场、脉动磁场、脉冲磁场的任意一种或者多种。此外,磁场源的数量也不限于一个,可以是一个,也可以是多个的组合。
本发明所提供的上述技术方案中,磁源距植入式医疗器械悬空端最外延作 用面的距离x的取值范围为0.1mm-100mm(包括但不限于0.5mm、1mm、3mm、5mm、7mm、9mm、15mm、20mm、25mm30mm、35mm、40mm、45mm、50mm、55mm、60mm、65mm、70mm、75mm、80mm、85mm、90mm、95mm、98mm等);进一步的,磁源距植入式医疗器械悬空端最外延作用面的距离x的取值可以是0.1-100mm之间任意两值所组成的区间,如0.1mm-10mm、0.1mm-15mm、0.1mm-25mm、0.1mm-50mm、0.1mm-60mm、0.1mm-70mm、0.1mm-80mm、0.15mm-80mm、0.15mm-90mm等。
本发明中所述植入式医疗器械悬空端最外延作用面即为导磁材料上离磁源最近的点沿垂直于器械径向面的周向截面,当本发明中的整个器械或器械悬空部分为导磁材料时,所述植入式医疗器械悬空端最外延作用面即指器械悬空端与空气接触的一个垂直于径向面的周向截面。
本发明是专门针对长度较长且为管状的植入式医疗器械加工工序所提供的技术方案,植入式医疗器械长度越长,表面覆盖率越低,由于重力的原因,植入式医疗器械越容易发生弯曲,在旋转或者振动的过程中很容易发生甩尾,但由于人体内需用/适用的医疗器械的长度有限,因此本发明适用于使悬空部分长度为5mm-200mm的长管状器械(包括但不限于悬空部分长度为10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm、50mm、55mm、60mm、65mm、70mm、75mm、80mm、85mm、90mm、95mm、100mm、110mm、120mm、130mm、140mm、150mm、160mm、170mm、180mm、190mm、200mm等)保持平直,更进一步的适用于悬空部分长度为38mm-150mm、38mm-140mm、15mm-150mm、15mm-140mm、20mm-150mm、20mm-140mm等5mm-200mm区间内任意两值所组成新区间范围内的长管状器械。
本发明所提供的上述技术方案中,为了确保器械基本都保持平直的状态,也即尽可能确保器械最倾斜位置与固定装置中心线所形成的夹角θ的值很小,可以控制夹角θ的值在5°及5°以下,甚至可以达到3°及3°以下,从而确保加工工序中工件的外观和尺寸的合格率以及检测工序中的检测精准度可达到90%以上,因此必须对支架悬空端施加足够的外力或磁牵引力。但施加在植入式医疗器械上的磁场牵引力也不能过大,过大之后一方面容易让器械脱离固定端的固 定从而失去稳定,也即作用于植入式医疗器械上磁场牵引力的大小需要小于固定端对器械的拉力,确保固定端器械不会发生左右或上下的移动;此外,当本发明中的长管状植入式医疗器械是镂空结构时,如果施加的外力的力度过大,很容易将器械拉变形。因此,在发明中需要对施加在植入式医疗器械上磁场牵引力的大小进行限定,确保作用在器械上磁场牵引力的大小适中。在本发明所提供的技术方案中,作用在器械上磁场牵引力的大小为植入式医疗器械所受重力的1-40倍,包括但不限于2倍、3倍、5倍、7倍、10倍、12倍、15倍、18倍、20倍、23倍、25倍、28倍、30倍、35倍、38倍、40倍等。进一步的,作用于植入式医疗器械上磁场牵引力的大小为植入式医疗器械所受重力的1-28倍、1-20倍、5-35倍、3-35倍、3-40倍等。
在长管状植入式医疗器械的喷涂工序中,喷涂液很粘稠,在喷涂时若将喷涂液喷到具有夹具的支架端,容易导致器械与夹具粘结起来,从而导致器械表面的涂层在与夹具分离的过程中被撕裂,因此,目前常用的都是将器械分两次或多次喷涂,从而也要求植入式医疗器械夹持端夹具的长度不能超过器械的长度,即器械的长度必须长于夹具的长度。在本发明所提供的上述技术方案中,夹具的长度为植入式医疗器械长度
Figure PCTCN2022141879-appb-000005
以下,也可以是
Figure PCTCN2022141879-appb-000006
以下、
Figure PCTCN2022141879-appb-000007
以下、
Figure PCTCN2022141879-appb-000008
以下、
Figure PCTCN2022141879-appb-000009
以下,甚至位于器械内部的夹具的长度可以为0mm。
本发明所提供的上述技术方案中,所述植入式医疗器械固定端的固定方式多样,可以是通过夹具进行夹持,也可以是通过物理过盈配合来固定,还可以通过磁力或者化学方式来固定。即本发明所提供技术方案中的器械固定端的固定方式包括但不限于夹持、物理过盈配合、磁力固定、化学固定几种固定方式。
本发明所提供的上述制备方法,适用于所有外径、壁厚和覆盖率的长管状植入式医疗器械的加工场合,尤其适合于镂空的长管状植入式医疗器械的加工,确保长管状植入式医疗器械在加工过程中保持平直。
本发明所提供的上述技术方案中,所述长管状植入式医疗器械的外径为1.0mm-20.0mm;进一步的,所述长管状植入式医疗器械的外径1.0mm-15.0mm;更进一步的,所述长管状植入式医疗器械的外径为1.0mm-10.0mm。
本发明所提供的上述技术方案中,所述长管状植入式医疗器械壁厚为10μm-600μm(包括但不限于20μm、30μm、40μm、50μm、80μm、100μm、120μm、 150μm、175μm、200μm、225μm、250μm、280μm、300μm、320μm、350μm、380μm、400μm、425μm、450μm、475μm、500μm、520μm、550μm、560μm、580μm、600μm等);进一步的,所述长管状植入式医疗器械壁厚为10μm-500μm;更进一步的,所述长管状植入式医疗器械壁厚为15μm-450μm。
本发明所提供的上述技术方案中,所述长管状植入式医疗器械截面的覆盖率为0.1%-35%(包括但不限于1%、5%、8%、10%、12%、14%、16%、18%、20%、22.5%、25%、28%、30%、33%、34.5%等);进一步的,所述长管状植入式医疗器械截面的覆盖率为0.1%-30%;更进一步的,所述长管状植入式医疗器械截面的覆盖率为0.1%-25%。
本发明所提供的上述技术方案中,所述长管状植入式医疗器械为镂空设计,器械表面的覆盖率为5%-60%(包括但不限于6%、8%、10%、12%、14%、16%、18%、20%、22.5%、25%、28%、30%、33%、36、40%、45%、50%、55%、58%等),进一步的,所述长管状植入式医疗器械的覆盖率为5%-55%;更进一步的,所述长管状植入式医疗器械的覆盖率为5%-50%、8%-55%、8%-50%、10%-55%、10%-50%、8%-45%、8%-40%、5%-45%、5%-40%、10%-45%、10%-40%、8%-35%或10%-35%等5%-60%范围内任意两值组成的区间内的取值。
需要说明的是,本发明中的“器械表面的覆盖率”是指在加工过程中器械直径条件下器械材料的表面覆盖率,也即器械材料所覆盖的表面积与支架覆盖段的全部圆柱侧面积之比,公式如下:
Figure PCTCN2022141879-appb-000010
其中:
Sr:加工过程中器械花纹外表面所实际填充/占的面积,支架外表面积通过CAD软件测量得到;
Ss:加工过程中支架覆盖段的全部圆柱侧面积,Ss=π×D1×L1   (2)
D1:加工过程中支架的直径;
需要说明的是,本发明中所属的长管状植入式医疗器械的“外径”、“壁厚”、“截面的覆盖率”、“表面的覆盖率”均指长管状植入式医疗器械在加工状态下的相应的值。也即待加工或正在加工成长管状植入式医疗器械的管材的“外径”、“壁厚”、“截面的覆盖率”、“表面的覆盖率”的值。
本发明提供的技术方案中,在另一些实施例中,长管状的植入式医疗器械 为管腔假体,进一步的,长管状的植入式医疗器械为血流导向装置,更进一步的,长管状的植入式医疗器械为血管支持器。在本发明的一些实施例中,长管状的植入式医疗器械为支架;而在另一些实施例中,长管状的植入式医疗器械为待加工成支架的管材,在一些实施例中,长管状的植入式医疗器械为代加工成最终成品支架的半加工品;在其他一些实施例中,长管状的植入式医疗器械可以为任何体内用的植入式的长且轻的医疗器械;在还有一些实施例中,所述长管状植入式医疗器械为待加工成支架的原材料、半成品,或支架的成品。
本发明所提供的上述技术方案中,植入式医疗器械自身具有导磁性;或在所述植入式医疗器械上加有磁性贴片,磁性贴片可以贴在器械上的任意位置,但当贴于没有夹具加持且离磁源越近的部分效果越好,包括但不限于在支架两端加入导磁的显影点,或支架表面涂敷导磁的涂层。进一步的,磁性贴片距离磁源的平均距离越小越好。本发明中所贴的磁性贴片的数量可以是一个或者多个,磁性贴片的形状也不限,但其能与磁源产生的磁场强度、器械作用面距离磁源的距离等配合产生足够的磁力使支架保持平直状态。
本方法适用于镂空设计长管器械生产过程中的多个工序,包括但不限于喷涂、切割、检测、覆膜等工序。
本发明所提供的上述技术方案中,在一些实施例中,器械的材质可以是纯铁基,铁基合金,也可以是其他任何具有导磁性的纯金属或合金材质;在另外一些实施例中,器械的材质可以是聚乳酸等自身不具有导磁性的物质。
本发明中所述“固定”可以是通过由夹具与器械间相互作用产生的力从而使器械的固定端固定在一个具体的位置;也可以是通过外力如磁力等将器械的固定端固定在某一具体的位置;也可以是通过过盈配合实现固定,还可以是通过磁场的化学作用来实现固定等。
需要说明的是,本发明中为了便于叙述将“长管状的植入式医疗器械”进行了简化,也即本发明中所述的“器械”、“医疗器械”、“植入式医疗器械”均是指“长管状的植入式医疗器械”。
本发明中所述的“长管状”植入式医疗器械是指器械的长度大于其外径的器械,尤其指悬空部分的长度大于等于5mm的器械,更进一步的指悬空部分的长度大于10mm的器械。
本发明中的“甩尾”是指在加工过程中支架前端和支架后端的中心轴不重叠。
本发明中所述的“平直”是指植入式医疗器械最倾斜位置与固定装置中心线所形成的角度θ≤5°。
需要说明的是,本发明中的符号“/”代表“或”的意思,如“体内需用/适用的”是指体内需用或者适用的。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
附图说明
通过阅读下文优选实施方式的详细描述,各种其它的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的附图标记表示相同的部件。其中:
图1为实施例1中支架喷涂的状态示意图;
图2为实施例5显影孔与支架的结合方式的示意图;
图3为实施例6中支架切割过程的状态示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施方式。虽然附图中显示了本发明的示例性实施方式,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
测试方法:
1.涂层厚度测试
将支架置于超声雾化喷嘴下,进行喷涂,使支架表面覆盖一层涂层后,使用sensofar-非接触式3d光学轮廓仪通过白光干涉技术的原理,测量支架表面涂层厚度。通过测量整个支架多处位置的涂层厚度,对比涂层厚度的最大值和最小值,两者的差值不希望超过2μm。
2.支架杆宽测试
将切割好的支架置于三维显微镜下观察,目光遍历所有的支架杆,寻找杆宽最大的和最小的杆进行测量,测量出来最大和最小杆宽差异超过16μm定义为阴阳杆,统计切割阴阳杆支架数量。即可得:
切割尺寸合格率=阴阳杆支架数量/切割支架数量。
3.倾斜角测量
确定支架悬空段的长度h,测量支架最远端截面中心点与夹持段水平中心线的高度b,由三角函数可得
Figure PCTCN2022141879-appb-000011
可得倾斜角θ的大小。
4.切割外观检测
将切割好的支架置于三维显微镜下观察,观察支架表面是否有未完全落料的情况,统计未完全落料支架数量。
即可得,切割外观合格率=未完全落料支架数量/切割支架数量。
实施例1
将长度为118mm的铁基可吸收药物洗脱外周支架(支架加工外径为1.58mm,支架表面覆盖率为30%,支架壁厚为70μm,支架周向截面的支撑杆覆盖率为5%,支架质量m为112.53mg)的一端用长度为59mm的夹具通过物理过盈配合进行固定,无夹持段的长度h为59mm,以能发射出最大磁感应强度B max为400mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离支架悬空端最外延作用面1mm处时支架可处于比较平直的状态,。根据高斯计测量磁铁在不同位置的磁感应强度B,拟合出磁感应强度与距离x的指数函数曲线,代入F 的公式,可以算出F =0.00844N,而此支架悬空部分所受重力F =0.00056N,因此F ≈15F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=3.09mm,根据三角函数算出θ=3°<5°。将上述状态的支架置于超声 雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为0.5μm。
实施例2
将长度为200mm的铁基可吸收药物洗脱外周支架(支架加工外径为1.58mm,支架表面覆盖率为30%,支架壁厚为60μm,支架周向截面的支撑杆覆盖率为4%,支架质量m为152.16mg)的一端用长度为100mm的夹具通过物理过盈配合进行固定,无夹持段的长度h为100mm,以能发射出最大磁感应强度B max为600mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离支架悬空端最外延作用面1mm处时支架可处于比较平直的状态。根据高斯计测量磁铁在不同位置的磁感应强度B,拟合出磁感应强度与距离x的指数函数曲线,代入F 的公式,可以算出F =0.01902N,而此支架悬空部分所受重力F =0.00076N,因此F ≈25F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=6.98mm,根据三角函数算出θ=4°<5°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为1μm。
实施例3
将长度为38mm的铁基可吸收药物洗脱外周支架(支架加工外径为1.2mm,支架表面覆盖率为40%,支架壁厚为80μm,支架周向截面的支撑杆覆盖率为10%,支架质量m为22.83mg)的一端用长度为15mm的夹具通过物理过盈配合进行固定,无夹持段的长度h为23mm,以能发射出最大磁感应强度B max为300mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离支架悬空端最外延作用面3mm处时支架可处于比较平直的状态。根据高斯计测量磁铁在不同位置的磁感应强度B,拟合出磁感应强度与距离x的指数函数曲线,代入F 的公式,可以算出F =0.00209N,而此支架悬空部分所受重力F =0.00026N,因此F ≈8F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=2.00mm,根据三角函数算出θ=5°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚 度与最小涂层厚度差为1μm。
实施例4
将长度为118mm的钴合金支架(支架加工外径为2.4mm,支架表面覆盖率为20%,支架壁厚为100μm,支架周向截面的支撑杆覆盖率为4%,支架质量m为98.8mg)的一端用长度为50mm的夹具通过物理过盈配合进行固定,无夹持段的长度h为68mm,以能发射出最大磁感应强度B max为300mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离支架悬空端最外延作用面1mm处时支架可处于比较平直的状态。根据高斯计测量磁铁在不同位置的磁感应强度B,拟合出磁感应强度与距离x的指数函数曲线,代入F 的公式,可以算出F =0.00878N,而此支架悬空部分所受重力F =0.00057N,因此F ≈15F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=4.74mm,根据三角函数算出θ=4°<5°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为0.5μm。
实施例5
将长度为58mm的铁基可吸收药物洗脱支架(支架加工外径为8.0mm,支架表面覆盖率为11%,支架壁厚为150μm,支架周向截面的支撑杆覆盖率为0.8%,支架质量m为215.98mg)的一端用长度为15mm的夹具通过物理过盈配合进行固定,无夹持段的长度h为43mm,以能发射出最大磁感应强度B max为600mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离支架悬空端最外延作用面3mm处时支架可处于比较平直的状态。根据高斯计测量磁铁在不同位置的磁感应强度B,拟合出磁感应强度与距离x的指数函数曲线,代入F 的公式,可以算出F =0.04937N,而此支架悬空部分所受重力F =0.00160N,因此F ≈31F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=3.75mm,根据三角函数算出θ=5°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为1μm。
实施例6
将长度为68mm的镁合金支架(支架质量m为57.26mg)两端各切割一个截面积为0.5mm 2的显影孔,往显影孔内填充导磁性好的镍材料(如图2所示),使用的夹具长度为30mm,无夹持段支架长度h为38mm,以能发射出最大磁感应强度B max为300mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离显影孔3mm处时支架可处于比较平直的状态。由于此时支架仅在显影点处收到牵引力,由于显影点在支架径向方向的长度h过小,支架所受牵引力按公式
Figure PCTCN2022141879-appb-000012
计算,根据高斯计测量磁铁在x=3时的磁感应强度B=150mT,计算出F =0.00447N,而此支架悬空部分所受重力F =0.00032N。此时F =14F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=2.65mm,根据三角函数算出θ=4°<5°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为0.5μm。
实施例7
将长度为38mm的铁基可吸收药物洗脱外周支架(支架加工外径为1.58mm,支架表面覆盖率为30%,支架壁厚为70μm,支架周向截面的支撑杆覆盖率为5%,支架质量m为36.24mg)的一端用磁铁吸住进行固定,无夹持段的长度h为38mm,以能发射出最大磁感应强度B max为400mT的磁铁为磁源对支架施加磁牵引力,将磁铁设置在距离支架悬空端最外延作用面1mm处时支架可处于比较平直的状态。根据高斯计测量磁铁在不同位置的磁感应强度B,拟合出磁感应强度与距离x的指数函数曲线,代入F 的公式,可以算出F =0.00844N,而此支架悬空部分所受重力F =0.00036N,因此F ≈23F ,此时支架最远端截面中心点与夹持段水平中心线的高度b=1.99mm,根据三角函数算出θ=3°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为0.5μm。
实施例8
请参阅附图3,将待切割的外径为1.6mm、长度为200mm的金属铁管夹持在固定装置上,左侧以恒定速度6mm/s旋转进给材料,右侧激光切割金属成特定的花纹支。在切割长支架时,如状态一,当支架仅一小段已完成花纹的切割,由于金属管材料本身的硬度,支架保持在一定的平直度,不影响激光到达材料表面的能量。而当支架切割到状态二时,支架切割的长度达到一定值,悬空的镂空的支架的长度较长时,悬空端的支架由于重力的作用,发生一定的倾斜,此时倾斜角θ随完成花纹切割部分支架的增长而变大,造成支架表面待切割部位的离激光源的距离与原激光切割设定的距离发生偏移,偏移越大,到达材料表面的激光能量越弱,会出现未能切透或切割后支架花纹尺寸偏差较大的现象。此时在支架的悬空端增加一个最大可发出磁感应强度为1000mT的磁场的可变电磁源,可以通过磁源来调节其发射出磁感应强度的大小,和/或可以通过调节磁源离金属管的距离来调节金属管悬空端所受磁感应强度的大小。在本实施例中,切割初期将磁源设置在离支架末端5mm处,随着金属管向磁源的方向移动,一方面镂空的支架逐渐变长,另一方面支架离磁源的距离变短,此时可以不调节磁源,随着后续金属杆切割完成的部分增多,悬空端的长度变长,磁场会根据支架偏离原中心位的距离/角度来调节磁场大小,确保支架偏离中心轴的角度始终保持在5°以内,经切割完成后,支架最远端截面中心点与夹持段水平中心线的高度b=13.95mm,算出θ=4°<5°,同时将切割完的支架置入三维显微镜检验,得到切割外观合格率97%,切割尺寸合格率95%。
对比例1
将长度为118mm的铁基可吸收药物洗脱外周支架(支架加工外径为1.58mm,支架表面覆盖率为30%,支架壁厚为70μm,支架周向截面的支撑杆覆盖率为5%,支架质量m为112.53mg)的一端用长度为59mm的夹具进行固定,无夹持段的长度h为59mm,此时支架最远端截面中心点与夹持段水平中心线的高度b=37.92mm,根据三角函数算出θ=40°。将上述状态的支架置于超声雾化喷嘴下,进行喷涂。使用sensofar-非接触式3d光学轮廓仪测量喷涂后的支架涂层厚度,最大涂层厚度与最小涂层厚度差为7μm。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,而是任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。如本申请文件中仅以支架为例进行说明,并不代表本发明中所提供的的方法只适用于支架的加工过程中,其他任何长管状的植入式器械用磁力保持平直的方法都在本发明的保护范围中。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种保持长管状的植入式医疗器械平直的方法,所述长管状植入式医疗器械具有固定端和悬空端,其特征在于,所述长管状的植入式医疗器械的悬空端施加有外力确保器械保持平直。
  2. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述外力为磁场牵引力;所述磁场牵引力作用于植入式医疗器械上的大小为
    Figure PCTCN2022141879-appb-100001
    其中:
    μ 0为磁介质在真空状态下的磁导率,x为磁源距器械悬空端中的导磁材料最外延作用面的距离,dx为磁源到导磁材料作用面距离的积分,h为器械上导磁材料在垂直于作用面方向上的长度,F 为器械上受磁场总的牵引力,B为磁场在导磁材料作用面处的磁感应强度,S为磁场与导磁材料作用面的面积。
  3. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,产生所述磁场牵引力的磁源为永磁铁、电磁铁。
  4. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述磁源距长管状植入式医疗器械悬空端导磁材料最外延作用面的距离x的取值范围为0.1-100mm。
  5. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述磁源所产生磁场的磁感应强度B≤1000mT。
  6. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述植入式医疗器械的悬空部分长度为5mm-200mm。
  7. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述作用于植入式医疗器械上磁场牵引力的大小为植入式医疗器械悬空部分所受重力的1-40倍。
  8. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述植入式医疗器械固定端固定的器械的长度
    Figure PCTCN2022141879-appb-100002
  9. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述植入式医疗器械固定端的固定方式包括夹持、物理过盈配合、磁力链接、化学固定。
  10. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述长管状植入式医疗器械的外径为1.0mm-20.0mm。
  11. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述长管状植入式医疗器械的壁厚为10μm-600μm。
  12. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述长管状植入式医疗器械截面的覆盖率为0.1%-35%。
  13. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述长管状植入式医疗器械表面的覆盖率为5%-60%。
  14. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述植入式医疗器械本身具有导磁性;或在所述植入式医疗器械上加有导磁的贴片。
  15. 根据权利要求1所述的保持长管状植入式医疗器械平直的方法,其特征在于,所述长管状植入式医疗器械为待加工成支架的原材料、半成品,或支架的成品。
PCT/CN2022/141879 2021-12-31 2022-12-26 一种保持长管状的植入式医疗器械平直的方法 WO2023125398A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280086831.8A CN118660679A (zh) 2021-12-31 2022-12-26 一种保持长管状的植入式医疗器械平直的方法
KR1020247023881A KR20240125617A (ko) 2021-12-31 2022-12-26 긴 관상의 이식형 의료기기의 진직성을 유지하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111682990.8A CN116407368A (zh) 2021-12-31 2021-12-31 一种保持长管状的植入式医疗器械平直的方法
CN202111682990.8 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125398A1 true WO2023125398A1 (zh) 2023-07-06

Family

ID=86997903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141879 WO2023125398A1 (zh) 2021-12-31 2022-12-26 一种保持长管状的植入式医疗器械平直的方法

Country Status (3)

Country Link
KR (1) KR20240125617A (zh)
CN (2) CN116407368A (zh)
WO (1) WO2023125398A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535189A (zh) * 2001-07-24 2004-10-06 �����ɷ� 在由导电和/或可磁化材料制成并基本上为杆状的工件上施加压缩力和/或牵引力的方法和装置
US20140341251A1 (en) * 2011-08-19 2014-11-20 Christoph Diederichs System and method for detecting structural defects within a stent
CN109773820A (zh) * 2017-11-14 2019-05-21 先健科技(深圳)有限公司 一种夹具
CN110756353A (zh) * 2018-07-27 2020-02-07 先健科技(深圳)有限公司 用于支撑管腔医疗器械的支撑装置及喷涂系统
CN111037344A (zh) * 2019-12-31 2020-04-21 华中科技大学 一种磁场辅助的超精密加工装置和方法
CN212384723U (zh) * 2020-05-08 2021-01-22 济南鼎点数控设备有限公司 一种管材加工防甩管设备
CN218190413U (zh) * 2020-12-31 2023-01-03 元心科技(深圳)有限公司 调整设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535189A (zh) * 2001-07-24 2004-10-06 �����ɷ� 在由导电和/或可磁化材料制成并基本上为杆状的工件上施加压缩力和/或牵引力的方法和装置
US20140341251A1 (en) * 2011-08-19 2014-11-20 Christoph Diederichs System and method for detecting structural defects within a stent
CN109773820A (zh) * 2017-11-14 2019-05-21 先健科技(深圳)有限公司 一种夹具
CN110756353A (zh) * 2018-07-27 2020-02-07 先健科技(深圳)有限公司 用于支撑管腔医疗器械的支撑装置及喷涂系统
CN111037344A (zh) * 2019-12-31 2020-04-21 华中科技大学 一种磁场辅助的超精密加工装置和方法
CN212384723U (zh) * 2020-05-08 2021-01-22 济南鼎点数控设备有限公司 一种管材加工防甩管设备
CN218190413U (zh) * 2020-12-31 2023-01-03 元心科技(深圳)有限公司 调整设备

Also Published As

Publication number Publication date
CN118660679A (zh) 2024-09-17
KR20240125617A (ko) 2024-08-19
CN116407368A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11376141B2 (en) Anti-thrombogenic medical devices
ES2311000T3 (es) Dispositivo endoluminal que muestra una endotelizacion mejorada y procedimiento de fabricacion del mismo.
KR101786020B1 (ko) 펨토초 레이저 가공을 통한 재협착 억제 및 재내피화 촉진용 스텐트 및 이의 제조 방법
US11471259B2 (en) Topographical features and patterns on a surface of a medical device and methods of making the same
JP2000064047A (ja) ダイヤモンド様炭素(dlc)又は他の真空蒸着被膜を基体に被覆する装置及び方法
ES2675307T3 (es) Activación selectiva con plasma para implantes médicos y dispositivos de cicatrización de heridas
US8551555B2 (en) Biocompatible coatings for medical devices
JP2010503488A (ja) 磁化された生体内分解性の内部人工器官
JP2007526099A5 (zh)
WO2007022174A2 (en) Surface modification of eptfe and implants using the same
WO2023125398A1 (zh) 一种保持长管状的植入式医疗器械平直的方法
US20150196691A1 (en) Coated stent
Qi et al. Size‐confined effects of nanostructures on fibronectin‐induced macrophage inflammation on titanium implants
EP2285498A1 (en) Coating application system with shaped mandrel
McNichols et al. Investigating surface topology and cyclic‐RGD peptide functionalization on vascular endothelialization
US20220287769A1 (en) Low-temperature plasma catheter for less-invasive, localized treatment of endocarditis and atherosclerosis
KR101331326B1 (ko) 약물 방출 스텐트 및 그 제조방법
ES2953184T3 (es) Mejoras en procesos de inmovilización de entidades biológicas
JP6941441B2 (ja) 医療デバイスの表面上のトポグラフィ的特徴およびパターン、ならびにその作製方法
JP2021138987A (ja) 内面被覆チューブ
JP2020033592A (ja) 非晶質炭素膜とその製造方法
KR20020012063A (ko) 혈소판 응집 억제제 부착 스텐트의 그 제조 방법
JP5110559B2 (ja) 被覆ステント
JP2018159106A (ja) 医療用管状体の製造方法とスパッタリング装置
EP3164085B1 (en) Coated medical devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247023881

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022914652

Country of ref document: EP

Effective date: 20240731