WO2023125337A1 - 可穿戴设备及其生理参数测量方法和电子设备 - Google Patents

可穿戴设备及其生理参数测量方法和电子设备 Download PDF

Info

Publication number
WO2023125337A1
WO2023125337A1 PCT/CN2022/141702 CN2022141702W WO2023125337A1 WO 2023125337 A1 WO2023125337 A1 WO 2023125337A1 CN 2022141702 W CN2022141702 W CN 2022141702W WO 2023125337 A1 WO2023125337 A1 WO 2023125337A1
Authority
WO
WIPO (PCT)
Prior art keywords
airbag
wristband
connecting shaft
blocking
wearable device
Prior art date
Application number
PCT/CN2022/141702
Other languages
English (en)
French (fr)
Inventor
黄振龙
傅小煜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125337A1 publication Critical patent/WO2023125337A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient

Definitions

  • the present application relates to the technical field of electronic devices, in particular to a wearable device, a method for measuring physiological parameters thereof, and an electronic device.
  • Traditional electronic sphygmomanometers such as arm or wrist sphygmomanometers, are based on the principle of oscillometric blood pressure measurement.
  • Traditional electronic sphygmomanometers are large in size and weight, and can only be used for single indoor blood pressure measurements. They are not suitable for carrying around for a long time. wear.
  • electronic devices for measuring blood pressure such as blood pressure watches or blood pressure wristbands
  • the basic principle of the blood pressure watch to measure blood pressure is: when the blood pressure watch is worn on the user's wrist, the air bag on the strap of the blood pressure watch covers the user's radial artery and ulnar artery at the same time.
  • the pump inflates the balloon, the balloon is pressurized and inflates, compressing the artery.
  • the sensor in the main body of the integrated blood pressure watch is connected to the airbag. During the process of inflating and boosting the airbag, because the artery is compressed by the airbag, the sensor will extract the pulse wave signal of the artery, and use the pulse wave signal obtained by combining the algorithm to calculate the blood pressure.
  • Embodiments of the present application provide a wearable device, a method for measuring physiological parameters thereof, and an electronic device.
  • the wearable device of the present application is suitable for users with different wrist circumferences, and improves the accuracy of physiological parameter detection.
  • a wearable device includes a device body, a connecting shaft, an airbag wristband, and an airbag blocking member.
  • the device main body has a first side and a second side oppositely arranged, the connecting shaft is installed on the second side, and a gap is formed between the connecting shaft and the second side.
  • the airbag wristband includes a wristband and an airbag.
  • the airbag is at least partially stacked on one side of the wristband.
  • the first end of the airbag wristband includes a first connecting end of the wristband and a second connecting end of the airbag. The first connecting end is used for The first side is fixedly connected, and the second connection end is used for connecting with the main body of the device.
  • the main body of the device is used to inflate or deflate the airbag.
  • the airbag blocking part includes a blocking part and a driving part.
  • the driving part is arranged in the main body of the device, and the blocking part is located outside the main body of the device.
  • the driving part is used to drive the blocking part to move toward the direction close to the connecting shaft.
  • the blocking portion holds the airbag wristband against the connecting shaft, blocks the airbag, and separates the airbag to form an effective section and an invalid section.
  • the effective section is the part from the first connecting end of the airbag to the part where the airbag is opposed to the connecting shaft, and the invalid section is other parts of the airbag.
  • the blocking part of the airbag blocking part will press the airbag wristband and press the airbag wristband against the connecting shaft, so that the airbag is separated and formed at the connecting shaft valid and invalid segments.
  • the effective section of the airbag can be inflated inside the wearable device, so that the airbag expands and compresses the user's radial artery and ulnar artery to complete blood pressure measurement.
  • the prerequisite for the wearable device to obtain accurate blood pressure values is that the airbag of the airbag wristband fully covers the radial artery and ulnar artery of the user's wrist.
  • the airbag can cover the radial artery and the ulnar artery when worn by users with different wrist circumferences to meet the blood pressure measurement requirements, then for users with small wrist circumferences, there will be extra space after the airbag covers the user's wrist. Part, the extra part also needs to continue to be wound around the wrist, which will inevitably be involved in the bottom of the main body of the device and affect the user experience.
  • the existing wearable device is equipped with multiple airbags of different lengths and specifications, and the user selects the corresponding airbag according to his wrist circumference, assembles it on the wearable device, and then enters the corresponding configuration airbag specification on the wearable device. It is used to call the blood pressure algorithm library corresponding to the airbag specifications to measure blood pressure. Any error in any link will cause a large blood pressure measurement error, so the requirements for users are high and the usability is poor.
  • the wearable device of the present application can pass the second end of the airbag wristband through the gap between the connecting shaft and the second side to realize the length adjustment of the fitting part of the airbag wristband and the user's wrist , so that the airbag of the airbag wristband fully covers the user's radial artery and ulnar artery, and then the driving part drives the blocking part to block the airbag. That is to say, the wearable device of the present application can be suitable for users with different wrist circumferences by using a single type of airbag wristband. The error caused by the mismatch between the circumference and the length of the air bag improves the accuracy of blood pressure measurement, and the cost of obtaining accurate blood pressure values is reduced.
  • the wearable device of the present application can adjust the length of the airbag wristband, the airbag wristband can fit the user's wrist better, and the effective section of the airbag can just cover the radial and ulnar arteries of the user's wrist.
  • the airbag may appear during the wearing process of the wristband, the radial artery and ulnar artery of the user's wrist may not be completely covered or partially overlapped, the blood pressure measurement accuracy of the wearable device provided by this application is higher.
  • the airbag blocking member further includes a transmission part, and two ends of the transmission part are respectively connected to the driving part and the blocking part, so as to transmit the driving force of the driving part to the blocking part.
  • the driving part of the airbag blocking element can only be arranged outside the main body of the device, which affects the appearance of the main body of the device.
  • the drive unit can be accommodated inside the device body, which improves the integration of the product and is also beneficial to the appearance of the product.
  • the blocking portion includes a first surface facing the connecting shaft, and the connecting shaft includes a second surface facing the blocking portion.
  • the airbag wristband is clamped between the first surface and the blocking portion. Between the second surfaces, the shapes of the first surface and the second surface match.
  • the airbag wristband is clamped between the first surface and the second surface, and when the shapes of the first surface and the second surface match, The first surface and the second surface can be attached to the largest area, so that the blocking portion and the connecting shaft can press the airbag to the largest area, so that the airbag blocking member can have the largest blocking effect on the airbag wristband.
  • a wearable device includes a device body, a connecting shaft, an airbag wristband, and an airbag blocking member.
  • the device main body has a first side and a second side oppositely arranged, the connecting shaft is installed on the second side, and a gap is formed between the connecting shaft and the second side.
  • the airbag wristband includes a wristband and an airbag.
  • the airbag is at least partially stacked on one side of the wristband to form an airbag wristband.
  • the first end of the airbag wristband includes a first connecting end of the wristband and a second connecting end of the airbag.
  • the connecting end is used for fixed connection with the first side, and the second connecting end is used for connecting with the main body of the device.
  • the main body of the device is used to inflate or deflate the airbag.
  • the air bag blocking part is a sliding connection part, one side of the sliding connection part is connected to the two ends of the connecting shaft, and the other side is slidingly connected to the second side.
  • the sliding connection part can drive the connecting shaft close to the second side, so as to hold the airbag wristband against the second side, block the airbag, and separate the airbag to form an effective section and an invalid section. part.
  • the effective section is the part from the first connecting end of the airbag to the part where the airbag is opposed to the connecting shaft, and the invalid section is other parts of the airbag.
  • the user when the user starts the blood pressure measurement, the user can perform manual operation, push the sliding connection part, make the sliding connection part close to the second side, and hold the airbag wristband against the second side.
  • the sliding connection part cooperates with the connecting shaft to block the airbag and separate the airbag to form an effective section and an invalid section.
  • the sliding connection part in this implementation mode blocks the airbag of the airbag wristband through manual operation.
  • the setting of the driving part and the transmission part is reduced, which is conducive to the miniaturization of the product .
  • manual operation saves more power than electric drive, which is conducive to enhancing the battery life of the product and reducing production costs.
  • the sliding connection part includes a body and two extension sections connected to two ends of the body, and the ends of the two extension sections facing away from the body are respectively connected to two ends of the connecting shaft.
  • a fixing hole is formed around the sliding connection part and the connecting shaft, and the airbag wrist strap runs through the fixing hole.
  • the extension section is provided with a matching groove, and the second side is provided with a limiting piece, and the limiting piece is limited in the matching groove so as to fix the sliding connection part on the second side.
  • the sliding connection part when the user wears the wearable device, after the user passes the airbag wristband through the fixing hole, the sliding connection part can drive the connecting shaft close to the second side, and hold the airbag wristband against the second side, blocking air bag. At the same time, under the combined action of the matching groove and the limiting member, the sliding connection part can be fixed on the second side, so that the airbag wristband can maintain a blocking state for blood pressure measurement.
  • the wearable device further includes a length sensing module, and the length sensing module includes a first electrode sheet, a second electrode sheet, a circuit board, and a flexible resistance film.
  • the flexible resistive film covers the surface of the airbag on the side away from the wristband.
  • the first electrode piece is arranged on the side of the flexible resistance film close to the second connection end of the airbag, and is electrically connected to the flexible resistance film.
  • the second electrode piece is fixed on the blocking member or the surface on the second side facing the airbag, and is used for electrically connecting the flexible resistance film when the blocking part blocks the airbag.
  • the circuit board is arranged inside the main body of the device and is electrically connected to the first electrode sheet and the second electrode sheet. The wearable device is used to obtain the contact between the first electrode sheet and the second electrode sheet when the blocking part blocks the airbag.
  • the electrical resistance of the flexible resistive membrane which determines the effective length of the air bag.
  • the airbag blocking part when the airbag blocking part is activated, the airbag blocking part will hold the airbag wristband against the connecting shaft or the second side, and at this time be fixed on the second side of the blocking part or the surface of the second side facing the airbag.
  • the electrode sheet is electrically connected with the flexible resistance film. The resistance between the first electrode sheet and the second electrode sheet can be measured through the built-in circuit board of the device main body to determine the effective length of the air bag.
  • the wearable device further includes an air pressure sensor, which is disposed inside the main body of the device, and the air pressure sensor is used to obtain air pressure data of the airbag.
  • the wearable device imports the data of the air pressure sensor and the effective length of the airbag into the blood pressure algorithm model, and calculates the measured blood pressure value through the blood pressure algorithm model.
  • the data is calculated, and the data of the air pressure sensor and the effective length of the air bag are referred to at the same time, so that the accuracy of the blood pressure algorithm model of the application is higher, and the calculated blood pressure data is more accurate.
  • the wearable device inflates the airbag, detects the air pressure in the airbag, and acquires air pressure data of the airbag. That is to say, inflating only the effective section of the airbag can effectively improve the accuracy of blood pressure measurement.
  • the blocking part is controlled to be away from the airbag wristband, so that the user can take off the wearable device.
  • the airbag is deflated, and when the air pressure inside the airbag drops to less than or equal to 5mmHg, the blocking part is controlled to stay away from the wristband of the airbag. It can be understood that when the air pressure inside the airbag is reduced to 5mmHg or below, it can be ensured that the gas inside the effective section will not flow back to the invalid section after the airbag blocking member returns to the non-blocking state, affecting the user's wearing experience.
  • the present application also provides a wearable device, which includes a device main body, a connecting shaft, an airbag wristband, and an airbag blocking piece, wherein: the device main body has a first side and a second side oppositely arranged; the connecting shaft is installed on the second side, a gap is formed between the connecting shaft and the second side; the airbag wristband includes a wristband and an airbag, the airbag is at least partly stacked on one side of the wristband, and the airbag wristband has a first end and a second end; wherein, the first The ends include the first connecting end of the wristband and the second connecting end of the airbag, the first connecting end is used for fixedly connecting the first side, and the second connecting end is used for connecting the main body of the device, so that the main body of the device can control the air bag through the second connecting end.
  • the second end passes through the gap and is fixed on the side of the wristband away from the airbag;
  • the airbag blocking member includes a blocking part and a driving part, the driving part is arranged in the main body of the device, and the blocking part is located at Outside the main body of the device, the driving part is used to drive the blocking part to move a preset distance toward the direction close to the connecting shaft, so that the blocking part holds the airbag wristband against the connecting shaft.
  • the above-mentioned wearable device makes it possible to adjust the length of the inflatable part of the airbag according to the user's wrist circumference when measuring physiological parameters, so that the measurement of physiological parameters is more accurate.
  • the driving part is located inside the main body of the device, and the airbag blocking element further includes a transmission part, and two ends of the transmission part are respectively connected to the driving part and the blocking part, so as to transmit the driving force of the driving part to the blocking part.
  • a communication hole is provided on the main body of the device, and the transmission part passes through the communication hole.
  • the blocking portion includes a first surface facing the connecting shaft, and the connecting shaft includes a second surface facing the blocking portion.
  • the blocking portion blocks the airbag wristband, the airbag wristband is clamped on the first surface. Between the surface and the second surface, the shapes of the first surface and the second surface match.
  • the above implementation can make the blocking part and the connecting shaft have a better resistance effect, and can better separate the two parts of the airbag.
  • the wearable device further includes a length sensing module, and the length sensing module includes a first electrode sheet, a second electrode sheet, a circuit board, and a flexible resistance film; wherein, the flexible resistance film covers the airbag The surface away from the side of the wristband; the first electrode piece is arranged on the side of the flexible resistance film close to the second connection end, and is electrically connected to the flexible resistance film; the second electrode piece is fixed on the surface of the blocking part facing the airbag; the second electrode piece Used for, when the blocking part blocks the airbag, the second electrode piece is electrically connected to the flexible resistance film; the circuit board is arranged inside the main body of the device and electrically connected to the first electrode piece and the second electrode piece; the wearable device is used for, when the resistance When the broken part holds the airbag wristband against the connecting shaft, the length of the airbag between the first electrode sheet and the second electrode sheet is determined by obtaining the resistance of the flexible resistive film between the first electrode sheet and the second electrode sheet.
  • the length sensing module includes a first electrode sheet
  • the above implementation manner can enable the wearable device to automatically obtain the length of the inflated part of the airbag for calculation of physiological parameters.
  • the wearable device further includes an air pressure sensor, which is disposed inside the main body of the device, and the air pressure sensor is used to obtain air pressure data of the airbag.
  • the wearable device includes an air pump, the air pump is located inside the device main body, and the air pump is used to inflate the air bag.
  • the wearable device further includes a processor, the processor is located inside the main body of the device, and the processor is used to control the driving part to drive the blocking part to move a preset distance in a direction close to the connecting shaft; to inflate the airbag; to detect The air pressure in the airbag is obtained from the air pressure data of the airbag from the start to the end of inflation; the physiological parameters are determined according to the air pressure data; after the measurement of the physiological parameters is determined, the airbag is deflated; the driving part is controlled to move in a direction away from the connecting axis.
  • the processor is located inside the main body of the device, and the processor is used to control the driving part to drive the blocking part to move a preset distance in a direction close to the connecting shaft; to inflate the airbag; to detect The air pressure in the airbag is obtained from the air pressure data of the airbag from the start to the end of inflation; the physiological parameters are determined according to the air pressure data; after the measurement of the physiological parameters is determined, the airbag is deflated
  • the processor before controlling the driving part to move toward a direction close to the connection axis, the processor is further configured to: determine that the wearable device is in a worn state.
  • the processor before controlling the driving part to move in a direction close to the connection shaft, the processor is further configured to: determine the main body of the airbag connection device.
  • the wearable device can start to activate the driving part after it is determined that it is worn and/or that the airbag is connected to the main body of the device, thereby avoiding misoperation.
  • the processor before controlling the driving part to move toward a direction close to the connecting shaft, the processor is further configured to: determine that a predetermined time is reached.
  • the wearable device includes an input device, and the input device is used to receive an operation of the user; before controlling the driving part to move in a direction close to the connection axis, the processor is further configured to: Operations, the first operation is used to start measuring a physiological parameter.
  • the wearable device can perform timing measurement of physiological parameters and/or a single measurement triggered by the user.
  • the processor is also used to: determine the current value of the current flowing through the first path, and the first path is routed through the circuit plate, the first electrode sheet, the second electrode sheet and at least part of the flexible resistance film; determine the voltage value before the first electrode sheet and the second electrode sheet; determine the resistance value of at least part of the flexible resistance film according to the current value and the voltage value; Determining the length of the air bag between the first electrode sheet and the second electrode sheet according to the resistance value; determining the physiological parameter according to the air pressure data is specifically: determining the physiological parameter according to the air pressure data and the length.
  • the above implementation manner can enable the wearable device to automatically obtain the length of the inflated part of the airbag for calculation of physiological parameters.
  • the processor is further configured to control the blocking part to move away from the airbag wristband after the measurement of the physiological parameter is finished.
  • the processor is also used to control the air pump to deflate the air bag after the physiological parameter is measured, and control the blocking part to move away from the air bag when the air pressure inside the air bag drops to less than or equal to a preset threshold Airbag wristband.
  • the present application also provides a method for measuring a physiological parameter, which is applied to a wearable device.
  • the wearable device includes a device main body, a connecting shaft, an airbag wristband, and an airbag blocking part.
  • the airbag blocking part includes a blocking part and a driving part; the measurement method includes: controlling the driving part to move in a direction close to the connecting shaft, and the airbag blocking part
  • the blocking part blocks the airbag wristband and separates the airbag into an effective segment and an invalid segment.
  • Inflate the airbag of the airbag wristband detect the air pressure in the airbag to obtain air pressure data.
  • the air bag is inflated after blocking the air bag, so that only the effective section of the air bag is inflated, and accurate blood pressure measurement values can be obtained.
  • the method before controlling the driving part to move in a direction close to the connection axis, the method further includes: determining that the wearable device is in the worn state, and only the wearable device is in the wearing state. In this state, the subsequent measurement steps are carried out.
  • the airbag wristband includes an airbag and a wristband; before controlling the driving part to move in a direction close to the connection axis, the method further includes: determining the connection position of the airbag The main body of the device mentioned above, only when the airbag is connected to the main body of the device can the accuracy of the subsequent blood pressure measurement be guaranteed.
  • the method before controlling the driving part to move toward the direction close to the connecting shaft, the method further includes: determining that the wearable device reaches a predetermined moment, and the method can The user performs blood pressure measurement to improve user experience.
  • the method before controlling the driving part to move in a direction close to the connecting shaft, the method further includes: detecting a first operation, the first operation acting on the wearable On the device, the measurement method can measure the blood pressure of the user corresponding to the first operation.
  • the measurement method further includes determining an effective length of the airbag, so as to improve blood pressure measurement accuracy.
  • the measurement method further includes acquiring a blood pressure value according to the air pressure data and the effective length, and the blood pressure measurement value obtained in the above manner has high precision.
  • the blocking part is controlled to be away from the airbag wristband, so that the user can take off the wearable device.
  • the airbag is deflated, and if the air pressure inside the airbag drops to less than or equal to 5mmHg, the blocking part is controlled to be far away from the airbag wristband . It can be understood that when the air pressure inside the airbag is reduced to 5mmHg or below, it can be ensured that the gas inside the effective section will not flow back to the invalid section after the airbag blocking member returns to the non-blocking state, affecting the user's wearing experience.
  • the present application also provides an electronic device.
  • the electronic device includes a device main body; a connecting shaft; an airbag wristband, the airbag wristband includes an airbag; an airbag blocking part, the airbag blocking part includes a blocking part and a driving part; a memory, the memory is used to store computer programs;
  • the computer program is executed to cause the electronic device to perform the following steps: control the driving part to drive the blocking part to move a preset distance toward the direction close to the connecting shaft; control the inflation of the airbag; detect the air pressure in the airbag, and obtain the airbag from the start of inflation to the end of inflation Air pressure data; determine physiological parameters according to the air pressure data; control deflation of the air bag after determining the physiological parameters; control the driving part to move in a direction away from the connecting shaft.
  • the above-mentioned wearable device enables the length of the inflated part of the airbag to be adjusted according to the user's wrist circumference when measuring physiological parameters, so that the measurement of physiological parameters is more accurate.
  • the processor before controlling the driving part to move toward a direction close to the connection shaft, the processor is further configured to cause the electronic device to perform the following step: determine that the wearable device is in a worn state.
  • the processor before controlling the driving part to move in a direction close to the connecting shaft, the processor is further configured to make the electronic device execute the following step: determine that the airbag is connected to the main body of the device.
  • the wearable device can start to activate the driving part after it is determined that it is worn and/or that the airbag is connected to the main body of the device, thereby avoiding misoperation.
  • the processor before controlling the driving part to move toward a direction close to the connection shaft, the processor is further configured to cause the electronic device to perform the following step: determine that the predetermined time is reached.
  • the electronic device includes an input device, and the input device is configured to receive a user's operation; before controlling the driving part to move toward a direction close to the connecting shaft, the processor is further configured to make the electronic device perform the following steps: detect The input device receives a first operation for initiating measurement of a physiological parameter.
  • the wearable device can perform timing measurement of physiological parameters and/or a single measurement triggered by the user.
  • the electronic device includes a circuit board, a first electrode sheet, a second electrode sheet, and a flexible resistance film; wherein, the flexible resistance film covers the surface of the airbag away from the wristband; the first electrode sheet is located on the The side of the flexible resistance film close to the second connection end is electrically connected to the flexible resistance film; the second electrode piece is fixed on the surface of the blocking portion facing the airbag; the second electrode piece is used for, when the blocking portion blocks the airbag, the second The electrode sheet is electrically connected to the flexible resistive film; after controlling the driving part to drive the blocking part to move a preset distance toward the direction close to the connection axis, the processor is also used to make the electronic device perform the following steps: determine the current value of the current flowing through the first path , the first path is composed of a circuit board, a first electrode sheet, a second electrode sheet and at least part of a flexible resistive film; determine the voltage value before the first electrode sheet and the second electrode sheet; determine at least part of the flexible resistance film according to the
  • the above implementation manner can enable the wearable device to automatically obtain the length of the inflated part of the airbag for calculation of physiological parameters.
  • the processor is further configured to cause the electronic device to execute the following step: after the measurement of the physiological parameter is finished, control the blocking part to move away from the airbag wristband.
  • the processor is further configured to cause the electronic device to perform the following steps: after the physiological parameter is measured, the air pump is controlled to deflate the airbag, and when the air pressure inside the airbag drops to less than or equal to a preset threshold , control the blocking part away from the airbag wristband.
  • the present application also provides a computer storage medium, including computer instructions, which, when the computer instructions are run on the electronic device, cause the electronic device to execute the device control method in any possible implementation manner of any one of the above aspects.
  • the present application also provides a computer program product, which, when running on a computer, causes the computer to execute the device control method in any possible implementation manner of any one of the above aspects.
  • FIG. 1 is a schematic structural diagram of a wearable device provided by an embodiment of the present application
  • Fig. 2 is a schematic cross-sectional structure diagram of the wearable device shown in Fig. 1 along the C-C direction;
  • FIG. 3A is a schematic diagram of an exploded structure of the wearable device shown in FIG. 1;
  • Fig. 3B is a structural schematic diagram of the airbag wristband in the structure shown in Fig. 3A in a flattened state;
  • FIG. 4 is a schematic diagram of an exploded structure of a device body of the wearable device shown in FIG. 3A;
  • Fig. 5 is a schematic diagram of an exploded structure of the shell in the structure shown in Fig. 4;
  • Fig. 6 is a schematic diagram of an exploded structure of the chassis of the device main body shown in Fig. 5;
  • Fig. 7 is a schematic cross-sectional structure diagram of the device body shown in Fig. 3A along the direction A-A;
  • Fig. 8 is a schematic diagram of the installation of the airbag, the air pump and the air pressure sensor of the wearable device shown in Fig. 1;
  • Fig. 9A is a schematic cross-sectional structure diagram of the device body shown in Fig. 3A along the B-B direction;
  • Fig. 9B is a schematic structural view of the device body and the airbag wristband shown in Fig. 9A;
  • Fig. 10 is a schematic cross-sectional structure diagram of another embodiment of the device main body shown in Fig. 9A;
  • Fig. 11 is a structural schematic diagram of the airbag blocking element of the device main body shown in Fig. 9B in an initial state;
  • Fig. 12 is a schematic structural view of the airbag blocking member of the main body of the device shown in Fig. 9B in a blocking state;
  • Fig. 13 is a schematic structural view of the airbag blocking member of the main body of the device shown in Fig. 9B in another embodiment
  • Fig. 14 is a schematic structural view of the airbag blocking element shown in Fig. 13 in an implementation scenario of other embodiments;
  • Fig. 15A is a schematic structural view of the airbag blocking element shown in Fig. 13 in another implementation scenario of other embodiments;
  • Fig. 15B is a structural schematic diagram of another embodiment of the airbag blocking element shown in Fig. 9A;
  • Fig. 16 is a structural schematic diagram of another implementation structure of the airbag blocking member with the structure shown in Fig. 9A cooperating with the main body of the device;
  • Fig. 17 is a schematic structural view of the sliding connection part blocking the airbag shown in Fig. 16;
  • Fig. 18 is a schematic diagram showing the cooperation between the sliding connection part and the connecting shaft shown in Fig. 15A;
  • Fig. 19 is a structural schematic diagram of the cooperation between the fitting groove of the sliding connection part shown in Fig. 15A and the stopper;
  • Fig. 20A is a structural schematic diagram of the separation of the matching groove and the limiting member of the sliding connection part shown in Fig. 19;
  • Fig. 20B is a schematic structural view of another embodiment of the sliding connection shown in Fig. 16;
  • Fig. 21 is a schematic diagram of the structure of the cooperation between the length sensing module of the wearable device shown in Fig. 1, the airbag blocker and the airbag wristband;
  • Fig. 22 is a structural schematic diagram of another embodiment of the cooperation between the length sensing module shown in Fig. 21 and the airbag blocker and the airbag wristband;
  • Fig. 23 is a schematic diagram of the working principle of the length sensing module shown in Fig. 21;
  • Fig. 24 is a schematic diagram of functional modules of the wearable device shown in Fig. 1;
  • Fig. 25 is a schematic flowchart of the method for measuring physiological parameters shown in Fig. 1 .
  • connection can be detachably connected, or It is a non-detachable connection; it can be directly connected or indirectly connected through an intermediary.
  • fixed connection means that they are connected to each other and the relative positional relationship after connection remains unchanged.
  • sliding connection refers to being connected to each other and being able to slide relative to each other after being connected.
  • FIG. 1 is a schematic structural diagram of a wearable device 100 provided in an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of the wearable device 100 shown in FIG. 1 along the C-C direction.
  • FIG. 3A is a schematic diagram of an exploded structure of the wearable device 100 shown in FIG. 1 .
  • the wearable device 100 includes and is not limited to watches, smart watches, wristbands, smart bracelets and other wrist electronic products with blood pressure measurement function.
  • the wearable device 100 of the embodiment shown in FIG. 1 , FIG. 2 , and FIG. 3A is described by taking a smart watch as an example.
  • FIG. 3A and FIG. 3B is a structural schematic view of the airbag wristband in a flattened state in the structure shown in FIG. 3A .
  • the wearable device 100 includes a device body 10 and an airbag wristband 20 .
  • the device body 10 has a first side 101 and a second side 102 oppositely disposed, and a connecting shaft 11 installed on the second side 102 , and a gap is formed between the connecting shaft 11 and the second side 102 .
  • the airbag wristband 20 includes a wristband 23 and an airbag 24.
  • the airbag 24 is at least partially stacked on one side of the wristband 23 to form the airbag wristband 20.
  • the first end 21 of the airbag wristband 20 includes a first connecting end 211 and a first connecting end 211 of the airbag wristband.
  • the second connecting end 212 of the airbag 24 is used for fixedly connecting the first side 101
  • the second connecting end 212 is used for connecting the device main body 10
  • the device main body 10 is used for inflating or deflated the air bag 24 .
  • the second end 22 of the airbag wristband 20 passes through the gap between the second side 102 and the connecting shaft 11, so that the airbag wristband 20 can be adjusted to be fixed to the second side 102, and the user can adjust the airbag wristband according to his own wrist circumference.
  • the length of the band 20 is adjusted so that the wearable device 100 can be adapted to users with different wrist sizes.
  • the airbag 24 superimposed on one side of the wristband 23 may include two situations. First, the airbag 24 is partially superimposed on one side of the wristband 23 . In the second type, the airbag 24 is entirely stacked on one side of the wristband 23 .
  • the second end 22 of the airbag wristband 20 can be bent and fixed on the side of the wristband away from the airbag after passing through the gap between the second side 102 and the connecting shaft 11, so as to prevent the airbag wristband from After passing through the gap between the second side 102 and the connecting shaft 11, the second end 22 of the 20 is tilted up, which is beneficial to improve the appearance of the product and the user's wearing experience.
  • the second end 22 of the airbag wristband 20 may not be bent after passing through the gap between the second side 102 and the connecting shaft 11 .
  • the gap between the second side 102 and the connecting shaft 11 is small enough to allow the airbag wristband 20 to pass through, so that the airbag wristband 20 passes through the gap between the second side 102 and the connecting shaft 11.
  • the surface of the airbag wristband 20 can be in contact with the surface of the second side 102 and the connecting shaft 11, increasing the frictional force between the airbag wristband 20 and the second side 102 and the connecting shaft 11, so that the airbag wristband 20 can be more
  • the airbag wristband 20 is stably fixed to the second side 102 to prevent the airbag wristband 20 from sliding and loosening, so that the airbag wristband 20 fits the user's wrist more closely during wearing, improving the wearing experience.
  • the width of the gap between the second side 102 and the connecting shaft 11 in the direction perpendicular to the connecting shaft 11 is greater than the thickness of the airbag wristband 20 in the uninflated state, so that the airbag wristband 20 can easily pass through.
  • the airbag wristband 20 can also be fixed between the second side 102 and the connecting shaft 11 through other components.
  • the wristband 23 can be detachably connected to the device body 10 , or can be fixedly connected to the device body 10 .
  • the airbag 24 can be detachably connected to the wristband 23 and the device body 10, so that the airbag 24 can be detached from the wristband 23 and the device body 10 when the blood pressure measurement is not being performed, and the user wears it on a daily basis. More comfortable.
  • the connection between the airbag 24 and the wristband 23 may be a fixed connection, that is to say, the airbag 24 and the wristband 23 cannot be detached.
  • the air bag 24 can also be detachably connected to the device main body 10 .
  • the airbag 24 may also be fixedly connected to the device main body 10 and the wristband 23 through other connection methods such as bonding.
  • the airbag 24 can also be integrally formed with the wristband 23 .
  • the airbag 24 and the wristband 23 are integrated.
  • the airbag 24 can be directly connected to the device main body 10 as the wristband 23 for the user to wear.
  • the air bag 24 can be arranged inside the wristband 23 .
  • the integrated structure of the airbag 24 and the wristband 23 is conducive to improving the integration of the wearable device 100.
  • the installation process between the airbag 24 and the wristband 23 is avoided, and the loosening of the airbag 24 and the wristband 23 is avoided, which is conducive to improving the wearability of the wearable device 100.
  • FIG. 4 is a schematic diagram of an exploded structure of the device body 10 of the wearable device 100 shown in FIG. 3A .
  • the device main body 10 may be a cuboid structure, and the device main body 10 may include a housing 12 , a display screen 13 , an air pump 14 , an air pressure sensor 15 , a main board 16 and a battery 17 .
  • the display screen 13 is fixed to the casing 12 and surrounds with the casing 12 to form a receiving space 103 of the device main body 10 .
  • the air pump 14 , the air pressure sensor 15 , the main board 16 and the battery 17 are all arranged in the receiving space 103 .
  • the display screen 13 , the air pump 14 and the air pressure sensor 15 are all electrically connected to the main board 16 to control the display screen 13 , the air pump 14 and the air pressure sensor 15 through the main board 16 .
  • the battery 17 is electrically connected to the main board 16 and supplies power to the main board 16 and other components electrically connected to the main board 16 .
  • the cuboid structure above includes cuboid structures and structures similar to cuboid.
  • the structure similar to cuboid means that the outer surface of the cuboid can be partially concave or protruding.
  • the shape description of the structure can be described later. Do the same understanding. It should be understood that, in other embodiments, the device main body 10 may also be in the shape of a cylinder, a truncated cone, a cube or other special-shaped structures, which are not limited in this application.
  • FIG. 5 is a schematic exploded view of the shell 12 in the structure shown in FIG. 4 .
  • the housing 12 includes a chassis 121 and a frame 122 .
  • the chassis 121 is fixed on one side of the frame 122
  • the display screen 13 is fixed on a side of the frame 122 away from the chassis 121 , that is, the chassis 121 and the display screen 13 are respectively fixed on opposite sides of the frame 122 .
  • the chassis 121 , the frame 122 and the display screen 13 jointly surround and form the receiving space 103 of the device main body 10 .
  • the display screen 13 is set away from the user's wrist, and the chassis 121 is set close to the user's wrist.
  • the chassis 121 can be detachably installed on the frame 122 , so as to facilitate the maintenance and replacement of functional components such as memory card, SIM card and speaker in the device main body 10 .
  • the chassis 121 can be detachably mounted on the frame 122 using fasteners such as screws or bolts.
  • the chassis 121 and the frame 122 can also be integrally formed to improve the strength and stability of the main body 10 of the device.
  • the frame 122 includes a first side wall 1221 , a second side wall 1223 , a third side wall 1222 and a fourth side wall 1224 connected in sequence.
  • the first side wall 1221 is opposite to the third side wall 1222
  • the second side wall 1223 is opposite to the fourth side wall 1224 .
  • the first side wall 1221 is located on the first side 101 of the device body 10
  • the third side wall 1222 is located on the second side 102 of the device body 10
  • the wrist strap 23 of the airbag wrist strap 20 is mounted on the first side wall 1221 .
  • the first side wall 1221 can be provided with a mounting hole 1225, and the first connecting end 211 of the wristband 23 can also be provided with a fixing column 231, and the fixing column 231 is arranged in the installing hole 1225, so that the wristband 23 The first connecting end 211 is mounted on the first side wall 1221 .
  • the present application does not limit the installation manner of the wristband 23 and the first side wall 1221 .
  • the connecting shaft 11 is mounted on the third side wall 1222 , and a space is formed between the third side wall 1222 and the connecting shaft 11 for the second end 22 of the airbag wristband 20 to pass through.
  • the connecting shaft 11 is detachably mounted on the third side wall 1222 .
  • the third side wall 1222 may also be provided with a mounting hole through which the connecting shaft 11 is fixed to the third side wall 1222 to facilitate the replacement and maintenance of the connecting shaft 11 .
  • the connecting shaft 11 and the frame 122 can also be integrally formed to improve the stability of the product.
  • the device main body 10 may further include a button 18 for receiving an input operation from a user.
  • a button 18 for receiving an input operation from a user.
  • there are two keys 18 and the two keys 18 are arranged at intervals on the fourth side wall 1224 of the frame 122 .
  • the fourth side wall 1224 of the frame 122 can also be provided with two button holes 181 , the button holes 181 pass through the fourth side wall 1224 of the frame 122 , and the buttons 18 are at least partially accommodated in the button holes 181 .
  • the button 18 is electrically connected to the main board 16 , so that the user can call the corresponding function module of the wearable device 100 when pressing the button 18 .
  • the number of keys 18 may also be one or more, and the number of key holes 181 may also be one or more.
  • the device main body 10 may not include any buttons, and the user may call the function modules of the wearable device 100 by touching the display screen 13 .
  • the present application does not limit the number of keys 18 and key holes 181 .
  • FIG. 6 is a schematic diagram of an exploded structure of the chassis 121 of the device body 10 shown in FIG. 5 .
  • FIG. 7 is a schematic cross-sectional structure diagram of the device body 10 shown in FIG. 3A along the direction A-A.
  • the chassis 121 includes a top surface 1211 facing the receiving space 103 and a bottom surface 1212 opposite to the top surface 1211 .
  • the top surface 1211 of the chassis 121 is fixedly connected to the frame 122 .
  • the part of the bottom surface 1212 close to the first side 101 faces the top surface 1211 and forms a first installation groove 1213.
  • the first installation groove 1213 faces the first side 101 and is provided with an opening 1214.
  • the second connection end 212 of the airbag 24 is installed on the The first installation slot 1213 .
  • the chassis 121 may further include a slot cover 1215 , and the slot cover 1215 is detachably installed in the first installation slot 1213 to fix the airbag 24 in the first installation slot 1213 .
  • the slot cover 1215 is detachably installed in the first installation slot 1213 to fix the airbag 24 in the first installation slot 1213 .
  • no slot cover may be provided.
  • the second connecting end 212 of the airbag 24 may be provided with a locking structure to be locked and fixed with the first installation groove. The present application does not limit the connection method between the airbag 24 and the device main body 10 .
  • the top surface 1211 partially faces the bottom surface 1212 and is recessed to form a second installation groove 1216.
  • the second installation groove 1216 communicates with the receiving space 103.
  • the second installation groove 1216 is used to install functional devices such as memory card, SIM card and speaker. It can be understood that, by setting the second installation groove 1216 connected to the storage space 103 on the chassis 121 of the present application, functional devices such as memory cards, SIM cards and speakers installed in the second installation groove 1216 and the chassis 121 can be placed on the side of the main body 10 of the device.
  • the overlapping in the thickness direction is beneficial to the thinning of the device main body 10 .
  • the second installation groove 1216 communicates with the receiving space 103, so that the volume of the receiving space 103 is larger and can accommodate more functional devices, so that the wearable device 100 of the present application can be loaded with more functional modules to achieve more functions to improve user experience.
  • first installation slot 1213 and the second installation slot 1216 can also be provided in other structures such as the frame 122, or the chassis 121 can also not be provided with the second installation slot, and functions such as a memory card, a SIM card, and a speaker
  • the device is mounted directly on the top surface by bonding.
  • FIG. 8 is a schematic diagram of the installation of the airbag 24 , the air pump 14 and the air pressure sensor 15 of the wearable device shown in FIG. 1 .
  • the first installation groove 1213 can also be provided with a first communication hole 1217 and a second communication hole 1218 communicating with the storage space 103, the first communication hole 1217 and the second communication hole 1218 are arranged at intervals, and the first communication hole 1217 Both the top surface 1211 and the groove wall of the first installation groove 1213 pass through the second communication hole 1218 .
  • the air pump 14 includes a first air nozzle 141, the air pressure sensor 15 includes a second air nozzle 151, the first air nozzle 141 communicates with the second connection end 212 of the air bag 24 through the first communication hole 1217, and the second air nozzle 151 passes through the second communication hole 1217.
  • the hole 1218 communicates with the second connection end 212 of the airbag 24 .
  • the second connecting end 212 of the airbag 24 is provided with a first plug connector 241 and a second plug connector 242, the first plug connector 241 and the second plug connector 242 communicate with the inside of the airbag 24, the first plug connector 241 It communicates with the first air nozzle 141 of the air pump, and the second plug connector 242 communicates with the second air nozzle 151 of the air pressure sensor 15 .
  • the first plug connector 241 can pass through the first communication hole 1217 and be plugged into the first air nozzle 141 to realize the air communication between the air bag 24 and the air pump 14, so that the air pump 14 can pass through the first
  • the communication hole 1217 fills or discharges the airbag 24 with gas.
  • the second plug connector 242 can pass through the second communication hole 1218 and be plugged into the second air nozzle 151 to realize the air path communication between the air bag 24 and the air pressure sensor 15, so that the air pressure sensor 15 can sense the air pressure change in the air bag 24 , to obtain air pressure data inside the airbag 24, and transmit the air pressure data to the processor.
  • the air pump 14 and the air pressure sensor 15 can also be connected to the air bag 24 through other connection methods, and this application does not limit the connection method between the air pump 14 and the air pressure sensor 15 and the air bag 24 .
  • first communication hole 1217 and the second communication hole 1218 can also be set in other positions than the first installation groove 1213, and this application does not discuss the first communication hole 1217 and the second communication hole The specific position of the hole 1218 is limited.
  • the chassis 121 may further include a through hole 51 passing through the top surface 1211 and the bottom surface 1212 , and the through hole 51 is used for installing related components of the wearable device 100 , such as a photoplethysmography (photoplethysmograph, PPG) sensor.
  • a photoplethysmography photoplethysmograph, PPG
  • the display screen 13 includes a display panel and a cover fixed on the display panel.
  • the cover plate can be made of lens materials such as glass.
  • the display panel can be LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light-emitting diode) display, AMOLED (Active-Matrix Organic Light Emitting Diode, active matrix organic light-emitting diode or active Matrix organic light-emitting diode) display, FLED (Flex Light-Emitting Diode, flexible light-emitting diode) display, Mini LED, Micro LED, Micro OLED, QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting diode), etc.
  • LCD Liquid Crystal Display, liquid crystal display
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • AMOLED Active-Matrix Organic Light Emitting Diode, active matrix organic
  • the display panel can also be integrated with a touch function, that is, the display panel is a touch display panel, that is, the display panel can be used not only as an input device for receiving input, but also as a device for providing output. That is to say, the display screen 13 is a touch screen.
  • the display panel is electrically connected to the motherboard 16 .
  • the display panel can generate touch signals and transmit the touch signals to the main board 16 .
  • the main board 16 receives the touch signal, and controls the opening of the application software (Application, App) in the device main body 10 according to the touch signal. For example, the user can choose to open or edit the graphic by touching or pressing the position of the graphic on the display screen 13 .
  • the display panel may also receive the data signal from the main board 16, and feed back the blood pressure value measured by the user to the user via the display panel.
  • a driving circuit 161 and a processor 162 may be coupled to the motherboard 16 .
  • the driving circuit 161 is used to drive various components electrically connected to the motherboard 16 .
  • the processor 162 may specifically be a micro control unit (Micro Control Unit, MCU), and the processor 162 may be the nerve center and command center of the wearable device 100.
  • the processor 162 can generate an operation control signal according to the instruction operation code and the timing signal, and complete the control of fetching and executing the instruction.
  • main board 16 can also be integrated with basic modules such as storage modules, interactive hardware, and wireless modules, and multiple modules are electrically connected to the processor 162 to realize control and function realization of the modules.
  • the air pump 14 is electrically connected to the processor 162 to receive the control signal sent by the processor 162, and perform an action of filling or discharging gas to the air bag 24 according to the control signal.
  • the air pressure sensor 15 is electrically connected to the processor 162 to receive the control signal sent by the processor 162, and detect the pressure signal inside the airbag 24 according to the control signal, and convert the pressure signal into an electrical signal.
  • the air pressure sensor 15 can be a capacitive air pressure sensor, and the capacitive air pressure sensor includes at least two parallel plates with conductive materials. When a force acts on the air pressure sensor 15, the capacitance between the electrodes changes, and the processor 162 can change the capacitance between the electrodes according to the capacitance of the electrodes. To determine the intensity of the internal pressure of the airbag 24.
  • the air pressure sensor 15 may also be a resistive air pressure sensor or an inductive air pressure sensor.
  • device main body 10 also comprises photoplethysmography (photoplethysmograph, PPG) sensor 50, processor 162 can also be coupled with feedback unit (Active Front End, AFE), PPG sensor 50 and processing The processor 162 and the coupling unit on the processor 162 are electrically connected.
  • the PPG sensor 50 is installed in the through hole 51 and exposed from the main body 10 of the device. It can be understood that when the user wears the wearable device 100 , the PPG sensor 50 located on the chassis 121 can be attached to the user's wrist so as to detect the user's pulse data.
  • the PPG sensor is partially accommodated in the through hole 51, so that the PPG sensor 50 overlaps with the device body 10 in the thickness direction, which is beneficial to reduce the thickness of the device body 10 and facilitates the stability of the device body 10. Thinning.
  • FIG. 9A is a schematic cross-sectional structure diagram of the device body 10 shown in FIG. 3A along the B-B direction.
  • FIG. 9B is a schematic structural view of the device body and the airbag wristband shown in FIG. 9A .
  • the blood pressure measurement assembly 100 also includes an airbag blocking member 30 installed inside the device main body 10, the airbag blocking member 30 is close to the second side 102, and the airbag blocking member 30 is used to cooperate with the connecting shaft 11 to block
  • the airbag 24 of the airbag wristband 20 is broken, and the airbag 24 is separated to form an effective section and an invalid section.
  • the effective section is the part from the second connecting end 212 of the airbag 24 to the part where the airbag 24 resists the connecting shaft 11
  • the invalid section is other parts of the airbag 24 . That is to say, the effective segment is the part where the airbag 24 fits the user's wrist, and the invalid segment is the part where the airbag 24 does not fit the user's wrist.
  • the air pump 15 can inflate the effective section, so that the effective section of the airbag 24 expands and compresses the user's radial artery and ulnar artery to complete blood pressure measurement.
  • the air pump 15 cannot inflate the invalid section.
  • the length of the effective section is the effective length of the airbag.
  • the airbag blocking member 30 When the user wears the wearable device 100 and starts blood pressure measurement, the airbag blocking member 30 will press the airbag wristband 20 and press the airbag wristband 20 against the connecting shaft 11, so that the airbag 24 on one side of the airbag wristband 20 An effective section and an ineffective section are formed at the connecting shaft 11 . It should be noted that when users with different wrist circumferences wear the wearable device, the effective length of the airbag is different.
  • the prerequisite for the wearable device 100 to obtain accurate blood pressure values is that the airbag 24 of the airbag wristband 20 fully covers the radial artery and ulnar artery of the user's wrist.
  • the airbag can cover the radial artery and the ulnar artery when worn by users with different wrist circumferences to meet the blood pressure measurement requirements, then for users with small wrist circumferences, there will be extra space after the airbag covers the user's wrist. Part, the extra part also needs to continue to be wound around the wrist, which will inevitably be involved in the bottom of the main body of the device and affect the user experience.
  • the existing wearable device is equipped with multiple airbags of different lengths and specifications, and the user selects the corresponding airbag according to his wrist circumference, assembles it on the wearable device, and then enters the corresponding configuration airbag specification on the wearable device. It is used to call the blood pressure algorithm library corresponding to the airbag specifications to measure blood pressure. Any error in any link will cause a large blood pressure measurement error, so the requirements for users are high and the usability is poor.
  • the user can pass the second end 22 of the airbag wristband 20 through the space between the second side 102 and the connecting shaft 11, and pass the airbag blocking member 30
  • the airbag wristband 20 is held against the connecting shaft 11 to realize the length adjustment of the joint part between the airbag wristband 20 and the user's wrist, that is, the adjustment of the effective length of the airbag 24 of the airbag wristband 20, so that the airbag 24 of the airbag wristband 20
  • the radial and ulnar arteries at the user's wrist are adequately covered, and the balloon blocker then blocks the balloon.
  • the wearable device 100 of the present application can be suitable for users with different wrist circumferences by using a single type of airbag wristband, and users with different wrist circumferences can adjust the airbag wristband to an appropriate length by themselves, avoiding different users.
  • the error caused by the mismatch between the wrist circumference and the length of the airbag 24 improves the accuracy of blood pressure measurement and reduces the cost of obtaining accurate blood pressure values.
  • the wearable device 100 of the present application can adjust the length of the airbag wristband 20 so that the airbag wristband 20 can fit the user's wrist better, the effective section of the airbag 24 can just cover the radial artery and ulnar artery of the user's wrist.
  • the blood pressure measurement accuracy of the wearable device 100 provided by this application is higher. .
  • the airbag blocking member 30 can have multiple implementations. In one embodiment, the airbag blocking member 30 can automatically block the airbag 24. In another embodiment, the airbag blocking member 30 can be manually blocked. Operation The airbag 24 is subjected to a blocking operation. The first embodiment of the airbag blocking member 30 will be described in detail below.
  • the airbag blocking member 30 may include a blocking portion 31 , a driving portion 32 and a transmission portion 35 .
  • the blocking part 31 is arranged on the surface of the second side 102 facing the connecting shaft 11, the driving part 32 is arranged in the receiving space 103, and the transmission part 35 is connected between the driving part 32 and the blocking part 31, and the transmission part 35 is used to connect the driving part 32 is transmitted to the blocking portion 31 to drive the blocking portion 31 to hold the airbag wristband 20 against the connecting shaft 11 and block the airbag 24 .
  • the airbag blocking member 30 may only include a blocking portion 31 and a driving portion 32 , and the driving portion 32 directly drives the blocking portion 31 to block the airbag 24 .
  • the device body 10 further includes a communication hole 36 , and the communication hole 36 communicates the inside and the outside of the device body 10 .
  • the communication hole 36 is located on the second side 102 and communicates with the receiving space 103 on the surface of the second side 102 facing the connecting shaft 11 .
  • the transmission part 35 is disposed in the communication hole 36 , and its two ends are respectively connected to the driving part 32 and the blocking part 31 .
  • the communication between the storage space 103 and the outside of the device body 10 is realized by providing the communication hole 36 on the device body 10 through its interior and exterior, so that the driving force of the driving part 32 located in the storage space 103 can pass through the device.
  • the transmission part 35 in the communication hole 36 is transmitted to the blocking part 31 located outside the device main body 10 .
  • the driving part 32 can only be arranged outside the device main body 10 , which affects the appearance of the device main body 10 .
  • the drive unit 32 can be accommodated in the accommodation space 103 by providing the communication hole 36 , which not only improves the integration of the product, but also contributes to the aesthetic appearance of the product.
  • the device body 10 may not be provided with a communication hole, and the driving portion 32 may be provided outside the device body 10 .
  • FIG. 11 is a schematic structural diagram of the airbag blocking member 30 of the device main body 10 shown in FIG. 9B in a non-blocking state.
  • FIG. 12 is a schematic structural view of the airbag blocking member 30 of the device main body 10 shown in FIG. 9B in a blocking state.
  • the airbag blocking member 30 When the user wears the wearable device 100 and does not start blood pressure measurement, the airbag blocking member 30 is in a non-blocking state. At this time, there is a space between the blocking portion 31 and the connecting shaft 11 through which the airbag wristband 20 can pass, and the airbag wristband 20 can move between the blocking portion 31 and the connecting shaft 11, so that the user can wear it according to the circumference of the wrist. Good wearables 100.
  • the air bag blocking member 30 is in the blocking state.
  • the driving part 32 is controlled by the internal circuit to drive the transmission part 35, so that the transmission part 35 can push the blocking part 31 to hold the airbag wristband 20 against the connecting shaft 11 and press the airbag 24, so that the airbag 24 is on the connecting shaft 11.
  • the place divides and forms effective segment (air bag 24 connects the part of air pump 14 and air pressure sensor 15) and invalid segment (air bag 24 afterbody can't inflate part).
  • air pump 15 can inflate the active section to measure the blood pressure of the user.
  • the driving part 32 may specifically be a stepping motor
  • the transmission part 35 may specifically be a transmission shaft
  • the blocking part 31 and the connecting shaft 11 may be a cuboid structure.
  • the stepper motor is controlled by the internal circuit to drive the transmission shaft to rotate in the first direction, so as to push the blocking part 31 close to the airbag wristband 20 and hold the airbag wristband 20 against the connecting shaft.
  • the stepper motor is controlled by the internal circuit to drive the transmission shaft to rotate in the second direction to drive the blocking part 31 away from the airbag wristband 20, wherein the second direction is opposite to the first direction.
  • the surface of the blocking portion 31 facing the connecting shaft 11 is the first surface 33
  • the surface of the connecting shaft 11 facing the blocking portion 31 is the second surface 111.
  • the first surface 33 and the second surface 111 are Compatible cuboid shape. That is to say, when the blocking portion 31 presses the airbag wristband 20 against the connecting shaft 11, the airbag wristband 20 is clamped between the first surface 33 and the second surface 111, and when the first surface 33 and the second surface When 111 is matched, the first surface 33 and the second surface 111 can be attached to the largest area, so that the blocking effect of the airbag blocking member 30 on the airbag wristband 20 is maximized.
  • FIG. 13 is a schematic structural view of the airbag blocking member 30 of the device main body 10 shown in FIG. 9B in another embodiment.
  • Fig. 14 is a schematic structural diagram of an implementation scenario of the airbag blocking element 30 shown in Fig. 13 in another embodiment.
  • FIG. 15A is a schematic structural diagram of another implementation scenario of the airbag blocking member 30 shown in FIG. 13 in another embodiment.
  • the connecting shaft 11 can also be cylindrical, and the blocking portion 31 can also be an inwardly recessed concave structure adapted to the connecting shaft 11 .
  • the first surface 33 and the second surface 111 are arc surfaces. It can be understood that, in the case of the same volume, when the first surface 33 and the second surface 111 are curved surfaces, the bonding area of the two is the largest, so that the blocking portion 31 and the connecting shaft 11 can squeeze the airbag 24 to the largest area. The blocking effect on the air bag 24 is the best.
  • the cylindrical connecting shaft 11 is easier to process, which is beneficial to reduce the manufacturing cost.
  • the blocking portion 31 can also be spherical, and the connecting shaft 11 can also be an inwardly concave structure that is adapted to the blocking portion 31 .
  • the first surface 33 and the second surface 111 are arc surfaces.
  • the connecting shaft 11 can also be a regular hexagonal cylinder, and the blocking part 31 can also be an inwardly concave structure that is suitable for the connecting shaft 11 , both the first surface 33 and the second surface 111 are polygonal.
  • the present application does not limit the specific shapes of the blocking portion 31 and the connecting shaft 11 .
  • the connecting shaft 11 can also be slidably installed on the second side 102, and the airbag blocking member 30 includes a driving part 32 and a blocking part 31, and the blocking part 31 is connected between the connecting shaft 11 and the driving part. Between 32, the driving part 32 can drive the blocking part 31 to bring the connecting shaft 11 close to the second side 102, so as to realize the blocking of the airbag.
  • FIG. 16 is a structural schematic diagram of another implementation structure of the airbag blocking member 30 with the structure shown in FIG. 9A cooperating with the device main body 10 .
  • FIG. 17 is a schematic structural diagram of the sliding connection portion 40 shown in FIG. 16 blocking the airbag 24 .
  • the structure of this embodiment is substantially the same as that of the embodiment described in FIG. 9A , and the same parts will not be described again.
  • the airbag blocking part in this embodiment is a sliding connection part 40
  • the connecting shaft 11 cooperates with the sliding connection part 40 .
  • one side of the sliding connection part 40 is connected to both ends of the connecting shaft 11 , and the other side is slidingly connected to the second side 102 of the device body 10 , that is, the connecting shaft 11 is connected to the second side 102 through the sliding connecting part 40 .
  • the airbag wristband 20 runs through the space between the connecting shaft 11 and the second side 102, and the sliding connection part 40 can drive the connecting shaft 11 close to the second side 102, so as to hold the airbag wristband 20 against the second side 102 and block the airbag The air bag 24 of the wristband 20 .
  • the user when the user wears the wearable device 100, the user can pass the second end 22 of the airbag wristband 20 through the space between the connecting shaft 11 and the second side 102 to realize the alignment of the airbag.
  • the length of the fitting part of the wristband 20 and the user's wrist is adjusted so that the length of the fitting part is closer to the user's wrist circumference, fully covering the radial artery and ulnar artery of the user's wrist, and avoiding the user from installing a wristband that is not suitable for the length specification of the user's wrist circumference.
  • the error that may be caused to the blood pressure measurement result improves the accuracy of the blood pressure measurement.
  • the user can manually push the sliding connection part 40 to make the sliding connection part 40 close to the second side 102 and make the airbag wristband 20 abut against the second side 102 .
  • the sliding connection part 40 cooperates with the connecting shaft 11 to block the airbag 24 of the airbag wristband 20 and separate the airbag 24 to form an effective section and an invalid section.
  • the effective section is the part from the second connecting end 212 of the airbag 24 to the part where the airbag 24 resists the connecting shaft 11
  • the invalid section is other parts of the airbag 24 .
  • the sliding connection part 40 in this embodiment blocks the airbag wristband 20 by manual operation, compared with the electric driving sliding connection part 40 blocking the airbag 24, the driving part 32 and the transmission part are reduced.
  • the setting of 35 is conducive to the miniaturization of the product.
  • manual operation saves more power than electric drive, which is conducive to enhancing the battery life of the product and reducing production costs.
  • FIG. 18 is a structural schematic diagram of the cooperation of the sliding connection part 40 and the connecting shaft 11 shown in FIG. 15A .
  • the sliding connection part 40 may include a body 41 and two extensions 42 connected to two ends of the body 41 . Parts of the two extension sections 42 facing away from the main body 41 are respectively connected to two ends of the connecting shaft 11 .
  • the sliding connecting portion 40 and the connecting shaft 11 surround and form a fixing hole 43 , through which the airbag wristband 20 can pass.
  • the extension section 42 is provided with a matching groove 44
  • the second side 102 is provided with a limiting member, and the limiting member is limited in the matching groove 44 to fix the sliding connection portion 40 on the second side 102.
  • the sliding connection part 40 may also be of other structures, as long as the purpose of blocking the airbag 24 can be achieved.
  • the integrated structure of the connecting shaft 11 and the sliding connecting portion 40 ensures the connection strength between the connecting shaft 11 and the sliding connecting portion 40 and simplifies the product assembly steps.
  • the connecting shaft and the sliding connection part may also be connected and fixed by other methods such as bonding, clamping and the like.
  • the fixing hole 43 of the sliding connection part 40 is small enough to meet the airbag wristband 20 passing through without compressing the airbag 24, so that the airbag wristband 20 passes through the fixing hole 43, and the airbag wristband 20
  • the surface of the airbag wristband 20 can be in contact with the surface of the second side 102 and the connecting shaft 11 to increase the friction between the airbag wristband 20 and the second side 102 and the connecting shaft 11, so that the airbag wristband 20 can be more stably fixed to the second side 102. Avoid sliding and loosening of the airbag wristband 20, so that the airbag wristband 20 fits the user's wrist more closely during wearing, and improves the wearing experience.
  • the sliding connection part 40 can drive the connecting shaft 11 close to the second side 102, and hold the airbag wristband 20 against On the second side 102 , the airbag 24 of the airbag wristband 20 is blocked, and the airbag wristband 20 is fixed on the second side 102 .
  • the air pump 15 can inflate the effective section, so that the effective section of the airbag 24 expands and compresses the user's radial artery and ulnar artery to complete blood pressure measurement.
  • the air pump 15 cannot inflate the invalid section.
  • the length of the effective section is the effective length of the airbag.
  • FIG. 19 is a structural schematic diagram of the cooperation between the matching groove 44 of the sliding connection part 40 shown in FIG. 15A and the limiting member 45 .
  • FIG. 20A is a structural schematic diagram of the separation of the matching groove 44 and the limiting member 45 of the sliding connection portion 40 shown in FIG. 19 .
  • the device body 10 may further include a snap button 46 disposed on the surface of the second side 102 facing the display screen 13 .
  • the snap button 46 is connected with the sliding connection part 40 , when the snap button 46 is pressed down, the sliding connection part 40 will generate a downward displacement along with the snap button 46 .
  • the snap button can also be arranged at other positions of the device main body 10 .
  • the sliding connection portion 40 will displace downward along with the snap button 46 , so that the matching groove 44 of the sliding connection portion 40 is no longer in contact with the stopper on the second side 102 . 45, so that the sliding connection part 40 is no longer fixed on the second side 102, at this time, the user can move the sliding connection part 40 toward the direction away from the second side 102 to adjust the length of the airbag wristband 20 or to adjust the airbag wristband 20 is taken out from the fixing hole 43, thereby taking off the wearable device 100.
  • the sliding connection part 40 may also be fixed to the second side 102 in other ways, and this application does not limit the fixing method of the sliding connection part 40 and the second side 102 .
  • the connecting shaft 11 can be directly installed on the second side 102, and a gap is formed between the connecting shaft 11 and the second side 102 for the airbag and the wristband to pass through, and the body of the connecting part 40 is slid 41 is disposed between the second side 102 and the airbag, and the two extensions 42 of the sliding connection part 40 are slidably connected to the second side 102 .
  • the blocking of the airbag can be realized by pushing the body 41 of the sliding connection part to move toward the airbag, and holding the airbag between the connecting shaft 11 and the body 41 .
  • the airbag blocking member can also be of other structures, as long as it can block the airbag.
  • FIG. 21 is a structural schematic view of the cooperation between the length sensing module 70 of the wearable device 100 shown in FIG. 1 and the airbag blocking member 30 and the airbag wristband 20 .
  • FIG. 22 is a structural schematic diagram of another embodiment of cooperation between the length sensing module 70 shown in FIG. 21 and the airbag blocking member 30 and the airbag wristband 20 .
  • FIG. 23 is a schematic diagram of the working principle of the length sensing module 70 shown in FIG. 21 .
  • the wearable device 100 may further include a length sensing module 70 for automatically measuring the length of the effective section of the airbag wristband 20 , that is, the effective length of the airbag.
  • the length sensing module 70 includes a first electrode sheet 71, a second electrode sheet 72 and a flexible resistance film 73.
  • the flexible resistive film 73 covers the surface of the airbag 24 away from the side of the wristband 23
  • the first electrode sheet 71 is arranged on the side of the flexible resistive film 73 close to the first side 101, and is electrically connected to the flexible resistive film 73
  • the sheet 72 is fixed on the blocking portion 31 or the surface of the second side 102 facing the airbag 24
  • the second electrode sheet 72 is used to electrically connect the flexible resistive film 73 when the blocking portion 31 blocks the airbag 24 .
  • the main board 16 can also be integrated with a circuit board 163 , and the circuit board 163 is electrically connected to the first electrode sheet 71 , the second electrode sheet 72 and the processor 162 .
  • the wearable device is used to determine the effective length of the airbag 24 by obtaining the resistance of the part of the flexible resistive film 73 between the first electrode sheet 71 and the second electrode sheet 72 when the blocking part 31 blocks the airbag 24 .
  • the second electrode sheet 72 is disposed on the surface of the blocking portion 31 facing the airbag 24 .
  • the blocking part 31 will hold the airbag wristband 20 against the connecting shaft 11.
  • the second electrode piece 72 and the flexible resistance film 73 fixed on the surface of the blocking part 31 facing the airbag 24 electrical connection.
  • the second electrode sheet 72 is disposed on the surface of the second side 102 facing the airbag 24 , and the airbag blocking member 30 is the sliding connection part 40 at this time.
  • the sliding connection part 40 works, the sliding connection part 40 will push the connecting shaft 11 to hold the airbag wristband 20 against the second side 102, and at this time, the second electrode piece 72 fixed on the surface of the second side 102 facing the airbag 24 and The flexible resistive film 73 is electrically connected.
  • the airbag blocking member 30 when the airbag blocking member 30 is activated, the airbag blocking member 30 will hold the airbag wristband 20 against the connecting shaft 11 or the second side 102, and at this time be fixed on the blocking portion 31 or the second side 102
  • the second electrode sheet 72 facing the surface of the airbag 24 is electrically connected to the flexible resistive film 73 .
  • the resistance between the first electrode sheet 71 and the second electrode sheet 72 can be measured through the built-in circuit board 163 of the device main body 10, and the length from the first electrode sheet 71 to the second electrode sheet 72 can be converted by the processor 162, namely is the effective length of the airbag.
  • the wearable device 100 of the present application imports the data of the air pressure sensor 15 and the effective length of the air bag into the blood pressure algorithm model, and calculates the measured blood pressure value through the blood pressure algorithm model. Compared with only referring to the data of the air pressure sensor 15 for calculation, referring to the data of the air pressure sensor 15 and the effective length of the airbag at the same time makes the blood pressure algorithm model of the present application more accurate and the calculated blood pressure data is more accurate.
  • the length sensing module 70 may also include a voltage stabilizing chip and an analog-to-digital converter (Analog-to-digital converter, ADC). Both the voltage stabilizing chip and the ADC are arranged in the accommodation space 103 of the device main body 10 Two ends of the voltage stabilizing chip are electrically connected to the battery 17 and the flexible resistive film 73 respectively, and two ends of the ADC are electrically connected to the flexible resistive film 73 and the processor 162 respectively.
  • the voltage regulator chip can protect the circuit so that the circuit will not be damaged due to pulses. At the same time, the voltage regulator chip can also play the role of adjustment and voltage transformation to prevent excessive voltage from blowing the circuit, which is conducive to protecting the entire wearable device. 100 circuit system, reducing the risk of failure.
  • the ADC can convert the continuous analog signal in the circuit into a discrete digital signal, and transmit it to the processor 162 for calculation.
  • the flexible resistive film 73 in this embodiment can be equivalent to a variable resistor. That is to say, there is an obvious correlation between the resistance change of the flexible resistive film 73 and the length between the first electrode piece 71 and the second electrode piece 72 .
  • the circuit board 163 transmits a stable voltage to the flexible resistive film 73 through the voltage stabilizing chip, and the ADC converts the different resistance signals of the flexible resistive film 73 into digital signals and transmits them to the processor 162. Calculate the effective length of the airbag.
  • the main board 16 can also be integrated with a controller.
  • the ADC converts the different resistance signals of the flexible resistive film 73 into digital signals and transmits them to the controller.
  • the controller converts the effective length of the airbag according to the digital signals, and This data is passed to processor 162 .
  • the flexible resistive film 73 needs to have a certain degree of flexibility and cannot affect the inflation of the airbag.
  • the material of the flexible resistance film 73 can be constantan alloy, manganese copper alloy or carbon resistance.
  • the required flexible resistive film 73 can also be formed by spraying or in flexible fabrics. The present application does not limit the material and formation method of the flexible resistance film 73.
  • the wearable device 100 may not include a length sensing module, and the wearable device 100 may also manually acquire the effective length of the airbag, and manually input its value to the processing unit through the display screen 13 or the key 18. device 162.
  • the structure of a wearable device 100 is specifically introduced above, and the physiological parameter measurement method of the wearable device 100 will be specifically introduced below in combination with the above wearable device 100.
  • the following will take the physiological parameter measurement method as a blood pressure measurement method as an example. illustrate.
  • FIG. 24 is a schematic diagram of functional modules of the wearable device 100 shown in FIG. 1 .
  • FIG. 25 is a schematic flowchart of a method for measuring physiological parameters of the wearable device 100 shown in FIG. 1 .
  • the physiological parameter measurement method of the wearable device 100 is as follows in steps S110-S160.
  • the user first wears the wearable device 100 and adjusts the tightness according to the wrist circumference. For example, after the user wears the wearable device 100 , the airbag wristband 20 is adjusted to an appropriate length according to the circumference of the user's wrist, so that the airbag 24 can completely fit the ulnar artery and the radial artery of the user's wrist.
  • the first operation may be that the user touches the virtual function key for measuring blood pressure on the display screen 13 to enable the wearable device 100 to start the blood pressure measurement function.
  • the user can also enable the wearable device 100 to start the blood pressure measurement function by operating the button 18 provided on the device main body 10 .
  • the wearable device is provided with the function of setting blood pressure detection. The user sets the time for blood pressure detection on the wearable device. The time and frequency of blood pressure detection can be set as required to improve user experience.
  • the measurement method further includes determining whether the wearable device is in a worn state. Specifically, when the wearable device includes a PPG sensor, whether the wearable device is in a worn state can be detected through the PPG sensor. When the wearable device does not include a PPG sensor, since the boost curve for inflating the airbag is different when the wearable device is worn and not worn, it can be determined whether the wearable device is in the worn state by inflating the airbag. It should be noted that, if it is determined whether the wearable device is in the worn state by inflating the airbag, the determining step should be performed after step S120. Of course, in other embodiments, when the wearable device includes a PPG sensor, it may also be determined whether the wearable device is in a worn state by inflating the airbag.
  • the measurement method further includes determining that the airbag is connected to the main body of the device.
  • a Hall sensor can be set on the wearable device to check whether the airbag is connected to the main body of the device through the Hall sensor. It is also possible to inflate the airbag to determine whether the airbag is connected to the main body of the device. It should be noted that the step of inflating the airbag to determine whether the airbag is connected to the device body should be performed after step S120. Of course, it is also possible to determine whether the airbag is connected to the main body of the device in other ways.
  • the processor when the processor detects a signal to start blood pressure measurement, the processor will transmit a control signal to the airbag blocking member 30 , and the airbag blocking member 30 will press the airbag wristband 20 against the connecting shaft 11 to block the airbag 24 .
  • the driving part 32 of the airbag blocking member 30 will drive the blocking part 31 to hold the airbag wristband 20 against the connecting shaft 11 and separate the airbag wristband 20 to form an effective section and an invalid section.
  • the airbag 24 is blocked to form an effective section and an invalid section, and the length of the effective section is the effective length of the airbag.
  • the processor may drive the blocking part 31 to move towards the airbag wristband 20 by controlling the driving part 32 , and press the airbag wristband 20 against the connecting shaft 11 .
  • the distance that the driving part 32 drives the blocking part 31 to move toward the airbag wristband 20 is a first distance, and the specific value of the first distance can be obtained through experience.
  • the airbag 24 is blocked into a valid segment and an invalid segment, and the driving part 32 stops driving the blocking part 31 .
  • the signal to start blood pressure measurement may be that the user touches the virtual function key for measuring blood pressure in the display screen 13.
  • the processor detects the signal to start blood pressure measurement.
  • the signal to start blood pressure measurement can also be that the user calls the blood pressure measurement function module in the wearable device 100 by operating the button 18, and when the processor obtains that the user calls the blood pressure measurement function module in the wearable device 100, it will consider that the processor has detected to the signal to start the blood pressure measurement.
  • the measurement method determines that the wearable device reaches a predetermined time, blood pressure measurement is started.
  • the processor can drive the connecting shaft to move toward the second side by controlling the driving part, and hold the airbag wristband 20 against the second side. On the second side, block the air bag. Or, in other embodiments, the wearable device may also prompt the user to manually block the airbag through the display screen.
  • the processor when the processor detects that the airbag blocker 30 blocks the airbag 24, the processor will transmit a control signal to the length sensing module 70, activate the length sensing module 70 and measure the effective length of the airbag.
  • the resistance between the first electrode piece 71 and the second electrode piece 72 in the length sensing module 70 can be measured through the built-in circuit board 163 of the device main body 10, and the resistance between the first electrode piece 71 and the second electrode piece 72 can be converted by the processor.
  • the length between the two electrode sheets 72 determines the effective length of the airbag.
  • the method for determining the effective length of the airbag is as follows: when the airbag blocking member 30 blocks the airbag 24, an electric current is applied to the first path, and the current value of the current flowing through the first path is determined.
  • the first path is controlled by the circuit board 163 , the first electrode sheet 71, the second electrode sheet 72 and at least part of the flexible resistance film 73.
  • the voltage values before the first electrode pad 71 and the second electrode pad 72 are determined.
  • the resistance value of at least part of the flexible resistive film 73 is determined according to the current value and the voltage value.
  • the effective length of the airbag 24 is determined according to the resistance value.
  • the resistance value After obtaining the resistance value, confirm whether the resistance value is an effective resistance value, that is, whether the resistance value is within the range of normal resistance values, and if the resistance value is an effective resistance value, stop applying current to the first path . If the resistance value is the wireless resistance value, continue to obtain the effective value, or remind the user to check whether there is a problem with the wearable device.
  • the user can also manually measure the effective length of the airbag and input the data into the processor.
  • the display screen 13 will pop up a dialog box "whether to measure the effective length of the air bag manually", and click "Yes” if the user confirms to use manual measurement.
  • the control signal will be transmitted to the display screen 13, and a new dialog box "Please input the measurement data” will pop up.
  • measure the effective length of the airbag with other length measuring tools such as a tape measure
  • S140 Inflate the airbag 24 and detect the air pressure inside the airbag 24 .
  • the air pump 14 and the air pressure sensor 15 are activated.
  • the air pump 14 inflates the inside of the airbag 24 through a linear boost control algorithm, and the air pressure sensor 15 acquires the air pressure data of the airbag 24 from the start of inflation to the end of inflation.
  • the processor calculates the measured blood pressure value through the blood pressure algorithm model according to the acquired air pressure data of the air pressure sensor 15 and the effective length of the air bag. Compared with only referring to the data of the air pressure sensor 15 for calculation, referring to the air pressure data of the air pressure sensor 15 and the effective length of the air bag at the same time makes the blood pressure algorithm model of the present application more accurate, and the calculated blood pressure data is more accurate.
  • the airbag wristband 20 of the wearable device 100 of the present application is adjustable, the airbag wristband 20 can fully cover the radial artery and ulnar artery of the user's wrist, and the effective section can just cover the user's radial artery and ulnar artery.
  • the data of the effective length of the airbag is more accurate, which makes the final calculation result more accurate and more in line with the user's actual blood pressure data.
  • the processor judges that the air pressure data is complete through an algorithm, it controls the air pump to stop inflating the airbag.
  • the processor can activate the air pump 14 and the air pressure sensor 15 after receiving the effective length data of the air bag.
  • Step S140 can also be performed after step S150, or step S140 and step S150 can also be performed simultaneously.
  • S150 Determine the blood pressure value according to the air pressure value.
  • judging whether the blood pressure measurement is finished may be based on whether the blood pressure measurement value is obtained, or may be based on whether the user-converted blood pressure measurement data is obtained. For example, when the blood pressure measurement value is calculated by substituting the obtained blood pressure measurement data into the blood pressure algorithm model, and is sent to the display screen 13 by the processor for the user to obtain, it is judged that the blood pressure measurement is completed. Alternatively, when all the blood pressure measurement data have been obtained, it may also be determined that the blood pressure measurement has ended. When it is judged that the blood pressure measurement is finished, the processor turns off the air pump 14 and the air pressure sensor 15 to discharge the gas in the air bag 24 .
  • the processor controls the airbag blocking member 30 to move away from the airbag wristband 20 by judging whether the air pressure inside the airbag 24 drops below a threshold. For example, when the processor judges that the internal air pressure of the airbag 24 has dropped to 5mmHg or below, the processor transmits a control signal to the airbag blocking member 30, at this time the driving part 32 drives the blocking part 31 away from the airbag wristband 20 and returns At the initial position, the airbag wristband 20 is restored to a non-blocking state.
  • the airbag blocking element can be controlled to move away from the airbag wristband, that is, controlling the airbag blocking element to move away from the airbag wristband can be performed simultaneously with turning off the air pump and the air pressure sensor.
  • the blood pressure measurement method based on the oscillometric method is to estimate the blood pressure according to the relationship between the pulse wave amplitude and the pressure of the air bag 24.
  • the maximum value of the pulse wave corresponds to the mean pressure. pressure can be calculated.
  • the air pump 14 is used to inflate the inside of the air bag 24, so that the air bag 24 can compress the radial artery and the ulnar artery of the user's wrist, so that the air pressure sensor 15 can obtain the pressure and pulse wave inside the air bag 24, and the air pressure sensor 15 can obtain the pressure and pulse wave.
  • the data and the effective length of the balloon are passed to the processor and the blood pressure is calculated.
  • the blood pressure measurement method of the present application also uses the effective length data of the airbag as an input parameter, which further improves the accuracy of the blood pressure algorithm model of the measurement method of the present application, which is conducive to improving the measurement of blood pressure. precision.
  • the method for measuring physiological parameters of a wearable device may only include step S110, step S120, and step S130.
  • the present application also provides an electronic device, including a processor and a memory, the memory is used to store a computer program, and the processor invokes the computer program to execute the measurement method in any of the above embodiments.
  • the present application also provides a computer-readable storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the electronic device, the electronic device is made to execute the measurement method of any one of the above embodiments.
  • the present application also provides a computer program product.
  • the computer program product is run on a computer, the computer is made to execute the measuring method in any one of the above embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种可穿戴设备(100)及其生理参数测量方法和电子设备。可穿戴设备(100)包括设备主体(10)、连接轴(11)、气囊腕带(20)和气囊阻断件(30)。设备主体(10)具有相对设置的第一侧(101)和第二侧(102),连接轴(11)安装于第二侧(102),连接轴(11)和第二侧(102)之间形成间隙。气囊腕带(20)包括腕带(23)和气囊(24),气囊(24)至少部分叠设于腕带(23)的一侧。气囊腕带(20)的第一端(21)包括腕带(23)的第一连接端(211)和气囊(24)的第二连接端(212),第一连接端(211)用于固定连接第一侧(101),第二连接端(212)用于连接设备主体(10)。气囊阻断件(30)包括阻断部(31)和驱动部(32),驱动部(32)用于驱动阻断部(31)朝向靠近连接轴(11)的方向运动,当气囊腕带(20)的第二端(22)从间隙穿过时,使得阻断部(31)将气囊腕带(20)抵持于连接轴(11),阻断气囊(24)。该可穿戴设备(100)适用于所有腕围的用户,用户使用体验感好。

Description

可穿戴设备及其生理参数测量方法和电子设备
本申请要求于2021年12月31日提交中国专利局、申请号为2021116766858、申请名称为“可穿戴设备及其生理参数测量方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,特别涉及一种可穿戴设备及其生理参数测量方法和电子设备。
背景技术
传统的电子血压计如臂式或腕式血压计,都是基于示波法血压测量原理,传统的电子血压计的体积和重量都很大,只能用于室内单次血压测量,不宜随身长期佩戴。而用于测量血压的电子设备(如血压手表或血压腕带)由于具有更小的尺寸、更轻的重量,因此能够长期被用户佩戴,满足长期且实时对血压进行检测的需求。血压手表测量血压的基本原理为:血压手表被佩戴在用户腕部时,血压手表的表带上的气囊同时覆盖用户的桡动脉和尺动脉。当泵向气囊充气时,气囊加压膨胀,并压迫动脉。集成血压手表主体中的传感器与气囊相连通,在气囊充气升压的过程中由于动脉受到气囊的压迫,传感器会提取到动脉的脉搏波信号,利用算法结合得到的脉搏波信号来计算血压。
由于不同人的腕围不同,单个气囊长度设计无法同时满足所有人的血压测量和不覆盖表底的要求。
发明内容
本申请实施例提供一种可穿戴设备及其生理参数测量方法和电子设备。本申请的可穿戴设备适用于不同腕围的用户,提高生理参数检测的精度。
本申请提供一种可穿戴设备。可穿戴设备包括设备主体、连接轴、气囊腕带和气囊阻断件。设备主体具有相对设置的第一侧和第二侧,连接轴安装于第二侧,连接轴与第二侧之间形成间隙。气囊腕带包括腕带和气囊,气囊至少部分叠设于腕带的一侧,气囊腕带的第一端包括腕带的第一连接端和气囊的第二连接端,第一连接端用于固定连接第一侧,第二连接端用于连接设备主体。设备主体用于对气囊进行充气或放气操作。气囊阻断件包括阻断部和驱动部,驱动部设置于设备主体中,阻断部位于设备主体外部,驱动部用于驱动阻断部朝向靠近连接轴的方向运动,当气囊腕带的第二端从间隙穿过时,使得阻断部将气囊腕带抵持于连接轴,阻断气囊,并将气囊分隔形成有效段和无效段。有效段为气囊的第一连接端至气囊与连接轴抵持的部分,无效段为气囊的其他部分。
可以理解的是,当用户佩戴好可穿戴设备并启动血压测量时,气囊阻断件的阻断部会压迫气囊腕带,并将气囊腕带抵持于连接轴,使得气囊在连接轴处分隔形成有效段和无效段。可穿戴设备内部可以对气囊的有效段进行充气,使得气囊膨胀并压迫用户的桡动脉和尺动脉完成血压测量。
可以理解的是,可穿戴设备得到准确的血压值的前提是,气囊腕带的气囊充分覆盖用户手腕的桡动脉和尺动脉。但是,如果气囊为了满足手腕腕围大小不同的用户在佩戴时均能覆盖桡动脉和尺动脉,满足血压测量需求,则对于腕围小的用户来说,气囊覆盖用户手腕之后还会有多余的部分,多余的部分也需要继续绕设于手腕,难免会卷入设备主体底部,影响用户体验。或者,现有的可穿戴设备配置有多个不同长度规格的气囊,用户按照自己的腕围选 取对应的气囊,并自行组装到可穿戴设备上然后在可穿戴设备上输入对应的配置气囊规格,用于调用对应的气囊规格的血压算法库以测量血压,其中任何一个环节出错,都会造成较大的血压测量误差,因此对用户的要求较高,易用性差。
而当用户佩戴本申请的可穿戴设备时,用户可以通过将气囊腕带的第二端穿过连接轴与第二侧之间的间隙,以实现气囊腕带与用户手腕贴合部分的长度调节,使得气囊腕带的气囊充分覆盖用户的桡动脉和尺动脉,然后驱动部驱动阻断部阻断气囊。也就是说,本申请的可穿戴设备使用单个型号的气囊腕带就能够适用于不同腕围的用户,不同腕围的用户可以自行将气囊腕带调节至合适的长度,避免了不同用户的腕围与气囊的长度不匹配导致的误差,提高了血压测量的准确度,获得准确的血压值降低了成本。同时,由于本申请的可穿戴设备能够调节气囊腕带的长度,使得气囊腕带能够更贴合用户的手腕,气囊的有效段能够刚刚好覆盖用户手腕的桡动脉和尺动脉,相比现有的腕带在佩戴过程中气囊可能出现的对用户手腕桡动脉和尺动脉覆盖不完全或者覆盖部分重叠的情况来说,本申请提供的可穿戴设备的血压测量准确度更高。
一种可能的实现方式中,气囊阻断件还包括传动部,传动部两端分别连接驱动部和阻断部,以将驱动部的驱动力传递给阻断部。
可以理解的是,若表主体不设置连通孔,气囊阻断件的驱动部就只能设置在设备主体的外部,影响设备主体的美观。而通过在设备主体设置连通设备主体内部和外部的连通孔,能够实现将驱动部收容于设备主体内部,提高产品的集成度的同时,还有利于产品外表的美观。
一种可能的实现方式中,阻断部包括朝向连接轴的第一表面,连接轴包括朝向阻断部的第二表面,阻断部阻断气囊时,气囊腕带夹持于第一表面和第二表面之间,第一表面和第二表面的形状相适配。
可以理解的是,当阻断部将气囊抵持于连接轴时,气囊腕带夹持于第一表面和第二表面之间,而当第一表面和第二表面的形状相适配时,第一表面和第二表面可以最大面积地贴合,使得阻断部和连接轴对气囊的挤压面积最大,从而气囊阻断件对气囊腕带的阻断效果最大。
本申请还提供一种可穿戴设备。可穿戴设备包括设备主体、连接轴、气囊腕带和气囊阻断件。设备主体具有相对设置的第一侧和第二侧,连接轴安装于第二侧,连接轴与第二侧之间形成间隙。气囊腕带包括腕带和气囊,气囊至少部分叠设于腕带的一侧形成气囊腕带,气囊腕带的第一端包括腕带的第一连接端和气囊的第二连接端,第一连接端用于固定连接第一侧,第二连接端用于连接设备主体。设备主体用于对气囊进行充气或放气操作。
气囊阻断件为滑动连接部,滑动连接部的一侧连接连接轴的两端,另一侧滑动连接于第二侧。当气囊腕带的第二端从间隙穿过时,滑动连接部能够带动连接轴靠近第二侧,以将气囊腕带抵持于第二侧,阻断气囊,并将气囊分隔形成有效段和无效段。有效段为气囊的第一连接端至气囊与连接轴抵持的部分,无效段为气囊的其他部分。
可以理解的是,当用户启动血压测量时,可以进行手动操作,推动滑动连接部,使滑动连接部靠近第二侧,并将气囊腕带抵持于第二侧。此时,滑动连接部与连接轴配合以阻断气囊,并将气囊分隔形成有效段和无效段。本实现方式中的滑动连接部通过手动操作的方式对气囊腕带的气囊进行阻断,相比电动驱动滑动连接部阻断气囊,减少了驱动部和传动部的设置,有利于产品的小型化。同时,手动操作相比电动驱动更省电,有利于增强产品的续航能力,降低制作成本。
一种可能的实现方式中,滑动连接部包括本体和连接在本体两端的两个延伸段,两个延伸段背向本体的一端分别连接在连接轴的两端。滑动连接部与连接轴围设形成固定孔,气囊 腕带贯穿固定孔。延伸段设有配合槽,第二侧设有限位件,限位件限位于配合槽内,以将滑动连接部固定于第二侧。
可以理解的是,当用户佩戴可穿戴设备时,用户将气囊腕带穿过固定孔之后,滑动连接部能够带动连接轴靠近第二侧,并将气囊腕带抵持于第二侧,阻断气囊。同时,在配合槽和限位件的共同作用下,滑动连接部能够固定于第二侧,使得气囊腕带能够维持阻断状态,以便进行血压测量。
一种可能的实现方式中,可穿戴设备还包括长度传感模组,长度传感模组包括第一电极片、第二电极片、电路板和柔性电阻膜。其中,柔性电阻膜覆盖于气囊远离腕带一侧的表面。第一电极片设于柔性电阻膜靠近气囊的第二连接端的一侧,并电连接柔性电阻膜。第二电极片固定于阻断件或第二侧朝向气囊的表面,第二电极片用于,当阻断部阻断气囊时,第二电极片电连接柔性电阻膜。电路板设于设备主体内部,且电连接第一电极片和第二电极片,可穿戴设备用于,当阻断部阻断气囊时,通过获得第一电极片和第二电极片之间的柔性电阻膜的电阻,确定气囊的有效长度。
可以理解的是,当气囊阻断件启动时,气囊阻断件会将气囊腕带抵持于连接轴或第二侧,此时固定于阻断部或第二侧朝向气囊的表面的第二电极片与柔性电阻膜电性连接。通过设备主体内置的电路板可以测量出第一电极片和第二电极片之间的电阻,确定气囊的有效长度。
一种可能的实现方式中,可穿戴设备还包括气压传感器,气压传感器设于设备主体内部,气压传感器用于获得气囊的气压数据。
可以理解的是,本申请提供的可穿戴设备通过将气压传感器的数据和气囊的有效长度一并导入血压算法模型中,通过该血压算法模型计算出测量的血压值,相比只参考气压传感器的数据进行计算,同时参考气压传感器的数据和气囊的有效长度,使得本申请的血压算法模型精度更高,计算的血压数据更准确。
一种可能的实现方式中,阻断部阻断气囊腕带后,可穿戴设备对气囊进行充气,并检测气囊内的气压,获取气囊的气压数据。也就是说,仅对气囊的有效段进行充气,能够有效提高血压测量的精度。
一种可能的实现方式中,当可穿戴设备结束血压测量时,控制阻断部远离气囊腕带,以便于用户取下可穿戴设备。
一种可能的实现方式中,当可穿戴设备结束血压测量后,对气囊进行放气操作,当气囊内部的气压降低至小于或等于5mmHg时,控制阻断部远离气囊腕带。可以理解的是,当气囊内部的气压降低到5mmHg及以下时,能够保证有效段内部的气体在气囊阻断件恢复成非阻断状态后不会回流至无效段,影响用户佩戴体验。
本申请还提供了一种可穿戴设备,其包括设备主体、连接轴、气囊腕带和气囊阻断件,其中:设备主体具有相对设置的第一侧和第二侧;连接轴安装于第二侧,连接轴和第二侧之间形成间隙;气囊腕带包括腕带和气囊,气囊至少部分叠设于腕带的一侧,气囊腕带具有第一端和第二端;其中,第一端包括腕带的第一连接端和气囊的第二连接端,第一连接端用于固定连接第一侧,第二连接端用于连接设备主体,使得设备主体通过第二连接端对气囊进行充气或放气操作;第二端从间隙穿过,固定于腕带上与气囊背离的一侧;气囊阻断件包括阻断部和驱动部,驱动部设置于设备主体中,阻断部位于设备主体外部,驱动部用于驱动阻断部朝向靠近连接轴的方向运动预设距离,使得阻断部将气囊腕带抵持于连接轴,气囊被充气时,仅对第二连接端至阻断部之间的部分气囊充气。
上述可穿戴设备使得在进行生理参数测量时,能够根据用户的腕围调整气囊充气部分的 长度,使得生理参数的测量更加准确。
一种可能的实现方式中,驱动部位于设备主体内部,气囊阻断件还包括传动部,传动部两端分别连接驱动部和阻断部,以将驱动部的驱动力传递给阻断部。
一种可能的实现方式中,设备主体上设置有连通孔,传动部穿过连通孔。
一种可能的实现方式中,阻断部包括朝向连接轴的第一表面,连接轴包括朝向阻断部的第二表面,阻断部阻断气囊腕带时,气囊腕带夹持于第一表面和第二表面之间,第一表面和第二表面的形状相适配。
上述实现方式能够使得阻断部和连接轴的抵持效果更好,能够更好的分隔气囊的两个部分。
一种可能的实现方式中,可穿戴设备还包括长度传感模组,长度传感模组包括第一电极片、第二电极片、电路板和柔性电阻膜;其中,柔性电阻膜覆盖于气囊远离腕带一侧的表面;第一电极片设于柔性电阻膜靠近第二连接端的一侧,并电连接柔性电阻膜;第二电极片固定于阻断部朝向气囊的表面;第二电极片用于,当阻断部阻断气囊时,第二电极片电连接柔性电阻膜;电路板设于设备主体内部且电连接第一电极片和第二电极片;可穿戴设备用于,当阻断部将气囊腕带抵持于连接轴时,通过获得第一电极片和第二电极片之间的柔性电阻膜的电阻,确定第一电极片和第二电极片之间的气囊的长度。
上述实现方式能够使得可穿戴设备能够自动获得气囊充气部分的长度,用于进行生理参数的计算。
一种可能的实现方式中,可穿戴设备还包括气压传感器,气压传感器设于设备主体内部,气压传感器用于获得气囊的气压数据。
一种可能的实现方式中,可穿戴设备包括气泵,气泵位于设备主体内部,气泵用于对气囊充气。
一种可能的实现方式中,可穿戴设备还包括处理器,处理器位于设备主体内部,处理器用于,控制驱动部带动阻断部朝向靠近连接轴的方向运动预设距离;对气囊充气;检测气囊内的气压,获取气囊从开始充气至结束充气的气压数据;根据气压数据确定生理参数;确定生理参数测量完成后,对气囊放气;控制驱动部朝向远离连接轴的方向运动。
一种可能的实现方式中,在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于:确定可穿戴设备处于被佩戴状态。
一种可能的实现方式中,在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于:确定气囊连接设备主体。
通过应用上述实现方式,使得可穿戴设备能够在确定被佩戴和/或者确定气囊连接了设备主体后才开始启动驱动部,避免了误操作。
一种可能的实现方式中,在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于:确定到达预定时刻。
一种可能的实现方式中,可穿戴设备包括输入装置,输入装置用于接收用户的操作;在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于:检测到输入装置接收第一操作,第一操作用于启动测量生理参数。
通过应用上述实现方式,使得可穿戴设备能够进行生理参数的定时测量和/或由用户触发的单次测量。
一种可能的实现方式中,控制驱动部带动阻断部朝向靠近连接轴的方向运动预设距离后,处理器还用于:确定流经第一通路的电流的电流值,第一通路由电路板、第一电极片、第二 电极片和至少部分柔性电阻膜组成;确定第一电极片和第二电极片之前的电压值;根据电流值和电压值确定至少部分柔性电阻膜的电阻值;根据电阻值确定第一电极片和第二电极片之间的气囊的长度;根据气压数据确定生理参数具体为:根据气压数据和长度确定生理参数。
上述实现方式能够使得可穿戴设备能够自动获得气囊充气部分的长度,用于进行生理参数的计算。
一种可能的实现方式中,处理器还用于,当结束生理参数的测量后,控制阻断部远离气囊腕带。
一种可能的实现方式中,处理器还用于,当生理参数的测量后,控制气泵对气囊进行放气操作,当气囊内部的气压降低至小于或等于预设阈值时,控制阻断部远离气囊腕带。
通过应用上述实现方式,当阻断部远离气囊腕带时,能够减缓气囊的充气部分对未充气部分的影响。
本申请还提供一种生理参数测量方法,其应用于可穿戴设备。可穿戴设备包括设备主体、连接轴、气囊腕带和气囊阻断件,气囊阻断件包括阻断部和驱动部;测量方法包括:控制驱动部朝向靠近连接轴的方向运动,气囊阻断件的阻断部阻断气囊腕带,将气囊分隔为有效段和无效段。对所述气囊腕带的气囊充气;检测所述气囊内的气压,获取气压数据。本申请通过阻断气囊后对气囊充气,从而仅对气囊的有效段充气,能够获得准确的血压测量值。
一种可能的实现方式中,在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:确定所述可穿戴设备处于被佩戴状态,只有可穿戴设备处于佩戴状态时才进行后续测量步骤。
一种可能的实现方式中,所述气囊腕带包括气囊和腕带;在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:确定所述气囊连接所述设备主体,只有气囊连接设备主体时才能保证后续血压测量的准确性。
一种可能的实现方式中,在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:确定所述可穿戴设备到达预定时刻,该方法可以在预定时刻对用户进行血压测量,提高用户体验。
一种可能的实现方式中,在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:检测到第一操作,所述第一操作作用在所述可穿戴设备上,该测量方法可以相应第一操作对用户进行血压测量。
一种可能的实现方式中,阻断所述气囊腕带后,所述测量方法还包括确定所述气囊的有效长度,以便于提高血压测量精度。
一种可能的实现方式中,所述可穿戴设备包括电路板、第一电极片、第二电极片和柔性电阻膜;其中,所述柔性电阻膜覆盖于所述气囊远离所述腕带一侧的表面;所述第一电极片设于所述柔性电阻膜靠近所述第二连接端的一侧,并电连接所述柔性电阻膜;所述第二电极片固定于所述阻断部朝向所述气囊的表面;所述第二电极片用于,当所述阻断部阻断所述气囊时,所述第二电极片电连接所述柔性电阻膜;所述确定所述气囊的有效长度,包括:
确定流经第一通路的电流的电流值,所述第一通路由所述电路板、所述第一电极片、所述第二电极片和至少部分所述柔性电阻膜组成;确定所述第一电极片和所述第二电极片之前的电压值;根据所述电流值和所述电压值确定至少部分所述柔性电阻膜的电阻值;根据所述电阻值确定所述气囊的有效长度。通过确定气囊的有效长度,能够得到更准确的血压值。
一种可能的实现方式中,所述测量方法还包括根据所述气压数据和所述有效长度获取血压值,通过上述方式获得的血压测量值精度高。
一种可能的实现方式中,判断血压测量是否结束,若结束则控制所述阻断部远离所述气囊腕带,以便于用户取下可穿戴设备。
一种可能的实现方式中,当结束血压测量后,对所述气囊进行放气操作,若所述气囊内部的气压降低至小于或等于5mmHg,则控制所述阻断部远离所述气囊腕带。可以理解的是,当气囊内部的气压降低到5mmHg及以下时,能够保证有效段内部的气体在气囊阻断件恢复成非阻断状态后不会回流至无效段,影响用户佩戴体验。
本申请还提供一种电子设备。电子设备包括设备主体;连接轴;气囊腕带,气囊腕带包括气囊;气囊阻断件,气囊阻断件包括阻断部和驱动部;存储器,存储器用于存储计算机程序;处理器,处理器用于执行计算机程序,使得电子设备执行以下步骤:控制驱动部带动阻断部朝向靠近连接轴的方向运动预设距离;控制对气囊充气;检测气囊内的气压,获取气囊从开始充气至结束充气的气压数据;根据气压数据确定生理参数;确定生理参数测量完成后,控制对气囊放气;控制驱动部朝向远离连接轴的方向运动。
上述可穿戴设备使得在进行生理参数测量时,能够根据用户的腕围调整气囊充气部分的长度,使得生理参数的测量更加准确。
一种可能的实现方式中,在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于使得电子设备执行以下步骤:确定可穿戴设备处于被佩戴状态。
一种可能的实现方式中,在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于使得电子设备执行以下步骤:确定气囊连接设备主体。
通过应用上述实现方式,使得可穿戴设备能够在确定被佩戴和/或者确定气囊连接了设备主体后才开始启动驱动部,避免了误操作。
一种可能的实现方式中,在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于使得电子设备执行以下步骤:确定到达预定时刻。
一种可能的实现方式中,电子设备包括输入装置,输入装置用于接收用户的操作;在控制驱动部朝向靠近连接轴的方向运动之前,处理器还用于使得电子设备执行以下步骤:检测到输入装置接收第一操作,第一操作用于启动测量生理参数。通过应用上述实现方式,使得可穿戴设备能够进行生理参数的定时测量和/或由用户触发的单次测量。
一种可能的实现方式中,电子设备包括电路板、第一电极片、第二电极片和柔性电阻膜;其中,柔性电阻膜覆盖于气囊远离腕带一侧的表面;第一电极片设于柔性电阻膜靠近第二连接端的一侧,并电连接柔性电阻膜;第二电极片固定于阻断部朝向气囊的表面;第二电极片用于,当阻断部阻断气囊时,第二电极片电连接柔性电阻膜;控制驱动部带动阻断部朝向靠近连接轴的方向运动预设距离后,处理器还用于使得电子设备执行以下步骤:确定流经第一通路的电流的电流值,第一通路由电路板、第一电极片、第二电极片和至少部分柔性电阻膜组成;确定第一电极片和第二电极片之前的电压值;根据电流值和电压值确定至少部分柔性电阻膜的电阻值;根据电阻值确定第一电极片和第二电极片之间的气囊的长度;根据气压数据确定生理参数具体为:根据气压数据和长度确定生理参数。
上述实现方式能够使得可穿戴设备能够自动获得气囊充气部分的长度,用于进行生理参数的计算。
一种可能的实现方式中,处理器还用于使得电子设备执行以下步骤:当结束生理参数的测量后,控制阻断部远离气囊腕带。
一种可能的实现方式中,处理器还用于使得电子设备执行以下步骤:当生理参数的测量后,控制气泵对气囊进行放气操作,当气囊内部的气压降低至小于或等于预设阈值时,控制 阻断部远离气囊腕带。
通过应用上述实现方式,当阻断部远离气囊腕带时,能够减缓气囊的充气部分对未充气部分的影响。
本申请还提供一种计算机存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述任一方面任一项可能的实现方式中的设备控制方法。
本申请还提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任一方面任一项可能的实现方式中的设备控制方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种可穿戴设备的结构示意图;
图2是图1所示的可穿戴设备沿C-C方向的剖面结构示意图;
图3A是图1所示的可穿戴设备的分解结构示意图;
图3B是图3A所示结构中的气囊腕带处于展平状态的结构示意图;
图4是图3A所示的可穿戴设备的设备主体的分解结构示意图;
图5是图4所示结构中的外壳的分解结构示意图;
图6是图5所示的设备主体的底盘的分解结构示意图;
图7是图3A所示的设备主体沿A-A方向的剖面结构示意图;
图8是图1所示的可穿戴设备的气囊与气泵和气压传感器的安装示意图;
图9A是图3A所示的设备主体沿B-B方向的剖面结构示意图;
图9B是图9A所示的设备主体与气囊腕带的结构示意图;
图10是图9A所示的设备主体的另一种实施方式的剖面结构示意图;
图11是图9B所示的设备主体的气囊阻断件在初始状态的结构示意图;
图12是图9B所示的设备主体的气囊阻断件在阻断状态的结构示意图;
图13是图9B所示的设备主体的气囊阻断件在其他实施方式中的结构示意图;
图14是图13所示的气囊阻断件在其他实施方式的一种实施场景中的结构示意图;
图15A是图13所示的气囊阻断件在其他实施方式的另一种实施场景中的结构示意图;
图15B是图9A所示的气囊阻断件的另一种实施例的结构示意图;
图16是图9A所示结构的气囊阻断件的另一种实施结构与设备主体配合的结构示意图;
图17是图16所示滑动连接部阻断气囊的结构示意图;
图18是图15A所示的滑动连接部与连接轴配合的结构示意;
图19是图15A所示的滑动连接部的配合槽与限位件配合的结构示意图;
图20A是图19所示的滑动连接部的配合槽与限位件分离的结构示意图;
图20B是图16所示的滑动连接部的另一实施例的结构示意图;
图21是图1所示的可穿戴设备的长度传感模组与气囊阻断件和气囊腕带之间配合的结构示意图;
图22是图21所示的长度传感模组与气囊阻断件和气囊腕带之间配合的另一种实施方式的结构示意图;
图23是图21所示的长度传感模组的工作原理示意图;
图24是图1所示的可穿戴设备的功能模块示意图;
图25是图1所示的生理参数测量方法的流程示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。其中,“固定连接”是指彼此连接且连接后的相对位置关系不变。“滑动连接”是指彼此连接且连接后能够相对滑动。本申请实施例中所提到的方位用语,例如,“上”、“下”、“内”、“外”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。“多个”是指至少两个。
可以理解的是,此处所描述的具体实施例仅仅用于解释相关实施例,而非对该实施例的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与实施例相关的部分。
请参阅图1、图2和图3A,图1是本申请实施例提供的一种可穿戴设备100的结构示意图。图2是图1所示的可穿戴设备100在C-C方向上的剖面结构示意图。图3A是图1所示的可穿戴设备100的分解结构示意图。
可穿戴设备100包括且不限于手表、智能手表、手环、智能手环等具有血压测量功能的腕式电子产品。图1、图2、图3A所示实施例的可穿戴设备100以智能手表为例进行阐述。
请参阅图2、图3A和图3B,图3B是图3A所示结构中的气囊腕带处于展平状态的结构示意图。
可穿戴设备100包括设备主体10和气囊腕带20。设备主体10具有相对设置的第一侧101和第二侧102,以及安装于第二侧102的连接轴11,连接轴11与第二侧102之间形成间隙。气囊腕带20包括腕带23和气囊24,气囊24至少部分叠设于腕带23的一侧形成气囊腕带20,气囊腕带20的第一端21包括腕带的第一连接端211和气囊24的第二连接端212,第一连接端211用于固定连接第一侧101,第二连接端212用于连接设备主体10,设备主体10用于对气囊24进行充气或放气操作。气囊腕带20的第二端22穿过第二侧102与连接轴11之间的间隙,以实现气囊腕带20可调节的固定至第二侧102,用户可以根据自身的腕围对气囊腕带20的长度进行调节,以使可穿戴设备100可以适用于不同腕围的用户。
需要说明的是,气囊24至少部分叠设于腕带23的一侧可以包括两种情况,第一种,气囊24部分叠设于腕带23的一侧。第二种,气囊24整个叠设于腕带23的一侧。
本实施例中,气囊腕带20的第二端22穿过第二侧102与连接轴11之间的间隙后可以弯折并固定在腕带上与气囊背离的一侧,以避免气囊腕带20的第二端22穿过第二侧102与连接轴11之间的间隙后翘起,有利于提高产品的美观和用户佩戴体验感。当然,气囊腕带20的第二端22穿过第二侧102与连接轴11之间的间隙后也可以不弯折。
需要说明的是,第二侧102与连接轴11之间的间隙在满足气囊腕带20穿过的同时足够小,以使气囊腕带20在穿过第二侧102与连接轴11之间的间隙后,气囊腕带20的表面可以与第二侧102和连接轴11的表面接触,增加气囊腕带20与第二侧102和连接轴11之间的摩擦力,使得气囊腕带20能更稳定的固定至第二侧102,避免气囊腕带20出现滑动、松动的现象,使气囊腕带20在佩戴过程中更加贴合用户手腕,提高佩戴体验。
当然,在其他实施例中,第二侧102与连接轴11之间的间隙在垂直于连接轴11方向上 的宽度大于气囊腕带20在未充气状态的厚度,使得气囊腕带20容易穿过,气囊腕带20还可与通过其他部件固定至第二侧102与连接轴11之间。
一些实施方式中,腕带23可以可拆卸的连接于设备主体10,也可以固定连接于设备主体10。另一些实施方式中,气囊24可以可拆卸的连接于腕带23和设备主体10,以便于在不进行血压测量时,可以将气囊24从腕带23和设备主体10上拆下,用户日常佩戴更舒适。在其他实施例中,气囊24与腕带23之间的连接可以为固定连接,也就是说,气囊24与腕带23之间不可拆卸。气囊24还可以可拆卸的连接于设备主体10。或者,气囊24还可以通过粘接等其他连接方式固定连接于设备主体10和腕带23。
在其他实施例中,气囊24还可以与腕带23为一体成型的一体结构。示例的,气囊24与腕带23为一体结构的情况有两种。一种情况中,气囊24可以直接作为腕带23连接于设备主体10,以供用户佩戴。另一种情况中,气囊24可以设于腕带23的内部。气囊24和腕带23为一体结构有利于提高可穿戴设备100的集成度,同时,免去了气囊24与腕带23之间的安装过程,避免气囊24与腕带23出现松动,有利于提高气囊腕带20的强度及血压测量的准确性。
请一并参阅图3A和图4,图4是图3A所示的可穿戴设备100的设备主体10的分解结构示意图。
本实施例中,设备主体10可以为长方体形结构,设备主体10可以包括外壳12、显示屏13、气泵14、气压传感器15、主板16和电池17。显示屏13固定于外壳12,并与外壳12围绕形成设备主体10的收容空间103。气泵14、气压传感器15、主板16和电池17均设于收容空间103内。显示屏13、气泵14、气压传感器15均与主板16电连接,以通过主板16控制显示屏13、气泵14和气压传感器15。电池17与主板16电连接,并对主板16及与主板16电连接的其他部件供电。
上文长方体形结构包括长方体形的结构和近似于长方体形的结构,近似于长方体形的结构是指在长方体形的外表面可以局部凹线或局部凸出,后文对结构的形状描述均可做相同理解。应当理解的是,在其他实施例中,设备主体10也可以是圆柱形、圆锥台、正方体或其他异形结构,本申请对此不做任何限定。
请一并参阅图3A、图4和图5,图5是图4所示结构中的外壳12的分解结构示意图。
本实施例中,外壳12包括底盘121和边框122。底盘121固定于边框122的一侧,显示屏13固定于边框122远离底盘121的一侧,也就是说,底盘121和显示屏13分别固定于边框122相对的两侧。底盘121、边框122和显示屏13共同围设形成设备主体10的收容空间103。用户佩戴可穿戴设备100时,显示屏13背离用户的手腕设置,底盘121靠近用户的手腕设置。
本实施例中,底盘121可以采用可拆卸的方式安装于边框122,以便于设备主体10内的内存卡、SIM卡和扬声器等功能器件的维修和更换。在一些实施例中,底盘121可以采用螺钉或螺栓等紧固件可拆卸的安装于边框122。在其他实施例中,底盘121和边框122也可以为一体成型结构,以提高设备主体10的强度和稳定性。
边框122包括依次连接的第一侧壁1221、第二侧壁1223、第三侧壁1222和第四侧壁1224。第一侧壁1221和第三侧壁1222相对设置,第二侧壁1223和第四侧壁1224相对设置。第一侧壁1221位于设备主体10的第一侧101,第三侧壁1222位于设备主体10的第二侧102,气囊腕带20的腕带23安装于第一侧壁1221。在一些实施方式中,第一侧壁1221可以设有安装孔1225,腕带23的第一连接端211还可以设有固定柱231,固定柱231设于安装孔1225 内,以将腕带23的第一连接端211安装于第一侧壁1221。
当然,在其他实施例中,本申请不对腕带23与第一侧壁1221的安装方式做限定。
连接轴11安装于第三侧壁1222,第三侧壁1222与连接轴11之间形成空间以供气囊腕带20的第二端22穿过。其中,连接轴11可拆卸的安装于第三侧壁1222。在一些实施方式中,第三侧壁1222还可以设有安装孔,连接轴11通过安装孔固定于第三侧壁1222,以方便连接轴11的更换和维修。当然,在其他实施例中,连接轴11还可以与边框122为一体成型结构,以提高产品的稳定性。
如图5,本实施例中,设备主体10还可以包括按键18,用于接收用户的输入操作。本实施例中,按键18有两个,两个按键18间隔设置在边框122的第四侧壁1224。在一些实施方式中,边框122的第四侧壁1224还可以设有两个按键孔181,按键孔181贯穿边框122的第四侧壁1224,按键18至少部分收容于按键孔181设置。按键18电连接主板16,以使用户在按压按键18时能够调用可穿戴设备100相应的功能模块。
当然,在其他实施例中,按键18的数量还可以为一个或多个,按键孔181的数量也可以为一个或多个。或者,设备主体10还可以不包括按键,用户还可以通过触摸显示屏13调用可穿戴设备100的功能模块。本申请不对按键18和按键孔181的数量做限定。
请一并参阅图5、图6和图7,图6是图5所示的设备主体10的底盘121的分解结构示意图。图7是图3A所示的设备主体10沿A-A方向的剖面结构示意图。
本实施例中,底盘121包括面向收容空间103的顶面1211和与顶面1211相背设置的底面1212。底盘121的顶面1211与边框122固定连接。底面1212靠近第一侧101的部分面向顶面1211凹陷形成第一安装槽1213,第一安装槽1213面朝第一侧101设有开口1214,气囊24的第二连接端212通过开口1214安装于第一安装槽1213。
在一些实施方式中,底盘121还可以包括槽盖1215,槽盖1215可拆卸的安装于第一安装槽1213,以将气囊24固定于第一安装槽1213。当然,在其他实施例中,还可以不设置槽盖。示例的,气囊24的第二连接端212可以设有卡持结构与第一安装槽卡持固定。本申请不对气囊24与设备主体10的连接方式做限定。
如图5,顶面1211局部面向底面1212凹陷形成第二安装槽1216,第二安装槽1216与收容空间103连通,第二安装槽1216用于安装内存卡、SIM卡和扬声器等功能器件。可以理解的是,本申请通过在底盘121设置连通收容空间103的第二安装槽1216,使得安装于第二安装槽1216的内存卡、SIM卡和扬声器等功能器件和底盘121在设备主体10的厚度方向重叠,有利于设备主体10的薄型化。同时,第二安装槽1216连通收容空间103,使得收容空间103的体积更大,能容纳更多的功能器件,从而使得本申请的可穿戴设备100能够装载更多的功能模块,以实现更多功能,提高用户体验。
当然,在其他实施方式中,第一安装槽1213和第二安装槽1216还可以设于边框122等其他结构,或者底盘121还可以不设置第二安装槽,内存卡、SIM卡和扬声器等功能器件通过粘接的方式直接安装于顶面。
请一并参阅图6、图7和图8,图8是图1所示的可穿戴设备的气囊24与气泵14和气压传感器15的安装示意图。
本实施例中,第一安装槽1213还可以设有连通收容空间103的第一连通孔1217和第二连通孔1218,第一连通孔1217和第二连通孔1218间隔设置,第一连通孔1217和第二连通孔1218均贯穿顶面1211和第一安装槽1213的槽壁。气泵14包括第一气嘴141,气压传感器15包括第二气嘴151,第一气嘴141贯穿第一连通孔1217与气囊24的第二连接端212连 通,第二气嘴151贯穿第二连通孔1218与气囊24的第二连接端212连通。
本实施例中,气囊24的第二连接端212设有第一插接头241和第二插接头242,第一插接头241和第二插接头242与气囊24的内部连通,第一插接头241与气泵的第一气嘴141连通,第二插接头242与气压传感器15的第二气嘴151连通。
在一些实施方式中,第一插接头241可以穿过第一连通孔1217,插接于第一气嘴141,以实现气囊24和气泵14之间的气路连通,使得气泵14可以通过第一连通孔1217对气囊24进行填充气体或者排出气体。第二插接头242可以穿过第二连通孔1218,插接于第二气嘴151,以实现气囊24与气压传感器15之间的气路连通,使得气压传感器15可以感知气囊24内的气压变化,获得气囊24内部的气压数据,并将气压数据传递给处理器。
当然,在其他实施例的一种实施场景中,气泵14和气压传感器15还可以通过其他连接方式与气囊24连接,本申请不对气泵14和气压传感器15与气囊24之间的连接方式做限定。
在其他实施例的另一种实施场景中,第一连通孔1217和第二连通孔1218还可以设置在除第一安装槽1213以外的其他位置,本申请不对第一连通孔1217和第二连通孔1218的具体位置做限定。
如图6,底盘121还可以包括贯穿顶面1211和底面1212的通孔51,通孔51用于安装可穿戴设备100的相关部件,如光电容积描记(photoplethysmograph,PPG)传感器。
请再次参阅图4,本实施例中,显示屏13包括显示面板和固定于显示面板上的盖板。其中,盖板可以采用玻璃等透镜材料制成。显示面板可以采用LCD(Liquid Crystal Display,液晶显示屏),OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏,AMOLED(Active-Matrix Organic Light Emitting Diode,有源矩阵有机发光二极体或主动矩阵有机发光二极体)显示屏,FLED(Flex Light-Emitting Diode,柔性发光二极管)显示屏,Mini LED,Micro LED,Micro OLED,QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)等。
显示面板还可以集成有触控功能,即显示面板为触控显示面板,也即显示面板既可以用作接收输入的输入装置,又可以用作提供输出的装置。也就是说,显示屏13为触控屏。显示面板电连接于主板16。显示面板能够产生触控信号,并将触控信号传递给主板16。主板16接收触控信号,并根据触控信号控制设备主体10中应用软件(Application,App)的开启。比如,用户可以通过触摸或按压显示屏13上的图形位置来选择打开或编辑该图形等。或者,显示面板还可以接收主板16的数据信号,将用户测量的血压数值经显示面板显示反馈给用户。
如图4,在一些实施方式中,主板16上可以耦合有驱动电路161和处理器162。驱动电路161用于驱动与主板16电连接的各部件。处理器162具体可以为微控制单元(Micro Control Unit,MCU),处理器162可以是可穿戴设备100的神经中枢和指挥中心。处理器162可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
此外,主板16还可以集成有存储模块、交互硬件以及无线模块等基本模块,多个模块与处理器162电连接以实现对模块的控制与功能实现。可以理解的是,气泵14和处理器162电连接,用以接收处理器162发送的控制信号,并根据控制信号对气囊24进行填充气体或排出气体的动作。气压传感器15和处理器162电连接,用以接收处理器162发送的控制信号,并根据控制信号检测气囊24内部的压力信号,可以将压力信号转换成电信号。
其中,气压传感器15可以为电容式气压传感器,电容式气压传感器包括至少两个具有导电材料的平行板,当有力作用于气压传感器15时,电极之间的电容改变,处理器162可以根据电极电容的变化来确定气囊24内部压力的强度。当然,在其他实施例中,气压传感器15还可以为电阻式气压传感器或电感式气压传感器等。
如图6和图7,本实施例中,设备主体10还包括光电容积描记(photoplethysmograph,PPG)传感器50,处理器162还可以耦合有回馈单元(Active Front End,AFE),PPG传感器50与处理器162及处理器162上的耦合单元电连接。在一些实施方式中,PPG传感器50安装于通孔51内,且露出设备主体10。可以理解的是,当用户佩戴可穿戴设备100时,位于底盘121的PPG传感器50可以贴合用户的手腕,以便检测用户的脉搏数据。
在一些实施方式的一种实施场景中,PPG传感器部分收容于通孔51设置,使得PPG传感器50与设备主体10在厚度方向重叠,有利于减小设备主体10的厚度,有利于设备主体10的薄型化。
请参阅图3A、图9A和图9B,图9A是图3A所示的设备主体10沿B-B方向的剖面结构示意图。图9B是图9A所示的设备主体与气囊腕带的结构示意图。
血压测量组件100还包括气囊阻断件30,气囊阻断件30安装于设备主体10内部,该气囊阻断件30靠近第二侧102,气囊阻断件30用于与连接轴11配合以阻断气囊腕带20的气囊24,并将气囊24分隔形成有效段和无效段。其中,有效段为气囊24的第二连接端212至气囊24与连接轴11抵持的部分,无效段为气囊24的其他部分。也就是说,有效段为气囊24贴合用户手腕处的部分,无效段为气囊24没有贴合用户手腕处的部分。
可以理解的是,当气囊24分隔形成有效段和无效段时,气泵15可以对有效段进行充气,使得气囊24有效段膨胀并压迫用户的桡动脉和尺动脉,完成血压测量。气泵15无法对无效段进行充气。有效段的长度即为气囊的有效长度。
当用户佩戴好可穿戴设备100并启动血压测量时,气囊阻断件30会压迫气囊腕带20,并将气囊腕带20抵持于连接轴11,使得位于气囊腕带20一侧的气囊24在连接轴11处形成有效段和无效段。需要说明的是,不同腕围的用户佩戴可穿戴设备时,气囊的有效长度不同。
可以理解的是,可穿戴设备100得到准确的血压值的前提是,气囊腕带20的气囊24充分覆盖用户手腕的桡动脉和尺动脉。但是,如果气囊为了满足手腕腕围大小不同的用户在佩戴时均能覆盖桡动脉和尺动脉,满足血压测量需求,则对于腕围小的用户来说,气囊覆盖用户手腕之后还会有多余的部分,多余的部分也需要继续绕设于手腕,难免会卷入设备主体底部,影响用户体验。或者,现有的可穿戴设备配置有多个不同长度规格的气囊,用户按照自己的腕围选取对应的气囊,并自行组装到可穿戴设备上然后在可穿戴设备上输入对应的配置气囊规格,用于调用对应的气囊规格的血压算法库以测量血压,其中任何一个环节出错,都会造成较大的血压测量误差,因此对用户的要求较高,易用性差。
而当用户佩戴本申请中的可穿戴设备100时,用户可以通过将气囊腕带20的第二端22均穿过第二侧102与连接轴11之间的空间,并通过气囊阻断件30将气囊腕带20抵持于连接轴11,以实现气囊腕带20与用户手腕贴合部分的长度调节,即气囊腕带20的气囊24的有效长度的调节,使得气囊腕带20的气囊24充分覆盖用户手腕的桡动脉和尺动脉,然后气囊阻断件阻断气囊。也就是说,本申请的可穿戴设备100使用单个型号的气囊腕带就能适用于不同腕围的用户,不同腕围的用户可以自行将气囊腕带调节至合适的长度,避免了不同用户的腕围与气囊24的长度不匹配导致的误差,提高了血压测量的准确度,获得准确的血压值降低了成本。同时,由于本申请的可穿戴设备100能够调节气囊腕带20的长度,使得气囊腕带20能够更贴合用户的手腕,气囊24的有效段能够刚刚好覆盖用户手腕的桡动脉和尺动脉,相比现有的腕带在佩戴过程中气囊可能出现的对用户手腕桡动脉和尺动脉覆盖不完全或者覆盖部分重叠的情况来说,本申请提供的可穿戴设备100的血压测量准确度更高。
本实施例中,气囊阻断件30可以有多种实施方式,一种实施方式中,气囊阻断件30可 以自动阻断气囊24,另一种实施方式中,气囊阻断件30可以通过手动操作对气囊24进行阻断操作。下文将具体介绍气囊阻断件30的第一种实施方式。
请一并参阅图3A和图9B,本实施方式中,气囊阻断件30可以包括阻断部31、驱动部32和传动部35。阻断部31设于第二侧102朝向连接轴11的表面,驱动部32设于收容空间103,传动部35连接在驱动部32和阻断部31之间,传动部35用于将驱动部32的驱动力传递给阻断部31,以驱动阻断部31将气囊腕带20抵持于连接轴11,阻断气囊24。当然,在其他实施方式中,如图10,气囊阻断件30还可以仅包括阻断部31和驱动部32,驱动部32直接驱动阻断部31阻断气囊24。
示例的,设备主体10还包括连通孔36,连通孔36连通设备主体10的内部和外部。连通孔36位于第二侧102,并连通第二侧102朝向连接轴11的表面与收容空间103。传动部35设于连通孔36,且两端分别连接驱动部32和阻断部31。本实施方式中,通过在设备主体10上设置贯穿其内部和外部的连通孔36,实现收容空间103和设备主体10外部的连通,以使位于收容空间103的驱动部32的驱动力可以通过设于连通孔36的传动部35传给位于设备主体10外部的阻断部31。也可以理解的是,若不设置连通孔36,驱动部32就只能设置在设备主体10的外部,影响设备主体10外表的美观。本实施方式通过设置连通孔36能实现将驱动部32收容于收容空间103,提高了产品的集成度的同时,还有利于产品外表的美观。当然,在其他实施方式中,设备主体10还可以不设置连通孔,驱动部32可以设于设备主体10的外部。
请参阅图11和图12,图11是图9B所示的设备主体10的气囊阻断件30在非阻断状态的结构示意图。图12是图9B所示的设备主体10的气囊阻断件30在阻断状态的结构示意图。
当用户佩戴可穿戴设备100且未启动血压测量时,气囊阻断件30处于非阻断状态。此时,阻断部31与连接轴11之间存在能够使气囊腕带20穿过的空间,气囊腕带20能够在阻断部31与连接轴11之间移动,从而用户可以按照腕围佩戴好可穿戴设备100。当用户启动血压测量时,气囊阻断件30位于阻断状态。此时,驱动部32受内部电路的控制驱动传动部35,以使传动部35能够推动阻断部31将气囊腕带20抵持于连接轴11并压迫气囊24,使得气囊24在连接轴11处分隔形成有效段(气囊24连接气泵14和气压传感器15的部分)和无效段(气囊24尾部无法充气部分)。从而,气泵15可以对有效段进行充气,以对用户进行血压测量。
本实施例中,驱动部32具体可以为步进电机,传动部35具体可以为传动轴,阻断部31和连接轴11可以是长方体形结构。当用户启动血压测量时,步进电机受到内部电路的控制驱动传动轴往第一方向转动,以推动阻断部31靠近气囊腕带20,将气囊腕带20抵持于连接轴。在用户结束血压测量后,步进电机受到内部电路的控制驱动传动轴往第二方向转动,以带动阻断部31远离气囊腕带20,其中,第二方向和第一方向相反。
如图11,阻断部31朝向连接轴11的表面为第一表面33,连接轴11朝向阻断部31的表面为第二表面111,本实施例中第一表面33和第二表面111为相适配的长方体形。也就是说,当阻断部31将气囊腕带20抵持于连接轴11时,气囊腕带20夹持于第一表面33和第二表面111之间,当第一表面33与第二表面111相适配时,第一表面33和第二表面111可以最大面积地贴合,使得气囊阻断件30对气囊腕带20的阻断效果最大。
请参阅图13、图14和图15A,图13是图9B所示设备主体10的气囊阻断件30在其他实施方式中的结构示意图。图14是图13所示的气囊阻断件30在其他实施方式的一种实施场景中的结构示意图。图15A是图13所示的气囊阻断件30在其他实施方式的另一种实施场景中的结构示意图。
在一些实施方式中,如图13,连接轴11还可以为圆柱形,阻断部31还可以为与连接轴11相适配的向内部凹陷的内凹结构,第一表面33和第二表面111均为弧面。可以理解的是,相同体积情况下,第一表面33和第二表面111为弧面时,二者的贴合面积最大,使得阻断部31和连接轴11对气囊24的挤压面积最大,对气囊24的阻断效果最好。同时,圆柱形的连接轴11更易于加工,有利于降低制造成本。
在一些实施方式的一种实施场景中,如图14,阻断部31还可以为球形,连接轴11还可以为与阻断部31相适配的向内部凹陷的内凹结构,第一表面33和第二表面111均为弧面。在一些实施方式的另一种实施场景中,如图15A,连接轴11还可以为正六边形柱体,阻断部31还可以为与连接轴11相适配的向内部凹陷的内凹结构,第一表面33和第二表面111均为多边形。本申请不对阻断部31和连接轴11的具体形状做限定。
在其他实施例中,如图15B,连接轴11还可以滑动安装于第二侧102,气囊阻断件30包括驱动部32和阻断部31,阻断部31连接在连接轴11和驱动部32之间,驱动部32可以驱动阻断部31带动连接轴11靠近第二侧102,实现气囊的阻断。
下文将具体介绍气囊阻断件30的第二种实施方式。
请一并参阅图16和图17,图16是图9A所示结构的气囊阻断件30的另一种实施结构与设备主体10配合的结构示意图。图17是图16所示的滑动连接部40阻断气囊24的结构示意图。
本实施例的结构与图9A所述的实施例的结构大致相同,相同部分不再赘述。不同的是,本实施例中的气囊阻断件为滑动连接部40,连接轴11与滑动连接部40配合。示例的,滑动连接部40一侧连接连接轴11的两端,另一侧滑动连接设备主体10的第二侧102,也就是说,连接轴11通过滑动连接部40连接至第二侧102。气囊腕带20贯穿连接轴11和第二侧102之间的空间,滑动连接部40能够带动连接轴11靠近第二侧102,以将气囊腕带20抵持于第二侧102,阻断气囊腕带20的气囊24。
可以理解的是,如图16,当用户佩戴可穿戴设备100时,用户可以通过将气囊腕带20的第二端22穿过连接轴11和第二侧102之间的空间,以实现对气囊腕带20与用户手腕贴合部分的长度调节,使得该贴合部分的长度更贴近用户的腕围,充分覆盖用户手腕的桡动脉和尺动脉,避免了用户安装不适合自身腕围长度规格的气囊时,对血压测量结果可能造成的误差,提高了血压测量的精度。
如图17,当用户启动血压测量时,可以进行手动操作,推动滑动连接部40,使滑动连接部40靠近第二侧102,使气囊腕带20抵持于第二侧102。此时,滑动连接部40与连接轴11配合以阻断气囊腕带20的气囊24,并将气囊24分隔形成有效段和无效段。其中,有效段为气囊24的第二连接端212至气囊24与连接轴11抵持的部分,无效段为气囊24的其他部分。
可以理解的是,由于本实施例中的滑动连接部40通过手动操作的方式对气囊腕带20进行阻断,相比电动驱动滑动连接部40阻断气囊24,减少了驱动部32和传动部35的设置,有利于产品的小型化。且手动操作相比电动驱动更省电,有利于增强产品的续航能力,降低制作成本。
请一并参阅图16、图17和图18,图18是图15A所示的滑动连接部40与连接轴11配合的结构示意图。
滑动连接部40可以包括本体41和连接在本体41两端的两个延伸段42。两个延伸段42背向本体41的一部分分别连接在连接轴11的两端。滑动连接部40与连接轴11围设形成固定孔43,气囊腕带20可以穿过固定孔43。延伸段42设有配合槽44,第二侧102设有限位 件,限位件限位于配合槽44内,以将滑动连接部40固定于第二侧102。在其他实施例中,滑动连接部40还可以是其他结构,只要能实现阻断气囊24的目的即可。
本实施例中,连接轴11和滑动连接部40为一体成型的一体结构,保证了连接轴11和滑动连接部40之间的连接强度,还简化了产品组装步骤。当然,在其他实施例中,连接轴和滑动连接部之间还可以通过粘接、卡接等其他方式连接固定。
在一些实施例中,滑动连接部40的固定孔43在满足气囊腕带20穿过且不压迫气囊24的同时足够小,以使气囊腕带20在穿过固定孔43后,气囊腕带20的表面可以与第二侧102和连接轴11的表面接触,增加气囊腕带20与第二侧102和连接轴11之间的摩擦力,使得气囊腕带20能更稳定的固定至第二侧102,避免气囊腕带20出现滑动、松动的现象,使气囊腕带20在佩戴过程中更加贴合用户手腕,提高佩戴体验。
可以理解的是,当用户佩戴可穿戴设备100时,用户将气囊腕带20穿过固定孔43之后,滑动连接部40能够带动连接轴11靠近第二侧102,并将气囊腕带20抵持于第二侧102,阻断气囊腕带20的气囊24,并将气囊腕带20固定于第二侧102。当气囊腕带20分隔形成有效段和无效段时,气泵15可以对有效段进行充气,使得气囊24的有效段膨胀并压迫用户的桡动脉和尺动脉,完成血压测量。气泵15无法对无效段进行充气。有效段的长度即为气囊的有效长度。
请参阅图16、图19和图20A,图19是图15A所示的滑动连接部40的配合槽44与限位件45配合的结构示意图。图20A是图19所示的滑动连接部40的配合槽44与限位件45分离的结构示意图。
在一些实施例中,设备主体10还可以包括按扣46,按扣46设于第二侧102朝向显示屏13的表面。按扣46与滑动连接部40连接,当按扣46按下时,滑动连接部40会跟随按扣46一起产生向下的位移。当然,在其他实施例中,按扣还可以设于设备主体10的其他位置。
如图20A所示,当用户按压按扣46时,滑动连接部40会跟随按扣46一起产生向下的位移,使得滑动连接部40的配合槽44不再与第二侧102的限位件45配合,使得滑动连接部40不再固定于第二侧102,此时,用户可以将滑动连接部40朝向远离第二侧102的方向移动,以调节气囊腕带20的长度或将气囊腕带20从固定孔43取出,从而取下可穿戴设备100。
可以理解的是,本实施例通过在设备主体10的第二侧102设置连接滑动连接部40的按扣46,使得滑动连接部40在第二侧102的固定与分离的操作过程更加简单,易于操作,提高了用户的佩戴体验。当然,在其他实施例中,滑动连接部40还可以通过其他方式固定于第二侧102,本申请不对滑动连接部40与第二侧102的固定方式做限定。
在其他实施例中,如图20B,连接轴11可以直接安装于第二侧102,且连接轴11和第二侧102之间形成供气囊和腕带穿过的间隙,滑动连接部40的本体41设于第二侧102和气囊之间,滑动连接部40的两个延伸段42滑动连接于第二侧102。可以通过推动滑动连接部的本体41朝向气囊移动,将气囊卡持在连接轴11和本体41之间,实现气囊的阻断。
在其他实施例中,气囊阻断件还可以是其他结构,只要能阻断气囊即可。
请一并参阅图21、图22和图23,图21是图1所示的可穿戴设备100的长度传感模组70与气囊阻断件30和气囊腕带20之间配合的结构示意图。图22是图21所示的长度传感模组70与气囊阻断件30和气囊腕带20之间配合的另一种实施方式的结构示意图。图23是图21所示的长度传感模组70的工作原理示意图。
本实施例中,可穿戴设备100还可以包括长度传感模组70,用于自动测量气囊腕带20的有效段的长度,也就是气囊的有效长度。长度传感模组70包括第一电极片71、第二电极 片72和柔性电阻膜73。其中,柔性电阻膜73覆盖于气囊24远离腕带23一侧的表面,第一电极片71设于柔性电阻膜73靠近第一侧101的一侧,并电连接柔性电阻膜73,第二电极片72固定于阻断部31或第二侧102朝向气囊24的表面,第二电极片72用于,当阻断部31阻断气囊24时,第二电极片72电连接柔性电阻膜73。主板16还可以集成有电路板163,电路板163电连接第一电极片71、第二电极片72和处理器162。穿戴设备用于,当阻断部31阻断气囊24时,通过获得第一电极片71和第二电极片72之间的部分柔性电阻膜73的电阻,确定气囊24的有效长度。
在图21所示的实施方式中,第二电极片72设置于阻断部31朝向气囊24一侧的表面。当气囊阻断件30启动时,阻断部31会将气囊腕带20抵持于连接轴11,此时固定于阻断部31朝向气囊24的表面的第二电极片72与柔性电阻膜73电性连接。
在图22的实施方式中,第二电极片72设置于第二侧102朝向气囊24一侧的表面,此时气囊阻断件30为滑动连接部40。当滑动连接部40工作时,滑动连接部40会推动连接轴11将气囊腕带20抵持于第二侧102,此时固定于第二侧102朝向气囊24的表面的第二电极片72与柔性电阻膜73电性连接。
可以理解的是,当气囊阻断件30启动时,气囊阻断件30会将气囊腕带20抵持于连接轴11或第二侧102,此时固定于阻断部31或第二侧102朝向气囊24的表面的第二电极片72与柔性电阻膜73电性连接。通过设备主体10内置的电路板163可以测量出第一电极片71和第二电极片72之间的电阻,并由处理器162换算出第一电极片71至第二电极片72的长度,即为气囊的有效长度。
本申请的可穿戴设备100通过将气压传感器15的数据和气囊的有效长度一并导入血压算法模型中,通过该血压算法模型计算出测量的血压值。相比只参考气压传感器15的数据进行计算,同时参考气压传感器15的数据和气囊的有效长度,使得本申请的血压算法模型精度更高,计算的血压数据更准确。
在一些实施例中,长度传感模组70还可以包括稳压芯片和模拟数字转换器(Analog-to-digital converter,ADC),稳压芯片和ADC均设于设备主体10的收容空间103,稳压芯片的两端分别电性连接至电池17和柔性电阻膜73,ADC的两端分别电性连接柔性电阻膜73和处理器162。稳压芯片可以保护电路,使电路不会因为脉冲而受到破坏,同时,稳压芯片还能起到调整、变压的作用,防止过大的电压烧断电路,有利于保护整个可穿戴设备100的电路系统,降低故障风险。ADC可以将电路中连续的模拟信号转换为离散的数字信号,并传输至处理器162用于计算。
可以理解的是,由于本实施例中的第一电极片71至第二电极片72之间的长度是可变的,本实施例中的柔性电阻膜73可以等效为可变电阻。也就是说,柔性电阻膜73的阻值变化与第一电极片71至第二电极片72之间的长度有明显的相关性。如图23所示,电路板163通过稳压芯片传输稳定的电压至柔性电阻膜73,ADC将柔性电阻膜73不同的电阻信号转换为数字信号传递至处理器162,处理器162根据该数字信号换算出气囊的有效长度。当然,在其他实施方式中,主板16还可以集成有控制器,ADC将柔性电阻膜73不同的电阻信号转换为数字信号传递至控制器,控制器根据该数字信号换算出气囊的有效长度,并将该数据传递至处理器162。
在一些实施例中,柔性电阻膜73需要具有一定的柔软性,不能影响气囊的膨胀。柔性电阻膜73的材料可以为康铜合金、锰铜合金或碳质电阻。当然,在其他实施例中,还可以通过喷涂或在柔性织物中形成所需要的柔性电阻膜73。本申请不对柔性电阻膜73的材料和形成 方式做限制。
当然,在其他实施例中,可穿戴设备100还可以不包括长度传感模组,可穿戴设备100还可以手动获取气囊的有效长度,并将其数值通过显示屏13或者按键18手动输入至处理器162。
上文具体介绍了一种可穿戴设备100的结构,下文将结合上文的可穿戴设备100具体介绍该可穿戴设备100的生理参数测量方法,下文以生理参数测量方法为血压测量方法为例进行说明。
请一并参阅图24和图25,图24是图1所示可穿戴设备100的功能模块示意图。图25是图1所示可穿戴设备100的生理参数测量方法的流程示意图。可穿戴设备100的生理参数测量方法如下步骤S110~S160。
S110:启动血压测量。
具体的,在启动血压测量前,用户先佩戴可穿戴设备100,并根据腕围调整松紧度。示例的,用户佩戴可穿戴设备100后,根据自身的腕围将气囊腕带20调整至合适的长度,使得气囊24能够完全贴合用户的手腕的尺动脉和桡动脉。
接着,检测到第一操作,第一操作作用在可穿戴设备上。第一操作可以为用户触摸显示屏13中测量血压的虚拟功能键,使可穿戴设备100启动血压测量功能。当然,在其他实施例中,用户还可以通过操作在设备主体10设置按键18,使可穿戴设备100启动血压测量功能。或者,可穿戴设备设置有设定检测血压的功能,用户在可穿戴设备上设置检测血压的时间,该时间为预定时刻,当测量方法确定可穿戴设备到达预定时刻,启动血压测量功能,从而用户可以根据需要设定需要检测血压的时间和频次,提高用户体验。
在一些实施方式中,用户启动血压测量之后,测量方法还包括确定可穿戴设备是否处于被佩戴状态。具体的,当可穿戴设备包括PPG传感器时,可以通过PPG传感器检测可穿戴设备是否处于被佩戴状态。当可穿戴设备不包括PPG传感器时,由于可穿戴设备被佩戴和非被佩戴时,对气囊充气的升压曲线不一样,因此可以通过对气囊进行充气以确定可穿戴设备是否处于被佩戴状态。需要说明的是,若通过对气囊进行充气确定可穿戴设备是否处于被佩戴状态,则该确定步骤应在步骤S120之后进行。当然,在其他实施例中,当可穿戴设备包括PPG传感器时,也可以通过对气囊进行充气以确定可穿戴设备是否处于被佩戴状态。
在一些实施方式中,用户启动血压测量之后,测量方法还包括确定气囊连接设备主体。示例的,可以通过在可穿戴设备上设置霍尔传感器,通过霍尔传感器检查气囊是否连接设备主体。还可以通过对气囊进行充气,以确定气囊是否连接设备主体。需要说明的是,对气囊充气以确定气囊是否连接设备主体的步骤应在步骤S120之后进行。当然,还可以通过其他方式确定气囊是否连接设备主体。
S120:控制气囊阻断件30阻断气囊24。
具体的,当处理器检测到启动血压测量的信号时,处理器会传递控制信号至气囊阻断件30,气囊阻断件30将气囊腕带20抵持于连接轴11,阻断气囊24。具体的,气囊阻断件30的驱动部32会驱动阻断部31将气囊腕带20抵持于连接轴11,并将气囊腕带20分隔形成有效段和无效段。此时,气囊24被阻断形成有效段和无效段,有效段的长度即为气囊的有效长度。
示例的,处理器可以通过控制驱动部32驱动阻断部31朝向气囊腕带20移动,并将气囊腕带20抵持于连接轴11。其中,驱动部32驱动阻断部31朝向气囊腕带20移动的距离为第一距离,该第一距离的具体数值可以通过经验得到,当阻断部31朝向气囊腕带20移动第一 距离时,气囊24被阻断为有效段和无效段,驱动部32停止驱动阻断部31。
其中,启动血压测量的信号可以是用户通过触摸显示屏13中测量血压的虚拟功能键,处理器获得用户已经触摸测量血压的虚拟功能键时,就会认为处理器检测到启动血压测量的信号。或者,启动血压测量的信号还可以是用户通过操作按键18调用可穿戴设备100中的测量血压功能模块,处理器获得用户调用可穿戴设备100中的测量血压功能模块时,就会认为处理器检测到启动血压测量的信号。或者,当测量方法确定可穿戴设备到达预定时刻,启动血压测量。
当然,在气囊阻断件的驱动部能够驱动连接轴靠近或远离第二侧的实施例中,处理器可以通过控制驱动部驱动连接轴朝向第二侧移动,并将气囊腕带20抵持于第二侧,阻断气囊。或者,在其他实施例中,可穿戴设备还可以通过显示屏提示用户手动阻断气囊。
S130:测量气囊的有效长度。
具体的,当处理器检测到气囊阻断件30将气囊24阻断后,处理器会传递控制信号至长度传感模组70,启动长度传感模组70并对气囊的有效长度进行测量。其中,通过设备主体10内置的电路板163可以测量出长度传感模组70中第一电极片71和第二电极片72之间的电阻,并由处理器换算出第一电极片71与第二电极片72之间的长度,确定气囊的有效长度。
示例的,确定气囊的有效长度的方法为,当气囊阻断件30阻断气囊24时,对第一通路施加电流,确定流经第一通路的电流的电流值,第一通路由电路板163、第一电极片71、第二电极片72和至少部分柔性电阻膜73组成。确定第一电极片71和第二电极片72之前的电压值。根据电流值和电压值确定至少部分柔性电阻膜73的电阻值。根据电阻值确定气囊24的有效长度。需要说明的是,当获得电阻值之后,确认电阻值是否为有效电阻值,即,电阻值是否在正常电阻值的区间范围内,若电阻值为有效电阻值时,对第一通路停止施加电流。若电阻值为无线电阻值,继续获得有效值,或者提醒用户检查可穿戴设备是否出现问题。
当然,在一些实施例中,用户也可通过手动测量的方式获取气囊的有效长度并将数据输入至处理器中。示例的,当用户启动血压测量时,此时显示屏13会弹出“是否手动进行气囊的有效长度的测量”的对话框,若用户确认使用手动测量的方式则点击“是”。处理器收到用户确认使用手动测量方式的信号后,将传递控制信号至显示屏13,并将弹出新对话框“请输入测量数据”,此时用户可以在气囊阻断件30将气囊24阻断后,通过软尺等其他长度测量工具对气囊的有效长度进行测量,并将测量的数据输入对话框。
S140:对气囊24充气并检测气囊24内的气压。
具体的,当阻断气囊24之后,启动气泵14和气压传感器15。气泵14通过线性升压控制算法,对气囊24内部进行充气,气压传感器15获取气囊24从开始充气到结束充气的气压数据。处理器根据获取的气压传感器15的气压数据和气囊的有效长度,通过血压算法模型计算出测量的血压值。相比只参考气压传感器15的数据进行计算,同时参考气压传感器15的气压数据和气囊的有效长度,使得本申请的血压算法模型精度更高,计算的血压数据更准确。同时,由于本申请可穿戴设备100的气囊腕带20长度可调,使得气囊腕带20能够充分覆盖用户手腕的桡动脉和尺动脉,且有效段能够刚刚好覆盖用户的桡动脉和尺动脉,气囊的有效长度的数据更精确,使得最终的计算结果更准确,更符合用户实际的血压数据。
需要说明的是,不同用户从开始充气到结束充气用的时间不同,当处理器通过算法判断气压数据完整时即控制气泵停止对气囊充气。
当然,在其他实施例中,处理器可以在接收到气囊的有效长度数据后启动气泵14和气压传感器15。步骤S140也可以在步骤S150之后进行,或者步骤S140和步骤S150还可以同时 进行。
S150:根据气压值确定血压值。
具体的,判断血压测量是否结束可以依据是否得出血压测量值,或者可以依据是否获取用户换算血压测量的数据。示例的,当血压测量值通过获取的血压测量数据代入血压算法模型计算得出,并由处理器发送至显示屏13供用户获取,此时判断血压测量结束。或者,当血压测量数据均已获得时,也可以判断血压测量结束。当判断血压测量结束,处理器关闭气泵14和气压传感器15,排出气囊24内的气体。
S160:确定血压测量结束后,控制气囊阻断件30远离气囊腕带20。
具体的,处理器通过判断气囊24内部气压是否降低到阈值以下以控制气囊阻断件30远离气囊腕带20。示例的,当处理器判断气囊24内部气压降低到如5mmHg及以下时,处理器传递控制信号至气囊阻断件30,此时驱动部32驱动阻断部31远离所述气囊腕带20,退回初始位置,使气囊腕带20恢复成非阻断状态。可以理解的是,当气囊24内部的气压降低到5mmHg及以下时,能够保证有效段内部的气体在气囊阻断件30恢复成非阻断状态后不会回流至无效段,影响用户佩戴体验。在其他实施中,只要获取血压测量数据即可控制气囊阻断件远离气囊腕带,也就是说,控制气囊阻断件远离气囊腕带可以与关闭气泵和气压传感器同时进行。
可以理解的是,当采用气囊腕带20阻断动脉血流时,由于心搏的血液动力学作用,在气囊24压力上将重叠与心搏同步的压力波动,即脉搏波。而基于示波法的血压测量方法就是根据脉搏波振幅与气囊24压力之间的关系来估计血压,与脉搏波最大值对应的是平均压,收缩压和舒张压分别用对应的比例加上平均压即可算出。根据上述测量方法,通过气泵14对气囊24内部进行充气,使得气囊24能够压迫用户手腕的桡动脉和尺动脉,使得气压传感器15能够获取气囊24内部的压力和脉搏波,将气压传感器15获得的数据与气囊的有效长度传递至处理器并计算出血压。由于本申请的血压测量方法除了气囊24内部的压力和脉搏波数据外,还将气囊的有效长度数据作为入参,进一步提升了本申请测量方法的血压算法模型的精度,有利于提高血压的测量精度。
在其他实施例中,可穿戴设备的生理参数测量方法还可以仅包括步骤S110、步骤S120和步骤S130。
本申请还提供一种电子设备,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用所述计算机程序,用于执行上述任一实施例的测量方法。
本申请还提供一种计算机可读存储介质,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行上述任一实施例的测量方法。
本申请还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述任一实施例的测量方法。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合,不同实施例中的特征任意组合也在本申请的保护范围内,也就是说,上述描述的多个实施例还可根据实际需要任意组合。需要说明的是,上述所有附图均为本申请示例性的图示,并不代表产品实际大小。且附图中部件之间的尺寸比例关系也不作为对本申请实际产品的限定。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种可穿戴设备,其特征在于,包括设备主体、连接轴、气囊腕带和气囊阻断件,其中:
    所述设备主体具有相对设置的第一侧和第二侧;
    所述连接轴安装于所述第二侧,所述连接轴和所述第二侧之间形成间隙;
    所述气囊腕带包括腕带和气囊,所述气囊至少部分叠设于所述腕带的一侧,所述气囊腕带具有第一端和第二端;
    其中,所述第一端包括所述腕带的第一连接端和所述气囊的第二连接端,所述第一连接端用于固定连接所述第一侧,所述第二连接端用于连接所述设备主体,使得所述设备主体通过所述第二连接端对所述气囊进行充气或放气操作;
    所述第二端从所述间隙穿过,固定于所述腕带上与所述气囊背离的一侧;
    所述气囊阻断件包括阻断部和驱动部,所述驱动部设置于所述设备主体中,所述阻断部位于所述设备主体外部,所述驱动部用于驱动所述阻断部朝向靠近所述连接轴的方向运动预设距离,使得所述阻断部将所述气囊腕带抵持于所述连接轴,所述气囊被充气时,仅对所述第二连接端至所述阻断部之间的部分气囊充气。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,所述驱动部位于所述设备主体内部,所述气囊阻断件还包括传动部,所述传动部两端分别连接所述驱动部和所述阻断部,以将所述驱动部的驱动力传递给所述阻断部。
  3. 根据权利要求2所述的可穿戴设备,其特征在于,所述设备主体上设置有连通孔,所述传动部穿过所述连通孔。
  4. 根据权利要求1-3任一项所述的可穿戴设备,其特征在于,所述阻断部包括朝向所述连接轴的第一表面,所述连接轴包括朝向所述阻断部的第二表面,所述阻断部阻断所述气囊腕带时,所述气囊腕带夹持于所述第一表面和所述第二表面之间,所述第一表面和所述第二表面的形状相适配。
  5. 根据权利要求1-4中任一项所述的可穿戴设备,其特征在于,所述可穿戴设备还包括长度传感模组,所述长度传感模组包括第一电极片、第二电极片、电路板和柔性电阻膜;其中,
    所述柔性电阻膜覆盖于所述气囊远离所述腕带一侧的表面;
    所述第一电极片设于所述柔性电阻膜靠近所述第二连接端的一侧,并电连接所述柔性电阻膜;
    所述第二电极片固定于所述阻断部朝向所述气囊的表面;所述第二电极片用于,当所述阻断部阻断所述气囊时,所述第二电极片电连接所述柔性电阻膜;
    所述电路板设于所述设备主体内部且电连接所述第一电极片和所述第二电极片;所述可穿戴设备用于,当所述阻断部将所述气囊腕带抵持于所述连接轴时,通过获得所述第一电极片和所述第二电极片之间的柔性电阻膜的电阻,确定所述第一电极片和所述第二电极片之间的气囊的长度。
  6. 根据权利要求1-5任一项所述的可穿戴设备,其特征在于,所述可穿戴设备还包括气压传感器,所述气压传感器设于所述设备主体内部,所述气压传感器用于获得所述气囊的气压数据。
  7. 根据权利要求1-6任一项所述的可穿戴设备,其特征在于,所述可穿戴设备包括气泵,所述气泵位于所述设备主体内部,所述气泵用于对所述气囊充气。
  8. 根据权利要求1-7任一项所述的可穿戴设备,其特征在于,所述可穿戴设备还包括处理器,所述处理器位于所述设备主体内部,
    所述处理器用于,
    控制所述驱动部带动所述阻断部朝向靠近所述连接轴的方向运动预设距离;
    对所述气囊充气;
    检测所述气囊内的气压,获取所述气囊从开始充气至结束充气的气压数据;
    根据所述气压数据确定所述生理参数;
    确定所述生理参数测量完成后,对所述气囊放气;
    控制所述驱动部朝向远离所述连接轴的方向运动。
  9. 根据权利要求8所述的可穿戴设备,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于:
    确定所述可穿戴设备处于被佩戴状态。
  10. 根据权利要求8所述的可穿戴设备,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于:
    确定所述气囊连接所述设备主体。
  11. 根据权利要求8所述的可穿戴设备,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于:
    确定到达预定时刻。
  12. 根据权利要求8所述的可穿戴设备,其特征在于,
    所述可穿戴设备包括输入装置,所述输入装置用于接收用户的操作;
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于:
    检测到所述输入装置接收第一操作,所述第一操作用于启动测量所述生理参数。
  13. 根据权利要求8-12任一项所述的可穿戴设备,其特征在于,
    所述可穿戴设备包括电路板、第一电极片、第二电极片和柔性电阻膜;其中,
    所述柔性电阻膜覆盖于所述气囊远离所述腕带一侧的表面;
    所述第一电极片设于所述柔性电阻膜靠近所述第二连接端的一侧,并电连接所述柔性电阻膜;
    所述第二电极片固定于所述阻断部朝向所述气囊的表面;所述第二电极片用于,当所述阻断部阻断所述气囊时,所述第二电极片电连接所述柔性电阻膜;
    所述控制所述驱动部带动所述阻断部朝向靠近所述连接轴的方向运动预设距离后,所述处理器还用于:
    确定流经第一通路的电流的电流值,所述第一通路由所述电路板、所述第一电极片、所述第二电极片和至少部分所述柔性电阻膜组成;
    确定所述第一电极片和所述第二电极片之前的电压值;
    根据所述电流值和所述电压值确定至少部分所述柔性电阻膜的电阻值;
    根据所述电阻值确定所述第一电极片和所述第二电极片之间的气囊的长度;
    所述根据所述气压数据确定所述生理参数具体为:
    根据所述气压数据和所述长度确定所述生理参数。
  14. 根据权利要求8-13任一项所述的可穿戴设备,其特征在于,
    所述处理器还用于,当结束所述生理参数的测量后,控制所述阻断部远离所述气囊腕带。
  15. 根据权利要求8-13任一项所述的可穿戴设备,其特征在于,
    所述处理器还用于,当所述生理参数的测量后,控制所述气泵对所述气囊进行放气操作,当所述气囊内部的气压降低至小于或等于预设阈值时,控制所述阻断部远离所述气囊腕带。
  16. 一种生理参数的测量方法,其应用于可穿戴设备,其特征在于,所述可穿戴设备包括设备主体、连接轴、气囊腕带和气囊阻断件,所述气囊阻断件包括阻断部和驱动部,所述气囊腕带包括气囊;所述测量方法包括:
    控制所述驱动部带动所述阻断部朝向靠近所述连接轴的方向运动预设距离;
    对所述气囊充气;
    检测所述气囊内的气压,获取所述气囊从开始充气至结束充气的气压数据;
    根据所述气压数据确定所述生理参数;
    确定所述生理参数测量完成后,对所述气囊放气;
    控制所述驱动部朝向远离所述连接轴的方向运动。
  17. 根据权利要求16所述的测量方法,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:
    确定所述可穿戴设备处于被佩戴状态。
  18. 根据权利要求16所述的测量方法,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:
    确定所述气囊连接所述设备主体。
  19. 根据权利要求16所述的测量方法,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:
    确定到达预定时刻。
  20. 根据权利要求16所述的测量方法,其特征在于,
    所述可穿戴设备包括输入装置,所述输入装置用于接收用户的操作;在所述控制所述驱 动部朝向靠近所述连接轴的方向运动之前,所述方法还包括:
    检测到所述输入装置接收第一操作,所述第一操作用于启动测量所述生理参数。
  21. 根据权利要求16-20任一项所述的测量方法,其特征在于,
    所述可穿戴设备包括电路板、第一电极片、第二电极片和柔性电阻膜;其中,
    所述柔性电阻膜覆盖于所述气囊远离所述腕带一侧的表面;
    所述第一电极片设于所述柔性电阻膜靠近所述第二连接端的一侧,并电连接所述柔性电阻膜;
    所述第二电极片固定于所述阻断部朝向所述气囊的表面;所述第二电极片用于,当所述阻断部阻断所述气囊时,所述第二电极片电连接所述柔性电阻膜;
    所述控制所述驱动部带动所述阻断部朝向靠近所述连接轴的方向运动预设距离后,所述方法还包括:
    确定流经第一通路的电流的电流值,所述第一通路由所述电路板、所述第一电极片、所述第二电极片和至少部分所述柔性电阻膜组成;
    确定所述第一电极片和所述第二电极片之前的电压值;
    根据所述电流值和所述电压值确定至少部分所述柔性电阻膜的电阻值;
    根据所述电阻值确定所述第一电极片和所述第二电极片之间的气囊的长度;
    所述根据所述气压数据确定所述生理参数具体为:
    根据所述气压数据和所述长度确定所述生理参数。
  22. 根据权利要求16-21任一项所述的测量方法,其特征在于,
    所述方法还包括,当结束所述生理参数的测量后,控制所述阻断部远离所述气囊腕带。
  23. 根据权利要求16-21任一项所述的测量方法,其特征在于,
    所述方法还包括,当所述生理参数的测量后,控制所述气泵对所述气囊进行放气操作,当所述气囊内部的气压降低至小于或等于预设阈值时,控制所述阻断部远离所述气囊腕带。
  24. 一种电子设备,其特征在于,
    所述电子设备包括:
    设备主体;
    连接轴;
    气囊腕带,所述气囊腕带包括气囊;
    气囊阻断件,所述气囊阻断件包括阻断部和驱动部;
    存储器,所述存储器用于存储计算机程序;
    处理器,所述处理器用于执行所述计算机程序,使得所述电子设备执行以下步骤:
    控制所述驱动部带动所述阻断部朝向靠近所述连接轴的方向运动预设距离;
    控制对所述气囊充气;
    检测所述气囊内的气压,获取所述气囊从开始充气至结束充气的气压数据;
    根据所述气压数据确定所述生理参数;
    确定所述生理参数测量完成后,控制对所述气囊放气;
    控制所述驱动部朝向远离所述连接轴的方向运动。
  25. 根据权利要求24所述的电子设备,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于使得所述电子设备执行以下步骤:
    确定所述可穿戴设备处于被佩戴状态。
  26. 根据权利要求24所述的电子设备,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于使得所述电子设备执行以下步骤:
    确定所述气囊连接所述设备主体。
  27. 根据权利要求24所述的电子设备,其特征在于,
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于使得所述电子设备执行以下步骤:
    确定到达预定时刻。
  28. 根据权利要求24所述的电子设备,其特征在于,
    所述电子设备包括输入装置,所述输入装置用于接收用户的操作;
    在所述控制所述驱动部朝向靠近所述连接轴的方向运动之前,所述处理器还用于使得所述电子设备执行以下步骤:
    检测到所述输入装置接收第一操作,所述第一操作用于启动测量所述生理参数。
  29. 根据权利要求24-28任一项所述的电子设备,其特征在于,
    所述电子设备包括电路板、第一电极片、第二电极片和柔性电阻膜;其中,
    所述柔性电阻膜覆盖于所述气囊远离所述腕带一侧的表面;
    所述第一电极片设于所述柔性电阻膜靠近所述第二连接端的一侧,并电连接所述柔性电阻膜;
    所述第二电极片固定于所述阻断部朝向所述气囊的表面;所述第二电极片用于,当所述阻断部阻断所述气囊时,所述第二电极片电连接所述柔性电阻膜;
    所述控制所述驱动部带动所述阻断部朝向靠近所述连接轴的方向运动预设距离后,所述处理器还用于使得所述电子设备执行以下步骤:
    确定流经第一通路的电流的电流值,所述第一通路由所述电路板、所述第一电极片、所述第二电极片和至少部分所述柔性电阻膜组成;
    确定所述第一电极片和所述第二电极片之前的电压值;
    根据所述电流值和所述电压值确定至少部分所述柔性电阻膜的电阻值;
    根据所述电阻值确定所述第一电极片和所述第二电极片之间的气囊的长度;
    所述根据所述气压数据确定所述生理参数具体为:
    根据所述气压数据和所述长度确定所述生理参数。
  30. 根据权利要求24-29任一项所述的电子设备,其特征在于,
    所述处理器还用于使得所述电子设备执行以下步骤:
    当结束所述生理参数的测量后,控制所述阻断部远离所述气囊腕带。
  31. 根据权利要求24-29任一项所述的电子设备,其特征在于,
    所述处理器还用于使得所述电子设备执行以下步骤:
    当所述生理参数的测量后,控制所述气泵对所述气囊进行放气操作,当所述气囊内部的气压降低至小于或等于预设阈值时,控制所述阻断部远离所述气囊腕带。
PCT/CN2022/141702 2021-12-31 2022-12-24 可穿戴设备及其生理参数测量方法和电子设备 WO2023125337A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111676685.8A CN116407102A (zh) 2021-12-31 2021-12-31 可穿戴设备及其生理参数测量方法和电子设备
CN202111676685.8 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125337A1 true WO2023125337A1 (zh) 2023-07-06

Family

ID=86997895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141702 WO2023125337A1 (zh) 2021-12-31 2022-12-24 可穿戴设备及其生理参数测量方法和电子设备

Country Status (2)

Country Link
CN (1) CN116407102A (zh)
WO (1) WO2023125337A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118021311A (zh) * 2023-12-15 2024-05-14 中国人民解放军总医院第四医学中心 一种用于生理监测的袖带型电极装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109044310A (zh) * 2018-09-07 2018-12-21 深圳金亿帝医疗设备股份有限公司 气囊、手表式血压计、便携式血压模块以及生命体征监护仪
CN109195513A (zh) * 2016-05-27 2019-01-11 欧姆龙健康医疗事业株式会社 血压测定用袖带及血压计
US20190223803A1 (en) * 2015-09-28 2019-07-25 Apple Inc. Sensing Contact Force Related to User Wearing an Electronic Device
CN112998677A (zh) * 2019-12-20 2021-06-22 华为技术有限公司 气囊、血压测量装置及血压测量方法
CN113142758A (zh) * 2020-01-23 2021-07-23 华为技术有限公司 可穿戴设备
US20210267325A1 (en) * 2017-09-15 2021-09-02 Apple Inc. Wristbands with magnetic coupling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190223803A1 (en) * 2015-09-28 2019-07-25 Apple Inc. Sensing Contact Force Related to User Wearing an Electronic Device
CN109195513A (zh) * 2016-05-27 2019-01-11 欧姆龙健康医疗事业株式会社 血压测定用袖带及血压计
US20210267325A1 (en) * 2017-09-15 2021-09-02 Apple Inc. Wristbands with magnetic coupling
CN109044310A (zh) * 2018-09-07 2018-12-21 深圳金亿帝医疗设备股份有限公司 气囊、手表式血压计、便携式血压模块以及生命体征监护仪
CN112998677A (zh) * 2019-12-20 2021-06-22 华为技术有限公司 气囊、血压测量装置及血压测量方法
CN113142758A (zh) * 2020-01-23 2021-07-23 华为技术有限公司 可穿戴设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118021311A (zh) * 2023-12-15 2024-05-14 中国人民解放军总医院第四医学中心 一种用于生理监测的袖带型电极装置

Also Published As

Publication number Publication date
CN116407102A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN107438397B (zh) 可调节腕戴式压力感测装置
TWI688368B (zh) 穿戴式健康監測裝置
WO2023125337A1 (zh) 可穿戴设备及其生理参数测量方法和电子设备
US11653842B2 (en) Blood pressure measuring device
US11647912B2 (en) Blood pressure measuring device
CN112006671B (zh) 穿戴式生命体征监护设备
US10952623B2 (en) Wearable blood pressure measuring device
WO2009139083A1 (ja) 脈拍異常検出装置
CN110022763A (zh) 一种手表腕带
EP3400866A1 (en) Wearable device
US11529063B2 (en) Blood pressure measuring device
CN108289625A (zh) 用于控制静脉血液流量、改进静脉扩张并实现血压测量的夹持设备、系统及方法
WO2021147664A1 (zh) 可穿戴设备
WO2018209983A1 (zh) 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备
WO2022121162A1 (zh) 生物特征信息的检测装置和电子设备
CN112190246A (zh) 可穿戴设备及其主体
CN112336016A (zh) 智能手表及其表带装置
US11963747B2 (en) Blood pressure measurement device
CN105377125B (zh) 一种血压检测装置及相关装置和通信系统
CN213787371U (zh) 手表式以及臂式生命体征监护设备
US11653879B2 (en) Blood pressure measuring device
US11534073B2 (en) Blood pressure measuring device
WO2023025036A1 (zh) 电子设备
WO2024029119A1 (ja) 血圧測定装置
WO2023030253A1 (zh) 血压检测装置及可穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914591

Country of ref document: EP

Kind code of ref document: A1