WO2023125266A1 - Pièce en alliage d'aluminium à haute plasticité et son procédé de fabrication - Google Patents

Pièce en alliage d'aluminium à haute plasticité et son procédé de fabrication Download PDF

Info

Publication number
WO2023125266A1
WO2023125266A1 PCT/CN2022/141292 CN2022141292W WO2023125266A1 WO 2023125266 A1 WO2023125266 A1 WO 2023125266A1 CN 2022141292 W CN2022141292 W CN 2022141292W WO 2023125266 A1 WO2023125266 A1 WO 2023125266A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
aluminum
alloy
treatment
melt
Prior art date
Application number
PCT/CN2022/141292
Other languages
English (en)
Chinese (zh)
Inventor
方瑛
答建成
Original Assignee
上海耀鸿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耀鸿科技股份有限公司 filed Critical 上海耀鸿科技股份有限公司
Publication of WO2023125266A1 publication Critical patent/WO2023125266A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the technical field of alloy materials and preparation, in particular to a high plasticity aluminum alloy part and a preparation method thereof.
  • Aluminum alloy is the most widely used non-ferrous metal structural material in industry, and has been widely used in aviation, aerospace, automobile, machinery manufacturing, shipbuilding and chemical industry.
  • Cast aluminum alloy has the characteristics of casting fluidity, good air tightness, small shrinkage rate and small thermal cracking tendency, etc., and it has become the first choice material for lightweight automobile wheels.
  • aluminum alloy wheel parts require medium strength and higher ductility to avoid instantaneous fracture of the wheel in the event of frontal impact and side impact (within the design load bearing range).
  • the present invention provides a high-plasticity aluminum alloy part capable of improving the plasticity of the aluminum alloy part and a preparation method thereof.
  • Step S1 providing a cast aluminum alloy biscuit
  • Step S2 performing heat treatment on the aluminum alloy green body, wherein the heat treatment includes:
  • Water quenching treatment adding the aluminum alloy biscuit after solid solution treatment into a water bath at a temperature of 60-70°C, and quenching water for 2-4 minutes;
  • the cast aluminum alloy bisque is obtained by casting a cast hypoeutectic aluminum alloy or a cast eutectic aluminum alloy.
  • step S1 includes:
  • Step S11 providing an aluminum alloy melt
  • Step S12 adding a modifier and a refiner to the aluminum alloy melt and melting to obtain a modified aluminum alloy melt
  • Step S13 casting the modified aluminum alloy melt to obtain the cast aluminum alloy bisque.
  • step S11 includes:
  • the dried aluminum alloy master ingot is melted, refined and slag removed to obtain the aluminum alloy melt.
  • the modifier is any one of aluminum-lanthanum alloy, aluminum-cesium alloy, aluminum-yttrium alloy, and aluminum-strontium alloy
  • the refiner is aluminum-titanium alloy or aluminum-titanium-boron alloy .
  • step S12 includes:
  • the heating rate in the solution treatment is controlled at 1.5-3° C./min, and the holding time is controlled at 120-180 min.
  • solution treatment the quenching treatment, and the aging treatment are continuous treatments
  • the water bath is a circulating water bath. After the water quenching treatment, the temperature of the cast aluminum alloy biscuit is kept above 55°C before the aging treatment.
  • the temperature is raised from 110-140°C to 160-200°C at a heating rate of 2-4°C/min, and then naturally cooled to room temperature.
  • the high plasticity aluminum alloy product of the embodiment of the second aspect of the present invention it is prepared according to the preparation method of any embodiment of the above first aspect, the tensile strength of the high plasticity aluminum alloy product is above 190 MPa, and the yield strength is Above 100MPa, elongation above 8%.
  • the method for preparing high-plastic aluminum alloy parts in the embodiment of the present invention by performing specific heat treatment on the casting, its mechanical strength can be greatly improved and its elongation rate can be increased to meet the needs of aviation, aerospace, automotive fields, etc., and at the same time it can Improve its toughness and reduce the occurrence of brittle cracks;
  • Fig. 1 is the metallographic structure image of the aluminum alloy before and after the heat treatment of embodiment 1, wherein, (a) is the metallographic structure image of A356 aluminum alloy, (b) is the metallographic structure image of the cast aluminum alloy after modification, (c) is the metallographic structure image of the aluminum alloy product after heat treatment;
  • Fig. 2 is the metallographic structure image of the aluminum alloy before and after heat treatment obtained in Example 2, wherein, (a) is the metallographic structure image of the cast aluminum alloy after modification, (b) is the aluminum alloy product after heat treatment Metallographic image.
  • Step S1 providing a cast aluminum alloy biscuit.
  • the method for preparing high-strength aluminum alloy parts in the embodiment of the present invention is a heat treatment process for cast aluminum alloy biscuits.
  • the thickness of the cast aluminum alloy biscuit is, for example, 40 mm or less.
  • it may be 8-40mm.
  • the cast aluminum alloy biscuit for example, it can be obtained by casting a hypoeutectic aluminum alloy, such as A356 aluminum-silicon-magnesium alloy, or a eutectic aluminum alloy such as ZL111 aluminum alloy.
  • a hypoeutectic aluminum alloy such as A356 aluminum-silicon-magnesium alloy
  • a eutectic aluminum alloy such as ZL111 aluminum alloy.
  • the heat treatment process of the present invention is not limited thereto, and can improve the ductility and mechanical strength of conventional aluminum alloys.
  • alloys such as ZL101, ZL104/108/109, ADC12, and Al-4Cu may also be mentioned.
  • the step S1 includes:
  • Step S11 providing an aluminum alloy melt.
  • an aluminum alloy melt is prepared.
  • a commercially available high-purity aluminum alloy ingot can be directly heated and melted to prepare an aluminum alloy melt, or the aluminum alloy ingot can be further purified.
  • Purification treatment may include the following steps, for example:
  • the dried aluminum alloy master ingot is melted, refined and slag removed to obtain the aluminum alloy melt.
  • the oxide scale layer on the surface is first removed, then cleaned to remove surface scum, dried and then smelted, refined and slag removed.
  • undesired impurities such as Fe, oxides, etc. can be removed.
  • Fe and its oxides can be removed by adding manganese or aluminum-manganese alloy to form surface scum, for example.
  • Step S12 adding a modifier and a refiner to the aluminum alloy melt and melting to obtain a modified aluminum alloy melt.
  • the modifier is any one of aluminum-lanthanum alloy, aluminum-cesium alloy, aluminum-yttrium alloy, and aluminum-strontium alloy
  • the refiner is aluminum-titanium alloy or aluminum-titanium-boron alloy.
  • any one of aluminum-lanthanum alloy, aluminum-cesium alloy, aluminum-yttrium alloy, and aluminum-strontium alloy can be used as a modifier to modify the aluminum alloy, and at the same time, the crystal grains can be refined by adding a refiner, which can further Improve its mechanical strength.
  • step S12 includes:
  • a modifier is first added to the aluminum alloy melt for smelting, and after the modifier is completely melted and mixed with the aluminum alloy, a refiner is added to suppress the abnormal growth of grains.
  • the modifying agent preferably accounts for 0.4-0.6 wt% of the total amount of the aluminum alloy melt, and the refiner preferably accounts for 0.15-0.4 wt% of the total amount.
  • modifiers can also be refined before being specifically introduced into the aluminum alloy melt.
  • the refining in any of the above steps that is, the refining of the aluminum alloy melt and the refining of the modifier can be carried out in the following manner:
  • the added amount of the refining agent accounts for 0.1-0.3% of the added melt mass
  • the added amount of the slag remover accounts for 0.1-0.3% of the added melt mass
  • the components of the refining agent contain by mass:
  • the component of described deslagging agent contains by mass:
  • the hydrogen content is estimated by testing the density of the melt, that is to say, the closer the melt density is to its theoretical density (slightly different according to the different components contained in the alloy, roughly around 2.7g/cm 3 ), then Indicates that the hydrogen contained in it is lower. For example, it can be set that when the density of the melt is less than 2.65g/cm 3 , the refining process is performed; when the density of the melt is greater than or equal to 2.65g/cm 3 , the refining process is not performed or the refining process is terminated. deal with.
  • Step S13 casting the modified aluminum alloy melt to obtain the cast aluminum alloy bisque.
  • the obtained modified aluminum alloy melt is cast into a mold to obtain the cast aluminum alloy biscuit.
  • Step S2 performing heat treatment on the aluminum alloy biscuit.
  • the inventor has developed a corresponding heat treatment process on the basis of repeated research.
  • the heat treatment includes:
  • Water quenching treatment adding the aluminum alloy biscuit after solid solution treatment into a water bath at a temperature of 60-70°C, and quenching water for 2-4 minutes;
  • the aluminum alloy biscuit is successively subjected to solution treatment, water quenching treatment, and aging treatment.
  • the casting is rapidly cooled, so that the strengthening components are dissolved in the alloy to the maximum extent and then fixed and stored at room temperature.
  • the rise of temperature and the extension of time will result in the recombination of atoms in the supersaturated solid solution lattice, forming a solute atom-enriched region (called the G-PI region) and disappearing of the G-PI region.
  • the atoms of the second phase segregate according to a certain rule and form a G-PII region, forming a metastable second phase (transition phase), a large number of G-PII regions and a small amount of metastable phase combine and the metastable phase transforms into a stable phase ,
  • the second phase particle aggregation The second phase particle aggregation.
  • the preparation method of the present invention low-temperature aging is first adopted, so that more phase transitions are in the GP region and the ⁇ 1 region, thereby ensuring sufficient elongation.
  • the heating rate in the solution treatment is controlled at 1.5-3°C/min, and the holding time is controlled at 120-180min.
  • the rose-shaped ⁇ -Al phase and the rounder spherical ⁇ -Al phase can be further increased, the primary ⁇ -Al phase can be refined, and the number of dendrites can be reduced.
  • the solution treatment, the quenching treatment, and the aging treatment are continuous treatments, and the water bath is a circulating water bath.
  • the water bath is a circulating water bath.
  • the temperature is raised from 110-140°C to 160-200°C at a heating rate of 2-4°C/min, and then naturally cooled to room temperature.
  • Aluminum alloy aluminum-silicon-magnesium alloy (A356) (purchased from: Shandong Weiqiao Aluminum Industry)
  • High-purity aluminum ingot (purchased from Chinalco, composition: Al (99.99%), Fe ⁇ 0.1%, impurity ⁇ 0.05%)
  • Melting first add the preheated aluminum-silicon-magnesium alloy A356 into the pre-heating melting furnace, and heat and melt it into aluminum water within the range of 760 degrees.
  • Degassing and slag removal After melting into aluminum water, nitrogen (or argon) is introduced and refining agent (0.3wt% refining agent) is blown into the aluminum water, and the ventilation time is controlled at 15 minutes.
  • Aluminum-strontium master alloy purchased from Nantong Angshen Metal Material Co., Ltd., composition: Al-10Sr, Fe ⁇ 0.05.
  • Pretreatment Use a grinder to clean the scale and surface of the Al-Sr master alloy.
  • Ultrasonic cleaning put the pretreated aluminum-strontium master alloy into an ultrasonic cleaning tank for ultrasonic treatment.
  • Drying put the cleaned aluminum-strontium master alloy into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment After the aluminum-strontium master alloy is melted, it is refined. The molten high-purity aluminum is refined by feeding the Ar+graphite automatic degassing stirring rod. Refining with Ar blowing at 730-750°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept at 3-5 minutes. During the refining process, there should be no boiling bubbles on the upper surface of the aluminum liquid.
  • Aluminum-titanium-boron master alloy purchased from Nantong Angshen Metal Materials Co., Ltd. (composition and content: Ti: 5%, B: 1%, the rest: Al)
  • the aluminum-silicon-magnesium alloy, the aluminum-strontium master alloy, and the aluminum-titanium-boron master alloy were prepared with a mass ratio of aluminum alloy: aluminum-strontium master alloy: aluminum-titanium-boron master alloy of 99.4:0.4:0.2.
  • Heat preservation After stirring, control the temperature at 735°C for heat preservation, and the heat preservation time is controlled at 20 minutes;
  • Add refiner add 0.2% aluminum-titanium-boron master alloy to the refined aluminum water, wait for it to melt and stir;
  • Heat preservation and standing After the end, after the aluminum water flows into the heat preservation pool, the temperature is controlled at 710 ⁇ 3°C, and the slag and impurities on the surface of the aluminum water are removed after standing for 10 ⁇ 2 minutes;
  • the thickness of the modified aluminum alloy biscuit is 30mm.
  • Solution treatment put the modified aluminum alloy biscuit in a heating furnace, heat it to 545°C at a heating rate of 2°C/min, and keep it there for 120min.
  • the modified aluminum alloy biscuit after the solution treatment was taken out and directly added to a circulating water bath at a temperature of 65° C., and water was quenched for 3 minutes.
  • Fig. 1 is the metallographic structure image of the aluminum alloy before and after the heat treatment of embodiment 1, wherein, (a) is the metallographic structure image of A356 aluminum alloy, (b) is the metallographic structure image of the cast aluminum alloy after modification, (c) is the metallographic structure image of the aluminum alloy product after heat treatment.
  • the metallographic structure of the aluminum alloy before modification ie (a)
  • the coarse primary ⁇ -Al phase presents a dendrite structure
  • the diameter and length of the secondary dendrite and the dendrite The spacing is relatively large.
  • the metallographic structure of the modified aluminum alloy ie (b)
  • a large number of rose-like ⁇ -Al phases and rounder spherical ⁇ -Al phases also increased, and the primary ⁇ -Al phase was significantly finer.
  • the number of dendrites decreases.
  • the metallographic structure of the aluminum alloy after heat treatment ie (c)
  • the primary ⁇ -Al phase and dendrites are basically invisible. That is to say, the grains are further homogenized and the microstructure is more uniform.
  • A356 heat-treated parts the evaluation results of products obtained by directly performing the same heat treatment on A356 (referred to as A356 heat-treated parts) are also described.
  • Aluminum-lanthanum alloy purchased from Baotou Rare Earth Research Institute, composition: Al-10La, Fe ⁇ 0.05.
  • Pretreatment Use a grinder to clean the scale and surface of the aluminum-lanthanum alloy.
  • Ultrasonic cleaning put the pretreated aluminum-lanthanum alloy into an ultrasonic cleaning tank for ultrasonic treatment.
  • Drying Put the cleaned aluminum-lanthanum alloy into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment The whole process is under the protection of argon atmosphere, and the refining treatment is performed after the rare earth aluminum-lanthanum alloy is melted.
  • the Ar graphite automatic degassing stirring rod is introduced to refine the melted graphite.
  • Ar is used to blow into the refining agent, the refining dose is 0.3wt% of the melt, and there should be no boiling bubbles on the upper surface of the aluminum liquid during the refining process.
  • Remove scum on the surface of the melt put 0.2wt% slag remover into it to make it evenly disperse when refining for 15-20 minutes, and remove the scum on the surface.
  • the above-mentioned aluminum-lanthanum alloy is used instead of the aluminum-strontium master alloy, and everything else is the same as in Example 1.
  • A356 heat-treated parts the evaluation results of products obtained by directly performing the same heat treatment on A356 (referred to as A356 heat-treated parts) are also described.
  • Example 2 By comparing the results of Example 2 and Example 1 above, it can be seen that the modification of the rare earth alloy, ie, aluminum-lanthanum alloy combined with heat treatment, can obtain better strength and higher toughness. Moreover, the modified dendrites are less and almost completely absent.
  • the rare earth alloy ie, aluminum-lanthanum alloy combined with heat treatment
  • Example 1 For specific preparation, refer to Example 1, and its detailed description is omitted here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

La présente invention concerne une pièce en alliage d'aluminium à haute plasticité et son procédé de fabrication. Le procédé de fabrication comprend les étapes suivantes : S1, la fourniture d'une billette en alliage d'aluminium coulée ; et S2, la réalisation d'un traitement thermique sur la billette en alliage d'aluminium, le traitement thermique comprenant : un traitement en solution : le chauffage de la billette en alliage d'aluminium jusqu'à 530 à 550 °C et la réalisation d'une conservation de chaleur pendant 120 à 300 minutes ; un traitement de trempe : l'ajout de la billette en alliage d'aluminium soumise au traitement en solution à un bain d'eau ayant une température de 60 à 70 °C et la réalisation d'une trempe pendant 2 à 4 minutes ; un traitement de vieillissement : la réalisation d'une conservation de chaleur sur la billette en alliage d'aluminium soumise au traitement de trempe pendant 120 à 240 minutes à une température de 110 à 140 °C, le chauffage supplémentaire jusqu'à 160 à 200 °C, le maintien de la température pendant 20 à 60 minutes et le refroidissement jusqu'à température ambiante pour obtenir la pièce en alliage d'aluminium à haute plasticité. Selon le procédé de préparation pour une pièce en alliage d'aluminium à haute plasticité dans les modes de réalisation de la présente invention, la réalisation d'un traitement thermique spécifique sur une pièce coulée permet d'amélioration considérablement la résistance mécanique et la ductilité de la pièce coulée, de satisfaire les exigences des domaines de l'aviation, de l'aérospatiale et de l'automobile et autres et, en outre, d'améliorer la résistance aux chocs de la pièce en alliage d'aluminium à haute plasticité.
PCT/CN2022/141292 2021-12-30 2022-12-23 Pièce en alliage d'aluminium à haute plasticité et son procédé de fabrication WO2023125266A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111654961.0A CN114318183A (zh) 2021-12-30 2021-12-30 高塑性铝合金制件及其制备方法
CN202111654961.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125266A1 true WO2023125266A1 (fr) 2023-07-06

Family

ID=81019116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141292 WO2023125266A1 (fr) 2021-12-30 2022-12-23 Pièce en alliage d'aluminium à haute plasticité et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN114318183A (fr)
WO (1) WO2023125266A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318183A (zh) * 2021-12-30 2022-04-12 上海耀鸿科技股份有限公司 高塑性铝合金制件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103387A (zh) * 2012-11-09 2013-05-15 安徽欣意电缆有限公司 Al-Fe-C-RE铝合金及其制备方法和电力电缆
US20200190634A1 (en) * 2017-08-14 2020-06-18 Brunel University London Method of forming a cast aluminium alloy
CN112143945A (zh) * 2020-09-23 2020-12-29 上海耀鸿科技股份有限公司 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
CN114318183A (zh) * 2021-12-30 2022-04-12 上海耀鸿科技股份有限公司 高塑性铝合金制件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176232A (zh) * 2020-09-30 2021-01-05 福建祥鑫股份有限公司 一种高导热铝合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103387A (zh) * 2012-11-09 2013-05-15 安徽欣意电缆有限公司 Al-Fe-C-RE铝合金及其制备方法和电力电缆
US20200190634A1 (en) * 2017-08-14 2020-06-18 Brunel University London Method of forming a cast aluminium alloy
CN112143945A (zh) * 2020-09-23 2020-12-29 上海耀鸿科技股份有限公司 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
CN114318183A (zh) * 2021-12-30 2022-04-12 上海耀鸿科技股份有限公司 高塑性铝合金制件及其制备方法

Also Published As

Publication number Publication date
CN114318183A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN108425050B (zh) 一种高强高韧铝锂合金及其制备方法
WO2020113713A1 (fr) Alliage d'aluminium-silicium coulé à résistance et ductilité élevées, procédé de fabrication de celui-ci et applications de celui-ci
JP3194742B2 (ja) 改良リチウムアルミニウム合金系
WO2023125282A1 (fr) Pièce en alliage d'aluminium modifiée composite à haute plasticité et son procédé de préparation
WO2023125263A1 (fr) Alliage composite de terres rares pour modification d'alliage d'aluminium et son procédé de préparation
CN110306083B (zh) 高强韧铝硅基复合材料焊丝及其制备方法
US20220389539A1 (en) Preparation method of high-strength and high-toughness a356.2 metal matrix composites for hub
CN110029258B (zh) 一种高强韧变形镁合金及其制备方法
WO2020237943A1 (fr) Tuyau en alliage de cuivre à haute résistance et haute conductivité et procédé d'élaboration associé
CN109972009B (zh) 一种高强韧高模量变形镁合金及其制备方法
WO2023125262A1 (fr) Alliage d'aluminium modifié et procédé de préparation associé
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN111270114A (zh) 一种高强度7150铝合金中厚板的制备工艺
CN109402471B (zh) 一种基于熔铸和热挤压的7系铝合金材料及其制造方法
WO2022228548A1 (fr) Coffrage de construction en alliage d'aluminium et son procédé de préparation
WO2023125266A1 (fr) Pièce en alliage d'aluminium à haute plasticité et son procédé de fabrication
CN112430767B (zh) 一种大规格空心铸锭及铸锭方法
WO2023125264A1 (fr) Pièce en alliage d'aluminium à haute résistance et son procédé de préparation
CN114231800B (zh) 一种高性能低碳铝合金与制备方法
WO2023125265A1 (fr) Pièce en alliage d'aluminium modifié composite à haute résistance et son procédé de préparation
CN110592503A (zh) 一种Al-6Si-3.5Cu型铸造铝合金的强韧化热处理工艺方法
CN112522557B (zh) 一种高强韧压铸铝合金材料
WO2018184400A1 (fr) Procédé synergique de métamorphisme et microalliage pour alliage al-si hypoeutectique de coulée
CN112159917A (zh) 一种大规格高纯均质细晶铝合金铸锭及铸造方法
CN115449683A (zh) 一种镁合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914520

Country of ref document: EP

Kind code of ref document: A1