WO2023125101A1 - 电源中转电路板短路检测的设备和方法 - Google Patents

电源中转电路板短路检测的设备和方法 Download PDF

Info

Publication number
WO2023125101A1
WO2023125101A1 PCT/CN2022/139964 CN2022139964W WO2023125101A1 WO 2023125101 A1 WO2023125101 A1 WO 2023125101A1 CN 2022139964 W CN2022139964 W CN 2022139964W WO 2023125101 A1 WO2023125101 A1 WO 2023125101A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
power transfer
transfer circuit
layer
short
Prior art date
Application number
PCT/CN2022/139964
Other languages
English (en)
French (fr)
Inventor
林沛庆
查斌
曹传杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125101A1 publication Critical patent/WO2023125101A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present application relates to the technical field of communication, and more particularly, to a device and a method for detecting a short circuit of a power transfer circuit board.
  • the current flowing through the power transfer circuit board can usually reach hundreds of amperes, which is much larger than the flowing current of the partition power supply.
  • the current flowing through the power transfer circuit board will rise sharply in a short period of time, which may lead to a fire safety accident.
  • the present application provides a device and method for short-circuit detection of a power transfer circuit board. It can quickly and accurately identify the short-circuit fault of the power transfer circuit board, and avoid the open flame burning safety accident caused by the continuous short circuit of the power transfer circuit board.
  • a device for detecting a short circuit of a power relay circuit board includes: a power transfer circuit board, used to obtain power from the power board and supply power to other boards in the device; a detection circuit layer, used to detect the change vectors of multiple areas of the power transfer circuit board, and to detect the relationship between the circuit layer and the power supply The coupling of the transfer circuit board; the control circuit is used to determine the short circuit of the power transfer circuit board according to the change vector.
  • the device disclosed in this application divides the power transfer circuit board into multiple regions by detecting the circuit layer, determines whether the power transfer circuit board is short-circuited according to the change vectors of the multiple regions of the power transfer circuit board, and can quickly and accurately identify the power transfer circuit Board short circuit fault, to avoid open flame burning safety accidents caused by continuous short circuit of the power transfer circuit board.
  • the above-mentioned change vector is the actual temperature of the power transfer circuit board
  • the detection circuit layer is an optical fiber layer.
  • the above-mentioned device also includes a transceiver circuit for periodically sending a detection pulse light signal to the optical fiber layer.
  • the optical fiber layer is specifically used to determine the actual temperature of multiple regions of the power transfer circuit board according to the scattering and/or reflection parameters of the detected pulsed light signal.
  • the transceiver circuit is also used to obtain the normal working temperature of the power transfer circuit board; the control circuit is specifically used to determine the short circuit of the power transfer circuit board according to the actual temperature of the power transfer circuit board and the normal working temperature of the power transfer circuit board.
  • the device disclosed in this application detects the temperature of the power transfer circuit board in different regions through the optical fiber layer, determines whether the power transfer circuit board is short-circuited, can quickly and accurately identify the short-circuit fault of the power transfer circuit board, and avoids open flames caused by the continuous short circuit of the power transfer circuit board Combustion accidents.
  • the above-mentioned transceiver circuit is further configured to receive first information from the optical fiber layer, and the first information is used to indicate actual temperatures of multiple regions of the power transfer circuit board.
  • the optical fiber layer divides the power transfer circuit board into multiple grid-like regions.
  • the optical fiber layer includes a single-layer or multi-layer structure.
  • the above-mentioned change vector is the current of the power transfer circuit board
  • the detection circuit layer is a conductive wire layer.
  • the control circuit is specifically used to determine the short circuit of the power transfer circuit board by determining the current values of multiple regions of the power transfer circuit board.
  • the device disclosed in this application detects the current of the power transfer circuit board in different regions through the conductive wire layer to determine whether the power transfer circuit board is short-circuited, and can quickly and accurately identify the short-circuit fault of the power transfer circuit board, avoiding the fault caused by the continuous short circuit of the power transfer circuit board. Open flame burning safety accident.
  • the above-mentioned device further includes a transceiver circuit, configured to receive second information from the conductive wire layer, and the second information is used to indicate the location of multiple regions of the power transfer circuit board. current value.
  • the above-mentioned change vector is the voltage of the power transfer circuit board
  • the detection circuit layer is a conductive wire layer.
  • the control circuit is specifically used to determine the short circuit of the power transfer circuit board by determining the voltage values of multiple regions of the power transfer circuit board.
  • the device disclosed in this application detects the voltage of the power transfer circuit board in different regions through the conductive wire layer to determine whether the power transfer circuit board is short-circuited, and can quickly and accurately identify the short-circuit fault of the power transfer circuit board, avoiding the fault caused by the continuous short circuit of the power transfer circuit board. Open flame burning safety accident.
  • the above-mentioned device further includes a transceiver circuit, configured to receive third information from the conductive wire layer, and the third information is used to indicate the location of multiple regions of the power transfer circuit board. Voltage value.
  • the above-mentioned conductive thread layer includes a single-layer structure.
  • the conductive wire layer includes a multi-layer structure, and the multi-layer structure of the conductive wire layer divides the power transfer circuit board into a plurality of grid-like regions.
  • the conductive wire layer includes a conductive copper wire layer.
  • control circuit is also used to turn off the power supply output of the power board.
  • a method for detecting a short circuit of a power transfer circuit board includes: detecting change vectors of multiple regions of the power transfer circuit board, the power transfer circuit board is divided into multiple regions by the detection circuit layer, the detection circuit layer is coupled with the power transfer circuit board, and according to the multiple regions of the power transfer circuit board The change vector of , to determine the short circuit of the power transfer circuit board.
  • the change vector is the actual temperature of the power transfer circuit board
  • determining the short circuit of the power transfer circuit board according to the change vectors of multiple regions of the power transfer circuit board includes: obtaining the normal working temperature of the power transfer circuit board, according to the power supply The actual temperature of the transfer circuit board and the normal working temperature of the power transfer circuit board determine the short circuit of the power transfer circuit board.
  • the optical fiber layer divides the power transfer circuit board into multiple grid-like regions.
  • the optical fiber layer includes a single-layer or multi-layer structure.
  • the above-mentioned change vector is the current of the power transfer circuit board
  • the detection circuit layer is a conductive wire layer.
  • determining the short circuit of the power transfer circuit board includes: determining the short circuit of the power transfer circuit board by determining the current interruption of the power transfer circuit board.
  • the change vector is the voltage of the power transfer circuit board
  • the detection circuit layer is a conductive wire layer.
  • determining the short circuit of the power transfer circuit board includes: determining the short circuit of the power transfer circuit board by determining the voltage of the power transfer circuit board.
  • the above-mentioned conductive thread layer includes a single-layer structure.
  • the conductive wire layer includes a multi-layer structure, and the multi-layer structure of the conductive wire layer divides the power transfer circuit board into a plurality of grid-like regions.
  • the conductive wire layer includes a conductive copper wire layer.
  • the above method further includes: turning off the power supply output of the power board of the power transfer circuit board.
  • a device for detecting a short circuit of a power relay circuit board includes: a processing unit, which is used to detect the change vector detection circuit layer of multiple regions of the power transfer circuit board and is coupled with the power transfer circuit board.
  • the processing unit is further configured to determine the short circuit of the power transfer circuit board according to the change vectors of multiple regions of the power transfer circuit board.
  • the above-mentioned change vector is the actual temperature of the power transfer circuit board
  • the detection circuit layer is an optical fiber layer.
  • the above device also includes a transceiver unit, configured to periodically send detection pulsed light signals to the optical fiber layer, and the processing unit is specifically configured to determine the actual temperatures of multiple regions of the power transfer circuit board according to the scattering and/or reflection parameters of the detection pulsed light signals .
  • the transceiver unit is also used to obtain the normal working temperature of the power transfer circuit board.
  • the processing unit is specifically used to determine the short circuit of the power transfer circuit board according to the actual temperature of the power transfer circuit board and the normal working temperature of the power transfer circuit board.
  • the optical fiber layer divides the power transfer circuit board into multiple grid-like regions.
  • the optical fiber layer includes a single-layer or multi-layer structure.
  • the change vector is the current of the power transfer circuit board
  • the detection circuit layer is a conductive wire layer.
  • the processing unit is used to determine the short circuit of the power transfer circuit board by determining the current interruption of the power transfer circuit board.
  • the change vector is the voltage of the power transfer circuit board
  • the detection circuit layer is a conductive wire layer.
  • the processing unit is used to determine the short circuit of the power transfer circuit board by determining the magnitude of the voltage of the power transfer circuit board.
  • the above-mentioned conductive thread layer includes a single-layer structure.
  • the conductive wire layer includes a multi-layer structure, and the multi-layer structure of the conductive wire layer divides the power transfer circuit board into a plurality of grid-like regions.
  • the conductive wire layer includes a conductive copper wire layer.
  • the processing unit is also used to turn off the output of the power board of the power transfer circuit board.
  • a computer-readable storage medium stores program codes for device execution, where the program codes are used to execute the method provided by the second aspect above.
  • a computer program product including instructions is provided.
  • the computer program product runs on the computer, the computer is made to execute the method provided by the second aspect above.
  • a chip is provided, and the chip includes a processor and a communication interface.
  • the processor reads the instruction stored in the memory through the communication interface, and executes the method provided by the second aspect above.
  • the chip may further include a memory. Instructions are stored in the memory, and the processor is used to execute the instructions stored in the memory. When the instructions are executed, the processor is used to execute the method provided by the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication device with a multi-input power supply board.
  • FIG. 2 is a schematic structural diagram of a device for detecting a short circuit of a power relay circuit board provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of different coupling modes between the detection circuit layer and the power transfer circuit board provided by the embodiment of the present application.
  • FIG. 4 is a schematic top view of the power transfer circuit board divided into multiple regions by the detection circuit layer provided by the embodiment of the present application.
  • FIG. 5 is a schematic top view in which the detection circuit layer provided by the embodiment of the present application is an optical fiber layer.
  • FIG. 6 is a schematic top view of the detection circuit layer provided by the embodiment of the present application as a conductive wire layer.
  • FIG. 7( a ) is a schematic structural diagram of detecting current through a conductive wire layer provided by an embodiment of the present application.
  • FIG. 7( b ) is a schematic structural diagram of voltage detection through a conductive wire layer provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for detecting a short circuit of a power transfer circuit board provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of a specific example of a method for detecting a short circuit of a power relay circuit board provided by an embodiment of the present application.
  • FIG. 10 is a flow chart of another specific example of the method for detecting a short circuit of a power relay circuit board provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of another specific example of the method for detecting a short circuit of a power relay circuit board provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a device for detecting a short circuit of a power relay circuit board provided by the present application.
  • Fig. 1 shows a schematic diagram of a large power pool device with multiple input power boards.
  • PSU power supply unit
  • Each power board has an input over-current protection switch, and the maximum over-current protection value is 60 amperes .
  • the negative 48V regulated power output from the power board is combined on the power transfer circuit board to form the same negative 48V power plane, also known as the large power pool plane.
  • the power supply current of each PSU is usually between 25 and 30 amperes. At this time, the current of the power plane of the power transfer circuit board is stable, and the total load of the power supply system will not appear large. sudden change in current.
  • the equipment power transfer circuit board is powered by a complete single-plane negative 48V power supply, the sudden surge current caused by the short circuit distributed to the front-end 10 PSU power board modules will not be too large (for example, 10 to 20 amps) , even if the current of 25 to 30 amps per PSU power board module is added when the device is fully equipped, it will not exceed the maximum flow capacity of the overcurrent protection switch (for example, 60 amps). Therefore, the overcurrent protection switch of the PSU power board module will not be disconnected.
  • the current flowing through the negative 48V power plane of the power transfer circuit board can reach more than 300 amperes in a short period of time, and the highest can reach 600 amperes, which is much larger than ordinary The maximum flow current of the partition power supply scheme.
  • active short-circuit protection design should be done in the design of the power transfer circuit board, for example, the design optimization of the backplane PCB stacking, keeping the safe distance between the power supply and the ground plane, keeping the power plane of the backplane PCB from being exposed, Install screw holes and structural parts to avoid the backplane PCB power supply area, add a protective cover on the exposed copper strip of the negative 48V power supply on the backplane, use back drilling and insulating film protection for the exposed pins on the backplane of the power connector, and prevent the pin row of the connector terminal Cloth, increase the protective cover to prevent foreign matter from entering and other strengthening measures.
  • the above-mentioned physical method of preventing the short circuit of the power transfer circuit board in advance can reduce the risk of short circuit caused by the design defect of the equipment power transfer circuit board PCB and the reverse pin of the power connector to a certain extent.
  • the above-mentioned technology still cannot avoid the short circuit of the power transfer circuit board PCB due to abnormal problems such as the blowing of foreign objects by metal wires and the entry of unknown liquids. Therefore, the problem of burning board and burning machine caused after the short circuit of the equipment power transfer circuit board cannot be completely solved.
  • the present application proposes a device and method for short-circuit detection of the power transfer circuit board, in order to quickly and accurately identify the short-circuit fault of the power transfer circuit board, and avoid open flame burning safety accidents caused by the continuous short circuit of the power transfer circuit board.
  • FIG. 2 shows a schematic structural diagram of a device for detecting a short circuit of a power relay circuit board provided by the present application.
  • the equipment for short-circuit detection of the power transfer circuit board includes a power transfer circuit board, a detection circuit layer and a control circuit.
  • the device may also include transceiver circuits, memory (circuits), and the like.
  • the power transfer circuit board can also be the above-mentioned backplane, which is used to obtain power from one or more power supply boards and provide power for other single boards in the device (for example, the main control board, etc.) power supply.
  • the detection circuit layer is used to detect the change vectors of multiple regions of the power transfer circuit board, and the detection circuit layer may be a one-layer or multi-layer structure.
  • the control circuit is used to determine the short circuit of the power transfer circuit board according to the change vector.
  • the detection circuit layer is coupled to the power transfer circuit board, and can divide the power transfer circuit board into multiple regions.
  • FIG. 3 shows a schematic diagram of different ways of coupling the detection circuit layer and the power transfer circuit board provided by the present application.
  • the detection circuit layer can be embedded in the power transfer circuit board and become a new part of the power transfer circuit board.
  • the detection circuit layer can be fixed on the bottom of the power transfer circuit board to achieve the purpose of coupling with the power transfer circuit board.
  • the detection circuit layer may also include a multi-layer structure.
  • the multi-layer structure can be respectively embedded in different layers inside the power transfer circuit board.
  • the multilayer structure can be respectively fixed on the top and bottom of the power transfer circuit board.
  • the detection circuit layer includes a multi-layer structure
  • part of the multi-layer structure can be embedded inside the power transfer circuit board, and the other part can be fixed outside (for example, top, bottom or side) of the power transfer circuit board.
  • the detection circuit layer can be coupled with the power transfer circuit board as close as possible to the strain area caused by the short circuit of the power supply, so as to quickly and accurately sense the parameter changes that cause the short circuit of the power transfer circuit board, thereby quickly and accurately identifying the power transfer Circuit board short circuit fault.
  • FIG. 4 shows a schematic top view of the power transfer circuit board divided into multiple regions by the detection circuit layer provided in the present application.
  • the detection circuit layer can divide the power transfer circuit board into a plurality of grid-like regions, so that the change vector of the power transfer circuit board can be detected on average to the greatest extent.
  • the number of detection circuit layers or the density of detection circuit layers may also be increased.
  • the detection circuit layer in the dotted line is added to divide the power transfer circuit board into a plurality of denser grid-like areas.
  • FIG. 5 is a schematic top view in which the detection circuit layer provided by the present application is an optical fiber layer.
  • the detection circuit layer is an optical fiber layer
  • many small grid regions can be formed in a staggered manner in the top view direction.
  • the optical time domain reflectometer (OTDR) technology can be used to monitor the physical quantities around the optical fiber, which can monitor the changes of physical parameters such as vibration, temperature, stress (deformation) and the corresponding specific fiber location.
  • the actual temperature of the power transfer circuit board can be monitored by using the temperature change monitoring characteristic of the optical fiber sensor, so as to quickly and accurately identify the short circuit fault of the power transfer circuit board.
  • the optical fiber sensing laid on the detection circuit layer may be one or multiple. The more optical fibers are laid, the higher the accuracy of the temperature change and the specific location of the short circuit detection of the power transfer circuit board.
  • the optical fiber layer can monitor the actual temperature of the power transfer circuit board.
  • the equipment for detecting the short circuit of the power transfer circuit board also includes a transceiver circuit, which is used to periodically send the detection pulsed light signal to the optical fiber layer.
  • the scattering and/or reflection of the detection pulsed light signal is detected parameters to monitor changes in fiber temperature.
  • detecting the scattering and/or reflection parameters of the pulsed light signal may include detecting the energy of the pulsed light signal, detecting the wavelength of the pulsed light signal, and the like.
  • the optical fiber layer can detect the temperature change of the power transfer circuit board, and send the temperature change to the control circuit.
  • the control circuit compares the temperature of the power transfer circuit board when it is working normally, and finds that the actual temperature of the local area is greater than the normal operating temperature, and the difference exceeds the preset safety threshold, then it is determined that the temperature rise in the local area is an abnormal problem, which can be quickly resolved. It was learned that a short circuit occurred on the power transfer circuit board.
  • the specific fiber length position of the temperature rise point can be detected, and based on the grid arrangement scheme of the fiber optic arrangement, the specific temperature rise abnormal point of the power transfer circuit board can be accurately found. Further, when it is determined that a short-circuit fault occurs on the power transfer circuit board, the control circuit can also be used to turn off the power supply output of the front-stage power supply board of the power transfer circuit board.
  • the device disclosed in this application divides the power transfer circuit board into multiple regions through the optical fiber layer, and determines whether the power transfer circuit board is short-circuited according to the comparison results of the actual temperature of the multiple regions of the power transfer circuit board and the normal operating temperature, which can quickly , Accurately identify the short-circuit fault of the power transfer circuit board, and avoid the open flame burning safety accident caused by the continuous short circuit of the power transfer circuit board.
  • FIG. 6 shows a schematic top view in which the detection circuit layer provided by the present application is a conductive line layer.
  • the detection circuit layer when it is a conductive layer, it can be set on a single layer as shown in Figure 6(a) or 6(b) form. Furthermore, when the conductive wire layer includes a multi-layer structure, multiple single layers can form many small grid areas in the direction of the top view, so that the detection speed and accuracy can be further improved.
  • the conductive wire laid on the detection circuit layer may be one or multiple. The more the number of conductive wires is laid, the higher the accuracy of the current change of the short circuit detection of the power transfer circuit board.
  • the conductive wire layers laid on the detection circuit layer include but are not limited to conductive copper wire layers, conductive silver wire layers, etc.
  • FIG. 7 shows a schematic structural diagram of short circuit detection through a conductive wire layer provided by the present application.
  • the above-mentioned change vector is the current of the power transfer circuit board.
  • the control circuit can determine the short circuit of the power transfer circuit board by determining the current values of multiple regions of the power transfer circuit board. As shown in Figure 7(a), when the power transfer circuit board is working normally, voltage values can be detected at both ends of A and B, that is, there is a normal working current between A and B. At this time, the conductive wire layer can send the current value between A and B to the control circuit through the electrical signal connector.
  • the control circuit can determine whether the current value between A and B is 0. Whether there is a short circuit failure on the circuit board. Further, when it is determined that a short-circuit fault occurs on the power transfer circuit board, the control circuit can also be used to turn off the power supply output of the front-stage power supply board of the power transfer circuit board.
  • the device disclosed in this application divides the power transfer circuit board into multiple areas through the conductive wire layer, and determines whether the power transfer circuit board is short-circuited according to the current on and off of the multiple areas of the power transfer circuit board, and can quickly and accurately identify The short-circuit fault of the power transfer circuit board avoids the safety accident of open flame burning caused by the continuous short circuit of the power transfer circuit board.
  • the above-mentioned change vector is the voltage of the power transfer circuit board.
  • the control circuit can determine the short circuit of the power transfer circuit board by determining the voltage values of multiple regions of the power transfer circuit board. As shown in Figure 7(b), when the power transfer circuit board is working normally, the voltage value of terminal C can be detected, and when the power transfer circuit board has a short-circuit fault, the voltage value of terminal C changes from high level 1 to low level Ping 0. At this time, the conductive wire layer can send the voltage value of the terminal C to the control circuit through the electrical signal connector. The control circuit can determine whether a short-circuit fault occurs on the power transfer circuit board according to whether the voltage value of the terminal C is low level 0. Further, when it is determined that a short-circuit fault occurs on the power transfer circuit board, the control circuit can also be used to turn off the power supply output of the front-stage power supply board of the power transfer circuit board.
  • FIG. 8 shows a schematic flowchart of a method for detecting a short circuit of a power transfer circuit board provided by the present application. As shown in Figure 8, the method includes the following two steps.
  • the detection circuit layer is coupled to the power transfer circuit board, and the coupling method refers to the description in FIG. 3 , which will not be repeated here.
  • the above-mentioned change vector can be temperature, and the optical fiber layer can divide the power transfer circuit board into grid-like multiple regions, and the optical fiber layer can include a single-layer or multi-layer structure; when the detection circuit layer When the conductive wire layer is included, the above-mentioned change vector can be current or voltage.
  • the conductive wire layer can be a single-layer structure, and the power transfer circuit board can be divided into multiple strip-shaped regions.
  • the conductive wire can also be a multi-layer structure.
  • the power transfer circuit board can be divided into multiple grid-like areas.
  • the conductive wire layer includes but not limited to a conductive copper wire layer, a conductive silver wire layer, and the like.
  • S820 Determine the short circuit of the power transfer circuit board according to the change vectors of multiple regions of the power transfer circuit board.
  • the method disclosed in this application divides the power transfer circuit board into multiple regions by detecting the circuit layer, determines whether the power transfer circuit board is short-circuited according to the change vectors of the multiple regions of the power transfer circuit board, and can quickly and accurately identify the power transfer circuit Board short circuit fault, to avoid open flame burning safety accidents caused by continuous short circuit of the power transfer circuit board.
  • FIG. 9 shows a flow chart of a specific example of the method for detecting a short circuit of a power relay circuit board provided by the present application. As shown in Fig. 9, the method includes the following steps.
  • the detection circuit layer is an optical fiber layer
  • the change vector is temperature.
  • the normal working temperature Y of multiple regions of the power transfer circuit board is obtained through the detection circuit layer.
  • the locally configured or saved temperatures Y of the normal working temperatures of multiple regions of the power transfer circuit board may be acquired.
  • the temperature Y may be a value (for example, 40° C.), or an interval (for example, 30-50° C.).
  • the change of the temperature of the optical fiber can be monitored by detecting the scattering and/or reflection parameters of the probe pulse light signal with reference to the principle of Rayleigh scattering.
  • detecting the scattering and/or reflection parameters of the pulsed light signal may include detecting the energy of the pulsed light signal, detecting the wavelength of the pulsed light signal, and the like.
  • the local circuit board When any area of the power transfer circuit board is short-circuited, the local circuit board is carbonized and the temperature rises.
  • the temperature Y of the power transfer circuit board can be detected through the optical fiber layer, and the temperature Y is sent to the control circuit.
  • the actual temperature X of the local area is greater than the normal operating temperature Y, and the difference exceeds the preset preset value, then it is determined that the temperature rise in the local area belongs to If there is an abnormal problem, you can quickly know that there is a short circuit on the power transfer circuit board.
  • the actual temperature X of the local area is lower than the normal working temperature Y, or higher than the normal working temperature Y, but the difference does not exceed the preset preset value, the above detection process is continued.
  • the specific optical fiber length position of the temperature rise point can be detected according to the characteristics of optical fiber sensing. Based on the grid arrangement scheme of optical fiber arrangement, it is possible to accurately find the specific temperature rise abnormal point of the power transfer circuit board.
  • the power transfer circuit board When it is determined that the actual temperature X of the local area is greater than the normal operating temperature Y, and the difference exceeds the preset preset value, it is determined that the power transfer circuit board has a short-circuit fault, and the power transfer circuit board can be shut down by the control circuit.
  • the power supply output of the front-end power board When it is determined that the actual temperature X of the local area is greater than the normal operating temperature Y, and the difference exceeds the preset preset value, it is determined that the power transfer circuit board has a short-circuit fault, and the power transfer circuit board can be shut down by the control circuit.
  • the power supply output of the front-end power board When it is determined that the actual temperature X of the local area is greater than the normal operating temperature Y, and the difference exceeds the preset preset value, it is determined that the power transfer circuit board has a short-circuit fault, and the power transfer circuit board can be shut down by the control circuit.
  • the power supply output of the front-end power board When it is
  • the method disclosed in this application divides the power transfer circuit board into multiple regions through the optical fiber layer, and determines whether the power transfer circuit board is short-circuited according to the comparison results between the actual temperature of the multiple regions of the power transfer circuit board and the normal operating temperature, which can quickly , Accurately identify the short-circuit fault of the power transfer circuit board, and avoid the open flame burning safety accident caused by the continuous short circuit of the power transfer circuit board.
  • FIG. 10 shows a flow chart of another specific example of the method for detecting a short circuit of a power relay circuit board provided by the present application. As shown in Fig. 10, the method includes the following steps.
  • the detection circuit layer is a conductive wire layer
  • the change vector is a current
  • the carbonization of the power transfer circuit board will cause the conductive wire to become an open circuit (the current value is 0 at this time), so it can be determined according to whether the current L in multiple areas of the power transfer circuit board is 0, to determine whether the power transfer circuit board is short-circuited.
  • the method disclosed in this application divides the power transfer circuit board into multiple regions through the conductive wire layer, and determines whether the power transfer circuit board is short-circuited according to the on-off of the current in the multiple regions of the power transfer circuit board, and can quickly and accurately identify The short-circuit fault of the power transfer circuit board avoids the safety accident of open flame burning caused by the continuous short circuit of the power transfer circuit board.
  • FIG. 11 shows a flow chart of another specific example of the method for detecting a short circuit of a power relay circuit board provided by the present application. As shown in Fig. 11, the method includes the following steps.
  • the detection circuit layer is a conductive wire layer
  • the change vector is a voltage
  • the power transfer circuit board is short-circuited.
  • the method disclosed in this application divides the power transfer circuit board into multiple regions through the conductive wire layer, and determines whether the power transfer circuit board is short-circuited according to the voltage of the multiple regions of the power transfer circuit board, and can quickly and accurately identify the power source
  • the short-circuit fault of the transfer circuit board can avoid the safety accident of open flame burning caused by the continuous short circuit of the power transfer circuit board.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the method implemented by the device may also be implemented by a component (such as a chip or a circuit) that can be configured inside the device.
  • the device for detecting a short circuit of a power transfer circuit board can be divided into functional modules.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • the equipment involved in any one of the above-mentioned methods 800 to 1100 can be implemented by the equipment 200 for short-circuit detection of the power transfer circuit board shown in FIG. 2 .
  • the device 200 for detecting the short circuit of the power relay circuit board may be a physical device, a component of the physical device, or a functional module in the physical device.
  • the device 200 for detecting a short circuit of a power transfer circuit board includes a detection circuit layer, a power transfer circuit board, and a control circuit. Although not shown, the device 200 may also include transceiver circuits, storage circuits, and the like.
  • the control circuit may store an execution instruction for executing the method of the embodiment of the present application.
  • the interface can be called in the control circuit to implement the receiving and sending functions.
  • the interface may be a logical interface or a physical interface, which is not limited.
  • the interface may be a transceiver circuit, or an interface circuit.
  • the transceiver circuits or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit or interface circuit can be used for signal transmission or transfer.
  • the control circuit may also be called a controller, a processor, etc., and is used to realize processing functions.
  • the interface can be realized by a transceiver circuit.
  • the device 200 also includes transceiver circuitry.
  • the transceiver circuit may be called a transceiver unit, a transceiver module, a transmission module, a transceiver or a transceiver, etc., and is used to realize a transceiver function.
  • the device 200 further includes a storage circuit.
  • the embodiment of the present application does not specifically limit the specific deployment location of the storage circuit, and the storage circuit may be integrated in the processing circuit, or may be independent of the processing circuit.
  • the storage circuit may also be called a memory, etc., and is used to realize a storage function.
  • control circuit the transceiver circuit and the storage circuit communicate with each other through internal connection paths, and transmit control and/or data signals.
  • control circuit is a processor
  • the storage circuit is a memory
  • the transceiver circuit is a transceiver
  • the memory may store execution instructions for executing the method of the embodiment of the present application.
  • the processor can execute the instructions stored in the memory in conjunction with other hardware (such as a transceiver) to complete the steps performed by the method shown above.
  • other hardware such as a transceiver
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory, and completes the steps of the above method in combination with its hardware.
  • memory can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory RAM, which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • synchronous link DRAM synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • FIG. 12 shows a schematic structural diagram of a device for detecting a short circuit of a power relay circuit board provided by the present application.
  • the specific form of the device 1200 for detecting a short circuit of a power relay circuit board may be a general computer device or a chip in a general computer device, which is not limited in this embodiment of the present application.
  • the device for detecting a short circuit of a power relay circuit board includes a processing unit 1210 and a transceiver unit 1220 .
  • the processing unit 1210 is coupled to the power transfer circuit board for detecting the change vector detection circuit layer of multiple regions of the power transfer circuit board.
  • the processing unit 1210 is further configured to determine that the power transfer circuit board is short-circuited according to the change vectors of multiple regions of the power transfer circuit board.
  • the transceiver unit 1220 may be configured to execute steps S910 and S920 described in FIG. 9 , step S1010 described in FIG. 10 , and step S1110 described in FIG. 11 .
  • the processing unit 1210 may be configured to execute steps S930 and S940 described in FIG. 9 , steps S1020 and S1030 described in FIG. 10 , and steps S1120 and S1130 described in FIG. 11 .
  • the processing unit 1210 in the device 1200 for detecting a short circuit of a power relay circuit board can be implemented by at least one control circuit, for example, it can correspond to the control circuit shown in FIG. 2 .
  • the device 1200 for detecting a short circuit of a power relay circuit board is presented in the form of a functional module.
  • the "module” here may refer to an application-specific integrated circuit ASIC, a circuit, a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • device 1200 may take the form shown in FIG. 12 .
  • the processing unit can be realized by the control circuit shown in FIG. 2 .
  • the processing unit may be implemented by a control circuit (or processor) and a storage circuit (or memory).
  • the transceiver unit can be implemented by a transceiver circuit (or transceiver).
  • the transceiver circuit (or transceiver) includes a receiving function and a sending function.
  • the control circuit (or processor) is realized by executing a computer program stored in the memory.
  • the storage circuit (or memory) may be a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, Alternatively, it may also be a storage unit deployed in other systems or devices, not in the computer device.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, or tapes, etc.
  • optical disks e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the present application further provides a computer program product.
  • the computer program product includes: computer program code, when the computer program code is run on the computer, the computer is made to execute the method of any one of the embodiments shown in FIG. 8 to FIG. 11 .
  • the present application also provides a computer-readable medium.
  • the computer-readable medium stores program codes, and when the program codes are run on the computer, the computer is made to execute the method of any one of the embodiments shown in FIG. 8 to FIG. 11 .
  • the present application also provides a system. It includes the aforementioned devices or devices.
  • the above-mentioned embodiments may be partially realized by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种电源中转电路板短路检测的设备(200)和方法。设备(200)包括:电源中转电路板,用于从电源板获得电源并为设备(200)中的其他单板供电;检测电路层,用于检测电源中转电路板的多个区域的变化向量,检测电路层与电源中转电路板耦合;控制电路,用于根据变化向量,确定电源中转电路板短路。通过检测电路层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的变化向量确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。

Description

电源中转电路板短路检测的设备和方法
本申请要求于2021年12月30日提交中国国家知识产权局、申请号202111659245.1、申请名称为“电源中转电路板短路检测的设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种电源中转电路板短路检测的设备和方法。
背景技术
随着通信产品容量的持续演进提升,通信设备的功耗急剧增大,电源中转电路板采用常规的分区供电已经难以满足通信设备的功耗需求。当前有一种大电源池的供电技术,例如,统一的负48伏特(volt,V)电源平面,其电源中转电路板(例如,背板)的负48V电源供电不再划分为不同分区的负48V电源平面,而是采用完整的单平面的负48V电源供电。
在上述技术中,电源中转电路板通流电流通常可达几百安培,远大于分区供电的通流电流。当电源中转电路板出现短路,电源中转电路板通流电流会在短时间内急剧上升,可能导致明火燃烧安全事故。
因此,亟需一种技术,能够识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
发明内容
本申请提供了一种电源中转电路板短路检测的设备和方法。能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
第一方面,提供了一种电源中转电路板短路检测的设备。该设备包括:电源中转电路板,用于从电源板获得电源并为设备中的其他单板供电;检测电路层,用于检测电源中转电路板的多个区域的变化向量,检测电路层与电源中转电路板耦合;控制电路,用于根据变化向量,确定电源中转电路板短路。
本申请揭示的设备,通过检测电路层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的变化向量确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
结合第一方面,在第一方面的某些实现方式中,上述变化向量为电源中转电路板的实际温度,检测电路层为光纤层。上述设备还包括收发电路,用于向光纤层周期性地发送探测脉冲光信号。光纤层具体用于根据探测脉冲光信号的散射和/或反射参数,确定电源中转电路板的多个区域的实际温度。
其中,收发电路还用于获取电源中转电路板正常工作的温度;控制电路具体用于根据电 源中转电路板的实际温度和电源中转电路板正常工作的温度,确定电源中转电路板短路。本申请揭示的设备,通过光纤层对电源中转电路板进行分区温度检测,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
结合第一方面,在第一方面的某些实现方式中,上述收发电路,还用于接收来自光纤层的第一信息,第一信息用于指示电源中转电路板的多个区域的实际温度。
结合第一方面,在第一方面的某些实现方式中,上述光纤层将电源中转电路板划分为网格状的多个区域。其中,光纤层包括单层或多层结构。
结合第一方面,在第一方面的另一些实现方式中,上述变化向量为电源中转电路板的电流,检测电路层为导电线层。控制电路具体用于通过确定电源中转电路板的多个区域的电流值,确定电源中转电路板短路。本申请揭示的设备,通过导电线层对电源中转电路板进行分区电流检测,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
结合第一方面,在第一方面的另一些实现方式中,上述设备还包括收发电路,用于接收来自导电线层的第二信息,第二信息用于指示电源中转电路板的多个区域的电流值。
结合第一方面,在第一方面的又一些实现方式中,上述变化向量为电源中转电路板的电压,检测电路层为导电线层。控制电路具体用于通过确定电源中转电路板的多个区域的电压值,确定电源中转电路板短路。本申请揭示的设备,通过导电线层对电源中转电路板进行分区电压检测,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
结合第一方面,在第一方面的又一些实现方式中,上述设备还包括收发电路,用于接收来自导电线层的第三信息,第三信息用于指示电源中转电路板的多个区域的电压值。
其中,上述导电线层包括单层结构。或者,上述导电线层包括多层结构,导电线层的多层结构将电源中转电路板划分为网格状的多个区域。可选的,导电线层包括导电铜线层。
可选的,当确定电源中转电路板短路故障后,上述控制电路还用于关断电源板的供电输出。
第二方面,提供了一种电源中转电路板短路检测的方法。该方法包括:检测电源中转电路板的多个区域的变化向量,电源中转电路板被检测电路层划分为多个区域,检测电路层与电源中转电路板耦合,根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路。
结合第二方面,在第二方面的某些实现方式中,变化向量为电源中转电路板的实际温度,检测电路层为光纤层。检测电源中转电路板的多个区域的变化向量,包括:向光纤层周期性地发送探测脉冲光信号,根据探测脉冲光信号的散射和/或反射参数,确定电源中转电路板的多个区域的实际温度。
结合第二方面,在第二方面的某些实现方式中,根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路,包括:获取电源中转电路板正常工作的温度,根据电源中转电路板的实际温度和电源中转电路板正常工作的温度,确定电源中转电路板短路。
结合第二方面,在第二方面的某些实现方式中,光纤层将电源中转电路板划分为网格状的多个区域。其中,光纤层包括单层或多层结构。
结合第二方面,在第二方面的另一些实现方式中,上述变化向量为电源中转电路板的电流,检测电路层为导电线层。根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路,包括:通过确定电源中转电路板的电流中断,确定电源中转电路板短路。
结合第二方面,在第二方面的又一些实现方式中,变化向量为电源中转电路板的电压,检测电路层为导电线层。根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路,包括:通过确定电源中转电路板的电压的大小,确定电源中转电路板短路。
其中,上述导电线层包括单层结构。或者,上述导电线层包括多层结构,导电线层的多层结构将电源中转电路板划分为网格状的多个区域。可选的,导电线层包括导电铜线层。
可选的,当确定电源中转电路板短路故障后,上述方法还包括:关断电源中转电路板的电源板的供电输出。
第三方面,提供了一种电源中转电路板短路检测的装置。该装置包括:处理单元,用于检测电源中转电路板的多个区域的变化向量检测电路层与电源中转电路板耦合。处理单元,还用于根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路。
结合第三方面,在第三方面的某些实现方式中,上述变化向量为电源中转电路板的实际温度,检测电路层为光纤层。上述装置还包括收发单元,用于向光纤层周期性地发送探测脉冲光信号,处理单元具体用于根据探测脉冲光信号的散射和/反射参数,确定电源中转电路板的多个区域的实际温度。
其中,收发单元还用于获取电源中转电路板正常工作的温度。处理单元具体用于根据电源中转电路板的实际温度和电源中转电路板正常工作的温度,确定电源中转电路板短路。
结合第三方面,在第三方面的某些实现方式中,光纤层将电源中转电路板划分为网格状的多个区域。其中,光纤层包括单层或多层结构。
结合第三方面,在第三方面的另一些实现方式中,变化向量为电源中转电路板的电流,检测电路层为导电线层。处理单元用于通过确定电源中转电路板的电流中断,确定电源中转电路板短路。
结合第三方面,在第三方面的又一些实现方式中,变化向量为电源中转电路板的电压,检测电路层为导电线层。处理单元用于通过确定电源中转电路板的电压的大小,确定电源中转电路板短路。
其中,上述导电线层包括单层结构。或者,上述导电线层包括多层结构,导电线层的多层结构将电源中转电路板划分为网格状的多个区域。可选的,导电线层包括导电铜线层。
可选的,处理单元还用于关断电源中转电路板的电源板的输出。
第四方面,提供了一种计算机可读存储介质。该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第二方面提供的方法。
第五方面,提供一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第二方面提供的方法。
第六方面,提供一种芯片,该芯片包括处理器与通信接口。该处理器通过该通信接口读取存储器上存储的指令,执行上述第二方面提供的方法。
可选地,作为一种实现方式,该芯片还可以包括存储器。该存储器中存储有指令,该处理器用于执行该存储器上存储的指令,当该指令被执行时,该处理器用于执行上述第二方面提供的方法。
附图说明
图1是一种多输入电源板的通信设备的结构示意图。
图2是本申请实施例提供的电源中转电路板短路检测的设备的结构示意图。
图3是本申请实施例提供的检测电路层与电源中转电路板不同的耦合方式的示意图。
图4是本申请实施例提供的检测电路层将电源中转电路板划分为多个区域的俯视示意图。
图5是本申请实施例提供的检测电路层为光纤层的俯视示意图。
图6是本申请实施例提供的检测电路层为导电线层的俯视示意图。
图7(a)是本申请实施例提供的通过导电线层检测电流的结构示意图。
图7(b)是本申请实施例提供的通过导电线层检测电压的结构示意图。
图8是本申请实施例提供的电源中转电路板短路检测的方法的示意性流程图。
图9是本申请实施例提供的电源中转电路板短路检测的方法的一例具体示例的流程图。
图10是本申请实施例提供的电源中转电路板短路检测的方法的另一例具体示例的流程图。
图11是本申请实施例提供的电源中转电路板短路检测的方法的又一例具体示例的流程图。
图12是本申请提供的电源中转电路板短路检测的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
随着通信产品容量的持续演进提升,通信设备的功耗急剧增大,常规的分区供电已经难以满足通信设备的功耗需求。当前有一种大电源池的供电技术,例如,统一的负48V电源平面,其电源中转电路板的负48V电源供电不再划分为不同分区的负48V电源平面,而是采用完整的单平面的负48V电源供电。
图1示出了一种多输入电源板的大电源池设备的示意图。如图1所示,该设备为一例典型的(N+N)型的大电源池设备。其额定功率为12KW,共有(5+5)=10个电源供电单元(power supply unit,PSU)电源板模块,每个电源板都有一个输入过流保护开关,最大过流保护值是60安培。电源板输出的负48V稳压电源,在电源中转电路板上合路为同一个负48V电源平面,也称为大电源池平面。当该大电源池设备满配正常工作时,每个PSU供电电流通常在25至30安培之间,此时电源中转电路板电源平面的电流稳定不变,供电系统的总负载不会出现大的电流突变。
造成设备电源中转电路板短路的原因较多,例如背板印制电路板(printed circuit board,PCB)设计缺陷、电源连接器倒针、金属丝异物吹入或不明液体进入等。在短路开始后,设备电源中转电路板与地之间的阻抗接近零,负48V电源中转电路板短路通流电流短时间内快速上升(例如突增到100至200安培)。由于设备电源中转电路板采用的是完整的单平面的负48V电源供电,短路引起的突增电流分配到前级10个PSU电源板模块的电流并不会太大(例如,10至20安培),即使加上设备满配工作时每个PSU电源板模块的25至30安培的电流,也不会超过过流保护开关的最高流通能力(例如60安培)。因此,PSU电源板模块的过流保护开关不会断开。
这样,一旦设备电源中转电路板因为外界原因导致负48V电源与地短路,该电源中转电路板负48V电源平面的通流电流短时间内可达到300安培以上,最高可达到600安培,远大于普通的分区供电方案的最大通流电流。
因此,大电源池电源中转电路板一旦出现短路问题,会出现后果严重的烧板问题,甚至可能导致的明火燃烧安全事故。
为了避免大电源池电源中转电路板的短路问题,当前有一类解决方案,在大电源池电源中转电路板设计时会采用提前预防电源中转电路板短路的物理方式,移除潜在的容易出现短路的风险。在产品设备开发阶段,在电源中转电路板的设计上做主动性的防短路加强设计,例如,背板PCB叠层设计优化、保持电源与地平面的安全距离、背板PCB电源平面不外露、安装螺钉孔和结构件避让背板PCB电源区域、在背板负48V电源外露铜条上增加防护罩、电源连接器背板外露引脚采用背钻加绝缘膜防护、连接器端子防倒针排布、增加防护罩避免异物进入等各种加强措施。
上述提前预防电源中转电路板短路的物理方式,可以在一定程度上降低因设备电源中转电路板PCB设计缺陷及电源连接器倒针引起的短路风险。但是,上述技术对于金属丝异物吹入、不明液体进入等异常问题导致电源中转电路板PCB短路仍然无法规避。因此,不能彻底解决设备电源中转电路板短路发生后引起的烧板烧机问题。
基于上述原因,本申请提出了一种电源中转电路板短路检测的设备和方法,以期望能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
图2示出了本申请提供的电源中转电路板短路检测的设备的示意性结构图。如图2所示,电源中转电路板短路检测的设备包括电源中转电路板、检测电路层和控制电路。尽管并未示出,该设备还可以包括收发电路、存储器(电路)等。其中,电源中转电路板也可以是上文所述的背板,用于从一个或多个电源板获得电源并为设备中的其他单板(例如,主控板、交叉板、业务板、风扇板等)供电。检测电路层用于检测电源中转电路板的多个区域的变化向量,该检测电路层可以是一层或多层结构。控制电路用于根据变化向量,确定电源中转电路板短路。
在本申请实施例中,检测电路层与电源中转电路板耦合,并可以将电源中转电路板分为多个区域。
图3示出了本申请提供的检测电路层与电源中转电路板耦合的不同方式的示意图。如图3(a)所示,检测电路层可以嵌入电源中转电路板,成为电源中转电路板新增的一部分。如图3(b)所示,检测电路层可以固定在电源中转电路板的底部,以达到与电源中转电路板耦合的目的。
可选的,为提高检测的准确率,检测电路层还可以包括多层结构。如图3(c)所示,该多层结构可以分别嵌入电源中转电路板内部的不同层。如图3(d)所示,该多层结构可以分别固定在电源中转电路板的顶部和底部。
应理解,尽管未示出,检测电路层与电源中转电路板还可以有其他耦合方式。例如,当检测电路层包括多层结构时,该多层结构还可以一部分嵌入电源中转电路板内部,另一部分固定在电源中转电路板的外部(例如,顶部、底部或者侧面)。总之,检测电路层可以与电源中转电路板耦合,尽可能地靠近电源短路引起的应变区域,从而快速、准确地感知到引起电 源中转电路板短路的参数变化情况,从而快速、准确地识别电源中转电路板短路故障。
图4示出本申请提供的检测电路层将电源中转电路板划分为多个区域的俯视示意图。如图4中实线部分所示,检测电路层可以将电源中转电路板划分为网格状的多个区域,这样,可以最大程度地平均检测到电源中转电路板的变化向量。
可选的,为进一步提升检测的速度和准确率,还可以增加检测电路层的层数或者检测电路层的密度。例如,图4中虚线部分所示,在已有实线部分检测电路层的基础上,增加虚线部分检测电路层,将电源中转电路板划分为密度更大的网格状的多个区域。
图5是本申请提供的检测电路层为光纤层的俯视示意图。如图5所示,当检测电路层为光纤层时,由于其是无源不导电的,在俯视方向上,可以按照交错形成众多小的网格区域。基于光纤内部的布里渊散射机制,可以利用光时域反射仪(optical time domain reflectometer,OTDR)技术实现光纤周边物理量的监测,可以监测振动、温度、应力(变形)等物理量参数的变化以及对应的具体光纤位置。本申请实施例中,可以利用光纤传感的监测温度变化的特性,对电源中转电路板的实际温度进行监测,从而快速、准确地识别电源中转电路板短路故障。
其中,检测电路层铺设的光纤传感,可以是一条,也可以是多条。铺设光纤数量越多,电源中转电路板短路检测的温度变化、具体地点的准确性就越高。
具体的,当检测电路层为光纤层时,该光纤层可以对电源中转电路板的实际温度进行监测。此时,电源中转电路板短路检测的设备还包括收发电路,该收发电路用于向光纤层周期性地发送探测脉冲光信号,参照瑞利散射原理,通过检测探测脉冲光信号的散射和/反射参数来监测光纤温度的变化。其中,探测脉冲光信号的散射和/反射参数可以包括探测脉冲光信号的能量、探测脉冲光信号的波长等。当电源中转电路板的任何区域短路后,局部电路板碳化,温度上升。光纤层可以检测到电源中转电路板的温度变化,并将该温度变化发送给控制电路。控制电路对比电源中转电路板正常工作时的温度,发现该局部区域的实际温度大于正常工作的温度,且差值超过预设的安全阈值,则确定该局部区域的温度上升属于异常问题,可以快速得知电源中转电路板发生短路。根据光纤传感的特性,可以检测到温度升高点的具体光纤长度位置,基于光纤排布的网格化排布方案,就可以精准找到电源中转电路板的具体温度上升异常点。进一步地,当确定该电源中转电路板发生短路故障后,控制电路还可以用于关断该电源中转电路板的前级电源板的供电输出。
本申请揭示的设备,通过光纤层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的实际温度与正常工作温度的比较结果,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
图6示出了本申请提供的检测电路层为导电线层的俯视示意图。
作为一种可能的实现方式,在本申请实施例中,如图5所示,当检测电路层为导电层时,在单层上可以设置为如图6(a)或6(b)所示的形式。进一步地,当导电线层包括多层结构时,多个单层在俯视方向上可以形成众多小的网格区域,这样,可以进一步提升检测的速度和准确率。
其中,检测电路层铺设的导电线,可以是一条,也可以是多条。铺设导电线数量越多,电源中转电路板短路检测的电流变化的准确性就越高。检测电路层铺设的导电线层包括但不 限于导电铜线层、导电银线层等。
图7示出了本申请提供的通过导电线层进行短路检测的结构示意图。
作为一种可能的实现方式,当检测电路层为导电线层时,上述变化向量为电源中转电路板的电流。控制电路可以通过确定电源中转电路板的多个区域的电流值,确定电源中转电路板短路。如图7(a)所示,在电源中转电路板正常工作时,A、B两端可以检测到电压值,即A、B之间存在正常工作的电流。此时,该导电线层可以通过电信号连接器将A、B之间的电流值发送给控制电路。当电源中转电路板发生短路后,电源中转电路板的碳化会导致导电线变成开路(电流值为0),因此控制电路可以根据A、B之间的电流值是否为0来确定该电源中转电路板是否发生短路故障。进一步地,当确定该电源中转电路板发生短路故障后,控制电路还可以用于关断该电源中转电路板的前级电源板的供电输出。
本申请揭示的设备,通过导电线层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的电流的通断,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
作为另一种可能的实现方式,当检测电路层为导电线层时,上述变化向量为电源中转电路板的电压。控制电路可以通过确定电源中转电路板的多个区域的电压值,确定电源中转电路板短路。如图7(b)所示,在电源中转电路板正常工作时,C端可以检测到电压值,而当电源中转电路板出现短路故障时,C端的电压值由高电平1变为低电平0。此时,该导电线层可以通过电信号连接器将C端的电压值发送给控制电路。控制电路可以根据C端的电压值是否为低电平0来确定该电源中转电路板是否发生短路故障。进一步地,当确定该电源中转电路板发生短路故障后,控制电路还可以用于关断该电源中转电路板的前级电源板的供电输出。
图8示出了本申请提供的电源中转电路板短路检测的方法的示意性流程图。如图8所示,该方法包括如下两个步骤。
S810,检测电源中转电路板的多个区域的变化向量,电源中转电路板被检测电路划分为多个区域。
其中,检测电路层与电源中转电路板耦合,其耦合方式参照图3中的描述,在此不再赘述。
当检测电路层包括光纤层时,上述变化向量可以是温度,光纤层可以将电源中转电路板划分为网格状的多个区域,该光纤层可以包括单层或多层结构;当检测电路层包括导电线层时,上述变化向量可以是电流或电压,该导电线层可以是单层结构,可以将电源中转电路板划分为长条状的多个区域,该导电线还可以是多层结构,可以将电源中转电路板划分为网格状的多个区域。其中,导电线层包括但不限于导电铜线层、导电银线层等。
S820,根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路。
本申请揭示的方法,通过检测电路层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的变化向量确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
图9示出了本申请提供的电源中转电路板短路检测的方法的一例具体示例的流程图。如图9所示,该方法包括如下多个步骤。
S910,获取电源中转电路板的多个区域正常工作的温度Y。
在该实施例中,检测电路层为光纤层,变化向量为温度。其中,获取电源中转电路板的多个区域正常工作的温度Y可以有多种方式,本申请不对其进行限定。例如,经过检测电路层获取电源中转电路板的多个区域正常工作的温度Y。又例如,可以获取本地配置或保存的电源中转电路板的多个区域正常工作的温度Y。
可选地,温度Y可以是一个值(例如,40℃),也可以是一个区间(例如,30-50℃)。
S920,向光纤层周期地发送探测脉冲光信号。
S930,根据探测脉冲光信号的散射参数,确定电源中转电路板的多个区域的实际温度X。
具体的,可以参照瑞利散射原理,通过检测探测脉冲光信号的散射和/反射参数来监测光纤温度的变化。其中,探测脉冲光信号的散射和/反射参数可以包括探测脉冲光信号的能量、探测脉冲光信号的波长等。
当电源中转电路板的任何区域短路后,局部电路板碳化,温度上升。可以通过光纤层检测到电源中转电路板的温度Y,并将该温度Y发送给控制电路。
S940,确定(X-Y)>预设值是否成立。
具体的,对比电源中转电路板正常工作时的温度Y,发现该局部区域的实际温度X大于正常工作的温度Y,且差值超过预设的预设值,则确定该局部区域的温度上升属于异常问题,可以快速得知电源中转电路板发生短路。当该局部区域的实际温度X小于正常工作的温度Y,或者大于正常工作的温度Y,但差值并未超过预设的预设值,则继续进行上述检测过程。
进一步地,在本实施例中,根据光纤传感的特性可以检测到温度升高点的具体光纤长度位置。基于光纤排布的网格化的排布方案,就可以精准找到电源中转电路板的具体温度上升异常点。
S950,关闭电源中转电路板的电源板的供电输出。
当确定该局部区域的实际温度X大于正常工作的温度Y,且差值超过预设的预设值,即确定该电源中转电路板发生短路故障,可以通过控制电路关断该电源中转电路板的前级电源板的供电输出。
本申请揭示的方法,通过光纤层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的实际温度与正常工作温度的比较结果,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
图10示出了本申请提供的电源中转电路板短路检测的方法的另一例具体示例的流程图。如图10所示,该方法包括如下多个步骤。
S1010,获取电源中转电路板的多个区域的电流L。
在该实施例中,检测电路层为导电线层,变化向量为电流。
其中,获取电源中转电路板的多个区域的电流L的具体实现方式可参照图7(a)中的介绍,在此不再赘述。
S1020,确定电流L=0是否成立。
具体的,当电源中转电路板发生短路后,电源中转电路板的碳化会导致导电线变成开路(此时电流值为0),因此可以根据电源中转电路板的多个区域的电流L是否为0,来确定该电源中转电路板是否发生短路。当电流L不为0时,则继续上述检测过程;当电流L=0时,确定该电源中转电路板发生短路故障。
S1030,关闭电源中转电路板的电源板的供电输出。
当电流L=0时,确定该电源中转电路板发生短路故障,可以通过控制电路关断该电源中转电路板的前级电源板的供电输出。
本申请揭示的方法,通过导电线层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的电流的通断,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
图11示出了本申请提供的电源中转电路板短路检测的方法的又一例具体示例的流程图。如图11所示,该方法包括如下多个步骤。
S1110,获取电源中转电路板的多个区域的电压V。
在该实施例中,检测电路层为导电线层,变化向量为电压。
其中,获取电源中转电路板的多个区域的电压V的具体实现方式可参照图7(b)中的介绍,为了简洁,在此不再赘述。
S1120,确定电流V=0是否成立。
具体的,根据电源中转电路板的多个区域的电压V是否为0,来确定该电源中转电路板是否发生短路。当电压V不为0时,则继续上述检测过程;当电压V=0时,确定该电源中转电路板发生短路故障。
S1130,关闭电源中转电路板的电源板的供电输出。
当电压V=0时,确定该电源中转电路板发生短路故障,可以通过控制电路关断该电源中转电路板的前级电源板的供电输出。
本申请揭示的方法,通过导电线层将电源中转电路板划分为多个区域,根据电源中转电路板的多个区域的电压的大小,确定电源中转电路板是否短路,能够快速、准确地识别电源中转电路板短路故障,避免电源中转电路板持续短路导致的明火燃烧安全事故。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,本申请上述实施例中,由设备实现的方法,也可以由可配置于设备内部的部件(例如芯片或者电路)实现。
本申请实施例可以根据上述方法示例对电源中转电路板短路检测的设备进行功能模块的划分。例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
上述方法800至方法1100中任一方法所涉及的设备均可以由上述图2中所示的电源中转电路板短路检测的设备200来实现。
应理解,电源中转电路板短路检测的设备200可以是实体设备,也可以是实体设备的部件,还可以是实体设备中的功能模块。
如图2所示,该电源中转电路板短路检测的设备200包括检测电路层、电源中转电路板以及控制电路。尽管并未示出,该设备200还可以包括收发电路、存储电路等。
其中,控制电路可以存储用于执行本申请实施例的方法的执行指令。可选地,控制电路中可以调用接口实现接收和发送功能。所述接口可以是逻辑接口或物理接口,对此不作限定。例如,接口可以是收发电路,或是接口电路。用于实现接收和发送功能的收发电路、或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口电路可以用于代码/数据的读写,或者,上述收发电路或接口电路可以用于信号的传输或传递。所述控制电路也可以称为控制器、处理器等,用于实现处理功能。
可选地,接口可以通过收发电路实现。例如,该设备200还包括收发电路。所述收发电路可以称为收发单元、收发模块、传输模块、收发机或者收发器等,用于实现收发功能。
可选地,该设备200还包括存储电路。本申请实施例对存储电路的具体部署位置不作具体限定,该存储电路可以集成于处理电路中,也可以是独立于处理电路之外。对于该设备200不包括存储电路的情形,该设备200具备处理功能即可,存储电路可以部署在其他位置(如,云系统)。所述存储电路也可以称为存储器等,用于实现存储功能。
控制电路、收发电路和存储电路之间通过内部连接通路互相通信,传递控制和/或数据信号。
当上述控制电路为处理器、存储电路为存储器以及收发电路为收发器时,在一些实施例中,存储器可以存储用于执行本申请实施例的方法的执行指令。处理器可以执行存储器中存储的指令结合其他硬件(例如收发器)完成上文所示方法执行的步骤,具体工作过程和有益效果可以参见上文方法实施例中的描述。
本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动 态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12示出了本申请提供的电源中转电路板短路检测的装置的示意性结构图。
可选地,所述电源中转电路板短路检测的装置1200的具体形态可以是通用计算机设备或通用计算机设备中的芯片,本申请实施例对此不作限定。如图12所示,该电源中转电路板短路检测的装置包括处理单元1210和收发单元1220。
例如,处理单元1210,用于检测电源中转电路板的多个区域的变化向量检测电路层与电源中转电路板耦合。处理单元1210,还用于根据电源中转电路板的多个区域的变化向量,确定电源中转电路板短路。
可选地,收发单元1220可以用于执行图9中所述的步骤S910和S920、图10中所述的步骤S1010以及图11中所述的步骤S1110。处理单元1210可以用于执行图9中所述的步骤S930和S940、图10中所述的步骤S1020和S1030以及图11中所述的步骤S1120和S1130。
应理解,该电源中转电路板短路检测的装置1200执行图8或图11中任一所述的方法时,该电源中转电路板短路检测的装置1200中的收发单元1220可通过通信接口(如收发器或输入/输出接口)实现,该电源中转电路板短路检测的装置1200中的处理单元1210可通过至少一个控制电路实现,例如可对应于图2中示出的控制电路。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,在此不再赘述。
另外,在本申请中,电源中转电路板短路检测的装置1200是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置1200可以采用图12所示的形式。处理单元可以通过图2所示的控制电路来实现。可选地,如果图2所示的计算机设备包括存储电路,处理单元可以通过控制电路(或处理器)和存储电路(或存储器)来实现。收发单元可以通过收发电路(或收发器)来实现。所述收发电路(或收发器)包括接收功能和发送功能。具体的,控制电路(或处理器)通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1200是芯片时,那么收发单元的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储电路(或存储器)可以为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,或者,也可以是部署在其他系统或设备中的存储单元,不在所述计算机设备内。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光 盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品。该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图8至图11所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质。该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图8至图11所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统。其包括前述的装置或设备。
上述实施例可以部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”等只是为了区分不同的对象,比如,区分不同的信息,设备或单元。对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算 法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种电源中转电路板短路检测的设备,其特征在于,包括:
    电源中转电路板,用于从电源板获得电源并为所述设备中的其他单板供电;
    检测电路层,用于检测所述电源中转电路板的多个区域的变化向量,所述检测电路层与所述电源中转电路板耦合;
    控制电路,用于根据所述变化向量,确定所述电源中转电路板短路。
  2. 根据权利要求1所述的设备,其特征在于,所述变化向量为所述电源中转电路板的实际温度,所述检测电路层为光纤层,
    所述设备还包括收发电路,用于向所述光纤层周期性地发送探测脉冲光信号,
    所述光纤层具体用于根据所述探测脉冲光信号的散射参数,确定所述电源中转电路板的多个区域的实际温度。
  3. 根据权利要求2所述的设备,其特征在于,所述收发电路还用于获取所述电源中转电路板正常工作的温度;
    所述控制电路具体用于根据所述电源中转电路板的实际温度和所述电源中转电路板正常工作的温度,确定所述电源中转电路板短路。
  4. 根据权利要求2或3所述的设备,其特征在于,所述收发电路,还用于接收来自所述光纤层的第一信息,所述第一信息用于指示所述电源中转电路板的多个区域的实际温度。
  5. 根据权利要求2至4中任一项所述的设备,其特征在于,所述光纤层将所述电源中转电路板划分为网格状的多个区域。
  6. 根据权利要求2至5中任一项所述的设备,其特征在于,所述光纤层包括单层或多层结构。
  7. 根据权利要求1所述的设备,其特征在于,所述变化向量为所述电源中转电路板的电流,
    所述检测电路层为导电线层,
    所述控制电路具体用于通过确定所述电源中转电路板的多个区域的电流值,确定所述电源中转电路板短路。
  8. 根据权利要求7所述的设备,其特征在于,所述设备还包括收发电路,用于接收来自所述导电线层的第二信息,所述第二信息用于指示所述电源中转电路板的多个区域的电流值。
  9. 根据权利要求1所述的设备,其特征在于,所述变化向量为所述电源中转电路板的电压,
    所述检测电路层为导电线层,
    所述控制电路具体用于通过确定所述电源中转电路板的多个区域的电压值,确定所述电源中转电路板短路。
  10. 根据权利要求9所述的设备,其特征在于,所述设备还包括收发电路,用于接收来自所述导电线层的第三信息,所述第三信息用于指示所述电源中转电路板的多个区域的电压值。
  11. 根据权利要求7至10中任一项所述的设备,其特征在于,所述导电线层包括单层 结构。
  12. 根据权利要求7至10中任一项所述的设备,其特征在于,所述导电线层包括多层结构,所述导电线层的多层结构将所述电源中转电路板划分为网格状的多个区域。
  13. 根据权利要求7至12中任一项所述的设备,其特征在于,所述导电线层包括导电铜线层。
  14. 根据权利要求1至13中任一项所述的设备,其特征在于,所述控制电路还用于关断所述电源板的输出。
  15. 一种电源中转电路板短路检测的方法,其特征在于,包括:
    检测电源中转电路板的多个区域的变化向量,所述电源中转电路板被检测电路层划分为所述多个区域,所述检测电路层与所述电源中转电路板耦合;
    根据所述电源中转电路板的多个区域的变化向量,确定所述电源中转电路板短路。
  16. 根据权利要求15所述的方法,其特征在于,所述变化向量为所述电源中转电路板的实际温度,所述检测电路层为光纤层,
    所述检测电源中转电路板的多个区域的变化向量,包括:
    向所述光纤层周期性地发送探测脉冲光信号;
    根据所述探测脉冲光信号的散射参数,确定所述电源中转电路板的多个区域的实际温度。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述电源中转电路板的多个区域的变化向量,确定所述电源中转电路板短路,包括:
    获取所述电源中转电路板正常工作的温度;
    根据所述电源中转电路板的实际温度和所述电源中转电路板正常工作的温度,确定所述电源中转电路板短路。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述光纤层将所述电源中转电路板划分为网格状的多个区域。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述光纤层包括单层或多层结构。
  20. 根据权利要求15所述的方法,其特征在于,所述变化向量为所述电源中转电路板的电流,所述检测电路层为导电线层,
    所述根据所述电源中转电路板的多个区域的变化向量,确定所述电源中转电路板短路,包括:
    通过确定所述电源中转电路板的电流中断,确定所述电源中转电路板短路。
  21. 根据权利要求15所述的方法,其特征在于,所述变化向量为所述电源中转电路板的电压,所述检测电路层为导电线层,
    所述根据所述电源中转电路板的多个区域的变化向量,确定所述电源中转电路板短路,包括:
    通过确定所述电源中转电路板的电压的大小,确定所述电源中转电路板短路。
  22. 根据权利要求20或21所述的方法,其特征在于,所述导电线层包括单层结构。
  23. 根据权利要求20或21所述的方法,其特征在于,所述导电线层包括多层结构,所述导电线层的多层结构将所述电源中转电路板划分为网格状的多个区域。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述导电线层包括导电铜线层。
  25. 根据权利要求15至24中任一项所述的方法,其特征在于,所述方法还包括:
    关断所述电源中转电路板的电源板的输出。
  26. 一种电源中转电路板短路检测的装置,其特征在于,包括:
    处理单元,用于检测电源中转电路板的多个区域的变化向量所述检测电路层与所述电源中转电路板耦合;
    所述处理单元,还用于根据所述电源中转电路板的多个区域的变化向量,确定所述电源中转电路板短路。
  27. 一种芯片,包括处理器与通信接口,所述处理器通过所述通信接口读取存储器上存储的指令,执行如权利要求15至25中任一项所述的方法。
PCT/CN2022/139964 2021-12-30 2022-12-19 电源中转电路板短路检测的设备和方法 WO2023125101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111659245.1A CN116413630A (zh) 2021-12-30 2021-12-30 电源中转电路板短路检测的设备和方法
CN202111659245.1 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125101A1 true WO2023125101A1 (zh) 2023-07-06

Family

ID=86997693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139964 WO2023125101A1 (zh) 2021-12-30 2022-12-19 电源中转电路板短路检测的设备和方法

Country Status (2)

Country Link
CN (1) CN116413630A (zh)
WO (1) WO2023125101A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164885A1 (en) * 2007-01-10 2008-07-10 Dell Products, Lp Non-destructive test structure for printed circuit board characterization and method for same
CN104237752A (zh) * 2014-09-25 2014-12-24 广州兴森快捷电路科技有限公司 一种薄芯板层间短路风险的测试方法及测试夹具、装置
US20180285604A1 (en) * 2017-03-30 2018-10-04 Nidec Sankyo Corporation Card reader
CN109842088A (zh) * 2017-11-27 2019-06-04 深圳中电长城信息安全系统有限公司 一种保护电路、电路保护方法及设备
CN111199700A (zh) * 2020-02-25 2020-05-26 Tcl华星光电技术有限公司 显示背板检测设备及其检测方法、装置
CN112578226A (zh) * 2020-12-15 2021-03-30 中铁第四勘察设计院集团有限公司 一种基于分布式光纤和阻抗法的电缆故障检测定位方法
CN113777464A (zh) * 2020-06-10 2021-12-10 深南电路股份有限公司 一种电路板功能测试装置、系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164885A1 (en) * 2007-01-10 2008-07-10 Dell Products, Lp Non-destructive test structure for printed circuit board characterization and method for same
CN104237752A (zh) * 2014-09-25 2014-12-24 广州兴森快捷电路科技有限公司 一种薄芯板层间短路风险的测试方法及测试夹具、装置
US20180285604A1 (en) * 2017-03-30 2018-10-04 Nidec Sankyo Corporation Card reader
CN109842088A (zh) * 2017-11-27 2019-06-04 深圳中电长城信息安全系统有限公司 一种保护电路、电路保护方法及设备
CN111199700A (zh) * 2020-02-25 2020-05-26 Tcl华星光电技术有限公司 显示背板检测设备及其检测方法、装置
CN113777464A (zh) * 2020-06-10 2021-12-10 深南电路股份有限公司 一种电路板功能测试装置、系统及方法
CN112578226A (zh) * 2020-12-15 2021-03-30 中铁第四勘察设计院集团有限公司 一种基于分布式光纤和阻抗法的电缆故障检测定位方法

Also Published As

Publication number Publication date
CN116413630A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
KR101727678B1 (ko) Otp(one-time programmable) 집적 회로 보안
US10536306B2 (en) Ground short circuit portion detecting apparatus, ground short circuit portion detecting method, and computer-readable recording medium
US8301920B2 (en) Shared power domain dynamic load based power loss detection and notification
US8259422B2 (en) Switching power supply protection system, mother board and computer
US20160098336A1 (en) Methods and systems for dynamic retimer programming
US11089033B2 (en) Intrusion detection device, intrusion detection method, and computer readable medium
JP2017173242A (ja) 半導体装置、監視システム及び寿命予測方法
CN108628360A (zh) 主控板过温保护方法及通信设备
CN107678909A (zh) 一种服务器中监控芯片配置状态的电路及方法
WO2023125101A1 (zh) 电源中转电路板短路检测的设备和方法
US8522076B2 (en) Error detection and recovery in a shared pipeline
US9158646B2 (en) Abnormal information output system for a computer system
CN103176581A (zh) 电源管理装置及电源管理方法
CN106644401A (zh) 一种半导体激光器的测试系统及测试方法
KR100851147B1 (ko) 스마트 정션박스를 이용한 이중 전원시스템 및 그의 라인쇼트 감지방법
US10732691B2 (en) Apparatus, systems and methods for detecting electrical failures within computing devices
KR20210142058A (ko) 배터리 모듈의 과열 검출 장치 및 그 방법
CN104362582A (zh) 防止电路板烧毁的处理方法和装置
EP3324503B1 (en) Electrical power control and fault protection
CN113901530B (zh) 一种硬盘防御性预警保护的方法、装置、设备及可读介质
JP3366266B2 (ja) プログラマブルコントローラ
US11592805B2 (en) Computing device expansion modules and control of their operation based on temperature
US11637422B2 (en) Electronic device
CN113448811B (zh) 服务器系统故障灯点亮的方法、装置、设备及可读介质
US20220137107A1 (en) Methods and Systems for Determining a State of an Arrangement of Electric and/or Electronic Components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914355

Country of ref document: EP

Kind code of ref document: A1