WO2023124997A1 - 一种高频场景下的通信方法及装置 - Google Patents

一种高频场景下的通信方法及装置 Download PDF

Info

Publication number
WO2023124997A1
WO2023124997A1 PCT/CN2022/138899 CN2022138899W WO2023124997A1 WO 2023124997 A1 WO2023124997 A1 WO 2023124997A1 CN 2022138899 W CN2022138899 W CN 2022138899W WO 2023124997 A1 WO2023124997 A1 WO 2023124997A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
order modulation
order
complex symbols
complex
Prior art date
Application number
PCT/CN2022/138899
Other languages
English (en)
French (fr)
Inventor
石蒙
刘荣宽
张佳胤
邹鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124997A1 publication Critical patent/WO2023124997A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • H04L27/3427Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes in which the constellation is the n - fold Cartesian product of a single underlying two-dimensional constellation
    • H04L27/3433Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes in which the constellation is the n - fold Cartesian product of a single underlying two-dimensional constellation using an underlying square constellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3461Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel
    • H04L27/3483Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel using a modulation of the constellation points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method and device in a high-frequency scenario.
  • High frequency/millimeter wave has become a research and development hotspot in the industry due to its abundant frequency band resources.
  • the high-frequency/millimeter-wave frequency band has a huge bandwidth and can improve high-capacity services, so it can be used in future wireless communication and space communication to address the growing communication needs.
  • high-frequency/millimeter-wave signals are transmitted in line of sight (LOS). Due to their high frequency, the loss is large when transmitted in free space, which seriously affects their transmission distance. Therefore, coverage needs to be improved.
  • LOS line of sight
  • PAPR peak-to-average power ratio
  • FIG. 1 exemplarily shows the PAPR situation under different modulation orders. As shown in FIG. 1 , when the modulation order of the high-frequency modulation signal is larger, the PAPR of the signal is also larger.
  • Embodiments of the present application provide a communication method and device in a high-frequency scenario, which are used to solve the problems of small signal coverage and low transmission efficiency due to large PAPR when using high-order modulation signal communication in a high-frequency scenario.
  • the embodiment of the present application provides a communication method in a high-frequency scenario, which can be applied to various communication methods based on backhaul, multi-site transmission, wireless broadband-to-the-home WTTx, enhanced mobile broadband eMBB, and device-to-device D2D.
  • the sending device can be a network device (such as a base station, an access point, a transmission point, etc.) or a terminal device
  • the receiving device can also be a network device (such as a base station, an access point, etc.) , transmission point, etc.) or terminal equipment.
  • the method may be executed by the sender device or a component (such as a chip or a circuit) configured on the sender device.
  • the method includes: according to the mapping rules corresponding to the first modulation mode and the first modulation mode of a high-order modulation signal to be received by the receiving-end device, the sending device modulates S channels of bit streams to generate M channels of low-order modulation signals, M is an integer greater than or equal to 2, and S is equal to 1 or M; the sending end device sends the M channels of low-order modulation signals through a line-of-sight LOS channel; wherein, the mapping rule is used to make the M channels of low-order modulation signals The signals are superimposed to form a high-order modulation signal to be received by the receiving device.
  • the order reduction of the transmitted signal at the sending end can be realized.
  • the sending end device can modulate and map the S channels of bit streams to be sent into M channels of low-order modulation signals according to the mapping rule, and then send them to the receiving end device.
  • this mapping rule can make the M low-order modulation signals sent by the sending end device superimposed in the air domain/power domain (energy domain) to form a high-order modulation signal, that is, what the receiving end device actually receives is the A high-order modulation signal obtained by superimposing M low-order modulation signals sent.
  • This method can effectively reduce the PAPR of the transmitted signal at the transmitting end without sacrificing spectral efficiency, and the receiving end device can directly detect the superimposed high-order constellation points and decode the high-order modulated signal, thereby ensuring system performance.
  • the sending end device can directly perform multi-dimensional modulation on this independent bit stream according to the mapping rule corresponding to the first modulation mode to generate M low-order bit streams. Modulate the signal, thereby eliminating the process of intermediate bit dismantling, and directly completing the mapping from bits to complex symbols.
  • the sending end device may use the mapping rule corresponding to the first modulation mode , respectively modulating M channels of bit streams to generate M channels of low-order modulation signals.
  • the technical solution of the embodiment of the present application can be applied to the structure of the transmitting and receiving single-point or multi-point transmitting and receiving systems, wherein the single-point transmitting means that the transmitting end needs to send one independent bit stream, and the multi-point transmitting means that the transmitting end needs to transmit multiple independent bit streams.
  • the bit stream that is, the difference between single stream and multiple streams.
  • the sending end device performs precoding on the sending signal matrix composed of the M channels of low-order modulation signals, and then sends the precoded M channels of low-order modulation signals to the
  • the channel matrix may be obtained by the sending end device through channel state information (CSI) feedback.
  • CSI channel state information
  • the precoding matrix is multiplied by the channel matrix to obtain a diagonal matrix, which can compensate the channel at the sending end.
  • the impact of channel differences on the high-order constellation superimposed on the receiving end is reduced, thereby improving signal transmission performance.
  • the S bit streams are M bit streams; the mapping rule is used to indicate the modulation mapping relationship from bit to complex symbol corresponding to each of the M bit streams at the sending end.
  • the bits in the M bit streams are mapped according to their corresponding modulation mapping relationships to obtain M complex symbols, which are superimposed according to a preset amplitude ratio, which is equal to the M complex symbols in the high-order modulation signal to be received by the receiving end device. plural sign.
  • mapping rule may specifically indicate the modulation mapping relationship corresponding to each bit stream.
  • M channels of bit streams can be modulated into M channels of low-order modulation signals, and then the M channels of low-order modulation signals are superimposed according to the preset amplitude ratio to obtain a channel of high-order modulation signals.
  • This channel of high-order modulation signals The constellation of can be a uniformly modulated high-order constellation.
  • the first modulation method is N-order modulation, and N is an integer greater than or equal to 4; when M is 2, the M bit streams include the first bit stream and the second bit stream In the bit stream, the M channels of low-order modulation signals include a first channel of low-order modulation signals and a second channel of low-order modulation signals.
  • the mapping rule includes: 2 2 values of the 2 bits of the first bit stream are respectively mapped to 2 2 first complex symbols; according to the 2 bits of the first bit stream Different values of bits, 2 N-2 values of N -2 bits of the second bit stream are respectively mapped to 2 N-2 second complex symbols, and when 2 of the first bit stream When the values of the bits are different, the same value of the N-2 bits of the second bit stream is mapped to different second complex symbols in the 2 N-2 second complex symbols; the first The first complex symbol mapped to the 2 bits of the bit stream and the second complex symbol mapped to the N-2 bits of the second bit stream are superimposed according to the preset amplitude ratio, which is equal to the The third complex symbol in the received high-order modulation signal.
  • the two-way bit streams are modulated according to the mapping rule corresponding to the first modulation mode of one high-order modulation signal to be received by the receiving end device to generate two low-order modulation signals, which may include : according to the mapping rule, sequentially mapping each 2-bit bit of the first bit stream to the first complex symbol in the 22 first complex symbols to form the first low-order modulation signal, and sequentially mapping each N-2 bits in the second bit stream to second complex symbols in the 2 N-2 second complex symbols to form the second low-order modulation signal.
  • the embodiment of the present application provides a specific scheme for jointly encoding and modulating two bit streams. This scheme not only enables the two low-order modulation signals obtained after modulation to be superimposed into one high-order modulation signal, but also enables The constellation diagram of one high-order modulated signal obtained by superposition satisfies the Gray mapping rule, thereby effectively improving the accuracy of encoding and decoding.
  • the method further includes: determining the power ratio of the M low-order modulation signals according to the amplitude ratio of the M low-order modulation signals; The power ratio of the signal is used to control the power amplification of the M low-order modulation signals in the power amplifier.
  • the M low-order modulated signals may need to meet certain requirements when superimposed.
  • the M low-order modulation signals are amplified by the power amplifier PA module, they also need to meet a certain power ratio, that is, corresponding power constraints need to be performed.
  • the method further includes: the sending end device sending first indication information to the receiving end device, where the first indication information includes one or more of the following information: The modulation and coding scheme MCS of the high-order modulation signal, the MCS of the M low-order modulation signals, the sign bit indication information, the amplitude ratio of the M low-order modulation signals, and the power distribution of the M low-order modulation signals ratio; wherein, the sign bit indication information is used to indicate one low-order modulation signal as a sign bit among the M low-order modulation signals.
  • the embodiment of the present application provides a corresponding signaling design solution for the solution of jointly coding and modulating M bit streams at the sending end, so as to ensure normal sending and receiving of signals.
  • the sending end device may send first indication information to the receiving end device before sending the M channels of low-order modulation signals to the receiving end device, where the first indication information includes the above one or more items of information.
  • the mapping rule is used to indicate the correspondence between the bits in the original bit stream composed of the S bit streams and the complex symbols in the one high-order modulation signal, and the Correspondence between the complex symbols in one path of high-order modulation signals and the complex symbols in the M paths of low-order modulation signals.
  • the original bit stream includes the bits corresponding to the M paths of low-order modulation signals, and S is equal to 1 or M; the complex symbols in the M paths of low-order modulation signals can be passed to the path of the high-order modulation signals
  • the complex symbols in are obtained by splitting according to the ratio of equal magnitude.
  • mapping rule may specifically indicate the symbol splitting relationship between each complex symbol in one high-order modulation signal to be received by the receiving end device and the complex symbols in M low-order modulation signals , based on the symbol splitting relationship, the sending end can directly modulate the original bit stream composed of one or M bit streams into M low-order modulation signals, and then send the M low-order modulation signals according to the equal amplitude ratio, After space domain or energy domain superposition, a high-order modulation signal corresponding to the original bit stream is obtained.
  • the constellation of this high-order modulation signal can be a high-order constellation of non-uniform modulation, thereby improving the ability of the receiving end to resist high-frequency phase noise.
  • the first modulation method is N-order modulation, and N is an integer greater than or equal to 4; when the M is 2, the mapping rule includes: N-bits of the original bit stream 2 N kinds of values are in one-to-one correspondence with 2 N third complex symbols in the one-way high-order modulation signal, and each N-bit bit in the original bit stream includes N/2 corresponding to the first low-order modulation signal Bits and N/2 bits corresponding to the second low-order modulation signal; for the first modulation method, there is a group of 2 N/2 fourth complex symbols corresponding to the first low-order modulation signal and a group of 2 N/2 fifth complex symbols corresponding to the second low-order modulation signal; the 2 N/2 fourth complex symbols and the 2 N/2 fifth complex symbols are paired The result of superimposing them according to the ratio of equal amplitude corresponds to the 2 N third complex symbols one by one.
  • one or two bit streams are modulated to generate two low-order modulation signals, Including: according to the mapping rule, sequentially mapping every N bits of the original bit stream to a fourth complex symbol of the 2 N/2 fourth complex symbols and the 2 N/2 fifth A fifth complex symbol among the complex symbols forms the first path of low-order modulation signals and the second path of low-order modulation signals.
  • the embodiment of the present application provides a scheme that is specifically applicable to symbol-level modulation mapping of one or two bit streams.
  • This scheme not only enables two low-order modulation signals obtained after modulation to be superimposed into one high-order modulation signal , the constellation diagram of the high-order modulation signal satisfies the Gray mapping rule, and the power ratio of the two low-order modulation signals is the same, which can make full use of the transmission power of the transmitter.
  • the first modulation mode is 16 quadrature amplitude modulation QAM
  • the modulation order N is equal to 4
  • the mapping rule includes: the bit in the original bit stream and The correspondence between the complex symbols in the 16QAM, and the relationship between the complex symbols in the 16QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal The corresponding relationship between; wherein, the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal; the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols, the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols and the 2 N/2 fourth complex symbols The result of superimposing the five complex symbols in pairs according to the equal amplitude ratio corresponds to each complex symbol in the 16QAM; further optionally, the 2 N/2 fourth complex symbols are K ⁇ 1+ 2j,1-2j,-1+2j
  • the mapping rule includes: the bit in the original bit stream The correspondence between the complex symbols in the NUC-16QAM, and the complex symbols in the NUC-16QAM and the fourth complex symbols in the first low-order modulation signal and the second low-order modulation signal Correspondence between fifth complex symbols; wherein, the original bit stream includes bits corresponding to the first path of low-order modulation signals and bits corresponding to the second path of low-order modulation signals; the first path The low-order modulation signal corresponds to 2 N/2 fourth complex symbols, and the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols and the 2 The result of superimposing the N/2 fifth complex symbols in pairs according to the equal amplitude ratio corresponds to each complex symbol in the NUC-16QAM; further optionally, the 2 N/2 fourth The plural sign is The 2 N/2 fifth complex symbols are L ⁇
  • the mapping rule includes: bits in the original bit stream and bits in the 64QAM The corresponding relationship between the complex symbols, and the corresponding relationship between the complex symbols in the 64QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal ;
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal;
  • the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols, the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols;
  • the 2 N/2 fourth complex symbols and the 2 N/2 fifth complex symbols are two
  • the 2 N/2 fourth complex symbols are P ⁇ 1+6j, 1+ 2j,1-2j,1-6j,-1-6j,-1-2
  • the mapping rule includes: the bits in the original bit stream and the Correspondence between the complex symbols in NUC-64QAM, and the complex symbols in the NUC-64QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex number in the second low-order modulation signal Correspondence between symbols; wherein, the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal; the first low-order modulation The signal corresponds to 2 N/2 fourth complex symbols, and the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols and the 2 N/2 The result of superimposing the fifth complex number symbols in pairs corresponds to each complex number symbol in the NUC-64QAM; further optionally, the 2 N/2 fourth complex number symbols are P ⁇ 1, 1+1j, 1j, -1+1j, -1,
  • the embodiments of the present application provide a variety of possible mapping rules for various possible modulation modes of a high-order modulation signal to be received by the receiving end. These mapping rules are designed by designing a variety of non-standard complex symbols of the low-order modulation.
  • the aggregation and mutual combination scheme can make the two low-order modulation signals at the sending end superimposed into one high-order modulation signal at the receiving end according to the equal amplitude ratio.
  • the method further includes: the sending end device rotates the antennas for sending the M channels of low-order modulation signals according to a set period.
  • the constellation diagram of one high-order modulation signal superimposed at the receiving end may have the problem of I/O channel imbalance.
  • a technical solution is designed to rotate the antennas that transmit M low-order modulation signals every cycle according to the set period. This solution can also be understood as the modulation method/modulation of the low-order modulation signals to be transmitted in rotation on different transmission antennas pattern to reduce the impact of I/Q imbalance on system performance.
  • the method further includes: the sending end device sending second indication information to the receiving end device, where the second indication information includes one or more of the following information: the The modulation and coding scheme MCS of one high-order modulation signal, the MCS of the M low-order modulation signals, the one high-order modulation signal adopts non-uniform modulation or uniform modulation, and the M low-order modulation signals adopt non-uniform modulation or Even modulation.
  • the embodiment of the present application provides a corresponding signaling design scheme for the symbol-level modulation and mapping scheme for one or M bit streams at the transmitting end, so as to ensure normal transmission and reception of signals.
  • the sending end device may send the second indication information to the receiving end device before sending the M channels of low-order modulation signals to the receiving end device, where the second indication information includes the above one or more pieces of information.
  • the embodiment of the present application provides a communication method in a high-frequency scenario, which can be applied to various possibilities such as backhaul, multi-site transmission, wireless broadband-to-the-home WTTx, enhanced mobile broadband eMBB, and device-to-device D2D.
  • the sending device can be a network device (such as a base station, an access point, a transmission point, etc.) or a terminal device
  • the receiving device can also be a network device (such as a base station, access point, transmission point, etc.) or terminal equipment.
  • the method may be executed by the receiving end device or a component (such as a chip or a circuit) configured on the receiving end device.
  • the method includes: the receiving end device receives one high-order modulation signal from the sending end device, the one high-order modulation signal is superimposed by M low-order modulation signals, and M is an integer greater than or equal to 2; the receiving end The device uses a demodulation reference signal DMRS port to perform channel estimation, and performs post-equalization on the one path of high-order modulation signal according to the estimated channel matrix.
  • the receiver device may further demodulate the one high-order modulation signal to obtain a corresponding one bit stream.
  • the receiving end device may also split one bit stream obtained by demodulating the one high-order modulation signal into M channels of bit streams.
  • the receiving end device uses the above post-equalization method to post-equalize the received high-order modulation signal, which can reduce the consumption of DMRS resources at the receiving end.
  • the embodiment of the present application provides a communication device.
  • the communication device can have the function of realizing the sending end device or the receiving end device in the above aspects.
  • the communication device can be a network device or a terminal device, or it can be a network device or chips included in terminal equipment.
  • the above-mentioned functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware, and the hardware or software includes one or more modules or units or means (means) corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing module and a transceiver module, wherein the processing module is configured to support the communication device to perform the corresponding functions of the sending end device in the above aspects, or to perform the functions in the above aspects The corresponding function of the receiving end device.
  • the transceiver module is used to support communication between the communication device and other communication devices. For example, when the communication device is a sending device, it can send M channels of low-order modulation signals to the receiving device. The M channels of low-order modulation signals are received The terminal equipment is superimposed into a high-order modulation signal.
  • the communication device may also include a storage module, which is coupled to the processing module and stores necessary program instructions and data of the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory
  • the memory may be integrated with the processor or configured separately from the processor.
  • the structure of the communication device includes a processor, and may also include a memory.
  • the processor is coupled with the memory, and is operable to execute computer program instructions stored in the memory, so as to cause the communication device to perform the methods in the above aspects.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the communication device is a chip contained in a network device or a terminal device, the communication interface may be an input/output interface of the chip interface.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the chip system implements the methods in the above aspects.
  • the chip system further includes an interface circuit, which is used for exchanging code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, implemented by reading software codes stored in memory.
  • the memory can be integrated with the processor, or can be set separately from the processor.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be respectively provided on different chips.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program or instruction is stored.
  • a computer program or instruction is stored.
  • any possible design of the above-mentioned aspects or aspects The method in is executed.
  • an embodiment of the present application provides a computer program product.
  • a communication device runs the computer program product, the method in any one of the above aspects or any possible design of the aspects is executed.
  • the embodiment of the present application provides a communication system, where the communication system includes a sending end device and a receiving end device.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system applicable to the present application
  • FIG. 2 is a schematic diagram of a transceiver system architecture based on a single point of origin provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of an architecture of a transmitting and receiving multipoint-based transceiver system provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a communication method in a high-frequency scenario provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of generating a 16QAM signal that satisfies Gray mapping by superimposing two QPSK signals with a specific amplitude ratio provided in Example 1 of the embodiment of the present application;
  • FIG. 6 is a schematic diagram of generating a 32QAM signal that satisfies Gray mapping by superimposing two QPSK signals with a specific amplitude ratio and an 8QAM signal in Example 2 of the embodiment of the present application;
  • FIG. 7 is a schematic diagram of generating a 64QAM signal that satisfies Gray mapping by superimposing two QPSK signals with a specific amplitude ratio and a 16QAM signal in Example 3 of the embodiment of the present application;
  • FIG. 8 is a schematic diagram of generating a 64QAM signal that satisfies Gray mapping by superimposing three QPSK signals with a specific amplitude ratio provided in Example 4 of the embodiment of the present application;
  • FIG. 9 is a schematic diagram of generating a 16QAM signal by superimposing two low-order signals with amplitude matching provided in Example 5 of the embodiment of the present application;
  • FIG. 10 is a schematic diagram of joint modulation and encoding of two low-order signals with amplitude matching provided in Example 5 of the embodiment of the present application;
  • FIG. 11 is a schematic diagram of generating a 64QAM signal by superimposing two low-order signals with amplitude matching in the first example of the 64QAM symbol splitting scheme provided in Example 6 of the embodiment of the present application;
  • FIG. 12 is a schematic diagram of generating a 64QAM signal by superimposing two low-order signals with amplitude matching in the second 64QAM symbol splitting scheme provided in Example 6 of the embodiment of the present application;
  • FIG. 13 is a schematic diagram of generating a 64QAM signal by superimposing three low-order signals in the third 64QAM symbol splitting scheme provided in Example 7 of the embodiment of the present application while reducing the transmit power difference;
  • FIG. 14 is a schematic diagram of generating a 64QAM signal by superimposing three low-order signals in the 64QAM symbol splitting scheme 4 provided in Example 7 of the embodiment of the present application while reducing the transmit power difference;
  • Example 15 is a schematic diagram of generating a NUC-16QAM signal by superimposing two low-order signals with amplitude matching provided in Example 8 of the embodiment of the present application;
  • 16 is a schematic diagram of generating a NUC-64QAM signal by superimposing two low-order signals with amplitude matching provided in Example 8 of the embodiment of the present application;
  • 17 is a schematic diagram of the PAPR of the signal at the transmitting end in the symbol splitting scheme using non-uniform modulation in the embodiment of the present application;
  • FIG. 18 is a modulation constellation diagram of 16QAM and NUC-16QAM in the embodiment of the present application.
  • FIG. 19 is a schematic diagram of the comparison of phase noise influence and BLER influence of 16QAM and NUC-16QAM in the embodiment of the present application;
  • FIG. 20 is a schematic diagram of time-domain polling transmission under the condition that two low-order 4QAM signals are superimposed to generate one 16QAM signal provided by the embodiment of the present application;
  • FIG. 21 and Figure 22 are schematic diagrams of two signaling indication schemes provided by the embodiment of the present application.
  • FIG. 23 and FIG. 24 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • FIG. 1 exemplarily shows a network architecture of a communication system to which the present application is applicable.
  • the network architecture may include at least one network device and at least one terminal device.
  • the network device is a node in the wireless access network, capable of communicating with the terminal device and connecting the terminal device to the wireless network.
  • the network device may also be referred to as wireless access network device or access network device.
  • the network device may be a base station, a relay station, or an access point.
  • the network device may be a base transceiver station (base transceiver station, BTS) in a global system for mobile communication (GSM) or a code division multiple access (code division multiple access, CDMA) network, also It may be a Node B (NodeB, NB) in wideband code division multiple access (WCDMA), or an eNB or eNodeB (Evolutional NodeB) in long term evolution (LTE).
  • the network device may also be a wireless controller in a cloud radio access network (CRAN) scenario, or a base station device in a 5G network, a next-generation communication system (such as 6G) or a shared network for future evolution.
  • Network equipment in the land mobile network (public land mobile network, PLMN) network may also be a wearable device or a vehicle-mounted device.
  • a terminal device is a device with a wireless transceiver function.
  • the terminal device is connected to a network device in a wireless manner, so that it can be connected to a communication system.
  • the terminal device may be a user equipment (user equipment, UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, a terminal agent, or terminal devices, etc.
  • a terminal device may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, next-generation communication systems (such as 6G) or terminal devices in future evolved PLMN networks wait.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • both the sending end device and the receiving end device can be network devices or terminal devices, which are not specifically limited in this application.
  • “Multiple” means two or more, and in view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included. For example, where at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C may be included. Similarly, the understanding of descriptions such as “at least one" is similar.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects. Moreover, the descriptions of “first” and “second” do not limit that the objects must be different.
  • the sending end device can send M channels of low-order modulation signals to the receiving end device, where M is an integer greater than or equal to 2, for example, it can be 2 channels or 3-way.
  • M is an integer greater than or equal to 2
  • the M channels of low-order modulated signals can be superimposed into one channel of high-order modulated signals through the air domain or power domain (ie energy domain) at the receiving end.
  • This method can effectively reduce the PAPR of the signal at the transmitting end without sacrificing spectral efficiency, and the receiving end device can directly detect the superimposed high-order constellation points and decode the high-order modulated signal, thereby ensuring system performance.
  • a high-order modulation signal superimposed at the receiving end can be uniformly modulated or non-uniformly modulated, thereby effectively improving the ability to resist phase noise.
  • the present application provides two transceiver system architectures: a single-point-based transceiver system architecture and a multi-point-based transceiver system architecture.
  • the single point at the sending end and the multipoint at the sending end refer to whether the original bit stream at the sending end is one independent bit stream or multiple independent bit streams.
  • the architecture of the transmitting and receiving system based on the single point of the sending end refers to: one independent bit stream at the sending end is encoded by low density parity check (LDPC) and then disassembled into M bit streams.
  • M is a positive integer greater than or equal to 2, that is, one original bit stream can be disassembled into two, three or more sub-bit streams according to actual needs.
  • the M channels of sub-bit streams are respectively modulated according to the corresponding modulation mapping relationship of each channel to generate M channels of low-order modulation signals. The specific modulation mapping relationship will be described in detail later in this application.
  • M channels of low-order modulated signals are precoded at the transmitting end to generate baseband signals to compensate for channel effects and reduce the impact of channel differences on superimposing high-order signals at the receiving end.
  • the baseband signal is up-converted, power amplifier (power amplifier, PA) and other modules, M channels of low-order radio frequency signals are generated and sent on different antennas.
  • M channels of low-order modulation signals transmitted through the channel are superimposed in the space domain or power domain (i.e., energy domain).
  • the receiving end single-point receives 1 high-order modulation signal formed by superimposing M low-order modulation signals, and recovers 1 bit stream after completing channel estimation, post-equalization, demodulation, and LDPC decoding at the receiving end.
  • one original bit stream at the sending end is modulated, precoded, and power amplified after LDPC encoding to generate two different low-order modulation signals, and the two low-order modulation signals are passed through two different The antennas of the two low-order modulated signals have different constellation patterns.
  • the receiving end receives a high-order modulation signal, which is formed by superimposing two low-order modulation signals.
  • the constellation pattern is a combination of the constellation patterns of the two low-order modulation signals, and the high-order modulation signal Uniform modulation or non-uniform modulation can be used.
  • the channel estimation, post-equalization, demodulation and LDPC decoding are successively performed on the one channel of high-order modulation signal to obtain one channel of bit stream.
  • the structure of the transmitting and receiving system based on the multi-point at the transmitting end means that M independent bit streams at the transmitting end are respectively subjected to LDPC encoding, and the LDPC encoding rate is the same. Then, the M channels of bit streams are respectively modulated according to the corresponding modulation mapping relationship of each channel to generate M channels of low-order modulation signals. M channels of low-order modulated signals are precoded at the transmitting end to generate baseband signals to compensate for the influence of the channel and reduce the impact of channel differences on the superposition of high-order signals at the receiving end. Then, after the baseband signal passes through modules such as up-conversion and power amplifier PA, M channels of low-order radio frequency signals are generated and sent on different antennas.
  • the receiving end receives one channel of high-order modulation signals superimposed by M channels of low-order modulation signals at a single point, and splits the M channels after completing channel estimation, post-equalization and demodulation at the receiving end.
  • the splitting method is the same as that designed by the transmitter. Overlays match. Each split signal is subjected to LDPC decoding respectively, and M bit streams are recovered.
  • the two original bit streams at the sending end are respectively LDPC coded, then modulated, precoded, and power amplified to generate two different low-order modulated signals, which are sent through two different antennas.
  • the constellation patterns of the low-order modulated signals are different.
  • the receiving end directly receives a high-order modulation signal, which is formed by superimposing two low-order modulation signals, and its constellation pattern is a combination of the constellation patterns of the two low-order modulation signals.
  • the high-order modulated signal is split into two channels after channel estimation, post-equalization, and demodulation, and then each signal is decoded by LDPC to obtain two bit streams.
  • this application can achieve the effect of transmitting 2 codewords under the high-frequency rank1 channel by designing a transceiver system architecture based on multiple points at the transmitting end, and the transmitting end uses low-order modulation to generate multiple channels
  • the low-order modulation signal enables the transmitter to have a lower PAPR.
  • the design of the superimposed signal does not need to consider the influence of interlayer interference, which can improve the power utilization of the transmitter.
  • FIG. 4 exemplarily shows a schematic diagram of a communication method in a high-frequency scenario provided by an embodiment of the present application. As shown in FIG. 4 , the method includes:
  • Step 401 the transmitting end device modulates S bit streams according to the mapping rule corresponding to the first modulation mode of one high-order modulation signal to be received by the receiving end device, and generates M low-order modulation signals, where M is greater than or equal to 2 Integer of , S is equal to 1 or M.
  • a high-order modulation signal to be received by the receiving end device refers to a high-order modulation signal indirectly sent by the sending end device to the receiving end.
  • the high-order modulation signal is actually sent by the sending end device. It is formed by superposition of low-order modulation signals.
  • the sending end expects a high-order modulation signal received by the receiving end.
  • the first modulation method adopted by this channel of high-order modulation signal is N-order modulation, where N is an integer greater than or equal to 4, that is, high-order modulation.
  • N is an integer greater than or equal to 4, that is, high-order modulation.
  • it may be 16 quadrature amplitude modulation (quadrature amplitude modulation, QAM), 32QAM, 64QAM or other higher-order modulation manners.
  • the first modulation manner may be uniform modulation or non-uniform modulation, which is not specifically limited in this application.
  • uniform modulation refers to the geometric distribution rule (square QAM) of QAM in the existing standard and each constellation point appears with equal probability.
  • Non-uniform modulation means that the shape of the modulated signal constellation point distribution is irregular (geometric shaping modulation, which may be circular or other shaped QAM), or the probability distribution of the constellation points is different (probability shaping modulation).
  • the S bit streams may be an independent bit stream, and at this time S is equal to 1; or, the S bit streams may also be M sub-bit streams obtained by bit-disassembling an independent bit stream, where S is equal to M; or, the S bit streams may also be M independent bit streams, and S is equal to M at this time.
  • the S bit streams are an independent original bit stream, or M sub-bit streams obtained by disassembling the bits of an independent original bit stream;
  • the S bit streams are M independent bit streams.
  • the sending end device can directly perform multi-dimensional modulation on this independent bit stream according to the mapping rule corresponding to the first modulation mode to generate M low-order bit streams. Modulate the signal, thereby eliminating the process of intermediate bit dismantling, and directly completing the mapping from bits to complex symbols.
  • the specific modulation process will be described in detail below in this application.
  • the sending end device may use the mapping rule corresponding to the first modulation mode , respectively modulating M channels of bit streams to generate M channels of low-order modulation signals.
  • the mapping rule the modulation mapping relationships corresponding to the M bit streams need to be jointly designed. The specific modulation process will be described in detail below in this application.
  • the mapping rule is used to superimpose the M channels of low-order modulation signals into one channel of high-order modulation signals to be received by the receiving end device.
  • the one high-order modulation signal may also be called a superposition signal.
  • the mapping rule may be embodied by a mapping code table, a formula, or a constellation diagram.
  • the mapping rule includes: in the original bit stream The correspondence between the bits and the complex symbols in 16QAM, and the complex symbols in 16QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal corresponding relationship.
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal; the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols , the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols corresponding to the first low-order modulation signal correspond to the second low-order modulation signal
  • the result of superimposing the 2 N/2 fifth complex symbols in pairs according to the equal amplitude ratio corresponds to each complex symbol in the 16QAM; for 16QAM, the 2 N/2 fourth complex symbols is K ⁇ 1+2j,1-2j,-1+2j,-1-2j ⁇ , and the 2 N/2 fifth complex symbols are L ⁇ 2+1j,2-1j,-2+1j,- 2-1j ⁇ , the K and L are scaling coefficients.
  • the mapping rule may be shown in Table 6 below.
  • the modulation order N is equal to 4
  • the mapping rule Including: the correspondence between the bits in the original bit stream and the complex symbols in NUC-16QAM, and the complex symbols in NUC-16QAM and the fourth complex symbol in the first low-order modulation signal and the second low-order Correspondence between fifth complex symbols in the modulated signal.
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal; the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols , the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols corresponding to the first low-order modulation signal correspond to the second low-order modulation signal
  • the result of superimposing the 2 N/2 fifth complex symbols two by two according to the equal amplitude ratio corresponds to each complex symbol in the NUC-16QAM; wherein, the 2 N/2 fourth complex symbols are The 2 N/2 fifth complex symbols are L ⁇ 1+1j, 1-1j, -1+1j, -1-1j ⁇ , and the K and L are scaling coefficients.
  • the symbol correspondence in the mapping rule may be shown in Table 11 below.
  • the mapping rule includes: bits in the original bit stream and bits in 64QAM The correspondence between the complex symbols, and the correspondence between the complex symbols in 64QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal.
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal; the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols , the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols corresponding to the first low-order modulation signal correspond to the second low-order modulation signal
  • the 2 N/2 fifth complex number symbols are superimposed in pairs according to the equal amplitude ratio, and each complex number symbol in the 64QAM is in one-to-one correspondence; wherein, the 2 N/2 fourth complex number symbols are P ⁇ 1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j ⁇ , the 2 N/2 fifth complex symbols are Q ⁇ 6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j ⁇ , in this design, the mapping rule The symbol correspondence can be shown in Table 7 below; or, the 2 N
  • the mapping rule includes: bits in the original bit stream and NUC - Correspondence between the complex symbols in 64QAM, and between the complex symbols in NUC-64QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal corresponding relationship.
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal; the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols , the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols corresponding to the first low-order modulation signal correspond to the second low-order modulation signal
  • the result of superimposing the 2 N/2 fifth complex symbols in pairs according to the equal amplitude ratio corresponds to each complex symbol in the NUC-64QAM; wherein, the 2 N/2 fourth complex symbols
  • the symbols are P ⁇ 1, 1+1j, 1j, -1+1j, -1, -1-1j, -1j, 1-1j ⁇ , and the 2 N/2 fifth complex symbols are
  • the P and Q are scaling coefficients. Exemplarily, the symbol correspondence in the mapping rule may be shown in Table 12 below.
  • mapping rules may be specifically embodied in any coding mapping table or formula or a schematic table of symbol correspondence exemplified below in the present application.
  • the present application does not list them one by one here.
  • the specific numerical values in any encoding mapping table or schematic table of symbol correspondence described below may be scaled up or down proportionally, which is not limited by the present application.
  • the 2 N/2 fourth complex symbols in Table 8 can be P ⁇ 4+3j, 4+1j, 4-1j, 4-3j, -4-3j, -4-1j, -4+1j, -4 +3j ⁇
  • 2 N/2 fifth complex symbols are Q ⁇ 3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3- 4j ⁇
  • the P and Q are scaling coefficients.
  • this form of proportional scaling is also applicable to other tables, and for the sake of brevity, they are not listed here.
  • the mapping rule may include one or more items of information in the encoding mapping table or the symbol correspondence table shown in the examples below, for example, including only part of the column information, or including all the column information.
  • the mapping relationship between Rx coding and Rx symbol can refer to the existing
  • the corresponding relationship between Rx symbol, Tx1 symbol, Tx2 symbol and Rx coding can also be directly reflected in a table, which is not limited in this application.
  • the coding mapping table and the symbol correspondence table may be pre-configured at the sending end and the receiving end, which is not limited in this application.
  • the "low order” mentioned in the embodiment of this application is relative to the "high order” obtained by superimposing at the receiving end, that is to say, the M channels of low order modulation signals are relative to the The one-way high-order modulation signal obtained by superimposing the terminals is low-order. Since it is generally considered that the modulation order greater than 4 is high-order modulation, and vice versa is low-order modulation, therefore, the M channels of low-order modulation signals mentioned in this application may not all be real "low-order” modulation signals.
  • one 64QAM signal may be generated by superimposing one QPSK signal and one 16QAM signal. Among them, the QPSK signal and the 16QAM signal can be regarded as "low-order" modulation signals relative to the 64QAM signal.
  • the sending device can send multiple low-order modulation signals, and the multiple low-order modulation signals can be superimposed into high-order modulation signals at the receiving end to effectively reduce the PAPR of the sending end signal without affect the spectral efficiency.
  • the multiple channels of low-order modulation signals can be superimposed according to an equal amplitude ratio (that is, an equal power ratio), so as to make full use of the transmission power of the transmitting end.
  • the sending end modulates S channels of bit streams based on the mapping rules to generate M channels of low-order modulation signals, and the M channels of low-order modulation signals can be superimposed to obtain a channel of high-order modulation signals.
  • the foregoing mapping rule may include two possible implementation manners, one is a joint coding and modulation manner, and the other is a superposition signal splitting manner, which can be understood as two modulation schemes.
  • this application will describe the specific modulation process in combination with the two specific implementation manners of the above-mentioned mapping rules. It should be noted that, the naming of the above two implementation manners is only an illustration for convenience of description, and does not limit the solution of the present application.
  • the sending end performs joint encoding and modulation on S channels of bit streams to obtain M channels of low-order modulation signals.
  • the S is equal to M
  • the S bit streams are the M bit streams.
  • the M bit streams may be M sub-bit streams obtained by dismantling bits of one independent bit stream, or M independent bit streams, which are not limited.
  • the mapping rule is used to indicate the modulation mapping relationship from bits to complex symbols corresponding to each of the M bit streams at the sending end.
  • the modulation mapping relationship corresponding to each of the M bit streams satisfies: M complex symbols obtained by mapping the bits in the M bit streams according to their corresponding modulation mapping relationships are superimposed according to the preset amplitude ratio, which is equal to Complex symbols in a high-order modulation signal to be received.
  • the modulation mapping relationship in this application refers to the mapping from bits to symbols, and may also be referred to as coding mapping rules. That is to say, by performing joint coding and modulation, the transmitting end can map the bits in M bit streams into complex symbols to generate M low-order modulation signals.
  • mapping rules may include the following content:
  • 2 N-2 values of N-2 bits from the second bit stream are respectively mapped to 2 N-2 second complex symbols , and when the values of the 2 bits from the first bit stream are different, the same value of the N-2 bits from the second bit stream is mapped to the different values of the 2 N-2 second complex symbols Second plural sign.
  • the sending end device modulates the two bit streams according to the above-mentioned joint coding and modulation method to generate two low-order modulation signals, which can be as follows: according to the above mapping rules, each 2 bits are sequentially mapped to the first complex symbols in the 22 first complex symbols to form the first low-order modulation signal, and each N-2 bits in the second bit stream are sequentially mapped to the The second complex symbols in the 2 N-2 second complex symbols form a second path of low-order modulation signals.
  • the joint coding and modulation method indicated by the mapping rule is equivalent to: combining an N-order The modulated constellation diagram is split into a 2-order modulated constellation diagram and an N-2-order modulated constellation diagram to achieve signal reduction at the transmitting end, so that the two low-order modulated signals sent by the transmitting end can be superimposed at the receiving end to form One high-order modulation signal; then by jointly designing the modulation mapping relationship of two low-order modulated constellation diagrams, after the two low-order modulated constellation diagrams are superimposed according to a certain amplitude ratio, the generated high-order modulated constellation diagram satisfies Gray map.
  • the sending end can also send more low-order modulation signals.
  • N is greater than or equal to 6, and the mapping rule can be understood as : Split an N-order modulated constellation diagram into more low-order modulated constellation diagrams to reduce the order of the signal at the sending end.
  • an N-order modulated signal when the sending end sends three low-order modulated signals, an N-order modulated signal can be
  • the modulated constellation diagram is split into two 2nd-order modulated constellation diagrams and one N-4-order modulated constellation diagram; in addition, by jointly designing the modulation mapping relationship of multiple low-order modulated constellation diagrams, multiple low-order modulated After the constellation diagram of is superimposed according to a certain amplitude ratio, the generated constellation diagram of the N-order modulation satisfies the Gray mapping.
  • mapping rules can be based on the following considerations:
  • the transmitting end after generating multiple low-order modulated signals, the transmitting end needs to further perform power amplification through the power amplifier PA module to generate multiple radio frequency signals before sending them out through the antenna. Therefore, when the multiple low-order modulation signals at the transmitting end need to meet a certain amplitude ratio, the multi-channel RF signals after power amplification must also meet a certain power ratio. Specifically, the power ratio is the square of the amplitude ratio .
  • the joint coding and modulation scheme refers to designing a set of associated modulation mapping relationships for multiple low-order signals at the transmitting end.
  • This group of associated modulation mapping relationships may be specifically embodied as a coding mapping table, or a constellation diagram or formula corresponding to the coding mapping table in the following several examples.
  • the multiple channels of bit streams at the sending end are jointly coded and modulated to generate multiple channels of low-order signals, so that these multiple channels of low-order signals can be superimposed at the receiving end to generate a high-order signal, and at the same time Satisfy the Gray mapping to improve the demodulation performance at the receiving end.
  • the high-order signal to be received at the receiving end can use the modulation mapping relationship stipulated in the protocol.
  • This application does not modify the coding mapping table of the high-order signal superimposed on the receiving end to reduce design complexity.
  • the following examples provide the corresponding joint coding and modulation methods of signals at the sending end for the modulation methods of several high-order signals such as 16QAM, 32QAM, and 64QAM, including: Example 1, two-way QPSK signals with specific amplitude ratios Superposition generates a 16QAM signal that satisfies Gray mapping; Example 2, two QPSK signals and 8QAM signals with a specific amplitude ratio are superimposed to generate a 32QAM signal that satisfies one Gray mapping; Example 3, Two QPSK signals and a 16QAM signal with a specific amplitude ratio The superposition generates a 64QAM signal that satisfies Gray mapping. Example 4, three channels of QPSK signals with a specific amplitude ratio are superimposed to generate one channel of 64QAM signals satisfying Gray mapping.
  • Tx1, Tx2, and Tx3 respectively represent multiple low-order signals at the sending end, and Rx represents a high-order signal to be received at the receiving end, which is formed by superimposing multiple low-order signals at the sending end.
  • Tx1coding represents the bit coding in the first bit stream of the sending end
  • Tx1symbol represents the complex symbol in the first low-order modulation signal generated after the sending end modulates the first bit stream
  • Tx2coding represents the second path of the sending end Bit coding in the bit stream
  • Tx2symbol represents the complex symbol in the second low-order modulation signal generated after the sending end modulates the second bit stream
  • Tx3coding represents the bit coding in the third bit stream at the sending end
  • Tx3symbol represents The complex symbol in the third low-order modulation signal generated by the sending end modulating the third bit stream
  • Rx coding represents the bit coding in the receiving end's bit stream, which is the same as the receiving end's high-order modulation signal Correspond
  • Example 1 Two QPSK signals with a specific amplitude ratio are superimposed to generate a 16QAM signal that satisfies Gray mapping.
  • the two low-order signals Tx1 and Tx2 at the transmitting end are modulated by QPSK, and the high-order signal Rx to be received by the receiving end is modulated by 16QAM.
  • the two QPSK signals are superimposed in the air domain or power domain (ie energy domain) according to the amplitude ratio of 2:1 (corresponding to the power ratio of 4:1), and a 16QAM signal that satisfies Gray mapping can be generated.
  • Tx1 QPSK
  • Tx2 QPSK
  • Tx1 QPSK
  • Tx2 may also be used as a sign bit, and at the same time, it is required that the modulation mapping relationship of Tx1 changes regularly with different quadrants indicated by Tx2. That is to say, there is no limitation on which path of Tx1 and Tx2 is used as the sign bit.
  • joint coding and modulation needs to meet the following criteria: the amplitude ratio of the two low-order QPSK signals is 2:1, one path is used as a sign bit, and the modulation mapping relationship of the other path changes according to the quadrant indicated by the sign bit, and After the superposition of two low-order QPSK signals, one high-order 16QAM signal satisfying Gray mapping can be generated.
  • FIG. 5 exemplarily shows a schematic diagram of generating a 16QAM signal satisfying Gray mapping by superimposing two QPSK signals with a specific amplitude ratio in Example 1, and the specific amplitude ratio refers to 2:1.
  • the numbers in the circles represent the original bits corresponding to the constellation points; the positions of the circles represent the complex symbols represented by the constellation points, and the modulation mapping relationship from bits to symbols is shown through the constellation diagram.
  • Tx2 provides four modulation mapping relationships suitable for different quadrants. The small coordinate axis in the middle indicates the symbol of Tx2, and the large coordinate axis on the outside indicates the quadrant to which this modulation mapping relationship applies.
  • the modulation mapping relationship of Tx1 (QPSK) symbol bits is determined, the modulation mapping relationship of Tx2 (QPSK) is different in each quadrant.
  • Table 1 The encoding mapping table for generating a 16QAM signal by superimposing two QPSK signals according to the amplitude ratio of 2:1
  • Table 1 shows a coding mapping table for generating a 16QAM signal by superimposing two QPSK signals according to an amplitude ratio of 2:1 in Example 1.
  • the encoding mapping table shown in Table 1 may contain all or part of the columns.
  • the sender when modulating two bit streams, the sender needs to know the Tx1 in the table
  • the mapping relationship between coding and Tx1 symbol that is, the modulation mapping relationship of Tx1
  • the mapping relationship between Tx2 coding and Tx2 symbol in the table that is, the modulation mapping relationship of Tx1
  • At least four columns of Tx1 coding, Tx1 symbol, Tx2 coding, and Tx2 symbol need to be included.
  • the sending end if the sending end is an independent bit stream, the sending end also needs to know the corresponding relationship between Rx coding, Tx1 coding, and Tx2 coding (that is, the position splitting relationship of bits), so as to split one bit stream
  • the coding mapping table of the sending end also needs to include the Rx coding column.
  • the coding mapping table at the sending end may further include an Rx symbol column, indicating the high-order signal that the receiving end is expected to receive.
  • the receiving end since the receiving end receives a high-order modulation signal and needs to demodulate and decode the high-order modulation signal, the receiving end needs to know the correspondence between Rx symbol and Rx coding ( That is, the Rx modulation mapping relationship), that is, the encoding mapping table of the receiving end needs to include the Rx symbol column and the Rx coding column.
  • the sending end sends two independent bit streams
  • the receiving end also needs to know the corresponding relationship between Rx coding, Tx1 coding, and Tx2 coding (that is, the position splitting relationship of bits), so as to obtain One bit stream is split into two bit streams, that is, the coding mapping table at the receiving end can also optionally include Tx1 coding column and Tx2 coding column.
  • the design of the coding mapping table at the transmitting and receiving ends may be different according to the signaling design related to signal transmission, and may be pre-stored in the devices at the receiving and receiving ends.
  • the description of the encoding mapping table in this part can be applied to any encoding mapping table described below, and will not be described in detail below.
  • the modulation mapping relationship of Tx1 is: the bits ⁇ 10, 00, 01, 11 ⁇ in the Tx1 bit stream are respectively mapped to the four first complex symbols ⁇ 1+1j, -1+1j, -1-1j, 1-1j ⁇ . Specifically, bit 10 in the Tx1 bit stream is mapped to the first complex symbol 1+1j in the first quadrant; bit 11 in the Tx1 bit stream is mapped to the first complex symbol 1-1j in the fourth quadrant; Tx1 bit stream Bit 01 in Tx1 maps to the first complex symbol -1-1j in the third quadrant; bit 00 in the Tx1 bitstream maps to the first complex symbol -1+1j in the second quadrant.
  • the modulation mapping relationship of Tx2 is: the bits ⁇ 10, 00, 01, 11 ⁇ in the Tx2 bit stream are respectively mapped to the 4 second complex symbols ⁇ 1+1j, -1+1j, -1-1j, 1-1j ⁇ .
  • the modulation mapping relationship of the bits in the Tx2 bitstream is different, that is, when the complex symbols mapped to the bits in the Tx1 bitstream are in different quadrants , the same bit in the Tx2 bitstream maps to different complex symbols.
  • the bit in the Tx1 bit stream when the bit in the Tx1 bit stream is 10, it corresponds to the first quadrant: the bit 10 in the Tx2 bit stream maps to the second complex symbol -1+1j in the second quadrant; the bit 11 in the Tx2 bit stream maps To the second complex symbol -1-1j in the third quadrant; bit 01 in the Tx2 bitstream maps to the second complex symbol 1-1j in the fourth quadrant; bit 00 in the Tx2 bitstream maps to the first quadrant The second complex symbol 1+1j of .
  • bit 10 in the Tx2 bitstream is mapped to the second complex symbol -1-1j in the third quadrant; bit 11 in the Tx2 bitstream is mapped to the second Second complex symbol -1+1j in quadrant; bit 01 in Tx2 bitstream maps to second complex symbol 1+1j in first quadrant; bit 00 in Tx2 bitstream maps to second complex symbol in fourth quadrant Plural symbols 1-1j.
  • bit 10 in the Tx2 bitstream is mapped to the second complex symbol 1-1j in the fourth quadrant; bit 11 in the Tx2 bitstream is mapped to the first quadrant Bit 01 in the Tx2 bitstream maps to the second complex symbol -1+1j in the second quadrant; bit 00 in the Tx2 bitstream maps to the second complex number in the third quadrant Symbol-1-1j.
  • bit 10 in the Tx2 bitstream is mapped to the second complex symbol 1+1j in the first quadrant; bit 11 in the Tx2 bitstream is mapped to the fourth quadrant Bit 01 in the Tx2 bitstream maps to the second complex symbol -1-1j in the third quadrant; Bit 00 in the Tx2 bitstream maps to the second complex symbol in the second quadrant Symbol -1+1j.
  • every 2 bits in the Tx1 bit stream are modulated into 1 symbol
  • every 2 bits in the Tx2 bit stream are modulated into 1 symbol
  • every 4 bits in the Rx bit stream are modulated into 1 symbol .
  • the first complex symbol (Tx1 symbol) mapped to the 2 bits in the Tx1 bit stream and the second complex symbol (Tx2 symbol) mapped to the 2 bits in the Tx2 bit stream are superimposed according to the amplitude ratio of 2:1, which can be
  • the first and third bits of every 4 bits in the Rx bit stream are bits in the Tx1 bit stream (shown underlined in the above coding mapping table), and the second and fourth bits are bits in the Tx2 bit stream. Therefore, according to the coded mapping table designed in this way, the coded bits demodulated by the receiving end can determine the bits corresponding to Tx1 and Tx2 according to the above position correspondence. Similarly, in the sending and receiving framework based on the single point of the sending end, the sending end can also determine the Tx1 bit stream and the Tx2 bit stream according to the positional relationship, that is, the sending end can bit the independent bit stream according to the positional relationship. Disassemble to get Tx1 bit stream and Tx2 bit stream.
  • mapping table can also be expressed by a corresponding formula:
  • d Tx1 (i) and d Tx2 (i) respectively represent the first complex symbol of Tx1 and the second complex symbol of Tx2 generated after the modulation of the two bit streams.
  • d Rx a*d Tx1 +d Tx2
  • d Rx is the complex number symbol in one high-order signal that is ideally superimposed
  • a is the unnormalized amplitude ratio between the first complex number symbol of Tx1 and the second complex number symbol of Tx2.
  • the normalization refers to performing power normalization on the first complex symbol and the second complex symbol respectively, and the powers of the normalized first complex symbol and the normalized second complex symbol are 1.
  • a 2
  • d Rx is a complex symbol of 16QAM.
  • the modulation mapping relationship of each channel of low-order signals shown in the above coding mapping table is only an example, and other modulation mapping relationships may also be used to achieve the same purpose.
  • the quadrant of the symbol mapped to d Tx1 as a symbol bit changes, the corresponding modulation mapping relationship of d Tx2 also needs to be modified accordingly, but the change is only in the quadrant of the complex symbol corresponding to different bits, that is, the I channel and the complex symbol.
  • the sign of the amplitude of the Q channel In the present application, the I path refers to the vertical axis in the constellation diagram, representing the real part of the complex symbol, and the Q path refers to the horizontal axis in the constellation diagram, representing the imaginary part of the complex symbol.
  • Example 2 Two channels of QPSK signals and 8QAM signals in a specific amplitude ratio are superimposed to generate one channel of 32QAM signals satisfying Gray mapping.
  • one low-order signal Tx1 at the transmitting end is modulated by QPSK
  • another low-order signal Tx2 is modulated by 8QAM
  • one high-order signal Rx to be received by the receiving end is modulated by 32QAM.
  • two QPSK signals and 8QAM signals can be superimposed in the space domain or power domain (that is, energy domain) according to the amplitude ratio of 3:1 (corresponding to the power ratio of 9:1), and a 32QAM signal that satisfies Gray mapping can be generated. .
  • Tx1 QPSK
  • Tx2 8QAM
  • FIG. 6 exemplarily shows a schematic diagram of superimposing two QPSK signals and 8QAM signals with a specific amplitude ratio in Example 2 to generate one 32QAM signal satisfying Gray mapping, and the specific amplitude ratio refers to 3:1.
  • the modulation mapping relationship of Tx1 (QPSK) symbol bits is determined
  • the modulation mapping relationship of Tx2 (8QAM) is different in each quadrant. It can be seen that the constellation diagram (coding mapping table) of Tx2 in the first quadrant is roughly rotated, so that the high-order constellation after the final superposition satisfies Gray mapping, thereby having better demodulation performance.
  • Table 2 The encoding mapping table for generating a 32QAM signal by superimposing two QPSK signals and 8QAM signals according to the amplitude ratio of 3:1
  • Table 2 shows the encoding mapping table for generating a 32QAM signal by superimposing two QPSK signals and 8QAM signals according to the amplitude ratio of 3:1 in Example 2. According to the contents in Table 2, it can be seen that:
  • the modulation mapping relationship of Tx1 is: the bits ⁇ 10, 11, 01, 00 ⁇ in the Tx1 bit stream are respectively mapped to the four first complex symbols ⁇ 1+1j, 1-1j, -1-1j, -1+1j ⁇ . Specifically, bit 10 in the Tx1 bit stream is mapped to the first complex symbol 1+1j in the first quadrant; bit 11 in the Tx1 bit stream is mapped to the first complex symbol 1-1j in the fourth quadrant; Tx1 bit stream Bit 01 in Tx1 maps to the first complex symbol -1-1j in the third quadrant; bit 00 in the Tx1 bitstream maps to the first complex symbol -1+1j in the second quadrant.
  • the modulation mapping relationship of Tx2 (8QAM) is: the bits ⁇ 000, 001, 100, 101, 111, 011, 010, 110 ⁇ in the Tx2 bit stream are respectively mapped to 8 second complex symbols ⁇ 0+2j, -2+ 2j, -2+0j, -2-2j, 0-2j, 2-2j, 2+0j, 0+0j ⁇ .
  • the modulation mapping relationship of the bits in the Tx2 bit stream is different, that is, when the complex symbols mapped to the bits in the Tx1 bit stream are in different quadrants, The same bits in the Tx2 bitstream are mapped to different complex symbols.
  • bit 000 in the Tx2 bit stream is mapped to the second complex symbol 0+2j; bit 001 in the Tx2 bit stream is mapped to the second complex symbol -2 +2j; bit 100 in the Tx2 bitstream maps to the second complex symbol -2+0j; bit 101 in the Tx2 bitstream maps to the second complex symbol -2-2j; bit 111 in the Tx2 bitstream maps to the second Complex symbols 0-2j; bit 011 in the Tx2 bitstream maps to the second complex symbol 2-2j; bit 010 in the Tx2 bitstream maps to the second complex symbol 2+0j; bit 110 in the Tx2 bitstream maps to the second complex symbol 2+0j; Two complex symbols 0+0j.
  • bit 000 in the Tx2 bitstream is mapped to the second complex symbol 0-2j; bit 001 in the Tx2 bitstream is mapped to the second complex symbol -2-2j ; Bit 100 in the Tx2 bitstream is mapped to the second complex symbol -2-0j; Bit 101 in the Tx2 bitstream is mapped to the second complex symbol -2+2j; Bit 111 in the Tx2 bitstream is mapped to the second complex symbol 0+2j; bit 011 in the Tx2 bitstream maps to the second complex symbol 2+2j; bit 010 in the Tx2 bitstream maps to the second complex symbol 2-0j; bit 110 in the Tx2 bitstream maps to the second complex symbol Symbols 0-0j.
  • bit 000 in the Tx2 bitstream is mapped to the second complex symbol -0-2j; bit 001 in the Tx2 bitstream is mapped to the second complex symbol 2-2j ; Bit 100 in the Tx2 bitstream maps to the second complex symbol 2-0j; Bit 101 in the Tx2 bitstream maps to the second complex symbol 2+2j; Bit 111 in the Tx2 bitstream maps to the second complex symbol-0 +2j; bit 011 in the Tx2 bitstream maps to the second complex symbol -2+2j; bit 010 in the Tx2 bitstream maps to the second complex symbol -2-0j; bit 110 in the Tx2 bitstream maps to the second Plural symbols 0-0j.
  • bit 000 in the Tx2 bit stream is mapped to the second complex symbol -0+2j; bit 001 in the Tx2 bit stream is mapped to the second complex symbol 2+2j ; Bit 100 in Tx2 is mapped to the second complex symbol 2+0j; Bit 101 in the Tx2 bitstream is mapped to the second complex symbol 2-2j; Bit 111 in the Tx2 bitstream is mapped to the second complex symbol -0-2j ; Bit 011 in the Tx2 bitstream is mapped to the second complex symbol -2-2j; Bit 010 in the Tx2 bitstream is mapped to the second complex symbol -2+0j; Bit 110 in the Tx2 bitstream is mapped to the second complex symbol -0+0j.
  • every 2 bits in the Tx1 bit stream are modulated into 1 symbol
  • every 3 bits in the Tx2 bit stream are modulated into 1 symbol
  • every 5 bits in the Rx bit stream are modulated into 1 symbol .
  • the first complex symbol (Tx1 symbol) mapped to the 2 bits in the Tx1 bit stream and the second complex symbol (Tx2 symbol) mapped to the 3 bits in the Tx2 bit stream are superimposed according to the amplitude ratio 3:1, which can be
  • the first and fourth bits of every 5 bits of the Rx bit stream are bits in the Tx1 bit stream (shown underlined in the above encoding mapping table), and the second, third, and fifth bits are the bits of the Tx2 bit stream bit. Therefore, according to the coded mapping table designed in this way, the coded bits demodulated by the receiving end can obtain the bits corresponding to Tx1 and Tx2 according to the above position correspondence.
  • the sending end can also determine the Tx1 bit stream and the Tx2 bit stream according to the coding mapping table, for example, disassemble the bits of an independent bit stream to obtain the Tx1 bit stream and Tx2 bit stream bitstream.
  • Example 3 Two channels of QPSK signals and 16QAM signals of a specific amplitude ratio are superimposed to generate one channel of 64QAM signals satisfying Gray mapping.
  • one low-order signal Tx1 at the transmitting end is modulated by QPSK
  • another low-order signal Tx2 is modulated by 16QAM
  • one high-order signal Rx to be received by the receiving end is modulated by 64QAM.
  • two QPSK signals and one 16QAM signal can be superimposed in the airspace or power domain (that is, energy domain) according to the amplitude ratio of 4:1 (corresponding to the power ratio of 16:1), and a 64QAM signal that satisfies Gray mapping can be generated. Signal.
  • Tx1 (QPSK) is used as a sign bit, and is used to indicate the quadrant where the superimposed high-order constellation is located.
  • modulation mapping relationship of Tx2 (16QAM) varies with the quadrant indicated by Tx1.
  • FIG. 7 exemplarily shows a schematic diagram of superimposing two QPSK signals with a specific amplitude ratio and a 16QAM signal in Example 3 to generate a 64QAM signal satisfying Gray mapping, and the specific amplitude ratio refers to 4:1.
  • the modulation mapping relationship of Tx1 (QPSK) symbol bits is determined, the modulation mapping relationship of Tx2 (16QAM) is different in each quadrant. It can be seen that the constellation diagram (coding mapping table) of Tx2 in the first quadrant is roughly rotated, so that the high-order constellation after the final superposition satisfies Gray mapping, thereby having better demodulation performance.
  • Table 3 shows the code mapping table for generating a 64QAM signal by superimposing two QPSK signals and 16QAM signals according to the amplitude ratio of 4:1 in Example 3. According to the contents in Table 3, it can be seen that:
  • the modulation mapping relationship of Tx1 is: the bits ⁇ 10, 11, 01, 00 ⁇ in the Tx1 bit stream are respectively mapped to the four first complex symbols ⁇ 1+1j, 1-1j, -1-1j, -1+1j ⁇ . Specifically, bit 10 in the Tx1 bit stream is mapped to the first complex symbol 1+1j in the first quadrant; bit 11 in the Tx1 bit stream is mapped to the first complex symbol 1-1j in the fourth quadrant; Tx1 bit stream Bit 01 in Tx1 maps to the first complex symbol -1-1j in the third quadrant; bit 00 in the Tx1 bitstream maps to the first complex symbol -1+1j in the second quadrant.
  • the modulation mapping relationship of Tx2 (16QAM) is: the bits ⁇ 1100, 1101, 1001, 1000, 1110, 1111, 1011, 1010, 0110, 0111, 0011, 0010, 0100, 0101, 0001, 0000 ⁇ in the Tx2 bit stream are respectively Maps to 16 second complex symbols ⁇ -1+3j, -1+1j, -3+1j, -3+3j, -1-3j, -1-1j, -3-1j, -3-3j, 1 -3j, 1-1j, 3-1j, 3-3j, 1+3j, 1+1j, 3+1j, 3+3j ⁇ .
  • the modulation mapping relationship of the bits in the Tx2 bit stream is different, that is, when the complex symbols mapped to the bits in the Tx1 bit stream are in different quadrants, The same bits in the Tx2 bitstream are mapped to different complex symbols.
  • bit 1100 in the Tx2 bitstream is mapped to the second complex symbol -1+3j; bit 1101 in the Tx2 bitstream is mapped to the second complex symbol -1+1j; Bit 1001 in the Tx2 bitstream maps to the second complex symbol -3+1j; Bit 10 00 in the Tx2 bitstream maps to the second complex symbol -3+3j; Bit 11 10 in the Tx2 bitstream Mapped to the second complex symbol-1-3j; Bit 11 in the Tx2 bitstream is mapped to the second complex symbol-1-1j; Bit 1011 in the Tx2 bitstream is mapped to the second complex symbol-3-1j; Tx2 Bit 10 10 in the bitstream maps to the second complex symbol -3-3j; Bit 01 10 in the Tx2 bitstream maps to the second complex symbol 1-3j; Bit 01 11 in the Tx2 bitstream maps to the second complex symbol 1-1j; bits 00 11 in the Tx2 bitstream are mapped to
  • bit 1100 in the Tx2 bitstream is mapped to the second complex symbol -1-3j; bit 1101 in the Tx2 bitstream is mapped to the second complex symbol -1- 1j; bit 1001 in the Tx2 bitstream is mapped to the second complex symbol -3-1j; bit 1000 in the Tx2 bitstream is mapped to the second complex symbol -3-3j; bit 1110 in the Tx2 bitstream is mapped to the second complex symbol -3-3j; Two complex symbols -1+3j; bit 11 11 in the Tx2 bitstream is mapped to the second complex symbol -1+1j; bit 10 11 in the Tx2 bitstream is mapped to the second complex symbol -3+1j; in the Tx2 bitstream Bit 10 10 of Tx2 maps to the second complex symbol -3+3j; Bit 01 10 in the Tx2 bitstream maps to the second complex symbol 1+3j; Bit 01 11 in the Tx2 bitstream maps to the second complex symbol 1
  • bit 1100 in the Tx2 bitstream is mapped to the second complex symbol 1-3j; bit 1101 in the Tx2 bitstream is mapped to the second complex symbol 1-1j; Bit 1001 in the Tx2 bitstream maps to the second complex symbol 3-1j; bit 1000 in the Tx2 bitstream maps to the second complex symbol 3-3j; bit 1110 in the Tx2 bitstream maps to the second complex symbol 1 +3j; bit 11 11 in the Tx2 bitstream is mapped to the second complex symbol 1+1j; bit 10 11 in the Tx2 bitstream is mapped to the second complex symbol 3+1j; bit 10 10 in the Tx2 bitstream is mapped to the second complex symbol 3+1j; Two complex symbols 3+3j; bits 01 10 in the Tx2 bitstream map to the second complex symbol -1+3j; bits 01 11 in the Tx2 bitstream map to the second complex symbol -1+1j; bits in the Tx2 bitstream Bit 00 11
  • bit 1100 in the Tx2 bit stream is mapped to the second complex symbol 1+3j; bit 1101 in the Tx2 bit stream is mapped to the second complex symbol 1+1j; Bit 1001 in the Tx2 bitstream maps to the second complex symbol 3+1j; bit 10 00 in the Tx2 bitstream maps to the second complex symbol 3+3j; bit 11 10 in the Tx2 bitstream maps to the second complex symbol 1 -3j; bit 11 11 in the Tx2 bitstream is mapped to the second complex symbol 1-1j; bit 10 11 in the Tx2 bitstream is mapped to the second complex symbol 3-1j; bit 10 10 in the Tx2 bitstream is mapped to the second complex symbol 3-1j; Two complex symbols 3-3j; bits 01 10 in the Tx2 bitstream map to the second complex symbol-1-3j; bits 01 11 in the Tx2 bitstream map to the second complex symbol-1-1j; bits in the Tx2 bitstream Bit 00 11
  • every 2 bits in the Tx1 bit stream are modulated into 1 symbol
  • every 4 bits in the Tx2 bit stream are modulated into 1 symbol
  • every 6 bits in the Rx bit stream are modulated into 1 symbol .
  • the first complex symbol (Tx1symbol) mapped to 2 bits in the Tx1 bit stream and the second complex symbol (Tx2symbol) mapped to 3 bits in the Tx2 bit stream are superimposed according to the amplitude ratio of 4:1 to obtain Rx
  • the first and fourth bits of every 5 bits of the Rx bit stream are bits in the Tx1 bit stream (shown underlined in the encoding mapping table), and the second, third, fifth, and sixth bits are Tx2 bit streams bits in . Therefore, according to the mapping code table designed in this way, the coded bits demodulated by the receiving end can be split to obtain bits corresponding to Tx1 and Tx2 according to the above position correspondence. Similarly, in the sending and receiving framework based on the single point of the sending end, the sending end can also disassemble the bits of an independent bit stream according to the encoding mapping table to obtain the Tx1 bit stream and the Tx2 bit stream.
  • mapping code table may also be expressed by a corresponding formula
  • the above formula means that for a continuous bit stream b 1 of length L and a bit stream b 2 of length 2*L, where b 1 generates a symbol for every 2 bits, and b 2 generates a symbol for every 4 bits, Then there are L/2 symbols.
  • i represents the symbol number, and the value range of i is 0 ⁇ L/2-1.
  • d Tx1 (i) and d Tx2 (i) respectively represent the first complex symbol of Tx1 and the second complex symbol of Tx2 generated after the modulation of the two bit streams.
  • d Rx a*d Tx1 +d Tx2
  • d Rx is the complex number symbol in one high-order signal of ideal superimposition
  • d Rx is a complex symbol of 64QAM.
  • the actual signal transmission needs to be normalized to an average power of 1.
  • the amplitude ratio of the two low-order signals should be the ratio of the total power of the two constellations after normalization, or the unnormalized The constellation finds the ratio of the average power.
  • modulation mapping relationship of each channel of low-order signals shown in the above coding mapping table is only an example, and other modulation mapping relationships may also be used to achieve the same purpose.
  • the quadrant of the symbol mapped to d Tx1 as a symbol bit changes, the corresponding modulation mapping relationship of d Tx2 also needs to be modified accordingly, but the change is only in the quadrant of the complex symbol corresponding to different bits, that is, the I channel and the complex symbol.
  • the sign of the amplitude of the Q channel is only an example, and other modulation mapping relationships may also be used to achieve the same purpose.
  • Example 4 Three channels of QPSK signals with a specific amplitude ratio are superimposed to generate one channel of 64QAM signals satisfying Gray mapping.
  • the three low-order signals Tx1, Tx2 and Tx3 at the transmitting end are all modulated by QPSK, and the high-order signal Rx to be received at the receiving end is modulated by 64QAM.
  • the three QPSK signals are superimposed in the airspace or power domain (ie energy domain) according to the amplitude ratio of 4:2:1 (corresponding to the power ratio of 16:4:1), and a 64QAM signal that satisfies Gray mapping can be generated. .
  • FIG. 8 exemplarily shows a superposition constellation diagram of one 16QAM signal satisfying Gray mapping generated by superimposing three QPSK signals with a specific amplitude ratio in Example 4, and the specific amplitude ratio refers to 4:2:1.
  • This example can be understood as taking Tx1 (QPSK) as the sign bit, Tx2 (QPSK) and Tx2 (QPSK) are superimposed to generate 16QAM, and then the superimposed 16QAM is superimposed with Tx1 to generate 64QAM.
  • Table 4 shows the coding mapping table for generating one 64QAM by superimposing the three QPSK signals in Example 4 according to the amplitude ratio 4:2:1.
  • the modulation mapping relationship embodied in the coding mapping table is similar to that in Examples 1 to 3. Here No longer.
  • the first and fourth bits of every 6 bits of the Rx bit stream are bits in the Tx1 bit stream
  • the second and fifth bits are bits in the Tx2 bit stream
  • the third and sixth bits are are the bits in the Tx3 bitstream. Therefore, according to the coded mapping table designed in this way, the coded bits demodulated by the receiving end can be split according to the above position correspondence to obtain the bits corresponding to Tx1 and Tx2.
  • the sending end can also disassemble the bits of an independent bit stream according to the corresponding position, and obtain the Tx1 bit stream, the Tx2 bit stream and the Tx3 bit stream.
  • mapping code table can also be expressed by the corresponding formula:
  • the above formula means that for three continuous bit streams b 1 , b 2 and b 3 of length L, among them, b 1 , b 2 and b 3 all generate a symbol every 2 bits, and there are L/2 symbols in total .
  • i represents the symbol number, and the value range of i is 0 ⁇ L/2-1.
  • d Tx1 (i), d Tx2 (i) and d Tx3 (i) respectively represent the complex symbols of Tx1, Tx2 and Tx3 generated after the modulation of the three bit streams.
  • d Rx a 1 *d Tx1 +a 2 *d Tx2 +d Tx3
  • d Rx is the complex symbol in the ideally superimposed high-order signal
  • the superimposed d Rx at this time is 64QAM plural symbols.
  • modulation mapping relationship of each channel of low-order signals shown in the above coding mapping table is only an example, and other modulation mapping relationships may also be used to achieve the same purpose.
  • the quadrant of the symbol mapped to d Tx1 as a symbol bit changes, the corresponding modulation mapping relationship between d Tx2 and d Tx3 also needs to be modified accordingly, but the change is only in the quadrant of the complex symbol corresponding to the different bits, that is, the quadrant of the complex symbol Positive or negative of the amplitude of the I channel and the Q channel.
  • the coding at the receiving end does not satisfy the gray mapping solution to the constellation points.
  • the effect of gray coding at the transmitting and receiving end is achieved, thereby improving the solution tune performance.
  • modulation mapping rules are given for superposition generation of 16QAM, 32QAM, and 64QAM respectively.
  • the modulation mapping relationship of the QPSK constellation By fixing the modulation mapping relationship of the QPSK constellation as a symbol bit, it is used to indicate the different quadrant positions of the final superimposed high-order constellation. At the same time, the design The modulation mapping relationship of the other low-order signal is different in different quadrants. By changing the modulation mapping relationship at the transmitting end, the superimposed signal at the receiving end can satisfy the Gray mapping, thereby improving performance.
  • the joint coding and modulation method provided in the present application can make one high-order modulation signal at the receiving end satisfy Gray mapping, thereby improving the demodulation performance of the receiving end.
  • the sending end can directly map the bits in the original bit stream into complex symbols corresponding to each channel of low-order modulation signals, that is, perform symbol-level modulation mapping, thereby obtaining M channels of low-order modulation signals.
  • the mapping rule is used to indicate the corresponding relationship between the bits in the original bit stream composed of the S bit streams and the complex symbols in the high-order modulation signal (that is, the modulation of the high-order signal mapping relationship), and the corresponding relationship between the complex symbols in the one path of high-order modulation signals and the complex symbols in the M paths of low-order modulation signals (that is, the symbol splitting relationship of high-order signals).
  • the original bit stream includes bits corresponding to the M channels of low-order modulation signals, and S is equal to 1 or M.
  • bits corresponding to the M channels of low-order modulation signals are located at specific positions of a group of bits in the original bit stream.
  • the first and third bits of every 4 bits in the Rx bit stream correspond to the bits in the Tx1 bit stream
  • the second and fourth bits correspond to the bits in the Tx2 bit stream.
  • the corresponding relationship between the bits in the original bit stream composed of the S bit streams and the complex symbols in the high-order modulation signal refers to: a set of bits in the original bit stream composed of the S bit streams
  • the various values correspond one-to-one to each complex symbol in the one path of high-order modulation signal.
  • the complex symbols in the M paths of low-order modulation signals are obtained by splitting the complex symbols in the path of high-order modulation signals according to equal amplitude ratios, that is, the complex symbols in the path of high-order modulation signals can be divided into Each complex symbol is split according to an equal amplitude ratio to obtain complex symbols in the M channels of low-order modulation signals.
  • mapping rules may include the following content:
  • the 2 N values of the N bits from the original bit stream correspond to the 2 N third complex symbols in a high-order modulation signal to be received by the receiving end device, and each N bit in the original bit stream
  • the bits include N/2 bits corresponding to the first low-order modulation signal and N/2 bits corresponding to the second low-order modulation signal.
  • the original bit stream when S is equal to 1, the original bit stream is the S bit stream; when S is equal to M, the original bit stream is composed of a first bit stream and a second bit stream, and the original bit stream Every N bit in the stream includes N/2 bits in the first bit stream and N/2 bits in the second bit stream, for example, the original bit stream can be 1 bit before dismantling
  • the independent bit stream may also be a bit stream composed of two independent bit streams according to the set position correspondence.
  • the transmitting device modulates one or two bit streams according to the above superimposed signal splitting method to generate two low-order modulated signals, which can be: every N bits from the original bit stream sequentially mapped to a fourth complex symbol in the 2 N/2 fourth complex symbols and a fifth complex symbol in the 2 N/2 fifth complex symbols to form the first path of low-order modulation signals and A second path of low-order modulation signals; wherein, the combination of the fourth complex symbol and the fifth complex symbol corresponds to a third complex symbol to which N bits from the original bit stream are mapped.
  • mapping rule design can be based on the following considerations:
  • the sending end can generate and transmit multiple low-order modulation signals to realize the reduction of the signal at the sending end; on the other hand, the multiple low-order modulation signals generated by the sending end can A high-order modulation signal can be obtained by superimposing signals according to equal amplitude ratios, thereby avoiding the need to limit the power of one or more signals of multiple low-order modulation signals, which affects transmission performance.
  • one high-order modulation signal is split according to equal amplitude ratio, which is equivalent to multiple low-order modulation signals being superimposed according to equal amplitude ratio. Therefore, the symbol splitting relationship of the above-mentioned one high-order modulation signal can also be It is called the symbol superposition relationship of multiple low-order modulation signals.
  • the multi-channel low-order modulation signals are superimposed according to the equal amplitude ratio, which means that the amplitude ratio of the multi-channel low-order modulation signals is 1:1, so it can also be called the multi-channel low-order modulation signal. Amplitude matching. Since the power ratio of the multi-channel low-order modulation signals with equal amplitude ratio is the same after power amplification, that is, the power ratio is also 1:1, therefore, the multi-channel low-order modulation signals in this application are in accordance with the equal power ratio Superposition is equivalent to superposition of multiple low-order modulated signals according to equal amplitude ratios, and superposition of multiple low-order modulated signals according to equal power ratios can also be called power matching between multiple low-order modulated signals.
  • the following examples provide corresponding symbol splitting schemes for high-order symbols (that is, high-order The corresponding relationship between symbols and multiple low-order symbols), including: Example 5, two low-order signals with matched amplitudes are superimposed to generate a 16QAM signal that satisfies Gray mapping; Example 6, two low-order signals with matched amplitudes are superimposed Generate a 64QAM signal that satisfies Gray mapping; Example 7, two low-order signals with amplitude matching are superimposed to generate a 64QAM signal that meets Gray mapping; Example 8, two low-order signals with amplitude matching are superimposed to generate a NUC- 16QAM signal; Example 9, two low-order signals with matched amplitudes are superimposed to generate a NUC-64QAM signal that satisfies Gray mapping.
  • Tx1, Tx2, and Tx3 respectively represent multiple low-order signals at the sending end
  • Rx represents a high-order signal to be received at the receiving end, which is formed by superimposing multiple low-order signals at the sending end.
  • Example 5 Two low-order signals with matched amplitudes are superimposed to generate a 16QAM signal that satisfies Gray mapping.
  • a high-order signal Rx at the receiving end adopts 16QAM modulation.
  • the complex symbols in the two low-order signals Tx1 and Tx2 at the transmitting end are superimposed in accordance with the equal amplitude ratio, and the complex symbols in the high-order signal Rx at the receiving end can be obtained.
  • the complex symbols in the two low-order signals Tx1 and Tx2 can be obtained by splitting the complex symbols of the high-order 16QAM signal at the receiving end.
  • the two low-order signals at the sending end need to be jointly coded and modulated so that the superimposed high-order signal satisfies Gray mapping, and the receiving end can directly demodulate and restore the original signal after receiving the high-order signal. bit.
  • the specific modulation and mapping relationship used by the two low-order signals at the transmitting end is not specifically limited, as long as the modulation and mapping relationship adopted can make the superimposed high-order signal It is sufficient that the signal satisfies the Gray mapping.
  • the modulation-mapping relationship mentioned here has the same meaning as the foregoing embodiments, and refers to the mapping from bits to symbols.
  • the modulation constellation diagram of the two low-order signals at the transmitting end is not the constellation specified in the standard (for example, the Euclidean distance between adjacent constellation points of the constellation specified in the standard is equal) , that is, the low-order modulation that is not specified in the existing standards is used. It can be seen from the following figure 9 that the Euclidean distances between adjacent constellation points in this application are not equal (also can be considered as non-square constellations). Constellations used in this application that are different from existing standards are collectively referred to as special constellations.
  • FIG. 9 exemplarily shows a schematic diagram of generating a 16QAM signal by superimposing two channels of low-order signals with amplitude matching in the fifth example.
  • each complex symbol of 16QAM corresponds to 4 bits.
  • every 2 bits in the two low-order signals Tx1 and Tx2 corresponds to a complex symbol.
  • 2 bits have 4 values ⁇ 00, 01, 10, 11 ⁇ , which can be mapped to 4 complex symbols.
  • Table 5 shows the symbol correspondence of one 16QAM signal generated by superposition of two low-order signals with amplitude matching in Example 5, that is, the symbol splitting of a 16QAM signal into two low-order signals according to the equal amplitude ratio. Sub-plan.
  • the fourth complex symbol set corresponding to Tx1 can be ⁇ 1+2j, 1-2j,-1+2j,-1-2j ⁇
  • the fifth complex symbol set corresponding to Tx2 can be ⁇ 2+1j ,2-1j,-2+1j,-2-1j ⁇ .
  • each fourth complex symbol in the fourth complex symbol set corresponding to Tx1 and each fifth complex symbol in the fifth complex symbol set corresponding to Tx2 are directly superimposed in pairs according to an equal amplitude ratio, and the 16QAM can be obtained. Individual plural signs.
  • the above-mentioned symbol correspondence is one-to-one bidirectional mapping
  • the modulation mapping relationship of the 16QAM signal is designed to satisfy Gray mapping
  • the modulation mapping relationship determines that a high-order complex symbol is to be modulated
  • the high-order complex symbol can be converted into two low-order complex symbols corresponding to the two low-order signals by looking up Table 5, thereby omitting the two low-order signals Bit-to-complex symbol mapping problem in Tx1 and Tx2.
  • the mapping relationship from the original bit to the symbol can follow the existing technology. There are many kinds of mappings.
  • ⁇ 0,1 ⁇ bits of binary phase shift keying can be mapped to ⁇ 1,-1 ⁇ , or ⁇ -1,1 ⁇ .
  • BPSK binary phase shift keying
  • the 4 bits from the original bit stream are determined to be modulated into high-order complex symbols ⁇ 3+1j ⁇ according to the modulation mapping relationship of 16QAM, they can be converted into corresponding two low-order complex symbols ⁇ 1+2j ⁇ and ⁇ 2-1j ⁇ , as complex symbols in two low-order signals.
  • FIG. 10 exemplarily shows a schematic diagram of joint coding and modulation of two paths of low-order signals with matched amplitudes provided in Example 5.
  • FIG. 10 shows that the modulation mapping relationship of Tx2 is also different in different quadrants, but because the superimposed high-order signal exists across quadrants, the modulation mapping relationship of Tx1 also needs to be changed accordingly.
  • Tx1 takes the encoding of Tx1 in the first quadrant in the figure as an example, when the I path of the low-order signal of Tx2 is greater than 0 (in the first and second quadrants), Tx1 uses bits ⁇ 10 ⁇ to represent the symbol ⁇ 1+ 2j ⁇ ; when the I channel of the low-order signal of Tx2 is less than 0 (in the third and fourth quadrants), Tx1 needs to use bits ⁇ 00 ⁇ to represent the symbol ⁇ 1+2j ⁇ of the first quadrant.
  • Table 6 shows an encoding mapping table for generating a 16QAM signal by superimposing two channels of low-order signals with matched amplitudes provided in Example 5. It should be noted that, in order to show the correspondence between high-order symbols and multiple low-order symbols, in practical applications, only certain columns of information in Table 6 can be used, such as Tx1 symbol, Tx2 symbol, Rx symbol three column, you can also use all the column information in Table 6. When some of the column information in Table 6 is used, this part of the columns can be used as a new mapping table. When performing modulation, the Rx coding column also needs to be included in Table 6, which is used to represent the original bit stream.
  • Tx1 coding and Tx2 coding may also be included in the table 6 to indicate the two bit streams at the originating end, and Tx1 coding and Tx2 coding may not be included in this table 6 to indicate the two bit streams at the originating end, because the The two bit streams can be obtained by dismantling the bits of the original bit stream at specified positions. Therefore, it is not necessary to indicate Tx1 coding and Tx2 coding in Table 6. In the same way, the two bit streams can also be combined according to the specified positions to obtain the original bit stream, that is to say, when including Tx1 coding and Tx2 coding, Rx coding can be excluded.
  • Tx1 symbol, Tx2 symbol, and Rx symbol in Table 6 can be used, and the corresponding relationship between Rx symbol and Rx coding can refer to the existing technology; or, Tx1 symbol, Tx2 can be used symbol, Rx symbol, Rx coding; or, Tx1 symbol, Tx2 symbol, Tx1 coding, Tx2 coding, Rx symbol can be used.
  • Tables 7 to 12 described below are similar.
  • the original bit stream b 0 is split into two bit streams b 1 and b 2 .
  • the first and third bits of every 4 bits of the original bit stream may be split into the bit stream b 1 of Tx1
  • the second and fourth bits of the original bit stream may be split into the bit stream b 2 of Tx2.
  • the two channels of bit streams are respectively modulated and mapped into complex symbols d Tx1 (i) and d Tx2 (i) to form two channels of low-order signals, where i represents the number of symbols.
  • the 16QAM signal obtained by the final superposition is equivalent to directly performing high-order 16QAM modulation, that is:
  • Example 6 Two channels of low-order signals with matched amplitudes are superimposed to generate a 64QAM signal satisfying Gray mapping.
  • a high-order signal Rx at the receiving end adopts 64QAM modulation.
  • the complex symbols in the two low-order signals Tx1 and Tx2 at the transmitting end are superimposed in accordance with the equal amplitude ratio, and the complex symbols in the high-order signal Rx at the receiving end can be obtained.
  • the complex symbols in the two low-order signals Tx1 and Tx2 can be obtained by splitting the complex symbols of the high-order 64QAM signal at the receiving end.
  • Each complex symbol of 64QAM corresponds to 6 bits.
  • each complex symbol in the two low-order signals Tx1 and Tx2 may correspond to 3 bits.
  • the constellation diagrams of the two low-order signals are the special (that is, not specified in the standard) 8QAM constellation design proposed by this application, as can be seen from the constellation diagrams in Fig. 11 and Fig. 12 .
  • this Example 6 provides the following two possible symbol splitting schemes of 64QAM for a two-way signal transmission scenario.
  • FIG. 11 exemplarily shows a schematic diagram of generating one 64QAM signal by superimposing two paths of low-order signals with amplitude matching in the first 64QAM symbol splitting scheme provided in Example 6.
  • FIG. Table 7 shows the symbol correspondence relationship 1 of generating a 64QAM signal by superimposing the amplitude-matched two-way low-order signals provided in Example 6, that is, the symbol splitting of a 64QAM signal into two low-order signals according to an equal amplitude ratio. Sub-plan one.
  • the fourth complex symbol set corresponding to Tx1 can be ⁇ 1+6j, 1+2j, 1-2j, 1-6j, -1- 6j,-1-2j,-1+2j,-1+6j ⁇
  • the fifth complex symbol set corresponding to Tx2 can be ⁇ 6+1j,2+1j,-2+1j,-6+1j,-6- 1j, -2-1j, 2-1j, 6-1j ⁇ .
  • each fourth complex symbol in the fourth complex symbol set corresponding to Tx1 and each fifth complex symbol in the fifth complex symbol set corresponding to Tx2 are superimposed in pairs according to an equal amplitude ratio, and each of the 64QAM can be obtained plural sign.
  • the complex symbols in the two low-order signals can be represented as:
  • d Tx1 ⁇ 1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j ⁇ ;
  • d Tx2 ⁇ 6+1j, 2+1j, -2+1j, -6+1j, -6-1j, -2-1j, 2-1j, 6-1j ⁇ ;
  • Figure 12 exemplarily shows a schematic diagram of the superimposition of two low-order signals with amplitude matching in the second 64QAM symbol splitting scheme provided in Example 6 to generate a 64QAM signal
  • Table 8 shows the amplitude matching provided in Example 6
  • Two low-order signals are superimposed to generate a second 64QAM signal symbol correspondence, that is, a 64QAM signal is split into two low-order signals according to the equal amplitude ratio of the symbol splitting scheme two.
  • the fourth complex symbol set corresponding to Tx1 can be ⁇ 4+3j, 4+1j, 4-1j, 4-3j, -4- 3j,-4-1j,-4+1j,-4+3j ⁇
  • the fifth complex symbol set corresponding to Tx2 can be ⁇ 3+4j,1+4j,-1+4j,-3+4j,-3- 4j,-1-4j,1-4j,3-4j ⁇ .
  • each fourth complex symbol in the fourth complex symbol set corresponding to Tx1 and each fifth complex symbol in the fifth complex symbol set corresponding to Tx2 are directly superimposed in pairs according to an equal amplitude ratio, and the 64QAM can be obtained. Individual plural signs.
  • the positions of Tx1 and Tx2 can be interchanged, and the same effect can be achieved.
  • Table 8 64QAM signal is split into two low-order signals according to the equal amplitude ratio
  • the complex symbols in the two low-order signals can be represented as:
  • d Tx1 ⁇ 4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j ⁇ ;
  • d Tx2 ⁇ 3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j ⁇ ;
  • d Tx1 ⁇ 3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j ⁇
  • d Tx2 ⁇ 4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j ⁇ ;
  • Example 7 Three low-order signals are superimposed to generate one 64QAM signal that satisfies Gray mapping.
  • a high-order signal Rx at the receiving end adopts 64QAM modulation.
  • the complex symbols in the three low-order signals Tx1, Tx2, and Tx3 at the sending end can be obtained, so that the three low-order signals Tx1, Tx2, and Tx3 can reduce the power difference at the sending end
  • a high-order signal Rx is obtained.
  • Each complex symbol of 64QAM corresponds to 6 bits.
  • each complex symbol in the three low-order signals Tx1, Tx2, and Tx3 may correspond to 2 bits.
  • 2 bits have 4 values, which can be mapped to 4 complex symbols.
  • the constellation diagrams of the three low-order signals are the special (not specified in the standard) 4QAM constellation design proposed by this application, as can be seen from the constellation diagrams in FIG. 13 and FIG. 14 .
  • this Example 6 provides the following two possible symbol splitting schemes of 64QAM for the three-way signal transmission scenario.
  • FIG. 13 exemplarily shows a schematic diagram of generating one 64QAM signal by superimposing three low-order signals in the third 64QAM symbol splitting scheme provided in Example 7 under the condition of reducing the transmit power difference.
  • Table 9 shows the three-way low-order signal in this example 7 when the transmit-end power difference is reduced and the symbol correspondence three and the coding mapping table of a 64QAM signal are superimposed to generate a 64QAM signal, that is, the case where the transmit-end power difference is reduced for the 64QAM signal
  • the symbol splitting scheme three and the encoding mapping table for splitting down into three low-order signals. Specifically, the amplitude ratio of the three low-order signals is approximately equal to 1:1:2.5, and the corresponding power ratio is approximately equal to 1:1:6.3. This solution can avoid the problem that the power deviation of the three low-order signals is too large and affects the system performance.
  • the complex symbol set corresponding to Tx1 can be ⁇ 1+2j,1-2j,-1+2j,-1-2j ⁇
  • Tx2 corresponds to
  • the complex symbol set of Tx3 can be ⁇ 2+1j,2-1j,-2+1j,-2-1j ⁇
  • the complex symbol set corresponding to Tx3 can be ⁇ 4+4j,4-4j,-4+4j,-4 -4j ⁇ .
  • each complex symbol in the complex symbol set corresponding to Tx1, each complex symbol in the complex symbol set corresponding to Tx2, and each complex symbol in the complex symbol set corresponding to Tx3 are superimposed on each other according to the above-mentioned amplitude ratio, which can Each complex symbol in 64QAM is obtained.
  • the complex symbols in the three low-order signals can be represented as:
  • d Tx1 ⁇ 1+2j,1-2j,-1+2j,-1-2j ⁇ ;
  • d Tx2 ⁇ 2+1j,2-1j,-2+1j,-2-1j ⁇ ;
  • the 4 values of the 2 bits in the Tx1 bit stream will be mapped to d Tx1
  • the 4 values of the 2 bits in the Tx2 bit stream will be mapped to d Tx2
  • the 4 values of the 2 bits in the Tx3 bit stream The value will be mapped to d Tx3 .
  • the specific modulation mapping relationship is not limited, and may be designed according to specific needs, and the modulation mapping relationship shown in Table 9 is only an example.
  • Applying the 64QAM symbol splitting scheme three for modulation is equivalent to: superimposing Tx1 and Tx2 to generate a standard 16QAM (such as the design in Example 5), and then superimposing Tx3 on the basis of 16QAM to finally obtain 64QAM.
  • FIG. 14 exemplarily shows a schematic diagram of generating one 64QAM signal by superimposing three low-order signals in the fourth 64QAM symbol splitting scheme provided in Example 7 under the condition of reducing the transmit power difference.
  • Table 10 shows that the three low-order signals provided in Example 7 are superimposed to generate a 64QAM signal under the condition of reducing the power difference of the transmitting end.
  • the symbol splitting scheme four and the encoding mapping table two.
  • This solution can avoid the problem that the power deviation of the three low-order signals is too large and affects the system performance.
  • the complex symbol set corresponding to Tx1 can be ⁇ 2+4j, 2-4j,-2+4j,-2-4j ⁇
  • Tx2 corresponds to
  • the set of complex symbols of Tx3 can be ⁇ 4+2j, 4-2j, -4+2j, -4-2j ⁇
  • the set of complex symbols corresponding to Tx3 can be ⁇ 1+1j, 1-1j, -1+1j, -1 -1j ⁇ .
  • each complex symbol in the complex symbol set corresponding to Tx1, each complex symbol in the complex symbol set corresponding to Tx2, and each complex symbol in the complex symbol set corresponding to Tx3 are superimposed on each other according to the above-mentioned amplitude ratio, which can Each complex symbol in 64QAM is obtained.
  • the high-order signals generated by superposition of multiple low-order signals at the transmitting end are uniformly modulated, such as standard 16QAM, 64QAM, and so on.
  • the present application further provides a technical solution for superimposing multiple low-order signals at the transmitting end to generate non-uniformly modulated high-order signals (such as the following examples 8 and 9), so that the sending The end sends multiple low-order signals, which can not only reduce the PAPR of the sending end, but also superimpose it into a non-uniformly modulated high-order signal at the receiving end, thereby improving the resistance to phase noise.
  • Example 8 Two channels of low-order signals with matched amplitudes are superimposed to generate a non-uniform constellation (non-uniform constellation, NUC)-16QAM signal that satisfies Gray mapping.
  • NUC non-uniform constellation
  • a high-order signal Rx at the receiving end adopts NUC-16QAM modulation, which is a kind of non-uniform modulation.
  • the complex symbols in one NUC-16QAM signal at the receiving end can be obtained by superimposing the complex symbols in the two low-order signals Tx1 and Tx2 at the transmitting end according to the equal amplitude ratio.
  • the complex symbols in the two low-order signals Tx1 and Tx2 at the sending end can be obtained by splitting the complex symbols in the NUC-16QAM signal.
  • Each complex symbol of NUC-16QAM corresponds to 4 bits. After splitting into two low-order signals, each complex symbol in the two low-order signals corresponds to 2 bits. 2 bits have 4 possible values, which can be mapped into 4 complex symbols.
  • FIG. 15 exemplarily shows a schematic diagram of generating a NUC-16QAM signal by superimposing two channels of low-order signals with amplitude matching provided in Example 8.
  • FIG. Table 11 shows the symbol correspondence of one NUC-16QAM signal generated by superposition of two low-order signals with amplitude matching provided in Example 8, that is, the NUC-16QAM signal is split into two low-order signals according to the equal amplitude ratio The symbolic splitting scheme for .
  • the complex symbol set corresponding to Tx1 can be The set of complex symbols corresponding to Tx2 may be ⁇ 1+1j, 1-1j, -1+1j, -1-1j ⁇ . Moreover, each complex symbol in the complex symbol set corresponding to Tx1 is directly superimposed with each complex symbol in the complex symbol set corresponding to Tx2 according to an equal amplitude ratio, and each complex symbol in NUC-16QAM can be obtained.
  • d Tx2 ⁇ 1+1j,1-1j,-1+1j,-1-1j ⁇ ;
  • Example 9 Two low-order signals with matched amplitudes are superimposed to generate a NUC-64QAM signal that satisfies Gray mapping.
  • a high-order signal Rx at the receiving end adopts NUC-64QAM modulation, which is a kind of non-uniform modulation.
  • the complex symbols in one NUC-64QAM signal at the receiving end can be obtained by superimposing the complex symbols in the two low-order signals Tx1 and Tx2 at the transmitting end according to the equal amplitude ratio.
  • the complex symbols in the two low-order signals Tx1 and Tx2 at the sending end can be obtained by disassembling the complex symbols in the NUC-16QAM signal.
  • Each complex symbol of NUC-64QAM corresponds to 6 bits. After splitting into two low-order signals, each complex symbol in the two low-order signals corresponds to 3 bits. There are 8 possible values for 3 bits, which can be mapped into 8 complex symbols.
  • the constellation diagrams of the two low-order signals are both non-uniformly modulated NUC-8QAM constellation designs, as can be seen from the constellation diagram in Figure 16.
  • Fig. 16 exemplarily shows a schematic diagram of generating a NUC-64QAM signal by superimposing two channels of low-order signals with amplitude matching provided in Example 9.
  • Table 11 shows the symbol correspondence of one NUC-64QAM signal generated by superposition of two low-order signals with amplitude matching provided in this example, that is, the NUC-64QAM signal is split into two low-order signals according to the equal amplitude ratio The symbolic splitting scheme for .
  • the complex symbol set corresponding to Tx1 can be ⁇ 1, 1+1j, 1j, -1+1j, -1, -1-1j, -1j, 1-1j ⁇
  • the complex symbol set corresponding to Tx2 can be Moreover, each complex symbol in the complex symbol set corresponding to Tx1 is directly superimposed with each complex symbol in the complex symbol set corresponding to Tx2 according to the equal amplitude ratio, and each complex symbol in NUC-64QAM can be obtained.
  • d Tx1 ⁇ 1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j ⁇ ;
  • the technical scheme of applying the superimposed signal splitting method for modulation is to split the complex symbols in a high-order signal to be received at the receiving end to obtain the complex symbols in the high-order signal
  • the mapping relationship between the multi-channel low-order signals and the complex symbols in the multi-channel low-order signals, the modulation and superposition scheme of the multi-channel low-order signals at the sending end can be designed, so that the multi-channel low-order signals at the sending end can be superimposed according to the equal amplitude ratio or as much as possible Reduce the amplitude ratio during superposition and obtain one high-order signal, thereby reducing the power difference between multiple low-order signals at the sending end and improving system performance.
  • the modulation and coding scheme of the high-order signal at the receiving end can be designed to satisfy the Gray mapping, thereby improving the demodulation performance of the receiving end.
  • the PAPR of the low-order signal at the transmitting end can be shown in FIG. 17 , which is lower than the PAPR of the high-order signal.
  • the resistance of the modulation constellation to phase noise can be evaluated from two aspects: 1) the number of circles of the constellation diagram, the number of circles depends on the distribution of constellation points and the distance from each modulation signal to the origin, the less the number of circles, the better the resistance stronger. 2) The smallest angle difference between the constellation points on each circle, the larger the angle difference, the greater the tolerance to the rotation caused by the influence of phase noise.
  • FIG. 18 The left and right diagrams in Figure 18 are the constellation diagrams of 16QAM and NUC-16QAM, respectively, and Figure 19 is a schematic diagram of the comparison of the phase noise influence and block error rate (BLER) influence of 16QAM and NUC-16QAM.
  • BLER block error rate
  • FIG. 19 the existence of phase noise brings phase rotation to the constellation points.
  • the minimum angle of the adjacent constellation points of 16QAM and NUC-16QAM is 45 degrees, but 16QAM has a large number of turns. Noise resistance is weak, while NUC-16QAM has few turns and excellent performance. Rough performance evaluation can also be seen from the BELR graph.
  • the solution provided by this application for superimposing multiple low-order signals into a non-uniformly modulated high-order constellation can simultaneously solve the technical problems of low PAPR and anti-phase noise in high-frequency scenarios.
  • the non-uniformly modulated high-order constellation generated at the receiving end is more resistant to the influence of phase noise than the uniformly modulated high-order constellation .
  • Step 402 the sending end device sends the M channels of low-order modulation signals through the LOS channel.
  • the line-of-sight (LOS) channel refers to a wireless channel under a line-of-sight condition.
  • LOS line-of-sight
  • the wireless signal propagates in a straight line between the sending end and the receiving end without obstruction.
  • the M channels of low-order modulation signals may be sent on different antennas of the sending end device.
  • the transmitting end device may perform precoding on the transmission signal matrix composed of the M channels of low-order modulation signals, and the precoding may also be referred to as Pre-equalization at the sender.
  • the precoding in this application aims to compensate the influence of the channel and reduce the impact of channel differences on the reception of the M low-order modulation signals.
  • the impact of a high-order modulation signal superimposed on the terminal, thereby improving signal transmission performance. Therefore, the precoding matrix needs to satisfy the relationship: H*W ⁇ .
  • W is a precoding matrix
  • H is a rank-deficient channel matrix
  • is a diagonal matrix
  • the transmitting end device can obtain the channel state information on the M antennas according to the channel state information (CSI) feedback, thereby determining the channel matrix, and then performing precoding in the above-mentioned manner.
  • CSI channel state information
  • the precoding matrix when the transmitting end device transmits two low-order modulation signals, the precoding matrix can be expressed as follows:
  • h 1 is the channel information of the channel through which the first low-order modulation signal passes
  • h 2 is the channel information of the channel through which the first low-order modulation signal passes.
  • the precoding matrix W needs to meet the following conditions:
  • the ideal situation is that x 1 is only related to h 1 , and x 2 is only related to h 2 , so the precoding matrix W should be a diagonal matrix, eliminating the influence of h 2 on x 1 and h 1 on x 2 .
  • the matrix code matrix W can be expressed as:
  • the receiver signal under the actual channel H After considering the precoding W, the receiver signal under the actual channel H:
  • the precoding matrix W needs to meet the following conditions:
  • the ideal situation is that x 1 is only related to h 1 , and x 2 is only related to h 2 , so the precoding matrix W should be a diagonal matrix, eliminating the influence of h 2 on x 1 and h 1 on x 2 .
  • the precoding matrix W can be expressed as:
  • w 11 (h 1 H h 1 + ⁇ 2 I) -1 h 1 H
  • w 22 (h 2 H h 2 + ⁇ 2 I) -1 h 2 H
  • the final precoding matrix for single-antenna reception can be expressed as:
  • the precoding matrix W can be expressed as:
  • the channel matrix H can be expressed as follows:
  • the receiver signal under the actual channel H After considering the precoding W, the receiver signal under the actual channel H:
  • MMSE or ZF can be used for pre-equalization, and the pre-coding matrix needs to meet the following conditions:
  • the sending end sends two low-order modulation signals
  • this application designs a time-domain The polling transmission scheme, by periodically rotating the transmission signals on multiple antennas, is used to reduce the possible impact of the I/Q channel imbalance of the multiple low-order modulation signals at the transmitting end on the system performance (such as causing bit errors rate increases).
  • the transmitting end has two antennas ⁇ Tx1, Tx2 ⁇ and two modulation constellation patterns ⁇ Pattern1, Pattern2 ⁇ of the 4QAM signal.
  • the two modulation The constellation patterns ⁇ Pattern1, Pattern2 ⁇ are ⁇ 1+2j, 1-2j, -1+2j, -1-2j ⁇ , ⁇ 2+1j, 2-1j, -2+1j, -2-1j ⁇ respectively.
  • Tx1 uses Pattern1
  • Tx2 uses Pattern2
  • Tx1 uses Pattern2
  • Tx2 uses Pattern1
  • the transmitting end has three antennas ⁇ Tx1, Tx2, Tx3 ⁇ and three modulation constellation patterns ⁇ Pattern1, Pattern2, Pattern3 ⁇ .
  • Sending scheme 1 ⁇ Tx1 uses Pattern1, Tx2 uses Pattern2, Tx3 uses Pattern3 ⁇ ;
  • Step 403 the receiver device receives one path of high-order modulation signals from the transmitter device, and the one path of high-order modulation signals is formed by superimposing the M channels of low-order modulation signals sent by the transmitter device.
  • Step 404 the receiving end device uses a demodulation reference signal (demodulation reference signal, DMRS) port to perform channel estimation, and performs post-equalization on the one high-order modulation signal according to the estimated channel matrix.
  • DMRS demodulation reference signal
  • the post-equalization method may refer to the prior art.
  • this application also provides a signaling indication solution to ensure the normal transmission and reception of signals, so as to obtain performance gains in high-frequency rank1 scenarios.
  • the signaling indication solution may have several possible implementation manners as follows.
  • the power ratio is an optional parameter. That is to say, the sending end may or may not indicate the power ratio among the transmitted multiple low-order modulation signals, which is not specifically limited in this application. When the power ratio is not indicated, the power matching may be pre-configured as a known rule between the sending end and the receiving end.
  • mapping rules need to be known by both the transceiver and can be pre-configured as pre-stored information.
  • the signaling indication scheme needs to indicate the MCS of the high-order modulated signals at the receiving end or the MCS of the multiple low-order modulated signals at the transmitting end. Necessary parameters such as MCS, and optional parameters such as power ratio can also be indicated.
  • the signaling indication scheme in this situation may be shown in Figure 21, including the following steps:
  • Step 2101 the sending end sends first indication information to the receiving end, and correspondingly, the receiving end can receive the first indication information from the sending end.
  • the MCS of the M low-order modulation signals sent by the sending end, the MCS of a high-order modulation signal formed by superimposing the M low-order modulation signals at the receiving end, the sign bit indication information, and the MCS of the M low-order modulation signals The amplitude ratio is the power ratio of the M low-order modulation signals; wherein, the sign bit indication information is used to indicate which of the M low-order modulation signals is a sign bit.
  • the first indication information may be sent in downlink control information (downlink control information, DCI) or uplink control information (uplink control information, UCI).
  • downlink control information downlink control information, DCI
  • uplink control information uplink control information
  • the MCS may indicate the MCS of M channels of low-order modulation signals at the transmitting end, or may indicate the MCS of one channel of high-order modulation signals superimposed at the receiving end, or may indicate both.
  • both the transmitting and receiving ends are required to know the mapping rule of the high-order modulation signal superimposed on the receiving end, and the symbol correspondence superposition rule between multiple low-order modulation signals at the sending end and one high-order modulation signal at the receiving end , that is, the symbol splitting scheme of the complex symbols in the high-order signal at the receiving end.
  • Step 2201 the sending end sends the second indication information to the receiving end, and correspondingly, the receiving end can receive the second indication information from the sending end.
  • the second indication information includes one or more of the following information: the MCS of M low-order modulation signals sent by the sending end, and the MCS of a high-order modulation signal obtained by superimposing the M low-order modulation signals at the receiving end.
  • MCS wherein the one path of high-order modulation signals adopts non-uniform modulation or uniform modulation, and the M paths of low-order modulation signals adopt non-uniform modulation or uniform modulation.
  • the second indication information may be sent through DCI signaling or UCI signaling.
  • step 2202 the sending end sends M channels of low-order modulation signals to the receiving end according to a preset mapping rule.
  • the transmitting end needs to at least indicate to the receiving end the MCS parameters of the high-order modulated signal superimposed on the receiving end.
  • uniform modulation can also be indicated.
  • the transmitting end needs to indicate to the receiving end the MCS parameters of the superimposed high-order modulated signal at the receiving end, and indicate the use of non-uniform modulation.
  • mode 1) can be combined with mode 3
  • mode 2) can be combined with mode 3) or mode 4).
  • the sending end may optionally also Indicates that uniform modulation is used.
  • the second indication information sent by the sending end needs to indicate the MCS and MCS of the high-order signal. Use non-uniform modulation.
  • the transmitting end directly modulates a high-order QAM signal, maps it to the airspace through precoding and transmits it with two antennas.
  • the solution in this application is that the transmitting end modulates two different low-order signals, and eliminates the influence of channel H through precoding, so that the final airspace signals sent on two/multiple antennas are different, and the superimposed signals at the receiving end can be It is a uniformly modulated high-order signal, and it can also be a non-uniformly modulated high-order signal.
  • the signal cross-correlation matrix is:
  • the cross-correlation matrix R xx is a diagonal matrix, and its diagonal elements are the power of the two signals.
  • the channel matrix can be expressed as:
  • the received signal can be written as:
  • the receiving signal in this application is:
  • the solution in this application does not have the diversity gain brought by beamforming, and the effect is the same as that of SISO.
  • the embodiment of the present application also provides a communication device.
  • FIG. 23 is a schematic structural diagram of a communication device provided in the embodiment of the present application.
  • the communication device 2300 includes: a transceiver module 2310 and a processing module 2320 .
  • the communication device may be used to realize the functions of the sending end device or the receiving end device in any of the above method embodiments.
  • the communication device may be a network device or a terminal device, or a device capable of supporting the network device or the terminal device to implement the corresponding functions in the above method embodiments (such as a chip included in the network device or the terminal device), etc.
  • the processing module 2320 is configured to, according to the first
  • the mapping rule corresponding to the modulation mode is to modulate the bit streams of S channels to generate M channels of low-order modulation signals, M is an integer greater than or equal to 2, and S is equal to 1 or M;
  • the transceiver module 2310 is used to transmit through the line-of-sight LOS channel The M channels of low-order modulation signals; wherein, the mapping rule is used to superimpose the M channels of low-order modulation signals into one channel of high-order modulation signals to be received by the receiving end device.
  • the S bit streams are M bit streams; the mapping rule is used to indicate the modulation mapping relationship from bit to complex symbol corresponding to each of the M bit streams at the sending end.
  • the bits in the M bit streams are mapped according to the respective corresponding modulation mapping relationships, and the M complex symbols are superimposed according to the preset amplitude ratio, which is equal to the complex symbols in the high-order modulation signal to be received by the receiving end device .
  • the processing module 2320 is specifically configured to: according to the mapping rule, sequentially map each 2-bit bit of the first bit stream into the 2-2 first complex symbols The first complex symbol, forming the first low-order modulation signal, and sequentially mapping each N-2 bit in the second bit stream to the first of the 2 N-2 second complex symbols Two complex symbols form the second low-order modulation signal.
  • the processing module 2320 is further configured to: determine the power ratio of the M low-order modulation signals according to the amplitude ratio of the M low-order modulation signals; The power ratio of the low-order modulation signals controls the power amplification of the M channels of low-order modulation signals in the power amplifier.
  • the transceiver module 2310 is further configured to: send first indication information to the receiving end device, where the first indication information includes one or more of the following information: The modulation and coding scheme MCS of the low-order modulation signal, the MCS of the M low-order modulation signal, the sign bit indication information, the amplitude ratio of the M low-order modulation signal, and the power ratio of the M low-order modulation signal; wherein The sign bit indication information is used to indicate one low-order modulation signal as a sign bit among the M low-order modulation signals.
  • the mapping rule is used to indicate the correspondence between the bits in the original bit stream composed of the S bit streams and the complex symbols in the one high-order modulation signal, and the Correspondence between the complex symbols in one path of high-order modulation signals and the complex symbols in the M paths of low-order modulation signals; wherein, the original bit stream includes bits corresponding to the M paths of low-order modulation signals, S is equal to 1 or M; the complex symbols in the M channels of low-order modulation signals are obtained by splitting the complex symbols in the channel of high-order modulation signals according to equal amplitude ratios.
  • the first modulation method is N-order modulation, and N is an integer greater than or equal to 4; when the M is 2, the mapping rule includes: N-bits of the original bit stream 2 N kinds of values are in one-to-one correspondence with 2 N third complex symbols in the one-way high-order modulation signal, and each N-bit bit in the original bit stream includes N/2 corresponding to the first low-order modulation signal Bits and N/2 bits corresponding to the second low-order modulation signal; for the first modulation method, there is a group of 2 N/2 fourth complex symbols corresponding to the first low-order modulation signal and a group of 2 N/2 fifth complex symbols corresponding to the second low-order modulation signal; the 2 N/2 fourth complex symbols and the 2 N/2 fifth complex symbols are paired The result obtained by superimposing them according to the equal amplitude ratio corresponds to the 2 N third complex symbols one by one.
  • the processing module 2320 is specifically configured to: according to the mapping rule, sequentially map every N bits of the original bit stream to the 2 N/2 fourth complex symbols A fourth complex symbol and a fifth complex symbol among the 2 N/2 fifth complex symbols form the first low-order modulation signal and the second low-order modulation signal.
  • the mapping rule includes: the bit in the original bit stream Correspondence between the complex symbols in the 16QAM, and the complex symbols in the 16QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal
  • the first low-order modulation signal Corresponding to 2 N/2 fourth complex symbols
  • the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols
  • the result of superimposing the fifth complex number symbols in pairs according to the equal amplitude ratio corresponds to each complex number symbol in the 16QAM one by one; further optionally, the 2 N/2 fourth complex number symbols are K ⁇ 1 +2j,1-2j,-1+2
  • the mapping rule includes: the bit in the original bit stream The correspondence between the complex symbols in the NUC-16QAM, and the complex symbols in the NUC-16QAM and the fourth complex symbols in the first low-order modulation signal and the second low-order modulation signal Correspondence between fifth complex symbols; wherein, the original bit stream includes bits corresponding to the first path of low-order modulation signals and bits corresponding to the second path of low-order modulation signals; the first path The low-order modulation signal corresponds to 2 N/2 fourth complex symbols, and the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols; the 2 N/2 fourth complex symbols and the 2 The result of superimposing the N/2 fifth complex symbols in pairs according to the equal amplitude ratio corresponds to each complex symbol in the NUC-16QAM; further optionally, the 2 N/2 fourth The plural sign is The 2 N/2 fifth complex symbols are L ⁇
  • the mapping rule includes: bits in the original bit stream and bits in the 64QAM The corresponding relationship between the complex symbols, and the corresponding relationship between the complex symbols in the 64QAM and the fourth complex symbol in the first low-order modulation signal and the fifth complex symbol in the second low-order modulation signal ;
  • the original bit stream includes bits corresponding to the first low-order modulation signal and bits corresponding to the second low-order modulation signal;
  • the first low-order modulation signal corresponds to 2 N/2 fourth complex symbols, the second low-order modulation signal corresponds to 2 N/2 fifth complex symbols;
  • the 2 N/2 fourth complex symbols and the 2 N/2 fifth complex symbols are two
  • the 2 N/2 fourth complex symbols are P ⁇ 1+6j, 1+ 2j,1-2j,1-6j,-1-6j,-1-2
  • the transceiver module 2310 is further configured to: rotate the antennas that transmit the M channels of low-order modulation signals according to a set period.
  • the processing module 2320 is configured to use a demodulation reference signal DMRS port to perform channel estimation, and according to the estimated channel matrix, perform channel estimation on the channel
  • the high-order modulated signal is post-equalized.
  • the above-mentioned storage module, processing module and transceiver module may exist separately, or may be integrated in whole or in part, such as integration of a storage module and a processing module, or integration of a processing module and a transceiver module.
  • FIG. 24 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication device can be used to implement the functions corresponding to the sending end device or the receiving end device in the above method embodiments.
  • the communication device may be a network device or a terminal device, or a device capable of supporting the network device or the terminal device to implement the corresponding functions in the above method embodiments (such as a chip included in the network device or the terminal device), etc.
  • the communication device 2400 may further include a communication interface 2403.
  • the communication interface 2403 is used to communicate with other devices through a transmission medium, for example, to transmit signals received from other communication devices to the processor 2401, or from the processor The signal of 2401 is transmitted to other communication devices.
  • the communication interface 2403 may be a transceiver, or an interface circuit, such as a transceiver circuit, a transceiver chip, and the like.
  • the communication interface 2403 may be specifically configured to perform the actions of the above-mentioned transceiver module 2310, and the processor 2401 may be specifically used to perform the actions of the above-mentioned processing module 2320, which will not be repeated in this application.
  • the embodiment of the present application does not limit the specific connection medium among the processor 2401, the memory 2402, and the communication interface 2403.
  • the processor 2401, the memory 2402, and the communication interface 2403 are connected through the bus 2404.
  • the bus is represented by a thick line in FIG. 24, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 24 , but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the The chip system implements the method corresponding to the sending end device or the receiving end device in any of the above method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be realized by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in a memory.
  • the memory can be integrated with the processor, or can be set separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory (read-only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • ROM read-only memory
  • the type of the memory, and the arrangement of the memory and the processor are not specifically limited.
  • the chip system may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a central processing unit (central processor unit, CPU), it can also be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), it can also be a microcontroller (micro controller unit, MCU), and can also be a programmable logic device (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • An embodiment of the present application further provides a computer program product, which enables the communication device to execute the method in any one of the above method embodiments when the communication device reads and executes the computer program product.
  • An embodiment of the present application also provides a communication system, where the communication system includes a sending end device and a receiving end device.
  • processors mentioned in the embodiments of the present application may be a CPU, or other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种高频场景下的通信方法及装置,其中方法包括:发送端设备可根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则对S路比特流进行调制,生成M路低阶调制信号,其中S等于1或M,M为大于或等于2的整数,然后通过视距LOS信道发送该M路低阶调制信号,从而可实现发送端发射信号的降阶。而且,所述映射规则可基于对高阶星座图或高阶信号进行拆解设计,使得所述M路低阶调制信号能够在空域/功率域(能量域)叠加成接收端设备待接收的一路高阶调制信号,接收端设备可以直接检测叠加后的高阶星座点解码高阶调制信号,从而保障系统性能。

Description

一种高频场景下的通信方法及装置
相关申请的交叉引用
本申请要求在2021年12月31日提交中国专利局、申请号为202111671948.6、申请名称为“一种高频场景下的通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种高频场景下的通信方法及装置。
背景技术
高频/毫米波(millimeter wave,mmW)因其丰富的频段资源,已成为业界研究和开发的热点。高频/毫米波频段拥有巨大的带宽,并能够提高大容量服务,因此,可用于未来的无线通信和空间通信中,解决日益增长的通信需求。但是高频/毫米波信号是视距(line of sight,LOS)传输,由于其频率很高,在自由空间传输时损耗很大,严重影响了其传输距离,因此,需要提升覆盖。使用高阶调制可以提高系统容量,但高阶调制信号的峰均功率比(peak-to-average power ratio,PAPR)较高,覆盖范围小,传输性能不高。
图1示例性示出了不同调制阶数下的PAPR情况,如图1所示,当高频调制信号的调制阶数越大时,信号的PAPR也越大。
发明内容
本申请实施例提供一种高频场景下的通信方法及装置,用于解决高频场景下使用高阶调制信号通信时PAPR较大,导致信号覆盖范围小,传输效率不高的问题。
第一方面,本申请实施例提供一种高频场景下的通信方法,该方法可以应用于回传、多站点传输、无线宽带到户WTTx、增强移动宽带eMBB、设备到设备D2D等多种基于高频/毫米波的通信场景中,其中,发送端设备可以是网络设备(如基站、接入点、传输点等)或终端设备,接收端设备也可以是网络设备(如基站、接入点、传输点等)或终端设备。具体的,该方法可由发送端设备或配置于发送端设备的部件(例如芯片或者电路)执行。
该方法包括:发送端设备根据接收端设备待接收的一路高阶调制信号的第一调制方式第一调制方式对应的映射规则,对S路比特流进行调制,生成M路低阶调制信号,M为大于或等于2的整数,S等于1或M;所述发送端设备通过视距LOS信道发送所述M路低阶调制信号;其中,所述映射规则用于使所述M路低阶调制信号叠加成所述接收端设备待接收的一路高阶调制信号。
本申请实施例,通过设计接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则,可实现发送端发射信号的降阶。发送端设备可以根据该映射规则,将待发送的S路比特流调制映射成M路低阶调制信号,然后发送给接收端设备。并且,该映射规则可使得发送端设备发送的M路低阶调制信号能够在空域/功率域(能量域)叠加形成一路高阶调制信号,也即接收端设备实际接收到的是由发送端设备发送的M路低阶调制信号叠 加而成的一路高阶调制信号。该方法可以有效降低发送端发射信号的PAPR,同时又不牺牲频谱效率,接收端设备可以直接检测叠加后的高阶星座点解码高阶调制信号,从而保障系统性能。
在一种可能的设计中,所述S路比特流为一路独立的比特流,此时S=1;或者,所述S路比特流为通过对一路独立的比特流进行比特拆解得到的M路子比特流,此时S=M;或者,所述S路比特流为M路独立的比特流,此时S=M。
示例性地,当所述S路比特流为一路独立的比特流时,发送端设备可以根据第一调制方式对应的映射规则,直接对这一路独立的比特流进行多维调制,生成M路低阶调制信号,从而省去中间比特拆解的过程,直接完成从比特到复数符号的映射。
当所述S路比特流为通过对一路独立的比特流进行比特拆解得到的M路子比特流时,或者为M路独立的比特流时,发送端设备可以根据第一调制方式对应的映射规则,分别对M路比特流进行调制,生成M路低阶调制信号。
本申请实施例的技术方案可以适用于发端单点或发端多点的收发系统结构,其中发端单点是指发送端需要发送一路独立的比特流,发端多点是指发送端需要发送多路独立的比特流,即单流与多流的区别。
在一种可能的设计中,所述发送端设备对所述M路低阶调制信号组成的发送信号矩阵进行预编码,然后再将经过预编码后的所述M路低阶调制信号发送给所述接收端设备,在进行预编码处理的过程中使用满足如下关系的预编码矩阵:H*W=Λ;其中,W是预编码矩阵,H是缺秩的信道矩阵,Λ是一个对角矩阵。所述信道矩阵可以由发送端设备通过信道状态信息CSI反馈得到。
本申请实施例中,考虑到M路低阶调制信号实际经过的信道可能存在差异,通过采用上述预编码方法,使得预编码矩阵乘以信道矩阵后得到一个对角阵,可以在发送端补偿信道的影响,减少信道差异对接收端叠加的高阶星座的影响,从而提升信号传输性能。
在一种可能的设计中,所述S路比特流为M路比特流;所述映射规则用于指示发送端的所述M路比特流各自对应的从比特到复数符号的调制映射关系。其中,所述M路比特流中的比特根据各自对应的调制映射关系映射得到的M个复数符号,按照预设幅度配比叠加,等于所述接收端设备待接收的一路高阶调制信号中的复数符号。
本申请实施例提供的映射规则的一种可能的实现方案为:对发送端的M路比特流进行联合编码调制。具体的,在该方案中,所述映射规则可具体指示每路比特流对应的调制映射关系。采用该方案,可将M路比特流分别调制为M路低阶调制信号,然后将该M路低阶调制信号按照预设幅度配比叠加,得到一路高阶调制信号,这一路高阶调制信号的星座可以为均匀调制的高阶星座。
在一种可能的设计中,所述第一调制方式为N阶调制,N为大于或等于4的整数;当M为2时,所述M路比特流包括第一路比特流和第二路比特流,所述M路低阶调制信号包括第一路低阶调制信号和第二路低阶调制信号。在该场景下,所述映射规则包括:所述第一路比特流的2位比特的2 2种取值分别映射到2 2个第一复数符号;根据所述第一路比特流的2位比特的不同取值,所述第二路比特流的N-2位比特的2 N-2种取值分别映射到2 N-2个第二复数符号,且当所述第一比特流的2位比特的取值不同时,所述第二路比特流的N-2位比特的相同取值映射到所述2 N-2个第二复数符号中的不同第二复数符号;所述第一路比特流的2位比特映射到的第一复数符号与所述第二路比特流的N-2位比特映射到的第二复 数符号按照预设幅度配比叠加,等于所述接收端设备待接收的一路高阶调制信号中的第三复数符号。
在一种可能的设计中,所述根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则,对两路比特流进行调制,生成两路低阶调制信号,可包括:根据所述映射规则,将所述第一路比特流的各个2位比特依次映射为所述2 2个第一复数符号中的第一复数符号,形成所述第一路低阶调制信号,以及将所述第二路比特流中的各个N-2位比特依次映射为所述2 N-2个第二复数符号中的第二复数符号,形成所述第二路低阶调制信号。
本申请实施例提供了一种具体用于对2路比特流进行联合编码调制的方案,该方案不仅可使调制后得到的两路低阶调制信号能够叠加成一路高阶调制信号,并且可使叠加得到的一路高阶调制信号的星座图满足格雷映射规则,从而有效提高编解码的准确性。
在一种可能的设计中,所述方法还包括:根据所述M路低阶调制信号的幅度配比,确定所述M路低阶调制信号的功率配比;根据所述M路低阶调制信号的功率配比,控制所述M路低阶调制信号在功率放大器中进行功率放大。
本申请实施例中,当采用对发送端的M路比特流进行联合编码调制的方案时,为了使叠加后的一路高阶调制信号满足格雷映射规则,M路低阶调制信号叠加时可能需要满足一定的幅度配比,相应的,M路低阶调制信号在功率放大器PA模块进行功率放大时,也需要满足一定的功率配比,即需要进行相应的功率约束。
在一种可能的设计中,所述方法还包括:所述发送端设备向所述接收端设备发送第一指示信息,该第一指示信息包括以下信息中的一项或多项:所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度配比,所述M路低阶调制信号的功率配比;其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的一路低阶调制信号。
本申请实施例针对在发送端对M路比特流进行联合编码调制的方案,提供了一种相应的信令设计方案,以确保信号的正常发送和接收。例如,发送端设备可在向接收端设备发送M路低阶调制信号之前,向接收端设备发送第一指示信息,该第一指示信息中包括以上一项或多项信息。
在一种可能的设计中,所述映射规则用于指示所述S路比特流组成的原始比特流中的比特与所述一路高阶调制信号中的复数符号之间的对应关系,以及所述一路高阶调制信号中的复数符号与所述M路低阶调制信号中的复数符号之间的对应关系。其中,所述原始比特流中包括所述M路低阶调制信号分别对应的比特,S等于1或M;所述M路低阶调制信号中的复数符号可以通过对所述一路高阶调制信号中的复数符号按照等幅度配比进行拆分得到。
本申请实施例提供的映射规则的另一种可能的实现方案为:对发送端的一路或多路比特流进行符号级的调制映射。具体的,在该方案中,所述映射规则可具体指示接收端设备待接收的一路高阶调制信号中的每个复数符号与M路低阶调制信号中的复数符号之间的符号拆分关系,基于该符号拆分关系,发送端可将一路或M路比特流组成的原始比特流,直接调制成M路低阶调制信号,然后将该M路低阶调制信号按照等幅度配比发送,经过空域或者能量域叠加,得到原始比特流对应的一路高阶调制信号,该路高阶调制信号的星座可以为非均匀调制的高阶星座,从而可提高接收端抵抗高频相噪的能力。
在一种可能的设计中,所述第一调制方式为N阶调制,N为大于或等于4的整数;当 所述M为2时,所述映射规则包括:原始比特流的N位比特的2 N种取值与所述一路高阶调制信号中的2 N个第三复数符号一一对应,所述原始比特流中的每N位比特包括第一路低阶调制信号对应的N/2位比特和第二路低阶调制信号对应的N/2位比特;针对所述第一调制方式,存在一组与所述第一路低阶调制信号对应的2 N/2个第四复数符号和一组与所述第二路低阶调制信号对应的2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述2 N个第三复数符号一一对应。
在一种可能的设计中,所述根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射关系,对一路或两路比特流进行调制,生成两路低阶调制信号,包括:根据所述映射规则,将所述原始比特流的每N位比特依次映射为所述2 N/2个第四复数符号中的一个第四复数符号和所述2 N/2个第五复数符号中的一个第五复数符号,形成所述第一路低阶调制信号和所述第二路低阶调制信号。
本申请实施例提供了一种具体适用于1路或2路比特流进行符号级调制映射的方案,该方案不仅可使经过调制后得到的两路低阶调制信号能够叠加成一路高阶调制信号,高阶调制信号的星座图满足格雷映射规则,而且两路低阶调制信号的功率配比相同,可充分利用发送端的发射功率。
在一种可能的设计中,所述第一调制方式为16正交幅度调制QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:原始比特流中的比特与所述16QAM中的复数符号之间的对应关系,以及所述16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述16QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为K{1+2j,1-2j,-1+2j,-1-2j},所述2 N/2个第五复数符号为L{2+1j,2-1j,-2+1j,-2-1j},所述K、L为比例缩放系数。
在一种可能的设计中,当所述第一调制方式为非均匀星座NUC-16QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:原始比特流中的比特与所述NUC-16QAM中的复数符号之间的对应关系,以及所述NUC-16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述NUC-16QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为
Figure PCTCN2022138899-appb-000001
所述2 N/2个第五复数符号为L{1+1j,1-1j,-1+1j,-1-1j},所述K、L为比例缩放系数。
在一种可能的设计中,当所述第一调制方式为64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:原始比特流中的比特与所述64QAM中的复数符号之间的对应关系,以及所述64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低 阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述64QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为P{1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j},所述2 N/2个第五复数符号为Q{6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j},或者,所述2 N/2个第四复数符号为P{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},所述2 N/2个第五复数符号为Q{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j},所述P、Q为比例缩放系数。
在一种可能的设计中,当所述第一调制方式为NUC-64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:原始比特流中的比特与所述NUC-64QAM中的复数符号之间的对应关系,以及所述NUC-64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间相互叠加的结果,与所述NUC-64QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为P{1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j},所述2 N/2个第五复数符号为
Figure PCTCN2022138899-appb-000002
Figure PCTCN2022138899-appb-000003
所述P、Q为比例缩放系数。
本申请实施例分别针对接收端待接收的一路高阶调制信号的各种可能的调制方式,提供了多种可能的映射规则,这些映射规则通过设计低阶调制信号的多种非标准的复数符号集合以及相互间的组合方案,可使得发送端的两路低阶调制信号按照等幅度配比能够叠加成接收端的一路高阶调制信号。
在一种可能的设计中,所述方法还包括:所述发送端设备按照设定周期,轮换发送所述M路低阶调制信号的天线。
本申请实施例,当发送端的M路低阶调制信号按照等幅度配比进行叠加时,接收端叠加的一路高阶调制信号的星座图可能存在I/O路不平衡的问题,针对该问题,本申请中设计了按照设定周期,每周期轮换发送M路低阶调制信号的天线的技术方案,该方案也可以理解为在不同的发送天线轮换待发送的低阶调制信号的调制方式/调制图案(pattern),以降低I/Q不平衡对系统性能的影响。
在一种可能的设计中,所述方法还包括:所述发送端设备向所述接收端设备发送第二指示信息,所述第二指示信息包括以下信息中的一项或多项:所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
本申请实施例针对在发送端对一路或M路比特流进行符号级调制映射方案,提供了一种相应的信令设计方案,以确保信号的正常发送和接收。例如,发送端设备可在向接收端设备发送M路低阶调制信号之前,向接收端设备发送第二指示信息,该第二指示信息中包括以上一项或多项信息。
第二方面,本申请实施例提供一种高频场景下的通信方法,该方法可以应用于回传、 多站点传输、无线宽带到户WTTx、增强移动宽带eMBB、设备到设备D2D等多种可能的使用高频毫米波进行数据传输的场景中,其中,发送端设备可以是网络设备(如基站、接入点、传输点等)或终端设备,接收端设备也可以是网络设备(如基站、接入点、传输点等)或终端设备。具体的,该方法可由接收端设备或配置于接收端设备的部件(例如芯片或者电路)执行。
该方法包括:接收端设备接收来自发送端设备的一路高阶调制信号,所述一路高阶调制信号由M路低阶调制信号叠加而成,M为大于或等于2的整数;所述接收端设备使用一个解调参考信号DMRS端口进行信道估计,并根据估计到的信道矩阵对所述一路高阶调制信号进行后均衡。
在一种可能的设计中,所述接收端设备在对所述高阶调制信号进行后均衡之后,还可对所述一路高阶调制信号进行解调,得到对应的一路比特流。可选的,若发送端发送M路独立的信号时,所述接收端设备还可将通过对所述一路高阶调制信号解调得到的一路比特流,拆分为M路比特流。
本申请实施例,当发送端发送M路独立的信号时,接收端设备采用上述后均衡方法,对接收到的一路高阶调制信号进行后均衡,可减少接收端DMRS资源的消耗。
第三方面,本申请实施例提供一种通信装置,该通信装置可以具有实现上述各方面中发送端设备或接收端设备的功能,该通信装置可以为网络设备或终端设备,也可以为网络设备或终端设备中包括的芯片。
上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。
在一种可能的设计中,该通信装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该通信装置执行上述各方面中发送端设备相应的功能,或者执行上述各方面中接收端设备相应的功能。收发模块用于支持该通信装置与其他通信设备之间的通信,例如当该通信装置为发送端设备时,可向接收端设备发送M路低阶调制信号,该M路低阶调制信号在接收端设备处叠加成一路高阶调制信号。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置。
在另一种可能的设计中,该通信装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述各方面中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。当通信装置为网络设备或终端设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为网络设备或终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第四方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述各方面中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软 件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上。
第五方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得上述各方面或各方面的任一种可能的设计中的方法被执行。
第六方面,本申请实施例提供一种计算机程序产品,当通信装置运行所述计算机程序产品时,使得上述各方面或各方面的任一种可能的设计中的方法被执行。
第七方面,本申请实施例提供一种通信系统,该通信系统包括发送端设备和接收端设备。
附图说明
图1为本申请适用的一种通信系统的网络架构示意图;
图2为本申请实施例提供的一种基于发端单点的收发系统架构的示意图;
图3为本申请实施例提供的一种基于发端多点的收发系统架构的示意图;
图4为本申请实施例提供的一种高频场景下的通信方法的流程示意图;
图5为本申请实施例的示例一中提供的特定幅度配比的两路QPSK信号叠加生成一路满足格雷映射的16QAM信号的示意图;
图6为本申请实施例的示例二中提供的特定幅度配比的两路QPSK信号和8QAM信号叠加生成一路满足格雷映射的32QAM信号的示意图;
图7为本申请实施例的示例三中提供的特定幅度配比的两路QPSK信号和16QAM信号叠加生成一路满足格雷映射的64QAM信号的示意图;
图8为本申请实施例的示例四中提供的特定幅度配比的三路QPSK信号叠加生成一路满足格雷映射的64QAM信号的示意图;
图9为本申请实施例的示例五中提供的幅度匹配的两路低阶信号叠加生成一路16QAM信号的示意图;
图10为本申请实施例的示例五中提供的幅度匹配的两路低阶信号进行联合调制编码的示意图;
图11为本申请实施例的示例六中提供的在64QAM符号拆分方案一中幅度匹配的两路低阶信号叠加生成一路64QAM信号的示意图;
图12为本申请实施例的示例六中提供的在64QAM的符号拆分方案二中幅度匹配的两路低阶信号叠加生成一路64QAM信号的示意图;
图13为本申请实施例的示例七中提供的在64QAM的符号拆分方案三中在减小发端功率差的情况下三路低阶信号叠加生成一路64QAM信号的示意图;
图14为本申请实施例的示例七中提供的在64QAM的符号拆分方案四中在减小发端功率差的情况下三路低阶信号叠加生成一路64QAM信号的示意图;
图15为本申请实施例的示例八中提供的幅度匹配的两路低阶信号叠加生成一路NUC-16QAM信号的示意图;
图16为本申请实施例的示例八中提供的幅度匹配的两路低阶信号叠加生成一路 NUC-64QAM信号的示意图;
图17为本申请实施例中采用非均匀调制的符号拆分方案中发送端信号的PAPR的示意图;
图18为本申请实施例中16QAM和NUC-16QAM的调制星座图;
图19为本申请实施例中16QAM和NUC-16QAM的相噪影响和BLER影响的对比示意图;
图20为本申请实施例提供的在两路低阶的4QAM信号叠加生成一路16QAM信号的情况下进行时域轮询发送的示意图;
图21和图22为本申请实施例提供的两种信令指示方案的示意图;
图23和图24为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
图1示例性示出了本申请适用的一种通信系统的网络架构,如图1所示,该网络架构可包括至少一个网络设备和至少一个终端设备。
其中,网络设备是无线接入网中的节点,能够与终端设备通信,并将终端设备接入到无线网络。所述网络设备也可以称为无线接入网设备或接入网设备。具体的,所述网络设备可以是基站、中继站或接入点。例如,所述网络设备可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。所述网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是5G网络中的基站设备,下一代通信系统(例如6G)或者未来演进的共用陆地移动网(public land mobile network,PLMN)网络中的网络设备。所述网络设备还可以是可穿戴设备或车载设备。
终端设备是一种具有无线收发功能的设备,终端设备通过无线方式与网络设备相连,从而可接入到通信系统中。具体的,终端设备可以是用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、终端、无线通信设备、终端代理或终端装置等。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备,下一代通信系统(例如6G)或者未来演进的PLMN网络中的终端设备等。
本申请所提供的技术方案可应用于上述网络架构中的回传、多站点传输、无线宽带到户((wireless to the x,WTTx)、增强移动宽带(enhanced mobile broadband,eMBB)、设备到设备(device to device,D2D)等多种基于高频/毫米波的通信场景。而且,发送端设备和接收端设备均可以为网络设备或终端设备,本申请不作具体限定。
需要说明的是,本申请实施例中的术语“系统”和“网络”可以互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”, 可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
为了解决高频场景下使用高阶调制信号通信时,PAPR较大,导致信号覆盖范围小,影响传输性能的问题,本申请提供一种高频场景下的通信方法。在该方法中,通过对发送端的编码调制方案和预编码方式进行多维设计,发送端设备可向接收端设备发送M路低阶调制信号,M为大于或等于2的整数,例如可以为2路或3路。经过信道传输后,这M路低阶调制信号可在接收端通过空域或功率域(即能量域)叠加成一路高阶调制信号。该方法可以有效降低发送端信号的PAPR,同时又不牺牲频谱效率,接收端设备可以直接检测叠加后的高阶星座点解码高阶调制信号,从而保障系统性能。此外,在接收端叠加的一路高阶调制信号可以采用均匀调制或非均匀调制,从而可有效提升抵抗相噪的能力。
下面首先介绍本申请的技术方案应用的收发系统架构。
本申请提供基于发端单点的收发系统架构和基于发端多点的收发系统架构两种收发系统结构。其中,发端单点和发端多点是指发送端的原始比特流是1路独立的比特流还是多路独立的比特流。
1)基于发端单点的收发系统架构是指:发送端1路独立的比特流经过低密度奇偶校验(low density parity check,LDPC)编码后进行比特拆解,拆解为M路子比特流,M为大于或等于2的正整数,即可以根据实际需要将1路原始比特流拆解为2路、3路或更多路子比特流。M路子比特流分别按照各路对应的调制映射关系进行调制,生成M路低阶调制信号,具体的调制映射关系将在本申请的下文中进行详细说明。或者,发送端1路独立的比特流经过LDPC编码后,根据原始比特流中的比特与各路低阶调制信号中的符号之间的对应关系,直接进行多维调制,生成M路低阶调制信号。接着,M路低阶调制信号进行发送端的预编码,生成基带信号,以补偿信道的影响,减少信道差异对接收端叠加高阶信号的影响。基带信号经过上变频、功率放大器(power amplifier,PA)等模块后,生成M路低阶的射频信号在不同的天线上发送。经过信道传输的M路低阶调制信号在空域或功率域(即能量域)叠加,根据叠加信号的不同设计,多路低阶调制信号在叠加时可能需要满足一定的幅度配比要求(也即功率配比要求),具体要求将在下文中进行说明。接 收端单点接收M路低阶调制信号叠加而成的1路高阶调制信号,在完成信道估计、接收端后均衡、解调、LDPC解码后,恢复出1路比特流。
图2示例性示出了当M=2(即发送端发送两路低阶调制信号)时的基于发端单点的收发系统架构。如图2所示,发送端的1路原始比特流,在经过LDPC编码后进行调制、预编码和功率放大,生成两路不同的低阶调制信号,该两路低阶调制信号分别通过两个不同的天线发送,这两路低阶调制信号的星座图案不同。经过信道传输之后,接收端接收一路高阶调制信号,这一路由两路低阶调制信号叠加而成,其星座图案是两路低阶调制信号的星座图案的组合,且该一路高阶调制信号可以采用均匀调制或非均匀调制。该一路高阶调制信号先后经过信道估计、后均衡、解调和LDPC解码,得到1路比特流。
在高频/毫米波视距LOS场景下,本申请通过设计基于发端单点的收发系统架构,可以使得当信道矩阵缺秩(rank=1)时,发送端设备可以发送多路低阶调制信号,并且该多路低阶调制信号可以在接收端叠加成高阶调制信号,以有效降低发送端信号的PAPR,同时又不影响频谱效率。从而有效解决了现有技术中当信道矩阵缺秩(rank=1)时,发送端直接发送一路高阶调制信号存在的发端信号的PAPR较大,造成覆盖范围小,传输效率不高的问题。
2)基于发端多点的收发系统结构是指:发送端M路独立的比特流分别进行LDPC编码,LDPC的编码码率相同。然后,M路比特流分别按照各路对应的调制映射关系进行调制,生成M路低阶调制信号。M路低阶调制信号再进行发送端的预编码,生成基带信号,以补偿信道的影响,减少信道差异对接收端叠加高阶信号的影响。接着,基带信号经过上变频、功率放大器PA等模块后,生成M路低阶的射频信号在不同的天线上发送。经过信道传输的M路低阶调制信号在空域或功率域(即能量域)叠加,根据叠加信号的不同设计,多路低阶调制信号在叠加时可能需要满足一定的幅度配比要求(也即功率配比要求),具体要求将在下文中进行说明。接收端单点接收M路低阶调制信号叠加而成的1路高阶调制信号,在完成信道估计、接收端后均衡和解调后进行M路的拆分,拆分方式与发送端设计的叠加方式相匹配。拆分出的每路信号分别进行LDPC解码,恢复出M路比特流。
图3示例性示出了当M=2(即发送端发送两路低阶调制信号)时的基于发端多点的收发系统结构。如图3所示,发送端的2路原始比特流分别进行LDPC编码,然后进行调制、预编码和功率放大,生成两路不同的低阶调制信号,并通过两个不同的天线发送,这两路低阶调制信号的星座图案不同。经过信道传输之后,接收端直接接收一路高阶调制信号,这一路高阶调制信号由两路低阶调制信号叠加而成,其星座图案是两路低阶调制信号的星座图案的组合。接着,这一路高阶调制信号先后经过信道估计、后均衡和解调后拆分成两路信号,然后每路信号分别进行LDPC解码,得到2路比特流。
在高频/毫米波视距LOS场景下,本申请通过设计基于发端多点的收发系统架构,可以实现在高频rank1信道下传输2码字的效果,并且发送端使用低阶调制生成多路低阶调制信号,使得发送端可以拥有较低的PAPR,此外,叠加信号的设计不需要考虑层间干扰的影响,可以提升发送端功率的利用率。从而有效解决了现有技术中当信道矩阵缺秩(rank=1)时,无法支持2码字(codeword,CW)传输,以及当信道矩阵不缺秩(rank=2)的情况下,针对两码字传输,由于流间干扰的存在,对信噪比有要求且发端功率无法有效利用等问题。
下面对本申请提供的技术方案进行详细说明。
图4示例性示出了本申请实施例提供的一种高频场景下的通信方法的示意图,如图4所示,该方法包括:
步骤401,发送端设备根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则,对S路比特流进行调制,生成M路低阶调制信号,M为大于或等于2的整数,S等于1或M。
本申请中,接收端设备待接收的一路高阶调制信号是指发送端设备间接发送给接收端的一路高阶调制信号,实际上,该一路高阶调制信号是由发送端设备实际发送的M路低阶调制信号叠加而成。换句话说,发送端希望接收端接收到的一路高阶调制信号。
这一路高阶调制信号采用的第一调制方式为N阶调制,N为大于或等于4的整数,也就是高阶调制。例如可以是16正交幅度调制(quadrature amplitude modulation,QAM)、32QAM、64QAM或者其他更高阶的调制方式等。
第一调制方式可以是均匀调制,也可以是非均匀调制,本申请不作具体限定。其中,均匀调制是指,现有标准中QAM的几何分布规则(方形QAM)且每个星座点等概率出现。非均匀调制是指,调制后的信号星座点分布的形状不规则(几何整形调制,可能是圆形或者其他形状的QAM),或者星座点的概率分布不同(概率整形调制)。
所述S路比特流可以为一路独立的比特流,此时S等于1;或者,所述S路比特流也可以为通过对一路独立的比特流进行比特拆解得到的M路子比特流,此时S等于M;或者,所述S路比特流也可以为M路独立的比特流,此时S等于M。例如,在基于发端单点的收发系统架构中,所述S路比特流是一路独立的原始比特流,或者是通过对一路独立的原始比特流进行比特拆解得到的M路子比特流;在基于发端多点的收发系统架构中,所述S路比特流是M路独立的比特流。
示例性地,当所述S路比特流为一路独立的比特流时,发送端设备可以根据第一调制方式对应的映射规则,直接对这一路独立的比特流进行多维调制,生成M路低阶调制信号,从而省去中间比特拆解的过程,直接完成从比特到复数符号的映射。具体的调制过程,本申请将在下文中进行详细说明。
当所述S路比特流为通过对一路独立的比特流进行比特拆解得到的M路子比特流时,或者为M路独立的比特流时,发送端设备可以根据第一调制方式对应的映射规则,分别对M路比特流进行调制,生成M路低阶调制信号。其中,在所述映射规则中,M路比特流各自对应的调制映射关系需要联合设计。具体的调制过程,本申请将在下文中进行详细说明。
所述映射规则用于使所述M路低阶调制信号叠加成接收端设备待接收的一路高阶调制信号。所述一路高阶调制信号又可称为叠加信号。
在具体实现中,所述映射规则可以通过映射码表、公式或星座图来体现。例如,在一种可能的设计中,当所述第一调制方式为16正交幅度调制QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:原始比特流中的比特与16QAM中的复数符号之间的对应关系,以及16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系。其中,所述原始比特流中包括第一路低阶调制信号对应的比特和第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述第一路 低阶调制信号对应的2 N/2个第四复数符号与第二路低阶调制信号对应的2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述16QAM中的各个复数符号一一对应;针对16QAM,所述2 N/2个第四复数符号为K{1+2j,1-2j,-1+2j,-1-2j},所述2 N/2个第五复数符号为L{2+1j,2-1j,-2+1j,-2-1j},所述K、L为比例缩放系数。示例性的,所述映射规则可如下文中的表6所示。
在另一种可能的设计中,当所述第一调制方式为非均匀星座(non-uniform constellation,NUC)-16QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:原始比特流中的比特与NUC-16QAM中的复数符号之间的对应关系,以及NUC-16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系。其中,所述原始比特流中包括第一路低阶调制信号对应的比特和第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述第一路低阶调制信号对应的2 N/2个第四复数符号与第二路低阶调制信号对应的2 N/2个第五复数符号两两按照等幅度配比叠加的结果,与所述NUC-16QAM中的各个复数符号一一对应;其中,所述2 N/2个第四复数符号为
Figure PCTCN2022138899-appb-000004
Figure PCTCN2022138899-appb-000005
所述2 N/2个第五复数符号为L{1+1j,1-1j,-1+1j,-1-1j},所述K、L为比例缩放系数。示例性的,所述映射规则中的符号对应关系可如下文中的表11所示。
在又一种可能的设计中,当所述第一调制方式为64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:原始比特流中的比特与64QAM中的复数符号之间的对应关系,以及64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系。其中,所述原始比特流中包括第一路低阶调制信号对应的比特和第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述第一路低阶调制信号对应的2 N/2个第四复数符号与第二路低阶调制信号对应的2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,所述64QAM中的各个复数符号一一对应;其中,所述2 N/2个第四复数符号为P{1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j},所述2 N/2个第五复数符号为Q{6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j},这种设计中,所述映射规则中的符号对应关系可如下文中的表7所示;或者,所述2 N/2个第四复数符号为P{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},所述2 N/2个第五复数符号为Q{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j},所述P、Q为比例缩放系数。示例性的,所述映射规则中的符号对应关系可如下文中的表8所示。
在又一种可能的设计中,当所述第一调制方式为NUC-64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:原始比特流中的比特与NUC-64QAM中的复数符号之间的对应关系,以及NUC-64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系。其中,所述原始比特流中包括第一路低阶调制信号对应的比特和第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述第一路低阶调制信号对应的2 N/2个第四复数符号与第二路低阶调制信号对应的2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述NUC-64QAM中的各个复数符 号一一对应;其中,所述2 N/2个第四复数符号为P{1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j},所述2 N/2个第五复数符号为
Figure PCTCN2022138899-appb-000006
Figure PCTCN2022138899-appb-000007
所述P、Q为比例缩放系数。示例性的,所述映射规则中的符号对应关系可如下文中的表12所示。
上述实现方式仅是举例说明,也就是说,所述映射规则具体可以体现在本申请在下文中举例的任一种编码映射表或公式或符号对应关系的示意表。为了简洁,本申请在此不再一一列举。其中,下文所述的任一种编码映射表或符号对应关系的示意表中的具体数值可以成比例扩大或缩小,本申请不予限制。例如,表8中2 N/2个第四复数符号可以P{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},2 N/2个第五复数符号为Q{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j},所述P、Q为比例缩放系数。同样的,这种等比例缩放的形式也适用于其他表,为了简洁,这里不一一列举。具体的,映射规则可以包含下文举例中编码映射表或符号对应关系示意表中信息的一项或多项,例如仅包含其中的部分列信息,或者包含全部列信息。示例性的,对于下文中的叠加信号拆分方式中的符号对应关系示意表,示意出Rx symbol、Tx1 symbol以及Tx2 symbol之间的对应关系,Rx coding与Rx symbol之间的映射关系可以参考现有标准,当然,一种可能的实现方式中,也可以把Rx symbol、Tx1 symbol、Tx2 symbol以及Rx coding之间的对应关系直接在一张表中体现,本申请不予限制。另外,编码映射表和符号对应关系示意表可以在发送端和接收端进行预配置,本申请不予限定。
需要说明的是,本申请实施例中所述的“低阶”是相对于在接收端叠加得到的“高阶”而言的,也就是说,所述M路低阶调制信号相对于在接收端叠加得到的一路高阶调制信号是低阶。由于目前通常认为调制阶数大于4阶就是高阶调制,反之是低阶调制,因此,本申请中所述M路低阶调制信号可以不都是真正的“低阶”调制信号。例如,在本申请的下文中的示例中,可以由一路QPSK信号和一路16QAM信号叠加生成一路64QAM信号。其中,QPSK信号和16QAM信号相对于64QAM信号可以认为是“低阶”调制信号。
基于上述几种可能的设计,发送端设备可以发送多路低阶调制信号,该多路低阶调制信号可以在接收端叠加成高阶调制信号,以有效降低发送端信号的PAPR,同时又不影响频谱效率。并且,该多路低阶调制信号之间可以按照等幅度配比(即等功率配比)进行叠加,从而充分利用发送端的发送功率。
根据前文描述可知,发送端基于映射规则对S路比特流进行调制,生成M路低阶调制信号,该M路低阶调制信号经叠加后可以得到一路高阶调制信号。
具体的,上述映射规则可以包括两种可能的实现方式,一种是联合编码调制方式,另一种是叠加信号拆分方式,可以理解为是两种调制方案。下面本申请将结合上述映射规则的两种具体的实现方式,对具体的调制过程进行说明。需要说明的是,上述两种实现方式的命名仅是为了便于描述而进行的一种示意,并不对本申请的方案造成限定。
一、联合编码调制方式。
具体的,发送端对S路比特流进行联合编码调制,得到M路低阶调制信号。需要说明的是,在该方案中,所述S等于M,S路比特流即为M路比特流。可以理解为,发送端存在M路比特流,该M路比特流可以是通过对一路独立的比特流进行比特拆解得到的M路子比特流,也可以是M路独立的比特流,不作限定。
在该方案中,所述映射规则用于指示发送端的M路比特流各自对应的从比特到复数符号的调制映射关系。所述M路比特流各自对应的调制映射关系满足:所述M路比特流中的比特根据各自对应的调制映射关系映射得到的M个复数符号,按照预设幅度配比叠加,等于接收端设备待接收的一路高阶调制信号中的复数符号。本申请中的调制映射关系是指从比特到符号的映射,也可称为是编码映射规则。也就是说,通过进行联合编码调制,发送端可以将M路比特流中的比特映射为复数符号,生成M路低阶调制信号。
示例性的,当发送端发送两路低阶调制信号(即M=2),且接收端待接收的一路高阶调制信号采用N阶调制(此时N大于或等于4)时,为了使接收端待接收的一路高阶调制信号的星座图满足格雷映射,提升解调性能,所述映射规则可包含如下内容:
1)来自第一路比特流的2位比特的2 2种取值分别映射到2 2个第一复数符号。
2)根据来自第一路比特流的2位比特的不同取值,来自第二路比特流的N-2位比特的2 N-2种取值分别映射到2 N-2个第二复数符号,且当来自第一比特流的2位比特的取值不同时,来自第二路比特流的N-2位比特的相同取值映射到所述2 N-2个第二复数符号中的不同第二复数符号。
3)来自第一路比特流的2位比特映射到的第一复数符号与来自第二路比特流的N-2位比特映射到的第二复数符号按照预定义的幅度配比叠加,等于接收端设备待接收的一路高阶调制信号中的第三复数符号。
如此,在该调制方案中,发送端设备根据上述联合编码调制方式对两路比特流进行调制,生成两路低阶调制信号,可以为:根据上述映射规则,将来自第一路比特流的各个2位比特依次映射为所述2 2个第一复数符号中的第一复数符号,形成第一路低阶调制信号,以及将第二路比特流中的各个N-2位比特依次映射为所述2 N-2个第二复数符号中的第二复数符号,形成第二路低阶调制信号。
根据上述内容可知,当发送端发送两路低阶调制信号,且接收端待接收的一路高阶调制信号采用N阶调制时,所述映射规则指示的联合编码调制方式相当于:将一个N阶调制的星座图拆分为一个2阶调制的星座图和一个N-2阶调制的星座图,以实现发送端信号的降阶,使得发送端发送两路低阶调制信号能够在接收端叠加成一路高阶调制信号;然后通过联合设计两个低阶调制的星座图的调制映射关系,使得两个低阶调制的星座图按照一定的幅度配比叠加后,生成的高阶调制的星座图满足格雷映射。
可以理解的,当接收端待接收的一路高阶调制信号采用N阶调制时,发送端也可以发送更多路的低阶调制信号,此时N大于或等于6,所述映射规则可以理解为:将一个N阶调制的星座图拆分为更多个低阶调制的星座图,以实现发送端信号的降阶,例如,当发送端发送3路低阶调制信号时,可以将一个N阶调制的星座图拆分为两个2阶调制的星座图和一个N-4阶调制的星座图;另外,通过联合设计多个低阶调制的星座图的调制映射关系,使得多个低阶调制的星座图按照一定的幅度配比叠加后,生成的N阶调制的星座图满足格雷映射。
也就是说,在进行上述映射规则设计可以基于以下考虑因素:
(a)对高阶星座图进行拆分,使得发多路低阶信号能叠加成一路高阶信号;
(b)设计具体的调制映射关系,使得叠加的高阶能够满足格雷映射。
满足格雷映射有利于收发端编解码。基于上述考虑因素,可以根据实际情况设计出不同的具体的调制映射关系,本申请给出不同情况下的几个具体调制映射关系示例,但不作为限定只有这几个调制映射关系。
需要说明的是,在本申请中,由于发送端在调制生成多路低阶调制信号后,还要进一步经过功率放大器PA模块进行功率放大,生成多路射频信号,然后才能通过天线发送出去。因此,当发送端的多路低阶调制信号需要满足一定的幅度配比时,经过功率放大后的多路射频信号也要满足一定的功率配比,具体的,功率配比是幅度配比的平方。
下面通过几个示例来具体说明本申请中的联合编码调制方式。
在本申请中,联合编码调制方式是指针对发送端的多路低阶信号设计了一组相关联的调制映射关系。这组相关联的调制映射关系在以下的几个示例中可具体体现为一张编码映射表,或编码映射表对应的星座图或公式。通过使用下列编码映射表所指示的方式,对发送端的多路比特流进行联合编码调制,生成多路低阶信号,可使得这多路低阶信号能够在接收端叠加生成一路高阶信号,同时满足格雷映射,以提高接收端的解调性能。而接收端待接收的一路高阶信号可以使用协议中规定的调制映射关系,本申请对在接收端叠加的高阶信号的编码映射表不做修改,降低设计复杂度。
以下几个示例,分别针对16QAM、32QAM和64QAM等几种高阶信号的调制方式,提供了相应的发送端信号的联合编码调制方式,具体包括:示例一,特定幅度配比的两路QPSK信号叠加生成一路满足格雷映射的16QAM信号;示例二,特定幅度配比的两路QPSK信号和8QAM信号叠加生成满足一路格雷映射的32QAM信号;示例三,特定幅度配比的两路QPSK信号和16QAM信号叠加生成一路满足格雷映射的64QAM信号。示例四,特定幅度配比的三路QPSK信号叠加生成一路满足格雷映射的64QAM信号。
在以下的示例中,Tx1、Tx2和Tx3分别代表发送端的多路低阶信号,Rx代表接收端待接收的一路高阶信号,该路高阶信号由发送端的多路低阶信号叠加而成。例如,Tx1coding表示发送端的第一路比特流中的比特编码,Tx1symbol表示发送端对第一路比特流进行调制后生成的第一路低阶调制信号中的复数符号,Tx2coding表示发送端的第二路比特流中的比特编码,Tx2symbol表示发送端对第二路比特流进行调制后生成的第二路低阶调制信号中的复数符号,Tx3coding表示发送端的第三路比特流中的比特编码,Tx3symbol表示发送端对第三路比特流进行调制后生成的第三路低阶调制信号中的复数符号,Rx coding表示接收端的一路比特流中的比特编码,该路比特流与接收端的一路高阶调制信号相对应,可以通过对接收端的一路高阶调制信号解码得到,Rx symbol表示接收端的一路高阶调制信号中的复数符号。
示例一:特定幅度配比的两路QPSK信号叠加生成一路满足格雷映射的16QAM信号。
在该示例一中,发送端的两路低阶信号Tx1、Tx2采用QPSK调制,接收端待接收的一路高阶信号Rx采用16QAM调制。经过调制后,两路QPSK信号按照幅度配比2:1(对应功率配比4:1),通过空域或功率域(即能量域)叠加,可生成一路满足格雷映射的16QAM信号。
其中,Tx1(QPSK)作为符号位,用于指示叠加后的高阶星座所在的象限。Tx2(QPSK)的调制映射关系随着Tx1所指示象限的不同而规律变化。需要说明的是,在该示例一中,也可以将Tx2作为符号位,同时需要Tx1的调制映射关系随着Tx2所指示象限的不同而规律变化。也就是说,关于Tx1和Tx2具体哪一路作为符号位不进行限定。
因此,在该示例一中进行联合编码调制需要满足如下准则:两路低阶QPSK信号的幅度配比为2:1,一路作为符号位,另一路根据符号位指示的象限变化调制映射关系,并且两路低阶QPSK信号叠加后能够生成一路满足格雷映射的高阶16QAM信号。
图5示例性示出了本示例一中特定幅度配比的两路QPSK信号叠加生成一路满足格雷映射的16QAM信号的示意图,该特定幅度配比是指2:1。其中,圆圈里面的数字表示星座点对应的原始比特;圆圈的位置表示星座点代表的复数符号,通过星座图表示出了从比特到符号的调制映射关系。Tx2提供了4种适合不同象限的调制映射关系,位于中间的小坐标轴指示Tx2的符号,外侧大坐标轴表示这个调制映射关系适用的象限。如图5所示,在Tx1(QPSK)符号位的调制映射关系确定后,Tx2(QPSK)的调制映射关系在各个象限不同。
表1两路QPSK信号按照幅度配比2:1叠加生成一路16QAM信号的编码映射表
Figure PCTCN2022138899-appb-000008
表1示出了本示例一中两路QPSK信号按照幅度配比2:1叠加生成一路16QAM信号的编码映射表。需要说明的是,表1所示的编码映射表可以包含其中的全部列或部分列,例如,对于发送端来说,发送端在对两路比特流进行调制时,需要知道该表中的Tx1 coding和Tx1 symbol之间的映射关系(即Tx1的调制映射关系),也需要知道该表中的Tx2 coding和Tx2 symbol之间的映射关系(即Tx1的调制映射关系),即发送端的编码映射表至少需要包含Tx1 coding、Tx1 symbol、Tx2 coding、Tx2 symbol这四列。可选的,如果发送端是一路独立的比特流,则发送端还需要知道Rx coding与Tx1 coding、Tx2 coding之间的对应关系(即比特的位置拆分关系),以将一路比特流拆分为两路比特流,即发送端的编码映射表还需要包含Rx coding列。可选的,发送端的编码映射表还可进一步包含Rx symbol列,表示希望接收端接收到的高阶信号。对于接收端来说,由于接收端接收到的是一路高阶调制信号,并需要该路高阶调制信号进行解调和解码,因此,接收端需要知道Rx symbol与Rx coding之间的对应关系(即Rx的调制映射关系),即接收端的编码映射表中需要包 含Rx symbol列和Rx coding列。可选的,如果发送端发送的是两路独立的比特流,则接收端还需要知道Rx coding与Tx1 coding、Tx2 coding之间的对应关系(即比特的位置拆分关系),以将解码得到一路比特流拆分为两路比特流,即接收端的编码映射表中还可选包含Tx1 coding列和Tx2 coding列。应理解,上述收发两端的编码映射表的设计可根据信号发送相关的信令设计的不同而不同,并且可以预存在收发两端的设备中。此外,应注意,这部分对编码映射表的说明可适用于下文中所述的任一编码映射表,下文中将不再赘述。
根据表1中的内容可知:
Tx1(QPSK)的调制映射关系是:Tx1比特流中的比特{10,00,01,11}分别映射到第一、二、三、四象限中的4个第一复数符号{1+1j,-1+1j,-1-1j,1-1j}。具体的,Tx1比特流中的比特10映射到第一象限中的第一复数符号1+1j;Tx1比特流中的比特11映射到第四象限中的第一复数符号1-1j;Tx1比特流中的比特01映射到第三象限中的第一复数符号-1-1j;Tx1比特流中的比特00映射到第二象限中的第一复数符号-1+1j。
Tx2(QPSK)的调制映射关系是:Tx2比特流中的比特{10,00,01,11}分别映射到第一、二、三、四象限中的4个第二复数符号{1+1j,-1+1j,-1-1j,1-1j}。但是,当Tx1比特流中的比特映射到的复数符号在不同象限中时,Tx2比特流中的比特的调制映射关系不同,即当Tx1比特流中的比特映射到的复数符号在不同象限中时,Tx2比特流中的相同比特会映射到不同的复数符号。
具体的,当Tx1比特流中的比特是10时,对应第一象限:Tx2比特流中的比特10映射到第二象限中的第二复数符号-1+1j;Tx2比特流中的比特11映射到第三象限中的第二复数符号-1-1j;Tx2比特流中的比特01映射到第四象限中的第二复数符号1-1j;Tx2比特流中的比特00映射到第一象限中的第二复数符号1+1j。
当Tx1比特流中的比特是11时,对应第四象限:Tx2比特流中的比特10映射到第三象限中的第二复数符号-1-1j;Tx2比特流中的比特11映射到第二象限中的第二复数符号-1+1j;Tx2比特流中的比特01映射到第一象限中的第二复数符号1+1j;Tx2比特流中的比特00映射到第四象限中的第二复数符号1-1j。
当Tx1比特流中的比特是01时,对应第三象限:Tx2比特流中的比特10映射到第四象限中的第二复数符号1-1j;Tx2比特流中的比特11映射到第一象限中的第二复数符号1+1j;Tx2比特流中的比特01映射到第二象限中的第二复数符号-1+1j;Tx2比特流中的比特00映射到第三象限中的第二复数符号-1-1j。
当Tx1比特流中的比特是00时,对应第二象限:Tx2比特流中的比特10映射到第一象限中的第二复数符号1+1j;Tx2比特流中的比特11映射到第四象限中的第二复数符号1-1j;Tx2比特流中的比特01映射到第三象限中的第二复数符号-1-1j;Tx2比特流中的比特00映射到第二象限中的第二复数符号-1+1j。
基于上述调制映射关系可以看出,Tx1比特流中每2位比特调制为1个符号,Tx2比特流中每2位比特调制为1个符号,Rx比特流中每4位比特调制为1个符号。Tx1比特流中的2位比特映射到的第一复数符号(Tx1 symbol)与Tx2比特流中的2位比特映射到的第二复数符号(Tx2 symbol),按照幅度配比2:1叠加,可得到Rx比特流中的4位比特对应的第三复数符号(Rx symbol),即2*Tx1(QPSK)+Tx2(QPSK)=Rx(16QAM)。例如,当Tx1比特流中的比特为10,Tx2比特流中的比特为10时,第三复数符号=2*第一复数符号+第二复数符号=2(1+1j)+(-1+1j)=1+3j。
而且,Rx比特流的每4位比特中第一、三个比特是Tx1比特流中的比特(在上述编码映射表中以下划线示出),第二、四个比特是Tx2比特流的比特。所以,根据这样设计好的编码映射表,接收端解调出来的编码比特可以根据上述位置对应关系确定Tx1和Tx2对应的比特。类似的,在基于发端单点的收发框架中,发送端也可以根据该位置对应关系,确定出Tx1比特流和Tx2比特流,也就是发送端可以根据该位置关系对一路独立的比特流进行比特拆解,得到Tx1比特流和Tx2比特流。
可替换的,上述编码映射表也可以通过相应的公式表示:
d Tx1(i)=[(-1+2b 1(2i))+j(1-2b 1(2i+1))]
Figure PCTCN2022138899-appb-000009
或者,还可以表示成:
d Tx1(i)=[(-1+2b 1(2i))+j(1-2b 1(2i+1))]
Figure PCTCN2022138899-appb-000010
上述公式是指,对于两个长度为L的连续比特流b 1和b 2,b 1和b 2均为每2个比特生成一个符号,共有L/2个符号。i表示第几个符号,i的取值范围为0~L/2-1。d Tx1(i)和d Tx2(i)分别表示两路比特流经过调制后生成的Tx1的第一复数符号和Tx2的第二复数符号。
如此,理想叠加后的一路高阶信号可以表示为:
d Rx=a*d Tx1+d Tx2
其中,d Rx为理想叠加的一路高阶信号中的复数符号,a为Tx1的第一复数符号与Tx2的第二复数符号未经归一化的幅度配比。所述归一化是指对第一复数符号和第二复数符号分别进行功率归一化,归一化后的第一复数符号和归一化后的第二复数符号的功率为1。本示例中,a=2,d Rx为16QAM的复数符号。
需要说明的是,本示例中的上述设计,为了便于计算,暂时未考虑对调制映射的复数星座图进行归一化,上述幅度配比2:1、功率配比4:1也是指在未考虑归一化情况下的配比。
以上的编码映射表中所示出的各路低阶信号的调制映射关系只是作为举例的一种,还可以有其他的调制映射关系达到相同的目的。当作为符号位的d Tx1的映射到的符号的象限变化,对应的d Tx2的调制映射关系也需要对应修改,但变动只在于不同比特对应的复数符号的象限,也就是复数符号的I路和Q路幅度的正负。本申请中,所述I路是指星座图中的纵轴,代表复数符号的实部,所述Q路是指星座图中的横轴,代表复数符号的虚部。因此,本示例中的联合调制编码方式只要满足:发送端的两路比特流映射为两路低阶的QPSK信号,两路QPSK信号存在幅度配比a=2,通过空域叠加能够在接收端映射为一路高阶的16QAM信号,并且对作为符号位的一路QPSK信号的调制映射关系不做改变(例如,可以参考现有标准中对该调制映射关系的规定),另一路QPSK信号的调制映射关系在符号 位指示不同象限时相应做改变,即可最终实现在接收端叠加的高阶星座满足格雷映射。
示例二:特定幅度配比的两路QPSK信号和8QAM信号叠加生成一路满足格雷映射的32QAM信号。
在该示例二中,发送端的一路低阶信号Tx1采用QPSK调制,另一路低阶信号Tx2采用8QAM调制,接收端待接收的一路高阶信号Rx采用32QAM调制。经过调制后,两路QPSK信号和8QAM信号,按照幅度配比3:1(对应功率配比9:1),通过空域或功率域(即能量域)叠加,可生成一路满足格雷映射的32QAM信号。
其中,Tx1(QPSK)作为符号位,用于指示叠加后的高阶星座所在的象限。Tx2(8QAM)的调制映射关系随着根据Tx1所指示的象限的不同而变化。
图6示例性示出了本示例二中特定幅度配比的两路QPSK信号和8QAM信号叠加生成一路满足格雷映射的32QAM信号的示意图,该特定幅度配比是指3:1。
如图6所示,在Tx1(QPSK)符号位的调制映射关系确定后,Tx2(8QAM)的调制映射关系在各个象限不同。可以看出,大致为将第一象限中Tx2的星座图(编码映射表)进行旋转,使得最终叠加之后的高阶星座满足格雷映射,从而拥有更好的解调性能。
表2两路QPSK信号和8QAM信号按照幅度配比3:1叠加生成一路32QAM信号的编码映射表
Figure PCTCN2022138899-appb-000011
Figure PCTCN2022138899-appb-000012
表2示出了本示例二中两路QPSK信号和8QAM信号按照幅度配比3:1叠加生成一路32QAM信号的编码映射表,根据表2中的内容可知:
Tx1(QPSK)的调制映射关系是:Tx1比特流中的比特{10,11,01,00}分别映射到第一、二、三、四象限中的4个第一复数符号{1+1j,1-1j,-1-1j,-1+1j}。具体的,Tx1比特流中的比特10映射到第一象限中的第一复数符号1+1j;Tx1比特流中的比特11映射到第四象限中的第一复数符号1-1j;Tx1比特流中的比特01映射到第三象限中的第一复数符号-1-1j;Tx1比特流中的比特00映射到第二象限中的第一复数符号-1+1j。
Tx2(8QAM)的调制映射关系是:Tx2比特流中的比特{000,001,100,101,111,011,010,110}分别映射到8个第二复数符号{0+2j,-2+2j,-2+0j,-2-2j,0-2j,2-2j,2+0j,0+0j}。但是,当Tx1比特流中的比特映射到的复数符号在不同象限中时,Tx2比特流中比特的调制映射关系不同,即当Tx1比特流中的比特映射到的复数符号在不同象限中时,Tx2比特流中的相同比特会映射到不同的复数符号。
具体的,当Tx1比特流的比特是10时,对应第一象限:Tx2比特流中的比特000映射到第二复数符号0+2j;Tx2比特流中的比特001映射到第二复数符号-2+2j;Tx2比特流中的比特100映射到第二复数符号-2+0j;Tx2比特流中的比特101映射到第二复数符号-2-2j;Tx2比特流中的比特111映射到第二复数符号0-2j;Tx2比特流中的比特011映射到第二复数符号2-2j;Tx2比特流中的比特010映射到第二复数符号2+0j;Tx2比特流中的比特110映射到第二复数符号0+0j。
当Tx1比特流中的比特是11时,对应第四象限:Tx2比特流中的比特000映射到第二复数符号0-2j;Tx2比特流中的比特001映射到第二复数符号-2-2j;Tx2比特流中的比特100映射到第二复数符号-2-0j;Tx2比特流中的比特101映射到第二复数符号-2+2j;Tx2比特流中的比特111映射到第二复数符号0+2j;Tx2比特流中的比特011映射到第二复数符号2+2j;Tx2比特流中的比特010映射到第二复数符号2-0j;Tx2比特流中的比特110映射到第二复数符号0-0j。
当Tx1比特流中的比特是01时,对应第三象限:Tx2比特流中的比特000映射到第二复数符号-0-2j;Tx2比特流中的比特001映射到第二复数符号2-2j;Tx2比特流中的比特100映射到第二复数符号2-0j;Tx2比特流中的比特101映射到第二复数符号2+2j;Tx2比特流中的比特111映射到第二复数符号-0+2j;Tx2比特流中的比特011映射到第二复数 符号-2+2j;Tx2比特流中的比特010映射到第二复数符号-2-0j;Tx2比特流中的比特110映射到第二复数符号0-0j。
当Tx1比特流中的比特是00时,对应第二象限:Tx2比特流中的比特000映射到第二复数符号-0+2j;Tx2比特流中的比特001映射到第二复数符号2+2j;Tx2中的比特100映射到第二复数符号2+0j;Tx2比特流中的比特101映射到第二复数符号2-2j;Tx2比特流中的比特111映射到第二复数符号-0-2j;Tx2比特流中的比特011映射到第二复数符号-2-2j;Tx2比特流中的比特010映射到第二复数符号-2+0j;Tx2比特流中的比特110映射到第二复数符号-0+0j。
基于上述调制映射关系可以看出,Tx1比特流中每2位比特调制为1个符号,Tx2比特流中每3位比特调制为1个符号,Rx比特流中每5位比特调制为1个符号。Tx1比特流中的2位比特映射到的第一复数符号(Tx1 symbol)与Tx2比特流中的3位比特映射到的第二复数符号(Tx2 symbol),按照幅度配比3:1叠加,可得到Rx比特流中的5位比特对应的第三复数符号(Rx symbol),即3*Tx1(QPSK)+Tx2(8QAM)=Rx(32QAM)。例如,当Tx1比特流中的2位比特为10,Tx2比特流中的3位比特为000时,第三复数符号=3*第一复数符号+第二复数符号=3(1+1j)+(0+2j)=3+5j。
而且,Rx比特流的每5位比特中第一、四个比特是Tx1比特流中的比特(在上述编码映射表中以下划线示出),第二、三、五个比特是Tx2比特流的比特。所以,根据这样设计好的编码映射表,接收端解调出来的编码比特可以根据上述位置对应关系,得到Tx1和Tx2对应的比特。类似的,在基于发端单点的收发框架中,发送端也可以根据该编码映射表,确定Tx1比特流和Tx2比特流,例如对一路独立的比特流进行比特拆解,得到Tx1比特流和Tx2比特流。
需要说明的是,本示例中的上述设计,为了便于计算,暂时未考虑对调制映射的复数星座图进行归一化,上述幅度配比3:1、功率配比9:1也是指在未考虑归一化情况下的配比。
示例三:特定幅度配比的两路QPSK信号和16QAM信号叠加生成一路满足格雷映射的64QAM信号。
在该示例三中,发送端的一路低阶信号Tx1采用QPSK调制,另一路低阶信号Tx2采用16QAM调制,接收端待接收的一路高阶信号Rx采用64QAM调制。经过调制后,两路QPSK信号和一路16QAM信号,按照幅度配比4:1(对应功率配比16:1),通过空域或功率域(即能量域)叠加,可生成一路满足格雷映射的64QAM信号。
其中,Tx1(QPSK)作为符号位,用于指示叠加后的高阶星座所在的象限。Tx2(16QAM)的调制映射关系随着Tx1所指示象限的不同而变化。
图7示例性示出了本示例三中特定幅度配比的两路QPSK信号和16QAM信号叠加生成一路满足格雷映射的64QAM信号的示意图,该特定幅度配比是指4:1。
如图7所示,在Tx1(QPSK)符号位的调制映射关系确定后,Tx2(16QAM)的调制映射关系在各个象限不同。可以看出,大致为将第一象限中Tx2的星座图(编码映射表)进行旋转,使得最终叠加之后的高阶星座满足格雷映射,从而拥有更好的解调性能。
表3两路QPSK信号和16QAM信号按照幅度配比4:1叠加生成一路64QAM信号的编码映射表
Figure PCTCN2022138899-appb-000013
Figure PCTCN2022138899-appb-000014
表3示出了本示例三中两路QPSK信号和16QAM信号按照幅度配比4:1叠加生成一路64QAM信号的编码映射表,根据表3中的内容可知:
Tx1(QPSK)的调制映射关系是:Tx1比特流中的比特{10,11,01,00}分别映射到第一、二、三、四象限中的4个第一复数符号{1+1j,1-1j,-1-1j,-1+1j}。具体的,Tx1比特流中的比特10映射到第一象限中的第一复数符号1+1j;Tx1比特流中的比特11映射到第四象限中的第一复数符号1-1j;Tx1比特流中的比特01映射到第三象限中的第一复数符号-1-1j;Tx1比特流中的比特00映射到第二象限中的第一复数符号-1+1j。
Tx2(16QAM)的调制映射关系是:Tx2比特流中的比特{1100,1101,1001,1000,1110,1111,1011,1010,0110,0111,0011,0010,0100,0101,0001,0000}分别映射到16个第二复数符号{-1+3j,-1+1j,-3+1j,-3+3j,-1-3j,-1-1j,-3-1j,-3-3j, 1-3j,1-1j,3-1j,3-3j,1+3j,1+1j,3+1j,3+3j}。但是,当Tx1比特流中的比特映射到的复数符号在不同象限中时,Tx2比特流中比特的调制映射关系不同,即当Tx1比特流中的比特映射到的复数符号在不同象限中时,Tx2比特流中的相同比特会映射到不同的复数符号。
具体的,当Tx1比特流中的比特是10时,对应第一象限:Tx2比特流中的比特1100映射到第二复数符号-1+3j;Tx2比特流中的比特1101映射到第二复数符号-1+1j;Tx2比特流中的比特1001映射到第二复数符号-3+1j;Tx2比特流中的比特10 00映射到第二复数符号-3+3j;Tx2比特流中的比特11 10映射到第二复数符号-1-3j;Tx2比特流中的比特11 11映射到第二复数符号-1-1j;Tx2比特流中的比特10 11映射到第二复数符号-3-1j;Tx2比特流中的比特10 10映射到第二复数符号-3-3j;Tx2比特流中的比特01 10映射到第二复数符号1-3j;Tx2比特流中的比特01 11映射到第二复数符号1-1j;Tx2比特流中的比特00 11映射到第二复数符号3-1j;Tx2比特流中的比特00 10映射到第二复数符号3-3j;Tx2比特流中的比特01 00映射到第二复数符号1+3j;Tx2比特流中的比特01 01映射到第二复数符号1+1j;Tx2中的比特00 01映射到第二复数符号3+1j;Tx2比特流中的比特00 00映射到第二复数符号3+3j。
当Tx1比特流中的比特是11时,对应第四象限:Tx2比特流中的比特1100映射到第二复数符号-1-3j;Tx2比特流中的比特1101映射到第二复数符号-1-1j;Tx2比特流中的比特1001映射到第二复数符号-3-1j;Tx2比特流中的比特10 00映射到第二复数符号-3-3j;Tx2比特流中的比特11 10映射到第二复数符号-1+3j;Tx2比特流中的比特11 11映射到第二复数符号-1+1j;Tx2比特流中的比特10 11映射到第二复数符号-3+1j;Tx2比特流中的比特10 10映射到第二复数符号-3+3j;Tx2比特流中的比特01 10映射到第二复数符号1+3j;Tx2比特流中的比特01 11映射到第二复数符号1+1j;Tx2比特流中的比特00 11映射到第二复数符号3+1j;Tx2比特流中的比特00 10映射到第二复数符号3+3j;Tx2中的比特01 00映射到第二复数符号1-3j;Tx2比特流中的比特01 01映射到第二复数符号1-1j;Tx2比特流中的比特00 01映射到第二复数符号3-1j;Tx2比特流中的比特00 00映射到第二复数符号3-3j。
当Tx1比特流中的比特是01时,对应第三象限:Tx2比特流中的比特1100映射到第二复数符号1-3j;Tx2比特流中的比特1101映射到第二复数符号1-1j;Tx2比特流中的比特1001映射到第二复数符号3-1j;Tx2比特流中的比特10 00映射到第二复数符号3-3j;Tx2比特流中的比特11 10映射到第二复数符号1+3j;Tx2比特流中的比特11 11映射到第二复数符号1+1j;Tx2比特流中的比特10 11映射到第二复数符号3+1j;Tx2比特流中的比特10 10映射到第二复数符号3+3j;Tx2比特流中的比特01 10映射到第二复数符号-1+3j;Tx2比特流中的比特01 11映射到第二复数符号-1+1j;Tx2比特流中的比特00 11映射到第二复数符号-3+1j;Tx2比特流中的比特00 10映射到第二复数符号-3+3j;Tx2比特流中的比特01 00映射到第二复数符号-1-3j;Tx2比特流中的比特01 01映射到第二复数符号-1-1j;Tx2比特流中的比特00 01映射到第二复数符号-3-1j;Tx2比特流中的比特00 00映射到第二复数符号-3-3j。
当Tx1比特流中的比特是00时,对应第二象限:Tx2比特流中的比特1100映射到第二复数符号1+3j;Tx2比特流中的比特1101映射到第二复数符号1+1j;Tx2比特流中的比特1001映射到第二复数符号3+1j;Tx2比特流中的比特10 00映射到第二复数符号3+3j; Tx2比特流中的比特11 10映射到第二复数符号1-3j;Tx2比特流中的比特11 11映射到第二复数符号1-1j;Tx2比特流中的比特10 11映射到第二复数符号3-1j;Tx2比特流中的比特10 10映射到第二复数符号3-3j;Tx2比特流中的比特01 10映射到第二复数符号-1-3j;Tx2比特流中的比特01 11映射到第二复数符号-1-1j;Tx2比特流中的比特00 11映射到第二复数符号-3-1j;Tx2比特流中的比特00 10映射到第二复数符号-3-3j;Tx2比特流中的比特01 00映射到第二复数符号-1-3j;Tx2比特流中的比特01 01映射到第二复数符号-1+1j;Tx2比特流中的比特00 01映射到第二复数符号-3+1j;Tx2比特流中的比特00 00映射到第二复数符号-3+3j。
基于上述调制映射关系可以看出,Tx1比特流中每2位比特调制为1个符号,Tx2比特流中每4位比特调制为1个符号,Rx比特流中每6位比特调制为1个符号。Tx1比特流中的2位比特映射到的第一复数符号(Tx1symbol)与Tx2比特流中的3位比特映射到的第二复数符号(Tx2symbol),按照幅度配比4:1叠加,可得到Rx比特流中的6位比特对应的第三复数符号(Rx symbol),即4*Tx1(QPSK)+Tx2(16QAM)=Rx(64QAM)。例如,当Tx1比特流中的比特为10,Tx2比特流中的比特为1100时,第三复数符号=4*第一复数符号+第二复数符号=4(1+1j)+(-1+3j)=3+7j。
而且,Rx比特流的每5位比特中第一、四个比特是Tx1比特流中的比特(在编码映射表中以下划线示出),第二、三、五、六个比特是Tx2比特流中的比特。所以,根据这样设计好的映射码表,接收端解调出来的编码比特可以根据上述位置对应关系,拆分得到Tx1和Tx2对应的比特。类似的,在基于发端单点的收发框架中,发送端也可以根据该编码映射表,对一路独立的比特流进行比特拆解,得到Tx1比特流和Tx2比特流。
可替换的,上述映射码表也可以通过相应的公式进行表示,
d Tx1(i)=[(-1+2b 1(2i))+j(1-2b 1(2i+1))]
Figure PCTCN2022138899-appb-000015
上述公式是指,对于长度为L的连续比特流b 1和长度为2*L的比特流b 2,其中b 1为每2个比特生成一个符号,b 2为每4个比特生成一个符号,则有L/2个符号。i表示第几个符号,i的取值范围为0~L/2-1。d Tx1(i)和d Tx2(i)分别表示两路比特流经过调制后生成的Tx1的第一复数符号和Tx2的第二复数符号。
如此,进行理想叠加后的高阶信号可以表示为:
d Rx=a*d Tx1+d Tx2
其中,d Rx为理想叠加的一路高阶信号中的复数符号,a为Tx1的第一复数符号与Tx2的第二复数符号未归一化的幅度配比,本示例中,a=4,d Rx为64QAM的复数符号。实际信号传输时需要归一化到平均功率为1,此时的两个低阶信号的幅度比应该为归一化之后的两个星座的总功率之比,或者也可以用未归一化的星座求平均功率的比值。
需要说明的是,本示例中的上述设计,为了便于计算,暂时未考虑对调制映射的复数星座图进行归一化,上述幅度配比4:1、功率配比16:1也是指在未考虑归一化情况下的配比。
以上的编码映射表中所示出的各路低阶信号的调制映射关系只是作为举例的一种,还可以有其他的调制映射关系达到相同的目的。当作为符号位的d Tx1的映射到的符号的象限变化,对应的d Tx2的调制映射关系也需要对应修改,但变动只在于不同比特对应的复数符号的象限,也就是复数符号的I路和Q路幅度的正负。因此,本示例中的联合调制编码方式只要满足:发送端的两路比特流映射为一路QPSK信号和一路16QAM信号,两路信号存在幅度配比a=4,通过空域叠加能够在接收端映射为一路64QAM信号,并且对作为符号位的一路QPSK信号的编码映射规则不做改变,另一路16QAM信号的编码映射规则在符号位指示不同象限时相应做改变,即可最终实现在接收端的高阶星座满足格雷映射的编码,提高解调性能。
示例四:特定幅度配比的三路QPSK信号叠加生成一路满足格雷映射的64QAM信号。
在该示例四中,发送端的三路低阶信号Tx1、Tx2和Tx3均采用QPSK调制,接收端待接收的一路高阶信号Rx采用64QAM调制。经过调制后,三路QPSK信号按照幅度配比4:2:1(对应功率配比16:4:1),通过空域或功率域(即能量域)叠加,可生成一路满足格雷映射的64QAM信号。
图8示例性示出了本示例四中特定幅度配比的三路QPSK信号叠加生成一路满足格雷映射的16QAM信号的叠加星座图,该特定幅度配比是指4:2:1。
如图8所示,三路QPSK信号需要满足幅度配比Tx1:Tx2:Tx3=4:2:1,对应的功率配比为P1:P2:P3=16:4:1。该示例可以理解为将Tx1(QPSK)作为符号位,Tx2(QPSK)和Tx2(QPSK)叠加起来生成16QAM,然后叠加后的16QAM再和Tx1叠加生成64QAM。
表4三路QPSK信号按照幅度配比4:2:1叠加生成一路64QAM信号的编码映射表
Figure PCTCN2022138899-appb-000016
Figure PCTCN2022138899-appb-000017
Figure PCTCN2022138899-appb-000018
表4示出了本示例四中三路QPSK信号按照幅度配比4:2:1叠加生成一路64QAM的编码映射表,该编码映射表中体现的调制映射关系与示例一至三中类似,此处不再赘述。
从表中可以看出,Rx比特流的每6位比特中第一、四个比特是Tx1比特流中的比特,第二、五个比特是Tx2比特流中的比特,第三、六个比特是Tx3比特流中的比特。所以,根据这样设计好的编码映射表下,接收端解调出来的编码比特可以根据上述位置对应关系拆分得到Tx1和Tx2对应的比特。类似的,在基于发端单点的收发框架中,发送端也可以根据该位置对应关系,对一路独立的比特流进行比特拆解,得到Tx1比特流、Tx2比特流和Tx3比特流。
上述映射码表也可以通过相应的公式进行表示:
d Tx1(i)=[(-1+2b 1(2i))+j(1-2b 1(2i+1))]
Figure PCTCN2022138899-appb-000019
Figure PCTCN2022138899-appb-000020
上述公式是指,对于三个长度为L的连续比特流b 1、b 2和b 3,其中,b 1、b 2和b 3均为每2个比特生成一个符号,共有L/2个符号。i表示第几个符号,i的取值范围为0~L/2-1。d Tx1(i)、d Tx2(i)和d Tx3(i)分别表示是三路比特流经过调制后生成的Tx1、Tx2、Tx3的复数符号。
如此,理想叠加后的高阶信号可以表示为:
d Rx=a 1*d Tx1+a 2*d Tx2+d Tx3
其中,d Rx为理想叠加的高阶信号中的复数符号,Tx1、Tx2、Tx3的复数符号的幅度比为a 1:a 2:1=4:2:1,此时叠加的d Rx为64QAM的复数符号。
需要说明的是,本示例中的上述设计,为了便于计算,暂时未考虑对调制映射的复数星座图进行归一化。
以上的编码映射表中所示出的各路低阶信号的调制映射关系只是作为举例的一种,还可以有其他的调制映射关系达到相同的目的。当作为符号位的d Tx1的映射到的符号的象限变化,对应的d Tx2和d Tx3的调制映射关系也需要对应修改,但变动只在于不同比特对应的复数符号的象限,也就是复数符号的I路和Q路幅度的正负。因此,本示例中的联合调制编码方式只要满足:发端的三路比特流映射到三路QPSK符号,三路QPSK信号的存在幅度比a 1:a 2:1=4:2:1,通过叠加能够在接收端一一映射为一个64QAM符号。并且对作为符号位的一路QPSK信号的编码映射规则不做改变,另两路QPSK信号的编码映射规则在符号位指示不同象限时相应做改变,即可最终实现在接收端的高阶星座满足格雷映射。
根据上述内容可知,针对发送端的多个低阶调制信号在接收端通过空域或功率域(也即能量域)叠加生成一个高阶调制信号时,收发端编码不满足格雷映射会对星座点的解调性能造成影响的问题,在进行联合编码调制的几个示例中,通过对发送端的多路低阶调制星座的调制映射关系方案进行联合设计,实现了收发端满足格雷编码的效果,从而提高解调性能。具体的,分别对叠加生成16QAM、32QAM、64QAM给出了调制映射规则的举例,通过固定作为符号位的QPSK星座的调制映射关系,用来指示最终叠加的高阶星座的不同象限位置,同时设计另一路低阶信号的调制映射关系在不同象限中不一样,通过改变发端的调制映射关系,使得最终接收端的叠加信号可以满足格雷映射,从而提高性能。
根据上述示例一至四可知,本申请中提供的联合编码调制方式,可以使得接收端的一路高阶调制信号满足格雷映射,从而提升接收端的解调性能。
二、叠加信号拆分方式。
通过该方式,发送端可直接将原始比特流中的比特映射为对应各路低阶调制信号的复数符号,即进行符号级的调制映射,从而得到M路低阶调制信号。
在该方案中,所述映射规则用于指示所述S路比特流组成的原始比特流中的比特与所述一路高阶调制信号中的复数符号之间的对应关系(即高阶信号的调制映射关系),以及所述一路高阶调制信号中的复数符号与所述M路低阶调制信号中的复数符号之间的对应关系(即高阶信号的符号拆分关系)。
其中,所述原始比特流中包括所述M路低阶调制信号分别对应的比特,S等于1或M。可选的,所述M路低阶调制信号分别对应的比特位于所述原始比特流中的一组比特的特定位置。例如,Rx比特流的每4位比特中第一、三个比特对应Tx1比特流中的比特,第二、四个比特对应Tx2比特流的比特。所述S路比特流组成的原始比特流中的比特与所述一路 高阶调制信号中的复数符号之间的对应关系是指:所述S路比特流组成的原始比特流中一组比特的多种取值与所述一路高阶调制信号中的各个复数符号一一对应。
所述M路低阶调制信号中的复数符号通过对所述一路高阶调制信号中的复数符号按照等幅度配比进行拆分得到,也就是说,可以将所述一路高阶调制信号中的每个复数符号按照等幅度配比进行拆分,得到的所述M路低阶调制信号中的复数符号。
示例性的,当发送端发送两路低阶调制信号(即M=2),且接收端的一路高阶调制信号采用N阶调制(此时N大于或等于4)时,为了使接收端待接收的一路高阶调制信号的星座图满足格雷映射,提升解调性能,所述映射规则可包含如下内容:
1)来自原始比特流的N位比特的2 N种取值与接收端设备待接收的一路高阶调制信号中的2 N个第三复数符号一一对应,该原始比特流中的每N位比特包括第一路低阶调制信号对应的N/2位比特和第二路低阶调制信号对应的N/2位比特。可选的,当S等于1时,所述原始比特流即为所述S路比特流;当S等于M时,所述原始比特流由第一比特流和第二比特流组成,该原始比特流中的每N位比特包括第一路比特流中的N/2位比特和第二路比特流中的N/2位比特,例如,该原始比特流可以是进行比特拆解前的1路独立的比特流,也可以是2路独立的比特流按照设定位置对应关系组成的比特流。
2)针对第一调制方式,存在一组与第一路低阶调制信号对应的2 N/2个第四复数符号和一组与第二路低阶调制信号对应的2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述2 N个第三复数符号一一对应。
如此,在该调制方案中,发送端设备根据上述叠加信号拆分方式,对一路或两路比特流进行调制,生成两路低阶调制信号,可以为:将来自原始比特流的每N位比特依次映射为所述2 N/2个第四复数符号中的一个第四复数符号和所述2 N/2个第五复数符号中的一个第五复数符号,形成第一路低阶调制信号和第二路低阶调制信号;其中,所述第四复数符号与第五复数符号的组合与来自原始比特流中的N位比特映射到的一个第三复数符号相对应。
可以理解的,基于设计好的叠加信号拆分方式,由于原始比特流中的N位比特与一路高阶调制信号的复数符号之间的调制映射关系,以及高阶调制信号中的复数符号与多路低阶调制信号中的复数符号之间的对应关系均为已知,每个高阶符号可对应一组等幅度配比的多路低阶符号,因此,发送端设备在进行调制时,根据原始比特流的每N位比特,可直接生成多路低阶信号分别对应的复数符号,形成多路低阶调制信号。
也就是说,上述映射规则设计可以基于以下考虑因素:
a)对每个高阶符号进行拆分,得到对应的多个低阶符号,使得多路低阶信号能叠加成一路高阶信号;
b)设计具体的符号对应关系,使得叠加的高阶能满足格雷映射。
基于上述考虑因素,可以根据实际情况设计出不同的具体的符号对应关系,本申请给出不同情况下的几个具体符号对应关系示例,但不作为限定只有这几个符号对应关系。根据上述内容可知,通过对发送端的多路低阶调制信号的复数符号集合以及一路高阶调制信号的符号拆分方案进行设计,建立了一路高阶调制信号中的复数符号与多路低阶调制信号中的复数符号之间的对应关系。如此,根据该叠加信号拆分方式进行调制,一方面,发送端可生成多路低阶调制信号并发送,以实现发送端信号的降阶;另一方面,发送端生成的多路低阶调制信号按照等幅度配比叠加可得到一路高阶调制信号,从而避免需要对多路低 阶调制信号中的其中一路或多路信号进行功率限制,影响传输性能的问题。
本申请中,一路高阶调制信号按照等幅度配比进行拆分,等价于多路低阶调制信号按照等幅度配比进行叠加,因此,上述一路高阶调制信号的符号拆分关系也可以称为多路低阶调制信号的符号叠加关系。
需要说明的是,多路低阶调制信号按照等幅度配比进行叠加是指,多路低阶调制信号叠加时的幅度配比为1:1,因此也可称为多路低阶调制信号之间幅度匹配。由于等幅度配比的多路低阶调制信号在经过功率放大后的功率配比也是相同的,即功率配比也是1:1,因此,本申请中多路低阶调制信号按照等功率配比进行叠加与多路低阶调制信号按照等幅度配比进行叠加是等价的,而且多路低阶调制信号按照等功率配比进行叠加也可称为多路低阶调制信号之间功率匹配。
下面通过几个示例来具体说明本申请中的叠加信号拆分方式。
以下几个示例,分别针对16QAM、64QAM、NUC-16QAM等几种高阶信号的调制方式(包括均匀调制和非均匀调制),提供了相应的高阶符号的符号拆分方案(也即高阶符号与多路低阶符号之间的对应关系),具体包括:示例五,幅度匹配的两路低阶信号叠加生成一路满足格雷映射的16QAM信号;示例六,幅度匹配的两路低阶信号叠加生成一路满足格雷映射的64QAM信号;示例七,幅度匹配的两路低阶信号叠加生成一路满足格雷映射的64QAM信号;示例八,幅度匹配的两路低阶信号叠加生成一路满足格雷映射的NUC-16QAM信号;示例九,幅度匹配的两路低阶信号叠加生成一路满足格雷映射的NUC-64QAM信号。
在以下的示例中,Tx1、Tx2和Tx3分别代表发送端的多路低阶信号,Rx代表接收端待接收的一路高阶信号,该路高阶信号由发送端的多路低阶信号叠加而成。
示例五:幅度匹配的两路低阶信号叠加生成一路满足格雷映射的16QAM信号。
在该示例五中,接收端的一路高阶信号Rx采用16QAM调制。发送端的两路低阶信号Tx1、Tx2中的复数符号两两之间按照等幅度配比进行叠加,可得到接收端的一路高阶信号Rx中的复数符号。可选的,两路低阶信号Tx1、Tx2中的复数符号可以通过对接收端的高阶16QAM信号的复数符号进行拆分得到。
需要说明的是,在该示例中,发送端的两路低阶信号需要进行联合编码调制,以使叠加后的高阶信号满足格雷映射,接收端接收到高阶信号后可以直接解调恢复出原始比特。但本申请中,对确定使用某种高阶信号的符号拆分方案之后,发送端的两路低阶信号具体采用什么调制映射关系不作具体限定,只要采用的调制映射关系能够使得叠加后的高阶信号满足格雷映射即可。这里说的调制映射关系与前文实施例含义相同,是指比特到符号的映射。此外,基于上述高阶信号的符号拆分方案,发送端的两路低阶信号的调制星座图不是标准中已规定的星座(例如,标准中规定的星座相邻星座点之间的欧式距离相等),也即采用了非现有标准中已规定的低阶调制,通过如下的图9可以看出,本申请中相邻星座点之间的欧式距离不相等(也可以认为是非正方形星座)。对于本申请中采用的与现有标准中不同的星座,统称为特殊的星座。
图9示例性示出了本示例五中幅度匹配的两路低阶信号叠加生成一路16QAM信号的示意图。如图9所示,16QAM的每个复数符号对应4比特。拆分为两路低阶信号后,两路低阶信号Tx1和Tx2中每2比特对应一个复数符号。2比特有4种取值{00,01,10,11},可映射为4个复数符号。
表5幅度匹配的两路低阶信号叠加生成一路16QAM信号的符号对应关系
Figure PCTCN2022138899-appb-000021
表5中示出了本示例五中幅度匹配的两路低阶信号叠加生成一路16QAM信号的符号对应关系,也就是一种16QAM信号按照等幅度配比拆分成两路低阶信号的符号拆分方案。
如表5所示,Tx1对应的第四复数符号集合可为{1+2j,1-2j,-1+2j,-1-2j},Tx2对应的第五复数符号集合可为{2+1j,2-1j,-2+1j,-2-1j}。而且,Tx1对应的第四复数符号集合中的各个第四复数符号与Tx2对应的第五复数符号集合中的各个第五复数符号两两之间按照等幅度配比直接叠加,可得到16QAM中的各个复数符号。
由于上述符号对应关系为一对一双向映射,因此,根据该高阶信号的符号拆分方案,只要设计16QAM信号的调制映射关系满足格雷映射,那么当原始比特流中的N个比特根据16QAM的调制映射关系确定要调制为某个高阶复数符号时,通过查表5可以将该高阶复数符号转换为两路低阶信号分别对应的两个低阶复数符号,从而省略两路低阶信号Tx1和Tx2中比特到复数符号的映射问题。其中,原始比特到符号的映射关系可以沿用现有技术。映射可以有很多种,比如对于二相移项键控(binary phase shift keying,BPSK)的{0,1}比特可以映射为{1,-1},也可以映射为{-1,1}。例如,当来自原始比特流的4位比特,根据16QAM的调制映射关系确定要调制为高阶复数符号{3+1j}时,通过查表可以将其转换为对应的两个低阶复数符号{1+2j}和{2-1j},作为两路低阶信号中的复数符号。
可选的,也可以对两路低阶信号的调制映射关系进行具体设计,例如图10和表6所示。
图10示例性示出了本示例五中提供的幅度匹配的两路低阶信号进行联合编码调制的示意图。如图10所示,Tx2的调制映射关系也是在不同象限不同,但是由于叠加的高阶信 号存在跨象限的现象,所以Tx1的调制映射关系也需要相应的改变。以图中Tx1在第一象限中的编码为例,当Tx2的低阶信号的I路大于0(在第一、二象限时),Tx1用比特{10}表示第一象限的符号{1+2j};当Tx2的低阶信号的I路小于0(在第三、四象限时),Tx1则需要用比特{00}表示第一象限的符号{1+2j}。
表6幅度匹配的两路低阶信号叠加生成一路16QAM信号的编码映射表
Figure PCTCN2022138899-appb-000022
表6示出了本示例五中提供的幅度匹配的两路低阶信号叠加生成一路16QAM信号的编码映射表。需要说明的是,为示出高阶符号与多路低阶符号之间的对应关系,在实际应用中,可以仅使用表6中的某几列信息,例如Tx1 symbol、Tx2 symbol、Rx symbol三列,也可以使用表6中的全部列信息。当用到表6中部分列信息时,可以将这部分列作为新的映射表。进行调制时,表6中还需要包含Rx coding列,用于表示原始比特流。当包含Rx coding列时,该表6中还可以包含Tx1 coding和Tx2 coding表示发端的两路比特流,该表6中也可以不包含Tx1 coding和Tx2 coding表示发端的两路比特流,因为该两路比特流可通过对原始比特流在指定位置进行比特拆解得到,因此,不需要在表6中显示指示出Tx1 coding和Tx2 coding。同理也可以将两路比特流按照指定位置进行组合,得到原始比特流,也就是说可以在包括Tx1 coding和Tx2 coding时,不包括Rx coding。也就是说,实际使用时,可以用到表6的Tx1 symbol、Tx2 symbol、Rx symbol三列,Rx symbol和Rx coding之间的对应关系可以参考现有技术;或者,可以用到Tx1 symbol、Tx2 symbol、Rx symbol、Rx coding;或者,可以用到Tx1 symbol、Tx2 symbol、Tx1 coding、Tx2 coding、Rx symbol。下文中所介绍的表7至表12与此类似。
根据表6可知,只要叠加之后的高阶16QAM信号满足格雷映射,便可以更直接的解决两路低阶信号在叠加时的功率匹配和格雷映射的问题。也就是说,对于确定好的16QAM的调制映射关系,可以直接根据原始比特流中的N个比特,通过查表确定这N个比特对应哪两个低阶复数符号,然后直接生成两个低阶复数符号,将其作为两路低阶信号中的复数符号。例如,表中所示的原始比特流b 0中的比特{1001}映射到16QAM的复数符号{3+1j},所以当b 0(4i,4i+1,4i+2,4i+3)={1001}时,则根据查表可以知道此时对应的Tx1和Tx2的低阶复数符号分别为{1+2j}和{2-1j},进而可直接生成两个复数符号{1+2j}和{2-1j}作为两路低阶信号中的复数符号。
表6中所示的调制映射关系也可以表示成如下形式:
首先,将原始比特流b 0拆分成两路比特流b 1和b 2。具体的,可以将原始比特流的每4位比特中的一、三位比特拆分为Tx1的比特流b 1,二、四位比特拆分为Tx2的比特流b 2
b 1(2i)=b 0(4i),b 1(2i+1)=b 0(4i+2)
b 2(2i)=b 0(4i+1),b 2(2i+1)=b 0(4i+3)
然后,分别对两路比特流进行调制,映射成复数符号d Tx1(i)和d Tx2(i),形成两路低阶信号,其中,i表示第几个符号。
Figure PCTCN2022138899-appb-000023
Figure PCTCN2022138899-appb-000024
如此,两路低阶信号在接收端叠加成16QAM信号:
d Rx(i)=a*d Tx1(i)+d Tx2(i)=d Tx1(i)+d Tx2(i)
最终叠加得到的16QAM信号与直接进行高阶16QAM调制是等效的,即:
d Rx(i)=(1-2b 0(4i))[2+(1-2b 0(4i+1))]+j(1-2b 0(4i+2))[2+(1-2b 0(4i+3))]
示例六:幅度匹配的两路低阶信号叠加生成一路满足格雷映射的64QAM信号。
在该示例六中,接收端的一路高阶信号Rx采用64QAM调制。发送端的两路低阶信号Tx1、Tx2中的复数符号两两之间按照等幅度配比进行叠加,可得到接收端的一路高阶信号Rx中的复数符号。可选的,两路低阶信号Tx1、Tx2中的复数符号可以通过对接收端的高阶64QAM信号的复数符号进行拆分得到。
64QAM的每个复数符号对应6比特。拆分为两路低阶信号后,两路低阶信号Tx1和Tx2中每个复数符号可以对应3比特。3比特有8种取值,可映射为8个复数符号。相应的,两路低阶信号的星座图中有8个星座点。两路低阶信号的星座图均为本申请所提出的特殊的(即非标准中已规定的)8QAM星座设计,从图11和图12的星座图中可以看出。
具体的,本示例六针对两路信号发送场景,提供64QAM的如下两种可能的符号拆分方案。
1)64QAM的符号拆分方案一:
图11示例性示出了本示例六中提供的在64QAM的符号拆分方案一中幅度匹配的两路低阶信号叠加生成一路64QAM信号的示意图。表7示出了本示例六中提供的幅度匹配的两路低阶信号叠加生成一路64QAM信号的符号对应关系一,也就是64QAM信号按照等幅度配比拆分成两路低阶信号的符号拆分方案一。
如图11和表7所示,在该64QAM的符号拆分方案一中,Tx1对应的第四复数符号集合可为{1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j},Tx2对应的第五复数符号集合可为{6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j}。而且,Tx1对应的第四复数符号集合中的各个第四复数符号与Tx2对应的第五复数符号集合中的各个第五复数符号两两之间按照等幅度配比叠加,可得到64QAM中的各个复数符号。
表7幅度匹配的两路低阶信号叠加生成一路64QAM信号的符号对应关系一
Figure PCTCN2022138899-appb-000025
Figure PCTCN2022138899-appb-000026
也就是说,在该64QAM的符号拆分方案一中,两路低阶信号中的复数符号可以分别表示为:
d Tx1={1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j};
d Tx2={6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j};
Tx1比特流中的3位比特的8种取值将映射为d Tx1,Tx2比特流中的3位比特的8种取值将映射为d Tx2。但本申请对具体的调制映射关系不做具体限定,可以根据具体的需要进行设计。
2)64QAM的符号拆分方案二:
图12示例性示出了本示例六提供的在64QAM的符号拆分方案二中幅度匹配的两路低阶信号叠加生成一路64QAM信号的示意图,表8示出了本示例六中提供的幅度匹配的两路低阶信号叠加生成一路64QAM信号的符号对应关系二,也就是一种64QAM信号按照等幅度配比拆分成两路低阶信号的符号拆分方案二。
如图12和表8所示,在该64QAM的符号拆分方案二中,Tx1对应的第四复数符号集合可为{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},Tx2对应的第五复数符号集合可为{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j}。而且,Tx1对应的第四复数符号集合中的各个第四复数符号与Tx2对应的第五复数符号集合中的各个第五复数符号两两之间按照等幅度配比直接叠加,可得到64QAM中的各个复数符号。
而且,在该64QAM的符号拆分方案二中,Tx1与Tx2的位置可以互换,并且可以达到相同效果。
表8 64QAM信号按照等幅度配比拆分为两路低阶信号的符号对应关系二
Figure PCTCN2022138899-appb-000027
Figure PCTCN2022138899-appb-000028
Figure PCTCN2022138899-appb-000029
也就是说,在该64QAM的符号拆分方案二中,两路低阶信号中的复数符号可以分别表示为:
d Tx1={4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j};
d Tx2={3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j};
或者,
d Tx1={3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j}
d Tx2={4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j};
Tx1比特流中的3位比特的8种取值将映射为d Tx1,Tx2比特流中的3位比特的8种取值将映射为d Tx2。但本申请对具体什么比特映射为哪个符号不做具体限定,可以根据具体的需要进行设计。
可见,基于上述64QAM的符号拆分方案一和二,通过对接收端的高阶64QAM的复数符号进行符号拆分,可以获得发送端等功率的两路低阶信号中的复数符号,并且两路低阶信号通过空域或功率域(即能量域)叠加后,可以在接收端获得一个一对一双向映射的高阶标准64QAM星座。
示例七:三路低阶信号叠加生成一路满足格雷映射的64QAM信号。
在该示例七中,接收端的一路高阶信号Rx采用64QAM调制。通过对接收端的一路64QAM的复数符号进行拆分,可以得到发送端的三路低阶信号Tx1、Tx2和Tx3中的复数符号,这样三路低阶信号Tx1、Tx2和Tx3可以在减小发端功率差的情况下叠加得到高阶信号Rx。
64QAM的每个复数符号对应6比特。拆分为三路低阶信号后,三路低阶信号Tx1、Tx2和Tx3中每个复数符号可以对应2比特。2比特有4种取值,可映射为4个复数符号。相应的,三路低阶信号的星座图中有4个星座点。三路低阶信号的星座图均为本申请所提出的特殊的(非标准中规定的)4QAM星座设计,从图13和图14的星座图中可以看出。
具体的,本示例六针对三路信号发送场景提供64QAM的如下两种可能的符号拆分方案。
1)64QAM的符号拆分方案三:
图13示例性示出了本示例七中提供的在64QAM的符号拆分方案三中三路低阶信号在减小发端功率差的情况下叠加生成一路64QAM信号的示意图。表9示出了本示例七中三路低阶信号在减小发端功率差的情况下叠加生成一路64QAM信号的符号对应关系三和编码映射表,也就是64QAM信号在减小发端功率差的情况下拆分成三路低阶信号的符号拆分方案三和编码映射表。具体的,三路低阶信号的幅度配比约等于1:1:2.5,对应的功率配比约等于1:1:6.3。该方案能够避免三路低阶信号的功率偏差过大,影响系统性能的问题。
如图13和表9所示,在该64QAM的符号拆分方案三中,Tx1对应的复数符号集合可 为{1+2j,1-2j,-1+2j,-1-2j},Tx2对应的复数符号集合可为{2+1j,2-1j,-2+1j,-2-1j},Tx3对应的复数符号集合可为{4+4j,4-4j,-4+4j,-4-4j}。而且,Tx1对应的复数符号集合中的各个复数符号与Tx2对应的复数符号集合中的各个复数符号、Tx3对应的复数符号集合中的各个复数符号之间间按照上述幅度配比进行互相叠加,可得到64QAM中的各个复数符号。
表9在减小发端功率差的三路低阶信号叠加生成一路64QAM信号的符号对应关系三
Figure PCTCN2022138899-appb-000030
Figure PCTCN2022138899-appb-000031
也就是说,在该64QAM的符号拆分方案三中,三路低阶信号中的复数符号可以分别表示为:
d Tx1={1+2j,1-2j,-1+2j,-1-2j};
d Tx2={2+1j,2-1j,-2+1j,-2-1j};
d Tx3={4+4j,4-4j,-4+4j,-4-4j};
Tx1比特流中的2位比特的4种取值将映射为d Tx1,Tx2比特流中的2位比特的4种 取值将映射为d Tx2,Tx3比特流中的2位比特的4种取值将映射为d Tx3。但具体的调制映射关系不作限定,可以根据具体需要进行设计,表9中所示的调制映射关系仅为一种示例。
应用该64QAM的符号拆分方案三进行调制相当于:用Tx1和Tx2叠加生成了一个标准的16QAM(如示例五中的设计),然后再在16QAM的基础上叠加Tx3,最终得到64QAM。
4)64QAM的符号拆分方案四:
图14示例性示出了本示例七中提供的在64QAM的符号拆分方案四中三路低阶信号在减小发端功率差的情况下叠加生成一路64QAM信号的示意图。表10示出了本示例七中提供的三路低阶信号在减小发端功率差的情况下叠加生成一路64QAM信号的符号对应关系四和编码映射表二,也就是64QAM信号在减小发端功率差的情况下拆分成三路低阶信号的符号拆分方案四和编码映射表二。具体的,三路低阶信号归一化后的幅度配比为Tx1:Tx2:Tx2=3.16:3.16:1,对应的功率配比为9.98:9.98:1。该方案能够避免三路低阶信号的功率偏差过大,影响系统性能的问题。
表10在减小发端功率差的三路低阶信号叠加生成一路64QAM信号的符号对应关系四
Figure PCTCN2022138899-appb-000032
Figure PCTCN2022138899-appb-000033
Figure PCTCN2022138899-appb-000034
如图14和表10所示,在该64QAM的符号拆分方案四中,Tx1对应的复数符号集合可为{2+4j,2-4j,-2+4j,-2-4j},Tx2对应的复数符号集合可为{4+2j,4-2j,-4+2j,-4-2j},Tx3对应的复数符号集合可为{1+1j,1-1j,-1+1j,-1-1j}。而且,Tx1对应的复数符号集合中的各个复数符号与Tx2对应的复数符号集合中的各个复数符号、Tx3对应的复数符号集合中的各个复数符号之间间按照上述幅度配比进行互相叠加,可得到64QAM中的各个复数符号。
需要说明的是,在上述示例五至示例七中,发送端的多路低阶信号叠加生成的高阶信号均为均匀调制,例如标准的16QAM、64QAM等。
进一步地,考虑到高频场景的相噪问题,本申请还进一步提供发送端的多路低阶信号叠加生成非均匀调制的高阶信号的技术方案(例如如下的示例八和示例九),使得发送端发送多路低阶信号,不仅可以降低发送端的PAPR,还可以在接收端叠加为非均匀调制的高阶信号,从而提高对相噪的抵抗能力。
示例八:幅度匹配的两路低阶信号叠加生成一路满足格雷映射的非均匀星座(non-uniform constellation,NUC)-16QAM信号。
在该示例八中,接收端的一路高阶信号Rx采用NUC-16QAM调制,这是一种非均匀调制。通过发送端的两路低阶信号Tx1、Tx2中的复数符号两两之间按照等幅度配比进行叠加,可以得到接收端的一路NUC-16QAM信号中的复数符号。可选的,发送端的两路低阶信号Tx1、Tx2中的复数符号可以通过对NUC-16QAM信号中的复数符号进行拆分得到。
NUC-16QAM的每个复数符号对应4比特。拆分成两路低阶信号后,两路低阶信号中每个复数符号对应2比特。2比特有4种可能的取值,可以映射成4个复数符号。
图15示例性示出了本示例八中提供的幅度匹配的两路低阶信号叠加生成一路NUC-16QAM信号的示意图。表11示出了本示例八中提供的幅度匹配的两路低阶信号叠加生成一路NUC-16QAM信号的符号对应关系,也就是NUC-16QAM信号按照等幅度配比拆分成两路低阶信号的符号拆分方案。
如图15和表11所示,在该符号拆分方案中,Tx1对应的复数符号集合可为
Figure PCTCN2022138899-appb-000035
Figure PCTCN2022138899-appb-000036
Tx2对应的复数符号集合可为{1+1j,1-1j,-1+1j,-1-1j}。而且,Tx1对应的复数符号集合中的各个复数符号与Tx2对应的复数符号集合中的各个复数符号两两之间按照等幅度配比直接叠加,可得到NUC-16QAM中的各个复数符号。
表11发端等功率的两路低阶星座叠加生成一路NUC-16QAM的符号对应关系
Figure PCTCN2022138899-appb-000037
Figure PCTCN2022138899-appb-000038
也就是说,在该符号拆分方案中,两路低阶信号中的复数符号可以分别表示为:
Figure PCTCN2022138899-appb-000039
d Tx2={1+1j,1-1j,-1+1j,-1-1j};
Tx1的2比特的4种取值将映射为d Tx1,Tx2的2比特的4种取值将映射为d Tx2。但具体什么比特组合映射为哪个符号不限定,可以根据具体的需要设计。
可见,基于上述符号拆分方案,通过对接收端的高阶信号进行符号拆分,可以获得发送端等功率的两路低阶信号,并且两路低阶信号通过空域或功率域(即能量域)叠加后,可以在接收端获得一个一对一双向映射的非均匀调制的高阶星座,从而提高对相噪的抵抗能力。
示例九:幅度匹配的两路低阶信号叠加生成一路满足格雷映射的NUC-64QAM信号。
在该示例九中,接收端的一路高阶信号Rx采用NUC-64QAM调制,这是一种非均匀调制。通过发送端的两路低阶信号Tx1、Tx2中的复数符号两两之间按照等幅度配比进行叠加,可以得到接收端的一路NUC-64QAM信号中的复数符号。可选的,发送端的两路低阶信号Tx1、Tx2中的复数符号可以通过对NUC-16QAM信号中的复数符号进行拆解得到。
NUC-64QAM的每个复数符号对应6比特。拆分成两路低阶信号后,两路低阶信号中每个复数符号对应3比特。3比特有8种可能的取值,可以映射成8个复数符号。两路低阶信号的星座图均为非均匀调制NUC-8QAM的星座设计,从图16的星座图中可以看出。
图16示例性示出了本示例九中提供的幅度匹配的两路低阶信号叠加生成一路NUC-64QAM信号的示意图。表11示出了本示例就中提供的幅度匹配的两路低阶信号叠加生成一路NUC-64QAM信号的符号对应关系,也就是NUC-64QAM信号按照等幅度配比拆分成两路低阶信号的符号拆分方案。
如图16和表12所示,在该符号拆分方案中,Tx1对应的复数符号集合可为{1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j},Tx2对应的复数符号集合可为
Figure PCTCN2022138899-appb-000040
Figure PCTCN2022138899-appb-000041
而且,Tx1对应的复数符号集合中的各个复数符号与Tx2对应的复数符号集合中的各个复数符号两两之间按照等幅度配比直接叠加,可得到NUC-64QAM中的各个复数符号。
表12发端等功率的两路低阶星座叠加生成NUC-64QAM的符号对应关系
Figure PCTCN2022138899-appb-000042
Figure PCTCN2022138899-appb-000043
Figure PCTCN2022138899-appb-000044
也就是说,在该符号拆分方案中,两路低阶信号中的复数符号可以分别表示为:
d Tx1={1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j};
Figure PCTCN2022138899-appb-000045
Tx1的3比特的8种取值将映射为d Tx1,Tx2的3比特的8种取值将映射为d Tx2。但具体什么比特组合映射为哪个符号不限定,可以根据具体的需要设计。
根据上述示例五至九可知,本申请中应用叠加信号拆分方式进行调制的技术方案,通过对接收端待接收的一路高阶信号中的复数符号进行拆分,得到高阶信号中的复数符号与多路低阶信号中的复数符号之间的映射关系,设计出发送端的多路低阶信号的调制和叠加方案,可以使得发送端的多路低阶信号可以按照等幅度配比进行叠加或者尽量减小叠加时的幅度配比并得到一路高阶信号,从而减小发送端多路低阶信号之间的功率差,提高系统性能。另外,可以通过设计接收端的高阶信号的调制编码方案使其满足格雷映射,从而提升接收端的解调性能。
关于示例八和示例九中所示的非均匀调制的符号拆分方案,其发送端低阶信号的PAPR可如图17所示,比高阶信号的PAPR要低。
下面以NUC-16QAM的非均匀调制为例,来说明非均匀调制对抵抗相噪的作用。
通常可以从两个方面来评价调制星座对相噪的抵抗能力:1)星座图的圈数,圈数取决于星座点的分布和每个调制信号到原点的距离,圈数越少,抵抗能力越强。2)每圈上的星座点之间最小的角度差,角度差越大,说明对相噪影响带来的旋转的容忍度越大。
图18中的左图和右图分别为16QAM和NUC-16QAM的星座图,图19为16QAM和NUC-16QAM的相噪影响和误块率(block error rate,BLER)影响的对比示意图。如图18和图19所示,相噪的存在带来对星座点的相位旋转,16QAM和NUC-16QAM的相邻星座点的最小的角度都是45度,但是16QAM的圈数多,对相噪的抵抗能力弱,而NUC-16QAM的圈数少,性能优。从BELR曲线图中也可以看出大致的性能评估。
根据上述分析可知,本申请所提供的多路低阶信号叠加成非均匀调制的高阶星座的方案,可以同时解决高频场景下需要低PAPR和抗相噪的技术问题。通过在发送端拆解为多路低阶信号,且发端信号等功率,在接收端叠加生成非均匀调制的高阶星座相较于均匀调制的高阶星座来说,更加能抵抗相噪的影响。
步骤402,发送端设备通过LOS信道发送所述M路低阶调制信号。
所述视距(LOS)信道是指视距条件下的无线信道。通常电波沿直线传播的方式称为视距(LOS)传播。视距条件下,无线信号无遮挡地在发信端与接收端之间直线传播。
所述M路低阶调制信号可以在发送端设备的不同天线上发送。
可选的,本申请中,在发送所述M路低阶调制信号之前,发送端设备可对所述M路低阶调制信号组成的发送信号矩阵进行预编码,所述预编码也可称为发送端的预均衡。
与现有技术中的预编码不同,由于M路低阶调制信号实际经过的信道是不同的,本申请中的预编码旨在补偿信道的影响,减少信道差异对M路低阶调制信号在接收端叠加的一路高阶调制信号的影响,从而提升信号传输性能。因此,预编码矩阵需要满足关系:H*W=Λ。
其中,W是预编码矩阵,H是缺秩的信道矩阵,Λ是一个对角阵。
也就是说,预编码矩阵与信道矩阵相乘的结果需要是一个对角阵。发送端设备可根据信道质量信息(channel state information,CSI)反馈得到M根天线上的信道状态信息,从而确定信道矩阵,再通过上述方式进行预编码。
示例性地,当发送端设备发送两路低阶调制信号时,预编码矩阵可以表示为如下形式:
Figure PCTCN2022138899-appb-000046
或者,
Figure PCTCN2022138899-appb-000047
或者,
Figure PCTCN2022138899-appb-000048
或者,
Figure PCTCN2022138899-appb-000049
其中,h 1为第一路低阶调制信号经过的信道的信道信息,h 2为第一路低阶调制信号经过的信道的信道信息。
下面通过几个具体示例来说明上述预编码矩阵的推导过程:
1)发送端两天线接收端一天线(2*1),当不考虑两路低阶调制信号的幅度配比时:
理想情况下的接收端信号:
Figure PCTCN2022138899-appb-000050
实际信道H下的接收端信号:
Figure PCTCN2022138899-appb-000051
考虑预编码W后的接收端信号:
Figure PCTCN2022138899-appb-000052
Figure PCTCN2022138899-appb-000053
所以预编码矩阵W需要满足以下条件:
Figure PCTCN2022138899-appb-000054
即:
Figure PCTCN2022138899-appb-000055
最理想的情况是x 1只和h 1有关,x 2只和h 2有关,故预编码矩阵W应为对角阵,消除h 2对x 1和h 1对x 2的影响。
当信道矩阵H通过CSI反馈已知时,使用迫零(zero-forcing,ZF)算法,矩阵码矩阵 W可以表示为:
Figure PCTCN2022138899-appb-000056
2)发送端两天线接收端一天线(2*1),当两路低阶调制信号需要满足一定的幅度配比时,幅度配比可表示为Tx1:Tx2=p 1:p 2
理想情况下的接收端信号:
Figure PCTCN2022138899-appb-000057
考虑预编码W后,实际信道H下的接收端信号:
Figure PCTCN2022138899-appb-000058
所以预编码矩阵W需要满足以下条件:
Figure PCTCN2022138899-appb-000059
即:
Figure PCTCN2022138899-appb-000060
最理想的情况是x 1只和h 1有关,x 2只和h 2有关,故预编码矩阵W应为对角阵,消除h 2对x 1和h 1对x 2的影响。
当信道矩阵H通过CSI反馈已知时,使用最小均方误差(Minimum Mean Square Error,MMSE)算法,预编码矩阵W可以表示为:
Figure PCTCN2022138899-appb-000061
w 11=(h 1 Hh 12I) -1h 1 H,w 22=(h 2 Hh 22I) -1h 2 H
最终单天线接收时的预编码矩阵可以表示为:
Figure PCTCN2022138899-appb-000062
使用ZF算法,预编码矩阵W可以表示为:
Figure PCTCN2022138899-appb-000063
3)发端两天线收端两天线(2*2)且当rank(H)=1时:
传统的多输入多输出(multiple-in multiple-out,MIMO)中做预编码希望接收端的两天线收到的信号是互不干扰的,因此,预编码矩阵W可通过对信道矩阵H做SVD分解,取出对角阵,当rank(H)=1时,就只取一列。
但本申请中,希望接收端接收到的是按照一定幅度配比(也即功率配比)叠加的叠加信号,因此预编码不能用传统的SVD分解来做,可以采用如下方法。
因为信道矩阵缺秩rank(H)=1,故信道矩阵H可以表示为如下形式:
Figure PCTCN2022138899-appb-000064
理想情况下的接收端信号:
Figure PCTCN2022138899-appb-000065
Figure PCTCN2022138899-appb-000066
期望的接收端信号:
Figure PCTCN2022138899-appb-000067
考虑预编码W后,实际信道H下的接收端信号:
Figure PCTCN2022138899-appb-000068
接收端的信号要能表示成p 1x 1+p 2x 2的形式,最理想的情况是x 1只和h 1有关,x 2只和h 2有关,故预编码矩阵W应为对角阵,消除h 2对x 1和h 1对x 2的影响。
当信道矩阵H通过CSI反馈已知时,预均衡可以使用MMSE或者ZF,预编码矩阵需要满足以下条件:
Figure PCTCN2022138899-appb-000069
预编码矩阵W是对角阵,则:
Figure PCTCN2022138899-appb-000070
将预编码矩阵W为对角阵带入原始形式,可以得到:
Figure PCTCN2022138899-appb-000071
Figure PCTCN2022138899-appb-000072
因此
Figure PCTCN2022138899-appb-000073
Figure PCTCN2022138899-appb-000074
可选的,本申请中,在对M路低阶调制信号进行预编码之后,发送端设备可将所述M路低阶调制信号输入PA模块进行功率放大,生成M路射频信号再发送出去。为了使得M路低阶调制信号能够叠加成一路高阶调制信号,根据不同调制方式,发送端的M路低阶调制信号之间可能需要满足一定的幅度配比,例如在上文中所示的采用联合编码调制方式的技术方案中。相应的,在空口传输的M路射频信号之间也需要满足一定的功率配比,其中 功率配比是幅度配比的平方。例如,当发送端发送两路低阶调制信号时,如果发送端的两路低阶调制信号所需满足的幅度配比为Tx1:Tx2=p 1:p 2=2:1,则空口传输的两路射频信号所需满足的功率配比为P1:P2=p 1 2:p 2 2=4:1。所以根据发送端拆分多路低阶信号的不同设计,本申请需要对功率放大器的放大比例有一定的配比要求,并对发送端的两路信号的射频功放设计做相应约束。
鉴于此,发送端设备可根据M路低阶调制信号的幅度配比,确定该M路低阶调制信号的功率配比,然后根据该功率配比,控制M路低阶调制信号在功率放大器中进行功率放大,也就是,在经过功率放大器时对M路低阶调制信号按照功率配比进行功率约束,进而得到M路射频信号。
可选的,在本申请应用叠加信号拆分方式的技术方案中,由于发送端的多路低阶调制信号可能存在I/Q路不均衡的问题,针对该问题,本申请设计了一种时域轮询的发送方案,通过周期性地轮换多路天线上的发送信号,用以降低发送端的多路低阶调制信号的I/Q路不均衡对系统性能可能带来的影响(如造成误码率升高)。
在具体实现中,发送端设备可以按照设定周期T,轮换发送M路低阶调制信号的天线,或者轮换M个天线上的发送信号的调制星座图案(也称映射图案),所述调制星座图案与该路的调制映射关系相对应。
例如,以两路低阶的特殊4QAM信号叠加生成一路16QAM信号为例,此时发送端有两个天线{Tx1,Tx2}和4QAM信号的两种调制星座图案{Pattern1,Pattern2},两种调制星座图案{Pattern1,Pattern2}分别是{1+2j,1-2j,-1+2j,-1-2j},{2+1j,2-1j,-2+1j,-2-1j}。
如图20中所示,该情况下进行时域轮询发送存在如下两种发送方案:
发送方案1:Tx1使用Pattern1;Tx2使用Pattern2;
发送方案2:Tx1使用Pattern2;Tx2使用Pattern1;
如此,进行时域轮询发送具体是指,按照设定周期T交换两个天线上的发送方案,即:两个天线在时间段[0,T]内使用发送方案1,在时间段[T,2T]内使用发送方案2,在时间段[2T,3T]内使用发送方案1,在时间段[3T,4T]内使用发送方案2,依此类推。
再例如,以三路低阶信号叠加生成一路64QAM信号为例,此时发送端有三个天线{Tx1,Tx2,Tx3}和三种调制星座图案{Pattern1,Pattern2,Pattern3}。
该情况下进行时域轮询发送存在如下两种发送方案:
发送方案1:{Tx1使用Pattern1,Tx2使用Pattern2,Tx3使用Pattern3};
发送方案2:{Tx1使用Pattern3,Tx2使用Pattern1,Tx3使用Pattern2};
发送方案3:{Tx1使用Pattern2,Tx2使用Pattern3,Tx3使用Pattern1};
如此,进行时域轮询发送具体是指,按照设定周期T,每周期轮换三个天线上的发送方案,即:三个天线在时间段[0,T]内使用发送方案1,在时间段[T,2T]内使用发送方案2,在时间段[2T,3T]内使用发送方案3,在时间段[3T,4T]内使用发送方案1,以此类推。
步骤403,接收端设备接收来自发送端设备的一路高阶调制信号,所述一路高阶调制信号由发送端设备发送的所述M路低阶调制信号叠加而成。
步骤404,接收端设备使用一个解调参考信号(demodulation reference signal,DMRS)端口进行信道估计,并根据估计得到的信道矩阵对所述一路高阶调制信号进行后均衡。其中,后均衡方法可以参考现有技术。
基于上文中所描述的各种技术方案,本申请还相应提供一种信令指示方案,以确保信 号的正常发送和接收,从而获得高频rank1场景下的性能增益。
所述叠加信号的信令指示方案是指:发送端可根据已知的映射规则生成并发送M路低阶调制信号,并将相关的一些指示信息告知给接收端,例如各路低阶调制信号的调制与编码方案(modulation and coding scheme,MCS)、叠加后的高阶调制信号的MCS等参数。相应的,接收端可接收由多路低阶调制信号叠加而的高阶调制信号,根据上述指示信息所指示的参数,完成高阶调制信号的解调和解码,恢复出原始数据。
该信令指示方案可具有如下几种可能的实施方式。
1)当发送端的多路低阶调制信号之间存在功率配比约束时,发送端需要向接收端指示MCS、符号位指示、功率配比、幅度配比中的一项或多项。
其中,MCS是必要参数,该参数可以指示发送端的M路低阶调制信号的MCS,也可以指示在接收端叠加的一路高阶调制信号的MCS,或者也可以两者都指示。需要注意的是,如果该参数只指示发送端的多路低阶调制信号的MCS,则还需要接收端预先知道叠加后对应的高阶星座阶数,例如可以通过预存相应的映射规则来实现。
符号位指示是可选参数,该参数用于指示发送端的M路低阶调制信号中哪一路用于作为符号位。需要注意的是,如果不指示该参数,则需要发送端和接收端均预存相同的映射规则,如此,发送端就可以直接按预设的映射规则对多路低阶调制信号进行调制,相应的,接收端也可以根据相同的映射规则,解码接收到的高阶调制信号的符号位比特。
功率配比是可选参数。也就是说,发送端可以指示所发的多路低阶调制信号之间的功率配比,也可以不指示该功率配比,本申请不作具体限定。当不指示该功率配比时,该功率匹配可以作为发送端与接收端之间已知的规则进行预先配置。
幅度配比是可选参数,同样的,可以进行指示,也可以预先配置。
除此之外,映射规则需要收发端都已知,可以作为预存信息进行预先配置。
根据上述内容可知,在发送端的多路低阶调制信号需要满足一定的功率配比约束的情形下,信令指示方案需要指示接收端的高阶调制信号的MCS或者发送端的多路低阶调制信号的MCS等必要参数,还可以指示功率配比等可选参数。
示例性地,该情形下的信令指示方案可如图21所示,包括如下步骤:
步骤2101,发送端向接收端发送第一指示信息,相应的,接收端可接收来自发送端的第一指示信息。
该第一指示信息包括以下信息中的一项或多项:
发送端发送的M路低阶调制信号的MCS,所述M路低阶调制信号在接收端叠加而成的一路高阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度配比,所述M路低阶调制信号的功率配比;其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的那一路低阶调制信号。
可选的,该第一指示信息可以承载于下行控制信息(downlink control information,DCI)或者上行控制信息(uplink control information,UCI)中发送。
步骤2102,发送端按照预设的映射规则,向接收端发送M路低阶调制信号。
步骤2103,接收端接收一路高阶调制信号,根据预设的映射规则和所述第一指示信息,对所述一路高阶调制信号进行解调和解码。
2)当发送端的多路低阶调制信号之间功率匹配时,发送端只需要向接收端指示MCS参数。
具体的,MCS可以指示发送端的M路低阶调制信号的MCS,也可以指示在接收端叠加的一路高阶调制信号的MCS,或者也可以两者都指示。
此外,该情形下,要求收发两端均已知接收端叠加的高阶调制信号的映射规则,以及发送端的多路低阶调制信号与接收端的一路高阶调制信号之间的符号对应关系叠加规则,也就是接收端的高阶信号中的复数符号的符号拆分方案。
示例性地,该情形下的信令指示方案可如图22所示,包括如下步骤:
步骤2201,发送端向接收端发送第二指示信息,相应的,接收端可接收来自发送端的第二指示信息。
该第二指示信息包括以下信息中的一项或多项:发送端发送的M路低阶调制信号的MCS,所述M路低阶调制信号在接收端叠加而成的一路高阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
可选的,该第二指示信息可以通过DCI信令或者UCI信令发送。
步骤2202,发送端按照预设的映射规则,向接收端发送M路低阶调制信号。
步骤2203,接收端接收一路高阶调制信号,根据预设的映射规则和所述第二指示信息,对所述一路高阶调制信号进行解调和解码。
3)当接收端叠加的高阶信号采用均匀调制时,发送端至少需要向接收端指示接收端叠加的高阶调制信号的MCS参数。可选的,还可以指示使用均匀调制。
4)当接收端叠加的高阶信号采用非均匀调制时,发送端需要向接收端指示接收端叠加的高阶调制信号的MCS参数,以及指示使用非均匀调制。
需要说明的是,在实际应用中,上述信令指示方案几种可能的实施方式可以进行相互结合,例如方式1)与方式3)可以结合,方式2)与方式3)或方式4)可以结合。示例性的,当发送端的多路低阶调制信号之间存在功率配比约束时,发送端除了指示MCS、符号位指示、功率配比、幅度配比等参数之外,可选的,还可以指示使用均匀调制。再例如,当发送端的多路低阶调制信号之间功率匹配,同时接收端叠加的高阶调制信号又采用非均匀调制时,则发送端发送的第二指示信息需要指示高阶信号的MCS和使用非均匀调制。
下面以本申请中通过两路低阶4QAM信号叠加生成一路16QAM信号的技术方案为例,来说明本申请的方案与传统的多输入单输出(multiple-in single-out,MISO)方案的区别:
表13
Figure PCTCN2022138899-appb-000075
如表13所示,传统的MISO方案是发送端直接调制成高阶QAM信号,通过预编码映射到空域用两天线发送。而本申请中的方案是发送端调制成两路不同的低阶信号,通过预编码消除信道H的影响,使得最终在两/多天线上发送的空域信号是不同的,且收端的叠加信号可以是均匀调制的高阶信号,也可以是非均匀调制的高阶信号。
下面分别从信道容量、分集增益、功率增益等方面对本申请所提供的信号叠加方案的技术效果进行分析。在下面的分析中,以发送端发送两路信号为例进行说明。
一、信道容量分析
1)单天线接收:
MISO模型结构可以表示为:
y=HPWx+z
其中,
Figure PCTCN2022138899-appb-000076
分别为接收信号,信道矩阵,PA功放矩阵,预编码矩阵,信号源矩阵,噪声信号。
其信道容量可以表示为:
Figure PCTCN2022138899-appb-000077
其中,信号互相关矩阵为:
Figure PCTCN2022138899-appb-000078
由于H=[h 1 h 2]其秩为1,但是本申请中需要传输的独立流数为2,因此传统的SVD分解实现预编码的方法无法应用在本申请中。由于两路信号相对独立,则W可采用对角阵直接对两路信号做干扰消除。可以采用ZF或者MMSE实现,此时预编码矩阵为:
Figure PCTCN2022138899-appb-000079
由于两个天线的信号
Figure PCTCN2022138899-appb-000080
互不相关,且相对于x,y轴均对称,因此互相关矩阵R xx为对角阵,其对角元素分别为两路信号的功率。
此时,由于W和P均为对角阵,因此,可以对换两者的位置,这是由于我们预期的接收信号在不同的功率配比下均为:
y opt=P 1x 1+P 2x 2
以ZF预编码为例,此时
Figure PCTCN2022138899-appb-000081
其中
Figure PCTCN2022138899-appb-000082
最终可以得到叠加信号MISO信道容量表达式为:
Figure PCTCN2022138899-appb-000083
类似可得到MMSE预编码的信道容量:
Figure PCTCN2022138899-appb-000084
2)多天线接收(2×2):
2×2的MIMO,但是信道秩为1,此时信道矩阵可以表示为:
Figure PCTCN2022138899-appb-000085
此时是两个接收信号相关,处理流程可以表示为:
Figure PCTCN2022138899-appb-000086
类似的,
Figure PCTCN2022138899-appb-000087
Figure PCTCN2022138899-appb-000088
由于MIMO可以等效为两路MISO的叠加,则接收信号可以写为:
Figure PCTCN2022138899-appb-000089
此时可以得到信道容量:
Figure PCTCN2022138899-appb-000090
3)多输入单输出(single-in single-out,SISO)/MISO/MIMO性能比较:
Figure PCTCN2022138899-appb-000091
Figure PCTCN2022138899-appb-000092
Figure PCTCN2022138899-appb-000093
所以可以对1、
Figure PCTCN2022138899-appb-000094
进行比较大小。
极端情况下,如果h 1=h 2,θ=1时,则
Figure PCTCN2022138899-appb-000095
Figure PCTCN2022138899-appb-000096
所以此时,C MIMO>C MISO=C SISO
二、分集增益和功率增益分析
本申请中的收端信号是:
Figure PCTCN2022138899-appb-000097
输出SNR:
Figure PCTCN2022138899-appb-000098
两路x独立,假设E(|x 1| 2)=E(|x 2| 2)=E(|x 0| 2),进行期望求解可以得到:
Figure PCTCN2022138899-appb-000099
Figure PCTCN2022138899-appb-000100
所以,本申请中的方案没有波束赋形beamforming带来的分集增益,效果与SISO相同。
求方差:
Figure PCTCN2022138899-appb-000101
Figure PCTCN2022138899-appb-000102
Figure PCTCN2022138899-appb-000103
如果
Figure PCTCN2022138899-appb-000104
则与传统MISO性能一致,所以关键看这一项:
Figure PCTCN2022138899-appb-000105
以16QAM拆分为两个特殊4QAM的方案为例:这一项数值为
Figure PCTCN2022138899-appb-000106
Figure PCTCN2022138899-appb-000107
所以,本申请中的方案分集增益比SISO高。
总结如下:
表14
Figure PCTCN2022138899-appb-000108
本申请实施例还提供一种通信装置,请参考图23,为本申请实施例提供的一种通信装置的结构示意图,该通信装置2300包括:收发模块2310和处理模块2320。该通信装置可用于实现上述任一方法实施例中发送端设备或接收端设备的功能。该通信装置可以是网络 设备或终端设备,也可以是能够支持网络设备或终端设备实现上述方法实施例中对应功能的装置(例如网络设备或终端设备中包括的芯片)等。
示例性地,当该通信装置执行图4中所示的方法实施例中对应发送端设备的操作或者步骤时,处理模块2320,用于根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则,对S路比特流进行调制,生成M路低阶调制信号,M为大于或等于2的整数,S等于1或M;收发模块2310,用于通过视距LOS信道发送所述M路低阶调制信号;其中,所述映射规则用于使所述M路低阶调制信号叠加成所述接收端设备待接收的一路高阶调制信号。
在一种可能的设计中,所述S路比特流为一路独立的比特流,此时S=1;或者,所述S路比特流为通过对一路独立的比特流进行比特拆解得到的M路子比特流,此时S=M;或者,所述S路比特流为M路独立的比特流,此时S=M。
在一种可能的设计中,在所述发送模块2310发送所述M路低阶调制信号之前,所述处理模块2320还用于对所述M路低阶调制信号组成的发送信号矩阵进行预编码,预编码矩阵满足如下关系:H*W=Λ;其中,W是预编码矩阵,H是缺秩的信道矩阵,Λ是一个对角阵。
在一种可能的设计中,所述S路比特流为M路比特流;所述映射规则用于指示发送端的所述M路比特流各自对应的从比特到复数符号的调制映射关系。所述M路比特流中的比特根据各自对应的调制映射关系映射得到的M个复数符号,按照预设幅度配比叠加,等于所述接收端设备待接收的一路高阶调制信号中的复数符号。
在一种可能的设计中,所述第一调制方式为N阶调制,N为大于或等于4的整数;当所述M为2时,所述S等于2,所述映射规则包括:两路比特流中的第一路比特流的2位比特的2 2种取值分别映射到2 2个第一复数符号;根据所述第一路比特流的2位比特的不同取值,所述两路比特流中的第二路比特流的N-2位比特的2 N-2种取值分别映射到2 N-2个第二复数符号,且当所述第一比特流的2位比特的取值不同时,所述第二路比特流的N-2位比特的相同取值映射到所述2 N-2个第二复数符号中的不同第二复数符号;所述第一路比特流的2位比特映射到的第一复数符号与所述第二路比特流的N-2位比特映射到的第二复数符号按照预设幅度配比叠加,等于所述接收端设备待接收的一路高阶调制信号中的第三复数符号。
在一种可能的设计中,所述处理模块2320具体用于:根据所述映射规则,将所述第一路比特流的各个2位比特依次映射为所述2 2个第一复数符号中的第一复数符号,形成所述第一路低阶调制信号,以及将所述第二路比特流中的各个N-2位比特依次映射为所述2 N-2个第二复数符号中的第二复数符号,形成所述第二路低阶调制信号。
在一种可能的设计中,所述处理模块2320还用于:根据所述M路低阶调制信号的幅度配比,确定所述M路低阶调制信号的功率配比;根据所述M路低阶调制信号的功率配比,控制所述M路低阶调制信号在功率放大器中进行功率放大。
在一种可能的设计中,所述收发模块2310还用于:向所述接收端设备发送第一指示信息,所述第一指示信息包括以下信息中的一项或多项:所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度比,所述M路低阶调制信号的功率比;其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的一路低阶调制信号。
在一种可能的设计中,所述映射规则用于指示所述S路比特流组成的原始比特流中的比特与所述一路高阶调制信号中的复数符号之间的对应关系,以及所述一路高阶调制信号中的复数符号与所述M路低阶调制信号中的复数符号之间的对应关系;其中,所述原始比特流中包括所述M路低阶调制信号分别对应的比特,S等于1或M;所述M路低阶调制信号中的复数符号通过对所述一路高阶调制信号中的复数符号按照等幅度配比进行拆分得到。
在一种可能的设计中,所述第一调制方式为N阶调制,N为大于或等于4的整数;当所述M为2时,所述映射规则包括:原始比特流的N位比特的2 N种取值与所述一路高阶调制信号中的2 N个第三复数符号一一对应,所述原始比特流中的每N位比特包括第一路低阶调制信号对应的N/2位比特和第二路低阶调制信号对应的N/2位比特;针对所述第一调制方式,存在一组与所述第一路低阶调制信号对应的2 N/2个第四复数符号和一组与所述第二路低阶调制信号对应的2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加得到的结果,与所述2 N个第三复数符号一一对应。
在一种可能的设计中,所述处理模块2320具体用于:根据所述映射规则,将所述原始比特流的每N位比特依次映射为所述2 N/2个第四复数符号中的一个第四复数符号和所述2 N/2个第五复数符号中的一个第五复数符号,形成所述第一路低阶调制信号和所述第二路低阶调制信号。
在一种可能的设计中,当所述第一调制方式为16正交幅度调制QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:原始比特流中的比特与所述16QAM中的复数符号之间的对应关系,以及所述16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述16QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为K{1+2j,1-2j,-1+2j,-1-2j},所述2 N/2个第五复数符号为L{2+1j,2-1j,-2+1j,-2-1j},所述K、L为比例缩放系数。
在一种可能的设计中,当所述第一调制方式为非均匀星座NUC-16QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:原始比特流中的比特与所述NUC-16QAM中的复数符号之间的对应关系,以及所述NUC-16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述NUC-16QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为
Figure PCTCN2022138899-appb-000109
所述2 N/2个第五复数符号为L{1+1j,1-1j,-1+1j,-1-1j},所述K、L为比例缩放系数。
在一种可能的设计中,当所述第一调制方式为64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:原始比特流中的比特与所述64QAM中的复数符号之间的对应关系,以及所述64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和 第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述64QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为P{1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j},所述2 N/2个第五复数符号为Q{6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j},或者,所述2 N/2个第四复数符号为P{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},所述2 N/2个第五复数符号为Q{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j},所述P、Q为比例缩放系数。
在一种可能的设计中,当所述第一调制方式为NUC-64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:原始比特流中的比特与所述NUC-64QAM中的复数符号之间的对应关系,以及所述NUC-64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间相互叠加的结果,与所述NUC-64QAM中的各个复数符号一一对应;进一步可选的,所述2 N/2个第四复数符号为P{1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j},所述2 N/2个第五复数符号为
Figure PCTCN2022138899-appb-000110
Figure PCTCN2022138899-appb-000111
所述P、Q为比例缩放系数。
在一种可能的设计中,所述收发模块2310还用于:按照设定周期,轮换发送所述M路低阶调制信号的天线。
在一种可能的设计中,所述处理模块2320还用于:向所述接收端设备发送第二指示信息,所述第二指示信息包括以下信息中的一项或多项:所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
当该通信装置执行图4中所示的方法实施例中对应接收端设备的操作或者步骤时,收发模块2310,用于接收来自发送端设备的一路高阶调制信号,所述一路高阶调制信号由m路低阶调制信号叠加而成,M为大于或等于2的整数;处理模块2320,用于使用一个解调参考信号DMRS端口进行信道估计,以及根据估计到的信道矩阵,对所述一路高阶调制信号进行后均衡。
该通信装置中涉及的处理模块2320可以由至少一个处理器或处理器相关电路组件实现,收发模块2310可以由至少一个收发器或收发器相关电路组件或通信接口实现。该通信装置中的各个模块的操作和/或功能分别为了实现图4至图22中所示方法的相应流程,为了简洁,在此不再赘述。可选的,该通信装置中还可以包括存储模块,该存储模块可以用于存储数据和/或指令,收发模块2310和/或处理模块2320可以读取存取模块中的数据和/或指令,从而使得通信装置实现相应的方法。该存储模块例如可以通过至少一个存储器实现。
上述存储模块、处理模块和收发模块可以分离存在,也可以全部或者部分模块集成,例如存储模块和处理模块集成,或者处理模块和收发模块集成等。
请参考图24,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置 可用于实现上述方法实施例中发送端设备或接收端设备对应的功能。其中,该通信装置可以是网络设备或终端设备,也可以是能够支持网络设备或终端设备实现上述方法实施例中对应功能的装置(例如网络设备或终端设备中包括的芯片)等。
该通信装置2400可以包括处理器2401和存储器2402。其中,存储器2402用于存储程序指令和/或数据,处理器2401用于执行存储器2402中存储的程序指令,从而实现上述方法实施例中的方法。其中,存储器2402可以和处理器2401耦合,所述耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
可选地,该通信装置2400还可以包括通信接口2403,通信接口2403用于通过传输介质与其它设备进行通信,例如将接收到的来自其他通信装置的信号传输至处理器2401,或者来自处理器2401的信号传输至其他通信装置。该通信接口2403可以是收发器,也可以为接口电路,如收发电路、收发芯片等。
在一个实施例中,通信接口2403可具体用于执行上述收发模块2310的动作,处理器2401可具体用于执行上述处理模块2320的动作,本申请在此不再赘述。
本申请实施例中不限定上述处理器2401、存储器2402以及通信接口2403之间的具体连接介质。本申请实施例在图24中以处理器2401、存储器2402以及通信接口2403之间通过总线2404连接,总线在图24中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中发送端设备或接收端设备对应的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器(read-only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机 程序或指令,当该计算机程序或指令被执行时,使得上述任一方法实施例中的方法被执行。
本申请实施例还提供一种计算机程序产品,当通信装置读取并执行所述计算机程序产品时,使得通信装置执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括发送端设备和接收端设备。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中涉及的各种数字编号仅为描述方便进行的区分,上述各过程或步骤的序号的大小并不意味着执行顺序的先后,各过程或步骤的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (47)

  1. 一种高频场景下的通信方法,其特征在于,所述方法应用于发送端设备,所述方法包括:
    根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则,对S路比特流进行调制,生成M路低阶调制信号,M为大于或等于2的整数,S等于1或M;
    通过视距LOS信道发送所述M路低阶调制信号;
    其中,所述映射规则用于使所述M路低阶调制信号叠加成所述接收端设备待接收的一路高阶调制信号。
  2. 根据权利要求1所述的方法,其特征在于,所述S路比特流为一路独立的比特流,此时S=1;或者,
    所述S路比特流为通过对一路独立的比特流进行比特拆解得到的M路子比特流,此时S=M;或者,
    所述S路比特流为M路独立的比特流,此时S=M。
  3. 根据权利要求1或2所述的方法,其特征在于,所述S路比特流为M路比特流;
    所述映射规则用于指示发送端的所述M路比特流各自对应的从比特到复数符号的调制映射关系。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一调制方式为N阶调制,N为大于或等于4的整数;
    当所述M为2时,所述S等于2,所述映射规则包括:
    两路比特流中第一路比特流中的2位比特的2 2种取值分别映射到2 2个第一复数符号;
    根据所述第一路比特流的2位比特的不同取值,所述两路比特流中的第二路比特流的N-2位比特的2 N-2种取值分别映射到2 N-2个第二复数符号,且当来自所述第一路比特流的2位比特的取值不同时,来自所述第二路比特流的N-2位比特的相同取值映射到所述2 N-2个第二复数符号中的不同第二复数符号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    向所述接收端设备发送第一指示信息,所述第一指示信息包括以下信息中的一项或多项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度配比,所述M路低阶调制信号的功率配比;
    其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的一路低阶调制信号。
  6. 根据权利要求1或2所述的方法,其特征在于,所述映射规则用于指示所述S路比特流组成的原始比特流中的比特与所述一路高阶调制信号中的复数符号之间的对应关系,以及所述一路高阶调制信号中的复数符号与所述M路低阶调制信号中的复数符号之间的对应关系。
  7. 根据权利要求1或2或6所述的方法,其特征在于,所述第一调制方式为N阶调制,N为大于或等于4的整数;
    当所述M为2时,所述映射规则包括:
    所述原始比特流中的N位比特的2 N种取值与所述一路高阶调制信号中的2 N个第三复 数符号一一对应,所述原始比特流中的每N位比特包括第一路低阶调制信号对应的N/2位比特和第二路低阶调制信号对应的N/2位比特;
    针对所述第一调制方式,存在一组与所述第一路低阶调制信号对应的2 N/2个第四复数符号和一组与所述第二路低阶调制信号对应的2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述2 N个第三复数符号一一对应。
  8. 根据权利要求1或2或6或7所述的方法,其特征在于,当所述第一调制方式为16正交幅度调制QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:
    所述原始比特流中的比特与所述16QAM中的复数符号之间的对应关系,以及所述16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述16QAM中的各个复数符号一一对应。
  9. 根据权利要求8所述的方法,其特征在于,所述2 N/2个第四复数符号为K{1+2j,1-2j,-1+2j,-1-2j},所述2 N/2个第五复数符号为L{2+1j,2-1j,-2+1j,-2-1j},所述K、L为比例缩放系数。
  10. 根据权利要求1或2或6或7所述的方法,其特征在于,当所述第一调制方式为非均匀星座NUC-16QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:
    所述原始比特流中的比特与所述NUC-16QAM中的复数符号之间的对应关系,以及所述NUC-16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述NUC-16QAM中的各个复数符号一一对应。
  11. 根据权利要求10所述的方法,其特征在于,所述2 N/2个第四复数符号为
    Figure PCTCN2022138899-appb-100001
    Figure PCTCN2022138899-appb-100002
    所述2 N/2个第五复数符号为L{1+1j,1-1j,-1+1j,-1-1j},所述K、L为比例缩放系数。
  12. 根据权利要求1或2或6或7所述的方法,其特征在于,当所述第一调制方式为64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:
    所述原始比特流中的比特与所述64QAM中的复数符号之间的对应关系,以及所述64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应 2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述64QAM中的各个复数符号一一对应。
  13. 根据权利要求12所述的方法,其特征在于,所述2 N/2个第四复数符号为P{1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j},所述2 N/2个第五复数符号为Q{6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j},或者,
    所述2 N/2个第四复数符号为P{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},所述2 N/2个第五复数符号为Q{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j},所述P、Q为比例缩放系数。
  14. 根据权利要求1或2或6或7所述的方法,其特征在于,当所述第一调制方式为NUC-64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:
    所述原始比特流中的比特与所述NUC-64QAM中的复数符号之间的对应关系,以及所述NUC-64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间相互叠加的结果,与所述NUC-64QAM中的各个复数符号一一对应。
  15. 根据权利要求14所述的方法,其特征在于,所述2 N/2个第四复数符号为P{1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j},所述2 N/2个第五复数符号为
    Figure PCTCN2022138899-appb-100003
    Figure PCTCN2022138899-appb-100004
    所述P、Q为比例缩放系数。
  16. 根据权利要求1或2或6至15中任一项所述的方法,其特征在于,所述方法还包括:
    向所述接收端设备发送第二指示信息,所述第二指示信息包括以下信息中的一项或多项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
  17. 一种高频场景下的通信方法,其特征在于,所述方法应用于接收端设备,所述方法包括:
    接收来自发送端设备的一路高阶调制信号,所述一路高阶调制信号由M路低阶调制信号叠加而成,M为大于或等于2的整数;
    使用一个解调参考信号DMRS端口进行信道估计,并根据估计到的信道矩阵对所述一路高阶调制信号进行后均衡。
  18. 根据权利要求17所述的方法,其特征在于,在对所述高阶调制信号进行后均衡之后,还包括:
    对所述一路高阶调制信号进行解调,得到对应的一路比特流。
  19. 根据权利要求18所述的方法,其特征在于,若所述M路低阶调制信号为M路独立的信号时,还包括:
    将所述一路比特流拆分为M路比特流。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述发送端设备的第一指示信息,所述第一指示信息包括以下信息中的一项或多项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度配比,所述M路低阶调制信号的功率配比;
    其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的一路低阶调制信号。
  21. 根据权利要求17至19中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述发送端设备的第二指示信息,所述第二指示信息包括以下信息中的一项或多项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
  22. 一种高频场景下的通信装置,其特征在于,所述装置包括:
    处理模块,用于根据接收端设备待接收的一路高阶调制信号的第一调制方式对应的映射规则,对S路比特流进行调制,生成M路低阶调制信号,M为大于或等于2的整数,S等于1或M;
    收发模块,用于通过视距LOS信道发送所述M路低阶调制信号;
    其中,所述映射规则用于使所述M路低阶调制信号叠加成所述接收端设备待接收的一路高阶调制信号。
  23. 根据权利要求22所述的装置,其特征在于,所述S路比特流为一路独立的比特流,此时S=1;或者,
    所述S路比特流为通过对一路独立的比特流进行比特拆解得到的M路子比特流,此时S=M;或者,
    所述S路比特流为M路独立的比特流,此时S=M。
  24. 根据权利要求22或23所述的装置,其特征在于,所述S路比特流为M路比特流;
    所述映射规则用于指示发送端的所述M路比特流各自对应的从比特到复数符号的调制映射关系。
  25. 根据权利要求22至24中的任一项所述的装置,其特征在于,所述第一调制方式为N阶调制,N为大于或等于4的整数;
    当所述M为2时,所述S等于2,所述映射规则包括:
    两路比特流中的第一路比特流的2位比特的2 2种取值分别映射到2 2个第一复数符号;
    根据所述第一路比特流的2位比特的不同取值,所述两路比特流中的第二路比特流的N-2位比特的2 N-2种取值分别映射到2 N-2个第二复数符号,且当来自所述第一比特流的2位比特的取值不同时,来自所述第二路比特流的N-2位比特的相同取值映射到所述2 N-2个第二复数符号中的不同第二复数符号。
  26. 根据权利要求22至25中任一项所述的装置,其特征在于,所述收发模块还用于:
    向所述接收端设备发送第一指示信息,所述第一指示信息包括以下信息中的一项或多 项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度配比,所述M路低阶调制信号的功率配比;
    其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的一路低阶调制信号。
  27. 根据权利要求22或23中任一项所述的装置,其特征在于,所述映射规则用于指示所述S路比特流组成的原始比特流中的比特与所述一路高阶调制信号中的复数符号之间的对应关系,以及所述一路高阶调制信号中的复数符号与所述M路低阶调制信号中的复数符号之间的对应关系。
  28. 根据权利要求22或23或27所述的装置,其特征在于,所述第一调制方式为N阶调制,N为大于或等于4的整数;
    当所述M为2时,所述映射规则包括:
    所述原始比特流的N位比特的2 N种取值与所述一路高阶调制信号中的2 N个第三复数符号一一对应,所述原始比特流中的每N位比特包括第一路低阶调制信号对应的N/2位比特和第二路低阶调制信号对应的N/2位比特;
    针对所述第一调制方式,存在一组与所述第一路低阶调制信号对应的2 N/2个第四复数符号和一组与所述第二路低阶调制信号对应的2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述2 N个第三复数符号一一对应。
  29. 根据权利要求22或23或27或28所述的装置,其特征在于,当所述第一调制方式为16正交幅度调制QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:
    所述原始比特流中的比特与所述16QAM中的复数符号之间的对应关系,以及所述16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述16QAM中的各个复数符号一一对应。
  30. 根据权利要求29所述的装置,其特征在于,所述2 N/2个第四复数符号为K{1+2j,1-2j,-1+2j,-1-2j},所述2 N/2个第五复数符号为L{2+1j,2-1j,-2+1j,-2-1j},所述K、L为比例缩放系数。
  31. 根据权利要求22或23或27或28所述的装置,其特征在于,当所述第一调制方式为非均匀星座NUC-16QAM,且所述M等于2时,调制阶数N等于4,所述映射规则包括:
    所述原始比特流中的比特与所述NUC-16QAM中的复数符号之间的对应关系,以及所述NUC-16QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应 2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述NUC-16QAM中的各个复数符号一一对应。
  32. 根据权利要求31所述的装置,其特征在于,所述2 N/2个第四复数符号为
    Figure PCTCN2022138899-appb-100005
    Figure PCTCN2022138899-appb-100006
    所述2 N/2个第五复数符号为L{1+1j,1-1j,-1+1j,-1-1j},所述K、L为比例缩放系数。
  33. 根据权利要求22或23或27或28所述的装置,其特征在于,当所述第一调制方式为64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:
    所述原始比特流中的比特与所述64QAM中的复数符号之间的对应关系,以及所述64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间按照等幅度配比叠加的结果,与所述64QAM中的各个复数符号一一对应。
  34. 根据权利要求33所述的装置,其特征在于,所述2 N/2个第四复数符号为P{1+6j,1+2j,1-2j,1-6j,-1-6j,-1-2j,-1+2j,-1+6j},所述2 N/2个第五复数符号为Q{6+1j,2+1j,-2+1j,-6+1j,-6-1j,-2-1j,2-1j,6-1j},或者,
    所述2 N/2个第四复数符号为P{4+3j,4+1j,4-1j,4-3j,-4-3j,-4-1j,-4+1j,-4+3j},所述2 N/2个第五复数符号为Q{3+4j,1+4j,-1+4j,-3+4j,-3-4j,-1-4j,1-4j,3-4j},所述P、Q为比例缩放系数。
  35. 根据权利要求22或23或27或28所述的装置,其特征在于,当所述第一调制方式为NUC-64QAM,且所述M等于2时,调制阶数N等于6,所述映射规则包括:
    所述原始比特流中的比特与所述NUC-64QAM中的复数符号之间的对应关系,以及所述NUC-64QAM中的复数符号与第一路低阶调制信号中的第四复数符号和第二路低阶调制信号中的第五复数符号之间的对应关系;
    其中,所述原始比特流中包括所述第一路低阶调制信号对应的比特和所述第二路低阶调制信号对应的比特;
    所述第一路低阶调制信号对应2 N/2个第四复数符号,所述第二路低阶调制信号对应2 N/2个第五复数符号;所述2 N/2个第四复数符号与所述2 N/2个第五复数符号两两之间相互叠加的结果,与所述NUC-64QAM中的各个复数符号一一对应。
  36. 根据权利要求35所述的装置,其特征在于,所述2 N/2个第四复数符号为P{1,1+1j,1j,-1+1j,-1,-1-1j,-1j,1-1j},所述2 N/2个第五复数符号为
    Figure PCTCN2022138899-appb-100007
    Figure PCTCN2022138899-appb-100008
    所述P、Q为比例缩放系数。
  37. 根据权利要求22或23或27至36中任一项所述的装置,其特征在于,所述处理模块还用于:
    向所述接收端设备发送第二指示信息,所述第二指示信息包括以下信息中的一项或多项:所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
  38. 一种高频场景下的通信装置,其特征在于,所述装置包括:
    收发模块,用于接收来自发送端设备的一路高阶调制信号,所述一路高阶调制信号由M路低阶调制信号叠加而成,M为大于或等于2的整数;
    处理模块,用于使用一个解调参考信号DMRS端口进行信道估计,并根据估计到的信道矩阵对所述一路高阶调制信号进行后均衡。
  39. 根据权利要求38所述的装置,其特征在于,所述处理模块在对所述高阶调制信号进行后均衡之后,还用于:
    对所述一路高阶调制信号进行解调,得到对应的一路比特流。
  40. 根据权利要求39所述的装置,其特征在于,若所述M路低阶调制信号为M路独立的信号时,所述处理模块还用于:
    将所述一路比特流拆分为M路比特流。
  41. 根据权利要求38至40中任一项所述的装置,其特征在于,所述收发模块还用于:
    接收来自所述发送端设备的第一指示信息,所述第一指示信息包括以下信息中的一项或多项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,符号位指示信息,所述M路低阶调制信号的幅度配比,所述M路低阶调制信号的功率配比;
    其中,所述符号位指示信息用于指示所述M路低阶调制信号中作为符号位的一路低阶调制信号。
  42. 根据权利要求38至40中任一项所述的装置,其特征在于,所述收发模块还用于:
    接收来自所述发送端设备的第二指示信息,所述第二指示信息包括以下信息中的一项或多项:
    所述一路高阶调制信号的调制编码方案MCS,所述M路低阶调制信号的MCS,所述一路高阶调制信号采用非均匀调制或者均匀调制,所述M路低阶调制信号采用非均匀调制或者均匀调制。
  43. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至16中任一项所述的方法,或者,所述处理器用于控制所述装置实现如权利要求17至21中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至16中任一项所述的方法,或者,实现如权利要求17至21中任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至16中任一项所述的方法,或者,实现如权利要求17至21中任一项所述的方法。
  46. 一种芯片,其特征在于,包括至少一个处理器和接口;
    所述接口,用于为所述至少一个处理器提供程序指令或者数据;
    所述至少一个处理器用于执行所述程序行指令,以实现如权利要求1至16中任一项所述的方法,或者实现如权利要求17至21中任一项所述的方法。
  47. 一种通信系统,其特征在于,包括权利要求22至37任一项的通信装置,以及权利要求38至42任一项的通信装置。
PCT/CN2022/138899 2021-12-31 2022-12-14 一种高频场景下的通信方法及装置 WO2023124997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111671948.6 2021-12-31
CN202111671948.6A CN116418645A (zh) 2021-12-31 2021-12-31 一种高频场景下的通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023124997A1 true WO2023124997A1 (zh) 2023-07-06

Family

ID=86997731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138899 WO2023124997A1 (zh) 2021-12-31 2022-12-14 一种高频场景下的通信方法及装置

Country Status (2)

Country Link
CN (1) CN116418645A (zh)
WO (1) WO2023124997A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409696A (zh) * 2008-11-14 2009-04-15 电子科技大学 基于分层高阶调制的分层组合均衡技术
CN105723673A (zh) * 2014-05-30 2016-06-29 华为技术有限公司 一种高阶调制、解调装置、方法及系统
WO2017201467A1 (en) * 2016-05-20 2017-11-23 Cohere Technologies Iterative channel estimation and equalization with superimposed reference signals
CN112134605A (zh) * 2015-11-13 2020-12-25 华为技术有限公司 数据传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409696A (zh) * 2008-11-14 2009-04-15 电子科技大学 基于分层高阶调制的分层组合均衡技术
CN105723673A (zh) * 2014-05-30 2016-06-29 华为技术有限公司 一种高阶调制、解调装置、方法及系统
CN112134605A (zh) * 2015-11-13 2020-12-25 华为技术有限公司 数据传输方法和装置
WO2017201467A1 (en) * 2016-05-20 2017-11-23 Cohere Technologies Iterative channel estimation and equalization with superimposed reference signals

Also Published As

Publication number Publication date
CN116418645A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US8077796B2 (en) Methods and arrangements for communicating in a multiple input multiple output system
JP6246681B2 (ja) ビームフォーミング・フィードバック・フォーマット
US9985986B2 (en) Unconditional secure communication method based on beam-forming and security code
JP5133346B2 (ja) 無線mimo通信システムにおける暗黙のビームフォーミングのキャリブレーション補正法
US9166663B2 (en) System and method for open-loop MIMO communications in a SCMA communications system
WO2015180465A1 (zh) 一种无线mimo通信系统的信令字段及其通信方法
Ntranos et al. Cellular interference alignment
CN1829137B (zh) 无线数据通信系统及无线数据通信方法
US9325399B2 (en) Closed form singular value decomposition
US8428168B1 (en) Implicit MIMO antenna selection
CN106470064B (zh) 发送分集方法及设备
CN108540191B (zh) 发送方法、发送装置、接收方法及接收装置
CN105262567A (zh) 一种无线信号传输方法及无线通讯系统
Mesleh et al. A high spectral efficiency spatial modulation technique
WO2011118926A2 (ko) 무선 네트워크에서 신호의 중계 방법 및 장치
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2019191970A1 (zh) 通信方法、通信装置和系统
TW200525928A (en) Mimo transmitter and receiver for low-scattering environments
CN108039901B (zh) 一种联合空间和方向维度的安全调制方法
US20240031213A1 (en) Signal transmission method and apparatus
WO2023124997A1 (zh) 一种高频场景下的通信方法及装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2023168604A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
US8868124B2 (en) Frequency domain equalizer for a beamformed system
WO2018171622A1 (zh) 数据发送方法和装置以及数据接收方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914252

Country of ref document: EP

Kind code of ref document: A1