WO2023124781A1 - 一种轮询环控方法、系统、电子设备及存储介质 - Google Patents

一种轮询环控方法、系统、电子设备及存储介质 Download PDF

Info

Publication number
WO2023124781A1
WO2023124781A1 PCT/CN2022/136335 CN2022136335W WO2023124781A1 WO 2023124781 A1 WO2023124781 A1 WO 2023124781A1 CN 2022136335 W CN2022136335 W CN 2022136335W WO 2023124781 A1 WO2023124781 A1 WO 2023124781A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
polling
operating
units
module
Prior art date
Application number
PCT/CN2022/136335
Other languages
English (en)
French (fr)
Inventor
王聪
梁钦
方兴
李元阳
梁锐
孙靖
高兵
Original Assignee
上海美控智慧建筑有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海美控智慧建筑有限公司, 广东美的暖通设备有限公司 filed Critical 上海美控智慧建筑有限公司
Priority to EP22914036.3A priority Critical patent/EP4375584A1/en
Publication of WO2023124781A1 publication Critical patent/WO2023124781A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the present disclosure relates to the technical field of equipment automatic control, in particular, to a polling environment control method, system, electronic equipment and storage medium.
  • the calorific value of the data center mainly comes from the heat dissipated by IT equipment such as servers and network equipment in the computer room during operation, and the calorific value is basically stable throughout the year.
  • the cooling capacity is also basically constant throughout the year, so
  • the data center requires the central air-conditioning and refrigeration system to run stably for a long time all year round.
  • the cooling capacity demand of the general data center is small, usually only one or two hosts are enough, but the long-term operation of a single unit will reduce the service life. And once the running equipment fails, other equipment cannot be automatically switched immediately, which will cause system shutdown and huge economic losses.
  • Embodiments of the present disclosure provide a polling environment control method, system, electronic equipment, and storage medium, set a timing polling and fault polling mechanism, automatically rotate running equipment, avoid long-term work of the same equipment, and ensure The system runs stably all year round, which solves the problem that a certain piece of equipment in the related technology system works for a long time, which leads to a reduction in life and a failure that causes the system to shut down.
  • An embodiment of the present disclosure provides a polling environment control method, which may include:
  • the operating status data of the receiver group
  • the starting unit rotates the unit in the running state.
  • the operational status data of the receiver group may include:
  • the unit data structure includes equipment number, operating status, fault status, health degree and operating time.
  • the operating status data of the unit is obtained in real time, and the data is saved in the form of the unit data structure, which is convenient for subsequent polling and fault polling using the data structure of the unit.
  • the determination of polling to turn on the unit through regular polling and/or fault polling may include:
  • the healthy group it is determined to poll and open the group.
  • the health degree guarantees the operating efficiency of the unit, so the healthy unit can be determined based on the health degree.
  • the calculating the health degree of the non-operating unit to determine the healthy unit may include:
  • the health degree of the preset period is calculated based on the actual operating energy efficiency and the theoretical operating energy efficiency.
  • the ratio of the actual operating energy efficiency to the theoretical energy efficiency is used to determine the operating efficiency of the unit, thereby reflecting the health of the unit.
  • the regular polling of the non-operating unit to determine the polling of the turned-on unit may include:
  • a healthy unit that is, a unit with a high operating efficiency, is obtained, which is used to replace the unit in the running state, so as to prevent the running unit from working for a long time and reduce its service life.
  • the fault polling of the non-operating unit to determine the polling of the turned-on unit may include:
  • the fault polling when the unit in the running state fails, the fault polling will be triggered, so as to determine the polling to turn on the unit to replace the failed unit.
  • the determination of the number of healthy units may include:
  • the health degree is not less than the preset threshold, it is a healthy group.
  • the healthy group is determined according to the health degree and the threshold value.
  • the determining the polling open unit according to the number of units may include:
  • the unit number of the healthy unit is 1, select the unit corresponding to the number of units as the polling unit;
  • the polling enabled unit is selected from the first unit to be tested whose health degree is greater than or equal to the preset threshold to replace the unit in the running state.
  • the turning on the unit in running state based on the polling may include:
  • An embodiment of the present disclosure also provides a polling environment control system, and the system may include:
  • a receiving module configured to receive the operating status data of the group
  • the polling evaluation module is configured to determine the polling start-up unit through regular polling and/or fault polling;
  • the rotation module is configured to rotate the running state group based on the polling open group.
  • the receiving module can also be configured to:
  • the unit data structure includes equipment number, operating status, fault status, health degree and operating time.
  • the polling evaluation module includes a timing polling module and a fault polling module
  • the timing polling module may include:
  • An operation screening module configured to filter out non-operating units based on the operation state data
  • a health degree calculation module configured to perform health degree calculation on the non-operating unit to determine a healthy unit
  • the opening determination module is configured to determine the polling opening group according to the healthy group.
  • the health calculation module may also include:
  • a parameter acquisition module configured to acquire the actual operating energy efficiency and theoretical energy efficiency of the non-operating generating set under the current operating condition
  • the health degree determining module is configured to calculate the health degree of a preset period based on the actual operating energy efficiency and the theoretical operating energy efficiency.
  • the timing polling module may also include: a judging module configured to judge whether there is a faulty unit among the non-operating units; wherein,
  • the unit screening module is configured to, if there is no faulty unit among the non-operating units, screen out a first unit to be tested without faults from the non-operating units;
  • the health degree calculation module is configured to determine the number of healthy units in the first unit to be tested according to the health degree of the first unit to be tested;
  • the activation determination module is configured to determine a polling activation unit according to the number of units.
  • the determination module may be configured to determine that the corresponding first group to be tested is a healthy group if the health degree is not less than a preset threshold.
  • the rotation module may be configured to: acquire the ID of the polling-on unit to start the polling-on unit; reduce load on the unit currently in operation or shut down the faulty unit .
  • An embodiment of the present disclosure also provides an electronic device, the electronic device includes a memory and a processor, the memory is used to store a computer program, and the processor runs the computer program to enable the electronic device to execute the above-mentioned embodiments.
  • Embodiments of the present disclosure also provide a readable storage medium, where computer program instructions are stored in the readable storage medium, and when the computer program instructions are read and executed by a processor, execute any one of the above-mentioned embodiments.
  • FIG. 1 is a flow chart of a polling environment control method provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the unit data structure provided by the embodiment of the present disclosure.
  • FIG. 3 is a timing polling flowchart provided by an embodiment of the present disclosure
  • FIG. 4 is a specific flow chart of timing polling provided by an embodiment of the present disclosure.
  • FIG. 5 is a flow chart of health degree calculation provided by an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of fault polling provided by an embodiment of the present disclosure.
  • Fig. 7 is a flow chart of rotating the running state unit provided by the embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a polling environment control system provided by an embodiment of the present disclosure.
  • FIG. 9 is an architecture diagram of an intelligent polling environment control system provided by an embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of another polling environment control system provided by an embodiment of the present disclosure.
  • FIG. 1 is a flow chart of a polling environment control method provided by an embodiment of the present disclosure. This method can be applied to the intelligent environmental control system of the data center to realize the control of the group control products of the central air-conditioning water-cooling unit, and at the same time meet the functions of automatic start-stop control, automatic frequency adjustment, automatic switching of faulty equipment, and reporting information of each equipment.
  • the method specifically includes the following steps:
  • Step S100 Receive group operation status data
  • the operation state data is generated into a unit data structure, and the unit data structure includes equipment number, operation state, fault state, manual/automatic state, health degree and operation time.
  • the equipment number reflects the location of each unit; the operating status reflects whether the unit is put into operation; the fault status reflects whether the unit fails; the manual/automatic status reflects whether the unit accepts data
  • the control of the central group control system; the health degree reflects the quality of the operating state of the unit (different from the faulty unit), calculated through the health degree calculation formula, the greater the health value, the higher the energy efficiency level of equipment operation;
  • Step S200 Filter out non-operating units based on the operating status data
  • Step S300 Carry out timing polling and fault polling to the non-operating unit to determine the polling to start the unit;
  • FIG. 3 it is a timing polling flow chart, which specifically includes the following steps:
  • Step S310 Filter out non-operating units based on the operating status data
  • Step S320 judging whether there is a faulty unit among the non-operating units
  • Step S330 If there is no faulty unit among the non-operating units, then filter out the first unit to be tested that is fault-free and in an automatic state from the non-operating units;
  • the automatic state here refers to the units that can realize automatic start and stop control through the data center.
  • timing polling As shown in Figure 4, it is the specific flow chart of timing polling, and the rotation is triggered regularly through the set polling time, so as to start timing polling, specifically:
  • Step S340 Calculate the health degree of each first unit to be tested to determine the number of healthy units
  • Step S341 Obtain the actual operating energy efficiency and theoretical energy efficiency of the first unit under test under the current operating condition
  • Step S342 Calculate the health degree of a preset period based on the actual operating energy efficiency and the theoretical operating energy efficiency, and the health degree is expressed as:
  • H represents the health degree
  • ⁇ COP r represents the sum of the actual operating energy efficiency within the time period of the preset cycle
  • ⁇ COP i represents the sum of the theoretical operating energy efficiency within the time period of the preset cycle
  • COP i b 0 +b 1 T evp +b 2 T cond +b 3 Q+b 4 T evp T cond +b 5 T evp Q+b 6 T cond Q+b 7 Q 2 ;
  • T evp is the saturated evaporating temperature
  • T cond is the saturated condensing temperature
  • Q is the unit load
  • b 0 -b 7 is the set coefficient
  • Step S343 If the health degree is not less than the preset threshold, then the corresponding first group to be tested is a healthy group.
  • the healthy unit here refers to the unit whose actual operating energy efficiency level is relatively high. If H ⁇ 0.8, it can be considered that the actual energy efficiency level of the corresponding unit is low, but it can maintain the working state, which is different from the above-mentioned faulty units.
  • Step S350 Determine the polling-on unit according to the number of units.
  • the number of units of the first unit to be tested i.e. healthy unit
  • the preset threshold is greater than 1
  • the threshold is set to 0.8
  • the number of the first standby unit is N1
  • Step S361 When the operating unit fails, filter out the non-operating unit based on the operating status data;
  • Step S362 judging whether there is a faulty unit among the non-operating units
  • Step S363 If there is no faulty set among the non-operating sets, then screen out a second untested set that has no faults and is in an automatic state from the faulty sets;
  • Step S364 Calculate the health degree of each second unit to be tested to determine the number of healthy units
  • Step S365 Determine the polling-on unit according to the number of units.
  • Step S400 Based on the polling, the starting unit performs rotation of the operating unit.
  • Step S401 Obtain the ID of the polling and enabling unit to enable the polling and enabling unit;
  • Step S402 Reduce the load of the currently running generating set or shut down the faulty generating set.
  • timing polling after obtaining the polling-on unit, first turn on the polling-on unit and then shut down the previously running unit, reset the rotation time, and wait for the next timing polling to start.
  • the method can realize the intelligent polling of the intelligent environment control system of the data center during the operation process, so as to realize the average service life of each equipment, and the fault polling can avoid the problem of system shutdown caused by a certain equipment failure.
  • the embodiment of the present disclosure also provides a polling environment control system, specifically a polling environment control system for data center functions, which is suitable for the control of group control products of central air-conditioning water-cooling units in data centers, and at the same time satisfies the automatic start-stop control and automatic frequency control of each device. Adjustment, automatic switching of faulty equipment and reporting information, so as to realize the intelligent polling of the data center intelligent environmental control system during operation, so as to take into account the allocation of various equipment to achieve average life; System down. As shown in Figure 8, it is a structural block diagram of the polling environment control system, which may include:
  • the receiving module 100 may be configured to receive group operation status data
  • the screening module 200 may be configured to screen out non-operating units based on the operating status data
  • the polling evaluation module 300 may be configured to perform regular polling and fault polling on the non-operating units, so as to determine the polling to start the units;
  • the rotation module 400 may be configured to rotate the running state group based on the polling open group.
  • Figure 9 is an architecture diagram of an intelligent polling environment control system, wherein the polling evaluation module includes a timing polling module and a fault polling module, which belong to the logical judgment layer of the system.
  • the system also includes a data interface layer and a fault polling module.
  • Equipment basic logic control layer is included in the polling evaluation module.
  • the data interface layer is used to connect with the unit and obtain the I/O points of all monitoring status information of all monitoring equipment of the central air-conditioning system, which has two forms of hard interface and communication interface.
  • the logical judgment layer determines the polling sequence by analyzing the operating status data of the unit. It is specifically composed of a timing polling module and a fault polling module. Intelligent polling logic is added to the fully automatic operation of the central air-conditioning system to set the polling time. Regular polling can prevent a certain unit from running for a long time, so as to achieve an average service life of all equipment; while fault polling can avoid system shutdown due to a certain equipment failure, ensuring the stable operation of the data center server.
  • the equipment basic logic control layer is used to handle remote manual/automatic start-stop control of high-efficiency chillers, chilled water pumps, cooling water pumps, cooling tower fans, remote manual/automatic switch valve control of butterfly valves, equipment failure alarm notification, etc.
  • FIG. 10 it is a structural block diagram of another polling environment control system, wherein the polling evaluation module 300 includes a timing polling module 310 and a fault polling module 320, and the timing polling module 310 may include:
  • the operation screening module 311 may be configured to screen out non-operating units based on the operation status data
  • the judging module 312 may be configured to judge whether there is a faulty unit among the non-operating units;
  • the unit screening module 313 may be configured to, if there is no faulty unit among the non-operating units, screen out the first unit to be tested that is fault-free and in an automatic state from the non-operating units;
  • the health calculation module 314 may be configured to calculate the health of each first unit to be tested, so as to determine the number of healthy units;
  • the activation determination module 315 may be configured to determine the polling activation unit according to the number of units.
  • the health degree calculation module 314 includes:
  • the parameter acquisition module 324 may be configured to acquire the actual operating energy efficiency and theoretical energy efficiency of the first unit under test under the current operating condition
  • the health degree determining module 334 may be configured to calculate the health degree of a preset period based on the actual operating energy efficiency and the theoretical operating energy efficiency, and the health degree is expressed as:
  • H represents the health degree
  • ⁇ COP r represents the sum of theoretical operating energy efficiency within the time period of the preset cycle
  • ⁇ COP i represents the sum of the actual operating energy efficiency within the time period of the preset cycle
  • COP i b 0 +b 1 T evp +b 2 T cond +b 3 Q+b 4 T evp T cond +b 5 T evp Q+b 6 T cond Q+b 7 Q 2 ;
  • T evp is the saturated evaporation temperature
  • T cond is the saturated condensation temperature
  • Q is the unit load
  • the judging module 344 may be configured to determine that the corresponding first group to be tested is a healthy group if the health degree is not less than a preset threshold.
  • the specific execution process of the fault polling module is similar to that of the timing polling module, and will not be repeated here.
  • the rotation module 400 may specifically be configured to:
  • the units that can be automatically started and stopped are automatically rotated, the polling is turned on to turn on the unit (the unit to be turned on selected through the above steps), and the unit that is currently in operation is turned off, so as to avoid that the unit leader currently in operation Time to run, so as not to reduce its service life. If it is a faulty unit, turn on the polling unit to replace the faulty unit to avoid system shutdown due to the failure of the faulty unit, and then close the water pump butterfly valve and other equipment of the faulty unit, because although the faulty unit has a fault, its water pump butterfly valve is still in operation state, so it is necessary to close the water pump butterfly valve, etc.
  • the running equipment is automatically rotated, avoiding the long-term work of the same equipment, ensuring the stable operation of the system all year round, and solving the problem that a certain equipment in the related technical system works for a long time and causes a decrease lifespan and a failure causes the system to shut down.
  • An embodiment of the present disclosure also provides an electronic device, the electronic device includes a memory and a processor, the memory is used to store a computer program, and the processor runs the computer program to enable the electronic device to perform the above-mentioned polling environmental control method.
  • An embodiment of the present disclosure further provides a readable storage medium, wherein computer program instructions are stored in the readable storage medium, and when the computer program instructions are read and executed by a processor, the above polling environment control method is executed.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present disclosure may be integrated together to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present disclosure provides embodiments of the present disclosure to provide a polling environment control method, system, electronic equipment, and storage medium, and relates to the technical field of automatic equipment control.
  • the method includes receiving unit operating status data; screening out non-operating units based on the operating status data; performing regular polling and fault polling on the non-operating units to determine the polling-enabled unit; and starting the unit based on the polling Rotate the units in the running state, set the timing polling and fault polling mechanism, and automatically rotate the running equipment to avoid the same equipment working for a long time, ensure the stable operation of the system all year round, and solve the problem of a certain unit in the related technical system
  • the long-term operation of the equipment leads to the reduction of life and the failure of the equipment leads to the shutdown of the system.
  • the polling environment control method, system, electronic device and storage medium of the present disclosure are reproducible and can be used in various industrial applications.
  • the polling environment control method, system, electronic equipment and storage medium of the present disclosure may be used in the technical field of equipment automatic control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Automatic Tape Cassette Changers (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种轮询环控方法、系统、电子设备及存储介质,涉及设备自动控制技术领域。该方法包括接收机组运行状态数据;基于所述运行状态数据筛选出未运行机组;对所述未运行机组进行定时轮询和故障轮询,以确定轮询开启机组,基于所述轮询开启机组对运行状态机组进行轮换,设定定时轮询和故障轮询机制,对正在运行的设备进行自动轮换。

Description

一种轮询环控方法、系统、电子设备及存储介质
相关申请的交叉引用
本公开要求于2021年12月28日提交中国国家知识产权局的申请号为202111629224.5、名称为“一种轮询环控方法、系统、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及设备自动控制技术领域,具体而言,涉及一种轮询环控方法、系统、电子设备及存储介质。
背景技术
数据中心的发热量主要来源于机房内部的服务器以及网络设备等IT设备在运行过程中散发的热量,并且一年四季的发热量基本稳定,相对而言一年四季的制冷量也基本恒定,所以数据中心要求中央空调制冷系统常年、长时间稳定运行。但是一般数据中心的冷量需求较小的时候,通常只需要开1台或2台主机就足够,但是单台机组长时间运行会降低使用寿命。并且正在运行的设备一旦发生故障,其他设备不能立马进行自动切换,会造成系统停机产生而巨大的经济损失。
发明内容
本公开实施例提供了一种轮询环控方法、系统、电子设备及存储介质,设定定时轮询和故障轮询机制,对正在运行的设备进行自动轮换,避免同一设备长时间工作,保证系统常年稳定运行,解决了相关技术系统中的某一台设备长时间工作导致降低寿命且发生故障导致系统停机的问题。
本公开实施例提供了一种轮询环控方法,该方法可以包括:
接收机组的运行状态数据;
通过定时轮询和/或故障轮询,确定轮询开启机组;
基于所述轮询开启机组对运行状态机组进行轮换。
在一些实施例中,所述接收机组的运行状态数据可以包括:
将所述运行状态数据生成机组数据结构,以读取所述机组数据结构进行定时轮询和故障轮询,所述机组数据结构包括设备编号、运行状态、故障状态、健康度以及运行时间。
在上述实现过程中,实时获取机组运行状态数据,并将数据以机组数据结构的形式保存,便于后续利用该机组数据数据结构进行定时轮询和故障轮询。
在一些实施例中,所述通过定时轮询和/或故障轮询,确定轮询开启机组,可以包括:
基于所述运行状态数据筛选出未运行机组;
对所述未运行机组进行健康度计算,以确定健康机组;
根据所述健康机组确定轮询开启机组。
在上述实现过程中,健康度保证了机组的运行效率,因此可基于健康度确定健康机组。
在一些实施例中,所述对所述未运行机组进行健康度计算,以确定健康机组,可以包括:
获取所述未运行机组在当前运行工况下的实际运行能效和理论能效;
基于所述实际运行能效和理论运行能效计算预设周期的健康度。
在上述实现过程中,利用实际运行能效和理论能效之比来确定机组的运行效率,从而反映机组的健康度。
在一些实施例中,所述对所述未运行机组进行定时轮询,以确定轮询开启机组,可以包括:
判断所述未运行机组中是否有故障机组;
若所述未运行机组中没有故障机组,则从所述未运行机组中筛选出无故障的第一待测机组;
根据所述第一待测机组的健康度,确定所述第一待测机组中的健康机组的机组数量;
根据所述机组数量确定轮询开启机组。
在上述实现过程中,通过定时轮询,得到健康机组即运行效率处于较高状态的机组,用于替换处于运行状态的机组,避免正在运行的机组长时间工作从而降低其使用寿命。
在一些实施例中,所述对所述未运行机组进行故障轮询,以确定轮询开启机组,可以包括:
当运行机组发生故障时,从所述未运行机组中筛选出无故障且处于自动状态下的第二待测机组;
根据所述第二待测机组的健康度,确定所述第二待测机组中的健康机组的机组数量;
根据所述机组数量确定轮询开启机组。
在上述实现过程中,当处于运行状态的机组发生故障时,将触发故障轮询,从而确定轮询开启机组来替代该故障机组。
在一些实施例中,所述确定健康机组的机组数量,可以包括:
若所述健康度不小于预设阈值,则为健康机组。
在上述实现过程中,根据健康度与阈值的大小确定健康机组。
在一些实施例中,所述根据所述机组数量确定轮询开启机组,可以包括:
若健康机组的机组数量大于1,则比较所述机组数量中的每个机组的运行时间,将运行时间最短的机组作为轮询开启机组;
若健康机组的机组数量为1,则选取所述机组数量对应的机组为轮询开启机组;
若健康机组的机组数量为0,则比较待测机组中的每台机组的运行时间,将运行时间最短的待测机组作为轮询开启机组。
在上述实现过程中,从健康度大于等于预设阈值的第一待测机组中选取轮询开启机组即用于替换处于运行状态的机组。
在一些实施例中,所述基于所述轮询开启机组对运行状态机组进行轮换,可以包括:
开启所述轮询开启机组;
对当前处于运行状态的机组进行减载或关闭故障机组。
本公开实施例还提供一种轮询环控系统,所述系统可以包括:
接收模块,被配置成用于接收机组的运行状态数据;
轮询评价模块,被配置成用于通过定时轮询和/或故障轮询,确定轮询开启机组;
轮换模块,被配置成用于基于所述轮询开启机组对运行状态机组进行轮换。
在一些实施例中,所述接收模块还可以配置成用于:
将所述运行状态数据生成机组数据结构,以读取所述机组数据结构进行定时轮询和故障轮询,所述机组数据结构包括设备编号、运行状态、故障状态、健康度以及运行时间。
在一些实施例中,所述轮询评价模块包括定时轮询模块和故障轮询模块,所述定时轮询模块可以包括:
运行筛选模块,被配置成用于基于所述运行状态数据筛选出未运行机组;
健康度计算模块,被配置成用于对所述未运行机组进行健康度计算,以确定健康机组;
开启确定模块,被配置成用于根据所述健康机组确定轮询开启机组。
在一些实施例中,所述健康度计算模块还可以包括:
参数获取模块,被配置成用于获取所述未运行机组在当前运行工况下的实际运行能效和理论能效;
健康度确定模块,被配置成用于基于所述实际运行能效和理论运行能效计算预设周期的健康度。
在一些实施例中,所述定时轮询模块还可以包括:判断模块,被配置成用于判断所述未运行机组中是否有故障机组;其中,
所述机组筛选模块被配置成用于若所述未运行机组中没有故障机组,则从所述未运行机组中筛选出无故障的第一待测机组;
所述健康度计算模块被配置成用于根据所述第一待测机组的健康度,确定所述第一待测机组中的健康机组的机组数量;
所述开启确定模块被配置成用于根据所述机组数量确定轮询开启机组。
在一些实施例中,所述判定模块可以被配置成用于若所述健康度不小于预设阈值,则对应的第一待测机组为健康机组。
在一些实施例中,所述轮换模块可以被配置成用于:获取所述轮询开启机组的ID,以开启所述轮询开启机组;对当前处于运行状态的机组进行减载或关闭故障机组。
本公开实施例还提供一种电子设备,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行上述实施例中任一项所述的轮询环控方法。
本公开实施例还提供一种可读存储介质,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行上述实施例中任一项所述的轮询环控方法。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的一种轮询环控方法的流程图;
图2为本公开实施例提供的机组数据结构示意图;
图3为本公开实施例提供的定时轮询流程图;
图4为本公开实施例提供的定时轮询的具体流程图;
图5为本公开实施例提供的健康度计算流程图;
图6为本公开实施例提供的故障轮询流程图;
图7为本公开实施例提供的对运行状态机组进行轮换的流程图;
图8为本公开实施例提供的轮询环控系统的结构框图;
图9为本公开实施例提供的智能轮询环控系统架构图;
图10为本公开实施例提供的另一种轮询环控系统的结构框图。
图标:
100-接收模块;200-筛选模块;300-轮询评价模块;310-定时轮询模块;320-故障轮询模块;311-运行筛选模块;312-判断模块;313-机组筛选模块;314-健康度计算模块;315-开启确定模块;324-参数获取模块;334-健康度确定模块;344-判定模块;400-轮换模块。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个 附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本公开的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
请参看图1,图1为本公开实施例提供的一种轮询环控方法的流程图。该方法可应用于数据中心的智能环控系统,实现对中央空调水冷机组群控产品的控制,同时满足各个设备的自动启停控制、自动频率调节、故障设备自动切换及上报信息等功能。该方法具体包括以下步骤:
步骤S100:接收机组运行状态数据;
将所述运行状态数据生成机组数据结构,所述机组数据结构包括设备编号、运行状态、故障状态、手动/自动状态、健康度以及运行时间。如图2所示,为机组数据结构示意图,其中,设备编号反映每台机组所在的位置;运行状态反映机组是否投入运行;故障状态反映机组是否发生故障;手动/自动状态反映该机组是否接受数据中心群控系统的控制;健康度反映机组运行状态的优劣(区别于故障机组),通过健康度计算公式计算得出,健康度值越大说明设备运行能效水平越高;运行时间为机组自开机以来累计运行的时长。其中,运行状态、故障状态、运行时间均可通过与机组连接的数据接口层获取。
步骤S200:基于所述运行状态数据筛选出未运行机组;
步骤S300:对所述未运行机组进行定时轮询和故障轮询,以确定轮询开启机组;
如图3所示,为定时轮询流程图,具体包括以下步骤:
步骤S310:基于所述运行状态数据筛选出未运行机组;
步骤S320:判断所述未运行机组中是否有故障机组;
步骤S330:若所述未运行机组中没有故障机组,则从所述未运行机组中筛选出无故障且处于自动状态下的第一待测机组;
此处的自动状态指的是可通过数据中心实现自动启停控制的机组。
如图4所示,为定时轮询的具体流程图,通过设置的轮询时间定时触发轮换,从而开始定时轮询,具体地:
通过读取机组数据结构,找出未运行机组,并判断未运行机组的故障情况。
若存在故障机组,则判断无故障机组台数是否大于等于1,若是,则继续进行定时轮询流程即筛选出无故障且处于自动状态下的第一待测机组;若无故障机组台数小于1即当无故障机组台数=0时,说明没有正常机组可以轮询,及时发出报警信号,提醒运维人员检修。
当无故障机组台数≥1时,筛选出无故障且处于自动状态下的机组(待开机组台数为N1),然后根据机组健康度计算公式获取每台机组的健康度H。
步骤S340:计算每台第一待测机组的健康度,以确定健康机组的机组数量;
如图5所示,为健康度计算流程图,健康度的具体计算过程如下:
步骤S341:获取所述第一待测机组在当前运行工况下的实际运行能效和理论能效;
步骤S342:基于所述实际运行能效和理论运行能效计算预设周期的所述健康度,所述健康度表示为:
H=∑COP r/∑COP i
其中,H表示健康度,∑COP r表示预设周期的时间段内实际运行能效之和,∑COP i表示预设周期的时间段内理论运行能效之和;
由于机组的理论运行能效COP i随着运行工况的变化而改变,机组理论运行能效COP i与主要运行参数可以通过以下方程回归得到:
COP i=b 0+b 1T evp+b 2T cond+b 3Q+b 4T evpT cond+b 5T evpQ+b 6T condQ+b 7Q 2
其中,T evp为饱和蒸发温度,T cond为饱和冷凝温度,Q为机组负荷,b 0-b 7为设定系数;
步骤S343:若所述健康度不小于预设阈值,则对应的第一待测机组为健康机组。
由于冷水机组在运行过程中会出现例如冷凝器结垢、制冷剂泄露、压缩机电机效率下降等内部故障问题,当机组发生内部故障问题时,机组能效值将出现明显的下降,因此可以利用健康度来表征机组运行状态的优劣。
假设某机组在某一运行工况I下的实际运行能效为COP r,该工况下的理论运行能效为COP i,一段时间内(计算周期可设,例如1个月)的计算结果如H<0.8则认为该机组能效衰减严重,内部出现较为严重的故障,需要物业人员进行维保。
在数据中心的中央空调系统运行初期,通过采集一段时间内机组的运行数据,通过上式可以得到机组理论运行能效方程。
此处的健康机组指的是当前实际运行能效水平处于较高状态的机组,若H<0.8则可认为相应的机组的实际能效水平较低,但能够维持工作状态,区别于上述的故障机组。
步骤S350:根据所述机组数量确定轮询开启机组。
轮询开启机组确定具体包括以下三种情况:
若健康度大于等于预设阈值的第一待测机组(即健康机组)的机组数量大于1,则比较健康机组中的每个机组的运行时间,将运行时间最短的机组作为轮询开启机组;
若健康度大于等于预设阈值的第一待测机组的机组数量为1,则选取健康机组为轮询开启机组;
若健康度大于等于预设阈值的第一待测机组的机组数量为0,则比较所述第一待测机组中的每台机组的运行时间,将运行时间最短的第一待测机组作为轮询开启机组。
示例地,设定阈值为0.8,第一待则机组的台数为N1,则:
若H≥0.8的台数N2>1,则继续比较N2台机组的运行时间,选取时间较短的机组作为轮询开启机组;
若H≥0.8的台数N2=1,则直接选取该机组作为轮询开启机组;
若H≥0.8的台数N2=0,则比较N1台机组的运行时间,选取时间较短的机组作为轮询开启机组。
对于故障轮询,如图6所示,为故障轮询流程图,具体包括以下步骤:
步骤S361:当运行机组发生故障时,基于所述运行状态数据筛选出未运行机组;
步骤S362:判断所述未运行机组中是否有故障机组;
步骤S363:若所述未运行机组中没有故障机组,则从所述故障机组中筛选出无故障且处于自动状态下的第二待测机组;
步骤S364:计算每台第二待测机组的健康度,以确定健康机组的机组数量;
步骤S365:根据所述机组数量确定轮询开启机组。
对于健康度的计算,在上述步骤中已经详细描述,在此不再赘述。
当检测到系统发生故障时,进入故障轮询模式。读取机组数据结构,找出未运行机组,并判断未运行机组的故障情况。当无故障机组台数=0时,说明没有正常机组可以轮询,及时发出报警信号,提醒运维人员检修;当无故障机组台数≥1时,筛选出无故障且处于自动状态下的机组(待开机组台数为N1),然后获取每台机组的健康度指标H。
示例地,若H≥0.8的台数N2>1,则继续比较N2台机组的运行时间,选取时间较短的机组作为轮询开启机组;
若H≥0.8的台数N2=1,则直接选取该机组作为轮询开启机组;
若H≥0.8的台数N2=0,则比较N1台机组的运行时间,选取时间较短的机组作为轮询开启机组。
步骤S400:基于所述轮询开启机组对运行状态机组进行轮换。
如图7所示,为对运行状态机组进行轮换的流程图,具体包括以下步骤:
步骤S401:获取所述轮询开启机组的ID,以开启所述轮询开启机组;
步骤S402:对当前处于运行状态的机组进行减载或关闭故障机组。
具体地,对于定时轮询,获得轮询开启机组后,先开启轮询开启机组再关闭之前运行的机组,并复位轮换时间,等待下一次的定时轮询开始。
对于故障轮询,确定轮询开启机组后,关闭之前故障机组对应的水泵蝶阀等设备,完成故障轮询。
该方法能够实现数据中心智能环控系统在运行过程中进行智能轮询,做到兼顾调配各个设备实现寿命平均,而故障轮询则避免因某个设备故障时造成系统停机的问题。
本公开实施例还提供一种轮询环控系统,具体为数据中心职能轮询环控系统,适用于数据中心中央空调水冷机组群控产品控制,同时满足各个设备的自动启停控制、自动频率 调节、故障设备自动切换及上报信息,从而实现数据中心智能环控系统在运行过程中进行智能轮询,做到兼顾调配各个设备实现寿命平均;而故障轮询则避免因某个设备故障时造成系统停机。如图8所示,为轮询环控系统的结构框图,该系统可以包括:
接收模块100,可以被配置成用于接收机组运行状态数据;
筛选模块200,可以被配置成用于基于所述运行状态数据筛选出未运行机组;
轮询评价模块300,可以被配置成用于对所述未运行机组进行定时轮询和故障轮询,以确定轮询开启机组;
轮换模块400,可以被配置成用于基于所述轮询开启机组对运行状态机组进行轮换。
如图9所示为智能轮询环控系统架构图,其中,轮询评价模块包括定时轮询模块和故障轮询模块,属于该系统的逻辑判断层,此外,该系统还包括数据接口层和设备基础逻辑控制层。
其中,数据接口层用于与机组连接,获取中央空调系统所有监控设备的所有监控状态信息的I/O点位,其中有硬接口和通讯接口两种形式。
逻辑判断层,通过分析机组的运行状态数据判定轮询顺序,具体由定时轮询模块和故障轮询模块组成,在中央空调系统全自动运行过程中加入智能轮询逻辑,设定轮询时间来定时轮询可以避免某台机组一直长时间运行,做到兼顾调配各个设备实现寿命平均;而故障轮询则避免因某个设备故障时造成系统停机,确保数据中心服务器的稳定运行。
设备基础逻辑控制层,用于处理高效冷水机组、冷冻水泵、冷却水泵、冷却塔风机远程手动/自动启停控制,处理蝶阀远程手动/自动开关阀门控制,设备故障报警通知等。
如图10所示,为另一种轮询环控系统的结构框图,其中,轮询评价模块300包括定时轮询模块310和故障轮询模块320,定时轮询模块310可以包括:
运行筛选模块311,可以被配置成用于基于所述运行状态数据筛选出未运行机组;
判断模块312,可以被配置成用于判断所述未运行机组中是否有故障机组;
机组筛选模块313,可以被配置成用于若所述未运行机组中没有故障机组,则从所述未运行机组中筛选出无故障且处于自动状态下的第一待测机组;
健康度计算模块314,可以被配置成用于计算每台第一待测机组的健康度,以确定健康机组的机组数量;
开启确定模块315,可以被配置成用于根据所述机组数量确定轮询开启机组。
对于具体的健康度的计算,健康度计算模块314包括:
参数获取模块324,可以被配置成用于获取所述第一待测机组在当前运行工况下的实际运行能效和理论能效;
健康度确定模块334,可以被配置成用于基于所述实际运行能效和理论运行能效计算预 设周期的所述健康度,所述健康度表示为:
H=∑COP r/∑COP i
其中,H表示健康度,∑COP r表示预设周期的时间段内理论运行能效之和,∑COP i表示预设周期的时间段内实际运行能效之和;
其中,COP i=b 0+b 1T evp+b 2T cond+b 3Q+b 4T evpT cond+b 5T evpQ+b 6T condQ+b 7Q 2
其中,T evp为饱和蒸发温度,T cond为饱和冷凝温度,Q为机组负荷;
判定模块344,可以被配置成用于若所述健康度不小于预设阈值,则对应的第一待测机组为健康机组。
对于故障轮询模块的具体执行过程与定时轮询模块的执行过程相似,在此不做赘述。
轮换模块400,具体地可以被配置成用于:
获取所述轮询开启机组的ID,以开启所述轮询开启机组;对当前处于运行状态的机组进行减载或关闭故障机组。
在此过程中,对可自动启停控制的机组实现自动轮换,开启轮询开启机组(通过上述步骤选定的待开启机组),关闭当前处于运行状态的机组,避免当前处于运行状态的机组长时间运行,从而避免降低其使用寿命。若是故障机组,则开启轮询开启机组,以代替故障机组,避免系统因故障机组停止工作而停机,再关闭故障机组的水泵蝶阀等设备,因为故障机组虽具有故障但其水泵蝶阀等仍处于运行状态,因此需要将水泵蝶阀等关闭。
通过设定定时轮询和故障轮询机制,对正在运行的设备进行自动轮换,避免同一设备长时间工作,保证系统常年稳定运行,解决了相关技术系统中的某一台设备长时间工作导致降低寿命且发生故障导致系统停机的问题。
本公开实施例还提供一种电子设备,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行上述的轮询环控方法。
本公开实施例还提供一种可读存储介质,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行上述的轮询环控方法。
在本公开所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本公开的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们 有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本公开各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本公开的实施例而已,并不用于限制本公开的保护范围,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
工业实用性
本公开提供了本公开实施例提供一种轮询环控方法、系统、电子设备及存储介质,涉及设备自动控制技术领域。该方法包括接收机组运行状态数据;基于所述运行状态数据筛选出未运行机组;对所述未运行机组进行定时轮询和故障轮询,以确定轮询开启机组;基 于所述轮询开启机组对运行状态机组进行轮换,设定定时轮询和故障轮询机制,对正在运行的设备进行自动轮换,避免同一设备长时间工作,保证系统常年稳定运行,解决了相关技术系统中的某一台设备长时间工作导致降低寿命且发生故障导致系统停机的问题。
此外,可以理解的是,本公开的一种轮询环控方法、系统、电子设备及存储介质是可以重现的,并且可以用在多种工业应用中。例如,本公开的一种轮询环控方法、系统、电子设备及存储介质可以用于设备自动控制技术领域。

Claims (18)

  1. 一种轮询环控方法,其中,所述方法包括:
    接收机组的运行状态数据;
    通过定时轮询和/或故障轮询,确定轮询开启机组;
    基于所述轮询开启机组对运行状态机组进行轮换。
  2. 根据权利要求1所述的轮询环控方法,其中,所述接收机组的运行状态数据包括:
    将所述运行状态数据生成机组数据结构,以读取所述机组数据结构进行定时轮询和故障轮询,所述机组数据结构包括设备编号、运行状态、故障状态、健康度以及运行时间。
  3. 根据权利要求1或2所述的轮询环控方法,其中,所述通过定时轮询和/或故障轮询,确定轮询开启机组,包括:
    基于所述运行状态数据筛选出未运行机组;
    对所述未运行机组进行健康度计算,以确定健康机组;
    根据所述健康机组确定轮询开启机组。
  4. 根据权利要求3所述的轮询环控方法,其中,所述对所述未运行机组进行健康度计算,以确定健康机组,包括:
    获取所述未运行机组在当前运行工况下的实际运行能效和理论能效;
    基于所述实际运行能效和理论运行能效计算预设周期的健康度。
  5. 根据权利要求3或4所述的轮询环控方法,其中,所述对所述未运行机组进行定时轮询,以确定轮询开启机组,包括:
    判断所述未运行机组中是否有故障机组;
    若所述未运行机组中没有故障机组,则从所述未运行机组中筛选出无故障的第一待测机组;
    根据所述第一待测机组的健康度,确定所述第一待测机组中的健康机组的机组数量;
    根据所述机组数量确定轮询开启机组。
  6. 根据权利要求3或4所述的轮询环控方法,其中,所述对所述未运行机组进行故障轮询,以确定轮询开启机组,包括:
    当运行机组发生故障时,从所述未运行机组中筛选出无故障且处于自动状态下的第二待测机组;
    根据所述第二待测机组的健康度,确定所述第二待测机组中的健康机组的机组数量;
    根据所述机组数量确定轮询开启机组。
  7. 根据权利要求5或6所述的轮询环控方法,其中,所述确定所述健康机组的机组数 量,包括:
    若所述健康度不小于预设阈值,则为健康机组。
  8. 根据权利要求5或6所述的轮询环控方法,其中,所述根据所述机组数量确定轮询开启机组,包括:
    若健康机组的机组数量大于1,则比较所述健康机组中的每个机组的运行时间,将运行时间最短的机组作为轮询开启机组;
    若健康机组的机组数量为1,则选取所述健康机组为轮询开启机组;
    若健康机组的机组数量为0,则比较待测机组中的每台机组的运行时间,将运行时间最短的待测机组作为轮询开启机组。
  9. 根据权利要求1至8中任一项所述的轮询环控方法,其中,所述基于所述轮询开启机组对运行状态机组进行轮换,包括:
    开启所述轮询开启机组;
    对当前处于运行状态的机组进行减载或关闭故障机组。
  10. 一种轮询环控系统,其中,所述系统包括:
    接收模块,被配置成用于接收机组的运行状态数据;
    轮询评价模块,被配置成用于通过定时轮询和/或故障轮询,确定轮询开启机组;
    轮换模块,被配置成用于基于所述轮询开启机组对运行状态机组进行轮换。
  11. 根据权利要求10所述的轮询环控系统,其中,所述接收模块还配置成用于:
    将所述运行状态数据生成机组数据结构,以读取所述机组数据结构进行定时轮询和故障轮询,所述机组数据结构包括设备编号、运行状态、故障状态、健康度以及运行时间。
  12. 根据权利要求10或11所述的轮询环控系统,其中,所述轮询评价模块包括定时轮询模块和故障轮询模块,所述定时轮询模块包括:
    运行筛选模块,被配置成用于基于所述运行状态数据筛选出未运行机组;
    健康度计算模块,被配置成用于对所述未运行机组进行健康度计算,以确定健康机组;
    开启确定模块,被配置成用于根据所述健康机组确定轮询开启机组。
  13. 根据权利要求12所述的轮询环控系统,其中,所述健康度计算模块还包括:
    参数获取模块,被配置成用于获取所述未运行机组在当前运行工况下的实际运行能效和理论能效;
    健康度确定模块,被配置成用于基于所述实际运行能效和理论运行能效计算预设周期的健康度。
  14. 根据权利要求12或13所述的轮询环控系统,其中,所述定时轮询模块还包括:判断模块,被配置成用于判断所述未运行机组中是否有故障机组;其中,
    所述机组筛选模块被配置成用于若所述未运行机组中没有故障机组,则从所述未运行机组中筛选出无故障的第一待测机组;
    所述健康度计算模块被配置成用于根据所述第一待测机组的健康度,确定所述第一待测机组中的健康机组的机组数量;
    所述开启确定模块被配置成用于根据所述机组数量确定轮询开启机组。
  15. 根据权利要求14所述的轮询环控系统,其中,所述判定模块被配置成用于若所述健康度不小于预设阈值,则对应的第一待测机组为健康机组。
  16. 根据权利要求10至15中任一项所述的轮询环控系统,其中,所述轮换模块被配置成用于:获取所述轮询开启机组的ID,以开启所述轮询开启机组;对当前处于运行状态的机组进行减载或关闭故障机组。
  17. 一种电子设备,其中,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行根据权利要求1至9中任一项所述的轮询环控方法。
  18. 一种可读存储介质,其中,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行根据权利要求1至9中任一项所述的轮询环控方法。
PCT/CN2022/136335 2021-12-28 2022-12-02 一种轮询环控方法、系统、电子设备及存储介质 WO2023124781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22914036.3A EP4375584A1 (en) 2021-12-28 2022-12-02 Polling loop control method and system, electronic device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111629224.5A CN114322213A (zh) 2021-12-28 2021-12-28 一种轮询环控方法、系统、电子设备及存储介质
CN202111629224.5 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023124781A1 true WO2023124781A1 (zh) 2023-07-06

Family

ID=81014970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136335 WO2023124781A1 (zh) 2021-12-28 2022-12-02 一种轮询环控方法、系统、电子设备及存储介质

Country Status (3)

Country Link
EP (1) EP4375584A1 (zh)
CN (1) CN114322213A (zh)
WO (1) WO2023124781A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322213A (zh) * 2021-12-28 2022-04-12 上海美控智慧建筑有限公司 一种轮询环控方法、系统、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157276A (ja) * 1999-11-30 2001-06-08 Matsushita Electric Works Ltd 制御システムにおける通信処理方法
CN107975909A (zh) * 2017-11-22 2018-05-01 珠海格力电器股份有限公司 空调备用机开启控制方法、装置及计算机可读存储介质
EP3450880A1 (fr) * 2017-09-05 2019-03-06 ALSTOM Transport Technologies Procédé de supervision d'un système de climatisation d'un véhicule ferroviaire et véhicule ferroviaire comportant un système de climatisation mettant en oeuvre ce procédé
CN111306706A (zh) * 2019-10-10 2020-06-19 珠海派诺科技股份有限公司 一种空调联动控制方法及系统
CN113654201A (zh) * 2021-08-10 2021-11-16 青岛海信日立空调系统有限公司 中央空调控制系统
CN114322213A (zh) * 2021-12-28 2022-04-12 上海美控智慧建筑有限公司 一种轮询环控方法、系统、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613327B (zh) * 2018-03-30 2019-10-08 珠海格力电器股份有限公司 一种室外机的组合轮换运行方法、装置及多联机系统
CN110147086A (zh) * 2019-04-29 2019-08-20 上海外高桥第二发电有限责任公司 电厂中在线设备的健康状态的确定方法及系统
CN110108002B (zh) * 2019-05-31 2021-02-26 珠海格力电器股份有限公司 提高运行能效和稳定性的室外机运行控制方法和装置
CN110319540A (zh) * 2019-06-28 2019-10-11 广东志高暖通设备股份有限公司 一种动态调整的模块式多联机控制方法
CN113537652A (zh) * 2020-03-31 2021-10-22 厦门邑通软件科技有限公司 设备健康监控预警方法、系统、储存介质和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157276A (ja) * 1999-11-30 2001-06-08 Matsushita Electric Works Ltd 制御システムにおける通信処理方法
EP3450880A1 (fr) * 2017-09-05 2019-03-06 ALSTOM Transport Technologies Procédé de supervision d'un système de climatisation d'un véhicule ferroviaire et véhicule ferroviaire comportant un système de climatisation mettant en oeuvre ce procédé
CN107975909A (zh) * 2017-11-22 2018-05-01 珠海格力电器股份有限公司 空调备用机开启控制方法、装置及计算机可读存储介质
CN111306706A (zh) * 2019-10-10 2020-06-19 珠海派诺科技股份有限公司 一种空调联动控制方法及系统
CN113654201A (zh) * 2021-08-10 2021-11-16 青岛海信日立空调系统有限公司 中央空调控制系统
CN114322213A (zh) * 2021-12-28 2022-04-12 上海美控智慧建筑有限公司 一种轮询环控方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
EP4375584A1 (en) 2024-05-29
CN114322213A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023124781A1 (zh) 一种轮询环控方法、系统、电子设备及存储介质
US20200200420A1 (en) Building management system with central plantroom dashboards
US11112137B2 (en) HVAC performance monitoring system
US20240168503A1 (en) Hvac system with data driven user interface for equipment commissioning and operation
US7165192B1 (en) Fault isolation in large networks
US20160217378A1 (en) Identifying anomalous behavior of a monitored entity
US11269320B2 (en) Methods and apparatuses for detecting faults in HVAC systems based on load level patterns
CN101753357A (zh) 一种网络服务器集中监控系统和方法
AU2016288680A1 (en) Maintenance and diagnostics for refrigeration systems
US8140913B2 (en) Apparatus and method for monitoring computer system, taking dependencies into consideration
WO2013153467A1 (en) Cooling system control and servicing based on time-based variation of an operational variable
WO2023005323A1 (zh) 空调机组的故障监测方法
CN107062559B (zh) 一种空调器缺氟检测方法、装置及空调系统
CN111425989B (zh) 管路连接异常检测方法、装置及多联机空调器
CN109752624B (zh) 液冷流路通断检测方法及装置
CN114322200B (zh) 空调器冷媒泄漏的检测方法、装置、空调器及存储介质
US20190146431A1 (en) Building management system with geolocation-based fault notifications
CN116668644B (zh) 一种基于实时监测的摄像装置管理方法与系统
CN110486888B (zh) 一种室内机控制主板异常判断方法、装置及空调机组
US20240068721A1 (en) Systems and methods for refrigerant leakage diagnosis
CN114646342A (zh) 用于定位异常传感器的方法、设备和介质
US9898024B2 (en) Energy consumption modeling
CN110750427A (zh) 一种数据中心设备巡检方法及系统
CN111188782A (zh) 一种风扇冗余测试方法、装置和计算机可读存储介质
JP2005069540A (ja) データ管理機能付き冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022914036

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022914036

Country of ref document: EP

Effective date: 20240221