WO2023124583A1 - 一种钢轨修复后处理策略制定方法 - Google Patents

一种钢轨修复后处理策略制定方法 Download PDF

Info

Publication number
WO2023124583A1
WO2023124583A1 PCT/CN2022/131527 CN2022131527W WO2023124583A1 WO 2023124583 A1 WO2023124583 A1 WO 2023124583A1 CN 2022131527 W CN2022131527 W CN 2022131527W WO 2023124583 A1 WO2023124583 A1 WO 2023124583A1
Authority
WO
WIPO (PCT)
Prior art keywords
repair
rail
quality
parameters
data
Prior art date
Application number
PCT/CN2022/131527
Other languages
English (en)
French (fr)
Inventor
巫世晶
蔡世荣
李登
张琨
武子全
Original Assignee
武汉大学
中铁第四勘察设计院集团有限公司
沈阳奥拓福科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学, 中铁第四勘察设计院集团有限公司, 沈阳奥拓福科技股份有限公司 filed Critical 武汉大学
Publication of WO2023124583A1 publication Critical patent/WO2023124583A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • E01B31/02Working rail or other metal track components on the spot
    • E01B31/12Removing metal from rails, rail joints, or baseplates, e.g. for deburring welds, reconditioning worn rails
    • E01B31/17Removing metal from rails, rail joints, or baseplates, e.g. for deburring welds, reconditioning worn rails by grinding
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • E01B31/02Working rail or other metal track components on the spot
    • E01B31/18Reconditioning or repairing worn or damaged parts on the spot, e.g. applying inlays, building-up rails by welding; Heating or cooling of parts on the spot, e.g. for reducing joint gaps, for hardening rails
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the invention relates to the technical field of post-repair treatment of rails, and more particularly, to a method for formulating post-repair treatment strategies of rails.
  • the maintenance and repair of rails under high-speed and high-density driving is related to the reliability of rails during their service period. Because of their short damage cycle, low service life, and high operation and maintenance costs, they have become a worldwide problem. Evaluation of the quality of rails after grinding And processing has also become an urgent problem to be solved. Through the rail profile deviation curve and profile quality index, quantify the rail profile state, and predict whether the rail profile state will cause abnormal vibration of the EMU can give reasonable rail grinding suggestions . Since the section profile of the rail is only a part of the quality of the rail, its profile quality index cannot fully reflect the quality of the polished rail. To repair the rail more reliably, more quality parameters of the rail must be considered.
  • the existing technology has the following disadvantages: (1) At present, through the rail profile deviation curve and the profile quality index, the rail profile state is quantified, and whether the rail profile state will cause abnormal vibration of the EMU is predicted, and given Reasonable rail grinding suggestions, but the profile of the rail section is only a part of the quality of the rail, and its profile quality index cannot fully reflect the quality of the rail after grinding. To repair the rail more reliably, more quality of the rail must be considered (2) The quality parameter database cannot be established for the rails of different road conditions and road sections, and the inspection and evaluation after repairing is not accurate; (3) For the rails whose quality evaluation does not meet expectations, manual or repairing vehicles are used for secondary grinding. Divide quality levels for repair, wasting manpower repair resources.
  • the present invention provides a post-repair treatment strategy formulation method for rails.
  • This method collects laboratory repair data and online repair data in actual working conditions, and uses the online repair data in actual working conditions for ideal
  • the benchmark value is corrected, and the two complement each other to finally obtain the rail repair result data, and the repair data of different road conditions and different road sections are collected and summarized separately, the obtained rail repair result data is more accurate, and then the rail repair data under different road conditions and different road sections is calculated.
  • the quality of the rail repair results is graded.
  • the grinding data of the repaired car is compared with the database to formulate different According to the unqualified rails after evaluation, according to the quality level, two processing methods are carried out, namely, the secondary grinding of the repair car and manual repair, and the appropriate solution is adopted for the rails of different quality, which solves the problem of the quality evaluation of the rails after repair. Problems where precision and post-processing strategies cannot be formulated quickly.
  • the invention provides a method for formulating a treatment strategy after rail repair, comprising the following steps:
  • S100 collect and establish a quality grading database, determine the four parameters of the rail defect grade, cross-section profile, surface roughness and smoothness, and the grade coefficient H of the rail’s service requirements for this section, and store the above parameters in the database.
  • the establishment of the railway information network according to the nature of the use of the rail, whether it is curved, whether it is easy to brake and accelerate, etc., determine the required indicators of the four parameters of the rail as A XYZ , B XYZ , C XYZ , D XYZ , where X represents the beginning Departing station, Y indicates the terminal station, Z indicates the distance from the originating station;
  • S300 formulate post-processing strategy for rail repair, rails with qualified grinding results do not need secondary grinding treatment, and rails with unqualified quality levels are subjected to secondary grinding.
  • the S100 includes the following steps:
  • S101 collecting rail repair result data, the result data includes laboratory repair data and online repair data in actual working conditions, taking the laboratory repair data as an ideal benchmark value, and using the online repair data in actual working conditions to correct the ideal benchmark value;
  • S102 classify the quality of the result data, sort out the rail repair result data, and calculate the parameters of the rail repair under different road conditions and different road sections, the parameters include defect grade, section profile, surface roughness, smoothness, and According to the impact weight of these parameters on the service reliability of the rail and the minimum requirements for the parameters, the quality of the rail repair results is graded;
  • the S200 includes the following steps:
  • S202 analyze and identify the grinding results, obtain the surface shape data of the repaired rail, survey and map the surface state of the repaired rail in real time, compare the surface state with the shape data, and extract the section profile, surface roughness, smoothness and whether there are defects;
  • the S300 includes the following steps:
  • the S300 includes the following steps:
  • the present invention provides a post-processing strategy formulation method for rail repair, which collects laboratory repair data and online repair data in actual working conditions, uses the online repair data in actual working conditions to correct the ideal benchmark value, and the two complement each other to finally obtain Rail repair result data, and the repair data of different road conditions and different road sections are collected and summarized separately, the obtained rail repair result data is more accurate, and then the parameters after rail repair under different road conditions and different road sections are calculated.
  • the parameters include defect level, Section profile, surface roughness, smoothness, and according to the influence weight of these parameters on the service reliability of the rail, and the minimum requirements for the parameters, the quality of the rail repair results is graded.
  • the two processing methods of repairing the car for secondary grinding and manual repair are respectively carried out, and suitable solutions are adopted for the rails of different qualities, which saves Human resources for repairing, solve the problems of inaccurate quality evaluation after rail repairing and inability to quickly formulate post-processing strategies.
  • the present invention provides a post-repair treatment strategy formulation method for rails in different road conditions and sections, classifying the parameter standards and quality levels required for detection, and using the image collector on the repair vehicle to collect images
  • the appearance data can be used to dynamically monitor the quality of the rail after repair, and the comparison with the database can realize the evaluation and improve the efficiency of post-repair processing.
  • Fig. 1 is a flowchart one of dynamic detection, real-time evaluation and timely processing of quality after rail repair among the present invention
  • Fig. 2 is the second flow chart of the dynamic detection, real-time evaluation and timely processing of the repaired rail quality in the present invention.
  • the present invention provides a portable high-pressure water jet rail grinding incident angle calibration method, which specifically includes the following steps:
  • this step includes S101, collecting rail repair result data; S102, performing quality classification on the result data; S103, establishing a quality classification database;
  • this step includes S201, collecting the grinding results of the online repair vehicle; S202, analyzing and identifying the grinding results; S203, comparing the grinding results with the database;
  • this step includes S301, without secondary grinding; S302, using a repair car to perform secondary grinding; and S303, manually repairing the section of rail.
  • the collected rail repair result data includes laboratory repair data and online repair data in actual working conditions.
  • laboratory repair data is more ideal because of its better working conditions in the laboratory.
  • the laboratory repair data is taken as the ideal benchmark value, and the online repair data of the actual working conditions are used to correct the ideal benchmark value, and finally the rail repair result data is obtained, and the repair data of different road conditions and different road sections are collected and summarized separately.
  • the laboratory data and online repair data complement each other, and the obtained rail repair result data is more accurate.
  • the rail repair result data obtained in S101 is sorted and analyzed, and the parameters after rail repair under different road conditions and different road sections are calculated.
  • the quality of rail repair results is graded according to the influence weight of these parameters on the service reliability of the rail and the minimum requirements for the parameters.
  • the parameters after repairing the rails in S101 and S102, the minimum requirements for the parameters, and the quality classification results are summarized to obtain a quality classification database.
  • the data in the database are based on different road conditions, different road sections, and different repair requirements. etc. for classification.
  • both image acquisition devices are used for data acquisition.
  • both image acquisition devices are installed at the rear of the online repair vehicle.
  • S202 analyze and identify the acquired image data, obtain the topography data of the repaired rail surface, survey and map the surface state of the repaired rail in real time, compare the surface state with the topography data, and extract the cross-sectional profile Degree, surface roughness, whether there are defects, smoothness and other results.
  • S203 compare the results of section contour, surface roughness, whether there are defects, smoothness, etc. extracted in S202 with the database in S103, so as to obtain the repair quality level of the section of rail, specifically, If the quality parameters of the repaired rails all meet the minimum required quality index, then the repair quality level of the rail is qualified, and directly enter the step S301, that is, there is no need for secondary grinding treatment; otherwise, if the repair quality level of the rail is unqualified, then enter S302 step.
  • the initial score is obtained by evaluating the quality grade of the rail, and according to the actual road condition requirements of the section of the rail, multiplied by the rail service requirement grade coefficient to obtain the rail repair quality grade score, if the quality grade score is higher , then perform step S302, control the repair vehicle to perform secondary grinding on the rail, if the quality grade score is low, then perform step S303, manually repair the section of rail, which saves manpower, and for different sections of rail, according to the specific repair According to the situation, a processing strategy that meets the actual needs has been formulated.
  • the high-pressure water jet online rail repair vehicle was used to grind and repair the high-speed rail rails in a curved section. Since the rails in the curved road section and the straight rails have roughly the same failure mode, but the inner side of the curved rail is more severely worn, so here The impact weight of the profile shape on the service reliability of the rail is relatively large.
  • the database is established on the basis of the railway information network.
  • the nature of use, whether it is curved, whether it is easy to brake and accelerate, etc., the required indicators to determine the four parameters of the rail are A XYZ , B XYZ , C XYZ , D XYZ , where X represents the starting station, Y represents the terminal station, Z represents the distance from the originating station.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

一种钢轨修复后处理策略制定方法,采集实验室修复数据和实际工况中在线修复数据,使用实际工况的在线修复数据对理想基准值进行修正,两者相互补充最终得到钢轨修复结果数据,对不同路段的修复数据分别收集和汇总,然后计算出不同路况、不同路段下钢轨修复后的参数,并根据这些参数对钢轨服役可靠性的影响权重,以及对参数的最低要求,对钢轨修复结果进行质量分级,然后将修复车的打磨数据与数据库比对,制定不同的解决方案,经过评估不合格的钢轨,根据质量等级高低,分别进行修复车二次打磨和人工修复两种处理方式,解决了钢轨修复后质量评估不精确和后处理策略无法快速制定的问题。

Description

一种钢轨修复后处理策略制定方法 技术领域
本发明涉及钢轨修复后处理技术领域,更具体地,涉及一种钢轨修复后处理策略制定方法。
背景技术
高速度、高密度行车下钢轨养护和维修关系到钢轨服役期间的可靠性,因其伤损周期短、使用寿命低、运维费用高成为世界性的难题,而对钢轨打磨后的质量的评估和处理,也成为亟待解决的问题,通过钢轨廓形偏差曲线和廓形质量指数,量化钢轨廓形状态,对钢轨廓形状态是否会导致动车组异常振动进行预测可以给出合理的钢轨打磨建议。由于钢轨截面轮廓度只是钢轨质量的一部分,其廓形质量指数并不能完整反映出打磨后钢轨的质量,若要对铁轨进行更可靠的修复,必须考虑钢轨更多的质量参数。
现有技术存在如下几个缺点:(1)目前,通过钢轨廓形偏差曲线和廓形质量指数,量化钢轨廓形状态,对钢轨廓形状态是否会导致动车组异常振动进行预测,并给出合理的钢轨打磨建议,但钢轨截面轮廓度只是钢轨质量的一部分,其廓形质量指数并不能完整反映出打磨后钢轨的质量,若要对铁轨进行更可靠的修复,必须考虑钢轨更多的质量参数;(2)不能针对不同路况和路段的钢轨建立质量参数数据库,对修复后的检查评估不精确;(3)对于质量评估不符合预期的钢轨统一采用人工或修复车进行二次打磨,未划分质量等级进行修复,浪费了人力修复资源。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供一种钢轨修复后处理策略制定方法,本方法采集实验室修复数据和实际工况中在线修复数据, 使用实际工况的在线修复数据对理想基准值进行修正,两者相互补充最终得到钢轨修复结果数据,且对不同路况、不同路段的修复数据分别收集和汇总,得到的钢轨修复结果数据更加准确,然后计算出不同路况、不同路段下钢轨修复后的参数,并根据这些参数对钢轨服役可靠性的影响权重,以及对参数的最低要求,对钢轨修复结果进行质量分级,建立数据库后,将修复车的打磨数据与数据库比对,制定不同的解决方案,经过评估不合格的钢轨,针对质量等级高低,分别进行修复车二次打磨和人工修复两种处理方式,针对不同质量的钢轨采取合适的解决方案,解决了钢轨修复后质量评估不精确和后处理策略无法快速制定的问题。
本发明提供一种钢轨修复后处理策略制定方法,包括以下步骤:
S100,收集和建立质量分级数据库,确定钢轨的瑕疵等级、截面轮廓度、表面粗糙度和平顺性四项参数,以及该路段钢轨的使用要求等级系数H,将以上参数存入数据库中,数据库依托铁路信息网建立,根据钢轨的使用性质、是否弯道、是否易刹车加速等实际使用情况,确定钢轨的四项参数的要求指标为A X-Y-Z、B X-Y-Z、C X-Y-Z、D X-Y-Z,其中X表示始发站,Y表示终点站,Z表示据始发站距离;
S200,采集修复结果数据并与数据库比对,采集在线修复车打磨结果,得到修复后的钢轨瑕疵等级、截面轮廓度、表面粗糙度、平顺性四项参数,分别为A 1、A 2、A 3、A 4,并将采集的四项参数与所述最低要求参数指标分别对比,根据以下公式计算钢轨修复质量等级分数G 1,若合格,则结束该路段钢轨打磨修复作业,若不合格,则进行钢轨修复后处理,其中,G 1=f(H,A X-Y-Z,A 1),以此类推计算出G 1、G 2、G 3、G 4
S300,制定钢轨修复后处理策略,打磨结果合格的钢轨无需二次打磨处理,对质量等级不合格的钢轨,进行二次打磨。
所述S100包括以下步骤:
S101,收集钢轨修复结果数据,该结果数据包括实验室修复数据和实际工况中在线修复数据,以实验室修复数据为理想基准值,使用实际工况的在线修复数据对理想基准值修正;
S102,对结果数据进行质量分级,将所述钢轨修复结果数据进行整理,计算不同路况、不同路段下钢轨修复后的参数,该参数包括瑕疵等级、截面轮廓度、表面粗糙度、平顺性,并根据这些参数对钢轨服役可靠性的影响权重,以及对参数的最低要求,对钢轨修复结果进行质量分级;
S103,建立质量分级数据库,将钢轨修复后的参数、参数的最低要求和质量分级结果汇总,得到质量分级数据库。
进一步地,所述S200包括以下步骤:
S201,使用在线修复车上的电磁波摄像机和高速摄像机两种图像采集设备,采集在线修复车打磨结果;
S202,分析识别打磨结果,得到修复后钢轨表面的形貌数据,实时测绘钢轨修复后的表面状态,将该表面状态与形貌数据进行对比,提取出截面轮廓度、表面粗糙度、平顺性和是否有瑕疵;
S203,将打磨结果与数据库进行对比,将S202中的截面轮廓度、表面粗糙度、是否有瑕疵进而平顺性结果,与S103中的数据库进行对比,得到该段钢轨的修复质量等级。
进一步地,所述S300包括以下步骤:
S301,若修复后的钢轨质量参数均满足最低要求质量指标,则钢轨的修复质量等级为合格,无需二次打磨处理;
S302,使用修复车进行二次打磨,若钢轨的修复质量等级不合格,则使用修复车对钢轨二次打磨。
进一步地,所述S300包括以下步骤:
S303,若该质量等级分数为60至80分,则控制修复车对钢轨进行二次打磨,若质量等级分数小于60分,则对该路段钢轨进行人工修复。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1.本发明提供一种钢轨修复后处理策略制定方法,采集实验室修复数据和实际工况中在线修复数据,使用实际工况的在线修复数据对理想基准值进行修正,两者相互补充最终得到钢轨修复结果数据,且对不同路况、不同路段的修复数据分别收集和汇总,得到的钢轨修复结果数据更加准确,然后计算出不同路况、不同路段下钢轨修复后的参数,该参数包括瑕疵等级、截面轮廓度、表面粗糙度、平顺性,并根据这些参数对钢轨服役可靠性的影响权重,以及对参数的最低要求,对钢轨修复结果进行质量分级,建立数据库后,将修复车的打磨数据与数据库比对,制定不同的解决方案,经过评估不合格的钢轨,针对质量等级高低,分别进行修复车二次打磨和人工修复两种处理方式,针对不同质量的钢轨采取合适的解决方案,节省了人力修复资源,解决了钢轨修复后质量评估不精确和后处理策略无法快速制定的问题。
2.本发明提供一种钢轨修复后处理策略制定方法,针对不同路况、不同路段的钢轨,对其检测所需的参数标准和质量等级进行分类,同时使用修复车上的图像采集器进行收集形貌数据,可对钢轨修复后质量进行动态监测,与数据库进行比对可以实现实施评估,提高了修复后处理效率。
附图说明
图1是本发明中钢轨修复后质量的动态检测、实时评估和及时处理的流程图一;
图2是本发明中钢轨修复后质量的动态检测、实时评估和及时处理的流程图二。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1和图2所示,本发明提供便携式高压水射流钢轨打磨入射角标定方法,具体包括以下步骤:
S100,收集和建立质量分级数据库;
具体地,该步骤包括S101,收集钢轨修复结果数据;S102,对结果数据进行质量分级;S103,建立质量分级数据库;
S200,采集修复结果数据并与数据库比对;
具体地,该步骤包括S201,采集在线修复车打磨结果;S202,分析识别打磨结果;S203,将打磨结果与数据库进行对比;
S300,制定钢轨修复后处理策略。
具体地,该步骤包括S301,无需二次打磨处理;S302,使用修复车进行二次打磨;S303,对该段钢轨进行人工修复。
进一步地,在S101中,收集的钢轨修复结果数据包括实验室修复数据和实际工况中在线修复数据,实验室因其工况环境较好,相对于在线修复而言,实验室修复数据较为理想,故以实验室修复数据为理想基准值,使用实际工况的在线修复数据对理想基准值进行修正,最终得到钢轨修复结果数据,并对不同路况、不同路段的修复数据分别收集和汇总,通过实验室数据和在线修复数据两者相互补充,得到的钢轨修复结果数据更加准确。
进一步地,在S102中,将S101所得到的钢轨修复结果数据进行整理和分析,计算出不同路况、不同路段下钢轨修复后的参数,该参数包括瑕疵等级、截面轮廓度、表面粗糙度、平顺性等,并根据这些参数对钢轨服役可靠性的影响权重,以及对参数的最低要求,对钢轨修复结果进行质量分级。
进一步地,在S103中,将S101和S102中的将钢轨修复后的参数、参 数的最低要求和质量分级结果汇总,得到质量分级数据库,该数据库中的数据根据不同路况、不同路段、不同修复要求等进行分类。
进一步地,在S201中,使用电磁波摄像机和高速摄像机两种图像采集设备进行数据采集,优选地,两种图像采集设备均安装于在线修复车的尾部。
进一步地,在S202中,对获取的图像数据进行分析识别,得到修复后钢轨表面的形貌数据,实时测绘钢轨修复后的表面状态,将该表面状态与形貌数据进行对比,提取出截面轮廓度、表面粗糙度、是否有瑕疵、平顺性等结果。
进一步地,在S203中,将S202提取出的截面轮廓度、表面粗糙度、是否有瑕疵、平顺性等结果,与S103中的数据库进行对比,从而得到该段钢轨的修复质量等级,具体地,若修复后的钢轨质量参数均满足最低要求质量指标,则钢轨的修复质量等级为合格,直接进入S301步骤,即无需进行二次打磨处理,反之,若钢轨的修复质量等级不合格,则进入S302步骤。
进一步地,在S301中,对钢轨的质量等级进行评估得出初始分数,并根据该段钢轨实际路况要求,乘以钢轨使用要求等级系数,得到钢轨修复质量等级分数,若该质量等级分数较高,则进行S302步骤,控制修复车对钢轨进行二次打磨,若质量等级分数较低,则进行S303步骤,对该段铁轨进行人工修复,这样节省了人力,对不同节段钢轨,根据具体修复情况,制定了符合实际需求的处理策略。
实施例:
某次钢轨修复作业中,使用高压水射流在线钢轨修复车,对某弯道段高铁钢轨进行打磨修复,由于弯道路段钢轨与直线钢轨失效形式大致相同,但是弯轨内侧磨损较为严重,故此处轮廓形状对钢轨服役可靠性的影响权重较大。
首先进行S100步骤,确定钢轨的瑕疵等级、截面轮廓度、表面粗糙度 和平顺性,以及该段钢轨使用要求等级系数H,将以上参数存入数据库中,数据库依托铁路信息网建立,根据钢轨的使用性质、是否弯道、是否易刹车加速等实际使用情况,确定钢轨的四项参数的要求指标为A X-Y-Z、B X-Y-Z、C X-Y-Z、D X-Y-Z,其中X表示始发站,Y表示终点站,Z表示据始发站距离。
根据S200开始进行钢轨修复打磨,并采集修复后的钢轨数据,得到修复后的钢轨瑕疵等级、截面轮廓度、表面粗糙度、平顺性等四项参数为A 1、A 2、A 3、A 4,并将采集的四项参数与所述最低要求参数指标分别对比,根据以下公式计算钢轨修复质量等级分数G 1,若合格,则结束该路段钢轨打磨修复作业,若不合格,则进行钢轨修复后处理,其中,G 1=f(H,A X-Y-Z,A 1),以此类推。
进一步地,根据S300制定钢轨修复后处理策略,质量等级分数及其修复处理建议如下表,根据质量等级分数落入不同的区间,采纳不同的处理建议,该段钢轨修复作业结束。
Figure PCTCN2022131527-appb-000001
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种钢轨修复后处理策略制定方法,其特征在于,包括以下步骤:
    S100,收集和建立质量分级数据库,确定钢轨的瑕疵等级、截面轮廓度、表面粗糙度和平顺性四项参数,以及该路段钢轨的使用要求等级系数H,将以上参数存入数据库中,数据库依托铁路信息网建立,根据钢轨的使用性质、是否弯道、是否易刹车加速等实际使用情况,确定钢轨的四项参数的要求指标为A X-Y-Z、B X-Y-Z、C X-Y-Z、D X-Y-Z,其中X表示始发站,Y表示终点站,Z表示据始发站距离;
    S200,采集修复结果数据并与数据库比对,采集在线修复车打磨结果,得到修复后的钢轨瑕疵等级、截面轮廓度、表面粗糙度、平顺性四项参数,分别为A 1、A 2、A 3、A 4,并将采集的四项参数与最低要求参数指标分别对比,根据以下公式计算钢轨修复质量等级分数G 1,若合格,则结束该路段钢轨打磨修复作业,若不合格,则进行钢轨修复后处理,其中,G 1=f(H,A X-Y-Z,A 1),以此类推计算出G 1、G 2、G 3、G 4
    S300,制定钢轨修复后处理策略,打磨结果合格的钢轨无需二次打磨处理,对质量等级不合格的钢轨,进行二次打磨。
  2. 根据权利要求1所述的一种钢轨修复后处理策略制定方法,其特征在于,所述S100包括以下步骤:
    S101,收集钢轨修复结果数据,该结果数据包括实验室修复数据和实际工况中在线修复数据,以实验室修复数据为理想基准值,使用实际工况的在线修复数据对理想基准值修正;
    S102,对结果数据进行质量分级,将所述钢轨修复结果数据进行整理,计算不同路况、不同路段下钢轨修复后的参数,该参数包括瑕疵等级、截面轮廓度、表面粗糙度、平顺性,并根据这些参数对钢轨服役可靠性的影 响权重,以及对参数的最低要求,对钢轨修复结果进行质量分级;
    S103,建立质量分级数据库,将钢轨修复后的参数、参数的最低要求和质量分级结果汇总,得到质量分级数据库。
  3. 根据权利要求2所述的一种钢轨修复后处理策略制定方法,其特征在于,所述S200包括以下步骤:
    S201,使用在线修复车上的电磁波摄像机和高速摄像机两种图像采集设备,采集在线修复车打磨结果;
    S202,分析识别打磨结果,得到修复后钢轨表面的形貌数据,实时测绘钢轨修复后的表面状态,将该表面状态与形貌数据进行对比,提取出截面轮廓度、表面粗糙度、平顺性和是否有瑕疵;
    S203,将打磨结果与数据库进行对比,将S202中的截面轮廓度、表面粗糙度、是否有瑕疵进而平顺性结果,与S103中的数据库进行对比,得到该段钢轨的修复质量等级。
  4. 根据权利要求2所述的一种钢轨修复后处理策略制定方法,其特征在于,所述S300包括以下步骤:
    S301,若修复后的钢轨质量参数均满足最低要求质量指标,则钢轨的修复质量等级为合格,无需二次打磨处理;
    S302,使用修复车进行二次打磨,若钢轨的修复质量等级不合格,则使用修复车对钢轨二次打磨。
  5. 根据权利要求3所述的一种钢轨修复后处理策略制定方法,其特征在于,在所述S300包括以下步骤:
    S303,若该质量等级分数为60至80分,则控制修复车对钢轨进行二次打磨,若质量等级分数小于60分,则对该路段钢轨进行人工修复。
PCT/CN2022/131527 2021-12-30 2022-11-11 一种钢轨修复后处理策略制定方法 WO2023124583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111652109.XA CN114279314B (zh) 2021-12-30 2021-12-30 一种钢轨修复后处理策略制定方法
CN202111652109.X 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124583A1 true WO2023124583A1 (zh) 2023-07-06

Family

ID=80878919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131527 WO2023124583A1 (zh) 2021-12-30 2022-11-11 一种钢轨修复后处理策略制定方法

Country Status (2)

Country Link
CN (1) CN114279314B (zh)
WO (1) WO2023124583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279314B (zh) * 2021-12-30 2022-12-09 武汉大学 一种钢轨修复后处理策略制定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612551A1 (de) * 2004-06-28 2006-01-04 DB Netz AG Verfahren zur Ermittlung der Rauheit von frisch geschliffenen Schienen und/oder Schienenbereichen
CN104180767A (zh) * 2013-05-24 2014-12-03 武汉铁路局武汉大型养路机械运用检修段 基于机器视觉的钢轨磨损测量装置及其打磨策略方法
CN104897052A (zh) * 2014-03-03 2015-09-09 武汉汉宁科技有限公司 一种测量钢轨外观几何尺寸和表面质量的方法与装置
CN109468898A (zh) * 2018-12-28 2019-03-15 华夏铁路运营维护有限公司 钢轨养护方法及装置
CN109989309A (zh) * 2019-04-15 2019-07-09 中国铁道科学研究院集团有限公司金属及化学研究所 一种铁路钢轨廓形质量评估方法
CN111460705A (zh) * 2020-03-19 2020-07-28 中国铁道科学研究院集团有限公司金属及化学研究所 一种高速铁路钢轨型面优化设计方法
CN111582656A (zh) * 2020-04-15 2020-08-25 中铁物总运维科技有限公司 一种高速铁路钢轨浅层状态量化评价方法
CN112364297A (zh) * 2020-04-15 2021-02-12 中铁物总运维科技有限公司 一种普速线路钢轨使用状态评估方法
CN113106796A (zh) * 2021-04-14 2021-07-13 中铁二局集团有限公司 一种无缝线路钢轨预打磨施工方法
CN114279314A (zh) * 2021-12-30 2022-04-05 武汉大学 一种钢轨修复后处理策略制定方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010537A1 (en) * 1990-01-12 1991-07-25 Loram Maintenance Of Way, Inc. Rail grinding machine spark and dust suppression apparatus
DE19827768A1 (de) * 1998-06-23 1999-12-30 Stoll Sedus Ag Verfahren zur Herstellung eines Rohrgestelles für Möbel
CN101694433B (zh) * 2009-10-19 2012-09-26 陈厚桂 对钢丝绳探伤仪评价的钢丝绳试样及其制备方法
WO2015164920A1 (en) * 2014-05-01 2015-11-05 Arbortech Industries Limited Random orbital sander
CN204255261U (zh) * 2014-11-28 2015-04-08 中国铁路总公司 一种便携式钢轨打磨廓形测量尺
CN105648858A (zh) * 2015-12-29 2016-06-08 北京二七轨道交通装备有限责任公司 钢轨打磨车的智能打磨控制方法
WO2018147755A1 (ru) * 2017-02-07 2018-08-16 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" (Ооо Нпп "Тэк") Способ изготовления и термообработки рельсовых плетей и комплекс для осуществления способа
DE102017208906A1 (de) * 2017-05-26 2018-11-29 Robel Bahnbaumaschinen Gmbh Schienen-Schleifmaschine und Verfahren zum Schleifen von Schienen eines Gleises
CN206710323U (zh) * 2017-09-15 2017-12-05 甘琴瑜 一种电梯曳引钢丝绳缺陷检测装置
CN108660878B (zh) * 2018-06-21 2020-02-18 中国铁道科学研究院铁道建筑研究所 一种基于钢轨打磨质量指数的钢轨打磨验收方法
CN109115162B (zh) * 2018-07-17 2020-10-30 中铁物总运维科技有限公司 一种铁路钢轨廓形质量指数计算方法
CN109374725A (zh) * 2018-10-16 2019-02-22 哈尔滨工业大学(深圳) 一种电梯钢带电磁无损检测方法及装置
CN110388881A (zh) * 2019-07-30 2019-10-29 中国铁道科学研究院集团有限公司基础设施检测研究所 基于偏振成像的钢轨廓形检测方法及装置
CN111160685A (zh) * 2019-09-23 2020-05-15 上海安恪企业管理咨询有限公司 一种基于设备综合健康状况分析和管理的维修决策方法
AT523354A1 (de) * 2019-12-16 2021-07-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahrbare Maschine und Verfahren zum Bearbeiten der Oberfläche eines Schienenkopfes
CN111188233A (zh) * 2020-03-06 2020-05-22 唐山昆铁科技有限公司 智能化钢轨修整打磨设备
CN212388272U (zh) * 2020-06-05 2021-01-22 中铁上海工程局集团有限公司 钢轨焊缝全断面铣磨机及作业车
CN112131678B (zh) * 2020-08-18 2024-02-20 中铁物总运维科技有限公司 一种铁路钢轨打磨廓形设计方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612551A1 (de) * 2004-06-28 2006-01-04 DB Netz AG Verfahren zur Ermittlung der Rauheit von frisch geschliffenen Schienen und/oder Schienenbereichen
CN104180767A (zh) * 2013-05-24 2014-12-03 武汉铁路局武汉大型养路机械运用检修段 基于机器视觉的钢轨磨损测量装置及其打磨策略方法
CN104897052A (zh) * 2014-03-03 2015-09-09 武汉汉宁科技有限公司 一种测量钢轨外观几何尺寸和表面质量的方法与装置
CN109468898A (zh) * 2018-12-28 2019-03-15 华夏铁路运营维护有限公司 钢轨养护方法及装置
CN109989309A (zh) * 2019-04-15 2019-07-09 中国铁道科学研究院集团有限公司金属及化学研究所 一种铁路钢轨廓形质量评估方法
CN111460705A (zh) * 2020-03-19 2020-07-28 中国铁道科学研究院集团有限公司金属及化学研究所 一种高速铁路钢轨型面优化设计方法
CN111582656A (zh) * 2020-04-15 2020-08-25 中铁物总运维科技有限公司 一种高速铁路钢轨浅层状态量化评价方法
CN112364297A (zh) * 2020-04-15 2021-02-12 中铁物总运维科技有限公司 一种普速线路钢轨使用状态评估方法
CN113106796A (zh) * 2021-04-14 2021-07-13 中铁二局集团有限公司 一种无缝线路钢轨预打磨施工方法
CN114279314A (zh) * 2021-12-30 2022-04-05 武汉大学 一种钢轨修复后处理策略制定方法

Also Published As

Publication number Publication date
CN114279314A (zh) 2022-04-05
CN114279314B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Li et al. Determination of the fatigue PSN curves–A critical review and improved backward statistical inference method
WO2023124583A1 (zh) 一种钢轨修复后处理策略制定方法
CN110222437B (zh) 列车车列健康状态的评估方法、装置及存储介质
CN104374570B (zh) 直升机传动系统部件寿命的获取方法
CN105445306A (zh) 一种钢中元素偏析程度的评定方法
CN111461210A (zh) 一种基于无人机风电巡检叶片缺陷等级判定方法
CN105975711B (zh) 一种基于材料损伤累积水平的沥青路面寿命评估方法
CN110728000B (zh) 一种无砟轨道弹性扣件损伤识别方法
CN111754463B (zh) 一种基于卷积神经网络的无砟轨道ca砂浆层缺陷检测方法
CN112611754B (zh) 一种清水混凝土外观质量评价方法
CN103630564B (zh) 高速列车车体残余应力测量方法
CN108660878B (zh) 一种基于钢轨打磨质量指数的钢轨打磨验收方法
CN114155224A (zh) 获取废钢结算数据方法、装置、废钢结算系统及回收场
CN108693030B (zh) Fod缺口型损伤的疲劳性能预测方法
CN112434950B (zh) 一种取消省界收费站货车计费调整风险评估的方法及用途
CN110175976A (zh) 基于机器视觉的crtsⅱ板式无砟轨道裂缝检测分类方法
CN108984866A (zh) 一种试验载荷谱的编制方法
CN109989309B (zh) 一种铁路钢轨廓形质量评估方法
CN114330131B (zh) 一种快速确定磨粒水射流预防性打磨钢轨深度的方法
CN114037701B (zh) 一种基于图像处理的机械零件氢损伤检测方法
Lin et al. Alloy Cast Product Defect Detection Based on Object Detection
Wang et al. A combined computer vision and image processing method for surface coverage measurement of shot peen forming
CN114282298A (zh) 一种道路技术状况处理方法
CN114358593A (zh) 一种基于pca模型的桥区轨道平顺度评价方法
CN117522175B (zh) 一种道路养护决策方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913844

Country of ref document: EP

Kind code of ref document: A1