WO2023124294A1 - 状态自适应的涡轮式脉冲发生器及井下钻具 - Google Patents

状态自适应的涡轮式脉冲发生器及井下钻具 Download PDF

Info

Publication number
WO2023124294A1
WO2023124294A1 PCT/CN2022/120521 CN2022120521W WO2023124294A1 WO 2023124294 A1 WO2023124294 A1 WO 2023124294A1 CN 2022120521 W CN2022120521 W CN 2022120521W WO 2023124294 A1 WO2023124294 A1 WO 2023124294A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
pulse generator
slider
valve disc
drilling
Prior art date
Application number
PCT/CN2022/120521
Other languages
English (en)
French (fr)
Inventor
王甲昌
马广军
张海平
臧艳彬
玄令超
张东清
刘建华
张仁龙
王立双
Original Assignee
中国石油化工股份有限公司
中石化石油工程技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化石油工程技术研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023124294A1 publication Critical patent/WO2023124294A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention belongs to the technical field of drilling, and in particular relates to a state-adaptive turbine pulse generator.
  • the invention also relates to a downhole drilling tool.
  • This pressure pulse acts on the supporting axial vibration generating tool to drive the drilling tool to generate Axial peristalsis reduces the friction coefficient between the pipe string and the well wall during sliding drilling, reduces the friction resistance of the pipe string, eliminates the phenomenon of drill string back pressure, improves the transmission effect of drill pressure, and improves the efficiency of directional drilling.
  • Chinese patent document CN105089501A discloses a hydraulic oscillator
  • CN106639944A discloses a turbine type downhole hydraulic oscillator
  • CN106761413A discloses a hydraulic oscillator
  • Chinese patent document CN206280029U discloses a hydraulic oscillator, and these hydraulic oscillators all include Impulse system with short turbine-driven valve groups to generate hydraulic pulses.
  • the pulse system of the above-mentioned turbine-type hydraulic oscillator is always in working state during the directional drilling process, but the drill string is rotating under the condition of compound drilling, and there is no back pressure phenomenon in the drill string.
  • the present invention aims to provide a turbine pulse generator for downhole tools.
  • the turbine pulse generator automatically realizes the braking or rotation of the turbine shaft through the switch between the drill string rotation and non-rotation states, and realizes the automatic regulation of the working state of the turbine pulse generator, that is, the pulse generator stops working under compound drilling conditions 1.
  • the pulse generator starts to work under the condition of sliding drilling, which greatly prolongs the service life of the valve group, and significantly improves the drag reduction and anti-backup effect of the drill string in the later stage of the tool's use in directional well construction.
  • a turbine pulse generator for a downhole drilling tool comprising: a pulse generating device comprising a turbine housing, a turbine shaft concentrically arranged inside the turbine housing, The turbine mechanism sleeved on the turbine shaft and the valve disc mechanism arranged at the lower end of the turbine shaft, the turbine mechanism can drive the turbine shaft to rotate relative to the turbine housing under the action of drilling fluid, Therefore, the flow area of the valve disc mechanism is periodically changed to generate pressure pulses; an automatic control mechanism for controlling the state of the pulse generating device; wherein, the automatic control mechanism is configured to be able to When the turbine shaft is stationary relative to the turbine casing, the pulse generating device is in a non-working state, and when sliding drilling, the turbine shaft can be relatively opposite under the action of the turbine mechanism The turbine casing rotates to make the pulse generating device work.
  • the automatic control mechanism includes: an outer cylinder fixedly connected to the upper end of the turbine casing; a movable unit arranged in the outer cylinder; and a movable unit for driving the movable A drive assembly for producing axial movement of the movable unit, wherein the turbine shaft has a radially inwardly extending stopper, and the drive assembly is configured to move the movable unit toward the stopper during compound drilling to engage with the stopper, so that the turbine shaft is circumferentially stationary relative to the turbine casing, and the movable unit moves away from the stopper to disengage from the stopper during slide drilling open, thereby causing the turbine shaft to rotate relative to the turbine housing.
  • the movable unit includes a first slider and a second slider arranged in the outer cylinder axially spaced apart from each other, the first slider and the second slider are both arranged fixed to the outer cylinder in the circumferential direction and able to move axially along the outer cylinder, wherein the lower end of the second sliding block is provided with a radially outwardly extending brake block protruding into the stopper , the driving assembly is arranged between the first slider and the second slider, and is configured to make the first slider and the second slider axially relatively close during compound drilling , so that the brake block is engaged with the stopper, and the first slide block and the second slide block are kept away from each other in the axial direction during sliding drilling, so that the brake block is in contact with the stopper The stopper is disengaged.
  • the stopper is provided with a first joint surface
  • the brake block is provided with a second joint surface
  • the first joint surface can be adapted to the second joint surface, so that the A brake pad engages the stop.
  • said first engagement surface is upstream of said second engagement surface.
  • the drive assembly includes a leaf spring and a centrifugal block, the centrifugal block is fixed at the axial middle of the leaf spring, and the two ends of the leaf spring are connected to the first sliding block and the centrifugal block respectively.
  • the second sliding block is fixedly connected, and the driving assembly can make the centrifugal block generate centrifugal force during compound drilling, and push the leaf spring to deform and radially expand, so that the first sliding block and the The second slider is relatively close to each other axially.
  • both the first sliding block and the second sliding block form a circumferential fixed connection with the outer cylinder through a spline structure.
  • a limiting step is provided on the inner wall surface of the outer cylinder to limit the position of the second sliding block away from the first sliding block in the axial direction.
  • first sliding block and the second sliding block are provided with axially extending water holes for the circulation of drilling fluid.
  • the turbine mechanism includes a stator fixedly connected to the turbine casing and a rotor fixedly connected to the turbine shaft, and the rotor can rotate relative to the stator under the action of drilling fluid, thereby drive the turbine shaft to rotate.
  • the valve disc mechanism includes a moving valve disc and a static valve disc, the moving valve disc is fixedly connected to the turbine shaft, and the static valve disc is fixed to the turbine housing.
  • the static valve disc is provided with a first eccentric hole
  • the movable valve disc is provided with a second eccentric hole
  • the overlapping portion of the first eccentric hole and the second eccentric hole varies with the The rotation of the movable valve disc changes periodically, so that the flow area formed by the valve disc mechanism through the first eccentric hole and the second eccentric hole changes periodically.
  • the diameter and eccentricity of the first eccentric hole and the second eccentric hole are the same.
  • a through hole is provided on the side wall of the turbine shaft at the lower end of the turbine mechanism to communicate with the central flow channel inside the turbine shaft and the turbine shaft formed between the turbine shaft and the turbine mechanism.
  • a lower joint is provided at the lower end of the turbine casing, and the lower joint axially abuts the static valve disc to limit the axial position of the static valve disc.
  • a downhole drilling tool comprising:
  • the turbine pulse generator as described above, the turbine pulse generator is connected between the vibration generating tool and the steerable motor drilling tool assembly.
  • the advantage of the present application is that in the drilling of extended-reach wells and horizontal wells, the turbine-type pulse generator used in the downhole drilling tool provided by the present invention and the vibration generating tool connected to its upper part Added to the steerable motor drill tool assembly, the drill tool generates periodic mild vibration, which in turn causes the drill tool assembly to generate axial creep, transforms static friction into dynamic friction, significantly reduces the friction between the sliding drilling wall and the drill pipe, and improves The drilling weight transmission is improved, the ROP and extended reach and horizontal well extension capabilities are greatly improved, thus solving the problem that the tool face is difficult to control. It automatically controls the working state of the turbine pulse generator through the rotation state of the drill string. During compound drilling, the turbine pulse generator stops working; while during sliding drilling, the turbine pulse generator starts to work and generates high-frequency Pulse, which greatly improves the life and drag reduction effect of the state-adaptive turbine pulse generator, making directional drilling safer and more efficient.
  • Fig. 1 shows the structure of a turbine pulse generator for a downhole drilling tool according to the present invention.
  • FIG 2 shows the state of the automatic control mechanism in the turbine pulse generator shown in Figure 1 during compound drilling.
  • the end close to the wellhead is defined as upper end, upstream end or similar terms, such as the left end in Figure 1, and the end far away from the wellhead is defined as lower end, downstream end or similar terms, such as Figure 1 in the right end.
  • the direction along the length of the turbine pulse generator is referred to as the longitudinal direction, the axial direction, or the like, and the direction perpendicular thereto is called the transverse direction, the radial direction, or the like.
  • FIG. 1 shows the structure of a turbine pulse generator 100 for a downhole drilling tool according to the present invention.
  • the turbine pulse generator 100 includes an automatic control mechanism 1 and a pulse generating device 2, the outer cylinder 11 of the automatic control mechanism 1 is fixedly connected with the turbine housing 21 of the pulse generating device 2, and the outer cylinder 11 is in the turbine housing 21. The upper end of the housing 21.
  • the pulse generating device 2 is used to generate pressure pulses, and the automatic control mechanism 1 is used to control the working state of the pulse generating device 2 .
  • the automatic control mechanism 1 is configured so that the pulse generating device 2 is in a non-working state during compound drilling, and the pulse generating device 2 is in an active state during sliding drilling.
  • the outer cylinder 11 and the turbine casing 21 are fixedly connected by means of threaded connection.
  • the pulse generating device 2 includes a turbine casing 21, a turbine shaft 22 concentrically arranged inside the turbine casing 21, a turbine mechanism sleeved on the turbine shaft 22, and a turbine mechanism arranged on the turbine shaft.
  • the turbine mechanism includes a stator 23 and a rotor 24 , the stator 23 is fixedly connected to the turbine housing 21 , and the rotor 24 is fixedly connected to the turbine shaft 22 .
  • the stator 23 cooperates with the rotor 24, and the rotor 24 rotates under the driving action of the drilling fluid, and then the rotor 24 drives the turbine shaft 22 to rotate.
  • the turbine shaft 2 is provided with multi-stage stators 23 and rotors 24 .
  • the multi-stage stator 23 and the rotor 24 jointly drive the turbine shaft 22 to rotate under the action of the drilling fluid.
  • the turbine shaft 22 is configured as a hollow structure, and an axially extending central channel is provided inside the turbine shaft 22 for the circulation of drilling fluid.
  • the valve disc mechanism includes a movable valve disc 25 and a static valve disc 26 , the movable valve disc 25 is fixedly connected with the end of the turbine shaft 22 , and the static valve disc 26 is fixed with the turbine housing 21 .
  • the movable valve disc 25 is seated on the upper end face of the static valve disc 26 .
  • the turbine shaft 22 can drive the movable valve disc 25 to rotate, so that the movable valve disc 25 rotates relative to the static valve disc 26 .
  • the movable valve disc 25 is connected with the turbine shaft 22 by thread, which is convenient for installation and disassembly.
  • the screw thread is tightened in the same direction as the turbine shaft 22 in the same direction of rotation. That is, when the turbine shaft 22 rotates, there will be no thread loosening.
  • the movable valve disc 25 and the static valve disc 26 are respectively processed with a first eccentric hole and a second eccentric hole with the same aperture and the same eccentric distance.
  • the holes are opposite.
  • the movable valve disc 25 rotates relative to the static valve disc 26, it will periodically change the overlapping area of the first eccentric hole and the second eccentric hole, thereby changing the flow area of the drilling fluid and generating high-frequency pressure pulses.
  • a lower joint 27 is provided at the lower end of the turbine housing 21 , and the lower joint 27 is in axial contact with the static valve disc 26 to limit the axial position of the static valve disc 26 . Threaded connection is adopted between the lower joint 27 and the turbine casing 21 .
  • the lower joint 27 is used to connect other downhole drilling tools.
  • the automatic control mechanism 1 includes an outer cylinder 11 , a movable unit disposed in the outer cylinder 11 , and a driving assembly 13 for driving the movable unit to generate axial movement.
  • the turbine shaft 22 has a radially inwardly extending stopper 221, and the drive assembly 13 is configured to move the movable unit toward the stopper 221 to engage with the stopper 221 during compound drilling, thereby making the turbine shaft 22 relative to the turbine housing
  • the body 21 is stationary in the circumferential direction, and the movable unit moves away from the stopper 221 to disengage from the stopper 221 during sliding drilling, so that the turbine shaft 22 rotates relative to the turbine housing 21 .
  • the movable unit includes a first slider 12 and a second slider 14 arranged axially apart from each other in the outer cylinder 11, the first slider 12 and the second slider 14 are both arranged to be circumferentially fixed with the outer cylinder 11, and It can move axially along the outer cylinder 11 .
  • the lower end of the second sliding block 14 is provided with a radially outwardly extending braking block 141 protruding into the blocking block 221 .
  • the driving assembly 13 is disposed between the first slider 12 and the second slider 14 . Both ends of the driving assembly 13 are fixedly connected to the first slider 12 and the second slider 14 respectively.
  • the driving assembly 13 is configured to make the first sliding block 12 and the second sliding block 14 approach each other in the axial direction during compound drilling, so that the brake block 141 engages with the stop block 221, and the first sliding block 141 engages with the stop block 221 during sliding drilling.
  • the block 12 and the second sliding block 14 are relatively far apart in the axial direction, so that the brake block 141 is disengaged from the stop block 221 .
  • the block 221 is provided with a first joint surface
  • the brake block 141 is provided with a second joint surface
  • the first joint surface can be adapted to the second joint surface, so that the brake block 14 and the stopper Block 221 engages.
  • the first engagement surface is upstream of the second engagement surface.
  • the first slider 12 and the second slider 14 respectively form a circumferential fixed connection with the outer cylinder 11 through a spline structure, so that the first slider 12, the second slider 14 and the outer cylinder 11 There is no relative rotation between them, so that the first sliding block 12 and the second sliding block 14 can only move along the axial direction of the outer cylinder 11 under the action of the driving assembly 13 .
  • the first slider 12 and the second slider 14 are respectively provided with external splines, and the positions corresponding to the installation of the first slider 12 and the second slider 14 are respectively provided with internal splines in the outer cylinder 11. 12.
  • the second sliding block 14 fits with the inner splines of the outer cylinder 11 through the outer splines respectively.
  • an upward limiting step 15 is provided on the inner wall surface of the outer cylinder 11 corresponding to the second sliding block 14 for limiting the position where the second sliding block 14 is away from the first sliding block 12 in the axial direction.
  • the driving assembly 13 includes a leaf spring 131 and a centrifugal mass 132 .
  • the centrifugal block 132 is fixed on the outer side of the leaf spring 131, and is in the axial middle position of the leaf spring 131.
  • the centrifugal block 132 can use the centrifugal force to deform the leaf spring 131 and radially expand, so that the first slider 12 and the second The two sliders 14 are relatively close to each other in the axial direction.
  • the driving assembly 13 includes two leaf springs 131 and two corresponding centrifugal blocks 132 , and the two leaf springs 131 are arranged radially symmetrically.
  • Two leaf springs 131 and corresponding centrifugal blocks 132 are provided to ensure that the outer cylinder 11 rotates smoothly.
  • the two leaf springs 131 should be symmetrically arranged to ensure the stable rotation of the outer cylinder 11 .
  • the centrifugal block 132 is arranged at the center of the leaf spring 131 to ensure that the leaf spring 131 deforms from the center under the action of centrifugal force, thereby improving the stability of rotation.
  • FIG. 2 shows the engagement state of the brake block 141 and the stop block 221.
  • the turbine shaft 22, the outer cylinder 11 and the turbine housing 21 are relatively stationary in the circumferential direction, and the pulse generating device 2 is in a non-working state.
  • the drive assembly 13 does not rotate
  • the centrifugal block 132 does not generate centrifugal force
  • the leaf spring 131 returns to its original state, and pushes the second slider 14 to move axially downward until it meets the stopper 221 Disengaged, at this time, the turbine shaft 22 rotates under the action of the turbine mechanism, and drives the movable valve disc 25 of the valve disc mechanism to rotate, thereby generating pressure pulses.
  • both the first slider 12 and the second slider 14 are provided with water holes, and the water holes extend in the axial direction and pass through the first slider 12 and the second slider 14 .
  • the water hole is used for drilling fluid to flow through it.
  • Drilling fluid passes through the water holes of the first slider 12 and the second slider 14 , part of it flows into the central channel of the turbine shaft 22 , and the other part passes through the stator 23 and the rotor 24 , thereby driving the stator 23 and the rotor 24 to rotate relative to each other.
  • the sidewall of the turbine shaft 22 at the lower end of the turbine mechanism is provided with a number of circumferentially distributed through holes 222 for communicating with the central flow channel of the turbine shaft 22 and the radial ring formed between the turbine shaft 22 and the turbine housing 21. null.
  • the drilling fluid flowing between the stator 23 and the rotor 24 drives the rotor 24 to rotate, and finally flows into the central channel of the turbine shaft 22 through the radial annulus and the through hole 222 .
  • the drilling fluid flowing into the central flow channel passes through the flow channel formed by the first eccentric hole of the movable valve disc 25 and the second eccentric valve hole of the static valve disc 26 .
  • the change of rotational speed also brings about the change of the interlacing frequency of the eccentric holes on the movable valve disc 25 and the static valve disc 26, which also changes the frequency of the pressure pulse of the drilling fluid passing through the eccentric hole, that is, changes the frequency of the pressure pulse of the pulse generator. , to meet the requirements of different working conditions on site.
  • the drill pipe rotates, so that the outer cylinder 11 drives the centrifugal block 132 to rotate, and the rotating centrifugal force generated causes the leaf spring 131 to bend and deform and radially expand, and the leaf spring 131 is deformed Drive the first slider 12 and the second slider 14 to move axially closer to each other.
  • the stopper 141 on the second slider 14 engages with the stopper 221 on the turbine shaft 22 , so that the turbine shaft 22 is stationary relative to the turbine casing 21 in the circumferential direction.
  • the movable valve disc 25 installed on the turbine shaft 22 also stops rotating, the relative rotation between the movable valve disc 25 and the static valve disc 26 does not occur, and the pulse generator no longer generates pressure pulses.
  • the pulse generating device 2 is in a non-working state, and the erosion caused by the water hammer pressure of the valve disc mechanism will disappear, and the service life of the valve disc mechanism can be improved.
  • the drill pipe stops rotating the outer cylinder 11 drives the centrifugal block 132 to stop rotating, the rotating centrifugal force of the centrifugal block 132 disappears, and the leaf spring 131 pushes the first slide block 12 and the second slide block under the spring force.
  • the block 14 is relatively axially far away until the brake block 141 on the second slider 14 and the stopper 221 on the turbine shaft 22 are disengaged from each other, and the turbine shaft 22 continues to rotate under the action of the drilling fluid, thereby driving the valve disc 25 rotation, at this time, the pulse generating device 2 is in working condition, and a pressure pulse is generated.
  • the turbine pulse generator 100 for a downhole drilling tool can be applied in drilling extended reach wells and horizontal wells.
  • the turbine pulse generator 100 is added to the steerable motor drill tool assembly together with the vibration generating tool connected to its upper part, so that the drill tool generates periodic mild vibration.
  • the drilling tool assembly produces axial creep, transforms static friction into dynamic friction, reduces the friction between the sliding drilling well wall and the drill pipe, improves bit pressure transmission, improves the ROP and the extension capacity of extended reach wells and horizontal wells, and solves the problem of Difficult to control tool face.
  • the state-adaptive turbine pulse generator 100 can automatically control the working state of the turbine pulse generator 2 through the automatic control mechanism 1 according to the actual working conditions on site.
  • control turbine pulse generating device 2 is in a non-working state.
  • control the turbine pulse generator 2 to be in the working state and generate high-frequency pulses, which greatly improves the life of the turbine pulse generator 100 and the drag reduction effect, making directional drilling safer and more efficient .
  • the present invention also provides a downhole drilling tool, which includes a vibration generating tool, a steering motor drill tool assembly connected to the lower end of the vibration generating tool, and a turbine pulse generator 100 according to the present invention.
  • the device 100 is connected between the vibration generating tool and the steerable motor drilling tool assembly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

状态自适应的涡轮式脉冲发生器(100),包括:脉冲发生装置(2),其包括涡轮壳体(21)、同心布置在涡轮壳体(21)内部的涡轮轴(22)、套设在涡轮轴(22)上的涡轮机构和设置在涡轮轴(22)的下端的阀盘机构,涡轮机构能够在钻井液的作用下驱动涡轮轴(22)转动,从而使阀盘机构的过流面积呈周期性变化,以产生压力脉冲;用于控制脉冲发生装置(2)的状态的自动控制机构(1);其中,自动控制机构(1)构造成能够在复合钻进时使涡轮轴(22)相对于涡轮壳体(21)周向静止,以使脉冲发生装置(2)处于非工作状态,而在滑动钻进时使涡轮轴(22)能够在涡轮机构的作用下相对于涡轮壳体(21)转动,以使脉冲发生装置(2)处于工作状态。

Description

状态自适应的涡轮式脉冲发生器及井下钻具
相关申请的交叉引用
本申请要求享有于2021年12月27日提交的发明名称为“状态自适应的涡轮式脉冲发生器”中国专利申请2021116151302的优先权,这件专利申请的全部内容通过引用结合于本文中。
技术领域
本发明属于钻井技术领域,具体涉及状态自适应的涡轮式脉冲发生器。本发明还涉及一种井下钻具。
背景技术
在大位移井、水平井钻井中,由于井斜角大,大井斜井段钻柱自重的绝大部分压向井壁,所以管柱和井眼之间摩阻较大,导致拖压,扭矩增大,传递到钻头的钻压不连续或有限,仅依靠直井段钻具重量难以送进,工具面难以控制,所钻达水平段长度有限且机械钻速较低。在井下管柱中引入压力脉冲发生工具及配套的轴向振动发生工具,通过周期性地改变流体过流面积产生压力脉冲,这种压力脉冲作用于配套的轴向振动发生工具,驱动钻具产生轴向蠕动,降低滑动钻进时的管柱与井壁的摩擦系数,减小管柱的摩擦阻力,消除钻柱托压现象,改善钻压传递效果、提高定向钻进效率。
中国专利文献CN105089501A公开了一种水力振荡器、CN106639944A公开了一种涡轮式井下水力振荡器、CN106761413A公开了水力振荡器,以及中国专利文献CN206280029U公开了水力振荡器,这些水力振荡器均包含有利用短涡轮驱动阀组产生液压脉冲的脉冲系统。上述涉及的涡轮式水力振荡器在定向钻井过程中脉冲系统始终处于工作状态,但在复合钻进条件下钻柱是旋转的,钻柱不存在托压现象,这时水力振荡器工作与否虽然对钻井施工无太大作用,但是水力振荡器工作时会加剧对阀组的冲蚀,因此水力振荡器时刻处于工作状态会缩短脉冲系统的寿命,严重影响工具使用后期的降摩阻防托压效果。
发明内容
针对如上所述的技术问题,本发明旨在提出一种用于井下工具的涡轮式脉冲发生器。该涡轮式脉冲发生器通过钻柱旋转和非旋转状态之间的切换自动实现涡轮轴制动或旋转,实现涡轮式脉冲发生器的工作状态自动化调控,即复合钻进条件下脉冲发生器停止工作、滑动钻进条件下脉冲发生器开始工作,从而大幅延长阀组使用寿命,显著提高了工具在定向井施工中使用后期钻柱减阻及防托压效果。
为此,根据本发明的第一方面,提供了用于井下钻具的涡轮式脉冲发生器,包括:脉冲发生装置,其包括涡轮壳体、同心布置在所述涡轮壳体内部的涡轮轴、套设在所述涡轮轴上的涡轮机构和设置在所述涡轮轴的下端的阀盘机构,所述涡轮机构能够在钻井液的作用下驱动所述涡轮轴相对于所述涡轮壳体转动,从而使所述阀盘机构的过流面积呈周期性变化,以产生压力脉冲;用于控制所述脉冲发生装置的状态的自动控制机构;其中,所述自动控制机构构造成能够在复合钻进时使所述涡轮轴相对于所述涡轮壳体周向静止,以使所述脉冲发生装置处于非工作状态,而在滑动钻进时使所述涡轮轴能够在所述涡轮机构的作用下相对于所述涡轮壳体转动,以使所述脉冲发生装置处于工作状态。
在一个实施例中,所述自动控制机构包括:外筒,所述外筒固定连接在所述涡轮壳体的上端;设置在所述外筒内的可动单元;以及用于驱动所述可动单元产生轴向运动的驱动组件,其中,所述涡轮轴具有径向向内延伸的挡块,所述驱动组件构造成能够在复合钻进时使所述可动单元朝向所述挡块运动以与所述挡块接合,从而使所述涡轮轴相对于所述涡轮壳体周向静止,而在滑动钻进时使所述可动单元远离所述挡块运动以与所述挡块脱开,从而使所述涡轮轴相对于所述涡轮壳体转动。
在一个实施例中,所述可动单元包括彼此轴向间隔开设置在所述外筒内的第一滑块和第二滑块,所述第一滑块和所述第二滑块均设置成与所述外筒周向固定,且能够沿所述外筒轴向移动,其中,所述第二滑块的下端设有伸入所述挡块内的径向向外延伸的制动块,所述驱动组件设置在所述第一滑块和所述第二滑块之间,并且构造成能够在复合钻进时使所述第一滑块和所述第二滑块轴向相对靠近,以使所述制动块与所述挡块接合,而在滑动钻进时使所述第一滑块和所述第二滑块轴向相对远离,以使所述制动块与所述挡块脱开。
在一个实施例中,所述挡块设有第一接合面,所述制动块设有第二接合面, 所述第一接合面能够与所述第二接合面适配,从而使所述制动块与所述挡块接合。
在一个实施例中,所述第一接合面处于所述第二接合面的上游。
在一个实施例中,所述驱动组件包括片板簧和离心块,所述离心块固定在所述片弹簧的轴向中部,所述片弹簧的两端分别与所述第一滑块和所述第二滑块固定连接,所述驱动组件能够在复合钻进时使所述离心块产生离心力,促动所述片板簧变形而径向扩张,从而使所述第一滑块和所述第二滑块轴向相对靠近。
在一个实施例中,所述片板簧和所述离心块分别设有两个,且两个所述片板簧呈径向对称分布。
在一个实施例中,所述第一滑块和所述第二滑块均通过花键结构与所述外筒形成周向固定连接。
在一个实施例中,在所述外筒的内壁面上设有限位台阶,用于限定所述第二滑块在轴向上远离所述第一滑块的位置。
在一个实施例中,所述第一滑块和所述第二滑块上均设置有轴向延伸的水眼孔,用于供钻井液流通。
在一个实施例中,所述涡轮机构包括与所述涡轮壳体固定连接的定子和与所述涡轮轴固定连接的转子,所述转子能够在钻井液的作用下相对与所述定子转动,从而带动所述涡轮轴转动。
在一个实施例中,所述阀盘机构包括动阀盘和静阀盘,所述动阀盘与所述涡轮轴固定连接,所述静阀盘与所述涡轮壳体相固定。
在一个实施例中,所述静阀盘上设有第一偏心孔,所述动阀盘设有第二偏心孔,所述第一偏心孔与所述第二偏心孔的重叠部分随所述动阀盘的转动而周期性变化,从而使所述阀盘机构通过所述第一偏心孔和所述第二偏心孔形成的过流面积呈周期性变化。
在一个实施例中,所述第一偏心孔和所述第二偏心孔的孔径和偏心距均相同。
在一个实施例中,在所述涡轮轴的处于所述涡轮机构下端的侧壁设有通孔,用于连通所述涡轮轴的内部的中心流道与形成于所述涡轮轴与所述涡轮壳体之间的径向环空。
在一个实施例中,所述涡轮壳体的下端设有下接头,所述下接头与所述静阀盘轴向抵接,以限定所述静阀盘的轴向位置。
根据本发明的第二方面,提供了一种井下钻具,包括:
振动发生工具;
连接在所述振动发生工具的下端的导向马达钻具组合;以及
如上所述的涡轮式脉冲发生器,所述涡轮式脉冲发生器连接在所述振动发生工具与所述导向马达钻具组合之间。
与现有技术相比,本申请的优点之处在于:在大位移井、水平井钻井中,本发明提供的用于井下钻具的涡轮式脉冲发生器与连接在其上部的振动发生工具一起加入到导向马达钻具组合中,使钻具产生周期性温和振动,进而使得钻具组合产生轴向蠕动,将静摩擦转变为动摩擦,显著减少滑动钻进井壁与钻杆之间的摩擦,改善了钻压传递,大大提高了机械钻速及大位移井、水平井延伸能力,从而解决了工具面难以控制的难题。其通过钻柱旋转状态来自动控制涡轮式脉冲发生器的工作状态,在复合钻进时,涡轮式脉冲发生器停止工作;而在滑动钻进时,涡轮式脉冲发生器开始工作并产生高频脉冲,由此大幅度提高了状态自适应的涡轮式脉冲发生器的寿命及减阻效果,使得定向钻井施工更安全、更高效。
附图说明
下面将参照附图对本发明进行说明。
图1显示了根据本发明的用于井下钻具的涡轮式脉冲发生器的结构。
图2显示了图1所示涡轮式脉冲发生器中的自动控制机构在复合钻进时的状态。
在本申请中,所有附图均为示意性的附图,仅用于说明本发明的原理,并且未按实际比例绘制。
具体实施方式
下面通过附图来对本发明进行详细说明。该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本申请说明书和实施例仅是示例性的。
为方便理解,在本申请中,将靠近井口的一端定义为上端、上游端或相似用 语,例如图1中的左端,而将远离井口的一端定义为下端、下游端或相似用语,例如图1中的右端。同时,将沿着涡轮式脉冲发生器的长度方向称为纵向方向、轴向方向或类似用语,而与之垂直的方向称为横向方向、径向方向或类似用语。
图1显示了根据本发明的用于井下钻具的涡轮式脉冲发生器100的结构。如图1所示,涡轮式脉冲发生器100包括自动控制机构1和脉冲发生装置2,自动控制机构1的外筒11与脉冲发生装置2的涡轮壳体21固定连接,且外筒11处于涡轮壳体21的上端。脉冲发生装置2用于产生压力脉冲,自动控制机构1用于控制脉冲发生装置2的工作状态。自动控制机构1构造成能够在复合钻进时使所述脉冲发生装置2处于非工作状态,而在滑动钻进时使脉冲发生装置2处于工作状态。
为了方便安装和拆卸,外筒11与涡轮壳体21采用螺纹连接的方式进行固定连接。
根据本发明,如图1所示,脉冲发生装置2包括涡轮壳体21、同心布置在涡轮壳体21的内部的涡轮轴22、套设在涡轮轴22上的涡轮机构,以及设置在涡轮轴22的下端的阀盘机构。涡轮机构包括定子23和转子24,定子23与涡轮壳体21固定连接,转子24与涡轮轴22固定连接。定子23和转子24配合,在钻井液的驱动作用下转子24进行转动,进而转子24带动涡轮轴22转动。为了提升钻井液的驱动效率,涡轮轴2上设置多级定子23和转子24。多级定子23和转子24共同在钻井液的作用下驱动带动涡轮轴22进行转动。
在本实施例中,为了方便钻井液的流动,涡轮轴22构造为中空结构,在涡轮轴22的内部设有沿轴向延伸的中心流道,用于供钻井液流通。
根据本发明,阀盘机构包括动阀盘25和静阀盘26,动阀盘25与涡轮轴22的末端固定连接,静阀盘26与涡轮壳体21相固定。动阀盘25坐在静阀盘26的上端面上。涡轮轴22能够带动动阀盘25转动,从而使动阀盘25相对于静阀盘26转动。
在一个实施例中,动阀盘25与涡轮轴22之间采用螺纹连接,方便安装和拆卸。为了保证运转平稳以及降低事故率,螺纹的拧紧方向与涡轮轴22的转动方向相同。即涡轮轴22转动时不会出现螺纹松动的情况。
动阀盘25和静阀盘26分别加工有相同孔径、相同偏心距的第一偏心孔和第二偏心孔,动阀盘25与静阀盘26紧邻设置,且第一偏心孔和第二偏心孔相对。 当动阀盘25相对静阀盘26转动时,会周期性地改变第一偏心孔和第二偏心孔的重叠面积,从而改变钻井液的过流面积,产生高频压力脉冲。
此外,涡轮壳体21下端还设有下接头27,下接头27与静阀盘26轴向抵接,以限定静阀盘26的轴向位置。下接头27与涡轮壳体21之间采用螺纹连接。下接头27用于连接其他井下钻具。
根据本发明,如图1和图2所示,自动控制机构1包括外筒11、设置在外筒11内的可动单元,以及用于驱动可动单元产生轴向运动的驱动组件13。涡轮轴22具有径向向内延伸的挡块221,驱动组件13构造成能够在复合钻进时使可动单元朝向挡块221运动以与挡块221接合,从而使涡轮轴22相对于涡轮壳体21周向静止,而在滑动钻进时使可动单元远离挡块221运动以与挡块221脱开,从而使涡轮轴22相对于涡轮壳体21转动。
可动单元包括彼此轴向间隔开设置在外筒11内的第一滑块12和第二滑块14,第一滑块12和第二滑块14均设置成与外筒11周向固定,且能够沿外筒11轴向移动。第二滑块14的下端设有伸入挡块221内的径向向外延伸的制动块141。驱动组件13设置在第一滑块12和第二滑块14之间。驱动组件13的两端分别与第一滑块12和第二滑块14固定连接。驱动组件13构造成能够在复合钻进时使第一滑块12和第二滑块14轴向相对靠近,以使制动块141与挡块221接合,而在滑动钻进时使第一滑块12和第二滑块14轴向相对远离,以使制动块141与挡块221脱开。
根据本发明的一个实施例,挡块221设有第一接合面,制动块141设有第二接合面,第一接合面能够与第二接合面适配,从而使制动块14与挡块221接合。优选地,第一接合面处于第二接合面的上游。
在一个实施例中,第一滑块12和第二滑块14分别通过花键结构与外筒11形成周向固定连接,从而使得第一滑块12、第二滑块14与外筒11之间不发生相对转动,使得第一滑块12和第二滑块14仅能够在驱动组件13的作用下沿外筒11的轴向移动。例如,第一滑块12和第二滑块14分别设有外花键,外筒11内对应安装第一滑块12和第二滑块14的位置分别设有内花键,第一滑块12、第二滑块14分别通过外花键与外筒11的内花键适配。另外,在外筒11的对应于第二滑块14的内壁面上设有端面朝上的限位台阶15,用于限定第二滑块14在轴向上远离第一滑块12的位置。
根据本发明的一个实施例,驱动组件13包括片板簧131和离心块132。其中,片板簧131两端分别固定连接在第一滑块12和第二滑块14上。离心块132固定在片板簧131的外侧,并且处于片板簧131的轴向中部位置,离心块132能够利用离心力使得片板簧131变形而径向扩张,从而使第一滑块12和第二滑块14轴向相对靠近。
在图2所示实施例中,驱动组件13包括两个片板簧131和对应的两个离心块132,且两个片板簧131呈径向对称设置。片板簧131和对应离心块132均设置两个是用于保证外筒11转动平稳。另外,两个片板簧131要处于对称设置的状态,进行保证外筒11转动的平稳。离心块132设置在片板簧131的中心位置,以保证片板簧131在离心力的作用下从中心位置开始发生形变,从而提升转动的稳定性。
在具体工作过程中,当钻杆复合钻进时,驱动组件13的离心块132能够在高速转动作用下产生离心力,促动片板簧131产生弯曲变形而径向扩张,从而使第一滑块12和第二滑块14轴向相对靠近,使得制动块141与挡块221接合。图2显示了制动块141与挡块221接合状态,此时,涡轮轴22与外筒11以及涡轮壳体21在周向上相对静止,脉冲发生装置2处于非工作状态。当钻杆滑动钻进时,钻杆不转动,驱动组件13不转动,离心块132不产生离心力,片板簧131恢复原状,推动第二滑块14轴向向下运动,直至与挡块221脱开,此时,涡轮轴22在涡轮机构的作用下转动,并带动阀盘机构的动阀盘25转动,从而产生压力脉冲。
根据本发明,第一滑块12和第二滑块14均设置有水眼孔,水眼孔沿轴向延伸且贯穿第一滑块12、第二滑块14。水眼孔用于供钻井液从中流过。
钻井液通过第一滑块12和第二滑块14的水眼孔,一部分流入到涡轮轴22的中心流道,另外一部分通过定子23和转子24,进而驱动定子23和转子24发生相对转动。在涡轮轴22的处于涡轮机构下端的侧壁设有若干周向分布的通孔222,用于连通涡轮轴22的中心流道与形成于涡轮轴22与涡轮壳体21之间的径向环空。流入到定子23和转子24之间的钻井液驱动转子24转动,并最终通过径向环空和通孔222流入涡轮轴22的中心流道内。汇入中心流道内的钻井液通过到动阀盘25的第一偏心孔和静阀盘26的第二偏阀孔形成的过流通道。由此,通过改变涡轮轴22的中心流道的孔径,能够改变进入定子23和转子24之间的 钻井液的流量,进而改变涡轮轴22的转速。转速的改变同时带来了动阀盘25与静阀盘26上偏心孔交错频率的改变,也就改变了钻井液通过偏心孔的压力脉冲的频率,即改变了脉冲发生器的压力脉冲的频率,以适应现场不同工况的要求。
在实际工作过程中,当钻杆复合钻进时,钻杆旋转,使外筒11带动离心块132旋转,产生的旋转离心力使片板簧131产生弯曲变形而径向扩张,片板簧131变形带动第一滑块12和第二滑块14相互轴向移动靠近。第二滑块14移动到一定位置时,第二滑块14上的制动块141与涡轮轴22上的挡块221接合,从而使涡轮轴22相对于涡轮壳体21周向静止。进而使得安装在涡轮轴22上的动阀盘25也停止转动,动阀盘25与静阀盘26之间不发生相对转动,脉冲发生器也不再产生压力脉冲。此时,脉冲发生装置2处于非工作状态,阀盘机构因水击压力导致的冲蚀将消失,阀盘机构的寿命得以提高。当钻杆滑动钻进时,钻杆停止转动,外筒11带动离心块132停止旋转,离心块132的旋转离心力消失,片板簧131在弹簧力作用下推动第一滑块12和第二滑块14相对轴向远离,直至使第二滑块14上的制动块141与涡轮轴22上的挡块221相互脱开,涡轮轴22在钻井液的作用下继续转动,进而带动动阀盘25转动,此时,脉冲发生装置2处于工作状态,产生了压力脉冲。
根据本发明的用于井下钻具的涡轮式脉冲发生器100能够应用于在大位移井、水平井钻井中。涡轮式脉冲发生器100与连接在其上部的振动发生工具一起加入到导向马达钻具组合中,使钻具产生周期性温和振动。进而使得钻具组合产生轴向蠕动,将静摩擦转变为动摩擦,减少滑动钻进井壁与钻杆之间的摩擦,改善钻压传递,提高机械钻速及大位移井、水平井延伸能力,解决工具面难以控制的难题。同时,状态自适应的涡轮式脉冲发生器100能够根据现场实际工况,通过自动控制机构1自动控制涡轮式脉冲发生装置2的工作状态。在钻杆复合钻进时,控制涡轮式脉冲发生装置2处于非工作状态。在钻杆滑动钻进时,控制涡轮式脉冲发生装置2处于工作状态而并产生高频脉冲,大幅度提高了涡轮式脉冲发生器100的寿命及减阻效果,定向钻井施工更安全、更高效。
本发明还提供了一种井下钻具,该井下钻具包括振动发生工具、连接在振动发生工具的下端的导向马达钻具组合,以及根据本发明的涡轮式脉冲发生器100,涡轮式脉冲发生器100连接在振动发生工具与导向马达钻具组合之间。
最后应说明的是,以上所述仅为本发明的优选实施方案,并不构成对本发明 的任何限制。尽管参照前述实施方案对本发明进行了详细的说明,但是对于本领域的技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 用于井下钻具的涡轮式脉冲发生器,包括:
    脉冲发生装置(2),其包括涡轮壳体(21)、同心布置在所述涡轮壳体内部的涡轮轴(22)、套设在所述涡轮轴上的涡轮机构和设置在所述涡轮轴的下端的阀盘机构,所述涡轮机构能够在钻井液的作用下驱动所述涡轮轴相对于所述涡轮壳体转动,从而使所述阀盘机构的过流面积呈周期性变化,以产生压力脉冲;
    用于控制所述脉冲发生装置的状态的自动控制机构(1);
    其中,所述自动控制机构构造成能够在复合钻进时使所述涡轮轴相对于所述涡轮壳体周向静止,以使所述脉冲发生装置处于非工作状态,而在滑动钻进时使所述涡轮轴能够在所述涡轮机构的作用下相对于所述涡轮壳体转动,以使所述脉冲发生装置处于工作状态。
  2. 根据权利要求1所述的涡轮式脉冲发生器,其特征在于,所述自动控制机构包括:
    外筒(11),所述外筒固定连接在所述涡轮壳体的上端;
    设置在所述外筒内的可动单元;以及
    用于驱动所述可动单元产生轴向运动的驱动组件(13),
    其中,所述涡轮轴具有径向向内延伸的挡块(221),所述驱动组件构造成能够在复合钻进时使所述可动单元朝向所述挡块运动以与所述挡块接合,从而使所述涡轮轴相对于所述涡轮壳体周向静止,而在滑动钻进时使所述可动单元远离所述挡块运动以与所述挡块脱开,从而使所述涡轮轴相对于所述涡轮壳体转动。
  3. 根据权利要求2所述的涡轮式脉冲发生器,其特征在于,所述可动单元包括彼此轴向间隔开设置在所述外筒内的第一滑块(12)和第二滑块(14),所述第一滑块和所述第二滑块均设置成与所述外筒周向固定,且能够沿所述外筒轴向移动,
    其中,所述第二滑块的下端设有伸入所述挡块内的径向向外延伸的制动块(141),所述驱动组件设置在所述第一滑块和所述第二滑块之间,并且构造成能够在复合钻进时使所述第一滑块和所述第二滑块轴向相对靠近,以使所述制动块与所述挡块接合,而在滑动钻进时使所述第一滑块和所述第二滑块轴向相对远离,以使所述制动块与所述挡块脱开。
  4. 根据权利要求3所述的涡轮式脉冲发生器,其特征在于,所述挡块设有第一接合面,所述制动块设有第二接合面,所述第一接合面能够与所述第二接合面适配,从而使所述制动块与所述挡块接合。
  5. 根据权利要求4所述的涡轮式脉冲发生器,其特征在于,所述第一接合面处于所述第二接合面的上游。
  6. 根据权利要求2或3所述的涡轮式脉冲发生器,其特征在于,所述驱动组件包括片板簧(131)和离心块(132),所述离心块固定在所述片弹簧的轴向中部,所述片弹簧的两端分别与所述第一滑块和所述第二滑块固定连接,
    所述驱动组件能够在复合钻进时使所述离心块产生离心力,促动所述片板簧变形而径向扩张,从而使所述第一滑块和所述第二滑块轴向相对靠近。
  7. 根据权利要求6所述的涡轮式脉冲发生器,其特征在于,所述片板簧和所述离心块分别设有两个,且两个所述片板簧呈径向对称分布。
  8. 根据权利要求3所述的涡轮式脉冲发生器,其特征在于,所述第一滑块和所述第二滑块均通过花键结构与所述外筒形成周向固定连接。
  9. 根据权利要求3或8所述的涡轮式脉冲发生器,其特征在于,在所述外筒的内壁面上设有限位台阶(15),用于限定所述第二滑块在轴向上远离所述第一滑块的位置。
  10. 根据权利要求3或8所述的涡轮式脉冲发生器,其特征在于,所述第一滑块和所述第二滑块上均设置有轴向延伸的水眼孔,用于供钻井液流通。
  11. 根据权利要求1所述的涡轮式脉冲发生器,其特征在于,所述涡轮机构包括与所述涡轮壳体固定连接的定子(23)和与所述涡轮轴固定连接的转子(24),所述转子能够在钻井液的作用下相对与所述定子转动,从而带动所述涡轮轴转动。
  12. 根据权利要求1或11所述的涡轮式脉冲发生器,其特征在于,所述阀盘机构包括动阀盘(25)和静阀盘(26),所述动阀盘与所述涡轮轴固定连接,所述静阀盘与所述涡轮壳体相固定。
  13. 根据权利要求12所述的涡轮式脉冲发生器,其特征在于,所述静阀盘上设有第一偏心孔,所述动阀盘设有第二偏心孔,所述第一偏心孔与所述第二偏心孔的重叠部分随所述动阀盘的转动而周期性变化,从而使所述阀盘机构通过所述第一偏心孔和所述第二偏心孔形成的过流面积呈周期性变化。
  14. 根据权利要求13所述的涡轮式脉冲发生器,其特征在于,所述第一偏心 孔和所述第二偏心孔的孔径和偏心距均相同。
  15. 根据权利要求1或11所述的涡轮式脉冲发生器,其特征在于,在所述涡轮轴的处于所述涡轮机构下端的侧壁设有通孔(222),用于连通所述涡轮轴的内部的中心流道与形成于所述涡轮轴和所述涡轮壳体之间的径向环空。
  16. 根据权利要求1所述的涡轮式脉冲发生器,其特征在于,所述涡轮壳体(21)的下端设有下接头(27),所述下接头与所述静阀盘轴向抵接,以限定所述静阀盘的轴向位置。
  17. 一种井下钻具,包括:
    振动发生工具;
    连接在所述振动发生工具的下端的导向马达钻具组合;以及
    根据权利要求1到16中任一项所述的涡轮式脉冲发生器,所述涡轮式脉冲发生器连接在所述振动发生工具与所述导向马达钻具组合之间。
PCT/CN2022/120521 2021-12-27 2022-09-22 状态自适应的涡轮式脉冲发生器及井下钻具 WO2023124294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111615130.2 2021-12-27
CN202111615130.2A CN116398046A (zh) 2021-12-27 2021-12-27 状态自适应的涡轮式脉冲发生器

Publications (1)

Publication Number Publication Date
WO2023124294A1 true WO2023124294A1 (zh) 2023-07-06

Family

ID=86997427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120521 WO2023124294A1 (zh) 2021-12-27 2022-09-22 状态自适应的涡轮式脉冲发生器及井下钻具

Country Status (2)

Country Link
CN (1) CN116398046A (zh)
WO (1) WO2023124294A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122034A1 (en) * 2015-11-02 2017-05-04 Cauldron Oil Tools, Llc Turbine Assembly for use in a Downhole Pulsing Apparatus
CN111255379A (zh) * 2020-03-10 2020-06-09 中国石油大学(北京) 水力脉冲振动冲击装置及其钻井装置
CN111577141A (zh) * 2020-04-29 2020-08-25 北京工业大学 钻井用涡轮式水力振荡器
CN114135230A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种遥控涡轮式脉冲发生器及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122034A1 (en) * 2015-11-02 2017-05-04 Cauldron Oil Tools, Llc Turbine Assembly for use in a Downhole Pulsing Apparatus
CN111255379A (zh) * 2020-03-10 2020-06-09 中国石油大学(北京) 水力脉冲振动冲击装置及其钻井装置
CN111577141A (zh) * 2020-04-29 2020-08-25 北京工业大学 钻井用涡轮式水力振荡器
CN114135230A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种遥控涡轮式脉冲发生器及其应用

Also Published As

Publication number Publication date
CN116398046A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
JP6678278B2 (ja) 混合式回転ガイド装置
WO2019095527A1 (zh) 一种旋转导向装置
HU184664B (en) Hydraulic drilling motor for deep drilling
EP2562350B1 (en) Downhole pulsing tool
WO2020221010A1 (zh) 用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法
CN109403866B (zh) 节率式高频水力脉冲振荡减阻提速器
US20190330931A1 (en) Downhole auxiliary drilling apparatus
CN105672885A (zh) 涡轮动力式双作用水力振荡减阻钻具
CN108049803B (zh) 叶轮式差速扭力冲击器
WO2018187397A1 (en) Steering systems and methods
CN113006681B (zh) 轴向振荡螺杆钻具
CN113685140B (zh) 一种轴向振荡螺杆钻具
WO2023124294A1 (zh) 状态自适应的涡轮式脉冲发生器及井下钻具
GB2055927A (en) Wellbore drilling tool
CN205422537U (zh) 涡轮动力式双作用水力振荡减阻钻具
CN110409999B (zh) 一种井下辅助钻井工具
CN110410000B (zh) 一种井下辅助钻井工具
CN109882102A (zh) 一种连杆式降摩振荡工具
CN114961568A (zh) 一种多向振荡冲击螺杆钻具
CN111197463A (zh) 振荡器
CN110056309B (zh) 定轴旋转容积式动力工具
WO2023186055A1 (zh) 一种钻具、钻井方法及钻井导向方法
WO2019132691A1 (ru) Бурильная компоновка с малогабаритным гидравлическим забойным двигателем
CN106499357A (zh) 水力振荡器
CN215718477U (zh) 偏心涡轮水力振荡器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913559

Country of ref document: EP

Kind code of ref document: A1