WO2020221010A1 - 用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法 - Google Patents

用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法 Download PDF

Info

Publication number
WO2020221010A1
WO2020221010A1 PCT/CN2020/084952 CN2020084952W WO2020221010A1 WO 2020221010 A1 WO2020221010 A1 WO 2020221010A1 CN 2020084952 W CN2020084952 W CN 2020084952W WO 2020221010 A1 WO2020221010 A1 WO 2020221010A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
upper joint
piston
automatic balancing
wall
Prior art date
Application number
PCT/CN2020/084952
Other languages
English (en)
French (fr)
Inventor
郑德帅
李梦刚
牛成成
赵向阳
于玲玲
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油工程技术研究院 filed Critical 中国石油化工股份有限公司
Priority to CA3138376A priority Critical patent/CA3138376C/en
Priority to US17/594,750 priority patent/US11814944B2/en
Publication of WO2020221010A1 publication Critical patent/WO2020221010A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • E21B44/04Automatic control of the tool feed in response to the torque of the drive ; Measuring drilling torque
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/22Rods or pipes with helical structure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/003Bearing, sealing, lubricating details
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling

Definitions

  • the invention relates to the technical field of oil and gas well construction, in particular to a counter-torque automatic balancing device for screw drilling tools, a drilling pipe string containing the same, and a method for drilling using the drilling pipe string.
  • directional wells and horizontal wells mainly use screw drilling tools for borehole trajectory control.
  • the drill string does not rotate to ensure the stability of the screw drill tool face, but this will cause a large axial friction between the drill string and the well wall, especially for long horizontal wells and horizontal wells.
  • huge axial friction will result in unsmooth transmission of WOB and low ROP.
  • the present invention proposes a counter-torque automatic balancing device for screw drilling tools, a drilling string containing the same, and a method for drilling using the drilling string .
  • the anti-torque automatic balancing device is based on the screw drilling tool. It can rotate the drill string to smoothly transmit the weight on bit during sliding drilling, and can effectively control the tools on the tool surface, which solves the problem of sliding drilling pressure, low mechanical drilling speed, etc. problem.
  • the structure is simple and the cost is relatively low.
  • a counter-torque automatic balancing device for screw drilling tools including:
  • a core barrel sleeved in the inner cavity of the upper joint.
  • the inner cavity of the core barrel communicates with the screw drilling tool downstream, so that the drilling fluid from the inner cavity of the upper joint can flow to the screw drilling tool through the inner cavity of the core barrel.
  • the automatic balancing component is arranged between the outer wall of the core barrel and the inner wall of the upper joint, and the automatic balancing component is driven by the hydraulic pressure generated by a part of the drilling fluid flowing through the inner cavity of the upper joint,
  • the automatic balance assembly makes the friction torque generated between the upper joint and the core barrel equal to the reaction torque generated on the shell of the screw drill tool for directional drilling.
  • the automatic balance assembly makes the friction torque between the upper joint and the core barrel greater than the reaction torque generated on the shell of the screw drill, so that the core barrel drives the shell of the screw drill to rotate Perform compound drilling.
  • the automatic balancing component includes:
  • a ring-shaped piston sleeved on the outer wall of the core barrel.
  • the piston is located at the upper end of the stator to receive the pressure of the drilling fluid, and can transmit thrust to drive the stator and the rotor to approach each other axially between the piston and the lower joint, thereby Generate friction torque.
  • the annulus between the core barrel upstream of the piston and the upper joint forms a hydraulic channel that can communicate with the inner cavity of the upper joint
  • the annulus between the core barrel located downstream of the piston and the upper joint forms a
  • the radial inner and outer parts of the piston are respectively in movable sealing contact with the core barrel and the upper joint, so that the piston can receive the drilling fluid pressure of the hydraulic channel and form a pressure difference between the upper and lower ends of the piston.
  • a first convex ring is provided on the outer wall of the core barrel, and a first elastic member is provided between the first convex ring and the piston.
  • One end of the first elastic member is fixed to the upper end surface of the piston, and the other end is connected to the The lower end surface of a convex ring is fixed, and when the piston is pressed and moves downward in the axial direction, the first elastic member generates a pulling force to partially offset the drilling fluid pressure acting on the piston.
  • a nozzle capable of communicating the hydraulic channel and the second space is provided on the piston.
  • the outer wall of the upper end of the core tube is sleeved with a locking tube that is locked in the circumferential direction of the core tube.
  • the locking tube extends upward in the axial direction to form a clamping connection with the inner wall of the upper joint.
  • the locking tube can be configured to When the displacement is greater than the second predetermined value, it moves axially to release the clamping connection between the locking cylinder and the upper joint.
  • an orifice with a flow area at the upper end larger than that at the lower end is provided in the inner cavity of the locking cylinder, and the orifice communicates with the inner cavity of the core cylinder, and is provided on the wall of the locking cylinder for communication The inner cavity of the locking cylinder and the communication hole of the hydraulic channel.
  • a second convex ring is provided on the outer wall of the core barrel, and a second elastic member is provided between the second convex ring and the locking barrel.
  • an adjustment barrel that can be located between the core barrel and the piston is sleeved on the outer wall of the core barrel, and the adjustment barrel and the piston are connected in a movable sealing manner.
  • the outer side wall of the lower end of the piston has a notch so that the radial dimension of the upper section of the piston is greater than the radial dimension of the lower section.
  • the axial dimensions of the stator and rotor are the same and are in the range of 10 to 30 mm.
  • the rotor and the outer wall of the core barrel form a tooth connection in an involute manner, and the height of the teeth of the tooth connection is not greater than 3 mm.
  • a bearing at the upper end of the automatic balance assembly is provided between the outer wall of the core barrel and the inner wall of the upper joint,
  • a groove is provided on the inner wall of the upper joint to define the outer ring of the bearing
  • a third convex ring is arranged on the wall of the core cylinder, and the third convex ring and a fixing nut located on the third convex ring and sleeved on the outer wall of the core cylinder together define the inner ring of the bearing.
  • the upper joint has a split structure and includes an upper joint main body and an outer cylinder.
  • the upper end of the outer cylinder extends into the inner cavity of the upper joint main body and is located between the upper end surface of the outer cylinder and the step surface of the upper joint main body. Form grooves.
  • an anti-dropping ring is provided at the lower end of the upper joint, and the upper end of the anti-dropping ring is inserted into the inner cavity of the upper joint to form a supporting surface at the upper end surface of the anti-dropping ring.
  • a wear-resistant layer located between the anti-drop ring and the lower joint is provided on the inner side wall of the anti-drop ring, and a drain groove extending in the axial direction is provided on the wear-resistant layer.
  • a drilling pipe string including the above-mentioned anti-torque automatic balancing device and a screw drilling tool, the bottom of the anti-torque automatic balancing device is 40-60 meters away from the top of the screw drilling tool.
  • a method for drilling using the above-mentioned drilling string including:
  • the drilling fluid with a displacement equal to the first predetermined value is pumped into the drilling string.
  • the hydraulic pressure generated by a part of the drilling fluid acts on the piston of the anti-torque automatic balancing device, making the upper joint and the core
  • the friction torque generated between the barrels is equal to the reaction torque generated on the shell of the screw drill.
  • the drilling fluid with a displacement higher than the first predetermined value is pumped into the drilling string.
  • the hydraulic pressure generated by a part of the drilling fluid acts on the piston of the anti-torque automatic balancing device, making the upper joint and
  • the friction torque generated between the core barrels is greater than the reaction torque generated on the shell of the screw drill.
  • the advantage of the present invention is that the anti-torque automatic balancing device is based on the screw drill and is set at a certain distance above the screw drill.
  • the automatic balance The components enable the friction torque to automatically balance the anti-torque of the screw drilling tool to keep the tool surface of the screw drilling tool stable.
  • the drill string above the anti-torque automatic balancing device is in a rotating state driven by the turntable, and the axial friction is greatly reduced. The mechanical drilling speed is greatly increased.
  • the anti-torque automatic balancing device keeps the tool surface of the screw drilling tool stable, the mechanical drilling speed is greatly increased; and when the wellbore trajectory is required by the composite design, the composite drilling mode is entered, and the adjustment The friction torque generated by the automatic balancing component causes the upper joint to rotate together with the core barrel and the lower joint, thereby driving the shell of the screw drill tool to rotate, so that the mechanical drilling speed is increased.
  • the anti-torque automatic balancing device has a simple structure, and the drilling and maintenance costs are relatively low.
  • Figure 1 shows a counter torque automatic balancing device for screw drilling tools according to an embodiment of the present invention
  • Figure 2 is the A-A section from Figure 1;
  • Figure 3 is a B-B section from Figure 1;
  • Figure 4 is a section C-C from Figure 1;
  • Figure 5 is a D-D section from Figure 1;
  • Figure 6 is an E-E section from Figure 1;
  • Figure 7 shows a drilling string according to an embodiment of the present invention.
  • Fig. 1 shows a counter torque automatic balancing device 303 for a screw drill 305 according to an embodiment of the present invention.
  • the anti-torque automatic balancing device 303 includes an upper joint 1, a lower joint 16, a core barrel 9 and an automatic balancing component.
  • the upper joint 1 has a cylindrical shape and is used to connect with the upper drill pipe 302 of the drilling string.
  • the core barrel 9 itself is also cylindrical and is used to be arranged in the inner cavity of the upper joint 1, and the inner cavity of the core barrel 9 is in communication with the inner cavity of the upper joint 1.
  • the inner cavity of the core barrel 9 communicates with the screw drilling tool 305 downstream, so that after the drilling fluid is pumped in the inner cavity of the upper joint 1, the drilling fluid flows to the screw drilling tool 305 through the inner cavity of the core barrel 9.
  • the screw drill 305 is allowed to drill.
  • the lower joint 16 is also cylindrical and is fixedly arranged at the lower end of the core barrel 9. The lower end of the lower joint 16 protrudes from the inner cavity of the upper joint 1 and is used to fix the screw drill 305 through the lower drill rod 304.
  • the automatic balancing component is arranged between the outer wall of the core barrel 9 and the inner wall of the upper joint 1.
  • the reaction torque generated on the shell of the screw drilling tool 305 during the drilling process of the screw drilling tool 305, and the automatic balancing assembly can be used when the upper joint 1 rotates relative to the core barrel 9 (including when there is a tendency to rotate)
  • the friction torque is generated to counter the reaction torque.
  • the core barrel 9 drives the lower joint 16 to rotate together with the upper joint 1, thereby driving the casing of the screw drilling tool 305 to rotate. Increase the ROP of drilling string.
  • the automatic balancing assembly makes the friction torque received by the core barrel 9 equal to the reaction torque received, so that the upper joint 1 rotates relative to the lower joint 16.
  • the working surface of the screw drill 305 is stable, and at the same time, the drill string above the anti-torque automatic balancing device 303 is in a rotating state driven by the turntable, the axial friction is greatly reduced, and the ROP is greatly increased.
  • the automatic balancing assembly has a stator 12, a rotor 13 and a piston 21.
  • the stator 12 is sleeved on the outer wall of the core barrel 9 and has a ring shape.
  • the stator 12 is clamped with the inner wall of the upper joint 1 so that the stator 12 can be driven to rotate together during the rotation of the upper joint 1, as shown in FIG. 5.
  • the stator 12 and the upper joint 1 may be connected by a keyway fitting connection.
  • the rotor 13 is sleeved on the outer wall of the core barrel 9 and has a ring shape.
  • the rotor 13 is toothed to the outer wall of the core barrel 9 so that the rotor 13 can rotate together with the core barrel 9, as shown in FIG. 4.
  • the rotor 13 is matched with the stator 12 so that the rotor 13 is located at the lower end of the corresponding stator 12.
  • the piston 21 is sleeved on the outer wall of the core barrel 9 and has a ring shape.
  • the piston 21 can accept the pressure in the annulus 3 between the upper joint 1 and the core barrel 9 and transmit the force to the stator 12 and the rotor 13 so that they are close to each other between the piston 21 and the lower joint 16, thereby Friction torque is generated between the two.
  • the piston 21 is driven by hydraulic pressure.
  • the annulus between the core barrel 9 upstream of the piston 21 and the upper joint 1 forms a hydraulic passage 6, which can communicate with the inner cavity of the upper joint 1 for receiving the internal cavity of the upper joint 1.
  • the annular space between the core barrel 9 downstream of the piston 21 and the upper joint 1 forms a second space 22 which can communicate with the outside.
  • the radial inner and outer sides of the piston 21 are in movable and sealing contact with the core barrel 9 and the upper joint 1 respectively.
  • the upper end surface of the piston 21 is in contact with the high pressure area of the hydraulic channel 6, and the lower end is in contact with the low pressure area of the second space 22.
  • the piston 21 receives the action of the liquid pressure to urge the stator 12 and the rotor 13 to approach each other in the axial direction and closely adhere to each other.
  • the friction torque received by the core barrel 9 is:
  • T f is the friction torque
  • ⁇ P is the internal and external pressure difference, and specifically includes the starting pressure loss ⁇ P 0 and the screw working pressure loss ⁇ P p
  • the starting pressure loss ⁇ P 0 is related to the drilling fluid displacement
  • n is the stator 12 and the rotor The number of contact surfaces of 13
  • S is the annular area of the upper end surface of the piston
  • f is the spring tension
  • is the friction coefficient between the stator 12 and the rotor
  • r is the friction radius of the stator 12 and the rotor 13.
  • the reaction torque received by the core barrel 9 (also the reaction torque received by the shell of the screw drill 305) is:
  • T p screw drill 305 reaction torque ⁇ P p is the working pressure loss of the screw
  • k is the characteristic parameter of the screw drill 305.
  • the first predetermined value of the drilling fluid displacement is determined.
  • the tension of the spring makes the force of the piston 21 to squeeze the stator 12 and the rotor 13 only related to the working pressure loss of the screw drill 305.
  • the number of the stator 12 and the rotor 13 is calculated and designed so that the friction torque T f and the screw reaction torque T p are the same as the first predetermined value of the drilling fluid displacement.
  • the friction torque generated by the automatic balancing component is always the same as the screw drilling tool.
  • the shell of 305 receives the same reaction torque, which is not affected by the formation or the drilling status.
  • the tool surface of the screw drilling tool 305 is always stable.
  • the drill string above the screw drilling tool anti-torque automatic balancing device 303 is in a rotating state driven by the turntable .
  • the piston 21 receives a greater force at this time and presses the stator 12 and the rotor 13 together.
  • the friction torque received by the core barrel 9 is higher than the reaction torque of the lower joint 16 loading it.
  • the upper joint 1 drives the stator 12 to rotate.
  • the rotor 13 follows The stator 12 rotates together to drive the core barrel 9 to rotate, so that the lower joint 16 and the stator of the screw drill 305 are in a rotating state.
  • the mechanical drilling speed is high, the stator 12 and the rotor 13 do not rotate with each other, and the screw drilling tool 305 has no wellbore trajectory control capability.
  • the working characteristics of the screw drilling tool 305 when the output torque of the screw drilling tool 305 increases, the working pressure loss generated by the screw drilling tool 305 is greater. The two are in a proportional relationship, and the pushing force of the piston 21 is greater.
  • the stator of the screw drill 305 is in a torque balance state and maintains a non-rotating state to achieve directional drilling. That is, through the above setting, the operation process of the drilling string can be adjusted by adjusting the drilling fluid displacement, so as to better meet the needs of wellbore trajectory design.
  • a plurality of stators 12 and rotors 13 matched with the stators 12 are provided on the outer wall of the core cylinder 9.
  • the rotor 13 at the lowermost end can abut the upper end surface of the lower joint 16.
  • the upper end surface of the stator 12 located at the uppermost end is in contact with the piston 21.
  • the height of the teeth of the rotor 13 and the outer wall of the core barrel 9 is not greater than 3 mm. That is, the rotor 13 and the core barrel 9 are connected by shallow and dense involute teeth. This arrangement can not only transmit a larger torque, but also reduce the impact on the strength of the core tube 9.
  • a Gry seal 11 is provided between the outer wall of the piston 21 and the inner wall of the upper joint 1, and between the inner wall of the piston 21 and the outer wall of the core barrel 9, a Gry seal 11 is provided. This arrangement can ensure the sealing effect between the piston 21 and the upper joint 1 and the core barrel 9 and prevent the liquid in the annulus 3 between the upper joint 1 and the core barrel 9 from leaking to the lower end of the piston 21.
  • the stator 12 and the rotor 13 are made of cemented carbide. This arrangement can improve the wear resistance of the stator 12 and the rotor 13, thereby increasing the service life of the anti-torque automatic balancing device 303. Further preferably, the axial dimensions of the stator 12 and the rotor 13 are the same and are in the range of 10 to 30 mm, for example, 20 mm, to ensure the strength of both.
  • a nozzle 10 is provided on the piston 21 to communicate the hydraulic passage 6 and the second space 22, as shown in FIG. 3. A small amount of drilling fluid can flow from the hydraulic channel 6 into the second space 22 through the nozzle 10, which is used to cool down the automatic balancing component, thereby prolonging the service life of the automatic balancing component.
  • the outer side wall of the lower end of the piston 21 has a notch 211 so that the radial dimension of the upper section of the piston 21 is larger than the radial dimension of the lower section.
  • This arrangement makes the adjacent area between the piston 21 and the core barrel 9 larger than the adjacent area between the piston 21 and the upper joint 1, so that the piston 21 can more compound and rotate with the core barrel 9, relative to the composite upper joint 1. In the way of rotation, the relative amount of rotation is small, and the wear of the piston 21 is relatively reduced. In addition, this arrangement can ensure easy processing and facilitate operations such as installing the nozzle 10.
  • a first convex ring 91 is provided on the outer wall of the core barrel 9.
  • a first elastic member 7 is provided between the first convex ring 91 and the piston 21.
  • the first elastic member 7 is a tension spring.
  • One end of the first elastic member 7 is fixed to the upper end surface of the piston 21, and the other end is fixed to the lower end surface of the first convex ring 91.
  • the piston 21 is also affected by the starting pressure loss and the working pressure loss of the screw drill 305.
  • the pulling force generated by the first elastic member offsets the thrust generated by the starting pressure loss on the piston 21, so the first elastic member
  • the pulling force of 7 makes the force of the piston 21 squeezing the stator 12 and the rotor 13 only related to the working pressure loss of the screw drill 305.
  • a locking tube 2 which is locked with the core tube 9 in the circumferential direction.
  • the locking cylinder 2 and the core tube 9 are connected in the manner of a key 20 to realize that the locking tube 2 can move axially relative to the core tube 9 but cannot rotate relative to its circumferential direction.
  • the locking cylinder 2 extends upward in the axial direction to form a clamping connection with the inner wall of the upper joint 1, for example, four concave-convex mating connections evenly distributed in the circumferential direction.
  • An orifice 201 with an upper flow area larger than a lower flow area is provided in the inner cavity of the locking cylinder 2.
  • the throttle hole 201 communicates with the inner cavity of the core barrel 9.
  • the wall of the locking cylinder 2 is provided with a communication hole 17 for communicating the inner cavity of the locking cylinder 2 and the hydraulic channel 6.
  • the drilling fluid from the upper joint 1 flows downstream through the orifice 201, one part enters the inner cavity of the core barrel 9, and the other part enters the hydraulic channel 6 through the through hole 17.
  • a second convex ring 92 is provided on the outer wall of the core cylinder 9, and a second elastic member 3, such as a spring, is provided between the second convex ring 92 and the locking cylinder 2, for pushing the locking cylinder 2 and connecting with the upper joint 1 Form a card connection.
  • the locking cylinder 2 moves downwards and disengages from the upper joint 1.
  • the upper joint 1 and the core shaft 9 are unlocked, and they can rotate relatively freely.
  • the main function of the locking cylinder 2 is to lock the upper joint 1 and the mandrel 9 circumferentially when the drilling fluid displacement is lower than the second predetermined value, and the rotation state of the two is the same.
  • the second predetermined value is much smaller than the first predetermined value.
  • the second predetermined value of the drilling fluid displacement during drilling of different wellbore can be different.
  • the three most commonly used wellbore values are: The second predetermined value is 30L/s, the second predetermined value corresponding to the 215.9mm borehole is 20L/s, and the second predetermined value corresponding to the 152mm borehole is 15L/s.
  • an adjustment tube 8 capable of being located between the core tube 9 and the piston 21.
  • the adjusting barrel 8 is provided, it can be understood that the adjusting barrel 8 and the piston 21 are connected in a movable sealing manner.
  • the adjusting barrel 8 is used to compensate the gap between the two.
  • the upper end of the adjusting cylinder 8 is fixedly arranged on the core cylinder 9 by welding points 18.
  • an anti-dropping ring 15 is fixed at the lower end of the upper joint 1.
  • the upper end of the anti-dropping ring 15 is inserted into the inner cavity of the upper joint 1 to form a supporting surface at the upper end surface of the anti-dropping ring 15.
  • the stator 12 and the rotor 13 will fall and be received by the anti-drop ring 15 to avoid falling into the shaft.
  • a wear-resistant layer 23 is provided on the inner wall of the anti-dropping ring 15, and a wear-resistant layer 14 is also provided on the outer wall of the lower joint 16 to increase the wear resistance between the two and increase the service life.
  • a drain groove 231 extending in the axial direction is provided on the wear-resistant layer 23. For example, in the circumferential direction, four drain grooves 231 are evenly distributed to expand the fluid passage for communicating the second space 22 with the outside.
  • a bearing 5 at the upper end of the automatic balancing assembly is provided between the outer wall of the core barrel 9 and the inner wall of the upper joint 1.
  • the outer ring of the bearing 5 is defined by the inner wall of the upper joint 1
  • the inner ring of the bearing 5 is defined by the outer wall of the core barrel 9.
  • the upper joint 1 may be configured as a split structure, that is, it includes the upper joint body 101 and the outer cylinder 19.
  • the outer ring of the bearing 5 is inserted between the step surface 102 of the inner wall of the upper joint body 101 and the upper end surface of the outer cylinder 19.
  • the bearing 5 is provided so that the outer cylinder 19 and the core cylinder 9 can rotate relatively freely, and the bearing 5 is a thrust bearing for bearing axial forces such as drilling pressure.
  • multiple bearings 5 can be provided. When the drilling string is applied to hard formations and requires a larger WOB, the number of bearings 5 can be increased.
  • the third convex ring 93 and the first convex ring 91 may be the same convex ring, and the fixing nut 4 may function as the second convex ring 92.
  • the length of the third convex ring 93 may be about 20 mm, which is used to ensure sufficient strength for fixing the bearing 5.
  • the upper end of the upper joint 1 is designed as a female buckle for drill pipes, and the other end is a metric buckle for threaded connection with the outer cylinder 19.
  • the outer diameter of the upper joint 1 is determined according to the borehole size, and is about 40mm smaller than the borehole size to form a flow path for debris flowback.
  • the upper part of the lower joint 16 is inserted into the inner cavity of the upper joint 1, and is connected to the core barrel 9 by a threaded connection.
  • the upper end surface of the upper joint 16 protrudes radially outward relative to the outer wall of the core barrel 9 for abutting and receiving the rotor 13 of the automatic balancing assembly.
  • the flow area of the lower part of the inner cavity of the lower joint 16 is increased relative to the flow area of the upper part to ensure that the flow friction of the drilling fluid is reduced under the strength condition.
  • the drilling string includes the anti-torque automatic balancing device 303 and the screw drilling tool 305 of the present application.
  • the upper joint 1 of the anti-torque automatic balancing device 303 is connected to the wellhead turntable 301 and the drilling pump through the upper drill pipe 302, and the lower joint 16 is connected to the shell of the screw drilling tool 305 through the lower drill pipe 304.
  • the anti-torque automatic balancing device 303 is set at a distance of 40-60 meters from the screw drilling tool 305.
  • the bottom surface of the anti-torque automatic balancing device 303 is 50 to the top surface of the screw drilling tool 305.
  • the wellhead turntable 301 of the drilling string is activated and the displacement is adjusted to a specific first predetermined value.
  • the friction torque is just to balance the reaction torque of the screw drilling tool 305.
  • the reverse torque of the screw drilling tool 305 can be changed.
  • the present invention can generate the corresponding change torque and automatically balance the reverse torque. Therefore, the tool surface of the screw drilling tool 305 is always stable and the screw drilling tool reverse torque.
  • the drilling string above the automatic balance device 303 is in a rotating state driven by the wellhead turntable 301, the axial friction is greatly reduced, and the ROP is greatly increased.
  • the screw drilling tool anti-torque automatic balance device 303 maintains the screw drilling tool 305 tool While the surface is stable, the drilling speed is greatly increased.
  • a drilling fluid with a displacement higher than a first predetermined value is pumped into the drilling string.
  • a part of the drilling fluid acts on the piston 21 of the anti-torque automatic balancing device 303, so that the upper joint 1 and the core barrel
  • the friction torque generated between 9 is greater than the reaction torque generated on the shell of the screw drill 305.
  • the upper joint 1 drives the core barrel 9 to rotate together, and then drives the shell of the screw drill 305 to rotate together, thereby increasing the mechanical drilling speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种用于螺杆钻具的反扭转自动平衡、钻井管串和方法,装置包括上接头(1);芯筒(9),芯筒(9)的内腔与处于下游的螺杆钻具(305)连通,使得来自上接头(1)的内腔的钻井液能通过芯筒(9)的内腔流向螺杆钻具(305)而使其进行钻进;固定设置在芯筒(9)的下端的下接头(16);设置在芯筒(9)的外壁和上接头(1)的内壁之间的自动平衡组件,自动平衡组件由流经上接头(1)的内腔中的钻井液的一部分产生的液压力驱动,当钻井液排量等于第一预定值时,上接头(1)与芯筒(9)之间产生摩擦扭矩与螺杆钻具(305)的外壳上产生的反扭矩大小相等以进行定向钻进,当钻井液排量高于第一预定值时,上接头(1)与芯筒(9)之间产生摩擦扭矩大于螺杆钻具(305)的外壳上产生的反扭矩,使得芯筒(9)带动螺杆钻具(305)的外壳旋转以进行复合钻进。

Description

用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法
相关申请的交叉引用
本申请要求享有于2019年04月30日提交的名称为“一种螺杆钻具反扭转自动平衡和包含其的钻柱”的中国专利申请CN201910361879.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及油气井施工技术领域,具体涉及一种用于螺杆钻具的反扭矩自动平衡装置、包含其的钻井管串和利用该钻井管串进行钻井的方法。
背景技术
目前定向井、水平井主要利用螺杆钻具进行井眼轨迹控制。工作过程中,当滑动钻进时,钻柱不旋转以保证螺杆钻具工具面的稳定,但这将导致钻柱与井壁之产生很大轴向摩阻,尤其对于长水平段水平井和大位移井,巨大的轴向摩阻会导致钻压传递不顺利,机械钻速低。
为解决螺杆钻具滑动定向钻进时机械钻速低的缺点,国内外开发了各种技术,主要的思路是使钻柱旋转起来以降低摩阻提高机械钻速。现有技术中,可以使用先进的旋转导向工具,以有效控制井眼轨迹的同时旋转钻柱,克服了滑动导向技术的不足,钻压传递顺利,机械钻速高,井眼质量好。但是,由于旋转导向工具为机电液一体化设备,使用及维护成本昂贵,不利于钻井成本的降低。
发明内容
针对现有技术中所存在的上述技术问题的部分或者全部,本发明提出了一种用于螺杆钻具的反扭矩自动平衡装置、包含其的钻井管串和利用该钻井管串进行钻井的方法。该反扭矩自动平衡装置以螺杆钻具为基础,在滑动钻进时可以旋转钻柱以顺利传递钻压,并能有效控制工具面的工具,解决了滑动钻进托压、机械钻速低等问题。并且,该结构简单,成本比较低。
根据本发明的第一方面,提出了一种用于螺杆钻具的反扭矩自动平衡装置,包括:
筒状的上接头,
套设在上接头的内腔中的芯筒,芯筒的内腔与处于下游的螺杆钻具连通,使得来自上接头的内腔的钻井液能通过芯筒的内腔流向螺杆钻具而使螺杆钻具进行钻进,
固定设置在所述芯筒的下端的筒状的下接头,所述下接头的部分延伸出所述上接头的内腔以通过下部钻杆固定连接螺杆钻具的外壳,
设置在芯筒的外壁和上接头的内壁之间的自动平衡组件,自动平衡组件由流经上接头的内腔中的钻井液的一部分产生的液压力驱动,
其中,当钻井液排量等于第一预定值时,自动平衡组件使得上接头与芯筒之间产生摩擦扭矩与螺杆钻具的外壳上产生的反扭矩大小相等以进行定向钻进,
当钻井液排量高于第一预定值时,自动平衡组件使得上接头与芯筒之间产生摩擦扭矩大于螺杆钻具的外壳上产生的反扭矩,使得芯筒带动螺杆钻具的外壳旋转以进行复合钻进。
在一个实施例中,自动平衡组件包括:
套设在芯筒的外壁上的环状的定子,定子与上接头的内壁卡接,
匹配式设置在定子的下端的转子,转子呈筒状以套设在芯筒的外壁上并与芯筒的外壁齿接,
套设在芯筒的外壁上的环状的活塞,活塞位于定子的上端以接受钻井液的压力,并能传递推力以促动定子和转子在活塞和下接头之间轴向上彼此靠近,从而产生摩擦扭矩。
在一个实施例中,位于活塞上游的芯筒与上接头之间的环空形成能与上接头的内腔连通的液压通道,位于活塞下游的芯筒与上接头之间的环空形成能与外界连通的第二空间,活塞的径向内部和外部分别与芯筒和上接头活动密封式接触,以使得活塞能够接受液压通道的钻井液压力而在活塞的上下两端形成压力差。
在一个实施例中,在芯筒的外壁上设置第一凸环,在第一凸环与活塞之间设置第一弹性件,第一弹性件的一端与活塞的上端面固定,另一端与第一凸环的下端面固定,在活塞受压沿轴向向下移动时第一弹性件产生拉力以部分地抵消作用在活塞上的钻井液压力。
在一个实施例中,在活塞上设置能连通液压通道和第二空间的喷嘴。
在一个实施例中,在芯筒的上端外壁上套设与芯筒周向上锁定的锁定筒,锁定筒沿轴向向上延伸以与上接头的内壁形成卡接,锁定筒能构造为在钻井液排量大于第二预定值时轴向移动以脱开锁定筒与上接头的卡接。
在一个实施例中,在锁定筒的内腔中设置上端通流面积大于下端通流面积的节流孔,节流孔与芯筒的内腔连通,并在锁定筒的壁上设置用于连通锁定筒的内腔和液压通道的连 通孔。
在一个实施例中,在芯筒的外壁上设置第二凸环,在第二凸环与锁定筒之间设置第二弹性件。
在一个实施例中,在芯筒的外壁上套设能位于芯筒与活塞之间的调节筒,调节筒与活塞活动密封式连接。
在一个实施例中,活塞的下端的外侧壁上具有豁口以使得活塞的上段的径向尺寸大于下段的径向尺寸。
在一个实施例中,定子和转子的轴向尺寸相同,并处于10到30mm的范围内。
在一个实施例中,转子与芯筒的外壁以渐开线方式形成齿接,并且齿接的齿的高度不大于3毫米。
在一个实施例中,在芯筒的外壁和上接头的内壁之间设置位于自动平衡组件的上端的轴承,
在上接头的内壁上设置凹槽用于限定轴承的外圈,
在芯筒的壁上设置第三凸环,第三凸环与位于第三凸环之上并套设在芯筒的外壁上的固定螺母一起限定轴承的内圈。
在一个实施例中,上接头为分体式结构并包括上接头主体和外筒,外筒的上端延伸到上接头主体的内腔中,并在外筒的上端面与上接头主体的台阶面之间形成凹槽。
在一个实施例中,在上接头的下端设置有防掉环,防掉环的上端插入到上接头的内腔中,以在防掉环的上端面处形成承托表面。
在一个实施例中,在防掉环的内侧壁上设置位于防掉环和下接头之间的耐磨层,并在耐磨层上设置沿轴向延伸的泄流槽。
根据本发明的第二方面,提供一种钻井管串,包括上述的反扭矩自动平衡装置和螺杆钻具,反扭矩自动平衡装置的底部距离螺杆钻具的顶部40-60米。
根据本发明的第三方面,提供一种利用上述钻井管串进行钻井的方法,包括:
在需要定向钻进时,向钻井管串内泵送排量等于第一预定值的钻井液,钻井液的一部分所产生的液压力作用在反扭矩自动平衡装置的活塞上,使得上接头与芯筒之间产生的摩擦扭矩与螺杆钻具的外壳上产生的反扭矩大小相等,
在需要复合钻进时,向钻井管串内泵送排量高于第一预定值的钻井液,钻井液的一部分所产生的液压力作用在反扭矩自动平衡装置的活塞上,使得上接头与芯筒之间产生摩擦扭矩大于螺杆钻具的外壳上产生的反扭矩。
与现有技术相比,本发明的优点在于,该反扭矩自动平衡装置以螺杆钻具为基础,设 置在螺杆钻具之上一定距离,当需要螺杆钻具滑动定向钻进时,通过自动平衡组件使得摩擦扭矩自动平衡螺杆钻具的反扭矩,以使得螺杆钻具的工具面保持稳定,同时,反扭矩自动平衡装置以上的钻柱在转盘带动下处于旋转状态,轴向摩阻大大降低,机械钻速大幅度提高,因此在该反扭矩自动平衡装置保持螺杆钻具工具面稳定的同时,大幅度提高了机械钻速;而当井眼轨迹复合设计要求,进入复合钻进模式,通过调节自动平衡组件产生的摩擦扭矩使得上接头与芯筒和下接头一同旋转,进而带动螺杆钻具的外壳旋转,使得机械钻速提高。另外,该反扭矩自动平衡装置结构简单,钻进和维护成本都比较低。
附图说明:
下面将结合附图来对本发明的优选实施例进行详细地描述,在图中:
图1显示了根据本发明的一个实施例的用于螺杆钻具的反扭矩自动平衡装置;
图2为来自图1的A-A剖;
图3为来自图1的B-B剖;
图4为来自图1的C-C剖;
图5为来自图1的D-D剖;
图6为来自图1的E-E剖;
图7显示了根据本发明的一个实施例的钻井管串。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明做进一步说明。
图1显示了根据本发明的一个实施例的用于螺杆钻具305的反扭矩自动平衡装置303。如图1所示,反扭矩自动平衡装置303包括上接头1、下接头16、芯筒9以及自动平衡组件。其中,如图7所示,上接头1为筒状,用于与钻井管串的上部钻杆302连接。芯筒9自身也为筒状,用于设置在上接头1的内腔中,并且,芯筒9的内腔与上接头1的内腔连通。在工作过程中,芯筒9的内腔与处于下游的螺杆钻具305连通,以在上接头1的内腔泵送钻井液后,钻井液通过芯筒9的内腔流向螺杆钻具305而使得螺杆钻具305进行钻进。而下接头16也为筒状,并固定设置在芯筒9的下端。下接头16的下端伸出上接头1的内腔,用于通过下部钻杆304固定连接螺杆钻具305。自动平衡组件设置在芯筒9的外壁和上接头1的内壁之间。在钻井过程中,螺杆钻具305钻进过程中螺杆钻具305的外壳上产生的反扭矩,而该自动平衡组件能在上接头1相对于芯筒9转动时(也包括具有转动趋势时)产生摩擦扭矩,用于对抗该反扭矩。例如,如果井眼轨迹复合设计要求, 芯筒9受到的摩擦扭矩高于受到的反扭矩,则芯筒9带动下接头16复合于上接头1一同转动,进而带动螺杆钻具305的外壳旋转,提高钻井管串的机械钻速。如果井眼轨迹与设计出现偏差,需要定向钻进时,自动平衡组件使得芯筒9受到的摩擦扭矩等于受到的反扭矩,以使上接头1相对于下接头16转动。此时,螺杆钻具305的工作面稳定,同时,反扭矩自动平衡装置303以上的钻柱在转盘带动下处于旋转状态,轴向摩阻大大降低,机械钻速大幅度提高。
在一个实施例中,自动平衡组件具有定子12、转子13和活塞21。其中,定子12套设在芯筒9的外壁上,并呈环状。同时,定子12与上接头1的内壁卡接,以使上接头1旋转过程中,能带动定子12一同旋转,如图5所示。例如,定子12与上接头1可以采用键槽配合的连接方式进行卡接。转子13套设在芯筒9的外壁上,并呈环状。同时,转子13与芯筒9的外壁齿接,以使得转子13能与芯筒9一同旋转,如图4所示。转子13与定子12匹配,并使得转子13位于相应的定子12的下端。活塞21套设在芯筒9的外壁上,并呈环状。同时,活塞21能接受上接头1与芯筒9中间的环空3内的压力,并将力传递到定子12和转子13以使得两者在活塞21和下接头16之间彼此靠近,从而在两者之间产生摩擦扭矩。
在本申请中,活塞21通过液压力驱动。具体地,在活塞21上游的芯筒9与上接头1之间的环空形成液压通道6,该液压通道6能与上接头1的内腔连通,用于接受来自上接头1的内腔的钻井液。活塞21下游的芯筒9与上接头1之间的环空形成第二空间22,该第二空间22能与外界连通。同时,活塞21的径向的内侧和外侧分别与芯筒9和上接头1活动密封式接触。当正常钻进时,螺杆钻具305及钻头会产生压耗,导致芯筒9与上接头1之间形成的液压通道6与第二空间22有压差。而活塞21的上端面与液压通道6的高压区接触,下端与第二空间22低压区接触。从而活塞21受到了液体压力的作用,以促动定子12和转子13轴向上彼此靠近并紧密贴合。
在工作过程中,芯筒9受到的摩擦扭矩为:
T f=(ΔPS-f)nμr            (1)
式中,T f为摩擦扭矩,ΔP为内外压差,并具体包括启动压耗ΔP 0和螺杆工作压耗ΔP p,且启动压耗ΔP 0与钻井液排量相关,n为定子12和转子13的接触面数量,S为活塞21的上端面的环形面积,f为弹簧拉力,μ为定子12和转子13之间的摩擦系数,r为定子12和转子13的摩擦作用半径。
而芯筒9受到的反扭矩(也是螺杆钻具305的外壳所受到的反扭矩)为:
T P=ΔP pk            (2)
式中,T p螺杆钻具305反扭矩,ΔP p为就是螺杆的工作压耗,k为螺杆钻具305的特性参数。
根据以上公式,首先根据钻井液排量第一预定值计算确定启动压耗ΔP 0,设计弹簧规格,当活塞在钻井液压力作用下向下运动直至与最上端的定子接触时,弹簧的拉力为:
f=ΔP 0S         (3)
弹簧确定后,就确定了钻井液排量第一预定值。弹簧的拉力使得活塞21挤压定子12和转子13的力只与螺杆钻具305的工作压耗相关。
其次,在定子、转子尺寸及摩擦系数确定条件下,计算设计定子12和转子13的个数使摩擦扭矩T f与螺杆反扭矩T p在钻井液排量第一预定值相同。当钻压和地层出现变化时,螺杆钻具305的反扭矩就会出现变化,但同时螺杆工作压耗也出现变化,而产生的摩擦扭矩始终与螺杆钻具305的外壳所受的反扭矩相同,最终达到摩擦扭矩自动平衡螺杆钻具305的反扭矩的效果。也就是说,在反扭转自动平衡装置的结构确定的情况下,其在钻井过程中,当调节钻井排量至第一预定值时,自动平衡组件所产生的摩擦扭矩的大小始终与螺杆钻具305的外壳所受的反扭矩相同,其并不受地层或者钻进状态的影响。
通过上述原理,在钻井液排量等于第一预定值的时候,螺杆钻具305的工具面始终保持稳定,同时,螺杆钻具反扭矩自动平衡装置303以上的钻柱在转盘带动下处于旋转状态。当钻井液排量高于第一预定值的特定排量,此时活塞21受到较大的力,并将定子12和转子13压紧在一起。此时,芯筒9所受到的摩擦扭矩高于下接头16加载其上的反扭矩,上接头1带动定子12转动,由于定子12与转子13之间的轴向压力非常大,则转子13跟随定子12一起转动,以带动芯筒9转动,从而下接头16和螺杆钻具305的定子处于旋转状态。这种复合钻进模式下,机械钻速高,定子12和转子13没有相互转动,且螺杆钻具305没有井眼轨迹控制的能力。根据螺杆钻具305的工作特性,当螺杆钻具305输出扭矩增大时,螺杆钻具305产生的工作压耗就越大,两者呈正比关系,活塞21推动的力就越大。上接头1旋转,与芯筒9之间的摩擦扭矩也就越大,摩擦扭矩的方向为顺时针。只要摩擦扭矩的大小与反扭矩相同,那么螺杆钻具305的定子就处于力矩平衡状态,保持非旋转状态从而实现定向钻进。也就是,通过上述设置使得通过调节钻井液排量的方式调节钻井管串的运作过程,以更好的满足井眼轨迹设计需要。
例如,在芯筒9的外壁上设置多个定子12和与定子12匹配式设置的转子13。处于最下端的转子13可以与下接头16的上端面抵接。位于最上端的定子12的上端面与活塞21抵接。
优选地,转子13与芯筒9的外壁齿接的齿的高度不大于3毫米。也就是,转子13 与芯筒9通过浅而密的渐开线齿相连接。这种设置方式既可以传递较大扭矩,又减少了对芯筒9强度的影响。
在活塞21的外壁与上接头1的内壁之间,以及活塞21的内壁与芯筒9的外壁之间均设置格莱密封圈11。这种设置能保证活塞21与上接头1和芯筒9之间的密封效果,防止上接头1与芯筒9之间的环空3内的液体泄漏到活塞21的下端。
优选地,定子12和转子13由硬质合金制成。这种设置可以提高定子12和转子13的耐磨性,从而提高反扭矩自动平衡装置303的使用寿命。进一步优选地,定子12和转子13的轴向尺寸相同,并处于10到30mm的范围内,例如,20mm,用于保证两者的强度。
在活塞21上设置喷嘴10,以连通液压通道6和第二空间22,如图3所示。通过喷嘴10能从液压通道6向第二空间22内流少量的钻井液,用于为自动平衡组件进行降温处理,从而延长自动平衡组件的使用寿命。
例如,活塞21的下端的外侧壁上具有豁口211,以使得活塞21的上段的径向尺寸大于下段的径向尺寸。这种设置使得活塞21与芯筒9的之间的临近面积要大于活塞21与上接头1的临近面积,以使得活塞21能更多的复合与芯筒9转动,则相对于复合上接头1转动的方式,相对转动量少,进而活塞21的磨损相对降低。另外这种设置方式还能保证容易进行加工,并便于安装喷嘴10等操作。
在芯筒9的外壁上设置第一凸环91。在第一凸环91与活塞21之间设置第一弹性件7。例如第一弹性件7为拉伸弹簧。第一弹性件7的一端与活塞21的上端面固定,另一端与第一凸环91的下端面固定。在工作过程中,活塞21还受到了启动压耗和螺杆钻具305的工作压耗的作用,第一弹性件产生拉力抵消了启动压耗作用在活塞21上产生的推力,因此第一弹性件7的拉力使得活塞21挤压定子12和转子13的力只与螺杆钻具305的工作压耗相关。
在芯筒9的上端外壁上套设与芯筒9周向上锁定的锁定筒2。例如,如图2所示,该锁定筒2与芯筒9采用键20的方式进行连接,实现锁定筒2能相对于芯筒9轴向移动而不能相对于其周向转动。锁定筒2沿轴向向上延伸以与上接头1的内壁形成卡接,例如周向上均布的四个凹凸配合式连接。在锁定筒2的内腔中设置上端通流面积大于下端通流面积的节流孔201。该节流孔201与芯筒9的内腔连通。并在锁定筒2的壁上设置用于连通锁定筒2的内腔和液压通道6的连通孔17。来自上接头1的钻井液,通过节流孔201向下游流动,一部分进入到芯筒9的内腔,另一部分通过通孔17进入到液压通道6中。另外,在芯筒9的外壁上设置第二凸环92,并在第二凸环92与锁定筒2之间设置第二弹性 件3,例如为弹簧,用于推动锁定筒2并与上接头1形成卡接。通过设计弹簧参数,当钻井液排量大于第二预定值时,通过节流孔201产生的推力大于第二弹性件3的反弹力时,锁定筒2向下移动,与上接头1脱开,使得上接头1与芯轴9解锁,两者可相对自由旋转。锁定筒2的主要功能是当钻井液排量低于第二预定值时,上接头1与芯轴9周向上锁定,两者旋转状态是相同的,当钻井液排量高于第二预定值时,两者脱开。通过设置锁定筒2可以在井下出现复杂情况导致无法调节至正常排量,甚至无法开泵的情况下,上部钻柱可带动反扭矩自动平衡装置303以下的螺杆钻具305以及钻头旋转,有利于处理井下复杂事故。该第二预定值要远小于第一预定值,不同井眼钻进时的钻井液排量的第二预定值可以不同,例如,三个最常用井眼的数值为:311mm井眼对应的第二预定值为30L/s,215.9mm井眼对应的第二预定值为20L/s,152mm井眼对应的第二预定值为15L/s。
在芯筒9的外壁上套设能位于芯筒9与活塞21之间的调节筒8。当设置有调节筒8时,可以理解地,调节筒8与活塞21活动密封式连接。该调节筒8的在活塞21和芯筒9的尺寸确定的情况下,用于补偿两者之间的空隙。例如,调节筒8的上端通过焊点18固定设置在芯筒9上。
在一个实施例中,在上接头1的下端固定防掉环15。该防掉环15的上端插入到上接头1的内腔中,以在防掉环15的上端面处形成承托表面。在例如轴承破坏等意外发生的情况下,定子12和转子13会掉落并被防掉环15承接,以避免掉落井筒内。
如图6所示,在防掉环15的内侧壁上设置耐磨层23,并在下接头16的外壁上也设置防磨层14,用于增加两者之间的耐磨性,提高使用寿命。在耐磨层23上设置沿轴向延伸的泄流槽231。例如,在周向上,均布四个泄流槽231,以用于扩大第二空间22与外界连通的流体通道。
在一个实施例中,在芯筒9的外壁和上接头1的内壁之间设置位于自动平衡组件的上端的轴承5。轴承5的外圈由上接头1的内壁限定,而轴承5的内圈由芯筒9的外壁限定。例如,上接头1可以构造为分体式结构,也就是包括上接头本体101和外筒19。轴承5的外圈嵌入到上接头本体101的内壁的台阶面102与外筒19的上端面之间。而轴承5的内圈的下端面与设置在芯筒9的外壁上的第三凸环93抵接,而轴承5的内圈的上端面与套设在芯筒9的外壁上的固定螺母4抵接。通过设置轴承5使得外筒19与芯筒9之间可以相对自由转动,同时该轴承5为推力轴承以用于承受钻压等轴向力。例如,根据实际需要,可以设置多个轴承5。当钻井管串应用于硬地层需要较大的钻压时,轴承5的数量可以增加。需要说明的是,为了简化结构,例如第三凸环93与第一凸环91可以为同一凸环,而固定螺母4可以起到第二凸环92的作用。第三凸环93的长度可以为20毫米左右,用 于保证足够的固定轴承5的强度。
上接头1上端设计为钻杆用母扣,另一端为公制扣以与外筒19螺纹连接。上接头1的外径根据井眼尺寸决定,比井眼尺寸小约40mm,以形成岩屑返排的流道。
下接头16的上部插入到上接头1的内腔中,并通过螺纹连接的方式与芯筒9连接。上接头16的上端面相对于芯筒9的外壁径向向外突出,以用于抵接和承接自动平衡组件的转子13。下接头16的内腔的下部的流通面积相对上部的流通面积增加,以保证强度条件下降低钻井液的流动摩阻。
本申请还包括钻井管串和方法。如图7所示,该钻井管串包括本申请的反扭矩自动平衡装置303和螺杆钻具305。在使用过程中,该反扭矩自动平衡装置303的上接头1通过上部钻杆302连接到井口转盘301和钻井泵,而下接头16通过下部钻杆304连接到螺杆钻具305的外壳。并且,在连接过程中,需要保证该反扭矩自动平衡装置303设置在距离螺杆钻具305为40-60米的地方,例如,反扭矩自动平衡装置303的底面距离螺杆钻具305的顶面50米。当需要螺杆钻具305滑动定向钻进时,开动钻井管串的井口转盘301,并将排量调节至特定的第一预定值,此时摩擦扭矩恰好平衡螺杆钻具305的反扭矩。不论地层、钻压等各种因素导致螺杆钻具305反扭矩出现变化时,本发明可产生相应的变化扭矩自动平衡反扭矩,因此螺杆钻具305的工具面始终保持稳定,螺杆钻具反扭矩自动平衡装置303以上的钻井管串在井口转盘301带动下处于旋转状态,轴向摩阻大大降低,机械钻速大幅度提高,因此在螺杆钻具反扭矩自动平衡装置303保持螺杆钻具305工具面稳定的同时,大幅度提高了机械钻速。在需要复合钻进时,向钻井管串内泵送排量高于第一预定值的钻井液,钻井液的一部分作用在反扭矩自动平衡装置303的活塞21上,使得上接头1与芯筒9之间产生摩擦扭矩大于螺杆钻具305的外壳上产生的反扭矩。此时,上接头1带动芯筒9一起旋转,进而带动螺杆钻具305的外壳一同旋转,进而提高了机械钻速。
以上仅为本发明的优选实施方式,但本发明保护范围并不局限于此,任何本领域的技术人员在本发明公开的技术范围内,可容易地进行改变或变化,而这种改变或变化都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求书的保护范围为准。

Claims (18)

  1. 一种用于螺杆钻具的反扭矩自动平衡装置,其特征在于,包括:
    筒状的上接头,
    套设在所述上接头的内腔中的芯筒,所述芯筒的内腔与处于下游的螺杆钻具连通,使得来自所述上接头的内腔的钻井液能通过所述芯筒的内腔流向所述螺杆钻具而使螺杆钻具进行钻进,
    固定设置在所述芯筒的下端的筒状的下接头,所述下接头的部分延伸出所述上接头的内腔以通过下部钻杆固定连接螺杆钻具的外壳,
    设置在所述芯筒的外壁和所述上接头的内壁之间的自动平衡组件,所述自动平衡组件由流经所述上接头的内腔中的钻井液的一部分产生的液压力驱动,
    其中,当钻井液排量等于第一预定值时,所述自动平衡组件使得所述上接头与所述芯筒之间产生摩擦扭矩与所述螺杆钻具的外壳上产生的反扭矩大小相等以进行定向钻进,
    当钻井液排量高于第一预定值时,所述自动平衡组件使得所述上接头与所述芯筒之间产生摩擦扭矩大于所述螺杆钻具的外壳上产生的反扭矩,使得所述芯筒带动所述螺杆钻具的外壳旋转以进行复合钻进。
  2. 根据权利要求1所述的反扭矩自动平衡装置,其特征在于,所述自动平衡组件包括:
    套设在所述芯筒的外壁上的环状的定子,所述定子与所述上接头的内壁卡接,
    匹配式设置在所述定子的下端的转子,所述转子呈筒状以套设在所述芯筒的外壁上并与所述芯筒的外壁齿接,
    套设在所述芯筒的外壁上的环状的活塞,所述活塞位于所述定子的上端以接受钻井液的压力,并能传递推力以促动所述定子和所述转子在所述活塞和所述下接头之间轴向上彼此靠近,从而产生摩擦扭矩。
  3. 根据权利要求2所述的反扭矩自动平衡装置,其特征在于,位于所述活塞上游的所述芯筒与所述上接头之间的环空形成能与所述上接头的内腔连通的液压通道,位于所述活塞下游的所述芯筒与所述上接头之间的环空形成能与外界连通的第二空间,所述活塞的径向内部和外部分别与所述芯筒和所述上接头活动密封式接触,以使得所述活塞能够接受液压通道的钻井液压力而在所述活塞的上下两端形成压力差。
  4. 根据权利要求3所述的反扭矩自动平衡装置,其特征在于,在所述芯筒的外壁上设置第一凸环,在所述第一凸环与所述活塞之间设置第一弹性件,所述第一弹性件的一端与所述活塞的上端面固定,另一端与所述第一凸环的下端面固定,在所述活塞受压沿轴向 向下移动时所述第一弹性件产生拉力以部分地抵消钻井液压力作用在所述活塞上产生的推力。
  5. 根据权利要求3或4所述的反扭矩自动平衡装置,其特征在于,在所述活塞上设置能连通所述液压通道和第二空间的喷嘴。
  6. 根据权利要求3到5中任一项所述的反扭矩自动平衡装置,其特征在于,在所述芯筒的上端外壁上套设与所述芯筒周向上锁定的锁定筒,所述锁定筒沿轴向向上延伸以与所述上接头的内壁形成卡接,所述锁定筒能构造为在钻井液排量大于第二预定值时轴向移动以脱开所述锁定筒与所述上接头的卡接。
  7. 根据权利要求6所述的反扭矩自动平衡装置,其特征在于,在所述锁定筒的内腔中设置上端通流面积大于下端通流面积的节流孔,所述节流孔与所述芯筒的内腔连通,并在所述锁定筒的壁上设置用于连通所述锁定筒的内腔和所述液压通道的连通孔。
  8. 根据权利要求6或7所述的反扭矩自动平衡装置,其特征在于,在所述芯筒的外壁上设置第二凸环,在所述第二凸环与所述锁定筒之间设置第二弹性件。
  9. 根据权利要求2到8中任一项所述的反扭矩自动平衡装置,其特征在于,在所述芯筒的外壁上套设能位于所述芯筒与所述活塞之间的调节筒,所述调节筒与所述活塞活动密封式连接。
  10. 根据权利要求2到9中任一项所述的反扭矩自动平衡装置,其特征在于,所述活塞的下端的外侧壁上具有豁口以使得所述活塞的上段的径向尺寸大于下段的径向尺寸。
  11. 根据权利要求2到10中任一项所述的反扭矩自动平衡装置,其特征在于,所述定子和所述转子的轴向尺寸相同,并处于10到30mm的范围内。
  12. 根据权利要求2到11中任一项所述的反扭矩自动平衡装置,其特征在于,所述转子与所述芯筒的外壁以渐开线方式形成齿接,并且齿接的齿的高度不大于3毫米。
  13. 根据权利要求1到12中任一项所述的反扭矩自动平衡装置,其特征在于,在所述芯筒的外壁和所述上接头的内壁之间设置位于所述自动平衡组件的上端的轴承,
    在所述上接头的内壁上设置凹槽用于限定所述轴承的外圈,
    在所述芯筒的壁上设置第三凸环,所述第三凸环与位于所述第三凸环之上并套设在所述芯筒的外壁上的固定螺母一起限定所述轴承的内圈。
  14. 根据权利要求13所述的反扭矩自动平衡装置,其特征在于,所述上接头为分体式结构并包括上接头主体和外筒,所述外筒的上端延伸到所述上接头主体的内腔中,并在所述外筒的上端面与所述上接头主体的台阶面之间形成所述凹槽。
  15. 根据权利要求1到14中任一项所述的反扭矩自动平衡装置,其特征在于,在所 述上接头的下端设置有防掉环,所述防掉环的上端插入到所述上接头的内腔中,以在所述防掉环的上端面处形成承托表面。
  16. 根据权利要求15所述的反扭矩自动平衡装置,其特征在于,在所述防掉环的内侧壁上设置位于所述防掉环和所述下接头之间的耐磨层,并在所述耐磨层上设置沿轴向延伸的泄流槽。
  17. 一种钻井管串,其特征在于,包括根据权利要求1到16中任一项所述的反扭矩自动平衡装置和螺杆钻具,所述反扭矩自动平衡装置的底部距离所述螺杆钻具的顶部40-60米。
  18. 一种利用权利要求17所述的钻井管串进行钻井的方法,其特征在于,包括:
    在需要定向钻进时,向所述钻井管串内泵送排量等于第一预定值的钻井液,钻井液的一部分所产生的液压力作用在所述反扭矩自动平衡装置的活塞上,使得所述上接头与所述芯筒之间产生的摩擦扭矩与螺杆钻具的外壳上产生的反扭矩大小相等,
    在需要复合钻进时,向所述钻井管串内泵送排量高于第一预定值的钻井液,钻井液的一部分所产生的液压力作用在反扭矩自动平衡装置的活塞上,使得上接头与所述芯筒之间产生摩擦扭矩大于螺杆钻具的外壳上产生的反扭矩。
PCT/CN2020/084952 2019-04-30 2020-04-15 用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法 WO2020221010A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3138376A CA3138376C (en) 2019-04-30 2020-04-15 Reactive torque automatic balancing device for screw drilling tool, drilling string, and method
US17/594,750 US11814944B2 (en) 2019-04-30 2020-04-15 Reactive torque automatic balancing device for screw drilling tool, drilling string, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910361879 2019-04-30
CN201910361879.5 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221010A1 true WO2020221010A1 (zh) 2020-11-05

Family

ID=72985032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084952 WO2020221010A1 (zh) 2019-04-30 2020-04-15 用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法

Country Status (4)

Country Link
US (1) US11814944B2 (zh)
CN (1) CN111852334B (zh)
CA (1) CA3138376C (zh)
WO (1) WO2020221010A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112922553A (zh) * 2021-04-08 2021-06-08 河南易发石油工程技术有限公司 一种钻井用钻具振荡器
CN116771298A (zh) * 2023-08-17 2023-09-19 西南石油大学 一种液力控制同步伸缩变矩式油气井套管整型工具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814569B (zh) * 2021-03-19 2022-08-23 中国石油天然气集团有限公司 一种分段旋转式克服反扭矩工具
CN114109251B (zh) * 2021-11-18 2023-08-22 西南石油大学 复合定向钻井的控制装置与使用方法
CN115012823A (zh) * 2022-06-21 2022-09-06 中国石油天然气集团有限公司 复合与滑动耦合定向钻井调控工具及调控方法
US11834928B1 (en) * 2022-09-28 2023-12-05 Southwest Petroleum University Drill string rotation controller for directional drilling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070256865A1 (en) * 2006-05-05 2007-11-08 Smith International, Inc. Orientation tool
CN103485715A (zh) * 2013-09-17 2014-01-01 西南石油大学 一种控制反扭矩钻井工具
CN106761480A (zh) * 2017-02-16 2017-05-31 吉林大学 一种井下扭矩自平衡有缆钻具系统
CN108798532A (zh) * 2018-05-31 2018-11-13 中国石油集团长城钻探工程有限公司 一种井下压扭平衡工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247480B2 (ja) * 2004-02-20 2009-04-02 株式会社ティーエフティー 法面補強工法および法面補強装置
US7243739B2 (en) * 2004-03-11 2007-07-17 Rankin Iii Robert E Coiled tubing directional drilling apparatus
CN202483467U (zh) * 2012-01-06 2012-10-10 胜利油田胜机石油装备有限公司 一种球铰螺杆钻具万向轴
CN203835254U (zh) * 2014-03-04 2014-09-17 中国石油化工股份有限公司 螺杆钻具传动轴总成
CN206707630U (zh) * 2017-05-09 2017-12-05 长江大学 一种螺杆式井下水力振荡器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070256865A1 (en) * 2006-05-05 2007-11-08 Smith International, Inc. Orientation tool
CN103485715A (zh) * 2013-09-17 2014-01-01 西南石油大学 一种控制反扭矩钻井工具
CN106761480A (zh) * 2017-02-16 2017-05-31 吉林大学 一种井下扭矩自平衡有缆钻具系统
CN108798532A (zh) * 2018-05-31 2018-11-13 中国石油集团长城钻探工程有限公司 一种井下压扭平衡工具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112922553A (zh) * 2021-04-08 2021-06-08 河南易发石油工程技术有限公司 一种钻井用钻具振荡器
CN116771298A (zh) * 2023-08-17 2023-09-19 西南石油大学 一种液力控制同步伸缩变矩式油气井套管整型工具
CN116771298B (zh) * 2023-08-17 2023-10-24 西南石油大学 一种液力控制同步伸缩变矩式油气井套管整型工具

Also Published As

Publication number Publication date
US20220316312A1 (en) 2022-10-06
CN111852334B (zh) 2021-09-24
CA3138376A1 (en) 2020-11-05
CN111852334A (zh) 2020-10-30
CA3138376C (en) 2024-01-02
US11814944B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2020221010A1 (zh) 用于螺杆钻具的反扭矩自动平衡装置、钻井管串和方法
US8701797B2 (en) Bearing assembly for downhole motor
CA2822415C (en) Mud-lubricated bearing assembly with mechanical seal
AU2013252493B2 (en) Downhole motor with concentric rotary drive system
AU2011210824B2 (en) Shock reduction tool for a downhole electronics package
RU2602856C2 (ru) Двигатель объемного типа с радиально ограниченным зацеплением ротора
EP2446103B1 (en) Sealing system and bi-directional thrust bearing arrangement for a downhole motor
CN108798503B (zh) 螺杆式周向冲击钻井工具
MX2013004085A (es) Sistemas de cojinete que contienen materiales mejorados con diamantes y aplicaciones del fondo de la perforacion para los mismos.
CA2823386C (en) Pressure compensation system for an oil-sealed mud motor bearing assembly
US20150376950A1 (en) Downhole tool using a locking clutch
US4276944A (en) In-hole motor with bit clutch
US11542987B2 (en) Torque transfer system
US9175516B2 (en) Bearing assembly for downhole motor
US11525318B2 (en) Motor bypass valve
US20220098929A1 (en) Tapered Transitional Radial Support for Drilling Tools
CA2813912C (en) Improved bearing assembly for downhole motor
CN115874916A (zh) 一种可控旋转螺杆钻具
CN116658510A (zh) 一种自适应传动轴总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3138376

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799154

Country of ref document: EP

Kind code of ref document: A1