WO2023124261A1 - 基于光电体积描记ppg的控制方法和电子设备 - Google Patents

基于光电体积描记ppg的控制方法和电子设备 Download PDF

Info

Publication number
WO2023124261A1
WO2023124261A1 PCT/CN2022/119362 CN2022119362W WO2023124261A1 WO 2023124261 A1 WO2023124261 A1 WO 2023124261A1 CN 2022119362 W CN2022119362 W CN 2022119362W WO 2023124261 A1 WO2023124261 A1 WO 2023124261A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
current
light
monitoring
target
Prior art date
Application number
PCT/CN2022/119362
Other languages
English (en)
French (fr)
Other versions
WO2023124261A9 (zh
Inventor
张晓武
李丹洪
邸皓轩
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22879560.5A priority Critical patent/EP4226853A4/en
Publication of WO2023124261A1 publication Critical patent/WO2023124261A1/zh
Publication of WO2023124261A9 publication Critical patent/WO2023124261A9/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0255Recording instruments specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0806Detecting, measuring or recording devices for evaluating the respiratory organs by whole-body plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present application relates to the field of terminal technology, and in particular to a control method and electronic equipment based on photoplethysmography PPG.
  • terminal equipment has become a part of people's work and life.
  • more terminal devices can support the user's human body data monitoring function.
  • a user can use an electronic device, such as a wearable device, to detect body data.
  • an electronic device such as a wearable device
  • a wearable device to detect body data.
  • devices such as smart watches or smart bracelets to measure the user's heart rate, breathing rate or blood oxygen and other human body characteristics.
  • a wearable device can be configured with a photoplethysmography (photo plethysmography, PPG) module for measuring human body characteristics
  • the PPG module can include a photodiode (photo diode, PD) and a light emitting diode (light emitting diode, LED).
  • the LED in the PPG module can transmit the light signal corresponding to the preset current value, and receive the light signal reflected by the human body tissue through the PD, and the PD will The optical signal is converted into current data, so that the wearable device can obtain human body characteristics based on the calculation of the current data.
  • the wearable device cannot obtain stable current data, and thus cannot obtain accurate human body characteristics based on the current data.
  • the embodiment of the present application provides a control method and electronic equipment based on photoplethysmography PPG.
  • the current intensity corresponding to the light signal emitted by the LED can be adjusted by feedback, so that the PD can acquire The stable current data is obtained, and then the electronic device can monitor and obtain accurate human body characteristics based on the stable current data.
  • the embodiment of the present application provides a PPG-based control method, which is applied to electronic equipment.
  • the electronic equipment includes a PPG module, and the PPG module includes a plurality of light-emitting diodes (LEDs) and a plurality of photodiodes (PDs).
  • LEDs light-emitting diodes
  • PDs photodiodes
  • An LED emits a light signal corresponding to the first current; the electronic device uses at least one PD among multiple PDs to obtain a second current that returns the light signal corresponding to the first current through human tissue; when the electronic device determines that the second current is greater than the target current , the electronic device reduces the first current using the preset first current step size; or, when the electronic device determines that the second current is smaller than the target current, the electronic device increases the first current using the preset first current step size.
  • the electronic device can use the relationship between the actual current received by the PD and the target current to feedback and adjust the current intensity corresponding to the light signal emitted by the LED, so that the PD can obtain stable current data, and then the electronic device can be based on the stable current.
  • the target current may be the target receiving current described in the embodiment of this application.
  • the method further includes: the electronic device determines the target scene where the electronic device is located; wherein, the target scene is one of a plurality of predefined scenes, and any scene corresponds to using the PPG module to perform human body The receiving current during feature monitoring; the electronic device determines the target current corresponding to the target scene.
  • the electronic device can avoid the influence of extreme scenarios on the PPG module by setting the target current suitable for different scenarios, so that the current data acquired by the PD satisfies a stable value range, and then the electronic device can achieve relative monitoring in different scenarios. Accurate human characteristics.
  • the electronic device determines the target scene where the electronic device is located, including: the electronic device acquires first data; the first data includes: acceleration data, angular acceleration data, air pressure data and/or temperature data; The device detects the first data by using a preset rule to obtain a target scene.
  • the method for the electronic device to perform automatic scene detection based on the acquired sensor data can avoid the user's triggering steps when performing scene recognition, and improve the usability of the algorithm.
  • the electronic device determines the target scene where the electronic device is located, including: the electronic device receives a first operation; the first operation is used to set the monitoring scene when using the PPG module to monitor human body characteristics; responding to the first operation In one operation, the electronic device determines the target scene where the electronic device is located. In this way, the method for the electronic device to determine the moving scene based on the user's trigger can avoid complicated steps when performing the moving scene detection, and simplify the memory occupation of the algorithm.
  • the LED is a three-color LED of red light, green light and infrared light
  • obtaining the second current returned by the light signal corresponding to the first current through human tissue includes: obtaining the three-color LED
  • the at least one light signal corresponding to the at least one third current emitted by the at least one light source in the at least one fourth current returns via human tissue.
  • the electronic device can separately obtain the currents emitted by different LEDs, so that the electronic devices can adjust the currents emitted by different LEDs based on the corresponding receiving currents of different LEDs, and then the PD can obtain the stable currents corresponding to different LEDs. current data.
  • the method further includes: when the electronic device determines that at least one fourth current is greater than the received current corresponding to at least one light source in the three-color LED, the electronic device uses the preset first current step Decrease at least one third current; or, when the electronic device determines that at least one fourth current is less than the receiving current corresponding to at least one light source in the three-color LED, the electronic device uses a preset first current step to increase at least a third current.
  • the electronic device can separately adjust the currents emitted by different LEDs based on the received currents corresponding to different LEDs, and then the PD can obtain stable current data corresponding to different LEDs.
  • the method further includes: the electronic device determines the target light sequence according to the monitoring content and the light intensity of the electronic device; the target light The sequence is used to indicate the luminescence of the light source in the LED when the PPG module is used to monitor the human body characteristics; the monitoring content includes: heart rate monitoring, blood oxygen monitoring and/or respiration rate monitoring; the electronic device uses multiple LEDs to emit light corresponding to the first current.
  • the signal includes: according to the target light sequence, the electronic device uses a plurality of LEDs to send out light signals corresponding to the first current. In this way, the electronic device can flexibly adjust the emitted light signal according to the detection content and the light intensity, thereby enhancing the intelligence of the electronic device.
  • the electronic device determines the target light sequence according to the monitoring content and the light intensity of the electronic device, including: when the monitoring content is heart rate monitoring and the light intensity of the electronic device is greater than or equal to the light intensity threshold , the electronic device determines that the target light sequence is that the LED meets green light emission; or, when the monitoring content is heart rate monitoring and the light intensity of the electronic device is less than the light intensity threshold, the electronic device determines that the target light sequence is that the LED meets infrared light emission.
  • the electronic device can emit different types of light signals under different detection contents and light intensities, thereby enhancing the accuracy of the electronic device in detecting human body features.
  • the method further includes: the electronic device receives a second operation; the second operation is used to indicate the start of human body characteristic monitoring; responding In the second operation, the electronic device uses multiple LEDs to send out a light signal corresponding to the fifth current; the electronic device uses at least one PD among the multiple PDs to obtain a sixth current that returns the light signal corresponding to the fifth current through human tissue; the electronic device Using a plurality of LEDs to emit a light signal corresponding to the first current includes: when the electronic device determines that the sixth current satisfies the first preset current, the electronic device uses a plurality of LEDs to send a light signal corresponding to the first current. In this way, the electronic device can perform wearing detection based on the sixth current, so as to be ready for human body feature detection.
  • the method further includes: when the electronic device determines that the sixth current does not meet the first preset current, the electronic device displays first prompt information; the first prompt information is used to indicate that the electronic device is not detected Wearing situation. In this way, the user can be aware of the wearing situation in time based on the prompt information displayed by the electronic device.
  • the method further includes: the electronic device receives a third operation; the third operation is used to indicate the end of the human body characteristic monitoring; in response to the third operation, the electronic device obtains the human body characteristic monitoring result based on the second current.
  • the electronic device includes a wearable device, and the wearable device includes one or more of the following: a smart watch, a smart bracelet, or smart glasses.
  • the embodiment of the present application provides an electronic device, including a processor and a memory, the memory is used to store code instructions; the processor is used to run the code instructions, so that the electronic device can execute any one of the first aspect or the first aspect.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions are executed, the computer executes the first aspect or any implementation manner of the first aspect.
  • a PPG-based control method is described.
  • a computer program product includes a computer program.
  • the computer program executes the PPG-based control method described in the first aspect or any implementation manner of the first aspect.
  • FIG. 1 is a schematic diagram of a scene provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the principle of measuring human body characteristics based on the PPG module provided by the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a PPG module based on 2LED+8PD provided by the embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of a PPG module based on 2LED+2PD provided by the embodiment of the present application;
  • Fig. 5 is a schematic structural diagram of a PPG module based on 4LED+4PD provided by the embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a software structure of a smart watch provided by an embodiment of the present application.
  • FIG. 8 is a schematic flow diagram of a PPG-based control method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an interface for starting heart rate monitoring provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a prompt interface provided by the embodiment of the present application.
  • Fig. 11 is a schematic interface diagram of a sports mode provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of an optical path provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an interface for displaying a heart rate curve provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of another PPG-based control method provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first value and the second value are only used to distinguish different values, and their sequence is not limited.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B can indicate:
  • a and B may be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or” relationship.
  • "At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, wherein a, b, c can be single or multiple.
  • terminal equipment has become a part of people's work and life.
  • more terminal devices can support the user's human body data monitoring function.
  • users can use electronic devices, such as wearable devices, such as smart watches, to measure human body characteristics such as heart rate, respiration rate, or blood oxygen, so that users can grasp their physical conditions in real time based on the human body characteristics monitored in the smart watch.
  • FIG. 1 is a schematic diagram of a scenario provided by an embodiment of the present application. It can be understood that, in the embodiment of the present application, the electronic device is a smart watch in the wearable device as an example for illustration, and this example does not constitute a limitation to the embodiment of the present application.
  • the electronic device may include: a mobile phone, a smart TV, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) equipment, wireless equipment in industrial control (industrial control), wireless equipment in self-driving (self-driving).
  • the wearable device may include: devices such as smart watches, smart bracelets, smart gloves, smart glasses, virtual reality (virtual reality, VR) terminal devices or smart belts.
  • specific forms of the electronic device and the wearable device are not specifically limited.
  • users can use wearable devices, such as smart watches, to measure the user's body characteristics during exercise.
  • wearable devices such as smart watches
  • a user can use a smart watch to measure heart rate, and then the user can adjust the exercise intensity according to the heart rate data displayed in the smart watch.
  • the smart watch can also analyze the monitored heart rate data of the user, and then provide the user with more reasonable exercise suggestions to help the user exercise more efficiently.
  • the smart watch when the user monitors the heart rate by wearing a smart watch during exercise, due to the user's continuous swing of the arm during the exercise, the smart watch may appear in the position of the strap as shown in a in Figure 1 If the watch is moved or the strap is loose, the user wears the smart watch in an improper position.
  • the smart watch can detect a heart rate monitoring result of 35 beats per minute as shown in b in Figure 1. At this time, the heart rate monitoring result is much lower than normal value.
  • the smart watch can detect a heart rate detection result of 108 beats per minute as shown in d in Figure 1. At this time, the heart rate monitoring The result is normal.
  • FIG. 2 is a schematic diagram of a principle of measuring human body characteristics based on a PPG module provided by an embodiment of the present application.
  • PPG can be understood as a detection method for detecting changes in blood volume in living tissue by means of photoelectric means.
  • the PPG module 204 may include at least one PD, such as PD203 , and at least one LED, such as LED202 .
  • the wearable device can use the LED 202 in the PPG module 204 to emit a light signal corresponding to a preset current value, and the light signal is irradiated to the skin tissue (or understood as blood or blood vessels in the skin tissue etc.) 201, use PD203 to receive the optical signal reflected back through skin tissue 201, PD203 converts the optical signal into an electrical signal, and converts the electrical signal into an electrical signal through analog to digital conversion (A/D).
  • the wearable device can use the digital signal (or PPG signal), and then obtain the human body characteristics through the calculation of the PPG signal, and realize the measurement of the human body characteristics by the wearable device.
  • the worn wearable device vibrates accordingly, and the wearing position and tightness of the wearable device change.
  • the PPG in the wearable device The movement between the module 204 and the skin tissue 201 affects the optical signal reflected by the skin tissue 201, so that the PD203 in the PPG module 204 cannot obtain accurate current data based on the optical signal, and the wearable device cannot obtain accurate current data based on the current The data obtained valid human body data.
  • the wearing position or tightness of the wearable device can affect the strength of the PPG signal monitored by the wearable device, so that the calculation based on the PPG signal
  • the obtained human body monitoring results are inaccurate or jumpy, which affects the user experience when using wearable devices to monitor human body characteristics.
  • the user's skin color, hair coverage, etc. may also affect the PPG signal. It can be understood that the factors affecting the acquisition of the PPG signal by the wearable device may include other content according to the actual scene, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application provides a PPG-based control method, so that the wearable device can use the relationship between the actual current received by the PD and the target received current, and feedback the corresponding current intensity when the LED emits a light signal, so that PD can obtain stable current data, and wearable devices can monitor and obtain accurate human body characteristics based on the stable current data.
  • the wearable device includes a PPG module
  • the PPG module may include at least one PD and at least one LED
  • the LED may be a three-color LED of red light, green light and infrared light.
  • the PPG module described in the embodiment of the present application may include 2 LEDs and 8 PDs.
  • FIG. 3 is a schematic structural diagram of a PPG module based on 2LED+8PD provided by the embodiment of the present application.
  • a circular PPG module may be provided in the wearable device, and the circular PPG module may include: 2 three-color LEDs and 8 PDs.
  • the innermost side of the PPG module is two three-color LEDs, and the two three-color LEDs can be used to emit light signals, such as red light, green light, and infrared light;
  • Eight PDs in a surrounding structure are arranged on the outside of the three-color LED.
  • the two three-color LEDs may include LED1 and LED2 .
  • the eight PDs in a surrounding structure may include: PD1, PD2, PD3, PD4, PD5, PD6, PD7 and PD8.
  • At least one LED of the 2 LEDs can emit light signals based on a preset current, and at least one of the 8 PDs can obtain the light signal via The current data corresponding to the light signal reflected back by the skin tissue, and then the wearable device can obtain the human body feature detection result based on the current data acquired by at least one of the eight PDs.
  • the wearable device can use one of the eight PDs to obtain current data, or use a pair of PDs (for example, two PDs) among the eight PDs to obtain current data. Alternatively, all PDs in the eight PDs may be used to obtain current data, which is not limited in this embodiment of the present application.
  • the PPG module may further include 2 LEDs and 2 PDs.
  • FIG. 4 is a schematic structural diagram of a 2LED+2PD-based PPG module provided by an embodiment of the present application.
  • a circular PPG module can be installed in the wearable device, and the circular PPG module can include: 2 three-color LEDs, such as LED1 and LED2, and 2 PDs, such as PD1 and PD2.
  • the 2 three-color LEDs and 2 PDs are spaced in the circular structure of the PPG module.
  • the three-color LED can emit red light, green light and infrared light.
  • At least one of the two LEDs emits a light signal based on a preset current
  • at least one of the two PDs can obtain the The current data corresponding to the light signal emitted and reflected back through the skin tissue, and then the wearable device can obtain the human body feature detection result based on the current data acquired by at least one of the two PDs.
  • the PPG module may further include 4 LEDs and 4 PDs.
  • FIG. 5 is a schematic structural diagram of a PPG module based on 4LED+4PD provided by the embodiment of the present application.
  • the wearable device can be provided with a circular PPG module, which can include: 4 LEDs, such as LED1, LED2, LED3 and LED4, and 4 PDs, such as PD1, PD2, PD3 and PD4.
  • the 4 LEDs are in a surrounding structure, and 4 PDs are arranged inside the 4 LEDs.
  • the 4 LEDs have a symmetrical structure in the PPG module, and the 4 PDs can also have a symmetrical structure in the PPG module.
  • the four LEDs can all be three-color LEDs, or any one of the four LEDs can be used to emit only one light source.
  • At least one of the four LEDs placed outside the PD can emit light signals according to a preset current, and at least one of the four PDs can obtain the outer The current data corresponding to the light signal emitted by the LED and reflected back through the skin tissue, and then the wearable device can obtain the human body feature detection result based on the current data acquired by at least one of the four PDs.
  • the PPG module in the embodiment of the present application may be a circular shape or a square structure, and the shape of the PPG module is not limited in the embodiment of the present application.
  • the number of LEDs and the form of LEDs in the PPG module, the number of PDs and the form of PDs are not limited.
  • the wearable devices in the embodiments of the present application may include: devices such as smart watches, smart bracelets, smart gloves, or smart belts.
  • devices such as smart watches, smart bracelets, smart gloves, or smart belts.
  • no limitation is imposed on the specific technology and specific device form adopted by the wearable device.
  • FIG. 6 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • the wearable device can include a processor 110, an internal memory 121, a universal serial bus (universal serial bus, USB) interface, a charging management module 140, a power management module 141, an antenna 1, an antenna 2, a mobile communication module 150, and a wireless communication module 160, an audio module 170, a speaker 170A, a receiver 170B, a sensor module 180, a button 190, an indicator 192, a camera 193, and a display screen 194, etc.
  • the sensor module 180 may include: a gyro sensor 180B, a barometer 180C, a magnetic sensor 180D, an acceleration sensor 180E, a proximity light sensor 180G, a temperature sensor 180J, a touch sensor 180K, and an ambient light sensor 180L.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the wearable device.
  • the wearable device may include more or fewer components than shown in the illustrations, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • Processor 110 may include one or more processing units. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the charging management module 140 and the processor 110 .
  • the wireless communication function of the wearable device can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Antennas in wearable devices can be used to cover single or multiple communication bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied to wearable devices.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM) and other wireless communication solutions.
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • Wi-Fi wireless fidelity
  • Wi-Fi wireless fidelity
  • bluetooth blue, BT
  • global navigation satellite system etc.
  • GNSS global navigation satellite system
  • FM frequency modulation
  • the wearable device realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the wearable device may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the wearable device can realize the shooting function through ISP, camera 193 , video codec, GPU, display screen 194 and application processor.
  • Camera 193 is used to capture still images or video.
  • the wearable device may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the wearable device can realize the audio function through the audio module 170, the speaker 170A, the receiver 170B, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • Speaker 170A also referred to as a "horn” is used to convert audio electrical signals into sound signals.
  • the wearable device can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece”, is used to convert audio electrical signals into sound signals. When the wearable device receives a call or voice information, it can listen to the voice by putting the receiver 170B close to the human ear.
  • the gyroscope sensor 180B can be used to determine the motion gesture of the wearable device.
  • the magnetic sensor 180D includes a Hall sensor.
  • the barometer 180C is used to measure air pressure.
  • the wearable device can calculate the altitude based on the barometric pressure value measured by the barometer 180C to assist positioning and navigation.
  • the barometer 180C is used to measure the air pressure of the wearable device.
  • the barometer 180C can be used to detect whether the wearable device is underwater.
  • the acceleration sensor 180E can detect the acceleration of the wearable device in various directions (generally three axes). In the embodiment of the present application, the acceleration sensor 180E is used to detect whether the wearable device is in a motion state.
  • the proximity light sensor 180G can be used to detect the proximity and distance between an object and the wearable device.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the temperature sensor 180J is used to detect temperature. In the embodiment of the present application, the temperature sensor is used to detect the temperature of the environment where the wearable device is located.
  • the touch sensor 180K is also called “touch device”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the wearable device can receive key input and generate key signal input related to user settings and function control of the wearable device.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the software system of the wearable device can adopt a layered architecture, an event-driven architecture, a micro-kernel architecture, a micro-service architecture, or a cloud architecture.
  • a system with a layered architecture is taken as an example to illustrate the software structure of the wearable device.
  • FIG. 7 is a schematic diagram of a software structure of a smart watch provided by an embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate through software interfaces.
  • the software architecture of the smart watch can be divided into five layers, from top to bottom: application (application, APP) layer, system service layer, algorithm layer, hardware abstraction layer (hardware abstraction layer, HAL) , and the kernel layer.
  • the application layer may include a series of application programs.
  • the application program may include: a dial application, an exercise recording application, a call application, an exercise application, and the like.
  • the system service layer is used to provide system support for applications in the application layer.
  • the system service layer may include modules such as step counting service, heart rate service, calorie service, and heart health service.
  • the algorithm layer is used to provide algorithm support for the system service layer.
  • the algorithm layer may include: a heart rate algorithm, a dimming algorithm, a sleep algorithm, and a wearing algorithm.
  • the heart rate algorithm, dimming algorithm, sleep algorithm, and wearing algorithm can be used together to support the heart rate service, so as to detect the heart rate characteristics of users in different states.
  • the heart rate algorithm is used to convert the current data obtained by the PD in the PPG module into heart rate data;
  • the corresponding current value is used for feedback adjustment;
  • the sleep algorithm is used to adjust the luminescence of the LED in the PPG module according to the sleep state;
  • the wearing algorithm is used to detect whether the user is currently wearing the smart watch based on the current data obtained by the PD.
  • HAL-related application programming interface application programming interface, API
  • Some functions are specified in the software architecture layer of each hardware device, and the HAL layer can be used to implement these functions.
  • the hardware abstraction layer may include: an interface corresponding to the C++ library, a storage interface, a display interface, a touch interface, a Bluetooth (bluetooth) interface, a global positioning system (GPS) interface, and the like.
  • the kernel layer may be a layer between hardware and software.
  • the kernel refers to a system software that provides hardware abstraction layer, disk and file system control, multitasking and other functions. Among them, the kernel is the core of an operating system and is the most basic part of the operating system. It is responsible for managing the system's processes, memory, device drivers, files and network systems, etc., and determines the performance and stability of the system. It is a piece of software that provides many applications with secure access to computer hardware, this access is limited, and the kernel determines when and how long a program operates on a certain part of the hardware.
  • the kernel layer may be an operating system kernel (operating system kernel, OS kernel).
  • FIG. 8 is a schematic flowchart of a PPG-based control method provided by an embodiment of the present application.
  • the electronic device is a smart watch in the wearable device, and the smart watch is provided with a PPG module as an example for illustration.
  • the PPG module may be provided with 2 LEDs and 8 PDs, and the LED may be a three-color LED.
  • the structure of the PPG module may refer to FIG. 3 , which will not be repeated here.
  • the PPG-based control method may include the following steps:
  • the smart watch When the smart watch receives the user's operation to start heart rate monitoring, the smart watch instructs the LED in the PPG module to light up, and collects the current data received by the PD.
  • the operation of starting heart rate monitoring may be a trigger operation for the heart rate monitoring function in the smart watch, or may be a trigger operation for any exercise mode in the smart watch. It can be understood that when the user turns on any exercise mode in the smart watch, the smart watch can enable the heart rate monitoring function by default to monitor the user's heart rate during exercise.
  • FIG. 9 is a schematic diagram of an interface for starting heart rate monitoring according to an embodiment of the present application.
  • the interface may include a heart rate control for heart rate monitoring, a blood oxygen saturation rate control for blood oxygen monitoring, and the like.
  • the smart watch when the smart watch receives the user's operation to trigger the heart rate control, the smart watch can display the interface shown in b in FIG. 9 .
  • the interface can display a logo and prompt information for indicating that the heart rate is being monitored, and the prompt information can be used to indicate that the current wearing detection is performed.
  • the prompt information can be: heart rate detection, Please wear it tight.
  • the smart watch may instruct at least one LED in the PPG module to turn on, and collect current data received by at least one PD.
  • the smart watch determines whether wearing is currently detected based on the current data received by the PD.
  • the smart watch can determine whether wearing is currently detected based on the current data received by the PD and the preset current data (or current range) for wearing detection, for example, when the smart watch determines that the current data received by the PD is greater than ( or greater than or equal to) the preset current data for wearing detection (or the received current data meets the current range), the smart watch can determine that the user’s wearing is detected; or, when the smart watch determines that the current received by the PD When the data is less than or equal to (or less than) the preset current data for wearing detection (or the received current data does not meet the current range), the smart watch can determine that the user's wearing is not detected.
  • determining whether the wearing is currently detected may also be determining whether it is worn by a living body with vital signs.
  • determining whether it is worn by a living body with vital signs is determined through living body detection.
  • the smart watch determines whether the smart watch is detected to be worn based on a living body detection method.
  • the living body detection is used to detect whether the smart watch is worn by a living body with vital signs.
  • the living body detection method may include: infrared image living body detection, 3D structured light living body detection, or red green blue (red green blue, RGB) image living body detection, etc., which are not limited in this embodiment of the present application.
  • the smart watch when the smart watch determines that it is currently detected to be worn based on the current data received by the PD, the smart watch can perform the step shown in S804; or, when the smart watch determines that it is not currently detected based on the current data received by the PD When worn, the smart watch can execute the steps shown in S803.
  • the smart watch displays a prompt interface.
  • the prompt interface may include prompt information, and the prompt information is used to indicate that no wearing condition is detected.
  • FIG. 10 is a schematic diagram of a prompt interface provided by the embodiment of the present application.
  • the smart watch can display an interface as shown in Figure 10, which can display a logo and prompt information indicating that it is in heart rate monitoring.
  • the prompt information can be: no wearing is detected Please wear it tightly.
  • the smart watch determines the sports scene it is in.
  • the sports scene may include one or more of the following, for example: a common sports scene, an underwater sports scene, a low temperature sports scene, and the like.
  • the smart watch can perform motion scene detection based on the following two methods. Among them, method one: the smart watch can automatically identify the scene based on the acceleration sensor, gyroscope sensor, barometer and/or temperature sensor, etc., and determine the motion scene; In the sports mode, the trigger for any sports mode determines the sports scene.
  • the smart watch can automatically identify the scene based on the acceleration sensor, gyroscope sensor, barometer and/or temperature sensor, etc., and determine the sports scene.
  • the smart watch when the smart watch detects that the acceleration of the smart watch is greater than (or greater than or equal to) the preset acceleration threshold based on the acceleration sensor, and/or the angular acceleration of the smart watch detected by the gyroscope sensor is greater than (or greater than or equal to) the preset
  • the smart watch can determine that the current normal sports scene is met.
  • the smart watch when the smart watch detects that the acceleration of the smart watch based on the acceleration sensor is greater than (or greater than or equal to) the preset acceleration threshold (and/or the angular acceleration of the smart watch detected by the gyroscope sensor is greater than (or greater than or equal to) the preset
  • the angular acceleration threshold is set
  • the smart watch can determine that the current underwater sports scene is met.
  • the smart watch when the smart watch detects that the acceleration of the smart watch is greater than (or greater than or equal to) the preset acceleration threshold based on the acceleration sensor (and/or the angular acceleration of the smart watch is greater than (or greater than or equal to) the preset value detected by the gyroscope sensor Angular acceleration threshold), and, based on the temperature sensor detecting that the temperature of the smart watch is less than (or less than or equal to) the preset temperature threshold, the smart watch can determine that the current low temperature exercise scenario is met.
  • preset acceleration threshold preset angular acceleration threshold
  • preset air pressure threshold preset temperature threshold
  • preset temperature threshold can all be preset threshold ranges, which are not limited in this embodiment of the present application .
  • the method of automatic scene detection based on the acquired sensor data by the smart watch can avoid the user's triggering steps when performing scene recognition, and improve the usability of the algorithm.
  • Method 2 The smart watch can determine the sports scene based on the user's trigger for any sports mode among the multiple sports modes supported by the smart watch.
  • the smart watch can support multiple sports modes, such as underwater sports such as swimming mode (or understood to meet underwater sports scenes), low temperature sports such as skiing mode (or understood to meet low temperature sports scenes) , and general sports such as walking mode, running mode, and bicycle mode (or understood as satisfying common sports scenarios).
  • FIG. 11 is a schematic interface diagram of an exercise mode provided by the embodiment of the present application. As shown in FIG. 11 , the interface may include: a swimming mode, a skiing mode, and a running mode.
  • the smart watch receives the user's operation of triggering the control corresponding to the skiing mode, the smart watch can determine that the low-temperature exercise scenario is currently met.
  • the smart watch when the smart watch receives a user's trigger for any of the above exercise modes, the smart watch can determine the current exercise scene.
  • the method for the smart watch to determine the motion scene based on the user's trigger can avoid complex steps in the detection of the motion scene and simplify the memory usage of the algorithm.
  • the type of the moving scene and the method for identifying the moving scene may include other content according to the actual scene, which is not limited in this embodiment of the present application.
  • the smart watch determines the target receiving current and the target light sequence corresponding to the sports scene.
  • the target light sequence is used to indicate the lighting conditions of the light sources in the LEDs (such as the number of LEDs required for emitting light sources and the types of light sources) when using the PPG module to monitor human body characteristics.
  • the target light sequence may be related to the monitored content of human body characteristics and the light intensity where the smart watch is located.
  • the body feature monitoring content may include: heart rate monitoring, blood oxygen monitoring and/or respiration rate monitoring, etc., which are not limited in this embodiment of the present application.
  • the smart watch when the smart watch determines that the monitoring content is heart rate monitoring, and the smart watch detects that the ambient light is greater than (or greater than or equal to) the brightness threshold based on the ambient light sensor, the smart watch can control the LED to emit a green light signal; or, when the smart watch The watch determines that the monitoring content is heart rate monitoring, and when the smart watch detects that the ambient light is less than or equal to (or less than) the brightness threshold based on the ambient light sensor, the smart watch can control the LED to emit an infrared light signal.
  • the lighting conditions of LED light sources corresponding to different monitoring contents may include other contents according to actual scenarios, which is not limited in this embodiment of the present application.
  • the target receiving current is used to indicate the current value that can stably obtain the human body detection results in different scenarios; the smart watch can preset the corresponding relationship between the sports scene and the target receiving current.
  • the smart watch when the smart watch detects that it is currently in a low-temperature sports scene, it can obtain the target receiving current corresponding to the low-temperature sports scene, for example, 4 ⁇ A (microampere); or, when the smart watch detects that it is currently in a normal sports scene, it can Obtain the target receiving current corresponding to the common sports scene, for example, 1 ⁇ A.
  • the target receiving current corresponding to the low-temperature sports scene for example, 4 ⁇ A (microampere)
  • the smart watch when the smart watch detects that it is currently in a normal sports scene, it can Obtain the target receiving current corresponding to the common sports scene, for example, 1 ⁇ A.
  • the current data acquired by the PD is often smaller (or larger) than in normal sports mode Therefore, smart watches cannot calculate accurate human body characteristic monitoring results based on PD current data. Therefore, the smart watch can avoid the influence of the sports scene on the PPG module by setting the target receiving current suitable for different sports scenes, so that the current data obtained by the PD satisfies a stable value range, and then the smart watch can be realized in different sports scenes.
  • the monitoring obtains relatively accurate human body characteristics.
  • the smart watch can also match different LED target sending currents for different sports modes, so that the smart watch can send currents through appropriate LEDs to slow down the impact of extreme sports modes on the PPG module, so that the PD acquisition can be reflected through skin tissue
  • the returned current data can better reflect the real human body data of the user.
  • target receiving current, target light sequence and target sending current can be preset in the smart watch, or can also be obtained based on the historical monitoring data of the user's human body data monitoring in different scenarios , which is not limited in this embodiment of the application.
  • the smart watch instructs the LED in the PPG module to turn on, and collects current data received by the PD.
  • the smart watch may instruct at least one LED in the PPG module to turn on, and collect current data corresponding to at least one PD in the PPG module as the current data received by the PD.
  • FIG. 12 is a schematic diagram of an optical path provided by an embodiment of the present application.
  • the PPG module includes 2 LEDs and 8 PDs as an example for illustration.
  • the transmission of optical signals between any LED (such as LED1) and each PD can constitute 8 optical paths, such as the LED1 and PD1
  • the optical path L1 formed between LED1 and PD2 the optical path L2 formed between LED1 and PD3, the optical path L4 formed between LED1 and PD4, the optical path L4 formed between LED1 and PD5
  • the smart watch can use at least one LED, such as LED1, to emit a light signal corresponding to a preset current value, and obtain current data corresponding to the received light signal through at least one PD among the eight PDs.
  • the smart watch can obtain the PD corresponding to the optical path channel L3 (or L5) farthest from LED1 among the eight PDs, such as PD3 (or PD5) as the source for receiving current data.
  • the smart watch can obtain a pair of PDs farthest from LED1 (or understood as a pair of PDs in a symmetrical structure), such as P2 and PD3 as the receiving current data
  • a pair of PDs at this time, 4 light paths can be formed between the LED1 and 8 PDs.
  • the smart watch can also obtain the current data received by 3, 4 or all PDs in the PPG module as the current data for feedback adjustment. This is not limited in the embodiments.
  • the smart watch determines whether the current data meets the target received current.
  • the target receiving current may be a current threshold, or may also be a current range, which is not limited in the embodiment of the present application.
  • the value of the target receiving current may be 5 ⁇ A, or may also be 4.5 ⁇ A-5.5 ⁇ A.
  • the smart watch when the smart watch uses a PD in the PPG module to obtain current data, it can be determined whether the current data corresponding to the PD meets the target receiving current; or, when the smart watch uses multiple PDs in the PPG module to obtain When receiving the current data, it may be determined whether the current data corresponding to any PD in the plurality of PDs all meet the target receiving current.
  • the smart watch may perform the steps shown in S809; or, when the smart watch determines that the current data received by the PD does not meet the target receiving current, the smart watch The watch can execute the steps shown in S808.
  • the smart watch adjusts the luminous current of the LED based on the preset step size.
  • the preset step size may be a current value for adjusting the luminous current of the LED; the luminous current may be the corresponding current value when the LED is turned on in the step shown in S806.
  • the smart watch when the current data received by the PD in the step shown in S806 is greater than the target received current in the step shown in S805, the smart watch can reduce the luminous current of the LED based on the preset step size; or, when S806 When the current data received by the PD in the steps shown is less than the target received current in the steps shown in S805, the smart watch can increase the luminous current of the LED based on the preset step size, and then adjust the luminous current of the LED so that the PD The received current satisfies a steady state.
  • the smart watch when there are multiple light sources emitted by the LED, the smart watch can adjust the relationship between the current data and the target receiving current corresponding to the various light sources obtained by the PD, respectively.
  • the LED light-emitting current corresponding to the light source makes the current data corresponding to each light source received by the PD reach a stable state.
  • the smart watch calculates and obtains a heart rate monitoring result based on the current data received by the PD, and displays a heart rate curve.
  • the implementation in the smart watch can convert the current data received by the PD into heart rate monitoring results, such as obtaining an electrocardiogram (electrocardiogram, ECG).
  • ECG electrocardiogram
  • FIG. 13 is a schematic diagram of an interface for displaying a heart rate curve provided by an embodiment of the present application.
  • the smart watch can calculate the heart rate based on the current data received by the PD, for example, the current heart rate monitoring result is 108 beats/min, and the resting heart rate is 70 beats/min, and the heart rate monitoring result is displayed in Figure 13 In the interface shown in a.
  • the smart watch When the smart watch receives the user's operation to end the heart rate monitoring, the smart watch instructs the LED in the PPG module to turn off, and displays an end interface.
  • the operation of ending the heart rate monitoring may be: a voice operation, or a trigger operation for a control used to end the heart rate monitoring function, or a trigger operation for a control used to end the exercise mode, etc.
  • the smart watch may display an interface as shown in b in Figure 13, which may include information for prompting the end of heart rate monitoring and information for prompting Information about heart rate monitoring results, etc.
  • the interface can display information such as ending heart rate monitoring, and an average heart rate of 90 beats per minute.
  • the wearable device can use the relationship between the actual current received by the PD and the target received current to feedback and adjust the corresponding current intensity when the LED emits a light signal, so that the PD can obtain stable current data, and then the wearable device can be based on The stable current data monitoring obtains accurate human body characteristics.
  • the smart watch may also include an application layer, a system service layer, and an algorithm layer, etc.
  • the application layer may include exercise records for human heart rate monitoring application
  • the system service layer of the smart watch may include a heart rate service module
  • the algorithm layer may include a wearing algorithm module, a dimming algorithm module, and a heart rate algorithm module.
  • FIG. 14 is a schematic flowchart of another PPG-based control method provided by the embodiment of the present application.
  • this PPG-based control method may include the following steps:
  • the exercise recording application may send a message indicating the start of heart rate monitoring to the heart rate service module.
  • the heart rate service module may receive the message for instructing to start heart rate monitoring.
  • the operation of starting the heart rate monitoring can refer to the step shown in S801, which will not be repeated here.
  • the heart rate service module instructs the PPG module to turn on the light, and collects monitoring data.
  • the monitoring data may be current data received by at least one PD in the PPG module.
  • the heart rate service module sends the monitoring data to the wearing algorithm module.
  • the wearing algorithm module can receive the monitoring data.
  • the wearing algorithm module obtains a wearing identification result based on the monitoring data.
  • the process of the wearing algorithm module obtaining the wearing recognition result based on the monitoring data can refer to the process of determining whether wearing is currently detected by the current data received by the smart watch PD in step S802, and details are not repeated here.
  • the wearing recognition algorithm module sends the wearing recognition result to the heart rate service module.
  • the heart rate service module can receive the wearing identification result.
  • the heart rate service module determines the sports scene where the smart watch is located.
  • the heart rate service module when the wearing identification result indicates that the wearing is currently satisfied, the heart rate service module can perform the step shown in S1406; or, when the wearing identification result indicates that the wearing is not currently satisfied, the heart rate service module can indicate the exercise
  • the recording application displays the interface shown in Figure 10.
  • the process for the heart rate service module to determine the exercise scene where the smart watch is located can refer to the step shown in S804, which will not be repeated here.
  • the heart rate service module sends the motion scene to the dimming algorithm module.
  • the dimming algorithm module can receive the motion scene.
  • the dimming algorithm module determines the target receiving current and the target lighting sequence corresponding to the motion scene.
  • the functions of the target receiving current and the target light sequence can refer to the description in the step shown in S805 , which will not be repeated here.
  • the dimming algorithm module sends the target receiving current and the target light sequence to the heart rate service module.
  • the heart rate service module can receive the target receiving current and the target light sequence.
  • the heart rate service module instructs the PPG module to light up based on the target light sequence, and collects monitoring data.
  • the monitoring data may be current data received by at least one PD in the PPG module.
  • the heart rate service module sends the monitoring data and the target receiving current to the dimming algorithm module.
  • the dimming algorithm module can receive the monitoring data and the target receiving current.
  • the dimming algorithm module determines whether the target receiving current is satisfied based on the monitoring data.
  • the dimming algorithm module determines whether the target receiving current is satisfied based on the monitoring data, refer to the step shown in S807, and details are not repeated here.
  • the dimming algorithm module when the dimming algorithm module determines that the monitoring data does not meet the target receiving current, the dimming algorithm module can execute the steps shown in S1413; or, when the dimming algorithm module determines that the monitoring data meets the target receiving current, the dimming algorithm The module can execute the steps shown in S1415.
  • the dimming algorithm module sends a message indicating that the target received current is not met to the heart rate service module.
  • the heart rate service module may receive the message indicating that the target received current is not met.
  • the heart rate service module adjusts the current value of the LED in the PPG module based on the preset step size.
  • the process for the heart rate service module to adjust the current value of the LED in the PPG module based on the preset step size can refer to the step shown in S808, which will not be repeated here.
  • the heart rate service module can continue to collect the monitoring data obtained by the PD based on the adjusted current value of the LED, so that the modules in the wearable device can cycle through the steps shown in S1411 to S1414 until the dimming algorithm module based on The monitoring data determines that the target receiving current is currently met.
  • the dimming algorithm module sends the monitoring data to the heart rate algorithm module.
  • the heart rate algorithm module can receive the monitoring data.
  • the heart rate algorithm module calculates a heart rate monitoring result corresponding to the monitoring data.
  • the heart rate algorithm module sends the heart rate monitoring result to the heart rate service module.
  • the heart rate service module can receive the heart rate monitoring result.
  • the heart rate service module sends the heart rate monitoring result to the motion recording application.
  • the exercise recording application can receive the heart rate monitoring result.
  • the exercise recording application may also display an interface corresponding to the heart rate curve as shown in a in FIG. 13 .
  • the exercise recording application may send a message indicating the end of the heart rate monitoring to the heart rate service module.
  • the heart rate service module may receive the message indicating to end the heart rate monitoring.
  • the heart rate service module sends a message indicating to end the heart rate monitoring to the heart rate algorithm module.
  • the heart rate algorithm module may receive the message indicating to end the heart rate monitoring.
  • the heart rate algorithm module sends a message indicating to end the heart rate algorithm to the heart rate service module.
  • the heart rate service module may receive the message indicating to end the heart rate algorithm.
  • the heart rate service module instructs the LED in the PPG module to turn off.
  • the heart rate service module sends a message indicating the end of the heart rate algorithm to the motion recording application.
  • the exercise recording application may receive the message indicating to end the heart rate algorithm.
  • the exercise recording application may display an interface for ending heart rate monitoring as shown in b in FIG. 13 .
  • the wearable device can use the relationship between the actual current received by the PD and the target received current to feedback and adjust the corresponding current intensity when the LED emits a light signal, so that the PD can obtain stable current data, and then the wearable device can be based on The stable current data monitoring obtains accurate human body characteristics.
  • FIG. 15 is a schematic diagram of a hardware structure of an electronic device provided in an embodiment of the present application.
  • the electronic device may be the wearable device of the embodiment of the present application.
  • the electronic device includes a processor 1501 , a communication line 1504 and at least one communication interface (communication interface 1503 is used as an example for illustration in FIG. 15 ).
  • the processor 1501 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication lines 1504 may include circuitry that communicates information between the components described above.
  • the communication interface 1503 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, wireless local area networks (wireless local area networks, WLAN) and so on.
  • a transceiver for communicating with other devices or communication networks, such as Ethernet, wireless local area networks (wireless local area networks, WLAN) and so on.
  • the electronic device may also include a memory 1502 .
  • the memory 1502 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer Any other medium accessed, but not limited to.
  • the memory may exist independently and be connected to the processor through the communication line 1504 . Memory can also be integrated with the processor.
  • the memory 1502 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 1501 .
  • the processor 1501 is configured to execute computer-executed instructions stored in the memory 1502, so as to implement the method provided in the embodiment of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application program code, which is not specifically limited in the embodiment of the present application.
  • the processor 1501 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 15 .
  • an electronic device may include multiple processors, for example, processor 1501 and processor 1505 in FIG. 15 .
  • processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the instructions stored in the memory for execution by the processor may be implemented in the form of computer program products.
  • the computer program product may be written in the memory in advance, or may be downloaded and installed in the memory in the form of software.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • Computer readable storage medium can be Any available media capable of being stored by a computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • available media may include magnetic media (e.g., floppy disks, hard disks, or tapes), optical media (e.g., A digital versatile disc (digital versatile disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • magnetic media e.g., floppy disks, hard disks, or tapes
  • optical media e.g., A digital versatile disc (digital versatile disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • Computer-readable media may include computer storage media and communication media, and may include any medium that can transfer a computer program from one place to another.
  • a storage media may be any target media that can be accessed by a computer.
  • the computer-readable medium may include a compact disc read-only memory (CD-ROM), RAM, ROM, EEPROM, or other optical disk storage; the computer-readable medium may include a magnetic disk memory or other disk storage devices.
  • any connected cord is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, compact disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Reproduce data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Led Devices (AREA)

Abstract

一种基于光电体积描记PPG的控制方法和电子设备,涉及终端技术领域,方法包括:电子设备利用多个LED发出第一电流对应的光信号;电子设备利用多个PD中的至少一个PD,获取第一电流对应的光信号经由人体组织返回的第二电流;当电子设备确定第二电流大于目标电流时,电子设备利用预设的第一电流步长减小第一电流;或者,当电子设备确定第二电流小于目标电流时,电子设备利用预设的第一电流步长增大第一电流。这样,电子设备可以通过反馈调节LED发射光信号时所对应的电流强度,使得PD可以获取到稳定的电流数据,进而电子设备可以得到准确的人体特征。

Description

基于光电体积描记PPG的控制方法和电子设备
本申请要求于2021年12月29日提交中国国家知识产权局、申请号为202111649199.7、申请名称为“基于光电体积描记PPG的控制方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种基于光电体积描记PPG的控制方法和电子设备。
背景技术
目前,随着终端技术的发展,终端设备已经成为人们工作生活的一部分。为了满足用户对于自身健康管理的需求,较多终端设备可以支持用户的人体数据监测功能。例如,用户可以利用电子设备,例如可穿戴设备检测人体数据。具体的,如利用智能手表或智能手环等设备测量用户的心率、呼吸率或血氧等人体特征。
通常情况下,可穿戴设备中可以配置有用于测量人体特征的光电容积描记(photo plethysmo graphy,PPG)模块,该PPG模块中可以包含光电二极管(photo diode,PD)和发光二极管(light emitting diode,LED)。当用户利用包含该PPG模块的可穿戴设备监测人体特征时,可以通过该PPG模块中的LED发射预设的电流值对应的光信号,并通过PD接收经过人体组织反射回的光信号,PD将该光信号转化为电流数据,使得可穿戴设备可以基于对该电流数据的计算得到人体特征。
然而,在部分场景中,可穿戴设备无法获取稳定的电流数据,进而无法基于该电流数据得到准确的人体特征。
发明内容
本申请实施例提供一种基于光电体积描记PPG的控制方法和电子设备,可以通过PD接收到的实际电流与目标电流的关系,反馈调节LED发射光信号时所对应的电流强度,使得PD可以获取到稳定的电流数据,进而电子设备可以基于该稳定的电流数据监测得到准确的人体特征。
第一方面,本申请实施例提供一种基于PPG的控制方法,应用于电子设备,电子设备包括PPG模块,PPG模块包括多个发光二极管LED和多个光电二极管PD,方法包括:电子设备利用多个LED发出第一电流对应的光信号;电子设备利用多个PD中的至少一个PD,获取第一电流对应的光信号经由人体组织返回的第二电流;当电子设备确定第二电流大于目标电流时,电子设备利用预设的第一电流步长减小第一电流;或者,当电子设备确定第二电流小于目标电流时,电子设备利用预设的第一电流步长增大第一电流。这样,电子设备可以通过PD接收到的实际电流与目标电流的关系,反馈调节LED发射光信号时所对应的电流强度,使得PD可以获取到稳定的电流数据,进而电子设备可以基于该稳定的电流数据监测得到准确的人体特征。其中,该目标电流可以为本 申请实施例中描述的目标接收电流。
在一种可能的实现方式中,方法还包括:电子设备确定电子设备所处的目标场景;其中,目标场景为预先定义的多个场景中的其中一个,任一个场景对应有利用PPG模块进行人体特征监测时的接收电流;电子设备确定目标场景对应的目标电流。这样,电子设备可以通过设置与不同场景相适应的目标电流,避免极端场景对于PPG模块的影响,使得PD获取的电流数据满足一个稳定的数值范围,进而电子设备可以实现在不同场景中监测得到相对准确的人体特征。
在一种可能的实现方式中,电子设备确定电子设备所处的目标场景,包括:电子设备获取第一数据;第一数据包括:加速度数据、角加速度数据、气压数据和/或温度数据;电子设备利用预设规则对第一数据进行检测,得到目标场景。这样,电子设备基于获取的传感器数据进行自动场景检测的方法,可以避免进行场景识别时用户的触发步骤,提高算法的可用性。
在一种可能的实现方式中,电子设备确定电子设备所处的目标场景,包括:电子设备接收第一操作;第一操作用于设置利用PPG模块进行人体特征监测时的监测场景;响应于第一操作,电子设备确定电子设备所处的目标场景。这样,电子设备基于用户的触发确定运动场景的方法可以避免进行运动场景检测时的复杂是被步骤,简化算法的内存占用。
在一种可能的实现方式中,LED为红光、绿光和红外光三色合一的LED,获取第一电流对应的光信号经由人体组织返回的第二电流,包括:获取三色合一的LED中的至少一个光源发出的至少一个第三电流对应的光信号,经由人体组织返回的至少一个第四电流。这样,电子设备可以分别获取不同的LED发射的电流,使得电子设备可以基于不同的LED对应的接收电流,对不同的LED发射的电流进行分别调节,进而PD可以获取到不同的LED所对应的稳定的电流数据。
在一种可能的实现方式中,方法还包括:当电子设备确定至少一个第四电流大于三色合一的LED中的至少一个光源对应的接收电流时,电子设备利用预设的第一电流步长减小至少一个第三电流;或者,当电子设备确定至少一个第四电流小于三色合一的LED中的至少一个光源对应的接收电流时,电子设备利用预设的第一电流步长增大至少一个第三电流。这样,使得电子设备可以基于不同的LED对应的接收电流,对不同的LED发射的电流进行分别调节,进而PD可以获取到不同的LED所对应的稳定的电流数据。
在一种可能的实现方式中,电子设备利用多个LED发出第一电流对应的光信号之前,方法还包括:电子设备根据监测内容以及电子设备所处的光照强度,确定目标灯序;目标灯序用于指示利用PPG模块进行人体特征监测时LED中的光源的发光情况;监测内容包括:心率监测、血氧监测和/或呼吸率监测;电子设备利用多个LED发出第一电流对应的光信号,包括:电子设备根据目标灯序,利用多个LED发出第一电流对应的光信号。这样,使得电子设备可以根据检测内容以及光照强度,对发射的光信号进行灵活调节,增强电子设备的智能性。
在一种可能的实现方式中,电子设备根据监测内容以及电子设备所处的光照强度,确定目标灯序,包括:当监测内容为心率监测且电子设备所处的光照强度大于或等于 光照强度阈值时,电子设备确定目标灯序为LED满足绿光发光;或者,当监测内容为心率监测且电子设备所处的光照强度小于光照强度阈值时,电子设备确定目标灯序为LED满足红外光发光。这样,使得电子设备可以在不同的检测内容以及光照强度下,发射不同类型的光信号,增强电子设备进行人体特征检测的准确性。
在一种可能的实现方式中,电子设备利用多个LED发出第一电流对应的光信号之前,方法还包括:电子设备接收第二操作;第二操作用于指示开始进行人体特征监测;响应于第二操作,电子设备利用多个LED发出第五电流对应的光信号;电子设备利用多个PD中的至少一个PD,获取第五电流对应的光信号经由人体组织返回的第六电流;电子设备利用多个LED发出第一电流对应的光信号,包括:当电子设备确定第六电流满足第一预设电流时,电子设备利用多个LED发出第一电流对应的光信号。这样,电子设备可以基于第六电流进行佩戴检测,为人体特征检测做好准备。
在一种可能的实现方式中,方法还包括:当电子设备确定第六电流不满足第一预设电流时,电子设备显示第一提示信息;第一提示信息用于指示未检测到电子设备的佩戴情况。这样,使得用户可以基于电子设备显示的提示信息,及时察觉佩戴情况。
在一种可能的实现方式中,方法还包括:电子设备接收第三操作;第三操作用于指示结束进行人体特征监测;响应于第三操作,电子设备基于第二电流得到人体特征监测结果。
在一种可能的实现方式中,电子设备包括可穿戴设备,可穿戴设备包括下述一种或多种:智能手表、智能手环、或智能眼镜。
第二方面,本申请实施例提供一种电子设备,包括处理器和存储器,存储器用于存储代码指令;处理器用于运行代码指令,使得电子设备以执行如第一方面或第一方面的任一种实现方式中描述的基于PPG的控制方法。
第三方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有指令,当指令被执行时,使得计算机执行如第一方面或第一方面的任一种实现方式中描述基于PPG的控制方法。
第四方面,一种计算机程序产品,包括计算机程序,当计算机程序被运行时,使得计算机执行如第一方面或第一方面的任一种实现方式中描述的基于PPG的控制方法。
应当理解的是,本申请的第二方面至第四方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本申请实施例提供的一种场景示意图;
图2为本申请实施例提供的一种基于PPG模块测量人体特征的原理示意图;
图3为本申请实施例提供的一种基于2LED+8PD的PPG模块结构示意图;
图4为本申请实施例提供的一种基于2LED+2PD的PPG模块结构示意图;
图5为本申请实施例提供的一种基于4LED+4PD的PPG模块结构示意图;
图6为本申请实施例提供的一种可穿戴设备的结构示意图;
图7为本申请实施例提供的一种智能手表的软件结构示意图;
图8为本申请实施例提供的一种基于PPG的控制方法的流程示意图;
图9为本申请实施例提供的一种开始心率监测的界面示意图;
图10为本申请实施例提供的一种提示界面示意图;
图11为本申请实施例提供的一种运动模式的界面示意图;
图12为本申请实施例提供的一种光路通路示意图;
图13为本申请实施例提供的一种显示心率曲线的界面示意图;
图14为本申请实施例提供的另一种基于PPG的控制方法的流程示意图;
图15为本申请实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一值和第二值仅仅是为了区分不同的值,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:
单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
目前,随着终端技术的发展,终端设备已经成为人们工作生活的一部分。为了满足用户对于自身健康管理的需求,较多终端设备可以支持用户的人体数据监测功能。例如,用户可以利用电子设备,如可穿戴设备,如智能手表等测量人体的心率、呼吸率或血氧等人体特征,进而使得用户可以基于该智能手表中监测得到的人体特征实时掌握身体状况。
示例性的,图1为本申请实施例提供的一种场景示意图。可以理解的是,本申请实施例中以电子设备为可穿戴设备中的智能手表为例进行示例说明,该示例并不构成对本申请实施例的限定。
可以理解的是,该电子设备可以包括:手机(mobile phone)、智能电视、可穿戴设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线设备、无人驾驶(self-driving)中的无线设备。其中,该可穿戴设备可以包括:智能手表、智能手环、智能手套、智能眼镜、虚拟现实(virtual reality,VR)终端设备或智能腰带等设备。本申请实施例中对电子设备以及可穿戴设备的具体形态不做具体限定。
如图1所示,用户可以利用可穿戴设备,例如智能手表测量用户在运动过程中的人体 特征。例如,用户可以利用智能手表测量心率,进而用户可以根据智能手表中显示的心率数据,调整运动强度。或者,智能手表也可以对监测到的用户的心率数据进行分析,进而为用户提供更加合理的运动建议,帮助用户更加高效的运动。
示例性的,当用户在运动的过程中,通过佩戴智能手表监测心率时,由于用户在运动过程中对手臂的不断摆动,使得智能手表可能出现如图1中的a所示的表带发生位置移动、或者表带松垮的情况,用户佩戴智能手表的位置不当,智能手表可以检测到如图1中的b所示的35次/分的心率监测结果,此时心率监测结果远低于正常值。
而当用户在运动的过程中如图1中的c所示的正常佩戴智能手表时,智能手表可以检测到如图1中的d所示的108次/分的心率检测结果,此时心率监测结果正常。
通常情况下,可穿戴设备可以基于自身设备中的PPG模块监测人体特征。示例性的,图2为本申请实施例提供的一种基于PPG模块测量人体特征的原理示意图。其中,PPG可以理解为一种借助光电手段在活体组织中检测血液容积变化的一种检测方法。如图2所示,该PPG模块204中可以包括至少一个PD,例如PD203,以及至少一个LED,例如LED202。
在图2对应的实施例中,可穿戴设备可以利用PPG模块204中的LED 202发射预设的电流值对应的光信号,光信号照射至皮肤组织(或理解为皮肤组织内的血液、或血管等)201,利用PD203接收透过皮肤组织201反射回的光信号,PD203将该光信号转换成电信号,并经过模数转换(analogue to digital conversion,A/D),将该电信号转换为可穿戴设备可以利用的数字信号(或称为PPG信号),进而通过PPG信号的计算得到人体特征,实现可穿戴设备对人体特征的测量。
在如图1中的a所示的运动场景中,伴随着用户身体的运动,所佩戴的可穿戴设备随之振动,可穿戴设备的佩戴位置以及佩戴松紧程度发生改变,可穿戴设备中的PPG模块204与皮肤组织201之间发生移动,进而对经由皮肤组织201反射回的光信号造成影响,使得PPG模块204中的PD203无法基于光信号得到准确的电流数据,进而可穿戴设备无法基于该电流数据得到有效的人体数据。
可以理解的是,当用户利用可穿戴设备进行人体特征监测时,可穿戴设备的佩戴位置、或松紧程度均可以影响到可穿戴设备监测到的PPG信号的强弱,使得基于该PPG信号的计算得到的人体监测结果出现不准、或跳变等现象,影响用户利用可穿戴设备进行人体特征监测时的使用体验。
可能的实现方式中,用户的肤色、以及毛发覆盖程度等也可以对PPG信号造成影响。可以理解的是,影响可穿戴设备获取PPG信号的因素可以根据实际场景包括其他内容,本申请实施例中对此不做具体限定。
有鉴于此,本申请实施例提供一种基于PPG的控制方法,使得可穿戴设备可以通过PD接收到的实际电流与目标接收电流的关系,反馈调节LED发射光信号时所对应的电流强度,使得PD可以获取到稳定的电流数据,进而可穿戴设备可以基于该稳定的电流数据监测得到准确的人体特征。
本申请实施例中,该可穿戴设备中包括PPG模块,PPG模块中可以包括至少一个PD以及至少一个LED,该LED可以为红光、绿光和红外光的三色合一的LED。本申请实施例中描述的PPG模块中可以包括2个LED以及8个PD。
示例性的,图3为本申请实施例提供的一种基于2LED+8PD的PPG模块结构示意图。 如图3所示,可穿戴设备中可以设置有圆形结构的PPG模块,该圆形结构的PPG模块中可以包括:2个三色合一的LED以及8个PD。具体的,该PPG模块的最内侧为两个三色合一的LED,该两个三色合一的LED均可以用于发射光信号,例如可以发出红光、绿光和红外光等;该两个三色合一的LED外侧设置有8个呈包围结构的PD。如图3所示,该两个三色合一的LED可以包括:LED1和LED2。该8个呈包围结构的PD可以包括:PD1、PD2、PD3、PD4、PD5、PD6、PD7和PD8。
具体的,在利用2LED+8PD的PPG模块进行人体特征检测时,该2个LED中的至少一个LED可以基于预设的电流发射光信号,该8个PD中的至少一个PD可以获取该由经由皮肤组织反射回的光信号对应的电流数据,进而可穿戴设备可以基于该8个PD中的至少一个PD获取的电流数据得到人体特征检测结果。
可以理解的是,在进行人体特征检测过程中,可穿戴设备可以利用该8个PD中的一个PD获取电流数据,也可以利用该8个PD中的一对PD(例如两个PD)获取电流数据,或者,也可以利用该8个PD中的所有PD获取电流数据,本申请实施例中对此不做限定。
可能的实现方式中,PPG模块中还可以包括2个LED以及2个PD。示例性的,图4为本申请实施例提供的一种基于2LED+2PD的PPG模块结构示意图。如图4所示,可穿戴设备中可以设置有圆形结构的PPG模块,该圆形结构的PPG模块中可以包括:2个三色合一的LED,例如LED1以及LED2,以及2个PD,例如PD1以及PD2。该2个三色合一的LED和2个PD间隔分布在PPG模块的圆形结构内。其中,该三色合一的LED可以发出红光、绿光和红外光。
具体的,在利用2LED+2PD的PPG模块进行人体特征检测时,该2个LED中的至少一个LED基于预设的电流发射光信号,该2个PD中的至少一个PD可以获取该由该LED发射且经由皮肤组织反射回的光信号对应的电流数据,进而可穿戴设备可以基于该2个PD中的至少一个PD获取的电流数据得到人体特征检测结果。
可能的实现方式中,PPG模块中还可以包括4个LED以及4个PD。示例性的,图5为本申请实施例提供的一种基于4LED+4PD的PPG模块结构示意图。如图5所示,可穿戴设备中可以设置有圆形结构的PPG模块,该PPG模块中可以包括:4LED,例如LED1、LED2、LED3以及LED4,以及4个PD,例如PD1、PD2、PD3以及PD4。该4个LED呈包围结构,该4个LED的内侧设置有4个PD,该4个LED在PPG模块内呈对称结构,该4个PD在PPG模块内也可以呈对称结构。其中,该4个LED均可以为三色合一的LED,或者该4个LED中的任一LED也可以只用于发射一种光源。
具体的,在利用4LED+4PD的PPG模块进行人体特征检测时,该4个置于PD外侧的至少一个LED可以根据预设的电流发射光信号,该4个PD中的至少一个PD可以获取外侧由LED发射且经由皮肤组织反射回的光信号对应的电流数据,进而可穿戴设备可以基于该4个PD中的至少一个PD获取的电流数据得到人体特征检测结果。
可以理解的是,本申请实施例中的PPG模块可以为圆形结果或也可以为方形结构,本申请实施例中对PPG模块的形态不做限定。
可以理解的是,本申请实施例中对该PPG模块中的LED的数量以及LED的形态、PD的数量以及PD的形态不做限定。
可以理解的是,本申请实施例中的可穿戴设备可以包括:智能手表、智能手环、智能 手套、或智能腰带等设备。本申请实施例中对可穿戴设备所采用的具体技术和具体设备形态不做限定。
为了能够更好地理解本申请实施例,下面对本申请实施例的可穿戴设备的结构进行介绍。示例性的,图6为本申请实施例提供的一种可穿戴设备的结构示意图。
可穿戴设备可以包括处理器110,内部存储器121,通用串行总线(universal serial bus,USB)接口,充电管理模块140,电源管理模块141,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,传感器模块180,按键190,指示器192,摄像头193,以及显示屏194等。其中,传感器模块180可以包括:陀螺仪传感器180B,气压计180C,磁传感器180D,加速度传感器180E,接近光传感器180G,温度传感器180J,触摸传感器180K,以及环境光传感器180L等。
可以理解的是,本申请实施例示意的结构并不构成对可穿戴设备的具体限定。在本申请另一些实施例中,可穿戴设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。处理器110中还可以设置存储器,用于存储指令和数据。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。电源管理模块141用于连接充电管理模块140与处理器110。
可穿戴设备的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。可穿戴设备中的天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
移动通信模块150可以提供应用在可穿戴设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。
无线通信模块160可以提供应用在可穿戴设备上的包括无线局域网(wirelesslocal area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM)等无线通信的解决方案。
可穿戴设备通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。在一些实施例中,可穿戴设备可以包括1个或N个显示屏194,N为大于1的正整数。
可穿戴设备可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
摄像头193用于捕获静态图像或视频。在一些实施例中,可穿戴设备可以包括1个或 N个摄像头193,N为大于1的正整数。
内部存储器121可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。
可穿戴设备可以通过音频模块170,扬声器170A,受话器170B,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。可穿戴设备可以通过扬声器170A收听音乐,或收听免提通话。受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当可穿戴设备接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
陀螺仪传感器180B可以用于确定可穿戴设备的运动姿态。磁传感器180D包括霍尔传感器。
气压计180C用于测量气压。在一些实施例中,可穿戴设备可以通过气压计180C测得的气压值计算海拔高度,辅助定位和导航。本申请实施例中,该气压计180C用于测量可穿戴设备所处的气压情况,例如气压计180C可以用于检测可穿戴设备是否处于水下。
加速度传感器180E可检测可穿戴设备在各个方向上(一般为三轴)加速度的大小。本申请实施例中,该加速度传感器180E用于检测可穿戴设备是否处于运动状态。
接近光传感器180G可用于检测物体与可穿戴设备之间的接近和远离情况。环境光传感器180L用于感知环境光亮度。温度传感器180J用于检测温度。本申请实施例中,温度传感器用于检测可穿戴设备所处环境的温度情况。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。可穿戴设备可以接收按键输入,产生与可穿戴设备的用户设置以及功能控制有关的键信号输入。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
可穿戴设备的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构等。本申请实施例以分层架构的系统为例,示例性说明可穿戴设备的软件结构。
示例性的,以可穿戴设备为智能手表为例,图7为本申请实施例提供的一种智能手表的软件结构示意图。
如图7所示,分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,可以将智能手表的软件架构分为五层,从上至下分别为:应用(application,APP)层、系统服务层、算法层、硬件抽象层(hardware abstraction layer,HAL)、以及内核(kernel)层。
其中,该应用层可以包括一系列应用程序。例如,该应用程序可以包括:表盘应用、运动记录应用、通话应用以及锻炼应用等。
该系统服务层用于为应用层中的应用程序提供系统支持。例如,该系统服务层中可以包括:计步服务、心率服务、卡路里服务、心脏健康服务等模块。
该算法层用于为系统服务层提供算法支持。例如,该算法层中可以包括:心率算法、调光算法、睡眠算法、以及佩戴算法等。本申请实施例中,该心率算法、调光算法、睡眠算法、以及佩戴算法可以共同用于支撑心率服务,实现对不同状态下的用户的心率特征的检测。
本申请实施例中,该心率算法用于将PPG模块中PD获取到的电流数据转化为心率数据;该调光算法用于根据进行人体特征检测时PD获取的电流值,对LED发射光信号时对应的电流值进行反馈调节;该睡眠算法用于根据睡眠状态调整PPG模块中LED的发光情况;该佩戴算法用于基于PD获取的电流数据,检测用户当前是否佩戴好智能手表。
在硬件抽象层中,系统上层所需要的有关硬件的操作都需要调用HAL相关的应用程序编程接口(application programming interface,API)。每种硬件设备的软件架构层中都规范了一些功能,HAL层可以用于实现这些功能。
该硬件抽象层中可以包括:C++库对应的接口、存储接口、显示接口、触控接口、蓝牙(bluetooth)接口、以及全球定位提供(global positioning system,GPS)接口等。
内核层可以为硬件和软件之间的层。内核指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。其中,内核是一个操作系统的核心,是操作系统最基本的部分。它负责管理系统的进程、内存、设备驱动程序、文件和网络系统等,决定着系统的性能和稳定性。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。
该内核层可以为操作系统内核(operating system kernel,OS kernel)。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
示例性的,图8为本申请实施例提供的一种基于PPG的控制方法的流程示意图。在图8对应的实施例中,以电子设备为可穿戴设备中的智能手表,且智能手表中设置有PPG模块为例进行示例说明,该示例并不构成对本申请实施例的限定。其中,该PPG模块中可以设置有2个LED以及8个PD,该LED可以为三色合一的LED,该PPG模块的结构可以参见图3,在此不再赘述。
如图8所示,该基于PPG的控制方法可以包括如下步骤:
S801、当智能手表接收到用户开始心率监测的操作时,智能手表指示PPG模块中的LED亮灯,并采集PD接收到的电流数据。
本申请实施例中,该开始心率监测的操作可以为针对智能手表中的心率监测功能的触发操作,或者也可以为针对智能手表中的任一运动模式的触发操作。可以理解的是,当用户开启智能手表中的任一运动模式时,智能手表可以默认开启心率监测功能,以监测用户在运动过程中的心率情况。
示例性的,图9为本申请实施例提供的一种开始心率监测的界面示意图。如图9中的a所示的界面,该界面中可以包括用于心率监测的心率控件、以及用于血氧监测的血氧饱和率控件等。
如图9中的a所示的界面,当智能手表接收到用户触发该心率控件的操作时,智能手表可以显示如图9中的b所示的界面。如图9中的b所示的界面,该界面中可以显示用于 指示处于心率监测的标识以及提示信息,该提示信息可以用于指示当前进行佩戴检测,如该提示信息可以为:心率检测,请偏紧佩戴。
适应的,在佩戴检测过程中,智能手表可以指示PPG模块中的至少一个LED亮灯,并采集至少一个PD接收到的电流数据。
S802、智能手表基于PD接收到的电流数据确定当前是否检测到佩戴。
示例性的,智能手表可以基于PD接收到的电流数据与预设的用于佩戴检测的电流数据(或电流范围)确定当前是否检测到佩戴,例如当智能手表确定PD接收到的电流数据大于(或大于等于)该预设的用于佩戴检测的电流数据(或接收到的电流数据满足电流范围)时,则智能手表可以确定检测到用户的佩戴;或者,当智能手表确定PD接收到的电流数据小于等于(或小于)该预设的用于佩戴检测的电流数据时(或接收到的电流数据不满足电流范围)时,则智能手表可以确定未检测到用户的佩戴。
可选的,该步骤中,确定当前是否检测到佩戴也可以是确定是否是有生命特征的生物体佩戴,可选的,通过活体检测确定是否是有生命特征的生物体佩戴。可能的实现方式中,智能手表基于活体检测方法,确定该智能手表是否检测到佩戴。其中,该活体检测用于检测智能手表是否为有生命特征的生物体佩戴。例如,该活体检测方法可以包括:红外图像活体检测、3D结构光活体检测、或红绿蓝(red green blue,RGB)图像活体检测等,本申请实施例中对此不做限定。
本申请实施例中,当智能手表基于PD接收到的电流数据确定当前检测到佩戴时,智能手表可以执行S804所示的步骤;或者,当智能手表基于PD接收到的电流数据确定当前未检测到佩戴时,智能手表可以执行S803所示的步骤。
S803、智能手表显示提示界面。
本申请实施例中,该提示界面中可以包括提示信息,该提示信息用于指示未检测到佩戴情况。
示例性的,图10为本申请实施例提供的一种提示界面示意图。当智能手表未检测到佩戴情况时,智能手表可以显示如图10所示的界面,该界面中可以显示用于指示处于心率监测的标识以及提示信息,如该提示信息可以为:未检测到佩戴情况,请偏紧佩戴。
S804、智能手表确定所处的运动场景。
本申请实施例中,该运动场景可以包括下述一种或多种,例如:普通运动场景、水下运动场景、低温运动场景等。
本申请实施例中,智能手表可以基于下述两种方法进行运动场景检测。其中,方法一:智能手表可以基于加速度传感器、陀螺仪传感器、气压计和/或温度传感器等进行场景的自动识别,确定运动场景;方法二:智能手表可以基于用户在智能手表所支持的多种运动模式中针对任一运动模式的触发,确定运动场景。
方法一:智能手表可以基于加速度传感器、陀螺仪传感器、气压计和/或温度传感器等进行场景的自动识别,确定运动场景。
针对普通运动场景,当智能手表基于加速度传感器检测到智能手表的加速度大于(或大于等于)预设的加速度阈值,和/或基于陀螺仪传感器检测到智能手表的角加速度大于(或大于等于)预设的角加速度阈值时,则智能手表可以确定当前满足普通运动场景。
针对水下运动场景,当智能手表基于加速度传感器检测到智能手表的加速度大于(或 大于等于)预设加速度阈值(和/或基于陀螺仪传感器检测到智能手表的角加速度大于(或大于等于)预设的角加速度阈值时),且,基于气压计检测到智能手表的气压大于(或大于等于)预设的气压阈值时,则智能手表可以确定当前满足水下运动场景。
针对低温运动场景,当智能手表基于加速度传感器检测到智能手表的加速度大于(或大于等于)预设加速度阈值(和/或基于陀螺仪传感器检测到智能手表的角加速度大于(或大于等于)预设的角加速度阈值时),且,基于温度传感器检测到智能手表的温度小于(或小于等于)预设的温度阈值时,则智能手表可以确定当前满足低温运动场景。
可以理解的是,该预设的加速度阈值、预设的角加速度阈值、预设的气压阈值、以及预设的温度阈值均可以为预设的阈值范围,本申请实施例中对此不做限定。
可以理解的是,智能手表基于获取的传感器数据进行自动场景检测的方法,可以避免进行场景识别时用户的触发步骤,提高算法的可用性。
方法二:智能手表可以基于用户在智能手表所支持的多种运动模式中针对任一运动模式的触发,确定运动场景。
本申请实施例中,该智能手表中可以支持多种运动模式,如游泳模式等水下运动(或理解为满足水下运动场景)、如滑雪模式等低温运动(或理解为满足低温运动场景)、以及如步行模式、跑步模式、自行车模式等普通运动(或理解为满足普通运动场景)。示例性的,图11为本申请实施例提供的一种运动模式的界面示意图。如图11所示,该界面中可以包括:游泳模式、滑雪模式、以及跑步模式等。当智能手表接收到用户触发该滑雪模式对应的控件的操作时,智能手表可以确定当前满足低温运动场景。
可以理解的是,如图11所示,当智能手表接收到用户针对上述任一种运动模式的触发时,智能手表可以确定当前所处的运动场景。
可以理解的是,智能手表基于用户的触发确定运动场景的方法可以避免进行运动场景检测时的复杂步骤,简化算法的内存占用。
可以理解的是,该运动场景的种类、以及运动场景的识别方法可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
S805、智能手表确定运动场景对应的目标接收电流、以及目标灯序。
本申请实施例中,该目标灯序用于指示利用PPG模块进行人体特征监测时LED中的光源的发光情况(如发射光源时所需的LED的数量、以及光源的种类)。例如,该目标灯序可以与人体特征的监测内容以及智能手表所处的光照强度相关。例如,该人体特征监测内容可以包括:心率监测、血氧监测和/或呼吸率监测等,本申请实施例中对此不做限定。
示例性的,当智能手表确定监测内容为心率监测,且智能手表基于环境光传感器检测到环境光大于(或大于等于)亮度阈值时,则智能手表可以控制LED发射绿光信号;或者,当智能手表确定监测内容为心率监测,且智能手表基于环境光传感器检测到环境光小于等于(或小于)亮度阈值时,则智能手表可以控制LED发射红外光信号。
可以理解的是,不同监测内容对应的LED光源的发光情况可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
本申请实施例中,该目标接收电流用于指示不同场景下可以稳定获取人体检测结果的电流数值;该智能手表中可以预设有运动场景与目标接收电流之间的对应关系。
示例性的,当智能手表监测到当前处于低温运动场景时,可以获取该低温运动场景对应的目标接收电流,例如4μA(微安);或者,当智能手表监测到当前处于普通运动场景时,可以获取该普通运动场景对应的目标接收电流,例如1μA。
可以理解的是,由于运动场景,尤其如低温运动运动、和/或水下运动场景等极端环境对于硬件模块例如PPG模块的影响,使得PD获取到电流数据常常小于(或大于)正常运动模式时的电流数据,进而智能手表基于PD的电流数据无法计算得到准确的人体特征监测结果。因此,智能手表可以通过设置与不同运动场景相适应的目标接收电流,避免运动场景对于PPG模块的影响,使得PD获取的电流数据满足一个稳定的数值范围,进而智能手表可以实现在不同运动场景中监测得到相对准确的人体特征。
可能的实现方式中,智能手表也可以为不同的运动模式匹配不同的LED目标发送电流,使得智能手表可以通过合适的LED发送电流减缓极端运动模式对于PPG模块影响,使得PD获取的经过皮肤组织反射回的电流数据能够较好的反映用户的真实人体数据。
可以理解的是,上述目标接收电流、目标灯序以及目标发送电流可以为智能手表中预设的,或者也可以为基于用户在不同场景中进行的人体数据监测时的历史监测数据的学习得到的,本申请实施例中对此不做限定。
S806、智能手表指示PPG模块中的LED亮灯,并采集PD接收到的电流数据。
本申请实施例中,智能手表可以指示PPG模块中的至少一个LED亮灯,并且采集PPG模块中的至少一个PD对应的电流数据作为PD接收到的电流数据。
示例性的,图12为本申请实施例提供的一种光路通路示意图。在图12对应的实施例中,以PPG模块中包含2个LED以及8个PD为例进行示例说明。
如图12中的a所示,PPG模块结构中,任一LED(例如LED1)与各PD(例如PD1至PD8)之间的光信号的传输可以构成8条光路通道,例如由LED1与PD1之间构成的光路通道L1、由LED1与PD2之间构成的光路通道L2、由LED1与PD3之间构成的光路通道L3、由LED1与PD4之间构成的光路通道L4、由LED1与PD5之间构成的光路通道L5、由LED1与PD6之间构成的光路通道L6、由LED1与PD7之间构成的光路通道L7、以及由LED1与PD8之间构成的光路通道L8。
示例性的,智能手表可以利用至少一个LED,例如LED1发射预设的电流值对应的光信号,并通过该8个PD中的至少一个PD获取接收到的光信号对应的电流数据。例如,如图12中的a所示的界面,智能手表可以获取该8个PD中的距离LED1最远的光路通道L3(或L5)对应的PD,例如PD3(或PD5)作为接收电流数据的PD;或者,如图12中的b所示的界面,该智能手表可以获取距离LED1最远的一对PD(或理解为处于对称结构的一对PD),例如P2以及PD3作为接收电流数据的一对PD,此时该LED1与8个PD之间可以构成4个光路通道。
可能的实现方式中,如图12所示的PPG模块,智能手表也可以获取该PPG模块中的3个、4个或全部PD接收到的电流数据作为用于进行反馈调节的电流数据,本申请实施例中对此不做限定。
S807、智能手表确定电流数据是否满足目标接收电流。
本申请实施例中,该目标接收电流可以为一个电流阈值,或者也可以为一个电流范围,本申请实施例中对此不做限定。示例性的,该目标接收电流的取值可以为5μA,或者也可 以为4.5μA-5.5μA。
可能的实现方式中,当智能手表利用PPG模块中的一个PD获取电流数据时,则可以确定该PD对应的电流数据是否满足目标接收电流;或者,当智能手表利用PPG模块中的多个PD获取电流数据时,则可以分别确定该多个PD中的任一PD对应的电流数据是否均满足目标接收电流。
示例性的,当智能手表确定PD接收到的电流数据满足目标接收电流时,智能手表可以执行S809所示的步骤;或者,当智能手表确定PD接收到的电流数据不满足目标接收电流时,智能手表可以执行S808所示的步骤。
S808、智能手表基于预设步长调节LED的发光电流。
本申请实施例中,该预设步长可以为用于调节LED的发光电流的电流数值;该发光电流可以为S806所示的步骤中LED亮灯时对应的电流值。
示例性的,当S806所示的步骤中PD接收到的电流数据大于S805所示的步骤中的目标接收电流时,则智能手表可以基于预设步长调小LED的发光电流;或者,当S806所示的步骤中PD接收到的电流数据小于S805所示的步骤中的目标接收电流时,则智能手表可以基于预设步长调大LED的发光电流,进而通过调节LED的发光电流,使得PD接收到的电流满足一个稳定的状态。
可能的实现方式中,当该LED中发射的光源为多种时,则智能手表可以对PD获取的该多种光源分别对应的、电流数据与目标接收电流之间的关系,分别调节该多种光源对应的LED发光电流,使得PD接收到的每一种光源对应的电流数据均能够达到稳定的状态。
S809、智能手表基于PD接收到的电流数据计算得到心率监测结果,并显示心率曲线。
示例性的,智能手表中实现可以将PD接收到的电流数据转化为心率监测结果,例如得到心电图(electrocardiogram,ECG)。
示例性的,图13为本申请实施例提供的一种显示心率曲线的界面示意图。例如,智能手表可以基于PD接收到的电流数据进行心率计算,例如计算得到当前的心率监测结果为108次/分,静息心率为70次/分,并将心率监测结果显示在如图13中的a所示的界面中。
S810、当智能手表接收到用户结束心率监测的操作时,智能手表指示PPG模块中的LED灭灯,并显示结束界面。
本申请实施例中,该结束心率监测的操作可以为:语音操作、或者针对用于结束心率监测功能的控件的触发操作、或者针对用于结束运动模式的控件的触发操作等。
示例性的,当智能手表接收到用户结束心率监测的操作时,智能手表可以显示如图13中的b所示的界面,该界面中可以包括用于提示心率监测结束的信息、以及用于提示心率监测结果的信息等,例如该界面中可以显示:结束心率监测,平均心率为90次/分等信息。
基于此,可穿戴设备可以通过PD接收到的实际电流与目标接收电流的关系,反馈调节LED发射光信号时所对应的电流强度,使得PD可以获取到稳定的电流数据,进而可穿戴设备可以基于该稳定的电流数据监测得到准确的人体特征。
在图8对应的实施例的基础上,可能的实现方式中,该智能手表中还可以包括应用层、系统服务层、以及算法层等,该应用层中可以包括用于人体心率监测的运动记录应用;该智能手表的系统服务层中可以包括心率服务模块;该算法层中可以包括佩戴算法模块、调 光算法模块、以及心率算法模块等。示例性的,图14为本申请实施例提供的另一种基于PPG的控制方法的流程示意图。
如图14所示,该基于PPG的控制方法可以包括如下步骤:
S1401、当运动记录应用接收到用户触发开始心率监测的操作时,运动记录应用可以将用于指示开始心率监测的消息发送至心率服务模块。
适应的,心率服务模块可以接收到该用于指示开始心率监测的消息。
其中,该开始心率监测的操作可以参见S801所示的步骤,在此不再赘述。
S1402、心率服务模块指示PPG模块亮灯,并采集监测数据。
本申请实施例中,该监测数据可以为PPG模块中的至少一个PD接收到的电流数据。
S1403、心率服务模块将该监测数据发送至佩戴算法模块。
适应的,佩戴算法模块可以接收到该监测数据。
S1404、佩戴算法模块基于监测数据得到佩戴识别结果。
示例性的,该佩戴算法模块基于监测数据得到佩戴识别结果的过程可以参见S802所示的步骤中智能手表PD接收到的电流数据确定当前是否检测到佩戴的过程,在此不再赘述。
S1405、佩戴识别算法模块将佩戴识别结果发送至心率服务模块。
适应的,心率服务模块可以接收到该佩戴识别结果。
S1406、心率服务模块确定智能手表所处的运动场景。
本申请实施例中,当该佩戴识别结果指示当前满足佩戴时,则心率服务模块可以执行S1406所示的步骤;或者,当该佩戴识别结果指示当前不满足佩戴时,则心率服务模块可以指示运动记录应用显示图10所示的界面。
示例性的,该心率服务模块确定智能手表所处的运动场景的过程可以参见S804所示的步骤,在此不再赘述。
S1407、心率服务模块将运动场景发送至调光算法模块。
适应的,调光算法模块可以接收到该运动场景。
S1408、调光算法模块确定运动场景对应的目标接收电流、以及目标灯序。
本申请实施例中,该目标接收电流以及目标灯序的作用可以参见S805所示的步骤中的描述,在此不再赘述。
S1409、调光算法模块将该目标接收电流以及目标灯序发送至心率服务模块。
适应的,心率服务模块可以接收到该目标接收电流以及目标灯序。
S1410、心率服务模块基于目标灯序指示PPG模块亮灯,采集监测数据。
本申请实施例中,该监测数据可以为PPG模块中的至少一个PD接收到的电流数据。
S1411、心率服务模块将该监测数据以及目标接收电流发送至调光算法模块。
适应的,调光算法模块可以接收到该监测数据以及目标接收电流。
S1412、调光算法模块基于监测数据确定是否满足目标接收电流。
本申请实施例中,调光算法模块基于监测数据确定是否满足目标接收电流可以参见S807所示的步骤,在此不再赘述。
示例性的,当调光算法模块确定监测数据不满足目标接收电流时,调光算法模块可以执行S1413所示的步骤;或者,当调光算法模块确定监测数据满足目标接收电流时,调光 算法模块可以执行S1415所示的步骤。
S1413、调光算法模块将用于指示不满足目标接收电流的消息发送至心率服务模块。
适应的,心率服务模块可以接收到该用于指示不满足目标接收电流的消息。
S1414、心率服务模块基于预设步长调节PPG模块中的LED的电流值。
可以理解的是,心率服务模块基于预设步长调节PPG模块中的LED的电流值的过程可以参见S808所示的步骤,在此不再赘述。
可以理解的是,心率服务模块可以基于调节后的LED的电流值,继续采集PD获取的监测数据,使得可穿戴设中的模块可以循环执行S1411至S1414所示的步骤,直到调光算法模块基于监测数据确定当前满足目标接收电流。
S1415、调光算法模块将监测数据发送至心率算法模块。
适应的,心率算法模块可以接收到该监测数据。
S1416、心率算法模块计算监测数据对应的心率监测结果。
S1417、心率算法模块将心率监测结果发送至心率服务模块。
适应的,心率服务模块可以接收到该心率监测结果。
S1418、心率服务模块将心率监测结果发送至运动记录应用。
适应的,运动记录应用可以接收到该心率监测结果。
可能的实现方式中,运动记录应用还可以显示如图13中的a所示的心率曲线对应的界面。
S1419、当运动记录应用接收到用户触发结束心率监测的操作时,运动记录应用可以将用于指示结束心率监测的消息发送至心率服务模块。
适应的,心率服务模块可以接收到该用于指示结束心率监测的消息。
S1420、心率服务模块将用于指示结束心率监测的消息发送至心率算法模块。
适应的,心率算法模块可以接收到该用于指示结束心率监测的消息。
S1421、心率算法模块将用于指示结束心率算法的消息发送至心率服务模块。
适应的,心率服务模块可以接收到该用于指示结束心率算法的消息。
S1422、心率服务模块指示PPG模块中的LED灭灯。
S1423、心率服务模块将用于指示结束心率算法的消息发送至运动记录应用。
适应的,运动记录应用可以接收到该用于指示结束心率算法的消息。
可能的实现方式中,运动记录应用中可以显示如图13中的b所示的结束心率监测的界面。
基于此,可穿戴设备可以通过PD接收到的实际电流与目标接收电流的关系,反馈调节LED发射光信号时所对应的电流强度,使得PD可以获取到稳定的电流数据,进而可穿戴设备可以基于该稳定的电流数据监测得到准确的人体特征。
可以理解的是,本申请实施例所提供的界面仅作为一种示例,并不能构成对本申请实施例的限定。
上面结合图8-图14,对本申请实施例提供的方法进行了说明,下面对本申请实施例提供的执行上述方法的电子设备进行描述。
示例性的,图15为本申请实施例提供的一种电子设备的硬件结构示意图。其中,该电子设备可以为本申请实施例的可穿戴设备。
如图15所示,该电子设备包括处理器1501,通信线路1504以及至少一个通信接口(图15中示例性的以通信接口1503为例进行说明)。
处理器1501可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1504可包括在上述组件之间传送信息的电路。
通信接口1503,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线局域网(wireless local area networks,WLAN)等。
可能的,该电子设备还可以包括存储器1502。
存储器1502可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1504与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1502用于存储执行本申请方案的计算机执行指令,并由处理器1501来控制执行。处理器1501用于执行存储器1502中存储的计算机执行指令,从而实现本申请实施例所提供的方法。
可能的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1501可以包括一个或多个CPU,例如图15中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备可以包括多个处理器,例如图15中的处理器1501和处理器1505。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。其中,计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储 的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。例如,可用介质可以包括磁性介质(例如,软盘、硬盘或磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可能的设计,计算机可读介质可以包括紧凑型光盘只读储存器(compact disc read-only memory,CD-ROM)、RAM、ROM、EEPROM或其它光盘存储器;计算机可读介质可以包括磁盘存储器或其它磁盘存储设备。而且,任何连接线也可以被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,DSL或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(digital versatile disc,DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。
上述的组合也应包括在计算机可读介质的范围内。以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种基于光电体积描记PPG的控制方法,其特征在于,应用于电子设备,所述电子设备包括PPG模块,所述PPG模块包括多个发光二极管LED和多个光电二极管PD,所述方法包括:
    所述电子设备利用所述多个LED发出第一电流对应的光信号;
    所述电子设备利用所述多个PD中的至少一个PD,获取所述第一电流对应的光信号经由人体组织返回的第二电流;
    当所述电子设备确定所述第二电流大于目标电流时,所述电子设备利用预设的第一电流步长减小所述第一电流;
    或者,当所述电子设备确定所述第二电流小于所述目标电流时,所述电子设备利用所述预设的第一电流步长增大所述第一电流。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述电子设备确定所述电子设备所处的目标场景;其中,所述目标场景为预先定义的多个场景中的其中一个,任一个所述场景对应有利用所述PPG模块进行人体特征监测时的接收电流;
    所述电子设备确定所述目标场景对应的目标电流。
  3. 根据权利要求2所述的方法,其特征在于,所述电子设备确定所述电子设备所处的目标场景,包括:
    所述电子设备获取第一数据;所述第一数据包括:加速度数据、角加速度数据、气压数据和/或温度数据;
    所述电子设备利用预设规则对所述第一数据进行检测,得到所述目标场景。
  4. 根据权利要求2所述的方法,其特征在于,所述电子设备确定所述电子设备所处的目标场景,包括:
    所述电子设备接收第一操作;所述第一操作用于设置利用所述PPG模块进行人体特征监测时的监测场景;
    响应于所述第一操作,所述电子设备确定所述电子设备所处的目标场景。
  5. 根据权利要求1所述的方法,其特征在于,所述LED为红光、绿光和红外光三色合一的LED,所述获取所述第一电流对应的光信号经由人体组织返回的第二电流,包括:
    获取所述三色合一的LED中的至少一个光源发出的至少一个第三电流对应的光信号,经由人体组织返回的至少一个第四电流。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当所述电子设备确定所述至少一个第四电流大于所述三色合一的LED中的至少一个光源对应的接收电流时,所述电子设备利用所述预设的第一电流步长减小所述至少一个第三电流;
    或者,当所述电子设备确定所述至少一个第四电流小于所述三色合一的LED中的至少一个光源对应的接收电流时,所述电子设备利用所述预设的第一电流步长增大所述至少一个第三电流。
  7. 根据权利要求5所述的方法,其特征在于,所述电子设备利用所述多个LED发 出第一电流对应的光信号之前,所述方法还包括:
    所述电子设备根据监测内容以及所述电子设备所处的光照强度,确定目标灯序;所述目标灯序用于指示利用所述PPG模块进行人体特征监测时所述LED中的光源的发光情况;所述监测内容包括:心率监测、血氧监测和/或呼吸率监测;
    所述电子设备利用所述多个LED发出第一电流对应的光信号,包括:所述电子设备根据所述目标灯序,利用所述多个LED发出第一电流对应的光信号。
  8. 根据权利要求7所述的方法,其特征在于,所述电子设备根据监测内容以及所述电子设备所处的光照强度,确定目标灯序,包括:
    当所述监测内容为所述心率监测且所述电子设备所处的光照强度大于或等于光照强度阈值时,所述电子设备确定所述目标灯序为所述LED满足绿光发光;
    或者,当所述监测内容为所述心率监测且所述电子设备所处的光照强度小于所述光照强度阈值时,所述电子设备确定所述目标灯序为所述LED满足红外光发光。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述电子设备利用所述多个LED发出第一电流对应的光信号之前,所述方法还包括:
    所述电子设备接收第二操作;所述第二操作用于指示开始进行人体特征监测;
    响应于所述第二操作,所述电子设备利用所述多个LED发出第五电流对应的光信号;
    所述电子设备利用所述多个PD中的至少一个PD,获取所述第五电流对应的光信号经由人体组织返回的第六电流;
    所述电子设备利用所述多个LED发出第一电流对应的光信号,包括:当所述电子设备确定所述第六电流满足第一预设电流时,所述电子设备利用所述多个LED发出第一电流对应的光信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    当所述电子设备确定所述第六电流不满足所述第一预设电流时,所述电子设备显示第一提示信息;所述第一提示信息用于指示未检测到所述电子设备的佩戴情况。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述电子设备接收第三操作;所述第三操作用于指示结束进行人体特征监测;
    响应于所述第三操作,所述电子设备基于所述第二电流得到所述人体特征监测结果。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述电子设备包括可穿戴设备,所述可穿戴设备包括下述一种或多种:智能手表、智能手环、或智能眼镜。
  13. 一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,使得所述电子设备执行如权利要求1至12任一项所述的方法。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,使得计算机执行如权利要求1至12任一项所述的方法。
  15. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至12任一项所述的方法。
PCT/CN2022/119362 2021-12-29 2022-09-16 基于光电体积描记ppg的控制方法和电子设备 WO2023124261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22879560.5A EP4226853A4 (en) 2021-12-29 2022-09-16 PHOTOPLETHYSMOGRAPHY (PPG) BASED CONTROL METHOD AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111649199.7 2021-12-29
CN202111649199.7A CN116407094A (zh) 2021-12-29 2021-12-29 基于光电体积描记ppg的控制方法和电子设备

Publications (2)

Publication Number Publication Date
WO2023124261A1 true WO2023124261A1 (zh) 2023-07-06
WO2023124261A9 WO2023124261A9 (zh) 2023-10-26

Family

ID=86605215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119362 WO2023124261A1 (zh) 2021-12-29 2022-09-16 基于光电体积描记ppg的控制方法和电子设备

Country Status (3)

Country Link
EP (1) EP4226853A4 (zh)
CN (1) CN116407094A (zh)
WO (1) WO2023124261A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1692874A (zh) * 2004-05-08 2005-11-09 香港中文大学 指环式生理信息监测装置
US20140275854A1 (en) * 2012-06-22 2014-09-18 Fitbit, Inc. Wearable heart rate monitor
CN104207755A (zh) * 2013-06-03 2014-12-17 飞比特公司 可佩戴心率监视器
US20170105638A1 (en) * 2015-10-19 2017-04-20 Garmin Switzerland Gmbh System and method for generating a ppg signal
CN108652605A (zh) * 2018-03-27 2018-10-16 上海交通大学 基于单路ppg信号的实时血压监测装置
CN109350021A (zh) * 2018-11-28 2019-02-19 重庆邮电大学 一种多参数腕式生命体征监测装置及其低功耗工作方法
CN110769561A (zh) * 2019-12-09 2020-02-07 江苏盖睿健康科技有限公司 无创脉搏血氧仪的led阶梯调光方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948832B2 (en) * 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US11291401B2 (en) * 2017-10-03 2022-04-05 Salutron, Inc. Arrhythmia monitoring using photoplethysmography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1692874A (zh) * 2004-05-08 2005-11-09 香港中文大学 指环式生理信息监测装置
US20140275854A1 (en) * 2012-06-22 2014-09-18 Fitbit, Inc. Wearable heart rate monitor
CN104207755A (zh) * 2013-06-03 2014-12-17 飞比特公司 可佩戴心率监视器
US20170105638A1 (en) * 2015-10-19 2017-04-20 Garmin Switzerland Gmbh System and method for generating a ppg signal
CN108652605A (zh) * 2018-03-27 2018-10-16 上海交通大学 基于单路ppg信号的实时血压监测装置
CN109350021A (zh) * 2018-11-28 2019-02-19 重庆邮电大学 一种多参数腕式生命体征监测装置及其低功耗工作方法
CN110769561A (zh) * 2019-12-09 2020-02-07 江苏盖睿健康科技有限公司 无创脉搏血氧仪的led阶梯调光方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4226853A4

Also Published As

Publication number Publication date
EP4226853A1 (en) 2023-08-16
WO2023124261A9 (zh) 2023-10-26
EP4226853A4 (en) 2023-08-23
CN116407094A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2020192417A1 (zh) 图像渲染方法及装置、电子设备
CN113827185B (zh) 穿戴设备佩戴松紧程度的检测方法、装置及穿戴设备
WO2022228480A1 (zh) 一种基于光电体积描记ppg的可穿戴设备及其控制方法
WO2022170863A1 (zh) 超宽带定位方法及系统
US10627626B2 (en) Display device, reception device, and method of controlling reception device
CN109496423A (zh) 一种拍摄场景下的图像显示方法及电子设备
US20180212449A1 (en) Electronic device and operating method thereof
KR20180024299A (ko) 조도를 측정하는 방법 및 그 전자 장치
US11928947B2 (en) Fall detection-based help-seeking method and electronic device
KR20160035394A (ko) 센서 데이터 처리 방법 및 그 장치
EP3378395B1 (en) Method for providing information related to skin and electronic device using the same
JP2020500059A (ja) スマートウェアラブルデバイス
TW201632138A (zh) 具有光學感測器之光學通訊
KR20170048792A (ko) 이미지 처리 장치 및 이의 동작 방법
CN113395382A (zh) 一种设备间数据交互的方法及相关设备
US11216066B2 (en) Display device, learning device, and control method of display device
JP2018207151A (ja) 表示装置、受信装置、プログラム、及び受信装置の制御方法。
WO2023124261A1 (zh) 基于光电体积描记ppg的控制方法和电子设备
CN113069089B (zh) 电子设备
US11553850B2 (en) Electronic device and method for identifying occurrence of hypotension
WO2023098583A1 (zh) 一种渲染方法及其相关设备
WO2022166617A1 (zh) 可穿戴设备及佩戴状态检测方法
CN115032640B (zh) 手势识别方法和终端设备
JP2018534594A (ja) ユーザーの気分に応じてストラップの色が変わるスマートウォッチ
WO2022083363A1 (zh) 周期性测量血氧的方法及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022879560

Country of ref document: EP

Effective date: 20230417