WO2023123922A1 - 全彩波导显示结构以及头戴显示设备 - Google Patents

全彩波导显示结构以及头戴显示设备 Download PDF

Info

Publication number
WO2023123922A1
WO2023123922A1 PCT/CN2022/100378 CN2022100378W WO2023123922A1 WO 2023123922 A1 WO2023123922 A1 WO 2023123922A1 CN 2022100378 W CN2022100378 W CN 2022100378W WO 2023123922 A1 WO2023123922 A1 WO 2023123922A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization grating
light source
polarization
grating
waveguide body
Prior art date
Application number
PCT/CN2022/100378
Other languages
English (en)
French (fr)
Inventor
魏如东
饶轶
吾晓
赵恩
杨镇源
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023123922A1 publication Critical patent/WO2023123922A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present application relates to the field of optical technology, and more specifically, to a full-color waveguide display structure and a head-mounted display device.
  • Optical waveguide display is a kind of transparent display technology. Compared with other transparent display devices, it has higher light transmittance and better display effect.
  • An object of the present application is to provide a new technical solution for a full-color waveguide display structure and a head-mounted display device, so as to solve at least one technical problem raised in the background art.
  • a full-color waveguide display structure includes:
  • a first waveguide body for propagating the first light source and the second light source
  • the first polarization grating and the second polarization grating, the first polarization grating and the second polarization grating are used as the coupling device of the first waveguide body; the first polarization grating and the second polarization grating respectively respond to different polarization states polarized light;
  • the second waveguide body is located on one side of the first waveguide body, and the second waveguide body is used to propagate a third light source;
  • a third polarization grating where the third polarization grating serves as a coupling device for the second waveguide body.
  • the first waveguide body includes a first light incident surface and a first light exit surface
  • the first polarization grating includes a first coupling-in polarization grating
  • the second polarization grating includes a second in-coupling polarization grating
  • the third polarization grating includes a third coupling-in polarization grating
  • the first coupling-in polarization grating and the second coupling-in polarization grating are disposed between the first waveguide body and the second waveguide body, and the third coupling-in polarization grating is disposed away from the second waveguide body One side of the first waveguide body.
  • the first polarization grating includes a first outcoupling polarization grating
  • the second polarization grating includes a second outcoupling polarization grating
  • the third polarization grating includes a third outcoupling polarization grating
  • the first outcoupling polarization grating and the second outcoupling polarization grating are arranged on the side of the first waveguide body away from the second waveguide body, and the third outcoupling polarization grating is arranged on the first waveguide body and between the second waveguide body.
  • the first polarization grating and the second polarization grating are respectively made of cholesteric liquid crystals with opposite optical activity.
  • the third polarization grating and the first polarization grating are respectively made of cholesteric liquid crystals with the same optical activity.
  • the first polarization grating, the third polarization grating and the second polarization grating are all reflective polarization gratings.
  • the first light source and the third light source are first circularly polarized light with different wavelengths, and the second light source is second circularly polarized light;
  • the first light source After the first light source is incident, it is reflected by the first polarization grating and propagates in the first waveguide body;
  • the second light source is incident and reflected by the second polarization grating, and propagates in the first waveguide body;
  • the third light source After the third light source is incident, it is transmitted through the first polarization grating and the second polarization grating, reflected by the third polarization grating, and propagates in the second waveguide body.
  • the period of the first polarization grating is 360-370nm, and the Bragg period is 160-165nm;
  • the period of the second polarization grating is 410-420nm, and the Bragg period is 185-190nm;
  • the period of the third polarization grating is 490-500nm, and the Bragg period is 220-225nm.
  • both the first waveguide body and the second waveguide body are transparent plate structures.
  • the full-color waveguide display structure has an angle of view ranging from 30° to 45°.
  • a head-mounted display device includes the full-color waveguide display structure described in the first aspect.
  • a full-color waveguide display structure is provided in the embodiment of the present application.
  • the full-color waveguide display structure includes a first waveguide body, first and second polarization gratings corresponding to the first waveguide body, the second waveguide body, and a third polarization grating corresponding to the second waveguide body.
  • the embodiment of the present application can eliminate the influence of color cast, and ensure the effect of display imaging.
  • the first polarization grating and the second polarization grating correspond to a piece of the first waveguide body, which makes the structure of the full-color waveguide display more compact and portable.
  • Fig. 1 is a schematic diagram of the principle of a reflective polarization grating in the present application.
  • FIG. 2 is a schematic structural diagram of a full-color waveguide display structure in an embodiment of the present application.
  • the first waveguide body 11. The first light incident surface; 12. The first light exit surface;
  • the second waveguide body 21. The second light incident surface; 22. The second light exit surface;
  • a full-color waveguide display structure includes:
  • the first waveguide body 1 is used for propagating the first light source and the second light source.
  • the first polarization grating 3 and the second polarization grating 4, the first polarization grating 3 and the second polarization grating 4 are used as the coupling device of the first waveguide body 1; the first polarization grating 3 and the second polarization grating 4 , respectively responding to polarized light of different polarization states.
  • the second waveguide body 2, the second waveguide body 2 is located below the first waveguide body 1, and the second waveguide body 2 is used for propagating the third light source.
  • the third polarization grating 5, the third polarization grating 5 is used as the coupling device of the second waveguide body 2.
  • the full-color waveguide display structure utilizes the unique polarization characteristics of the polarizer grating (PVG) (selective light splitting is realized based on the polarization state of the incident light), so that the first light source and the second light source share a waveguide body, and then through The combination of two waveguide bodies (blue-green+red, or red-green+blue) realizes full-color waveguide display.
  • PVG polarizer grating
  • the first waveguide body 1 is used to propagate the first light source and the second light source. That is, the first light source and the second light source share a piece of first waveguide body 1 .
  • the full-color waveguide display structure in the prior art needs to use three waveguides to realize image display. Compared with the prior art, this implementation makes the structure of the full-color optical waveguide more compact and portable.
  • the first polarization grating 3 (for example, B-PVG) and the second polarization grating 4 (for example, G-PVG) serve as the coupling device for the first waveguide body 1 .
  • the first polarization grating 3 and the second polarization grating 4 respectively respond to polarized light of different polarization states. That is, the present embodiment adopts the first polarization grating 3 and the second polarization grating 4 with different responses to polarization. That is, the first polarization grating 3 and the second polarization grating 4 respond differently to incident light of different polarization states.
  • the first polarization grating 3 has a modulating effect on the incident light of the right-handed circular polarization state (RCP), and the second polarization grating 4 has a modulating effect on the incident light of the left-handed circular polarization state (LCP).
  • the first polarization grating 3 has a modulation effect on the incident light with a left-handed circular polarization state (LCP)
  • the second polarization grating 4 has a modulation effect on the incident light with a right-handed circular polarization state (RCP).
  • the first light source and the second light source have different polarization states.
  • the first light source has a first polarization state
  • the second light source has a second polarization state.
  • the first polarization grating 3 can diffract the first light source with the first polarization state into the first waveguide body 1 ; the second polarization grating 4 can diffract the second light source with the second polarization state into the first waveguide body 1 .
  • the first light source of the first polarization state and the second light source of the second polarization state pass through the first waveguide body 1 vertically, and are respectively diffracted by the first polarization grating 3 and the second polarization grating 4 as in-coupling devices into the first waveguide In the body 1; in the first waveguide body 1, the first light source and the second light source propagate toward the outcoupling area of the first waveguide body 1 in the form of total reflection, and when they reach the outcoupling area of the first waveguide body 1, they are regarded as the outcoupling area.
  • the first polarization grating 3 and the second polarization grating 4 of the coupling device output parallel light, which finally enters the human eye.
  • an optical design with orthogonal polarization states is adopted, which can greatly reduce the problem of crosstalk of light in the waveguide.
  • the first light source and the second light source multiplex a polarization grating. Since the wavelengths of the first light source and the second light source are different, the deflection angles of the wavelengths of the first light source and the second light source to the same polarization grating are different, so when the first light source and the second light source multiplex a polarization grating, the first light source and the second light source The paths of the light sources propagating in the same waveguide are different, which will lead to certain chromatic aberration between the first light source and the second light source during imaging.
  • the first light source with the first polarization state and the second light source with the second polarization state each correspond to a polarization grating (PVG), which can ensure that the first light source and the second light source have the same deflection angle, realizing The same transmission path avoids the problem of chromatic aberration.
  • PVG polarization grating
  • the full-color waveguide display structure includes a second waveguide body 2 .
  • the second waveguide body 2 is used for propagating the third light source.
  • the third polarization grating 5 (such as R-PVG) serves as a coupling device for the second waveguide body 2 .
  • the third light source with a polarization state passes through the second waveguide body 2 vertically, and is diffracted into the second waveguide body 2 by the third polarization grating 5 as an in-coupling device; in the second waveguide body 2, the third light source It propagates to the other end of the second waveguide body 2 in the form of total reflection, and when it reaches the other end of the second waveguide body 2, the third polarization grating 5, which is used as an outcoupling device, outputs parallel light and finally enters the human eye.
  • the second waveguide body 2 is located on one side of the first waveguide body 1 , which makes the full-color waveguide display structure more compact and portable while ensuring the display imaging effect.
  • the first waveguide body 1 and the second waveguide body 2 are arranged opposite to each other.
  • An embodiment of the present application provides a full-color waveguide display structure.
  • the full-color waveguide display structure includes a first waveguide body 1, a first polarization grating 3 and a second polarization grating 4 corresponding to the first waveguide body 1, a second waveguide body 2, and a third polarization grating corresponding to the second waveguide body 2 Grating 5.
  • the embodiment of the present application can eliminate the influence of color cast, and ensure the effect of display imaging.
  • the first polarization grating 3 and the second polarization grating 4 correspond to a piece of the first waveguide body 1, which makes the structure of the full-color waveguide display more compact and portable.
  • the first polarization grating 3 includes a first coupling-in polarization grating 31 .
  • the second polarization grating 4 includes a second coupling-in polarization grating 41 .
  • the third polarization grating 5 includes a third coupling-in polarization grating 51 .
  • the first coupling-in polarization grating 31 and the second coupling-in polarization grating 41 are disposed between the first waveguide body 1 and the second waveguide body 2, and the third coupling-in polarization grating 51 is disposed on the The side of the second waveguide body 2 away from the first waveguide body 1 .
  • the first coupling-in polarization grating 31 and the second coupling-in polarization grating 41 serve as the coupling-in device of the first waveguide body 1 .
  • the third coupling-in polarization grating 51 serves as the coupling-in device of the second waveguide body 2 .
  • the first light source with the first polarization state is diffracted into the first waveguide body 1 through the first coupling-in polarization grating 31 .
  • the second light source with the second polarization state is diffracted into the first waveguide body 1 through the second coupling-in polarization grating 41 .
  • the first coupling-in polarization grating 31 and the second coupling-in polarization grating 41 are located in the coupling-in area of the first light exit surface 12 of the first waveguide body 1, and the first coupling-in polarization grating 31 and the second coupling-in polarization grating 41 are located along the The first waveguide bodies 1 are arranged side by side in the thickness direction. Referring to FIG. 2 , the first coupling-in polarization grating 31 is arranged closer to the first light-emitting surface 12 than the second coupling-in polarization grating 41 . Or the first coupling-in polarization grating 31 is arranged farther away from the first light-out surface 12 than the second coupling-in polarization grating 41 .
  • the first coupling-in polarization grating 31 is arranged closer to the first light-emitting surface 12 than the second coupling-in polarization grating 41 for illustration.
  • the first light source with the first polarization state enters the first waveguide body 1 vertically, and is coupled into the first waveguide body 1 through the first coupling polarization grating 31; the second light source with the second polarization state enters the first waveguide body vertically 1. and the first coupling-in polarization grating 31 (because the first coupling-in polarization grating 31 has no modulation effect on the second light source with the second polarization state), and then diffracted by the second coupling-in polarization grating 41 into the first waveguide body 1 in.
  • the third coupling-in polarization grating 51 serves as the coupling-in device of the second waveguide body 2 .
  • the third coupling-in polarization grating 51 is located in the coupling-in area of the second light-emitting surface 22 of the second waveguide body 2 .
  • the third light source with a polarization state is transmitted through the first polarization grating 3 and the second polarization grating 4 , reflected by the third polarization grating 5 , and propagates in the second waveguide body 2 .
  • the first polarization grating 3 and the second polarization grating 4 have different responses to the polarization state of the incident light, so the crosstalk between the first light source and the second light source can be effectively reduced or avoided.
  • the first light source and the second light source share a piece of the first waveguide body 1, making the full-color waveguide display more compact and portable in structure.
  • the first polarization grating 3 includes a first outcoupling polarization grating 32 .
  • the second polarization grating 4 includes a second outcoupling polarization grating 42 .
  • the third polarization grating 5 includes a third outcoupling polarization grating 52;
  • the first outcoupling polarization grating 32 and the second outcoupling polarization grating 42 are arranged on the side of the first waveguide body 1 away from the second waveguide body 2
  • the third outcoupling polarization grating 52 is arranged on the side of the first waveguide body 1 away from the second waveguide body 2 . Between the first waveguide body 1 and the second waveguide body 2.
  • the first outcoupling polarization grating 32 and the second outcoupling polarization grating 42 are located in the outcoupling area of the first light incident surface 11 of the first waveguide body 1, and the first outcoupling polarization grating 32 and the second The outcoupling polarization gratings 42 are arranged side by side along the thickness direction of the first waveguide body 1 .
  • the first light source with the first polarization state is diffracted by the first in-coupling polarization grating 31 to form diffracted light, enters the first waveguide body 1, and propagates in the form of total reflection until it is diffracted by the first out-coupling polarization grating 32 to output parallel light. Light, enters the human eye.
  • the second light source with the second polarization state is diffracted by the second in-coupling polarization grating 41 to form diffracted light, enters the first waveguide body 1, and propagates in the form of total reflection until it is diffracted by the second out-coupling polarization grating 42 to output parallel light. Light, enters the human eye.
  • the third outcoupling polarization grating 52 serves as an outcoupling device for the second waveguide body 2 .
  • the third outcoupling polarization grating 52 is located in the outcoupling area of the second light incident surface 21 of the second waveguide body 2 .
  • the third light source with a polarization state is diffracted by the third in-coupling polarization grating 51 to form diffracted light, enters the second waveguide body 2, and propagates in the form of total reflection until it is diffracted by the third out-coupling polarization grating 52 to output parallel light, into the human eye.
  • the first polarization grating 3 and the second polarization grating 4 are respectively made of cholesteric liquid crystals with opposite optical activity.
  • the first polarizing grating 3 and the second polarizing grating 4 are respectively prepared using cholesteric liquid crystals with opposite handedness, so that the first polarizing grating 3 and the second polarizing grating 4 respond to light of specific different polarization states .
  • the first polarization grating 3 and the second polarization grating 4 have different responses to the polarization state of the incident light, so the crosstalk between the first light source and the second light source can be effectively reduced or avoided.
  • both the first polarization grating 3 and the second polarization grating 4 are reflective polarization gratings.
  • Figure 1 shows a schematic diagram of the optical effects of two types of reflective polarizer gratings (r-PVG).
  • RCP right-handed circular polarization state
  • LCP left-handed circular polarization state
  • the optical effects of the first reflective polarization grating (r-PVGI) are shown in (a) and (b)
  • the second The optical effect of the reflective polarization grating (r-PVGII) is shown in (c)(d).
  • the first type of reflective polarization grating has a modulation effect on the incident light of right-handed circular polarization (RCP);
  • the first type of reflective polarization grating has a modulation effect on the incident light
  • the state of polarization (LCP) has no modulating effect.
  • the second reflective polarization grating has a modulation effect on the incident light of the left-handed circular polarization state (LCP)
  • the second reflective polarization grating has a modulation effect on the right-handed circular polarization state (LCP).
  • Incident light with a polarization state RCP
  • the reflective polarizer grating only has a modulation effect on the incident light of one circular polarization state
  • the first polarization grating 3 adopts the first type of reflective polarization grating (r-PVGI).
  • the first coupling-in polarization grating 31 adopts a first type of reflective polarization grating (r-PVGI)
  • the first out-coupling polarization grating 32 adopts a first type of reflective polarization grating (r-PVGI).
  • the second polarization grating 4 adopts the second type of reflective polarization grating (r-PVGII). Specifically, the second in-coupling polarization grating 41 adopts the second type of reflective polarization grating (r-PVGII), and the second out-coupling polarization grating 42 adopts the second type of reflective polarization grating (r-PVGII).
  • the third polarization grating 5 and the first polarization grating 3 are respectively made of cholesteric liquid crystals with the same optical activity.
  • the first polarization grating 3 and the second polarization grating 4 serve as the coupling device of the first waveguide body 1 , and the first polarization grating 3 and the second polarization grating 4 respectively modulate incident light of different polarization states.
  • the third polarization grating 5 serves as a coupling device for the second waveguide body 2, and the third polarization grating 5 modulates the third light source with a polarization state. Therefore, in this embodiment, in the input light of adjacent wavelengths (such as the third light source and the second light source, the second light source and the first light source), the optical design of the orthogonal polarization state is adopted, so it can greatly reduce the Crosstalk issues between waveguide layers.
  • the incident light is white light
  • the polarization state is not designed, so there may be a crosstalk problem in the waveguide layer. In particular, there is a crosstalk problem between the red and green waveguide layers.
  • the third polarization grating 5 and the first polarization grating 3 are respectively made of cholesteric liquid crystals with the same optical activity. That is, the third polarization grating 5 and the first polarization grating 3 have a modulation effect on the same type of polarization state light.
  • the third polarization grating 5 adopts the first type of reflective polarization grating (r-PVGI).
  • the third in-coupling polarization grating 51 adopts the first type of reflective polarization grating (r-PVGI)
  • the third out-coupling polarization grating 52 adopts the first type of reflective polarization grating (r-PVGI). That is, the third polarization grating 5 (r-PVGI) has a modulation effect on the incident light of the right-handed circular polarization state (RCP).
  • the third light source is incident light having the same polarization state as the first light source, and the third light source is incident light having a different polarization state from the second light source.
  • the third light source is separately provided with a waveguide body, and the incident light of the third light source with the same polarization state as the first light source is used to avoid crosstalk between the third light source and the second light source, and the third light source Mutual crosstalk between the light source and the first light source.
  • the wavelength difference between the third light source (620-630nm) and the first light source wavelength (455-465nm) is large, and the reflective polarization grating (r-PVG) of the first light source has no response to the third light source, which can avoid the The crosstalk of the three light sources to the first light source; the incident polarization state of the third light source and the second light source is different, which can avoid the mutual crosstalk between the third light source and the second light source; the reflection polarization grating (r-PVG) of the third light source Only a small peripheral field of view responds, and the diffraction efficiency of the first light source reflective polarization grating (r-PVG) itself is extremely high, and the first light source that can reach the third polarization grating 5 is negligible, so the first light source has a negative impact on the third
  • the light source is also basically free of crosstalk.
  • the full-color waveguide display structure has the characteristics of high efficiency, can effectively correct color cast, and can realize high-efficiency color image transmission.
  • the first polarization grating 3 , the third polarization grating 5 and the second polarization grating 4 are all reflective polarization gratings.
  • the first polarization grating 3, the third polarization grating 5, and the second polarization grating 4 all adopt reflective polarization grating (r-PVG), which can improve the viewing angle of the full-color waveguide display structure, thereby realizing a color image with a large viewing angle. transmission.
  • r-PVG reflective polarization grating
  • the first light source, the second light source, and the third light source may be any one of red light, blue light, and green light, respectively.
  • the first light source is red light
  • the second light source is blue light
  • the third light source is green light
  • the first light source is red light
  • the second light source is green light
  • the third light source is green light
  • the light source is blue light; or the first light source is green light, the second light source is red light, and the third light source is blue light; or the first light source is green light, the second light source is blue light, and the third light source is red light; or the first light source is blue light, the second light source is red light, and the third light source is green light; or the first light source is blue light, the second light source is green light, and the third light source is red light.
  • the first polarization grating and the third polarization grating respond to polarized light of the same polarization state
  • the first polarization grating needs to respond differently to the first light source and the third light source having the same polarization state. Therefore, the first polarization grating and the third polarization grating need to respectively reflect the light of the same polarization state but of different wavelength bands, so as to realize this solution.
  • the scheme in which the first light source and the third light source are respectively red light or blue light is better.
  • the first light source is blue light
  • the second light source is green light
  • the third light source is red light
  • the first light source is red light
  • the second light source is green light
  • the third light source is blue light
  • the period of the first polarization grating 3 is 360-370nm, and the Bragg period is 160-165nm; the period of the second polarization grating 4 is 410-420nm, and the Bragg period is 185-190nm; The period of the third polarization grating 5 is 490-500nm, and the Bragg period is 220-225nm.
  • the wavelength range of the first light source is 455-465nm
  • the corresponding period of the first polarization grating 3 (for example, B-PVG) is 360-370nm
  • the Bragg period is 160-165nm.
  • the first light source polarization grating has high diffraction efficiency for the first light source.
  • the wavelength range of the second light source is 520-530nm
  • the corresponding period of the second polarization grating 4 (such as G-PVG) is 410-420nm
  • the Bragg period is 185-190nm, so that the polarization grating of the second light source has high diffraction efficiency to the second light source .
  • the wavelength range of the third light source is 620-630nm, the corresponding period of the third light source polarization grating (for example, R-PVG) is 490-500nm, and the Bragg period is 220-225nm, so that the red polarization grating has high diffraction efficiency for the third light source.
  • the third light source polarization grating for example, R-PVG
  • both the first waveguide body 1 and the second waveguide body 2 are transparent plate structures.
  • both the first waveguide body 1 and the second waveguide body 2 are transparent plate structures.
  • both the first waveguide body 1 and the second waveguide body 2 are transparent glass plates or transparent plastic plates.
  • high-transparency color image transmission can be realized.
  • the viewing angle range of the full-color waveguide display structure is 30°-45°.
  • the first light source with the first polarization state corresponds to the first light source polarization grating
  • the second light source with the second polarization state corresponds to the second light source polarization grating
  • the design of the polarization state grating of the light source can improve the viewing angle of the full-color waveguide display structure.
  • the blue-green light is multiplexed with a blue-green polarization grating, which will reduce the viewing angle of the blue-green light instead.
  • the viewing angle range of the full-color waveguide display structure in this embodiment is 30°-45°, which can realize color image transmission with a large viewing angle.
  • a head-mounted display device includes the full-color waveguide display structure described in the first aspect. Specifically, applying the full-color waveguide display structure to the head-mounted display device improves the imaging effect of the head-mounted display device on the one hand, and makes the structure of the head-mounted display device more compact and lightweight on the other hand.
  • the head-mounted display device is an augmented reality display device, such as AR glasses or an AR head-mounted device.

Abstract

一种全彩波导显示结构以及头戴显示设备。全彩波导显示结构包括:第一波导本体(1),第一波导本体(1)用于传播第一光源和第二光源;第一偏振光栅(3)和第二偏振光栅(4),第一偏振光栅(3)和第二偏振光栅(4)作为第一波导本体(1)的耦合装置;第一偏振光栅(3)和第二偏振光栅(4),分别响应于不同的偏振光;第二波导本体(2),第二波导本体(2)位于第一波导本体(1)一侧,第二波导本体(2)用于传播第三光源;第三偏振光栅(5),第三偏振光栅(5)作为第二波导本体(2)的耦合装置。

Description

全彩波导显示结构以及头戴显示设备 技术领域
本申请涉及光学技术领域,更具体地,涉及一种全彩波导显示结构以及头戴显示设备。
背景技术
光波导显示是透明显示技术中的一种,相比于其它透明显示设备,其具备更高的透光率以及更优秀的显示效果。
现有的光波导显示往往设置R+G+B三片光栅,其中R+G+B三片光栅需要配合使用三片光波导,这样会使光波导显示结构变得相对笨重,不够紧凑和轻便。而将RGB三色光栅整合为一片,这样RGB三色光栅只需要配合使用一片光波导,光波导显示结构显示出的画面却会出现比较严重的偏色。
发明内容
本申请的一个目的是提供一种全彩波导显示结构以及头戴显示设备的新的技术方案,以解决背景技术所提出的至少一个技术问题。
根据本申请的第一方面,提供了一种全彩波导显示结构。所述全彩波导显示结构包括:
第一波导本体,所述第一波导本体用于传播第一光源和第二光源;
第一偏振光栅和第二偏振光栅,所述第一偏振光栅和第二偏振光栅作为所述第一波导本体的耦合装置;所述第一偏振光栅和第二偏振光栅,分别响应于不同偏振态的偏振光;
第二波导本体,所述第二波导本体位于所述第一波导本体一侧,所述第二波导本体用于传播第三光源;
第三偏振光栅,所述第三偏振光栅作为所述第二波导本体的耦合装置。
可选地,所述第一波导本体包括第一入光面和第一出光面;
所述第一偏振光栅包括第一耦入偏振光栅;
所述第二偏振光栅包括第二耦入偏振光栅;
所述第三偏振光栅包括第三耦入偏振光栅;
所述第一耦入偏振光栅和第二耦入偏振光栅设置于所述第一波导本体和所述第二波导本体之间,所述第三耦入偏振光栅设置于所述第二波导本体远离所述第一波导本体的一侧。
可选地,所述第一偏振光栅包括第一耦出偏振光栅;
所述第二偏振光栅包括第二耦出偏振光栅;
所述第三偏振光栅包括第三耦出偏振光栅;
所述第一耦出偏振光栅和第二耦出偏振光栅设置于所述第一波导本体远离所述第二波导本体的一侧,所述第三耦出偏振光栅设置于所述第一波导本体和所述第二波导本体之间。
可选地,所述第一偏振光栅和所述第二偏振光栅分别由旋光性相反的胆甾相液晶制备。
可选地,所述第三偏振光栅和所述第一偏振光栅分别由旋光性相同的胆甾相液晶制备。
可选地,所述第一偏振光栅、第三偏振光栅和第二偏振光栅均为反射偏振光栅。
可选地,所述第一光源和第三光源为波长不同的第一圆偏振态光,所述第二光源为第二圆偏振态光;
所述第一光源入射后经所述第一偏振光栅反射,在所述第一波导本体中传播;
所述第二光源入射后经所述第二偏振光栅反射,在所述第一波导本体中传播;
所述第三光源入射后经所述第一偏振光栅、第二偏振光栅透射,经所述第三偏振光栅反射,在所述第二波导本体中传播。
可选地,所述第一偏振光栅的周期为360-370nm,布拉格周期为160-165nm;
所述第二偏振光栅的周期为410-420nm,布拉格周期为185-190nm;
所述第三偏振光栅的周期为490-500nm,布拉格周期为220-225nm。
可选地,所述第一波导本体和第二波导本体均为透明平板结构。
可选地,所述全彩波导显示结构的视场角范围为30°-45°。
根据本申请实施例第二方面,提供了一种头戴显示设备。所述头戴显示设备包括第一方面所述的全彩波导显示结构。
根据本申请的一个实施例,本申请实施例中提供了一种全彩波导显示结构。全彩波导显示结构包括第一波导本体,与第一波导本体对应的第一偏振光栅和第二偏振光栅、第二波导本体、以及与第二波导本体对应的第三偏振光栅。本申请实施例可以消除偏色的影响,确保显示成像的效果。另一方面第一偏振光栅和第二偏振光栅对应一片第一波导本体,使全彩波导显示结构更紧凑、轻便。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1是本申请中反射偏振光栅的原理示意图。
图2是本申请实施例中全彩波导显示结构的结构示意图。
附图标记说明:
1、第一波导本体;11、第一入光面;12、第一出光面;
2、第二波导本体;21、第二入光面;22、第二出光面;
3、第一偏振光栅;31、第一耦入偏振光栅;32、第一耦出偏振光栅;
4、第二偏振光栅;41、第二耦入偏振光栅;42、第二耦出偏振光栅;
5、第三偏振光栅;51、第三耦入偏振光栅;52、第三耦出偏振光栅。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本申请实施例第一方面,提供了一种全彩波导显示结构。参照图1-图2所示,全彩波导显示结构包括:
第一波导本体1,所述第一波导本体1用于传播第一光源和第二光源。
第一偏振光栅3和第二偏振光栅4,所述第一偏振光栅3和第二偏振光栅4作为所述第一波导本体1的耦合装置;所述第一偏振光栅3和第二偏振光栅4,分别响应于不同偏振态的偏振光。
第二波导本体2,所述第二波导本体2位于所述第一波导本体1下方,所述第二波导本体2用于传播第三光源。
第三偏振光栅5,所述第三偏振光栅5作为所述第二波导本体2的耦合装置。
本申请实施例中,全彩波导显示结构利用偏振体光栅(PVG)特有的偏振特性(基于入射光的偏振态实现选择性分光),实现第一光源和第二光源共用一片波导本体,进而通过两片波导本体组合(蓝绿+红、或者红绿+蓝)实现全彩波导显示。
在该实施例中,第一波导本体1用于传播第一光源和第二光源。即第一光源和第二光源共用一片第一波导本体1。现有技术中的全彩波导显示 结构需要采用三片波导才能够实现图像显示。相对于现有技术,本实施使得全彩光波导的结构更紧凑、轻便。
在该实施例中,第一偏振光栅3(例如是B-PVG)和第二偏振光栅4(例如是G-PVG)共同作为了第一波导本体1的耦合装置。第一偏振光栅3和第二偏振光栅4分别响应于不同偏振态的偏振光。即本实施例采用了对偏振响应不同的第一偏振光栅3和第二偏振光栅4。即第一偏振光栅3和第二偏振光栅4对不同偏振态的入射光响应不同。
例如在一个实施例中,第一偏振光栅3对右旋圆偏振态(RCP)入射光具有调制作用,第二偏振光栅4对左旋圆偏振态(LCP)入射光具有调制作用。或者在另一个实施例中,第一偏振光栅3对左旋圆偏振态(LCP)入射光具有调制作用,第二偏振光栅4对右旋圆偏振态(RCP)入射光具有调制作用。
在该实施例中,由于第一偏振光栅3和第二偏振光栅4分别响应于不同偏振态的偏振光,第一光源和第二光源具有不同的偏振态。例如第一光源具有第一偏振态,第二光源具有第二偏振态。
第一偏振光栅3能够将具有第一偏振态的第一光源衍射进入第一波导本体1中;第二偏振光栅4能够将具有第二偏振态的第二光源衍射进入第一波导本体1中。
例如第一偏振态的第一光源和第二偏振态的第二光源垂直经过第一波导本体1,并分别被作为入耦装置的第一偏振光栅3和第二偏振光栅4衍射进入第一波导本体1中;在第一波导本体1中,第一光源和第二光源以全反射的形式向第一波导本体1的耦出区域传播,到达第一波导本体1耦出区域时,被作为出耦装置的第一偏振光栅3和第二偏振光栅4输出出射平行光,最终进入人眼。
本实施例中,在相邻波长的输入光(第二光源与第一光源)中,采用了正交偏振态的光学设计,可以极大的减少波导中光线的串扰问题。
现有技术的全彩波导显示结构中,第一光源和第二光源复用一片偏振光栅。由于第一光源和第二光源波长不同,第一光源和第二光源的波长对同一偏振光栅的偏转角不同,因此第一光源和第二光源复用一片偏振光栅时,第一光源和第二光源在同一波导中传播的路径不同,这将导致在成像 时第一光源和第二光源产生一定的色差。本申请实施例中,具有第一偏振态的第一光源和具有第二偏振态的第二光源各对应一片偏振光栅(PVG),可以保证第一光源和第二光源具有相同的偏转角度,实现相同的传播路径,避免存在色差问题。
在该实施例中,全彩波导显示结构包括第二波导本体2。第二波导本体2用于传播第三光源。第三偏振光栅5(例如是R-PVG)作为第二波导本体2的耦合装置。例如具有偏振态的第三光源垂直经过第二波导本体2,并被作为入耦装置的第三偏振光栅5衍射进入所述第二波导本体2中;在第二波导本体2中,第三光源以全反射的形式向第二波导本体2的另一端传播,到达所述第二波导本体2另一端时,被作为出耦装置的第三偏振光栅5输出出射平行光,最终进入人眼。
在该实施例中,第二波导本体2位于第一波导本体1的一侧,在确保了显示成像效果的情况下,使全彩波导显示结构更紧凑、轻便。参照图2所示,在第一波导本体1的厚度方向上,第一波导本体1和第二波导本体2相对设置。
本申请实施例中提供了一种全彩波导显示结构。全彩波导显示结构包括第一波导本体1,与第一波导本体1对应的第一偏振光栅3和第二偏振光栅4、第二波导本体2、以及与第二波导本体2对应的第三偏振光栅5。本申请实施例可以消除偏色的影响,确保显示成像的效果。另一方面第一偏振光栅3和第二偏振光栅4对应一片第一波导本体1,使全彩波导显示结构更紧凑、轻便。
在一个实施例中,参照图2所示,所述第一偏振光栅3包括第一耦入偏振光栅31。所述第二偏振光栅4包括第二耦入偏振光栅41。所述第三偏振光栅5包括第三耦入偏振光栅51。
所述第一耦入偏振光栅31和第二耦入偏振光栅41设置于所述第一波导本体1和所述第二波导本体2之间,所述第三耦入偏振光栅51设置于所述第二波导本体2远离所述第一波导本体1的一侧。
在该实施例中,第一耦入偏振光栅31和第二耦入偏振光栅41作为了第一波导本体1的入耦装置。第三耦入偏振光栅51作为了第二波导本体2 的入耦装置。
具有第一偏振态的第一光源经过第一耦入偏振光栅31衍射耦合进入第一波导本体1中。具有第二偏振态的第二光源经过第二耦入偏振光栅41衍射耦合进入第一波导本体1中。
第一耦入偏振光栅31和第二耦入偏振光栅41位于第一波导本体1的第一出光面12的耦入区域,且第一耦入偏振光栅31和第二耦入偏振光栅41在沿第一波导本体1的厚度方向上并列设置。参照图2所示,第一耦入偏振光栅31相对于第二耦入偏振光栅41更靠近第一出光面12设置。或者第一耦入偏振光栅31相对于第二耦入偏振光栅41更远离第一出光面12设置。
本实施例以第一耦入偏振光栅31相对于第二耦入偏振光栅41更靠近第一出光面12设置进行说明。例如具有第一偏振态的第一光源垂直进入第一波导本体1,经过第一耦入偏振光栅31耦合进入第一波导本体1中;具有第二偏振态的第二光源垂直进入第一波导本体1、和第一耦入偏振光栅31(因为第一耦入偏振光栅31对具有第二偏振态的第二光源不具备调制作用),进而经过第二耦入偏振光栅41衍射进入第一波导本体1中。
在该实施例中,第三耦入偏振光栅51作为了第二波导本体2的入耦装置。第三耦入偏振光栅51位于第二波导本体2的第二出光面22的耦入区域。具有偏振态的第三光源经所述第一偏振光栅3、第二偏振光栅4透射,经所述第三偏振光栅5反射,在所述第二波导本体2中传播。
在该实施例中,第一偏振光栅3和第二偏振光栅4分别对入射光偏振态的响应不同,因此可以有效的减少或者避免了第一光源和第二光源的串扰。另一方面,第一光源和第二光源共享一片第一波导本体1,使得全彩波导显示结构上更加紧凑轻便。
在一个实施例中,参照图2所示,所述第一偏振光栅3包括第一耦出偏振光栅32。所述第二偏振光栅4包括第二耦出偏振光栅42。所述第三偏振光栅5包括第三耦出偏振光栅52;
所述第一耦出偏振光栅32和第二耦出偏振光栅42设置于所述第一波导本体1远离所述第二波导本体2的一侧,所述第三耦出偏振光栅52设置 于所述第一波导本体1和所述第二波导本体2之间。
在该实施例中,第一耦出偏振光栅32和第二耦出偏振光栅42位于第一波导本体1的第一入光面11的耦出区域,且第一耦出偏振光栅32和第二耦出偏振光栅42在沿第一波导本体1的厚度方向上并列设置。
具有第一偏振态的第一光源经过第一耦入偏振光栅31衍射形成衍射光,进入第一波导本体1中,并以全反射的形式传播,直至被第一耦出偏振光栅32衍射输出平行光,进入人眼。
具有第二偏振态的第二光源经过第二耦入偏振光栅41衍射形成衍射光,进入第一波导本体1中,并以全反射的形式传播,直至被第二耦出偏振光栅42衍射输出平行光,进入人眼。
第三耦出偏振光栅52作为了第二波导本体2的出耦装置。第三耦出偏振光栅52位于第二波导本体2的第二入光面21的耦出区域。
具有偏振态的第三光源经过第三耦入偏振光栅51衍射形成衍射光,进入第二波导本体2中,并以全反射的形式传播,直至被第三耦出偏振光栅52衍射输出平行光,进入人眼。
在一个实施例中,所述第一偏振光栅3和所述第二偏振光栅4分别由旋光性相反的胆甾相液晶制备。
在该实施例中,使用旋性相反的胆甾相液晶分别制备第一偏振光栅3和第二偏振光栅4,使得第一偏振光栅3和第二偏振光栅4对具体不同偏振态的光进行响应。第一偏振光栅3和第二偏振光栅4分别对入射光偏振态的响应不同,因此可以有效的减少或者避免了第一光源和第二光源的串扰。
例如参照图1所示,第一偏振光栅3和第二偏振光栅4均为反射偏振光栅。图1中给出了两种类型的反射偏振体光栅(r-PVG)的光学效果示意图。当右旋圆偏振态(RCP)和左旋圆偏振态(LCP)分别作为入射光时,第一种反射偏振光栅(r-PVGI)的光学作用如(a)(b)所示,第二种反射偏振光栅(r-PVGII)的光学作用如(c)(d)所示。
由图(a)(b)可知,第一种反射偏振光栅(r-PVGI)对右旋圆偏振态(RCP)入射光具有调制作用;第一种反射偏振光栅(r-PVGI)对左旋圆偏振态(LCP) 不具有调制作用。如图(c)(d)可知,第二种反射偏振光栅(r-PVGII)对左旋圆偏振态(LCP)入射光具有调制作用,第二种反射偏振光栅(r-PVGII)对右旋圆偏振态(RCP)入射光不具有调制作用。即反射偏振体光栅只对一种圆偏振态的入射光具有调制作用
参照图2所示,第一偏振光栅3采用第一种反射偏振光栅(r-PVGI)。具体地,第一耦入偏振光栅31采用第一种反射偏振光栅(r-PVGI),第一耦出偏振光栅32采用第一种反射偏振光栅(r-PVGI)。
第二偏振光栅4采用第二种反射偏振光栅(r-PVGII)。具体地,第二耦入偏振光栅41采用第二种反射偏振光栅(r-PVGII),第二耦出偏振光栅42采用第二种反射偏振光栅(r-PVGII)。
在一个实施例中,所述第三偏振光栅5和所述第一偏振光栅3分别由旋光性相同的胆甾相液晶制备。
在该实施中,第一偏振光栅3和第二偏振光栅4作为了第一波导本体1的耦合装置,第一偏振光栅3和第二偏振光栅4分别对不同偏振态的入射光进行调制。第三偏振光栅5作为了第二波导本体2的耦合装置,第三偏振光栅5对具有偏振态的第三光源进行调制。因此在该实施例中,相邻波长的输入光(如第三光源与第二光源,第二光源与第一光源)中,采用了正交偏振态的光学设计,因此可以极大的减少各波导层之间的串扰问题。现有技术中,入射光为白光,没有进行偏振态的设计,因此在波导层可能存在串扰问题。特别是在红绿两层波导层之间存在串扰问题。
在该实施例中,第三偏振光栅5和所述第一偏振光栅3分别由旋光性相同的胆甾相液晶制备。即第三偏振光栅5与第一偏振光栅3对同类型的偏振态光具有调制作用。参照图2所示,第三偏振光栅5采用第一种反射偏振光栅(r-PVGI)。具体地,第三耦入偏振光栅51采用第一种反射偏振光栅(r-PVGI),第三耦出偏振光栅52采用第一种反射偏振光栅(r-PVGI)。即第三偏振光栅5(r-PVGI)对右旋圆偏振态(RCP)入射光具有调制作用。
因此在该实施例中,第三光源为与第一光源为偏振态相同的入射光,第三光源为与第二光源偏振态不同的入射光。
在该实施例中,第三光源单独设置有一个波导本体,并采用与第一光 源偏振态相同的第三光源偏振态入射光,可以避免第三光源和第二光源的相互串扰,以及第三光源与第一光源的相互串扰。在一个具体的实施例中第三光源波长(620-630nm)与第一光源波长(455-465nm)差大,第一光源反射偏振光栅(r-PVG)对第三光源无响应,可以避免第三光源对第一光源的串扰;第三光源与第二光源的入射偏振态不同,可以避免第三光源和第二光源的相互串扰;第三光源反射偏振光栅(r-PVG)对第一光源只有很小的边缘视场有响应,且第一光源反射偏振光栅(r-PVG)本身衍射效率极高,能够到达第三偏振光栅5的第一光源可以忽略不计,因此第一光源对第三光源也基本无串扰。
在该实施例中,该全彩波导显示结构具有高效率,能够有效的矫正偏色的特点,可实现高效率的彩色图像传输。
在一个实施例中,所述第一偏振光栅3、第三偏振光栅5和第二偏振光栅4均为反射偏振光栅。
具体地,第一偏振光栅3、第三偏振光栅5和第二偏振光栅4均采用反射偏振光栅(r-PVG),能够提高全彩波导显示结构的视场角,进而实现大视角的彩色图像传输。
第一光源、第二光源、第三光源可分别为红光、蓝光、绿光中的任一种。例如在一个实施例,第一光源为红光,第二光源为蓝光,第三光源为绿光;或者在又一个实施例中,第一光源为红光,第二光源为绿光,第三光源为蓝光;或者第一光源为绿光,第二光源为红光,第三光源为蓝光;或者第一光源为绿光,第二光源为蓝光,第三光源为红光;或者第一光源为蓝光,第二光源为红光,第三光源为绿光;或者第一光源为蓝光,第二光源为绿光,第三光源为红光。
由于第一偏振光栅和第三偏振光栅响应于相同偏振态的偏振光,但第一偏振光栅需对具有相同偏振态的第一光源和第三光源的响应不同。因此,第一偏振光栅和第三偏振光栅需要分别对相同偏振态、但不同波段光进行反射,以实现本方案。
因此,为了保证第三光源在穿过第一偏振光栅的时候不产生干扰,使第一光源和第三光源的波长相差较大较好。因此,第一光源和第三光源分 别是红光或者蓝光的方案较好。例如在一个优选的实施例中,第一光源为蓝光,第二光源为绿光,第三光源为红光;或者在一个优选的实施例中,第一光源为红光,第二光源为绿光,第三光源为蓝光。
在一个实施例中,所述第一偏振光栅3的周期为360-370nm,布拉格周期为160-165nm;所述第二偏振光栅4的周期为410-420nm,布拉格周期为185-190nm;所述第三偏振光栅5的周期为490-500nm,布拉格周期为220-225nm。
在该实施例中,以偏振角度53°为例:第一光源的波长范围455-465nm,第一偏振光栅3(例如可以是B-PVG)对应周期为360-370nm,布拉格周期160-165nm,使得第一光源偏振光栅对第一光源具有高衍射效率。第二光源的波长范围为520-530nm,第二偏振光栅4(例如可以是G-PVG)对应周期410-420nm,布拉格周期185-190nm,使得第二光源偏振光栅对第二光源具有高衍射效率。第三光源的波长范围为620-630nm,第三光源偏振光栅(例如可以是R-PVG)对应周期490-500nm,布拉格周期220-225nm,使得红色偏振光栅对第三光源具有高衍射效率。
在一个实施例中,所述第一波导本体1和第二波导本体2均为透明平板结构。
在该实施例中,第一波导本体1和第二波导本体2均为透明的平板结构。例如第一波导本体1和第二波导本体2均为透明玻璃板或透明塑料板。在该实施例中,可实现高透明度的彩色图像传输。
在一个实施例中,所述全彩波导显示结构的视场角范围为30°-45°。
本实施例中,具有第一偏振态的第一光源对应第一光源偏振态光栅,具有第二偏振态的第二光源对应第二光源偏振态光栅,独立的第一光源偏振态光栅和第二光源偏振态光栅的设计,可以提高全彩波导显示结构的视场角。而现有技术中蓝绿光复用一片蓝绿偏振光栅,反而将会减小蓝绿光的视场角。本实施例中全彩波导显示结构的视场角范围为30°-45°,可实现大视场角的彩色图像传输。
根据本申请实施例第二方面,提供了一种头戴显示设备。所述头戴显示设备包括第一方面所述的全彩波导显示结构。具体地,将全彩波导显示 结构应用于头戴显示设备中,一方面改善了头戴显示设备的成像效果,另一方面,使得头戴显示设备的结构更加紧凑和轻便。例如头戴显示设备为增强现实显示设备,例如可以是AR眼镜或者AR头戴设备。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (11)

  1. 一种全彩波导显示结构,其特征在于,包括:第一光栅和第三光栅是相同类型的光栅,对应第一光源和第三光源也是同一偏振态,在这种情况下,
    第一波导本体(1),所述第一波导本体(1)用于传播第一光源和第二光源;
    第一偏振光栅(3)和第二偏振光栅(4),所述第一偏振光栅(3)和第二偏振光栅(4)作为所述第一波导本体(1)的耦合装置,分别响应于不同偏振态的偏振光;
    第二波导本体(2),所述第二波导本体(2)位于所述第一波导本体(1)一侧,所述第二波导本体(2)用于传播第三光源;
    第三偏振光栅(5),所述第三偏振光栅(5)作为所述第二波导本体(2)的耦合装置。
  2. 根据权利要求1所述的全彩波导显示结构,其特征在于,
    所述第一偏振光栅(3)包括第一耦入偏振光栅(31);
    所述第二偏振光栅(4)包括第二耦入偏振光栅(41);
    所述第三偏振光栅(5)包括第三耦入偏振光栅(51);
    所述第一耦入偏振光栅(31)和第二耦入偏振光栅(41)设置于所述第一波导本体(1)和所述第二波导本体(2)之间,所述第三耦入偏振光栅(51)设置于所述第二波导本体(2)远离所述第一波导本体(1)的一侧。
  3. 根据权利要求1或2所述的全彩波导显示结构,其特征在于,
    所述第一偏振光栅(3)包括第一耦出偏振光栅(32);
    所述第二偏振光栅(4)包括第二耦出偏振光栅(42);
    所述第三偏振光栅(5)包括第三耦出偏振光栅(52);
    所述第一耦出偏振光栅(32)和第二耦出偏振光栅(42)设置于所述 第一波导本体(1)远离所述第二波导本体(2)的一侧,所述第三耦出偏振光栅(52)设置于所述第一波导本体(1)和所述第二波导本体(2)之间。
  4. 根据权利要求1所述的全彩波导显示结构,其特征在于,所述第一偏振光栅(3)和所述第二偏振光栅(4)分别由旋光性相反的胆甾相液晶制备。
  5. 根据权利要求1或4所述的全彩波导显示结构,其特征在于,所述第三偏振光栅(5)和所第一光偏振光栅(3)分别由旋光性相同的胆甾相液晶制备。
  6. 根据权利要求1所述的全彩波导显示结构,其特征在于,所述第一偏振光栅(3)、第三偏振光栅(5)和第二偏振光栅(4)均为反射偏振光栅。
  7. 根据权利要求1所述的全彩波导显示结构,其特征在于,所述第一光源和第三光源为波长不同的第一圆偏振态光,所述第二光源为第二圆偏振态光;
    所述第一光源入射后经所述第一偏振光栅反射,在所述第一波导本体中传播;
    所述第二光源入射后经所述第二偏振光栅反射,在所述第一波导本体中传播;
    所述第三光源入射后经所述第一偏振光栅、第二偏振光栅透射,经所述第三偏振光栅反射,在所述第二波导本体中传播。
  8. 根据权利要求1所述的全彩波导显示结构,其特征在于,
    所述第一偏振光栅(3)的周期为360-370nm,布拉格周期为160-165nm;
    所述第二偏振光栅(4)的周期为410-420nm,布拉格周期为185-190nm;
    所述第三偏振光栅(5)的周期为490-500nm,布拉格周期为220-225nm。
  9. 根据权利要求1所述的全彩波导显示结构,其特征在于,所述第一波导本体(1)和第二波导本体(2)均为透明平板结构。
  10. 根据权利要求1所述的全彩波导显示结构,其特征在于,所述全彩波导显示结构的视场角范围为30°-45°。
  11. 一种头戴显示设备,其特征在于,所述头戴显示设备包括如权利要求1-10任一项所述的全彩波导显示结构。
PCT/CN2022/100378 2021-12-27 2022-06-22 全彩波导显示结构以及头戴显示设备 WO2023123922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111613341.2 2021-12-27
CN202111613341.2A CN116400499A (zh) 2021-12-27 2021-12-27 全彩波导显示结构以及头戴显示设备

Publications (1)

Publication Number Publication Date
WO2023123922A1 true WO2023123922A1 (zh) 2023-07-06

Family

ID=86997354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100378 WO2023123922A1 (zh) 2021-12-27 2022-06-22 全彩波导显示结构以及头戴显示设备

Country Status (2)

Country Link
CN (1) CN116400499A (zh)
WO (1) WO2023123922A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780224A (zh) * 2016-03-24 2018-11-09 迪吉伦斯公司 用于提供偏振选择性全息波导装置的方法和设备
CN208314330U (zh) * 2018-02-13 2019-01-01 成都理想境界科技有限公司 一种单眼大视场近眼显示光学系统及头戴式显示设备
CN110651211A (zh) * 2017-03-21 2020-01-03 奇跃公司 具有用于分体式光瞳的空间光调制器照射的显示系统
CN110727116A (zh) * 2019-11-13 2020-01-24 东南大学 一种基于偏振体全息光栅的二维扩瞳方法
CN110824613A (zh) * 2019-11-13 2020-02-21 东南大学 偏振复用波导显示器件
CN212846017U (zh) * 2020-09-25 2021-03-30 歌尔股份有限公司 光波导镜片、增强现实显示模组及增强现实显示眼镜
US11092808B1 (en) * 2018-03-20 2021-08-17 Facebook Technologies, Llc Waveguide with multilayer waveplate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780224A (zh) * 2016-03-24 2018-11-09 迪吉伦斯公司 用于提供偏振选择性全息波导装置的方法和设备
CN110651211A (zh) * 2017-03-21 2020-01-03 奇跃公司 具有用于分体式光瞳的空间光调制器照射的显示系统
CN208314330U (zh) * 2018-02-13 2019-01-01 成都理想境界科技有限公司 一种单眼大视场近眼显示光学系统及头戴式显示设备
US11092808B1 (en) * 2018-03-20 2021-08-17 Facebook Technologies, Llc Waveguide with multilayer waveplate
CN110727116A (zh) * 2019-11-13 2020-01-24 东南大学 一种基于偏振体全息光栅的二维扩瞳方法
CN110824613A (zh) * 2019-11-13 2020-02-21 东南大学 偏振复用波导显示器件
CN212846017U (zh) * 2020-09-25 2021-03-30 歌尔股份有限公司 光波导镜片、增强现实显示模组及增强现实显示眼镜

Also Published As

Publication number Publication date
CN116400499A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
US8885997B2 (en) NED polarization system for wavelength pass-through
US10551622B2 (en) Field of view tiling in waveguide-based near-eye displays
Mukawa et al. 8.4: distinguished paper: a full color eyewear display using holographic planar waveguides
US20210109347A1 (en) Waveguide element and waveguide stack for display applications
US10551568B2 (en) Eyepiece providing color separation in planar waveguides using dichroic filters
IL282799A (en) Optical devices and systems with a dichroic beam splitter that combines colors
JP6234208B2 (ja) 波長通過のためのned偏光システム
CN104656259A (zh) 共轭窄带三基色交错的体全息光栅波导近眼光学显示器件
WO2019104046A1 (en) Optical display system, method, and applications
EP2887128B1 (en) NED polarization system for wavelength pass-through
US20210271085A1 (en) An optical device comprising a multi-layers waveguides
US20200033524A1 (en) Display apparatus and method for controlling the same
TWI724732B (zh) 波導裝置及光學引擎
WO2015007201A1 (zh) 可佩带的平视光学系统
US11061235B2 (en) Compact display system having uniform image
KR102162994B1 (ko) 근안 디스플레이를 위한 파장 통과 제어용 편광 시스템 및 방법
CN111175971A (zh) 一种近眼光学显示系统、增强现实眼镜
KR102072012B1 (ko) 헤드마운트 디스플레이장치
CN212111991U (zh) 一种具有大视场角的波导ar显示器件
US20060077325A1 (en) Cholesteric liquid crystal light control film
WO2023123922A1 (zh) 全彩波导显示结构以及头戴显示设备
CN116520584B (zh) 一种lbs超薄波导
KR102072008B1 (ko) 헤드마운트 디스플레이장치
WO2017077978A1 (ja) 導光素子、接合光学素子、画像表示装置およびヘッドマウントディスプレイ
CN218675516U (zh) 一种增强现实光学系统和近眼显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913211

Country of ref document: EP

Kind code of ref document: A1