WO2023123793A1 - 电梯控制器及电梯 - Google Patents

电梯控制器及电梯 Download PDF

Info

Publication number
WO2023123793A1
WO2023123793A1 PCT/CN2022/091193 CN2022091193W WO2023123793A1 WO 2023123793 A1 WO2023123793 A1 WO 2023123793A1 CN 2022091193 W CN2022091193 W CN 2022091193W WO 2023123793 A1 WO2023123793 A1 WO 2023123793A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
brake
diode
safety
voltage
Prior art date
Application number
PCT/CN2022/091193
Other languages
English (en)
French (fr)
Inventor
白银河
Original Assignee
苏州汇川控制技术有限公司
苏州汇川技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川控制技术有限公司, 苏州汇川技术有限公司 filed Critical 苏州汇川控制技术有限公司
Priority to EP22913089.3A priority Critical patent/EP4421014A1/en
Publication of WO2023123793A1 publication Critical patent/WO2023123793A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Definitions

  • the present application relates to the technical field of elevator control, in particular to an elevator controller and an elevator.
  • low-voltage electrode controllers such as STO cards and SBC cards can be used, but because low-voltage STO cards and SBC cards require low-voltage power supply, and the hall door lock contacts adopt a multi-layer series connection form, there are many landings and the lead wires are long. And after long-term use, it will cause the aging of the door lock contacts, the impedance will become larger, and the loop current will be smaller, resulting in a higher failure rate of the elevator.
  • the main purpose of the present application is to provide an elevator controller and an elevator, aiming to solve the technical problem of high failure rate of the elevator due to the small loop current when the low-voltage motor controller is used in the prior art.
  • this application proposes an elevator controller, including a safety control circuit, and a safety brake circuit and/or a safe torque off circuit;
  • the input terminal of the safety control circuit is connected with the elevator safety circuit
  • the output end of the safety control circuit is connected to the safety brake circuit and/or the input end of the safe torque off circuit;
  • the safety control circuit is configured to convert the high-voltage electrical signal from the elevator safety circuit into a power signal or control signal required by the safety brake circuit and/or the safe torque-off circuit.
  • the safety control circuit includes: a first rectification circuit and a switch circuit;
  • the first rectifier circuit is connected to the safety circuit and the switch circuit, and the switch circuit is respectively connected to a low-voltage power supply and the safety brake circuit or the safe torque off circuit;
  • the first rectification circuit is configured to perform signal rectification on the high-voltage electrical signal to obtain a rectified electrical signal, and send the rectified electrical signal to the switch circuit;
  • the switch circuit is configured to receive the rectified electrical signal and generate a control signal, and control the connection between the low voltage power supply and the safety brake circuit or the safe torque off circuit according to the control signal.
  • the first rectifier circuit includes: a brake rectifier circuit and a lift rectifier circuit
  • the switch circuit includes: a brake switch circuit and a lift switch circuit
  • the brake rectifier circuit is connected to the elevator safety circuit and the brake switch circuit, and the brake switch circuit is respectively connected to the low-voltage power supply and the safety brake circuit;
  • the lift rectifier circuit is connected to the elevator safety circuit and the lift switch circuit, and the lift switch circuit is respectively connected to the low-voltage power supply and the safe torque off circuit;
  • the brake rectification circuit is configured to rectify the high-voltage electrical signal to obtain a rectified brake electrical signal, and send the rectified brake electrical signal to the brake switch circuit;
  • the brake switch circuit is configured to receive the rectified brake electrical signal and generate a brake control signal, and control the connection between the low-voltage power supply and the safety brake circuit according to the brake control signal;
  • the lifting rectification circuit is configured to rectify the high-voltage electrical signal to obtain a rectified lifting electrical signal, and send the rectified lifting electrical signal to the lifting switch circuit;
  • the lifting switch circuit is configured to receive the rectified lifting electrical signal and generate a lifting control signal, and control the connection between the low voltage power supply and the safe torque off circuit according to the lifting control signal.
  • the high voltage conversion circuit includes: a first resistor, a second resistor, a first diode, a second diode, a third diode and a fourth diode, a first photocoupler and the first triode;
  • the first end of the first resistor is connected to the elevator safety circuit, and the second end of the first resistor is respectively connected to the first end of the first diode and the second end of the fourth diode, so The second end of the first diode is connected to the second end of the second diode and the first end of the first photocoupler, and the first end of the second diode is connected to the third and second ends respectively.
  • the second end of the pole tube is connected to the first end of the second resistor, and the first end of the third diode is respectively connected to the first end of the fourth diode and the first photocoupler connected to the second end of the first photocoupler, the third end of the first photocoupler is connected to the collector of the first triode and the low voltage power supply, the fourth end of the first photocoupler is connected to the first
  • the base of a triode is connected, and the emitter of the first triode is connected with the safety brake circuit and/or the input terminal of the safe torque off circuit.
  • the high-voltage conversion circuit includes: a first resistor, a second resistor, a third resistor, and a fourth resistor, a first diode, a second diode, a third diode, a fourth Pole tube, fifth diode, sixth diode, seventh diode and eighth diode, first photocoupler and second photocoupler, first triode and second triode ;
  • the first end of the first resistor is connected to the elevator safety circuit, and the second end of the first resistor is respectively connected to the first end of the first diode and the second end of the fourth diode, so The second end of the first diode is connected to the second end of the second diode and the first end of the first photocoupler, and the first end of the second diode is connected to the third and second ends respectively.
  • the second end of the diode and the first end of the second resistor are connected, and the first end of the third diode is respectively connected with the first end of the fourth diode and the first end of the first photocoupler.
  • the two terminals are connected, the third terminal of the first photocoupler is connected to the collector of the first triode and the low-voltage power supply, the fourth terminal of the first photocoupler is connected to the first three
  • the base of the pole tube is connected, the emitter of the first triode is connected with the first input end of the safety brake circuit or the safe torque off circuit; the first end of the third resistor is connected with the elevator safety loop connection, the second end of the third resistor is respectively connected to the first end of the fifth diode and the second end of the eighth diode, the second end of the fifth diode is connected to the second end of the sixth
  • the second end of the diode is connected to the first end of the second photocoupler, and the first end of the sixth diode is respectively connected to the second end of the seventh diode and the first end of the fourth resistor.
  • the first end of the seventh diode is respectively connected with the first end of the eighth diode and the second end of the second photocoupler, and the second end of the second photocoupler
  • the third end is connected to the collector of the second triode and the low-voltage power supply
  • the fourth end of the second photocoupler is connected to the base of the second triode
  • the second three The emitter of the pole tube is connected to the second input end of the safe brake circuit or the safe torque off circuit.
  • the safety control circuit further includes: a voltage transformation circuit and a second rectification circuit;
  • the voltage transformation circuit is connected to the elevator safety circuit and the second rectification circuit, and the second rectification circuit is connected to the safety brake circuit and/or the safe torque off circuit;
  • the voltage transforming circuit is configured to perform voltage conversion on the high-voltage electrical signal to obtain an electrical signal to be rectified, and send the electrical signal to be rectified to the rectification circuit;
  • the second rectification circuit is configured to rectify the electrical signal to be rectified to obtain a low-voltage electrical signal, and send the low-voltage electrical signal to the safety brake circuit and/or the safe torque-off circuit.
  • the voltage transformation circuit includes: a brake transformer circuit and a lifting transformer circuit;
  • the second rectifier circuit includes: a brake rectifier circuit and a lift rectifier circuit;
  • the lift transformer circuit is connected to the elevator safety circuit and the lift rectifier circuit, and the lift rectifier circuit is connected to the safe torque off circuit;
  • the brake transformer circuit is connected to the elevator safety circuit.
  • the loop is connected to the brake rectifier circuit, and the brake rectifier circuit is connected to the safety brake circuit;
  • the lifting transformer circuit is configured to perform voltage conversion on the high-voltage electrical signal to obtain an electrical signal to be rectified, and send the electrical signal to be rectified to the lifting and rectifying circuit;
  • the lifting rectification circuit is configured to rectify the lifting electrical signal to be rectified to obtain a low voltage lifting electrical signal, and send the low voltage lifting electrical signal to the safe torque off circuit;
  • the brake voltage transformation circuit is configured to perform voltage conversion on the high-voltage electrical signal to obtain a brake electrical signal to be rectified, and send the brake electrical signal to be rectified to the brake rectifier circuit;
  • the brake rectification circuit is configured to rectify the brake electrical signal to be rectified to obtain a low-voltage brake electrical signal, and send the low-voltage brake electrical signal to the safety brake circuit.
  • the voltage transformation circuit includes: a first transformer; the second rectification circuit includes: a ninth diode;
  • the first end of the first transformer is connected to the elevator safety circuit
  • the third end of the first transformer is connected to the first end of the ninth diode
  • the ninth diode The second end is connected to the first input end and the second input end of the safety brake circuit and/or the safe torque off circuit
  • the second end of the first transformer is connected to an equipotential point, and the fourth end grounded.
  • the voltage transformation circuit includes: a first transformer and a second transformer; the second rectification circuit includes: a ninth diode and a tenth diode;
  • the first end of the first transformer is connected to the elevator safety circuit
  • the third end of the first transformer is connected to the first end of the ninth diode
  • the second end of the ninth diode terminal is connected to the first input terminal of the safe brake circuit and/or the safe torque off circuit
  • the second terminal of the first transformer is connected to an equipotential point
  • the fourth terminal is grounded
  • the first end of the second transformer is connected to the elevator safety circuit, the third end of the second transformer is connected to the first end of the tenth diode, and the second end of the tenth diode
  • the terminal is connected to the second input terminal of the safe brake circuit and/or the safe torque off circuit, the second terminal of the second transformer is connected to the equipotential point, and the fourth terminal is grounded.
  • the application also proposes an elevator, the elevator includes an elevator safety circuit and the elevator controller as described above, the elevator safety circuit includes a plurality of switches, and the input end of the elevator safety circuit is connected to the high voltage Electrical signal connection, the output end of the elevator safety circuit is connected with the input end of the safety control circuit.
  • This application proposes an elevator controller and an elevator, the elevator controller passes through a safety control circuit, a safety brake circuit and/or the safe torque off circuit; the input end of the safety control circuit is connected to the elevator safety circuit ; The output end of the safety control circuit is connected to the safety brake circuit and/or the input end of the safe torque off circuit.
  • a high-voltage power supply is used to supply power to the elevator safety circuit
  • a safety control circuit is set between the elevator safety circuit and the low-voltage motor control circuit to provide power signals or control signals for the low-voltage motor control circuit, and provide power for the low-voltage motor according to the power signal or control signal.
  • Low-voltage power supply which effectively solves the problem of high failure rate of elevators when using low-voltage motor control circuits.
  • Fig. 1 is the structural representation of the first embodiment of the elevator controller that the application embodiment proposes;
  • Fig. 2 is the structural representation of the second embodiment of the elevator controller proposed in the application embodiment
  • Fig. 3 is the first circuit structure diagram in the second embodiment of the elevator controller proposed by the application embodiment
  • Fig. 4 is the second circuit structure diagram in the second embodiment of the elevator controller proposed by the application embodiment
  • Fig. 5 is the third circuit structure diagram in the second embodiment of the elevator controller proposed in the application embodiment
  • Fig. 6 is the fourth circuit structure diagram in the second embodiment of the elevator controller proposed by the application embodiment.
  • Fig. 7 is the schematic structural diagram of the third embodiment of the elevator controller proposed in the embodiment of the application.
  • Fig. 8 is the first circuit structure diagram in the third embodiment of the elevator controller proposed in the embodiment of the application.
  • Fig. 9 is the second circuit structure diagram in the third embodiment of the elevator controller proposed in the embodiment of the application.
  • Fig. 10 is the third circuit structure diagram in the third embodiment of the elevator controller proposed in the embodiment of the application.
  • Fig. 11 is a fourth circuit structure diagram of the third embodiment of the elevator controller proposed in the embodiment of the application.
  • label name label name 10 safety control circuit AC high voltage power supply
  • SBC Safety brake circuit DC low voltage power supply
  • STO Safe Torque Off Circuit D1 ⁇ D10 1st to 10th diode 1011 Brake rectifier circuit OC1 ⁇ OC2 1st to 2nd photocoupler 1012 Lifting rectifier circuit STO1 ⁇ STO2 STO first to second input 1021 brake switch circuit SBC1 ⁇ SBC2 SBC first to second input 1022 Lift switch circuit S1 Control cabinet emergency stop relay 1031 Brake transformer circuit S2 hall door lock relay 1032 Step-up transformer circuit S3 motherboard relay 1041 Brake rectifier circuit N equipotential point 1042 Lifting rectifier circuit GND grounding
  • Fig. 1 is a schematic structural diagram of the first embodiment of the elevator controller proposed in the embodiment of the application. Based on Fig. 1, the first embodiment of the elevator controller of the present application is proposed.
  • the elevator controller includes: a safety control circuit 10, a safety brake circuit SBC and/or a safe torque off circuit STO;
  • the input end of described safety control circuit 10 is connected with elevator safety circuit
  • the output terminal of the safety control circuit 10 is connected to the input terminal of the safe brake circuit SBC and/or the safe torque off circuit STO.
  • the elevator safety circuit is that each safety component of the elevator is equipped with a safety switch, and all safety switches are connected in series to control a safety relay. Only when all the safety switches are connected, the safety relay is closed, and the elevator can run with electricity. When there is a fault in the part corresponding to any safety switch in the elevator safety circuit, the safety switch will not be closed, and the elevator will not be able to run.
  • the safety control circuit 10 is a card configured to perform voltage conversion and rectification on voltage signals.
  • the safety control circuit 10 is a circuit that converts high-voltage electrical signals into control signals .
  • the safety control circuit 10 can be configured to control the elevator motor.
  • the elevator safety circuit can send the high-voltage electrical signal provided by the high-voltage power supply AC to the safety control circuit 10; the safety control circuit 10 converts the high-voltage electrical signal into the safety brake circuit and /or the power signal or control signal required by the safe torque off circuit; the power signal can directly provide voltage power for the low-voltage motor, and the control signal can control the conduction of the loop between the low-voltage power supply and the low-voltage motor, Further, the low-voltage power supply is controlled to supply power to the low-voltage motor.
  • the high-voltage electrical signal is an electrical signal provided by a high-voltage power supply.
  • the control signal is a signal used to control the connection between the low-voltage power supply and the low-voltage motor. According to the specific form of the control signal, the connection or disconnection between the low-voltage power supply and the low-voltage motor can be controlled.
  • a kind of elevator controller is proposed, and the elevator controller passes through the safety control circuit 10, the safety brake circuit SBC and/or the safe torque off circuit STO; the input terminal of the safety control circuit is connected with the elevator The safety loop is connected; the output end of the safety control circuit is connected with the safety brake circuit and/or the input end of the safe torque off circuit.
  • a high-voltage power supply is used to supply power to the elevator safety circuit
  • a safety control circuit is set between the elevator safety circuit and the low-voltage motor control circuit to provide a power signal or a control signal for the low-voltage motor control circuit, and according to the power signal or control signal for the low-voltage motor Provide low-voltage power supply, thereby effectively solving the problem of high failure rate of elevators when using low-voltage motor control circuits.
  • FIG. 2 is a schematic structural diagram of the second embodiment of the elevator controller proposed in the embodiment of the application. Based on the above-mentioned first embodiment of the elevator controller, a second embodiment of the elevator controller of the present application is proposed.
  • the safety control circuit 10 includes: a first rectification circuit and a switch circuit;
  • the first rectification circuit is connected with the elevator safety circuit and the switch circuit, and the switch circuit is respectively connected with the low voltage power supply, the safety brake circuit or the safe torque off circuit.
  • the safe torque off circuit STO is a circuit configured to control the normal lifting operation of the elevator motor.
  • the safe torque off circuit STO can replace the running contactor and star-off contactor commonly used in the original elevator control circuit.
  • the running contactor is a contactor that can control the long-term operation of the elevator equipment.
  • the sealing star contactor is a contactor that shorts the three windings of the synchronous traction machine to prevent the elevator from running out of control due to excessive speed when the brake is released.
  • the safe torque off circuit STO integrates components with the same function as the running contactor and the star-off contactor.
  • the safety brake circuit SBC is a circuit configured to control the elevator motor to brake or release the brake.
  • the safety brake circuit SBC can replace the brake contactor commonly used in the original elevator control circuit.
  • the brake contactor is the contactor corresponding to the electromechanical device that prevents the elevator from moving again when the elevator car is at rest and the motor is in a power-off state. In some control forms, it will stop the elevator when the elevator motor is powered off to prevent safety accidents.
  • the first rectification circuit is a circuit configured to rectify a high-voltage electrical signal to obtain a rectified electrical signal. Rectification is the process of converting an AC signal to a DC signal.
  • the switch circuit 102 is a circuit configured to control whether the loop between the low-voltage power supply and the safety brake circuit SBC or the safe torque-off circuit STO is turned on or off.
  • the rectified electric signal is a direct current signal, and the high voltage electric signal provided by the high voltage power supply AC is an alternating current signal.
  • the first rectification circuit can perform signal rectification on the high-voltage electrical signal to obtain a rectified electrical signal, and send the rectified electrical signal to the switch circuit 102; the switch circuit 102 can receive The rectified electric signal generates a control signal, and controls the connection of the low voltage power supply DC to the safety brake circuit SBC or the safe torque off circuit STO according to the control signal.
  • the safety brake circuit SBC or the safe torque off circuit STO includes one input terminal or multiple input terminals, and when a low-voltage power supply is provided to one input terminal, the high-voltage conversion circuit It only needs to include a rectifier circuit and a switch circuit.
  • the safety brake circuit SBC or the safe torque-off circuit STO it is also possible to provide a low-voltage power supply for the two input terminals of the safety brake circuit SBC or the safe torque-off circuit STO. In this case, two rectification circuits and two switch circuits need to be provided.
  • the first rectification circuit includes: brake rectification circuit 1011 and lift rectification circuit 1012;
  • the switch circuit includes: brake switch circuit 1021 and lift switch circuit 1022;
  • the brake rectifier circuit 1011 is connected to the elevator safety circuit and the brake switch circuit 1021, and the brake switch circuit 1021 is respectively connected to the low-voltage power supply DC and the safety brake circuit SBC;
  • the lift rectifier circuit 1012 is connected to the elevator safety circuit and the lift switch circuit 1022, and the lift switch circuit 1022 is connected to the low voltage power supply DC and the safe torque off circuit STO respectively.
  • the brake rectifier circuit 1011 and the brake switch circuit 1021 are circuits configured to provide lift control signals for the safety brake circuit SBC that controls the normal lift operation of the elevator motor.
  • the lifting control signal can control the connection between the low-voltage power supply DC and the safety brake circuit SBC, so as to provide the required low-voltage power supply for the safety brake circuit SBC.
  • the lift rectifier circuit 1012 and the lift switch circuit 1022 are circuits configured to provide brake control signals for the safe torque off circuit STO that controls the elevator motor to perform brake operation.
  • the brake control signal can control the connection between the low-voltage power supply DC and the safe torque-off circuit STO, so as to provide the required low-voltage power supply for the safe torque-off circuit STO.
  • the brake rectifier circuit 1011 is connected to the elevator safety circuit and the brake switch circuit 1021, and the brake switch circuit 1021 is connected to the low-voltage power supply DC and the safety brake circuit SBC respectively.
  • the brake refers to the control process of the elevator system to prevent the elevator from moving again when the elevator car is at rest and the motor is in a power-off state.
  • the brake rectification circuit 1011 is a circuit configured to rectify the high-voltage electrical signal to obtain a rectified brake electrical signal.
  • the rectified brake electrical signal is a DC high-voltage electrical signal obtained after rectification.
  • the brake rectification circuit 1011 can rectify the high-voltage electrical signal to obtain a rectified brake electrical signal, and send the rectified brake electrical signal to the brake switch circuit 1021;
  • the brake switch circuit 1021 can generate a brake control signal after receiving the rectified brake electrical signal, and control the connection between the low voltage power supply and the SBC card according to the brake control signal.
  • the rectified brake electrical signal is a rectified electrical signal set to control the operation of the elevator brake, and the rectified brake electrical signal is a direct current signal.
  • the brake control signal is an electrical signal configured to control the connection between the low-voltage power supply DC and the SBC card.
  • the brake rectification circuit 1011 rectifies the high-voltage electrical signal to obtain a rectified brake electrical signal, and sends the rectified brake electrical signal to the brake switch circuit;
  • the switch circuit 1021 generates a brake control signal after receiving the rectified brake electrical signal, and controls the connection between the low-voltage power supply and the safety brake circuit according to the brake control signal;
  • the lift rectification circuit 1012 rectifies the high voltage electrical signal to obtain a rectified lift signal, and sends the rectified lift signal to the lift switch circuit 1022; the lift switch circuit 1022 receives the rectified lift signal
  • the lift electrical signal generates a lift control signal, and controls the connection between the low-voltage power supply and the safe torque-off circuit STO according to the lift control signal.
  • the high-voltage conversion circuit 10 when a low-voltage power supply is provided for the input terminals of the safety brake circuit SBC or the safe torque-off circuit STO alone through a conversion circuit, the high-voltage conversion circuit 10 includes: first to second resistors, first to fourth diodes, first photocoupler OC1 and first triode Q1;
  • the first end of the first resistor R1 is connected to the elevator safety circuit, and the second end of the first resistor R1 is respectively connected to the first end of the first diode D1 and the second end of the fourth diode D4.
  • the second end of the first diode D1 is connected to the second end of the second diode D2 and the first end of the first photocoupler OC1, and the second end of the second diode D2
  • the first end is respectively connected to the second end of the third diode D3 and the first end of the second resistor R2, and the first end of the third diode D3 is respectively connected to the fourth diode D4
  • the first end of the first optocoupler OC1 is connected to the second end of the first optocoupler OC1, and the third end of the first optocoupler OC1 is connected to the collector of the first triode D1 and the low-voltage power supply DC
  • the fourth end of the first photocoupler OC1 is connected to the base of the first transistor D1, and
  • the first to fourth diodes form a rectifier bridge to rectify the high voltage electrical signal.
  • the forward voltage of the high-voltage electrical signal flows into the first optocoupler OC1 through the first end of the first optocoupler OC1 through the first diode D1, and then flows from the second end of the first optocoupler OC1
  • the outflow from the terminal flows into the equipotential point N through the third diode D3 and the second resistor R2.
  • the negative voltage of the high-voltage electrical signal flows into the first optocoupler OC1 through the second end of the first optocoupler OC1 through the fourth diode D4, and then flows out from the first end of the first optocoupler OC1 through the second end of the second optocoupler OC1.
  • the pole transistor D2 and the second resistor R2 flow into the equipotential point N.
  • the input of the high-voltage electrical signal can continuously control the conduction between the third terminal and the fourth terminal of the first photocoupler OC1, and the low-voltage power supply DC can be used as the first terminal through the third terminal and the fourth terminal of the first photocoupler OC1.
  • the base of the transistor Q1 provides a high-level signal, so that the first transistor Q1 is turned on. At this time, the low-voltage power supply DC can be used for the safety brake circuit SBC or the safety brake circuit SBC through the first transistor Q1.
  • the input terminal of the torque off circuit STO provides a supply voltage.
  • the high-voltage conversion circuit 10 when the two input terminals of the safety brake circuit SBC or the safe torque off circuit STO provide low-voltage power supply through two conversion circuits, the high-voltage conversion circuit 10 includes: First resistor, second resistor, third resistor and fourth resistor, first diode, second diode, third diode, fourth diode, fifth diode, sixth diode tube, the seventh diode and the eighth diode, the first photocoupler and the second photocoupler, and the first triode and the second triode;
  • the first end of the first resistor R1 is connected to the elevator safety circuit, and the second end of the first resistor R1 is respectively connected to the first end of the first diode D1 and the second end of the fourth diode D4.
  • the second end of the first diode D1 is connected to the second end of the second diode D2 and the first end of the first photocoupler OC1, and the second end of the second diode D2
  • the first end is respectively connected to the second end of the third diode D3 and the first end of the second resistor R2, and the first end of the third diode D3 is respectively connected to the fourth diode D4
  • the first end of the first optocoupler OC1 is connected to the second end of the first optocoupler OC1, and the third end of the first optocoupler OC1 is connected to the collector of the first triode D1 and the low-voltage power supply DC
  • the fourth end of the first photocoupler OC1 is connected to the base of the first transistor D1, and
  • the second end of the fifth diode D5 is connected to the second end of the sixth diode D6 and the first end of the second photocoupler OC2 connected
  • the first end of the sixth diode D6 is respectively connected to the second end of the seventh diode D7 and the first end of the fourth resistor R4
  • the first end of the seventh diode D7 terminals are respectively connected to the first terminal of the eighth diode D8 and the second terminal of the second photocoupler OC2
  • the third terminal of the second photocoupler OC2 is connected to the second triode
  • the collector of Q2 is connected to the low-voltage power supply DC
  • the fourth end of the second photocoupler OC1 is connected to the base of the second transistor Q1
  • the emitter of the second transistor D2 is connected to the base of the second transistor D2.
  • the second input end of the safe brake circuit SBC or the safe torque off circuit STO is connected.
  • the safe brake circuit SBC or the safe torque off circuit STO may also include two input terminals, a first input terminal and a second input terminal, wherein the two input terminals The terminal can input the same low-voltage electrical signal.
  • redundant design can be used to add more than one set of first rectifier circuit 101 and switch circuit 102 to complete the same function at the position where the low-voltage electrical signal is provided, so as to ensure that when this part fails , the circuit can still work normally, reducing the failure probability of the system or equipment and improving system reliability.
  • the first input terminal and the second input terminal of the safe brake circuit SBC or the safe torque off circuit STO need to input the same voltage, which can be passed through two sets of the same first rectifier circuit 101 and switch
  • the circuit 102 controls the input of the low-voltage power supply DC respectively.
  • the third input terminal and the fourth input terminal of the first photocoupler OC1 are turned on, thereby providing the first
  • the base of the transistor Q1 provides a high-level signal to turn on the first transistor Q1
  • the low-voltage power supply DC supplies the safe brake circuit SBC or the safe torque off circuit through the first transistor Q1
  • the first input terminal STO1 of STO inputs a low-level power supply voltage, so that the safety brake circuit SBC or the safe torque-off circuit STO operates normally.
  • the conduction between the third input terminal and the fourth input terminal of the second photocoupler OC2 is conducted, thereby providing the second triode Q2
  • the base of the switch provides a high-level signal to turn on the second triode Q2
  • the low-voltage power supply DC provides the second signal of the safe brake circuit SBC or the safe torque off circuit STO through the second triode Q2.
  • a low-level power supply voltage is input to the input terminal, so that the safety brake circuit SBC or the safe torque-off circuit STO operates normally.
  • the safety control circuit includes a rectifier circuit and a switch circuit.
  • the low-voltage power supply is controlled by the rectifier circuit and the switch circuit to provide a low-voltage signal for the safety brake circuit or the safe torque off circuit, thereby Controlling the normal drive of the low-voltage motor solves the problem of high failure rate of the elevator when the low-voltage motor control circuit is used.
  • Fig. 7 is a schematic structural diagram of the third embodiment of the elevator controller proposed in the embodiment of the application. Based on the above-mentioned first embodiment of the elevator controller, a third embodiment of the elevator controller of the present application is proposed.
  • the safety control circuit 10 further includes: a transformer circuit and a second rectification circuit;
  • the voltage transformation circuit is connected with the elevator safety circuit and the second rectification circuit, and the second rectification circuit is connected with the safety brake circuit SBC and/or the safe torque off circuit STO.
  • the voltage transforming circuit is a circuit configured to convert the high power supply voltage provided by the high voltage power supply into the low power supply voltage required by the low voltage drive motor.
  • the voltage changing circuit can be a transformer or a drop resistor.
  • the second rectification circuit is a circuit configured to convert the low AC power supply voltage into the low DC power supply voltage.
  • the voltage transformation circuit can perform voltage conversion on the high-voltage electrical signal to obtain an electrical signal to be rectified, and send the electrical signal to be rectified to the rectification circuit;
  • the second rectification circuit can convert the electrical signal to be rectified The electric signal to be rectified is rectified to obtain a low-voltage electric signal, and the low-voltage electric signal is sent to the safety brake circuit SBC and/or the safe torque-off circuit STO, so as to drive the low-voltage motor.
  • the transformer circuit also includes: brake transformer circuit 1031 and lift transformer circuit 1032; the second rectifier circuit also includes: brake rectifier circuit 1041 and lift rectifier circuit 1042;
  • the lift transformer circuit 1032 is connected with the elevator safety circuit and the lift rectifier circuit 1042, and the lift rectifier circuit 1042 is connected with the safe torque off circuit STO;
  • the brake transformer circuit 1031 It is connected with the elevator safety circuit and the brake rectifier circuit 1041, and the brake rectifier circuit 1041 is connected with the safety brake circuit SBC.
  • the up-down transformer circuit 1032 is a circuit configured to convert the high-voltage electrical signal into a voltage to be rectified up-down electrical signal required by the safe torque off circuit STO.
  • the up-down transformer circuit 1032 can convert the high-voltage signal into a low-voltage up-down electrical signal to be rectified.
  • the up-down rectification circuit 1042 is a circuit configured to rectify the up-down electrical signal to be rectified after voltage conversion.
  • the rectified DC low-voltage up-down electrical signal can provide a low-voltage power signal for the safe torque-off circuit STO, thereby driving the safe torque-off circuit STO to work normally.
  • the up-down electrical signal to be rectified is an AC low-voltage up-down electrical signal
  • the low-voltage up-down electrical signal obtained after rectification is a direct current signal.
  • the brake voltage transformation circuit 1031 is a circuit configured to convert the high voltage electrical signal into a voltage to be rectified brake electrical signal required by the safety brake circuit SBC.
  • the brake electrical signal to be rectified is an AC signal whose voltage meets the requirements of the safety brake circuit SBC, and the low-voltage brake electrical signal can be obtained after rectification.
  • the brake voltage transformation circuit 1031 can convert the high-voltage signal into a low-voltage brake electrical signal to be rectified.
  • the brake rectification circuit 1041 is a circuit configured to rectify the brake electrical signal to be rectified obtained after voltage conversion.
  • the DC low-voltage brake electrical signal obtained after rectification can provide a low-voltage power signal for the safety brake circuit SBC, thereby driving the safety brake circuit SBC to work normally.
  • the rectified brake electrical signal is an AC low-voltage brake electrical signal
  • the low-voltage brake electrical signal obtained after rectification is a DC signal.
  • the up-down transformer circuit 1032 can perform voltage conversion on the high-voltage electrical signal to obtain an up-down electrical signal to be rectified, and send the up-down electrical signal to be rectified to the up-down rectification circuit 1042;
  • the rectifier circuit 1042 can rectify the electric signal to be rectified to obtain a low-voltage electric signal, and send the electric signal to the safe torque off circuit STO;
  • the brake transformer circuit 1031 can Perform voltage conversion on the high-voltage electrical signal to obtain the electrical signal of the brake to be rectified, and send the electrical signal of the brake to be rectified to the brake rectifier circuit 1041;
  • the brake rectifier circuit 1041 can convert the brake electrical signal to be rectified
  • the brake electrical signal is rectified to obtain a low-voltage brake electrical signal, and the low-voltage brake electrical signal is sent to the safety brake circuit SBC.
  • a set of transformers and diodes can simultaneously supply power to the two input terminals of the safety brake circuit SBC or the safe torque off circuit STO.
  • the transforming circuit 103 includes: a first transformer T1 and a ninth diode D9.
  • the first end of the first transformer T1 is connected to the elevator safety circuit
  • the third end of the first transformer T1 is connected to the first end of the ninth diode D9
  • the ninth second The second terminal of the pole tube D9 is connected to the first input terminal and the second input terminal of the safe brake circuit SBC or the safe torque off circuit STO
  • the second terminal of the first transformer T1 is connected to the equipotential Point N, the fourth end is grounded to GND.
  • the ninth diode D9 is a rectifier diode.
  • the first end of the first transformer T1 can be connected to the elevator safety circuit to receive the high-voltage electrical signal, and after being converted by the coil in the first transformer T1, the electrical signal to be rectified is obtained, and the electrical signal to be rectified is transmitted from the first
  • the third output terminal of a transformer T1 is connected to the ninth diode D9. Due to the unidirectional conductivity of the diode, the ninth diode D9 can rectify the electric signal to be rectified to obtain a low-voltage electric signal for direct current.
  • the second terminal of the ninth diode D1 is output to the first input terminal and the second input terminal of the safety brake circuit SBC or the safe torque off circuit STO, and the second terminal and the fourth terminal of the first transformer T1 are connected, etc.
  • the potential point N respectively forms a complete loop with the corresponding first terminal and the third terminal.
  • the transformation circuit 103 includes: first to second transformers; the second rectification circuit includes: ninth to tenth diodes;
  • the first end of the first transformer T1 is connected to the elevator safety circuit
  • the third end of the first transformer T1 is connected to the first end of the ninth diode D9
  • the ninth second The second terminal of the pole tube D9 is connected to the first input terminal of the safe brake circuit SBC or the safe torque off circuit STO
  • the second terminal of the first transformer T1 is connected to the equipotential point N, and the fourth Terminal ground GND;
  • the first end of the second transformer T2 is connected to the elevator safety circuit, the third end of the second transformer T2 is connected to the first end of the tenth diode D10, and the tenth diode
  • the second end of D10 is connected to the second input end of the safety brake circuit SBC or the safe torque off circuit STO, the second end of the second transformer T2 is connected to the equipotential point N, and the fourth end is grounded GND.
  • the safe brake circuit SBC or the safe torque off circuit STO includes two input terminals, a first input terminal and a second input terminal, wherein the two input terminals can be The same low-voltage electrical signal is input, but in some special cases, different low-voltage electrical signals may need to be input, and two different transformers are required for voltage conversion.
  • the same voltage needs to be input to the first input terminal and the second input terminal of the safety brake circuit SBC or the safe torque off circuit STO, or can be input separately after voltage conversion by two identical transformers.
  • the first transformer T1 can convert the high-voltage electrical signal into a rectified lifting electrical signal, and then obtain the first low-voltage electrical signal after being rectified by the ninth diode D9, and pass the first low-voltage electrical signal through
  • the first input terminal is input to the safety brake circuit SBC or the safe torque off circuit STO
  • the second transformer T2 can convert the high-voltage electrical signal into another electric signal to be rectified, which is rectified by the tenth diode D10 to obtain the first Two low-voltage electrical signals, and the second low-voltage electrical signal is input to the safety brake circuit SBC or the safe torque off circuit STO through the second input terminal.
  • the voltage transformation process of the second transformer T2 and the rectification process of the tenth diode D10 can refer to the above-mentioned voltage transformation process of the first transformer T1 and the rectification process of the ninth diode D9 , which will not be repeated here.
  • an elevator controller converts the high power supply voltage provided by the high-voltage power supply into the required voltage for driving a low-voltage motor through a transformer circuit and a second rectifier circuit without an external low-voltage power supply.
  • the low power supply voltage is used, and the low-voltage motor is driven by the low power supply voltage, thus effectively solving the problem of high failure rate of the elevator when the low-voltage motor control circuit is used.
  • the present application also proposes an elevator, which includes the above elevator controller and elevator safety circuit.
  • the elevator controller refer to the above-mentioned embodiments. Since the elevator adopts all the technical solutions of the above-mentioned embodiments, it at least has all the functions brought by the technical solutions of the above-mentioned embodiments, and will not repeat them here.
  • the elevator safety circuit includes: control cabinet emergency stop relay S1, several hall door lock relays S2 and main board relay S3;
  • the first end of the control cabinet emergency stop relay S1 is connected to the high-voltage power supply AC, and the second end of the control cabinet emergency stop relay S1 is connected to the first end of the hall door lock relay S2 connected in series.
  • the second terminals of the hall door lock relays S2 connected in series are connected to the first terminals of the main board relay S3 , and the second terminals S3 of the main board relays are connected to the high voltage conversion card 20 .
  • the elevator control cabinet is an electronic control device that installs various electronic devices and electrical components in a cabinet-shaped structure with safety protection.
  • the emergency stop relay S1 of the control cabinet is the relay that controls the connection between the elevator control cabinet and the high-voltage power supply. In special cases, the emergency stop relay S1 of the control cabinet can disconnect the connection between the high-voltage power Protection of various electronic devices and electrical components in the control cabinet.
  • the hall door is the door of the elevator installed on each floor. The same elevator has such a hall door on each floor. There are as many hall doors as there are floors. The position of the hall door is fixed on each floor. to move.
  • the structure and door locks of the hall doors on each floor are the same, and the hall door locks and car door locks are automatically opened and closed according to the elevator button signal.
  • the hall door lock relay S2 is a relay configured to control the opening or closing of the hall door. Each hall door corresponds to a hall door relay S2, and the specific number of hall door lock relays is determined according to the number of hall doors.
  • the elevator main board is a board set up to control the entire running process of the elevator. Regardless of the operation of the elevator up, down, star closure, brake, etc., the main board needs to provide corresponding electrical signals to control the elevator motor.
  • the main board relay S3 is a relay configured to control the connection between the high voltage power supply and the elevator main board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

一种电梯控制器及电梯,其中电梯控制器包括安全控制电路(10)、安全抱闸电路(SBC)和/或安全转矩关断电路(STO);安全控制电路(10)的输入端与电梯安全回路连接;安全控制电路(10)的输出端与安全抱闸电路(SBC)和/或安全转矩关断电路(STO)输入端连接。通过高压电源为安全回路供电,在安全回路与低压电机控制电路(30)之间设置安全控制电路(10)为低压电机控制电路(30)提供电源信号或控制信号,并根据电源信号或控制信号为低压电机提供低压电源。

Description

电梯控制器及电梯
本申请要求于2021年12月30号申请的、申请号为202111680759.5的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及电梯控制技术领域,尤其涉及一种电梯控制器及电梯。
背景技术
我国电梯行业历经数十年的发展,电梯已经成为人们生活中不可或缺的一部分,同时也是现代社会城镇化建设中必不可少的重要建筑设备之一。当前,我国是全球的电梯制造中心和最大的电梯市场,电梯产量、保有量、出口量逐年提升。随着电梯更新需求和旧楼加装电梯需求增加、房地产建设带来的刚性需求,预计未来电梯行业仍保持增长。
目前切断电机电源和制动器供电主要通过接触器来实现,其接触器串联在电机和制动器供电回路。特别是无机房和家用梯时,由于接触器频繁动作产生噪声,影响乘客乘梯体检,甚至会影响周边住户。同时由于接触器在断开时存在触点拉弧,导致接触器故障率高,甚至困人。为解决上述问题,可以采用低压电极控制器例如STO卡和SBC卡,但是由于低压STO卡和SBC卡需要低压供电,而厅门锁触点采用多层串联形式,层站较多引线较长,且长期使用后,会造成门锁触点的老化,阻抗变大,回路电流较小,导致电梯故障率较高。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的在于提供一种电梯控制器及电梯,旨在解决现有技术中采用低压电机控制器时,回路电流较小,导致电梯故障率较高的技术问题。
技术解决方案
为实现上述目的,本申请提出一种电梯控制器,包括安全控制电路,以及安全抱闸电路和/或安全转矩关断电路;
所述安全控制电路的输入端与电梯安全回路连接;
所述安全控制电路的输出端与所述安全抱闸电路和/或所述安全转矩关断电路输入端连接;
所述安全控制电路,设置为将来源于所述电梯安全回路的高压电信号转换为所述安全抱闸电路和/或所述安全转矩关断电路所需的电源信号或控制信号。
在一实施方式中,所述安全控制电路包括:第一整流电路和开关电路;
其中,所述第一整流电路与所述安全回路以及所述开关电路连接,所述开关电路分别与一低压电源以及所述安全抱闸电路或所述安全转矩关断电路连接;
所述第一整流电路,设置为将所述高压电信号进行信号整流获得整流电信号,并将所述整流电信号发送至所述开关电路;
所述开关电路,设置为接收所述整流电信号并生成控制信号,并根据所述控制信号控制所述低压电源与所述安全抱闸电路或所述安全转矩关断电路的连接。
在一实施方式中,所述第一整流电路包括:抱闸整流电路和升降整流电路;所述开关电路包括:抱闸开关电路和升降开关电路;
其中,所述抱闸整流电路与所述电梯安全回路以及所述抱闸开关电路连接,所述抱闸开关电路分别与所述低压电源以及所述安全抱闸电路连接;
所述升降整流电路与所述电梯安全回路以及所述升降开关电路连接,所述升降开关电路分别与所述低压电源以及所述安全转矩关断电路连接;
所述抱闸整流电路,设置为将所述高压电信号进行信号整流获得整流抱闸电信号,并将所述整流抱闸电信号发送至所述抱闸开关电路;
所述抱闸开关电路,设置为接收所述整流抱闸电信号并生成抱闸控制信号,并根据所述抱闸控制信号控制所述低压电源与所述安全抱闸电路之间的连接;
所述升降整流电路,设置为将所述高压电信号进行信号整流获得整流升降电信号,并将所述整流升降电信号发送至所述升降开关电路;
所述升降开关电路,设置为接收所述整流升降电信号并生成升降控制信号,并根据所述升降控制信号控制所述低压电源与所述安全转矩关断电路之间的连接。
在一实施方式中,所述高压转换电路包括:第一电阻、第二电阻、第一二极管、第二二极管、第三二极管及第四二极管、第一光电耦合器以及第一三极管;
其中,第一电阻的第一端与所述电梯安全回路连接,所述第一电阻的第二端分别与第一二极管的第一端以及第四二极管的第二端连接,所述第一二极管的第二端与第二二极管的第二端以及所述第一光电耦合器的第一端连接,所述第二二极管的第一端分别与第三二极管的第二端以及所述第二电阻的第一端连接,所述第三二极管的第一端分别与所述第四二极管的第一端以及所述第一光电耦合器的第二端连接,所述第一光电耦合器的第三端与所述第一三极管的集电极以及所述低压电源连接,所述第一光电耦合器的第四端与所述第一三极管的基极连接,所述第一三极管的发射极与安全抱闸电路和/或所述安全转矩关断电路的输入端连接。
在一实施方式中,所述高压转换电路包括:第一电阻、第二电阻、第三电阻及第四电阻、第一二极管、第二二极管、第三二极管、第四二极管、第五二极管、第六二极管、第七二极管及第八二极管、第一光电耦合器及第二光电耦合器以及第一三极管及第二三极管;
其中,第一电阻的第一端与所述电梯安全回路连接,所述第一电阻的第二端分别与第一二极管的第一端以及第四二极管的第二端连接,所述第一二极管的第二端与第二二极管的第二端以及所述第一光电耦合器的第一端连接,所述第二二极管的第一端分别与第三二极管的第二端以及第二电阻的第一端连接,所述第三二极管的第一端分别与所述第四二极管的第一端以及所述第一光电耦合器的第二端连接,所述第一光电耦合器的第三端与所述第一三极管的集电极以及所述低压电源连接,所述第一光电耦合器的第四端与所述第一三极管的基极连接,所述第一三极管的发射极与安全抱闸电路或所述安全转矩关断电路的第一输入端连接;第三电阻的第一端与所述电梯安全回路连接,所述第三电阻的第二端分别与第五二极管的第一端以及第八二极管的第二端连接,所述第五二极管的第二端与第六二极管的第二端以及所述第二光电耦合器的第一端连接,所述第六二极管的第一端分别与第七二极管的第二端以及所述第四电阻的第一端连接,所述第七二极管的第一端分别与所述第八二极管的第一端以及所述第二光电耦合器的第二端连接,所述第二光电耦合器的第三端与所述第二三极管的集电极以及所述低压电源连接,所述第二光电耦合器的第四端与所述第二三极管的基极连接,所述第二三极管的发射极与所述安全抱闸电路或所述安全转矩关断电路的第二输入端连接。
在一实施方式中,所述安全控制电路还包括:变压电路和第二整流电路;
其中,所述变压电路与所述电梯安全回路以及所述第二整流电路连接,所述第二整流电路与所述安全抱闸电路和/或所述安全转矩关断电路连接;
所述变压电路,设置为将所述高压电信号进行电压转换获得待整流电信号,并将所述待整流电信号发送至所述整流电路;
所述第二整流电路,设置为将所述待整流电信号进行整流获得低压电信号,并将所述低压电信号发送至所述安全抱闸电路和/或所述安全转矩关断电路。
在一实施方式中,所述变压电路包括:抱闸变压电路和升降变压电路;所述第二整流电路包括:抱闸整流电路和升降整流电路;
其中,所述升降变压电路与所述电梯安全回路以及所述升降整流电路连接,所述升降整流电路与所述安全转矩关断电路连接;所述抱闸变压电路与所述电梯安全回路以及所述抱闸整流电路连接,所述抱闸整流电路与所述安全抱闸电路连接;
所述升降变压电路,设置为将所述高压电信号进行电压转换获得待整流升降电信号,并将所述待整流升降电信号发送至所述升降整流电路;
所述升降整流电路,设置为将所述待整流升降电信号进行整流获得低压升降电信号,并将所述低压升降电信号发送至所述安全转矩关断电路;
所述抱闸变压电路,设置为将所述高压电信号进行电压转换获得待整流抱闸电信号,并将所述待整流抱闸电信号发送至所述抱闸整流电路;
所述抱闸整流电路,设置为将所述待整流抱闸电信号进行整流获得低压抱闸电信号,并将所述低压抱闸电信号发送至所述安全抱闸电路。
在一实施方式中,所述变压电路包括:第一变压器;所述第二整流电路包括:第九二极管;
其中,所述第一变压器的第一端与所述电梯安全回路连接,所述第一变压器的第三端与所述第九二极管的第一端连接,所述第九二极管的第二端与所述安全抱闸电路和/或所述安全转矩关断电路的第一输入端以及第二输入端连接,所述第一变压器的第二端接等电势点,第四端接地。
在一实施方式中,所述变压电路包括:第一变压器及第二变压器;所述第二整流电路包括:第九二极管及第十二极管;
其中,第一变压器的第一端与所述电梯安全回路连接,所述第一变压器的第三端与所述第九二极管的第一端连接,所述第九二极管的第二端与所述安全抱闸电路和/或所述安全转矩关断电路的第一输入端连接,所述第一变压器的第二端接等电势点,第四端接地;
所述第二变压器的第一端与所述电梯安全回路连接,所述第二变压器的第三端与所述第十二极管的第一端连接,所述第十二极管的第二端与所述安全抱闸电路和/或所述安全转矩关断电路的第二输入端连接,所述第二变压器的第二端接等电势点,第四端接地。
为实现上述目的,本申请还提出一种电梯,所述电梯包括电梯安全回路和如所述的电梯控制器,所述电梯安全回路包括多个开关,且所述电梯安全回路的输入端与高压电信号连接、所述电梯安全回路的输出端与所述安全控制电路输入端连接。
有益效果
在本申请提出一种电梯控制器及电梯,该电梯控制器通过安全控制电路、安全抱闸电路和/或所述安全转矩关断电路;所述安全控制电路的输入端与电梯安全回路连接;所述安全控制电路的输出端与所述安全抱闸电路和/或所述安全转矩关断电路输入端连接。本申请中通过高压电源为电梯安全回路供电,在电梯安全回路与低压电机控制电路之间设置安全控制电路为低压电机控制电路提供电源信号或控制信号,并根据电源信号或控制信号为低压电机提供低压电源,从而有效的解决了在采用低压电机控制电路时导致电梯故障率较高的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为申请实施例提出的电梯控制器第一实施例的结构示意图;
图2为申请实施例提出的电梯控制器第二实施例的结构示意图;
图3为申请实施例提出的电梯控制器的第二实施例中第一电路结构图;
图4为申请实施例提出的电梯控制器的第二实施例中第二电路结构图;
图5为申请实施例提出的电梯控制器的第二实施例中第三电路结构图;
图6为申请实施例提出的电梯控制器的第二实施例中第四电路结构图;
图7为申请实施例提出的电梯控制器第三实施例的结构示意图;
图8为申请实施例提出的电梯控制器的第三实施例中第一电路结构图;
图9为申请实施例提出的电梯控制器的第三实施例中第二电路结构图;
图10为申请实施例提出的电梯控制器的第三实施例中第三电路结构图;
图11为申请实施例提出的电梯控制器的第三实施例中第四电路结构图。
附图标号说明:
标号 名称 标号 名称
10 安全控制电路 AC 高压电源
SBC 安全抱闸电路 DC 低压电源
STO 安全转矩关断电路 D1~D10 第一至第十二极管
1011 抱闸整流电路 OC1~OC2 第一至第二光电耦合器
1012 升降整流电路 STO1~STO2 STO的第一至第二输入端
1021 抱闸开关电路 SBC1~SBC2 SBC的第一至第二输入端
1022 升降开关电路 S1 控制柜急停继电器
1031 抱闸变压电路 S2 厅门锁继电器
1032 升降变压电路 S3 主板继电器
1041 抱闸整流电路 N 等电势点
1042 升降整流电路 GND 接地
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当人认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
参照图1,图1为申请实施例提出的电梯控制器第一实施例的结构示意图。基于图1,提出本申请电梯控制器的第一实施例。
在本实施例中,所述电梯控制器包括:安全控制电路10、安全抱闸电路SBC和/或安全转矩关断电路STO;
所述安全控制电路10的输入端与电梯安全回路连接;
所述安全控制电路10的输出端与所述安全抱闸电路SBC和/或所述安全转矩关断电路STO输入端连接。
需要说明的是,电梯安全回路就是在电梯各安全部件都装有一个安全开关,把所有的安全开关串联,控制一只安全继电器。只有所有安全开关都在接通的情况下,安全继电器吸合,电梯才能得电运行。在电梯安全回路中的任意一个安全开关对应的部分存在故障时,该安全开关不会闭合,电梯也就无法运行。安全控制电路10是设置为对电压信号进行电压转换和整流的卡。在本实施例中,由于高压电源可以为电梯安全回路提供高压电信号,而低压电机控制电路30需要在低压条件下才能正常运行,因此安全控制电路10为将高压电信号转换为控制信号的电路。安全控制电路10可以设置为对电梯电机进行控制。
在具体实施中,所述电梯安全回路可以将高压电源AC提供的高压电信号发送至所述安全控制电路10;所述安全控制电路10对所述高压电信号转换为所述安全抱闸电路和/或所述安全转矩关断电路所需的电源信号或控制信号;所述电源信号可以直接为低压电机提供电压电源,所述控制信号可以控制低压电源与低压电机之间的回路导通,进而控制低压电源为所述低压电机供电。
其中,高压电信号是由高压电源提供的电信号。安全电路在长时间使用之后随着元器件的变化会导致元器件的阻抗变大,通过为安全电路提供高压电信号,即使元器件的阻抗变大也并不会导致故障增加。控制信号是用于控制低压电源与低压电机之间连接的信号。根据控制信号的具体形式可以控制低压电源与低压电机之间的连接或断开。
在本实施例中提出一种电梯控制器,该电梯控制器通过安全控制电路10、安全抱闸电路SBC和/或所述安全转矩关断电路STO;所述安全控制电路的输入端与电梯安全回路连接;所述安全控制电路的输出端与所述安全抱闸电路和/或所述安全转矩关断电路输入端连接。本实施例中通过高压电源为电梯安全回路供电,在电梯安全回路与低压电机控制电路之间设置安全控制电路为低压电机控制电路提供电源信号或控制信号,并根据电源信号或控制信号为低压电机提供低压电源,从而有效的解决了在采用低压电机控制电路时导致电梯故障率较高的问题。
参照图2,图2为申请实施例提出的电梯控制器第二实施例的结构示意图。基于上述电梯控制器第一实施例,提出本申请电梯控制器的第二实施例。
在本实施例中,所述安全控制电路10包括:第一整流电路和开关电路;
其中,所述第一整流电路与所述电梯安全回路以及所述开关电路连接,所述开关电路分别与所述低压电源以及所述安全抱闸电路或所述安全转矩关断电路连接。
需要说明的是,安全转矩关断电路STO是设置为控制电梯电机正常升降运行的电路。安全转矩关断电路STO可以代替原电梯控制电路中常用的运行接触器和封星接触器。其中运行接触器是可以控制电梯设备长期工作运行的接触器。封星接触器是短接同步曳引机的三个绕组,防止松闸时电梯速度过快而失控的接触器。安全转矩关断电路STO上集成了运行接触器与封星接触器相同功能的元器件。安全抱闸电路SBC是设置为控制电梯电机进行抱闸或解除抱闸的电路。安全抱闸电路SBC可以替代原电梯控制电路中常用的抱闸接触器。抱闸接触器是当电梯轿厢处于静止且马达处于失电状态下防止电梯再移动的机电装置对应的接触器。在某些控制形式中,它会在电梯电机断电时刹住电梯,防止出现安全事故。
应理解的是,第一整流电路是设置为对高压电信号进行整流得到整流电信号的电路。整流是将交流电信号转换为直流电信号的过程。开关电路102是设置为控制低压电源以及所述安全抱闸电路SBC或所述安全转矩关断电路STO之间回路导通会截止的电路。其中整流电信号为直流电信号,高压电源AC提供的高压电信号为交流电信号。
在具体实施中,所述第一整流电路可以将所述高压电信号进行信号整流获得整流电信号,并将所述整流电信号发送至所述开关电路102;所述开关电路102可以在接收到所述整流电信号时生成控制信号,并根据所述控制信号控制所述低压电源DC与所述安全抱闸电路SBC或所述安全转矩关断电路STO的连接。
应理解的是,在本实施例中包括单独对安全抱闸电路SBC或安全转矩关断电路STO中包括一个输入端或多个输入端,在对一个输入端提供低压电源时,高压转换电路包括一个整流电路和一个开关电路即可。当然本实施例中也可能存在为安全抱闸电路SBC或安全转矩关断电路STO两个输入端提供低压电源的情况,此时需要设置两个整流电路和两个开关电路。
在本实施中,所述第一整流电路包括:抱闸整流电路1011和升降整流电路1012;所述开关电路包括:抱闸开关电路1021和升降开关电路1022;
其中,所述抱闸整流电路1011与所述电梯安全回路以及所述抱闸开关电路1021连接,所述抱闸开关电路1021分别与所述低压电源DC以及所述安全抱闸电路SBC连接;
所述升降整流电路1012与所述电梯安全回路以及所述升降开关电路1022连接,所述升降开关电路1022分别与所述低压电源DC以及所述安全转矩关断电路STO连接。
应理解的是,抱闸整流电路1011和抱闸开关电路1021是设置为为控制电梯电机正常升降运行的安全抱闸电路SBC提供升降控制信号的电路。升降控制信号可以控制低压电源DC与安全抱闸电路SBC之间的连接,从而为安全抱闸电路SBC提供所需要的低压电源。升降整流电路1012和升降开关电路1022是设置为为控制电梯电机进行抱闸运行的安全转矩关断电路STO提供抱闸控制信号的电路。抱闸控制信号可以控制低压电源DC与安全转矩关断电路STO之间的连接,为安全转矩关断电路STO提供所需要的低压电源。
所述抱闸整流电路1011与所述电梯安全回路以及所述抱闸开关电路1021连接,所述抱闸开关电路1021分别与所述低压电源DC以及所述安全抱闸电路SBC连接。
需要说明的是,抱闸是指电梯系统在电梯轿厢处于静止且马达处于失电状态下防止电梯再移动的控制过程。抱闸整流电路1011是设置为将高压电信号进行整流得到整流抱闸电信号的电路。整流抱闸电信号经过整流后得到的直流的高压电信号。
在具体实施中,所述抱闸整流电路1011可以将所述高压电信号进行信号整流获得整流抱闸电信号,并将所述整流抱闸电信号发送至所述抱闸开关电路1021;所述抱闸开关电路1021可以在接收到所述整流抱闸电信号生成抱闸控制信号,并根据所述抱闸控制信号控制所述低压电源与所述SBC卡之间的连接。
其中,整流抱闸电信号是经过整流后的设置为控制电梯抱闸工作的电信号,该整流抱闸电信号为直流电信号。抱闸控制信号是设置为控制低压电源DC与SBC卡之间连接的电信号。
在具体实施中,所述抱闸整流电路1011将所述高压电信号进行信号整流获得整流抱闸电信号,并将所述整流抱闸电信号发送至所述抱闸开关电路;所述抱闸开关电路1021在接收到所述整流抱闸电信号生成抱闸控制信号,并根据所述抱闸控制信号控制所述低压电源与所述安全抱闸电路之间的连接;
所述升降整流电路1012将所述高压电信号进行信号整流获得整流升降电信号,并将所述整流升降电信号发送至所述升降开关电路1022;所述升降开关电路1022在接收到所述整流升降电信号生成升降控制信号,并根据所述升降控制信号控制所述低压电源与所述安全转矩关断电路STO之间的连接。
参照图3和图4,在本实施例中,在通过一个转换电路单独为安全抱闸电路SBC或安全转矩关断电路STO中的输入端提供低压电源时,所述高压转换电路10包括:第一至第二电阻、第一至第四二极管、第一光电耦合器OC1以及第一三极管Q1;
其中,第一电阻R1的第一端与所述电梯安全回路连接,所述第一电阻R1的第二端分别与第一二极管D1的第一端以及第四二极管D4的第二端连接,所述第一二极管D1的第二端与第二二极管D2的第二端以及所述第一光电耦合器OC1的第一端连接,所述第二二极管D2的第一端分别与第三二极管D3的第二端以及所述第二电阻R2的第一端连接,所述第三二极管D3的第一端分别与所述第四二极管D4的第一端以及所述第一光电耦合器OC1的第二端连接,所述第一光电耦合器OC1的第三端与所述第一三极管D1的集电极以及所述低压电源DC连接,所述第一光电耦合器OC1的第四端与所述第一三极管D1的基极连接,所述第一三极管D1的发射极与所述安全抱闸电路SBC或所述安全转矩关断电路STO的输入端连接。
需要说明的是,第一至第四二极管组成整流桥对高压电信号进行整流。在具体整流过程中,高压电信号的正向电压通过第一二极管D1经过第一光电耦合器OC1的第一端流入第一光电耦合器OC1,然后从第一光电耦合器OC1的第二端流出经过第三二极管D3和第二电阻R2流入等电势点N。高压电信号的负向电压通过第四二极管D4经过第一光电耦合器OC1的第二端流入第一光电耦合器OC1,然后从第一光电耦合器OC1的第一端流出经过第二二极管D2和第二电阻R2流入等电势点N。高压电信号的输入可以持续的控制第一光电耦合器OC1的第三端与第四端之间导通,低压电源DC可以通过第一光电耦合器OC1的第三端和第四端为第一三极管Q1的基极提供高电平信号,从而使第一三极管Q1导通,此时低压电源DC可以通过第一三极管Q1的为所述安全抱闸电路SBC或所述安全转矩关断电路STO的输入端提供电源电压。
参照图5和图6,在本实施例中,在通过两个转换电路为安全抱闸电路SBC或安全转矩关断电路STO两个输入端提供低压电源时,所述高压转换电路10包括:第一电阻、第二电阻、第三电阻及第四电阻、第一二极管、第二二极管、第三二极管、第四二极管、第五二极管、第六二极管、第七二极管及第八二极管、第一光电耦合器及第二光电耦合器以及第一三极管及第二三极管;
其中,第一电阻R1的第一端与所述电梯安全回路连接,所述第一电阻R1的第二端分别与第一二极管D1的第一端以及第四二极管D4的第二端连接,所述第一二极管D1的第二端与第二二极管D2的第二端以及所述第一光电耦合器OC1的第一端连接,所述第二二极管D2的第一端分别与第三二极管D3的第二端以及所述第二电阻R2的第一端连接,所述第三二极管D3的第一端分别与所述第四二极管D4的第一端以及所述第一光电耦合器OC1的第二端连接,所述第一光电耦合器OC1的第三端与所述第一三极管D1的集电极以及所述低压电源DC连接,所述第一光电耦合器OC1的第四端与所述第一三极管D1的基极连接,所述第一三极管D1的发射极与所述安全抱闸电路SBC或所述安全转矩关断电路STO的第一输入端连接;第三电阻R3的第一端与所述电梯安全回路连接,所述第三电阻R3的第二端分别与第五二极管D5的第一端以及第八二极管D8的第二端连接,所述第五二极管D5的第二端与第六二极管D6的第二端以及所述第二光电耦合器OC2的第一端连接,所述第六二极管D6的第一端分别与第七二极管D7的第二端以及所述第四电阻R4的第一端连接,所述第七二极管D7的第一端分别与所述第八二极管D8的第一端以及所述第二光电耦合器OC2的第二端连接,所述第二光电耦合器OC2的第三端与所述第二三极管Q2的集电极以及所述低压电源DC连接,所述第二光电耦合器OC1的第四端与所述第二三极管Q1的基极连接,所述第二三极管D2的发射极与所述安全抱闸电路SBC或所述安全转矩关断电路STO的第二输入端连接。
需要说明的是,在本实施例中,所述安全抱闸电路SBC或所述安全转矩关断电路STO还可以包括两个输入端,第一输入端和第二输入端,其中两个输入端可以输入相同的低压电信号,此时可以通过冗余设计在提供低压电信号的位置,增加一套以上完成相同功能的第一整流电路101和开关电路102,以保证当该部分出现故障时,该电路仍能正常工作,减少系统或者设备的故障概率,提高系统可靠性。当然在所述安全抱闸电路SBC或所述安全转矩关断电路STO的第一输入端与第二输入端需要的输入相同的电压,可以通过两个组相同的第一整流电路101和开关电路102控制低压电源DC分别输入。
在具体实施中,高压电信号经过第一至第四二极管组成的整流桥整流后,使第一光电耦合器OC1的第三输入端和第四输入端之间导通,从而为第一三极管Q1的基极提供高电平信号,使第一三极管Q1导通,低压电源DC通过第一三极管Q1为所述安全抱闸电路SBC或所述安全转矩关断电路STO的第一输入端STO1输入低电平的电源电压,从而使所述安全抱闸电路SBC或所述安全转矩关断电路STO正常运行。同样高压电信号经过第五至第八二极管组成的整流桥整流后,使第二光电耦合器OC2的第三输入端和第四输入端之间导通,从而为第二三极管Q2的基极提供高电平信号,使第二三极管Q2导通,低压电源DC通过第二三极管Q2为所述安全抱闸电路SBC或所述安全转矩关断电路STO的第二输入端输入低电平的电源电压,从而使所述安全抱闸电路SBC或所述安全转矩关断电路STO正常运行。
在本实施例中,安全控制电路包括整流电路和开关电路,在存在外接低压电源的情况下通过整流电路与开关电路控制低压电源为安全抱闸电路或安全转矩关断电路提供低压信号,从而控制低压电机正常驱动,解决了在采用低压电机控制电路时导致电梯故障率较高的问题。
参照图7,图7为申请实施例提出的电梯控制器第三实施例的结构示意图。基于上述电梯控制器第一实施例,提出本申请电梯控制器的第三实施例。
在本实施例中,所述安全控制电路10还包括:变压电路和第二整流电路;
其中,所述变压电路与所述电梯安全回路以及所述第二整流电路连接,所述第二整流电路与所述安全抱闸电路SBC和/或所述安全转矩关断电路STO连接。
其中,所述变压电路是设置为将高压电源提供的高电源电压转换为低压驱动电机需要的低电源电压的电路。该变压电路可以是变压器或降压电阻。第二整流电路是设置为将交流的低电源电压转换为直流的低电源电压的电路。
在具体实施中,所述变压电路可以将所述高压电信号进行电压转换获得待整流电信号,并将所述待整流电信号发送至所述整流电路;所述第二整流电路可以将所述待整流电信号进行整流获得低压电信号,并将所述低压电信号发送至所述安全抱闸电路SBC和/或所述安全转矩关断电路STO,从而实现对低压电机的驱动。
在本实施例中,所述变压电路同样包括:抱闸变压电路1031和升降变压电路1032;所述第二整流电路同样包括:抱闸整流电路1041和升降整流电路1042;
其中,所述升降变压电路1032与所述电梯安全回路以及所述升降整流电路1042连接,所述升降整流电路1042与所述安全转矩关断电路STO连接;所述抱闸变压电路1031与所述电梯安全回路以及所述抱闸整流电路1041连接,所述抱闸整流电路1041与所述安全抱闸电路SBC连接。
需要说明的是,升降变压电路1032是设置为将高压电信号转化为电压为安全转矩关断电路STO需要的待整流升降电信号的电路。在本实施例中,升降变压电路1032可以将高压信号转换为低压的待整流升降电信号。升降整流电路1042是设置为对电压转换后得到的待整流升降电信号进行整流的电路。整流后得到的直流的低压升降电信号可以为安全转矩关断电路STO提供低压的电源信号,从而驱动安全转矩关断电路STO正常工作。其中,待整流升降电信号为交流的低压升降电信号,经过整流后得到的低压升降电信号为直流电信号。
同理,抱闸变压电路1031是设置为将高压电信号转化为电压为安全抱闸电路SBC需要的待整流抱闸电信号的电路。待整流抱闸电信号是电压满足安全抱闸电路SBC需求的交流电信号,经过整流后便可得到低压抱闸电信号。在本实施例中,抱闸变压电路1031可以将高压信号转换为低压的待整流抱闸电信号。抱闸整流电路1041是设置为对电压转换后得到的待整流抱闸电信号进行整流的电路。整流后得到的直流的低压抱闸电信号可以为安全抱闸电路SBC提供低压的电源信号,从而驱动安全抱闸电路SBC正常工作。同样待整流抱闸电信号为交流的低压抱闸电信号,经过整流后得到的低压抱闸电信号为直流电信号。
在具体实施中,所述升降变压电路1032可以将所述高压电信号进行电压转换获得待整流升降电信号,并将所述待整流升降电信号发送至所述升降整流电路1042;所述升降整流电路1042可以将所述待整流升降电信号进行整流获得低压升降电信号,并将所述低压升降电信号发送至所述安全转矩关断电路STO;所述抱闸变压电路1031可以将所述高压电信号进行电压转换获得待整流抱闸电信号,并将所述待整流抱闸电信号发送至所述抱闸整流电路1041;所述抱闸整流电路1041可以将所述待整流抱闸电信号进行整流获得低压抱闸电信号,并将所述低压抱闸电信号发送至所述安全抱闸电路SBC。
参照图8和图9,在本实施例中,可以通过一组变压器和二极管同时为安全抱闸电路SBC或安全转矩关断电路STO的两个输入端进行供电。所述变压电路103包括:第一变压器T1和第九二极管D9。
其中,所述第一变压器T1的第一端与所述电梯安全回路连接,所述第一变压器T1的第三端与所述第九二极管D9的第一端连接,所述第九二极管D9的第二端与所述安全抱闸电路SBC或所述安全转矩关断电路STO的第一输入端以及第二输入端连接,所述第一变压器T1的第二端接等电势点N,第四端接地GND。
需要说明的是,第九二极管D9为整流二极管。在本实施例中,第一变压器T1的第一端可以与电梯安全回路连接接收高压电信号,经过第一变压器T1内的线圈转换后得到待整流升降电信号,并待整流升降电信号从第一变压器T1的第三输出端至第九二极管D9,由于二极管的单向导通性,第九二极管D9可以将待整流升降电信号进行整流,得到直流的低压升降电信号,并通过第九二极管D1的第二端输出至安全抱闸电路SBC或安全转矩关断电路STO的第一输入端以及第二输入端,第一变压器T1的第二端以及第四端接等电势点N,分别与对应的第一端以及第三端形成完整的回路。
参照图10和图11,在本实施例中,还可以通过两组变压器和二极管分别为安全抱闸电路SBC或安全转矩关断电路STO的第一输入端和第二进行供电。所述变压电路103包括:第一至第二变压器;所述第二整流电路包括:第九至第十二极管;
其中,所述第一变压器T1的第一端与所述电梯安全回路连接,所述第一变压器T1的第三端与所述第九二极管D9的第一端连接,所述第九二极管D9的第二端与所述安全抱闸电路SBC或所述安全转矩关断电路STO的第一输入端连接,所述第一变压器T1的第二端接等电势点N,第四端接地GND;
所述第二变压器T2的第一端与所述电梯安全回路连接,所述第二变压器T2的第三端与所述第十二极管D10的第一端连接,所述第十二极管D10的第二端与所述安全抱闸电路SBC或所述安全转矩关断电路STO的第二输入端连接,所述第二变压器T2的第二端接等电势点N,第四端接地GND。
需要说明的是,在本实施例中,所述安全抱闸电路SBC或所述安全转矩关断电路STO包括两个输入端,第一输入端和第二输入端,其中两个输入端可以输入相同的低压电信号,然而在一些特殊的情况下,可能需要输入不同的低压电信号,此时需要两个不同变压器进行电压转换。当然在安全抱闸电路SBC或安全转矩关断电路STO的第一输入端与第二输入端的需要输入相同的电压,也可以通过两个相同的变压器进行电压转换后分别输入。
在具体实施中,第一变压器T1可以将高压电信号转化为一个待整流升降电信号,然后经过第九二极管D9整流之后得到第一个低压电信号,并将第一个低压电信号通过第一输入端输入至安全抱闸电路SBC或安全转矩关断电路STO,第二变压器T2可以将高压电信号转换为另一个待整流升降电信号,经过第十二极管D10整流后得到第二个低压电信号,并将第二个低压电信号通过第二输入端输入至安全抱闸电路SBC或安全转矩关断电路STO。第二变压器T2的变压过程以及第十二极管D10的整流过程可以参照上述第一变压器T1的变压过程和第九二极管D9的整流过程,在此不再赘述。
在本实施例中提出一种电梯控制器,该电梯控制器在不包括外接低压电源的情况下,通过变压电路和第二整流电路将高压电源提供的高电源电压转换为驱动低压电机所需要的低电源电压,并通过该低电源电压对低压电机进行驱动,从而有效的解决了在采用低压电机控制电路时导致电梯故障率较高的问题。
为实现上述目的,本申请还提出一种电梯,所述电梯包括如上述的电梯控制器和电梯安全回路。该电梯控制器的具体结构参照上述实施例,由于电梯采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有功能,在此不再一一赘述。
此外,所述电梯安全回路包括:控制柜急停继电器S1、若干个厅门锁继电器S2以及主板继电器S3;
其中,所述控制柜急停继电器S1的第一端与所述高压电源AC连接,所述控制柜急停继电器S1的第二端与相互串联的所述厅门锁继电器S2的第一端连接,所述相互串联的所述厅门锁继电器S2的第二端与所述主板继电器S3的第一端连接,所述主板继电器的第二端S3与所述高压转换卡20连接。
需要说明的是,电梯控制柜是把各种电子器件和电器元件安装在一个有安全防护作用的柜形结构内的电控装置。控制柜急停继电器S1是控制电梯控制柜与高压电源之间连接的继电器,在发生特殊情况时,控制柜急停继电器S1可以断开高压电源与电梯控制柜之间的连接,从而实现对电梯控制柜内的各种电子器件和电器元件的保护。厅门是在各个楼层安装的电梯的门,同一台电梯在每层楼都有一道这样的厅门,有多少层楼,就有多少道厅门,厅门的位置是固定在每层楼无法进行移动的。每层楼厅门的结构和门锁都是一样的,厅门的锁和轿门锁是根据电梯按钮信号自动连动打开和关闭的。厅门锁继电器S2是设置为控制厅门打开或关闭的继电器。每个厅门都对应一个厅门所继电器S2,厅门锁继电器的具体数目根据厅门的数目决定。电梯主板是设置为对电梯的整个运行过程进行控制的板。无论是电梯上行、下行、封星、抱闸等过程的运行,都需要主板提供相应的电信号对电梯电机进行控制。主板继电器S3是设置为控制高压电源与电梯主板之间连接的继电器。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种电梯控制器,包括安全控制电路,以及安全抱闸电路和/或安全转矩关断电路;
    所述安全控制电路的输入端与电梯安全回路连接;
    所述安全控制电路的输出端与所述安全抱闸电路和/或所述安全转矩关断电路输入端连接;
    所述安全控制电路,设置为将来源于所述电梯安全回路的高压电信号转换为所述安全抱闸电路和/或所述安全转矩关断电路所需的电源信号或控制信号。
  2. 如权利要求1所述电梯控制器,其中,所述安全控制电路包括:第一整流电路和开关电路;
    其中,所述第一整流电路与所述电梯安全回路以及所述开关电路连接,所述开关电路分别与一低压电源以及所述安全抱闸电路或所述安全转矩关断电路连接;
    所述第一整流电路,设置为将所述高压电信号进行信号整流获得整流电信号,并将所述整流电信号发送至所述开关电路;
    所述开关电路,设置为接收所述整流电信号并生成控制信号,并根据所述控制信号控制所述低压电源与所述安全抱闸电路和/或所述安全转矩关断电路的连接。
  3. 如权利要求2所述电梯控制器,其中,所述第一整流电路包括:抱闸整流电路和升降整流电路;所述开关电路包括:抱闸开关电路和升降开关电路;
    其中,所述抱闸整流电路与所述电梯安全回路以及所述抱闸开关电路连接,所述抱闸开关电路分别与所述低压电源以及所述安全抱闸电路连接;
    所述升降整流电路与所述电梯安全回路以及所述升降开关电路连接,所述升降开关电路分别与所述低压电源以及所述安全转矩关断电路连接;
    所述抱闸整流电路,设置为将所述高压电信号进行信号整流获得整流抱闸电信号,并将所述整流抱闸电信号发送至所述抱闸开关电路;
    所述抱闸开关电路,设置为接收所述整流抱闸电信号生成抱闸控制信号,并根据所述抱闸控制信号控制所述低压电源与所述安全抱闸电路之间的连接;
    所述升降整流电路,设置为将所述高压电信号进行信号整流获得整流升降电信号,并将所述整流升降电信号发送至所述升降开关电路;
    所述升降开关电路,设置为接收所述整流升降电信号并生成升降控制信号,并根据所述升降控制信号控制所述低压电源与所述安全转矩关断电路之间的连接。
  4. 如权利要求2所述电梯控制器,其中,所述高压转换电路包括:第一电阻、第二电阻、第一二极管、第二二极管、第三二极管及第四二极管、第一光电耦合器以及第一三极管;
    其中,所述第一电阻的第一端与所述电梯安全回路连接,所述第一电阻的第二端分别与所述第一二极管的第一端以及所述第四二极管的第二端连接,所述第一二极管的第二端与所述第二二极管的第二端以及所述第一光电耦合器的第一端连接,所述第二二极管的第一端分别与所述第三二极管的第二端以及所述第二电阻的第一端连接,所述第三二极管的第一端分别与所述第四二极管的第一端以及所述第一光电耦合器的第二端连接,所述第一光电耦合器的第三端与所述第一三极管的集电极以及所述低压电源连接,所述第一光电耦合器的第四端与所述第一三极管的基极连接,所述第一三极管的发射极与安全抱闸电路和/或所述安全转矩关断电路的输入端连接。
  5. 如权利要求2所述电梯控制器,其中,所述高压转换电路包括:第一电阻、第二电阻、第三电阻及第四电阻、第一二极管、第二二极管、第三二极管、第四二极管、第五二极管、第六二极管、第七二极管及第八二极管、第一光电耦合器及第二光电耦合器、以及第一三极管及第二三极管;
    其中,所述第一电阻的第一端与所述电梯安全回路连接,所述第一电阻的第二端分别与所述第一二极管的第一端以及所述第四二极管的第二端连接,所述第一二极管的第二端与所述第二二极管的第二端以及所述第一光电耦合器的第一端连接,所述第二二极管的第一端分别与所述第三二极管的第二端以及所述第二电阻的第一端连接,所述第三二极管的第一端分别与所述第四二极管的第一端以及所述第一光电耦合器的第二端连接,所述第一光电耦合器的第三端与所述第一三极管的集电极以及所述低压电源连接,所述第一光电耦合器的第四端与所述第一三极管的基极连接,所述第一三极管的发射极与所述安全抱闸电路或所述安全转矩关断电路的第一输入端连接;第三电阻的第一端与所述电梯安全回路连接,所述第三电阻的第二端分别与所述第五二极管的第一端以及所述第八二极管的第二端连接,所述第五二极管的第二端与所述第六二极管的第二端以及所述第二光电耦合器的第一端连接,所述第六二极管的第一端分别与所述第七二极管的第二端以及所述第四电阻的第一端连接,所述第七二极管的第一端分别与所述第八二极管的第一端以及所述第二光电耦合器的第二端连接,所述第二光电耦合器的第三端与所述第二三极管的集电极以及所述低压电源连接,所述第二光电耦合器的第四端与所述第二三极管的基极连接,所述第二三极管的发射极与所述安全抱闸电路或所述安全转矩关断电路的第二输入端连接。
  6. 如权利要求1所述电梯控制器,其中,所述安全控制电路还包括:变压电路和第二整流电路;
    其中,所述变压电路与所述电梯安全回路以及所述第二整流电路连接,所述第二整流电路与所述安全抱闸电路和/或所述安全转矩关断电路连接;
    所述变压电路,设置为将所述高压电信号进行电压转换获得待整流电信号,并将所述待整流电信号发送至所述第二整流电路;
    所述第二整流电路,设置为将所述待整流电信号进行整流获得低压电信号,并将所述低压电信号发送至所述安全抱闸电路和/或所述安全转矩关断电路。
  7. 如权利要求6所述电梯控制器,其中,所述变压电路包括:抱闸变压电路和升降变压电路;所述第二整流电路包括:抱闸整流电路和升降整流电路;
    其中,所述升降变压电路与所述电梯安全回路以及所述升降整流电路连接,所述升降整流电路与所述安全转矩关断电路连接;所述抱闸变压电路与所述电梯安全回路以及所述抱闸整流电路连接,所述抱闸整流电路与所述安全抱闸电路连接;
    所述升降变压电路,设置为将所述高压电信号进行电压转换获得待整流升降电信号,并将所述待整流升降电信号发送至所述升降整流电路;
    所述升降整流电路,设置为将所述待整流升降电信号进行整流获得低压升降电信号,并将所述低压升降电信号发送至所述安全转矩关断电路;
    所述抱闸变压电路,设置为将所述高压电信号进行电压转换获得待整流抱闸电信号,并将所述待整流抱闸电信号发送至所述抱闸整流电路;
    所述抱闸整流电路,设置为将所述待整流抱闸电信号进行整流获得低压抱闸电信号,并将所述低压抱闸电信号发送至所述安全抱闸电路。
  8. 如权利要求6所述电梯控制器,其中,所述变压电路包括:第一变压器;所述第二整流电路包括:第九二极管;
    其中,所述第一变压器的第一端与所述电梯安全回路连接,所述第一变压器的第三端与所述第九二极管的第一端连接,所述第九二极管的第二端与所述安全抱闸电路和/或所述安全转矩关断电路的第一输入端以及第二输入端连接,所述第一变压器的第二端接等电势点,所述第一变压器的第四端接地。
  9. 如权利要求6所述电梯控制器,其中,所述变压电路包括:第一变压器及第二变压器;所述第二整流电路包括:第九二极管及第十二极管;
    其中,第一变压器的第一端与所述电梯安全回路连接,所述第一变压器的第三端与所述第九二极管的第一端连接,所述第九二极管的第二端与所述安全抱闸电路和/或所述安全转矩关断电路的第一输入端连接,所述第一变压器的第二端接等电势点,所述第一变压器的第四端接地;
    所述第二变压器的第一端与所述电梯安全回路连接,所述第二变压器的第三端与所述第十二极管的第一端连接,所述第十二极管的第二端与所述安全抱闸电路和/或所述安全转矩关断电路的第二输入端连接,所述第二变压器的第二端接等电势点,所述第二变压器的第四端接地。
  10. 一种电梯,所述电梯包括电梯安全回路和如权利要求1~9任一项所述的电梯控制器,所述电梯安全回路包括多个开关,且所述电梯安全回路的输入端与高压电信号连接、所述电梯安全回路的输出端与所述安全控制电路的输入端连接。
PCT/CN2022/091193 2021-12-30 2022-05-06 电梯控制器及电梯 WO2023123793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22913089.3A EP4421014A1 (en) 2021-12-30 2022-05-06 Elevator controller and elevator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111680759.5 2021-12-30
CN202111680759.5A CN114275640B (zh) 2021-12-30 2021-12-30 电梯控制器及电梯

Publications (1)

Publication Number Publication Date
WO2023123793A1 true WO2023123793A1 (zh) 2023-07-06

Family

ID=80879906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091193 WO2023123793A1 (zh) 2021-12-30 2022-05-06 电梯控制器及电梯

Country Status (3)

Country Link
EP (1) EP4421014A1 (zh)
CN (1) CN114275640B (zh)
WO (1) WO2023123793A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114275640B (zh) * 2021-12-30 2024-08-09 苏州汇川控制技术有限公司 电梯控制器及电梯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240411A1 (en) * 2009-03-12 2011-10-06 Shijiazhuang Wulon Brake Co., Ltd Control circuit and control method of elevator braking systems
JP2012143056A (ja) * 2010-12-28 2012-07-26 Fuji Electric Co Ltd エレベータ用電源装置
CN104355195A (zh) * 2014-10-27 2015-02-18 中山市卓梅尼控制技术有限公司 安全扭矩关断功能电路和电梯安全控制系统
CN108821044A (zh) * 2018-05-30 2018-11-16 苏州汇川技术有限公司 抱闸控制电路及电梯系统
CN109264517A (zh) * 2018-11-20 2019-01-25 日立楼宇技术(广州)有限公司 一种电梯制动控制装置和方法
CN113677611A (zh) * 2019-03-29 2021-11-19 因温特奥股份公司 用于中断电梯设备的由供电装置供电的驱动机的扭矩生成的安全扭矩切断装置
CN114275640A (zh) * 2021-12-30 2022-04-05 苏州汇川控制技术有限公司 电梯控制器及电梯

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517934B (zh) * 2013-09-27 2018-01-02 三菱电机株式会社 电梯的控制装置
CN204185175U (zh) * 2014-09-25 2015-03-04 苏州伟创电气设备技术有限公司 一种高可靠性抱闸控制装置及施工升降机
CN207581083U (zh) * 2017-08-30 2018-07-06 苏州汇川技术有限公司 抱闸电路及电梯控制系统
EP3457555B1 (en) * 2017-09-19 2022-08-03 KONE Corporation Transport conveyor drive
CN107840219B (zh) * 2017-11-21 2024-09-27 广州广日电气设备有限公司 抱闸线圈控制电路、方法、抱闸控制电源设备及电梯
EP3617110B1 (en) * 2018-08-30 2022-02-23 KONE Corporation Elevator motor drive including safety control of elevator in case of power failure
CN109534111B (zh) * 2018-11-20 2021-12-10 日立楼宇技术(广州)有限公司 一种电梯安全控制系统及方法
CN109399484B (zh) * 2018-11-20 2021-01-19 日立楼宇技术(广州)有限公司 一种制动控制装置和方法
CN212012500U (zh) * 2020-03-19 2020-11-24 宁波安信数控技术有限公司 安全转矩关断电路
CN111232776A (zh) * 2020-03-25 2020-06-05 沈阳市蓝光自动化技术有限公司 一种输出电压斜坡起动的抱闸控制装置及方法
CN111453637B (zh) * 2020-03-31 2021-12-21 苏州汇川技术有限公司 电梯抱闸控制方法、系统、设备及计算机可读存储介质
CN212374647U (zh) * 2020-03-31 2021-01-19 苏州汇川技术有限公司 电梯快速停机系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240411A1 (en) * 2009-03-12 2011-10-06 Shijiazhuang Wulon Brake Co., Ltd Control circuit and control method of elevator braking systems
JP2012143056A (ja) * 2010-12-28 2012-07-26 Fuji Electric Co Ltd エレベータ用電源装置
CN104355195A (zh) * 2014-10-27 2015-02-18 中山市卓梅尼控制技术有限公司 安全扭矩关断功能电路和电梯安全控制系统
CN108821044A (zh) * 2018-05-30 2018-11-16 苏州汇川技术有限公司 抱闸控制电路及电梯系统
CN109264517A (zh) * 2018-11-20 2019-01-25 日立楼宇技术(广州)有限公司 一种电梯制动控制装置和方法
CN113677611A (zh) * 2019-03-29 2021-11-19 因温特奥股份公司 用于中断电梯设备的由供电装置供电的驱动机的扭矩生成的安全扭矩切断装置
CN114275640A (zh) * 2021-12-30 2022-04-05 苏州汇川控制技术有限公司 电梯控制器及电梯

Also Published As

Publication number Publication date
CN114275640A (zh) 2022-04-05
CN114275640B (zh) 2024-08-09
EP4421014A1 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
CN207684680U (zh) 抱闸线圈控制电路、抱闸控制电源设备及电梯
US20130133987A1 (en) Electricity supply apparatus and an elevator system
CN107840219A (zh) 抱闸线圈控制电路、方法、抱闸控制电源设备及电梯
WO2023123793A1 (zh) 电梯控制器及电梯
WO2023241424A1 (zh) 电梯抱闸控制电路及电梯
CN109292571A (zh) 一种同异步电梯通用多功能安全电路板
CN109095298B (zh) 电梯系统
CN201608640U (zh) 电梯节能电源板及包含该电源板的电梯控制系统
RU2828687C2 (ru) Контроллер лифта и лифт
CN207608159U (zh) 多功能电梯应急装置
CN106814684A (zh) 基于plc控制的高速升降机控制系统
CN212374647U (zh) 电梯快速停机系统
CN115685824A (zh) 升降设备控制系统和升降设备
CN213243549U (zh) 一种新型施工升降梯变频器抱闸供电系统
CN102119433B (zh) 电动机械自动转换开关、电路、及其制造方法
CN112398411B (zh) 变频电子设备、控制装置及其驱动方法
CN211141199U (zh) 一种电梯远程救援装置
CN110482349B (zh) 一种基于智能制动电梯的控制方法
CN107346884B (zh) 一种两段直流母线隔离转换供电系统
CN209976308U (zh) 一种高安全性的门机安全链控制系统
CN221305510U (zh) 一种有轨电车供电电路
CN111342708A (zh) 双驱提升机的电气联锁控制系统
CN114890256B (zh) 基于pessral的电梯抱闸控制电路及电梯设备
CN215990308U (zh) 一种交流双电源的切换装置
CN112099404B (zh) 一种用于机器人的安全控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022913089

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022913089

Country of ref document: EP

Effective date: 20240524

WWE Wipo information: entry into national phase

Ref document number: 202427043369

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE