WO2023123619A1 - 一种组合式低阻抗微波消融传输组件及其阻抗匹配方法 - Google Patents

一种组合式低阻抗微波消融传输组件及其阻抗匹配方法 Download PDF

Info

Publication number
WO2023123619A1
WO2023123619A1 PCT/CN2022/076132 CN2022076132W WO2023123619A1 WO 2023123619 A1 WO2023123619 A1 WO 2023123619A1 CN 2022076132 W CN2022076132 W CN 2022076132W WO 2023123619 A1 WO2023123619 A1 WO 2023123619A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
cable
impedance
negative pressure
coaxial cable
Prior art date
Application number
PCT/CN2022/076132
Other languages
English (en)
French (fr)
Inventor
刘文捷
刘芳
刘中一
Original Assignee
南京臻泰微波科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111676328.1A external-priority patent/CN114246672A/zh
Priority claimed from CN202123427239.1U external-priority patent/CN217593051U/zh
Application filed by 南京臻泰微波科技有限公司 filed Critical 南京臻泰微波科技有限公司
Publication of WO2023123619A1 publication Critical patent/WO2023123619A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves

Definitions

  • the invention relates to a combined low-impedance microwave ablation transmission component and an impedance matching method thereof, belonging to the technical field of microwave surgery equipment.
  • Microwave ablation has become one of the important methods for the treatment of solid tumor tissues.
  • Microwave ablation uses a microwave ablation needle to release microwave energy to the tumor tissue.
  • the polar molecules (mostly water) in the tumor tissue rotate at a high speed under the action of the microwave field to rapidly generate heat and reach a higher temperature, causing tissue dehydration. , coagulation, and protein denaturation, so that the tumor tissue is inactivated and loses its ability to proliferate, so as to achieve the purpose of treatment.
  • microwave energy transmission theory in order to improve the power transmission efficiency, it is necessary to ensure that the characteristic impedance of the entire microwave energy transmission channel is as consistent as possible. Due to the particularity of microwave transmission equipment, whether it is microwave power generators, microwave transmission cables, microwave component connectors or microwave test loads, industry standards have been formed, and the most commonly used characteristic impedance is 50 ohms.
  • the characteristic impedance of tumor tissue as a microwave load is not 50 ohms, and the characteristic impedance of the host microwave output interface, transmission cable, and microwave connector of all microwave ablation equipment is 50 ohms. equipment to this characteristic impedance.
  • This kind of application is bound to form microwave energy reflection in the transmission channel, especially in the range of the ablation needle needle.
  • the microwave transmission efficiency is low.
  • the local standing wave formed by the reflected wave is very large, causing the temperature of the needle rod to rise sharply, and even breakdown the insulation and burnt the ablation needle, causing accidents.
  • the needles of some products fall off have a great relationship with this factor.
  • the tissue thermocoagulator in the body should have needle rod cooling measures and a needle rod or refrigerant temperature detection device to prevent non-surgical tissue burns caused by rod temperature exceeding the standard.
  • the products use physiological saline as the cooling medium of the ablation needle rod. It is necessary to connect the water inlet and return pipes, the detection circuit, and the microwave transmission cable separately. Because there are too many various pipelines, they are easily intertwined and involved during the operation, which is extremely inconvenient.
  • the present invention proposes a combined low-impedance microwave ablation transmission cable and its impedance matching method, which are used to connect a microwave power generator equipped with a cold air generating device and a low-impedance microwave ablation needle using air cooling to improve the
  • the transmission efficiency of microwave power simplifies the pipelines that need to be connected to the ablation needle, and achieves the purpose of improving the efficiency of microwave ablation surgery.
  • a combined low-impedance microwave ablation transmission assembly including a host output interface 1-1, a composite cable connector 2-1 and a composite cable
  • the host output interface is fixed on a microwave power generator, including a microwave Coaxial cable connection jack 1101, signal cable connection jack 1102, cold air output pipe jack 1103, negative pressure pipe jack 1104 and the plastic insulating base for fixing the components
  • the composite cable connector is fixed on both sides of the composite cable end, including a microwave coaxial cable connection plug 2101, a signal cable connection pin 2102, a cold air pipe plug 2103, a negative pressure pipe plug 2104, and a plastic insulating base for fixing the components
  • the composite cable connector at the other end is connected to the input interface of the microwave ablation needle
  • the composite cable includes the outer conductor 2211 of the microwave coaxial cable, the insulator 2212 of the microwave coaxial cable, the inner conductor 2213 of the microwave coaxial cable, and the signal Cable 222, cold air pipe 223, negative pressure pipe 224, air nozzle 22
  • the length of the composite cable and the ratio of the radial dimensions of the inner and outer conductors are adjustable.
  • the signal cable 222 is made of a double-sided circuit board with a polyimide base material, the overall thickness is 0.2-0.5mm, one side is full of copper, and the other side is corroded into uniformly distributed and insulated wires; the full copper surface is attached to the microwave coaxial cable
  • the outer conductor 2211 is rolled into a cylindrical surface, and glued together with an adhesive to form a whole with the outer conductor 2211 of the microwave coaxial cable. Electrical connections.
  • the cooling medium transmission pipeline includes a cold air pipeline, a negative pressure pipeline and a transition hose between it and the composite cable connector, and an air nozzle.
  • the cooling medium transmission pipeline adopts a flexible plastic tube, which is also used as the outer sheath of the composite cable, and a gap of 0.5 to 1 mm is formed between the inner wall of the pipeline and the outer wall of the negative pressure pipeline 224 as a circulation channel for cold air; the cold air pipeline 223
  • the two ends of the tube are sealed with adhesive, and are respectively provided with the air nozzle 2231 connected to the cold air pipe at the host end and the air nozzle 2232 connected to the cold air pipe at the ablation needle end, and the cold air pipe connected to the air nozzle 2231 at the host end is connected to the composite cable at the host end through a hose
  • the cold air pipe plug 2103 of the ablation needle end is connected with the cold air pipe plug 2103 of the head, and the cold air pipe connection nozzle 2232 of the ablation needle end is connected with the cold air pipe plug of the composite cable connection head of the ablation needle end through a hose.
  • the negative pressure pipeline adopts a flexible plastic tube, and a gap of 0.5 to 1 mm is formed between its inner wall and the outer surface of the signal cable 222 as a suction channel for the negative pressure device.
  • the negative pressure pipe plug 2104 of the composite cable connector at the host end is connected, and the negative pressure pipe connection gas nozzle 2242 at the ablation needle end is connected with the negative pressure pipe plug of the composite cable connector at the ablation needle end through a hose.
  • the flexible plastic pipe is PFA, FEP or PVC.
  • the outer conductor 2211 of the microwave coaxial cable is wound with copper foil tape or braided with tinned copper wire
  • the insulator 2212 of the microwave coaxial cable is made of low-density PTFE material
  • the inner conductor 2213 of the microwave coaxial cable is made of silver-plated copper wire or silver-plated copper wire. Steel wire.
  • the impedance matching between the low-impedance microwave ablation needle and the microwave power generator is realized by controlling the length of the composite cable and the ratio of the radial dimensions of the inner and outer conductors.
  • the specific method includes the following steps:
  • the output impedance of the host is Z 0
  • the input impedance of the microwave ablation needle is Z 1
  • the characteristic impedance of the microwave coaxial cable 221 is Z;
  • 1 is a microwave power generator
  • 1-1 is a microwave output interface
  • 2 is a microwave transmission cable
  • 3 is a microwave ablation needle
  • 3-1 is a microwave input interface of the ablation needle handle
  • 4 is a tumor tissue.
  • 1101 is a microwave coaxial cable connection jack
  • 1102 is a signal cable connection jack
  • 1103 is a cold air output pipe jack
  • 1104 is a negative pressure pipe jack.
  • 2101 is the microwave coaxial cable connection plug
  • 2102 is the signal cable connection pin
  • 2103 is the cold air pipe plug
  • 2104 is the negative pressure pipe plug.
  • 221 is microwave coaxial cable
  • 2211 microwave coaxial cable outer conductor 2212 microwave coaxial cable insulator
  • 2213 microwave coaxial cable inner conductor 222 is signal cable
  • 223 is cold air pipe
  • 224 is negative pressure pipe
  • 2241 is The negative pressure pipe at the host end is connected to the air nozzle
  • 2242 is the negative pressure pipe at the ablation needle end is connected to the air nozzle
  • 2231 is the cold air pipe at the host end connected to the air nozzle
  • 2232 is the cold air pipe at the ablation needle end connected to the air nozzle.
  • 2221 is the base material of the signal cable flexible circuit board
  • 2222 is the copper foil surface of the signal cable flexible circuit board
  • 2223 is the wire surface of the signal cable flexible circuit board.
  • microwave energy transmission path microwave power generator (host) ⁇ microwave transmission cable ⁇ microwave ablation needle ⁇ tumor tissue.
  • This application provides a combined low-impedance microwave ablation transmission cable, which is used to connect a microwave power generator equipped with a cold air generating device and a low-impedance microwave ablation needle using air cooling, so as to improve the transmission efficiency of the host microwave power and simplify the
  • the ablation needle needs to be connected to the pipeline to achieve the purpose of improving the efficiency of microwave ablation surgery.
  • the host output interface is fixed on the host, including a microwave coaxial cable connection jack, a signal cable connection jack, a cold air output duct jack, a negative pressure duct jack, and a plastic insulating base for fixing these components.
  • Composite cable connectors are fixed at both ends of the composite cable, including microwave coaxial cable connection plugs, signal cable connection pins, cold air pipe plugs, negative pressure pipe plugs, and plastic insulating bases for fixing these components.
  • the composite cable connector at one end is connected to the output interface of the host computer, and the composite cable connector at the other end is connected to the input interface of the microwave ablation needle.
  • the composite cable connection includes microwave transmission channels, signal transmission lines and cooling medium transmission pipes.
  • the microwave transmission channel is composed of an outer conductor, an insulator, and an inner conductor.
  • the impedance matching between the low input impedance microwave ablation needle and the microwave power generator (host) is realized by controlling the length of the composite cable and the ratio of the radial dimension of the inner and outer conductors.
  • the signal transmission line is made of double-sided circuit board with polyimide base material, which is wound on the outer conductor of the microwave coaxial cable, and the full copper surface is attached to the outer conductor of the microwave coaxial cable to form a shielding layer.
  • the wire faces outward to reduce the interference of the microwave coaxial cable leaking microwave on the signal.
  • the cooling medium transmission pipeline includes the cold air pipeline, the negative pressure pipeline and the transfer hose between it and the composite cable connector, and the air nozzle.
  • the cooling medium transmission pipe adopts flexible plastic pipes such as PFA, FEP, PVC, and also serves as the outer sheath of the composite cable.
  • a gap of 0.5-1 mm is formed between the inner wall and the outer wall of the negative pressure pipe 224 as a circulation channel for cold air.
  • the two ends of the cold air pipeline 223 are closed with adhesive, and are respectively provided with the air nozzle 2231 connected to the cold air pipeline at the host end and the air nozzle 2232 connected to the cold air pipeline at the ablation needle end.
  • the cold air pipe plug 2103 of the composite cable connector (2-1) at the host end is connected, and the cold air pipe at the ablation needle end is connected to the air nozzle 2232 through the hose and the cold air pipe plug of the composite cable connector (3-1) at the ablation needle end. connected.
  • Negative pressure pipes adopt flexible plastic pipes such as PFA, FEP, PVC.
  • a gap of 0.5-1 mm is formed between the inner wall of the signal cable 222 and the outer surface of the signal cable 222 to serve as a suction channel for the negative pressure device.
  • the air nozzle 2241 connected to the negative pressure pipeline at the host end is connected to the negative pressure pipeline plug 2104 of the composite cable connector (2-1) at the host end through a hose, and the negative pressure pipeline connection nozzle 2242 at the ablation needle end is combined with the ablation needle end through a hose
  • the negative pressure pipe plug of the cable connector (3-1) is connected.
  • the host output interface (1-1) is fixed on the microwave power generator (host), and belongs to the integrated combined connector of microwave, signal and gas. It includes a microwave coaxial cable connection jack 1101 at the center of the connector, signal cable connection jacks 1102 distributed around the microwave coaxial cable connection jack 1101, a cold air output duct jack 1103, and a negative pressure duct jack 1104 And the plastic insulating base that fixes these jack parts.
  • the microwave coaxial cable connection jack 1101 adopts an industrial standard 50 ohm hole-type plug-in radio frequency connector, and is connected with the microwave output coaxial cable of the microwave power generator in the host. Used to output microwaves to the microwave ablation needle.
  • the signal cable connection jack 1102 adopts a brass hole structure, and each terminal is connected with the corresponding power terminal and signal input and output terminal of the monitoring circuit in the host. Used to connect the sensor circuit inside the microwave ablation needle.
  • the cold air output pipe jack 1103 is made of plastic material, and is integrally formed when the insulating base is injected. Connect with the output pipe of the cold air generator in the host. It is used to output the cooling medium to the microwave ablation needle.
  • the negative pressure pipe socket 1104 is made of plastic material, and is integrally formed when the insulating base is injected. Connect with the suction pipe of the negative pressure generator in the host. Used to create a negative pressure on the microwave ablation needle cooling circuit.
  • each functional component is connected with the built-in functional component of the microwave ablation needle.
  • the connectors of the composite cable are fixed at both ends of the composite cable (2), the connector at one end of the composite cable is connected to the host output interface (1-1) of the microwave power generator (host), the other end of the composite cable
  • the connecting head is connected with the ablation needle input interface (3-1).
  • the matching style and size of the composite cable connector (2-1) are complementary to the corresponding structure of the host output interface (1-1), so as to realize the plug-in connection between the two. It includes a microwave coaxial cable connection plug 2101 at the center of the connector, signal cable connection pins 2102 distributed on the periphery of the microwave coaxial cable connection plug 2101, a cold air output duct hollow pin 2103, and a negative pressure duct hollow pin 2104 And the plastic insulating base that fixes these jack parts.
  • the microwave coaxial cable connection plug 2101 adopts an industrial standard 50 ohm pin-type plug-in radio frequency connector, and is connected with the microwave coaxial cable 221 in the composite cable. Used to deliver microwaves to microwave ablation needles.
  • the signal cable connection pin 2102 adopts a brass pin structure, and each terminal is connected with the wire on the outer surface of the signal cable 222 in the composite cable. Used to deliver power and signal transmission to the sensor circuit inside the microwave ablation needle.
  • the hollow pin 2103 of the cold air output duct is made of plastic material, and is integrally formed when the insulating base is injected. It is used to output the cooling medium to the microwave ablation needle.
  • the hollow pin 2104 of the negative pressure pipeline is made of plastic material, and is integrally formed when the insulating base is injected. Used to create a negative pressure on the microwave ablation needle cooling circuit.
  • the composite cable is composed of the following components from inside to outside: microwave coaxial cable outer conductor 2211, microwave coaxial cable insulator 2212, microwave coaxial cable inner conductor 2213, signal cable 222, cold air duct 223 , Negative pressure pipeline 224, host end cold air pipeline connecting gas nozzle 2231, ablation needle end cold air pipeline connecting gas nozzle 2232, host end negative pressure pipeline connecting gas nozzle 2241, ablation needle end negative pressure pipeline connecting gas nozzle 2242.
  • the outer conductor 2211 of the microwave coaxial cable is wound with copper foil tape or braided with tinned copper wire
  • the insulator 2212 of the microwave coaxial cable is made of low-density PTFE material
  • the inner conductor 2213 of the microwave coaxial cable is made of silver-plated copper wire or silver-plated copper-clad steel wire . This structure can maintain good flexibility of the cable.
  • the signal cable 222 is made of double-sided circuit board with polyimide substrate, and the overall thickness is 0.2-0.5 mm. One side is full of copper, and one side is corroded into evenly distributed and insulated wires, as shown in Figures 5 and 6. Attach the full copper surface to the outer conductor 2211 of the microwave coaxial cable and roll it into a cylindrical surface, and glue the seams together with the outer conductor 2211 of the microwave coaxial cable to form a whole, wherein the full copper surface acts as the outer conductor 2211 of the microwave coaxial cable the role of the shielding layer.
  • the outer peripheral wires of the signal cable 222 are respectively electrically connected to the corresponding terminals of the signal cable connection pins 2102 in the composite cable connector (2-1).
  • the cold air duct 223 adopts a flexible plastic tube such as PFA, FEP, PVC, which is also used as the outer sheath of the composite cable.
  • a gap of 0.5-1 mm is formed between the inner wall and the outer wall of the negative pressure pipe 224 as a circulation channel for cold air.
  • the two ends of the cold air pipeline 223 are closed with adhesive, and are respectively provided with the air nozzle 2231 connected to the cold air pipeline at the host end and the air nozzle 2232 connected to the cold air pipeline at the ablation needle end.
  • the cold air pipe plug 2103 of the composite cable connector (2-1) at the host end is connected, and the cold air pipe at the ablation needle end is connected to the air nozzle 2232 through the hose and the cold air pipe plug of the composite cable connector (3-1) at the ablation needle end. connected.
  • Negative pressure pipeline 224 adopts flexible plastic pipe such as PFA, FEP, PVC.
  • a gap of 0.5-1 mm is formed between the inner wall of the signal cable 222 and the outer surface of the signal cable 222 to serve as a suction channel for the negative pressure device.
  • the air nozzle 2241 connected to the negative pressure pipeline at the host end is connected to the negative pressure pipeline plug 2104 of the composite cable connector (2-1) at the host end through a hose, and the negative pressure pipeline connection nozzle 2242 at the ablation needle end is combined with the ablation needle end through a hose
  • the negative pressure pipe plug of the cable connector (3-1) is connected.
  • the microwave coaxial cable connection jack 1101 in the host output interface (1-1) and the microwave coaxial cable connection plug 2101 in the composite cable connector (2-1) at the host end still adopt industrial standard 50 ⁇ characteristic impedance microwave
  • the connector therefore utilizes the microwave coaxial cable 221 in the composite cable (2-1) to achieve impedance matching between the host and the microwave ablation needle.
  • Step 1 Determine the characteristic impedance of the microwave coaxial cable 221 .
  • the output impedance of the host is Z 0 , which is a known quantity of 50 ⁇ .
  • the input impedance of the microwave ablation needle is Z 1 , which is a known quantity and assumed to be 30 ⁇ .
  • the characteristic impedance of the microwave coaxial cable 221 is Z.
  • Step 2 Determine the length of the microwave coaxial cable 221 .
  • the transmission speed of electromagnetic wave in vacuum is c, which is 299792458m/s.
  • the dielectric constant of the microwave coaxial cable insulator 2212 is ⁇ r , which is 1.7.
  • the operating frequency f of the microwave is 2450 MHz, which is a commonly used frequency for microwave ablation, as an example.
  • the wavelength ⁇ of the microwave in the microwave coaxial cable 221 is the wavelength ⁇ of the microwave in the microwave coaxial cable 221 .
  • the microwave coaxial cable 221 has a length L.
  • the third step the radial dimension of the microwave coaxial cable insulator 2212.
  • the inner diameter is d
  • the outer diameter is D
  • D 1.16mm, that is, the outer diameter of the insulator 2212 of the microwave coaxial cable, that is, the inner diameter of the outer conductor 2211 of the microwave coaxial cable.
  • the thickness of the signal cable 222 is selected to be 0.3mm.
  • the gap of the negative pressure pipeline is selected as 0.8mm
  • the wall thickness of the negative pressure pipeline 224 is selected as 0.2mm.
  • the gap of the cold air pipe is selected as 0.8mm
  • the wall thickness of the cold air pipe 223 is selected as 0.2mm.
  • the industrial standard flexible microwave outer diameter widely used in microwave ablation equipment is basically more than 5mm. Therefore, the solution realized by the present invention does not increase the size of the connecting cable between the main unit and the ablation needle, and realizes the connection that needs 3 sets of cables in the prior art through a composite cable, which has great clinical application value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种组合式低阻抗微波消融传输组件,包括主机输出接口(1-1)、复合电缆连接头(2-1)和复合电缆(2),主机输出接口(1-1)固定于微波功率发生器(1)上,复合电缆连接头(2-1)固定于复合电缆两端(2),复合电缆(2)连接包括微波传输通道、信号传输线路和冷却介质传输管道。优点:对于低阻抗微波消融针,可以大幅度提高主机输出微波的效率,提高微波消融手术效率。只需要一条复合电缆(2),彻底杜绝了管线交织缠绕的问题,降低临床使用难度。

Description

一种组合式低阻抗微波消融传输组件及其阻抗匹配方法 技术领域
本发明是一种组合式低阻抗微波消融传输组件及其阻抗匹配方法,属于微波手术设备技术领域。
背景技术
微波消融术目前已经成为治疗实体肿瘤组织的重要手段之一。微波消融术是利用微波消融针向肿瘤组织释放微波能,肿瘤组织中的极性分子(大部分是水)在微波场的作用下产生高速旋转而迅速产热达到较高的温度,引起组织脱水、凝固、蛋白变性,从而使肿瘤组织灭活失去增生能力,达到治疗的目的。
根据微波能量传输理论,要提高功率传输效率必须保证整个微波能量传输通道的特性阻抗尽可能一致。由于微波传输器材的特殊性,无论是微波功率发生器、微波传输电缆、微波组件连接器还是微波测试负载,都已经形成了工业标准,最常用的特性阻抗都是50欧姆。
但是作为微波负载的肿瘤组织的特性阻抗并不是50欧姆,而现在所有的微波消融设备的主机微波输出接口、传输电缆、微波连接器的特性阻抗都是50欧姆,主要原因是市场上只能采购到这种特性阻抗的器材。这种应用势必在传输通道内会形成微波能量反射,尤其是在消融针针头范围。轻则造成微波传输效率低下,严重的情况下因反射波形成的局部驻波很大引起针杆温度大幅度上升,甚至击穿绝缘烧毁消融针造成事故。临床应用中部分产品针头脱落与这个因素有极大的关系。
根据行业标准《医用微波设备附件的通用要求》,体内组织热凝器应具有针杆冷却措施以及针杆或者冷媒温度检测装置,防止杆温超标造成非手术部位组织烫伤。目前产品都是采用生理盐水作为消融针杆冷却介质,需要将进回水管道、检测电路、微波传输电缆分别连接,因各种管线太多,手术时容易交织牵扯,极不方便。
目前已经有机构在研制低阻抗微波消融针,但是外围的微波连接电缆、连接 器依然是工业标准的50欧姆特性阻抗,势必会降低微波发射机输出功率效率。也有机构在研制采用手术室内冷空气作为消融针内的冷却介质,使用会更加方便。冷空气的处理和输送需要主机完成。
发明内容
本发明提出的是一种组合式低阻抗微波消融传输电缆及其阻抗匹配方法,用于连接具备冷空气产生装置的微波功率发生器和采用空气冷却方式的低阻抗微波消融针,用以提高主机微波功率的传输效率,简化消融针需要连接的管线,达到提高微波消融手术效率的目的。
本发明的技术解决方案:一种组合式低阻抗微波消融传输组件,包括主机输出接口1-1、复合电缆连接头2-1和复合电缆,主机输出接口固定于微波功率发生器上,包括微波同轴电缆连接插孔1101、信号线缆连接插孔1102、冷空气输出管道插孔1103、负压管道插孔1104和固定所述部件的塑胶绝缘基座,复合电缆连接头固定于复合电缆两端,包括微波同轴电缆连接插头2101、信号线缆连接插针2102、冷空气管道插头2103、负压管道插头2104和固定所述部件的塑胶绝缘基座,一端的复合电缆连接头与主机输出接口相连,另一端的复合电缆连接头与微波消融针的输入接口相连;复合电缆由内向外依次包括微波同轴电缆外导体2211、微波同轴电缆绝缘体2212、微波同轴电缆内导体2213、信号线缆222、冷空气管道223、负压管道224、主机端冷空气管道连接气嘴2231、消融针端冷空气管道连接气嘴2232、主机端负压管道连接气嘴2241、消融针端负压管道连接气嘴2242,复合电缆连接包括微波传输通道、信号传输线路和冷却介质传输管道。
所述复合电缆的长度、内外导体径向尺寸的比例可调。
所述信号线缆222采用聚酰亚胺基材双面电路板制作,整体厚度0.2~0.5mm,一面为满铜,一面腐蚀为均匀分布互相绝缘的导线;满铜面贴向微波同轴电缆外导体2211卷成圆柱面,搭缝用胶粘剂胶结在一起与微波同轴电缆外导体2211形成整体,信号线缆222的外周导线分别与复合电缆连接头中信号线缆连接插针2102对应端子进行电气连接。
所述冷却介质传输管道包括冷空气管道、负压管道及其与复合电缆连接头之间的转接软管、气嘴。
所述冷却介质传输管道采用柔性塑胶管,也作为复合电缆的外护套,在其内壁与负压管道224的外壁之间形成0.5~1mm的间隙,作为冷空气的流通通道;冷空气管道223的两端用胶粘剂封闭,并分别设置有主机端冷空气管道连接气嘴2231、消融针端冷空气管道连接气嘴2232,主机端冷空气管道连接气嘴2231通过软管与主机端复合电缆连接头的冷空气管道插头2103相连,消融针端冷空气管道连接气嘴2232通过软管与消融针端复合电缆连接头的冷空气管道插头相连。
所述负压管道采用柔性塑胶管,其内壁与信号线缆222的外表面之间形成0.5~1mm的间隙,作为负压装置抽气通道,主机端负压管道连接气嘴2241通过软管与主机端复合电缆连接头的负压管道插头2104相连,消融针端负压管道连接气嘴2242通过软管与消融针端复合电缆连接头的负压管道插头相连。
所述柔性塑胶管为PFA、FEP或PVC。
所述微波同轴电缆外导体2211采用铜箔胶带缠绕或者铜丝编制镀锡,微波同轴电缆绝缘体2212采用低密度四氟材料,微波同轴电缆内导体2213采用镀银铜线或者镀银铜包钢丝。
通过控制复合电缆的长度、内外导体径向尺寸的比例实现低阻抗微波消融针与微波功率发生器之间的阻抗匹配,具体方法包括如下步骤:
1)确定微波同轴电缆221的特性阻抗:
Figure PCTCN2022076132-appb-000001
主机的输出阻抗为Z 0,微波消融针的输入阻抗为Z 1,微波同轴电缆221的特性阻抗为Z;
2)确定微波同轴电缆221长度:根据同轴线λ/4阻抗变换原理,只要保证电缆总长度为λ/4的整数倍,电缆整体就作为一个阻抗变换器,由此可得
Figure PCTCN2022076132-appb-000002
电磁波在真空中的传输速度为c,微波同轴电缆绝缘体2212的介电常数为ε r,微波的工作频率f,微波在微波同轴电缆221中的波长λ,微波同轴电缆221长度为L;其中k为正整数,取值取决于需要的电缆长度L;
3)确定微波同轴电缆绝缘体2212径向尺寸:
Figure PCTCN2022076132-appb-000003
内径为d,外径为D。
本发明的有益效果:相对于现有技术的微波消融输出附件而言,本专利只需要一条复合电缆,彻底杜绝了管线交织缠绕的问题,降低临床使用难度。同时大幅度提高主机输出微波的效率,简化消融针需要连接的管线,提高微波消融手术 效率。
附图说明
附图1是微波能量传输路径示意图。
附图2是主机输出接口结构示意图。
附图3是复合电缆连接头结构示意图。
附图4是复合电缆剖面结构示意图。
附图5是信号线缆组合状态结构示意图。
附图6是信号线缆展开状态结构示意图。
图中1是微波功率发生器、1-1是微波输出接口、2是微波传输电缆、3是微波消融针、3-1是消融针手柄微波输入接口、4是肿瘤组织。
1101是微波同轴电缆连接插孔、1102是信号线缆连接插孔、1103是冷空气输出管道插孔、1104是负压管道插孔。
2-1复合电缆连接头、2101是微波同轴电缆连接插头、2102是信号线缆连接插针、2103是冷空气管道插头、2104是负压管道插头。
221是微波同轴电缆、2211微波同轴电缆外导体、2212微波同轴电缆绝缘体、2213微波同轴电缆内导体、222是信号线缆、223是冷空气管道、224是负压管道、2241是主机端负压管道连接气嘴、2242是消融针端负压管道连接气嘴、2231是主机端冷空气管道连接气嘴、2232是消融针端冷空气管道连接气嘴。
2221信号线缆柔性线路板基材、2222是信号线缆柔性线路板铜箔面、2223是信号线缆柔性线路板导线面。
具体实施方式
如附图1所示,微波能量传输路径:微波功率发生器(主机)→微波传输电缆→微波消融针→肿瘤组织。本申请提供一种组合式低阻抗微波消融传输电缆,用于连接具备冷空气产生装置的微波功率发生器和采用空气冷却方式的低阻抗微波消融针,用以提高主机微波功率的传输效率,简化消融针需要连接的管线,达到提高微波消融手术效率的目的。
包括主机输出接口、复合电缆连接头、复合电缆。
主机输出接口固定于主机上,包括微波同轴电缆连接插孔、信号线缆连接插孔、冷空气输出管道插孔、负压管道插孔以及固定这些部件的塑胶绝缘基座。
复合电缆连接头固定于复合电缆两端,包括微波同轴电缆连接插头、信号线缆连接插针、冷空气管道插头、负压管道插头以及固定这些部件的塑胶绝缘基座。一端的复合电缆连接头与主机输出接口相连,另一端的复合电缆连接头与微波消融针的输入接口相连。
复合电缆连接包括微波传输通道、信号传输线路和冷却介质传输管道。
微波传输通道由外导体、绝缘体、内导体组成。通过控制复合电缆的长度、内外导体径向尺寸的比例实现低输入阻抗微波消融针与微波功率发生器(主机)之间的阻抗匹配。
信号传输线路采用采用聚酰亚胺基材双面电路板卷绕在微波同轴电缆外导体,满铜面贴向微波同轴电缆外导体形成屏蔽层作用。导线面朝外减少微波同轴电缆泄漏微波对信号的干扰。
冷却介质传输管道包括冷空气管道、负压管道及其与复合电缆连接头之间的转接软管、气嘴。
冷却介质传输管道采用柔性塑胶管如PFA、FEP、PVC,也作为复合电缆的外护套。在其内壁与负压管道224的外壁之间形成0.5~1mm的间隙,作为冷空气的流通通道。在冷空气管道223的两端用胶粘剂封闭,并分别设置有主机端冷空气管道连接气嘴2231、消融针端冷空气管道连接气嘴2232,主机端冷空气管道连接气嘴2231通过软管与主机端复合电缆连接头(2-1)的冷空气管道插头2103相连,消融针端冷空气管道连接气嘴2232通过软管与消融针端复合电缆连接头(3-1)的冷空气管道插头相连。
负压管道采用柔性塑胶管如PFA、FEP、PVC。在其内壁与信号线缆222的外表面之间形成0.5~1mm的间隙,作为负压装置抽气通道。主机端负压管道连接气嘴2241通过软管与主机端复合电缆连接头(2-1)的负压管道插头2104相连,消融针端负压管道连接气嘴2242通过软管与消融针端复合电缆连接头(3-1)的负压管道插头相连。
下面结合附图对本发明技术方案进一步说明
如附图2所示,主机输出接口(1-1)固定在微波功率发生器(主机),属于微波、信号、气体一体式组合连接器。包括处于连接器中心位置的微波同轴电缆连接插孔1101、分布在微波同轴电缆连接插孔1101外周的信号线缆连接插孔 1102、冷空气输出管道插孔1103、负压管道插孔1104和固定这些插孔零件的塑胶绝缘基座。
微波同轴电缆连接插孔1101采用工业标准50欧姆孔型插拔式射频连接器,在主机内与微波功率发生器的微波输出同轴电缆相连。用于向微波消融针输出微波。
信号线缆连接插孔1102采用黄铜孔式结构,各端子在主机内与监测电路对应的电源端子、信号输入输出端子连接。用于连接微波消融针内的传感器电路。
冷空气输出管道插孔1103采用塑胶材料,在绝缘基座注塑时一体成型。在主机内与冷空气发生器的输出管道连接。用于向微波消融针输出冷却介质。
负压管道插孔1104采用塑胶材料,在绝缘基座注塑时一体成型。在主机内与负压发生器的吸气管连接。用于对微波消融针冷却回路形成负压。
同样的结构也设置在微波消融针手柄上,各功能部件与微波消融针内置功能部件连接。
实施实例:复合电缆连接头
如附图3所示,复合电缆连接头固定在复合电缆(2)的两端,复合电缆一端连接头与微波功率发生器(主机)的主机输出接口(1-1)连接,复合电缆另一端连接头与消融针输入接口(3-1)连接。
复合电缆连接头(2-1)配合样式和尺寸与主机输出接口(1-1)对应结构互补,以实现二者的插入连接。包括处于连接器中心位置的微波同轴电缆连接插头2101、分布在微波同轴电缆连接插头2101外周的信号线缆连接插针2102、冷空气输出管道空心插针2103、负压管道空心插针2104和固定这些插孔零件的塑胶绝缘基座。
微波同轴电缆连接插头2101采用工业标准50欧姆针型插拔式射频连接器,在复合电缆内与微波同轴电缆221相连。用于向微波消融针传送微波。
信号线缆连接插针2102采用黄铜针式结构,各端子在复合电缆内与信号线缆222外表面的导线相连。用于向微波消融针内的传感器电路输送电源和信号传输。
冷空气输出管道空心插针2103采用塑胶材料,在绝缘基座注塑时一体成型。用于向微波消融针输出冷却介质。
负压管道空心插针2104采用塑胶材料,在绝缘基座注塑时一体成型。用于对微波消融针冷却回路形成负压。
实施实例:复合电缆
如附图4所示,复合电缆由内向外依次由以下部件构成:微波同轴电缆外导体2211、微波同轴电缆绝缘体2212、微波同轴电缆内导体2213、信号线缆222、冷空气管道223、负压管道224、主机端冷空气管道连接气嘴2231、消融针端冷空气管道连接气嘴2232、主机端负压管道连接气嘴2241、消融针端负压管道连接气嘴2242。
微波同轴电缆外导体2211采用铜箔胶带缠绕或者铜丝编制镀锡,微波同轴电缆绝缘体2212采用低密度四氟材料,微波同轴电缆内导体2213采用镀银铜线或者镀银铜包钢丝。这种结构可以保持电缆具备较好的柔韧性性。
信号线缆222采用聚酰亚胺基材双面电路板制作,整体厚度0.2~0.5mm。一面为满铜,一面腐蚀为均匀分布互相绝缘的导线,如附图5、6所示。将满铜面贴向微波同轴电缆外导体2211卷成圆柱面,搭缝用胶粘剂胶结在一起与微波同轴电缆外导体2211形成一个整体,其中满铜面起到微波同轴电缆外导体2211的屏蔽层作用。信号线缆222的外周导线分别与复合电缆连接头(2-1)中信号线缆连接插针2102对应端子进行电气连接。
冷空气管道223采用柔性塑胶管如PFA、FEP、PVC,也作为复合电缆的外护套。在其内壁与负压管道224的外壁之间形成0.5~1mm的间隙,作为冷空气的流通通道。在冷空气管道223的两端用胶粘剂封闭,并分别设置有主机端冷空气管道连接气嘴2231、消融针端冷空气管道连接气嘴2232,主机端冷空气管道连接气嘴2231通过软管与主机端复合电缆连接头(2-1)的冷空气管道插头2103相连,消融针端冷空气管道连接气嘴2232通过软管与消融针端复合电缆连接头(3-1)的冷空气管道插头相连。
负压管道224采用柔性塑胶管如PFA、FEP、PVC。在其内壁与信号线缆222的外表面之间形成0.5~1mm的间隙,作为负压装置抽气通道。主机端负压管道连接气嘴2241通过软管与主机端复合电缆连接头(2-1)的负压管道插头2104相连,消融针端负压管道连接气嘴2242通过软管与消融针端复合电缆连接头(3-1)的负压管道插头相连。
实施例1:低阻抗变换
由于主机输出接口(1-1)内的微波同轴电缆连接插孔1101、主机端复合电缆连接头(2-1)内的微波同轴电缆连接插头2101仍然是采用工业标准的50Ω特性阻抗微波连接器,因此利用复合电缆(2-1)内的微波同轴电缆221来实现主机与微波消融针之间的阻抗匹配。
第一步:确定微波同轴电缆221的特性阻抗。
主机的输出阻抗为Z 0,为已知量50Ω。
微波消融针的输入阻抗为Z 1,为已知量,假定为30Ω。
微波同轴电缆221的特性阻抗为Z。
根据同轴线阻抗变换原理,可得
Figure PCTCN2022076132-appb-000004
第二步:确定微波同轴电缆221长度。
设:电磁波在真空中的传输速度为c,为299792458m/s。
微波同轴电缆绝缘体2212的介电常数为ε r,取1.7。
微波的工作频率f,以微波消融常用频率2450MHz为例。
微波在微波同轴电缆221中的波长λ。
微波同轴电缆221长度为L。
根据电磁波在同轴线中传输理论可得
Figure PCTCN2022076132-appb-000005
根据同轴线λ/4阻抗变换原理,只要保证电缆总长度为λ/4的整数倍,那么这个电缆整体就作为一个阻抗变换器。由此可得
Figure PCTCN2022076132-appb-000006
其中k为正整数,取值取决于需要的电缆长度L。
第三步:微波同轴电缆绝缘体2212径向尺寸。
设:内径为d,外径为D
根据公式
Figure PCTCN2022076132-appb-000007
可以得到D≈2.32d。
实施例2:复合电缆径向尺寸
假定选择d=0.5mm,即微波同轴电缆绝缘体2212的内径,也即微波同轴电缆内导体2213的外径。
则D=1.16mm,即微波同轴电缆绝缘体2212的外径,也即微波同轴电缆外 导体2211的内径。
假定微波同轴电缆外导体2211的壁厚为0.1mm,包裹信号线缆222后的外径=1.16+2×0.1+2×0.3=1.96mm。其中信号线缆222厚度选择0.3mm。
包裹负压管道224的外径=1.96+2×(0.8+0.2)=3.96mm。其中负压管道间隙选择0.8mm,负压管道224壁厚选择0.2mm。
包裹冷空气管道223(也就是复合电缆2的护套)的外径=3.96+2×(0.8+0.2)=5.96mm。其中冷空气管道间隙选择0.8mm,冷空气管道223壁厚选择0.2mm。
而微波消融设备目前广泛使用的工业标准柔性微波外径基本上也在5mm以上。故本发明所实现的方案并没有增大主机与消融针之间连接电缆的尺寸,就将现有技术需要3组线缆才能完成的连接通过一条复合电缆就实现了,具有较大的临床应用价值。

Claims (9)

  1. 一种组合式低阻抗微波消融传输组件,其特征是包括主机输出接口(1-1)、复合电缆连接头(2-1)和复合电缆,主机输出接口固定于微波功率发生器上,包括微波同轴电缆连接插孔(1101)、信号线缆连接插孔(1102)、冷空气输出管道插孔(1103)、负压管道插孔(1104)和固定所述部件的塑胶绝缘基座,复合电缆连接头固定于复合电缆两端,包括微波同轴电缆连接插头(2101)、信号线缆连接插针(2102)、冷空气管道插头(2103)、负压管道插头(2104)和固定所述部件的塑胶绝缘基座,一端的复合电缆连接头与主机输出接口相连,另一端的复合电缆连接头与微波消融针的输入接口相连;复合电缆由内向外依次包括微波同轴电缆外导体(2211)、微波同轴电缆绝缘体(2212)、微波同轴电缆内导体(2213)、信号线缆(222)、冷空气管道(223)、负压管道(224)、主机端冷空气管道连接气嘴(2231)、消融针端冷空气管道连接气嘴(2232)、主机端负压管道连接气嘴(2241)、消融针端负压管道连接气嘴(2242),复合电缆连接包括微波传输通道、信号传输线路和冷却介质传输管道。
  2. 根据权利要求1所述的一种组合式低阻抗微波消融传输组件,其特征是所述复合电缆的长度、内外导体径向尺寸的比例可调。
  3. 根据权利要求1所述的一种组合式低阻抗微波消融传输组件,其特征是所述信号线缆(222)采用聚酰亚胺基材双面电路板制作,整体厚度0.2~0.5mm,一面为满铜,一面腐蚀为均匀分布互相绝缘的导线;满铜面贴向微波同轴电缆外导体(2211)卷成圆柱面,搭缝用胶粘剂胶结在一起与微波同轴电缆外导体(2211)形成整体,信号线缆(222)的外周导线分别与复合电缆连接头中信号线缆连接插针(2102)对应端子进行电气连接。
  4. 根据权利要求1所述的一种组合式低阻抗微波消融传输组件,其特征是所述冷却介质传输管道包括冷空气管道、负压管道及其与复合电缆连接头之间的转接软管、气嘴。
  5. 根据权利要求1所述的一种组合式低阻抗微波消融传输组件,其特征是所述冷却介质传输管道采用柔性塑胶管,也作为复合电缆的外护套,在其内壁与负压管道(224)的外壁之间形成0.5~1mm的间隙,作为冷空气的流通通道;冷空气 管道(223)的两端用胶粘剂封闭,并分别设置有主机端冷空气管道连接气嘴(2231)、消融针端冷空气管道连接气嘴(2232),主机端冷空气管道连接气嘴(2231)通过软管与主机端复合电缆连接头的冷空气管道插头(2103)相连,消融针端冷空气管道连接气嘴(2232)通过软管与消融针端复合电缆连接头的冷空气管道插头相连。
  6. 根据权利要求5所述的一种组合式低阻抗微波消融传输组件,其特征是所述负压管道采用柔性塑胶管,其内壁与信号线缆(222)的外表面之间形成0.5~1mm的间隙,作为负压装置抽气通道,主机端负压管道连接气嘴(2241)通过软管与主机端复合电缆连接头的负压管道插头(2104)相连,消融针端负压管道连接气嘴(2242)通过软管与消融针端复合电缆连接头的负压管道插头相连。
  7. 根据权利要求5或6所述的一种组合式低阻抗微波消融传输组件,其特征是所述柔性塑胶管为PFA、FEP或PVC。
  8. 根据权利要求1所述的一种组合式低阻抗微波消融传输组件,其特征是所述微波同轴电缆外导体(2211)采用铜箔胶带缠绕或者铜丝编制镀锡,微波同轴电缆绝缘体(2212)采用低密度四氟材料,微波同轴电缆内导体(2213)采用镀银铜线或者镀银铜包钢丝。
  9. 根据权利要求1或2所述的一种组合式低阻抗微波消融传输组件,其特征是,通过控制复合电缆的长度、内外导体径向尺寸的比例实现低阻抗微波消融针与微波功率发生器之间的阻抗匹配,具体方法包括如下步骤:
    1)确定微波同轴电缆的特性阻抗:
    Figure PCTCN2022076132-appb-100001
    主机的输出阻抗为Z 0,微波消融针的输入阻抗为Z 1,微波同轴电缆221的特性阻抗为Z;
    2)确定微波同轴电缆长度:根据同轴线λ/4阻抗变换原理,只要保证电缆总长度为λ/4的整数倍,电缆整体就作为一个阻抗变换器,由此可得
    Figure PCTCN2022076132-appb-100002
    电磁波在真空中的传输速度为c,微波同轴电缆绝缘体的介电常数为ε r,微波的工作频率f,微波在微波同轴电缆中的波长λ,微波同轴电缆长度为L;其中k为正整数,取值取决于需要的电缆长度L;
    3)确定微波同轴电缆绝缘体径向尺寸:
    Figure PCTCN2022076132-appb-100003
    内径为d,外径为D。
PCT/CN2022/076132 2021-12-31 2022-02-14 一种组合式低阻抗微波消融传输组件及其阻抗匹配方法 WO2023123619A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111676328.1A CN114246672A (zh) 2021-12-31 2021-12-31 一种组合式低阻抗微波消融传输组件及其阻抗匹配方法
CN202123427239.1U CN217593051U (zh) 2021-12-31 2021-12-31 一种组合式低阻抗微波消融传输组件
CN202111676328.1 2021-12-31
CN202123427239.1 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023123619A1 true WO2023123619A1 (zh) 2023-07-06

Family

ID=86997278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076132 WO2023123619A1 (zh) 2021-12-31 2022-02-14 一种组合式低阻抗微波消融传输组件及其阻抗匹配方法

Country Status (1)

Country Link
WO (1) WO2023123619A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185554A1 (en) * 2006-02-07 2007-08-09 Angiodynamics, Inc. Interstitial microwave system and method for thermal treatment of diseases
CN104507408A (zh) * 2012-06-22 2015-04-08 柯惠有限合伙公司 用于微波消融系统的微波测温
CN107890367A (zh) * 2013-03-15 2018-04-10 柯惠有限合伙公司 微波能量递送设备与系统
CN208625844U (zh) * 2017-12-29 2019-03-22 南京康友医疗科技有限公司 一种单边微波消融针
CN109715099A (zh) * 2017-02-13 2019-05-03 科瑞欧医疗有限公司 用于电外科装置的微波能量转移部件
CN110236671A (zh) * 2019-07-01 2019-09-17 南京航空航天大学 一种具有薄膜电阻多点测温功能的肿瘤微波消融针
CN211023085U (zh) * 2019-08-19 2020-07-17 四川省肿瘤医院 一种微波消融针
CN111956323A (zh) * 2020-08-28 2020-11-20 南京诺源医疗器械有限公司 一种可调节温度的消融针
CN112638301A (zh) * 2018-08-13 2021-04-09 悉尼大学 具有阻抗监测的导管消融设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185554A1 (en) * 2006-02-07 2007-08-09 Angiodynamics, Inc. Interstitial microwave system and method for thermal treatment of diseases
CN104507408A (zh) * 2012-06-22 2015-04-08 柯惠有限合伙公司 用于微波消融系统的微波测温
CN107890367A (zh) * 2013-03-15 2018-04-10 柯惠有限合伙公司 微波能量递送设备与系统
CN109715099A (zh) * 2017-02-13 2019-05-03 科瑞欧医疗有限公司 用于电外科装置的微波能量转移部件
CN208625844U (zh) * 2017-12-29 2019-03-22 南京康友医疗科技有限公司 一种单边微波消融针
CN112638301A (zh) * 2018-08-13 2021-04-09 悉尼大学 具有阻抗监测的导管消融设备
CN110236671A (zh) * 2019-07-01 2019-09-17 南京航空航天大学 一种具有薄膜电阻多点测温功能的肿瘤微波消融针
CN211023085U (zh) * 2019-08-19 2020-07-17 四川省肿瘤医院 一种微波消融针
CN111956323A (zh) * 2020-08-28 2020-11-20 南京诺源医疗器械有限公司 一种可调节温度的消融针

Similar Documents

Publication Publication Date Title
AU2018250420B2 (en) Step-down coaxial microwave ablation applicators and methods for manufacturing same
JP6628797B2 (ja) Rf及び/またはマイクロ波エネルギー移送構造、及びそれに組み込まれた侵襲的電気外科用スコープ装置
CN105848604B (zh) 用于产生射频能量和微波能量以传递到生物组织中的电外科装置
US11241283B2 (en) Electrosurgical instrument for radiating microwave energy and dispensing liquid at a treatment site
JP6634076B2 (ja) 小型マイクロ波アブレーションアセンブリ
US10016235B2 (en) Endoscope system having first transmission and reception electrodes, second transmission and reception electrodes and electrically powered treatment device powered to perform treatment
JPH10116519A (ja) 高周波数、高電圧の電力ケーブル
CN106029169B (zh) 用于从非共振不平衡有损耗的传输线结构传递微波能量的电外科钳
US9826888B2 (en) Endoscope having power transmission electrode and treatment tool having power reception electrode, and endoscope system
WO2023123619A1 (zh) 一种组合式低阻抗微波消融传输组件及其阻抗匹配方法
JPH0610939B2 (ja) 高圧電気工学装置用紙絶縁体のマイクロ波乾燥方法および装置
AU2010306171B2 (en) Antenna coupler
CN217593051U (zh) 一种组合式低阻抗微波消融传输组件
CN206388829U (zh) 一种30瓦功率40GHz毫米波固定衰减器
CN114246672A (zh) 一种组合式低阻抗微波消融传输组件及其阻抗匹配方法
WO2008016364A3 (en) Cryogenic vacuum rf feedthrough device
CN219040973U (zh) 一种同轴转接转换器
JPH0757702A (ja) 無電極放電ランプのための電力平衡化カップリング構造体
CN206947489U (zh) 使用频段 26.5GHz 的低损耗半柔电缆
CN115966867B (zh) 一种适用于医疗领域的微波隔离器
CN208596771U (zh) 一种低互调负载设备
Song et al. Liquid metal-based tunable coaxial antenna for microwave ablation
CN106304456A (zh) 微波馈入装置以及微波烹饪设备
CN114039209A (zh) 一种采用空心内导体同轴电缆的微波消融针
JPS627868B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912926

Country of ref document: EP

Kind code of ref document: A1