WO2023123341A1 - 信号接收方法和通信装置 - Google Patents

信号接收方法和通信装置 Download PDF

Info

Publication number
WO2023123341A1
WO2023123341A1 PCT/CN2021/143653 CN2021143653W WO2023123341A1 WO 2023123341 A1 WO2023123341 A1 WO 2023123341A1 CN 2021143653 W CN2021143653 W CN 2021143653W WO 2023123341 A1 WO2023123341 A1 WO 2023123341A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time resources
signal
resources
resource
Prior art date
Application number
PCT/CN2021/143653
Other languages
English (en)
French (fr)
Inventor
肖心龙
魏璟鑫
薛剑韬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/143653 priority Critical patent/WO2023123341A1/zh
Publication of WO2023123341A1 publication Critical patent/WO2023123341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the communication field, and more specifically, to a signal receiving method and a communication device.
  • a discontinuous reception (DRX) mechanism is introduced.
  • the terminal equipment in the idle state can periodically perform DRX operations.
  • the terminal device may not monitor the control information at times other than PO resources.
  • the terminal device In order to ensure the paging performance, the terminal device needs to wake up and receive the synchronization signal of the serving cell to perform beam measurement and/or time-frequency synchronization before PO resources. In addition, the terminal device also needs to receive signals from other cells to perform radio resource management (radio resource management, RRM) measurement based on the configuration, so as to perform cell reselection in time. It can be seen that the terminal device still needs to wake up and receive different signals in different time periods based on different purposes during the DRX operation, and the efficiency of reducing the power consumption of the terminal device needs to be improved.
  • radio resource management radio resource management
  • the present application provides a signal receiving method and a communication device, which can reduce the power consumption of terminal equipment.
  • an information transmission method is provided, and the method may be executed by a communication device or a module (such as a chip) configured (or used) in the communication device.
  • the method includes: determining that the first time interval includes L first time resources and K second time resources, the first time resources contain a first signal from at least one cell, and the first signal is used for a first signal quality , the second time resource includes at least one second signal of the serving cell, and the second signal is used for one or more of time synchronization, frequency synchronization, or beam measurement, wherein, the P first time resources and the P The second time resources intersect in time, L, K, and P are all positive integers, and L is greater than or equal to P, and K is greater than or equal to P; the first signal is received within N first time resources, and in M The second signal is received within the second time resources, N and M are positive integers, and N is less than L, and/or M is less than K, wherein the M second time resources include the P second time resources Q of the second time resources among the time resources, and the N of the first time resources include Q of the first time resources intersecting with the Q of the second time resources in time, and Q is a positive integer .
  • the terminal device integrates the task requirements of each mechanism in the first time interval, and preferentially selects each intersecting resource to open the radio frequency module to receive wireless signals, which can reduce the number of times the terminal device is turned on and off, and within the first time interval
  • the duration of receiving the wireless signal effectively reduces the power consumption of the terminal equipment on the basis of completing corresponding tasks.
  • the L is equal to the P
  • each of the first time resources intersects with one of the second time resources in time
  • the Q is a minimum value among the N and the M.
  • the method specifically includes:
  • the first time interval includes L first time resources and K second time resources, where the first time resources include a first signal from at least one cell, where the first signal is used for a first signal quality, and where the second The time resource includes at least one second signal of the serving cell, and the second signal is used for one or more of time synchronization, frequency synchronization, or beam measurement, wherein the L first time resources and the L second time resources Resources intersect in time, L and K are positive integers, and K is greater than or equal to L;
  • N of the first time resources to receive the first signal in the first time interval and the number M of the second time resources to receive the second signal determine Q intersecting in time The first time resource and Q second time resources, wherein Q is the minimum value of N and M, N and M are positive integers, and N is less than L, and/or M is less than K;
  • the first signal is received in N first time resources
  • the second signal is received in M second time resources, wherein the N first time resources include the Q first time resources, and the N first time resources include the Q first time resources.
  • the M second time resources include the Q second time resources.
  • each first time resource intersects with a second time resource in time
  • the terminal device determines at least Q first time resources and Q second time resources intersecting in time according to the minimum value Q among M and N
  • the first signal and the second signal are respectively received on the two time resources. That is to say, the terminal device selects the maximum number of intersecting resources in the first time interval to receive wireless signals, which can minimize the power consumption of the terminal device.
  • the first time interval is one or more discontinuous reception (DRX cycles.
  • the above-mentioned solution can be applied in DRX operation, and can reduce the duration of receiving wireless signals in the DRX cycle of the terminal device, thereby reducing the power consumption of the terminal device.
  • the first time interval includes a paging opportunity resource
  • the Q first time resources include Q among the P first time resources that are closest in time to the paging opportunity resource.
  • first time resources, and the Q second time resources include Q second time resources that are closest in time to the paging opportunity resource among the P second time resources.
  • the first time resource is an SMTC resource
  • the second time resource is an SS burst set resource
  • the terminal device receives the first signal and the second signal on the intersecting resource of the Q group closest to the paging opportunity resource, can judge whether cell reselection is required based on the first signal in a timely manner, and perform beam calibration and timing based on the second signal. Frequency synchronization, etc., to ensure the performance of receiving paging messages.
  • the time closest to the paging opportunity resource includes: the closest before the paging opportunity resource, and/or the closest after the paging opportunity resource.
  • the working frequency band of the at least one cell is the same as the working frequency band of the serving cell of the terminal device.
  • the first time resource is a same-frequency SMTC resource.
  • the receiving the first signal within the N first time resources includes: the radio frequency module is in the receiving state within the N first time resources, and the radio frequency module transmits receiving the first signal; and, receiving the second signal within the M second time resources includes: the radio frequency module is in a receiving state within the M second time resources, and receives the first signal through the radio frequency module Two signals.
  • the determining that the first time interval includes L first time resources and K second time resources includes: receiving first configuration information, the first configuration information is used to configure The time resource of the first signal: according to the first configuration information, determine that the first time interval includes the L first time resources.
  • the determining that the first time interval includes L first time resources and K second time resources includes: receiving second configuration information, where the second configuration information is used to configure The time resource of the second signal: according to the second configuration information, it is determined that the first time interval includes the K second time resources.
  • a communication device in a second aspect, has a function of implementing the actions in the method example of the first aspect above.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing unit, configured to determine that the first time interval includes L first time resources and K second time resources, and the first time resource includes the first time resource from at least one cell A signal, the first signal is used for the first signal quality, the second time resource includes at least one second signal of the serving cell, and the second signal is used for one or more of time synchronization, frequency synchronization or beam measurement , wherein, the P first time resources intersect with the P second time resources in time, L, K, and P are all positive integers, and L is greater than or equal to P, and K is greater than or equal to P; the transceiver unit uses receiving the first signal in N first time resources, receiving the second signal in M second time resources, where N and M are positive integers, and N is less than L, and/or M is less than K, Wherein, the M second time resources include Q second time resources among the P second time resources, and the N first time resources include the Q second time resources Q first time resources whose resources intersect in time, where Q is a positive
  • the L is equal to the P
  • each of the first time resources intersects with one of the second time resources in time
  • the Q is a minimum value among the N and the M.
  • the processing unit is configured to determine that the first time interval includes L first time resources and K second time resources, where the first time resources include a first signal from at least one cell, The first signal is used for the first signal quality, the second time resource includes at least one second signal of the serving cell, and the second signal is used for one or more of time synchronization, frequency synchronization or beam measurement, wherein, The L first time resources intersect with the L second time resources in time, L and K are positive integers, and K is greater than or equal to L; the processing unit is further configured to receive the The number N of the first time resources of the first signal and the number M of the second time resources of the second signal to be received determine the Q first time resources and the Q first time resources intersecting in time Two time resources, wherein Q is the minimum value of N and M, N and M are positive integers, and N is less than L, and/or M is less than K; the transceiver unit is used to receive within N first time resources For the first signal, the second signal is received within M second time resources
  • the first time interval is one or more discontinuous reception DRX cycles.
  • the first time interval includes a paging opportunity resource
  • the Q first time resources include Q among the P first time resources that are closest in time to the paging opportunity resource.
  • first time resources, and the Q second time resources include Q second time resources that are closest in time to the paging opportunity resource among the P second time resources.
  • the working frequency band of the at least one cell is the same as the working frequency band of the serving cell of the terminal device.
  • the receiving the first signal within the N first time resources includes: the radio frequency module is in the receiving state within the N first time resources, and the radio frequency module Receiving the first signal; and, receiving the second signal within the M second time resources includes: the radio frequency module is in the receiving state in the M second time resources, and the radio frequency module receives the second signal.
  • the transceiver unit is further configured to receive first configuration information, where the first configuration information is used to configure a time resource containing the first signal; the processing unit is specifically configured to Configuration information, determining that the first time interval includes the L first time resources.
  • the transceiver unit is further configured to receive second configuration information, where the second configuration information is used to configure a time resource containing the second signal; the processing unit is specifically configured to, according to the second Configuration information, determining that the first time interval includes the K second time resources.
  • a communication device is provided, and the communication device may be the communication device in the above method embodiment, or a chip provided in the communication device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device can realize any one of the first aspect or the first aspect. method in the implementation.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in the first aspect and any possible implementation manner of the first aspect.
  • the above-mentioned processor may be one or more chips
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • a computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, it can realize any of the first aspect and the first aspect.
  • a computer program also referred to as code, or an instruction
  • the computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, it can realize any of the first aspect and the first aspect.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) that can implement the first aspect and the first aspect when it is run on a computer.
  • a computer program also referred to as code, or instruction
  • a method in any one of the possible implementations of the aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a signal receiving method in the present application
  • FIG. 3 is a schematic flowchart of a signal receiving method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a signal receiving method provided by an embodiment of the present application.
  • Fig. 4A is another schematic flowchart provided by the embodiment of the present application.
  • 5 to 8 are schematic diagrams of signal receiving methods provided by embodiments of the present application.
  • Fig. 9 is a schematic block diagram of an example of the communication device of the present application.
  • FIG. 10 is a schematic configuration diagram of an example of a communication device of the present application.
  • At least one (species) can also be described as one (species) or multiple (species), multiple (species) can be two (species), three (species), four (species) ) or more (species), this application does not limit.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), the fifth generation (5th generation, 5G) communication system, the future communication system (such as the sixth generation (6th generation, 6G) communication system), or a system where multiple communication systems are integrated, etc., the embodiments of the present application do not Do limited.
  • 5G can also be called new radio (new radio, NR).
  • Fig. 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the network device 110 may include at least one cell.
  • the terminal device 120 may access the network by receiving a signal from one of the cells, and communicate with the network device 110 through a wireless link.
  • the cell may be called a serving cell of the terminal device 120 .
  • the terminal device shown in FIG. 1 may receive a wireless signal from the network device 110 according to the signal receiving method provided in the embodiment of the present application.
  • mMTC may include one or more of the following communications: communications in industrial wireless sensor networks (industrial wireless sensor network, IWSN), communications in video surveillance (video surveillance) scenarios, and communications in wearable devices wait.
  • the terminal device involved in this embodiment of the present application may also be referred to as a terminal.
  • a terminal may be a device with a wireless transceiver function. Terminals can be deployed on land, including indoors, outdoors, hand-held, and/or vehicle-mounted; they can also be deployed on water (such as ships, etc.); and they can also be deployed in the air (such as on aircraft, balloons, and satellites, etc.).
  • the terminal device may be user equipment (user equipment, UE). UEs include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication capabilities. Exemplarily, the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a smart A wireless terminal in a power grid, a wireless terminal in a smart city, and/or a wireless terminal in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal in industrial control a wireless terminal in unmanned driving
  • a wireless terminal in telemedicine a smart A wireless terminal in a power grid, a wireless terminal in a smart city, and/or a wireless terminal in a smart home, etc.
  • the network device involved in the embodiment of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of performing wireless communication with a terminal device.
  • a base station may come in various forms, such as a macro base station, a micro base station, a relay station, or an access point.
  • the base station involved in this embodiment of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in another system, without limitation.
  • the base station in the 5G system can also be called a transmission reception point (transmission reception point, TRP) or a next-generation node B (generation Node B, gNB or gNodeB).
  • TRP transmission reception point
  • gNB next-generation node B
  • the base station may be an integrated base station, or may be a base station separated into multiple network elements, without limitation.
  • the base station is a base station in which a centralized unit (CU) and a distributed unit (DU) are separated, that is, the base station includes a CU and a DU.
  • CU centralized unit
  • DU distributed unit
  • the synchronization signal may be used for one or more of time synchronization, frequency synchronization or beam measurement.
  • the synchronization signal block contains the synchronization signal, and each SSB occupies 4 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, which are composed of the primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS) and physical broadcast channel (physical broadcast channel, PBCH).
  • the standardized protocol stipulates the time domain position for sending SSB resources.
  • the frame duration of NR is 10ms. The first 5ms of a frame is called the first half frame, and the last 5ms of the frame is called the second half frame.
  • SSB is limited to sending within one half frame.
  • the number and position of SSBs included in a half frame are related to subcarrier space (subcarrier space, SCS) and frequency band.
  • the terminal device can determine whether the SSB of the cell is located in the first half of the frame or the second half of the frame based on the PBCH in the SSB. Multiple SSBs in a half frame are called a SS burst set (SS burst set), and the network device periodically sends SS burst set.
  • the period of SS burst set can be a value in ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ , and the same SSB position during the SSburst set period corresponds to the same transmit beam direction.
  • the network device can specify the position of the SSB actually sent in the SS burst set by configuring the parameter ssb-PositionsInBurst. The position and number of the SSB determine the duration of the SS burst set.
  • RRM measurement includes measuring the SSB of the serving cell to obtain the signal quality of the serving cell, and the measurement signal of the neighboring cell (the measurement signal may include SSB and/or channel state information-reference signal (CSI-RS) ) to measure and obtain the signal quality of neighboring cells, so as to judge whether to perform cell reselection based on the signal quality, so that the terminal can reselect to a more suitable cell.
  • Neighboring cells include neighboring cells with the same operating frequency as the serving cell (called intra-frequency neighboring cells), neighboring cells with different operating frequencies from the serving cell (called inter-frequency neighboring cells), and neighboring cells in different systems.
  • the terminal device can specifically measure one or more of the following signal quality parameters of the SSB:
  • Reference signal received power reference signal received power
  • SINR signal to interference plus noise ratio
  • SINR reference signal receiving quality
  • RSSI received signal strength indication
  • the signal quality parameter obtained by the terminal device measuring the SSB of a cell may be used to characterize the signal quality of the cell.
  • SMTC radio resource control
  • Network devices can configure SMTC resources through radio resource control (RRC) messages.
  • RRC radio resource control
  • SMTC resources appear in a certain period in the time domain, and the duration is fixed.
  • the terminal device performs RRM measurements within the SMTC resources.
  • the network device configures the offset (offset), period (periodicity) and duration (duration) of the SMTC resource through the measurement configuration information.
  • the period of the SMTC resource may be a value in ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇
  • the duration may be a value in ⁇ 1ms, 2ms, 3ms, 4ms, 5ms ⁇ .
  • the terminal device can determine the time domain position of the SMTC resource according to the measurement configuration from the network device.
  • SMTC resources can also include same-frequency SMTC resources and different-frequency SMTC resources. Different-frequency SMTC resources are used to measure the signal quality of different-frequency neighboring cells, and same-frequency SMTC resources are used to measure the signal quality of the serving cell and the signal quality of same-frequency neighboring cells. . Wherein, the period of the same-frequency SMTC resource is greater than or equal to the period of the SS burst set of the serving cell.
  • each same-frequency SMTC resource contains at least one SSB in the SS burst set of the serving cell and at least one measurement signal of the neighboring cell . Therefore, each same-frequency SMTC resource overlaps with one SS burst set resource.
  • the maximum duration of SMTC resources is 5ms, while the minimum period of SS burst set resources is 5ms, so that one SMTC resource only overlaps with one SS burst set resource.
  • the terminal device can use the DRX mechanism to monitor the paging message. Specifically, a period of time at the beginning of each DRX cycle is the DRX activation time.
  • the DRX activation time includes the paging occasion (PO) resource of the terminal device and is in an idle state.
  • a terminal device detects downlink control information (DCI) on PO resources in each DRX cycle to determine whether the network device has sent a paging message or whether the network has updated system information (system information, SI).
  • DCI downlink control information
  • a terminal device in an idle state can be in a dormant state during inactive time.
  • PO resources may also be referred to as paging occasion resources.
  • the terminal equipment needs to wake up before the DRX activation time, and receive synchronization signals in the SS burst set of the serving cell for beam measurement and/or time-frequency synchronization. If the terminal device needs to receive M SS burst sets before the paging resource, the terminal device receives the SSB of the serving cell at the nearest M SS burst sets before the PO resource, and performs beam measurement and/or time-frequency synchronization based on the SSB.
  • the terminal device also needs to receive signals from other cells in the SMTC resource for radio resource management (radio resource management, RRM) measurement in order to perform cell reselection in time, and the terminal device can select part of the SMTC configured by the network device to receive signals from other cells signal for RRM measurements.
  • RRM radio resource management
  • time-domain resources occupied by SS burst resources (SS burst set), SMTC resources and PO resources are shown in Figure 2 respectively.
  • FIG. 2 also shows two PO resources, PO1 and PO2, and the PO resources appear periodically at intervals of the DRX cycle.
  • Wk represents a time period during which the terminal device is in a wake-up (Wake) state (ie, a time period during which the terminal device receives a wireless signal or the radio frequency module is in a receiving state).
  • Wk represents a time period during which the terminal device is in a wake-up (Wake) state (ie, a time period during which the terminal device receives a wireless signal or the radio frequency module is in a receiving state).
  • the terminal device in addition to enabling the radio frequency module to monitor control information in PO resources in each DRX cycle, the terminal device also enables the radio frequency module to receive SSB in 1 SS burst set resource of the serving cell before each PO resource.
  • the terminal device is in the wake-up state within a DRX cycle from the end of PO1 to the end of PO2
  • the length of time includes the duration of 2 SMTC resources, the duration of 1 SS burst set resource and the duration of 1 PO resource.
  • the wake-up of the terminal device may be understood as the terminal device is in a receiving state to receive wireless signals.
  • the radio frequency module in the terminal device may be in a receiving state, and the radio frequency module receives wireless signals.
  • the current terminal equipment is based on the time-domain resource configuration of DRX, SMTC, and SS burst set and the corresponding rules, such as receiving SSB at the M SS burst set resources closest to the PO resource, and completing the monitoring of control information in the PO resource, Beam measurements and/or time-frequency synchronization and RRM measurements based on the SSB of the serving cell. It does not consider how to integrate various mechanisms to reduce the power consumption of terminal equipment on the basis of completing corresponding tasks.
  • an SMTC resource may contain an SS burst set or partially intersect with an SS burst set in time (as shown in Figure 2).
  • the embodiment of this application proposes that when the terminal device needs to receive the SSB in some SS burst set resources and the measurement signal in some SMTC resources within a period of time, the terminal device can preferentially select overlapping SS burst set resources and SMTC resources to receive services
  • the SSB of the cell and the SSB of the neighboring cell perform beam measurement and/or time-frequency synchronization, as well as RRM measurement.
  • the time for the terminal equipment to receive the wireless signal can be shortened, and the power consumption of the terminal equipment can be reduced.
  • Fig. 3 is a schematic flowchart of a signal receiving method provided by an embodiment of the present application.
  • the signal receiving method may be executed by the communication device or a module (such as a chip) configured in (or used for) the communication device.
  • the method for receiving a signal performed by a terminal device is taken as an example below for description. But the present application is not limited thereto.
  • the terminal device determines that the first time interval includes L first time resources and K second time resources, wherein the P first time resources and the P second time resources intersect in time, and the first time resources include The first signal from at least one cell, the second time resource includes at least one second signal of the serving cell, L, K, and P are positive integers, and L is greater than or equal to P, and K is greater than or equal to P.
  • the first signal is used for the first signal quality.
  • the at least one cell includes one or more neighboring cells of the serving cell of the terminal device.
  • the terminal device may receive first signals from one or more neighboring cells within the first time resource, and determine the signal quality of the one or more neighboring cells based on the first signals. For example, the terminal device may receive the first signal of the first neighboring cell and the first signal of the second neighboring cell within the first time resource, and determine the signal quality of the first neighboring cell based on the first signal of the first neighboring cell, based on The first signal of the second neighboring cell determines the signal quality of the second neighboring cell.
  • the at least one cell further includes a serving cell of the terminal device.
  • the terminal device also receives the first signal from the serving cell within the first time resource, and determines the signal quality of the serving cell according to the first signal of the serving cell.
  • the terminal device may obtain one or more signal quality parameters of RSRP, SINR, RSSI or RSRQ based on the first signal of a cell, and the measured signal quality parameters may represent the signal quality of the cell.
  • the first time resource is an SMTC resource.
  • the terminal device receives first configuration information, where the first configuration information is used to configure time resources containing the first signal, and the terminal device determines L first time resources in the first time interval according to the first configuration information .
  • the first configuration information may come from a network device.
  • the first configuration information may be included in an RRC message from a network device.
  • the first time interval is a DRX cycle, such as a DRX cycle between the end of PO1 and the end of PO2, the terminal device can determine each SMTC resource according to the first configuration information, such as each SMTC resource , so as to determine that the DRX cycle contains 2 SMTC resources.
  • the terminal device may receive the second signal of the serving cell within the second time resource, where the second signal is used for one or more items of beam measurement, time synchronization, or frequency synchronization.
  • the terminal device receives second configuration information, where the second configuration information is used to configure time resources including the second signal, and the terminal device determines K second time resources in the first time interval according to the second configuration information.
  • the second configuration information may come from a network device.
  • the second time resource is an SS burst set resource.
  • the second configuration information may be system information, and the second configuration information may be included in the PBCH.
  • the terminal device can determine each SS burst set resource of the serving cell according to the second configuration information, such as the terminal device can determine the time position of each SS burst set, thereby determining that K SS burst set resources are included in the first time interval, and The time position of each SS burst set resource within the first time interval.
  • the terminal device may determine the first time resource and the second time resource intersecting in time within the first time interval. For example, P first time resources among the L first time resources intersect with P second time resources among the K second time resources in time.
  • N and M are positive integers. And N is less than L, and/or M is less than K. That is to say, if the terminal device needs to receive the first signal on part of the first time resource in the first time interval, and/or the terminal device receives the second signal on part of the second time resource in the first time interval, then The terminal device selects at least one set of first time resources and second time resources intersecting in time to receive the first signal and the second signal. The power consumption of the terminal equipment can be reduced, and the working efficiency of the terminal equipment can be improved. Avoiding unnecessary power consumption caused by the terminal device respectively receiving the first signal and the second signal on disjoint resources when the first time interval includes intersecting first time resources and second time resources.
  • the two first time resources in which the terminal device receives the first signal include at least one first time resource intersecting with the second time resource in time, and one second time resource in which the terminal device receives the second signal
  • the resource temporally intersects the at least one first temporal resource.
  • the terminal device may determine one of the three groups of intersecting first time resources and second time resources within the first time interval, such as the group of intersecting resources may be in the sequence from early to late in time (that is, the sequence shown in FIG. 4 left to right sequence) and the second time resource that intersects with the first time resource (that is, the sixth second time resource from early to late in time), and then determine a first time resources, such as the second first time resource shown in FIG. 4 .
  • the terminal device receives the first signal on the second first time resource and the third first time resource, and the terminal device receives the first signal on the second time resource intersecting the third first time resource (ie, the sixth second time resource). time resource) to receive the second signal.
  • the terminal device If the duration of the first time resource is T1, the duration of the second time resource is T2, and the intersection time of the duration of the first time resource and the duration of the second time resource is T3, then the terminal device The interval for receiving wireless signals is 2 ⁇ T1+T2-T3. So that the terminal device only needs to turn on the radio frequency module twice to receive the wireless signal within the first time interval, and if the first time resource overlaps with the second time resource, it can receive both the second signal and the first signal, and the terminal device can receive the first signal based on The received first signal determines the signal quality, and based on the received second signal, one or more of beam measurement, time synchronization or frequency synchronization is performed. The working efficiency of the terminal equipment can be improved, and the power consumption of the terminal equipment can be reduced.
  • the terminal device determines two first time resources and one second time resource respectively within the first time interval based on other rules, it is possible that the determined second time resource does not overlap with the first time resource, so that the terminal device
  • the radio frequency module may be turned on and off three times to receive wireless signals, which will cause unnecessary waste of resources.
  • the L first time resources intersect with L second time resources among the K second time resources, wherein one first time resource intersects one second time resource.
  • the terminal device may determine the time intersection according to the number N of first time resources to receive the first signal and the number M of second time resources to receive the second signal within the first time interval Q first time resources and Q second time resources, where Q may be the smallest value among N and M.
  • the terminal device determines to receive the first signal and the second signal respectively on at least Q first time resources and Q second time resources intersecting in time according to the minimum value Q among M and N. Realize the intersecting resources of the first time resource and the second time resource selected by the terminal device within the first time interval to receive wireless signals, which can minimize the number of radio frequency module switches, thereby reducing the power consumption of the terminal device .
  • the signal receiving method provided by the present application may be specifically shown in FIG. 4A , and may specifically include but not limited to the following steps: S401, the terminal device determines that the first time interval includes L first time resources and K second time resources, wherein the first time resource includes a first signal from at least one cell, and the second time resource includes at least one second signal from a serving cell, wherein the L first time resources and the L first Two temporal resources intersect in time.
  • S401 For the specific implementation manner of S401, reference may be made to the description of S301 above. For the sake of brevity, details are not repeated here.
  • the terminal device determines Q th time resources intersecting in time according to the number N of first time resources to receive the first signal and the number M of second time resources to receive the second signal within the first time interval One time resource and Q second time resources, where Q is the smallest value among N and M.
  • the terminal device receives the first signal in N first time resources, and receives the second signal in M second time resources, where the N first time resources include the Q first time resources, and the M first time resources The Q second time resources in the two time resources.
  • the second time resource is an SS burst set resource
  • the first time resource may be the same-frequency SMTC resource of the serving cell of the terminal device, and each same-frequency SMTC resource intersects with one SS burst set resource in time.
  • the resource at the first time is the same-frequency SMTC resource
  • the resource at the second time is the SS burst set. Since each SMTC resource with the same frequency intersects with one SS burst set resource, when the terminal device needs to receive N
  • the terminal device receives the first signal and the second signal in the overlapping SMTC resources and SS burst set resources of the Q group, performs RRM measurement based on the first signal to determine the signal quality, and performs beam measurement, time synchronization or frequency synchronization based on the second signal one or more of .
  • the first time interval may include PO resources
  • the Q first time resources include the Q first time resources that are closest to the PO resource in time among the P first time resources
  • the Q first time resources The two time resources include Q second time resources that are closest in time to the paging opportunity resource among the P second time resources.
  • the terminal device determines the first time resource and the second time resource of the N groups closest to the PO resources that intersect in time Second time resources, and then determine M-N second time resources.
  • the closest to the PO resource in time may be the closest before the PO resource, or may be the closest to the PO resource after the PO resource, or may be the closest to the PO resource whether it is before or after the PO resource.
  • the first time interval is a DRX cycle.
  • PO1 and PO2 are PO resources in two DRX cycles respectively.
  • the terminal device needs to receive 1 SMTC resource in a DRX cycle before PO1 arrives.
  • the time period represented by Wk is the time period when the terminal device is in the wake state to receive wireless signals, or specifically indicates the time period when the radio frequency module of the terminal device is in the receiving state to receive wireless signals, then the terminal device can be in
  • the first signal and the second signal are received in a group of SMTC resources and SS burst set resources that are closest to PO1 before PO1 and intersect in time.
  • the terminal equipment first determines to receive the first signal and the second signal in a group of SMTC resources and SS burst set resources closest to PO2 before the PO2, and then determines the The first signal is received in another SMTC resource.
  • the terminal device is in a state of receiving wireless signals within the time period represented by Wk.
  • the solution of the present application can reduce the number of terminals The number of times the device receives wireless signals, and can reduce the duration of receiving wireless signals, effectively achieving the purpose of reducing power consumption of terminal devices.
  • the terminal device determines M groups of intersecting first time resources and second time resources closest to PO resources, and then determines N-M first time resources.
  • the first time interval is a DRX cycle.
  • the first signal is received in the resource, for example, it may be the SS burst set resource between the two determined intersecting resources shown in FIG. 6 . But this application is not limited to this, it can also be other SS burst set resources.
  • the terminal device determines the resource for receiving the signal, it receives the first signal in the determined SMTC resource, and receives the second signal in the determined SS burst set resource.
  • the paging opportunity resources are Y nearest second time resources.
  • the terminal device determines the SMTC resource and SS burst set resource for receiving wireless signals as shown in Figure 7 Wk time segment, the terminal device determines to receive the first signal and the second signal respectively in the two groups of SMTC resources and SS burst set resources that are closest to the PO resource before the PO resource, and then determines that the other two groups of resources The second signal is received on the SS burst set resource closest to the PO. After determining the first time resource and the second time resource for receiving the signal, the terminal device receives the first signal within the determined first time resource, and receives the second signal within the determined second time resource. Beam measurement and/or time-frequency synchronization can be performed before the PO resource, so that the terminal device has high beam quality and/or synchronization performance and monitors control information on the PO resource.
  • the first time interval may also include two or more time intervals before and after a PO resource .
  • the resource closest to the PO resource may also be the resource closest to the PO resource before and after the PO resource.
  • the first time interval is two DRX cycles before and after a PO resource
  • the terminal device can first determine the two sets of overlapping SMTC resources and SS burst set resources closest to the PO resource, then the two sets of overlapping SMTC resources and SS burst set resources include the previous set of intersection of the PO resource resource and a group of intersecting resources after the PO resource, the terminal device then determines a SS burst set resource to receive the second signal.
  • the terminal device can determine the SS burst closest to the PO resource other than the two sets of intersecting resources
  • the set resource is the SS burst set resource closest to the PO resource before the PO resource
  • the time period for the terminal device to receive the wireless signal is the time period identified by Wk as shown in FIG. 8 .
  • the signal receiving method provided in the embodiment of the present application may be applied when the terminal device performs an IDRX operation or may be applied when the terminal device performs a CDRX operation.
  • the first time interval may be one or more CDRX cycles, the first time interval includes DRX activation time (on duration time) resources, the Q The first time resources include the Q first time resources that are closest in time to the activation time resource among the P first time resources, and the Q second time resources include the P second time resources that are closest in time to the activation time resource. Q second time resources closest to the active time resource.
  • the terminal device may also determine, based on the activation time resource, the X first time resources that are closest in time to the activation time resource other than the Q first time resources, or the X first time resources other than the Q second time resources Y second time resources that are closest in time to the active time resource.
  • the terminal device integrates the task requirements of each mechanism in the first time interval, and preferentially selects each intersecting resource to open the radio frequency module to receive wireless signals, which can reduce the number of times the terminal device is turned on and off, and within the first time interval
  • the duration of receiving the wireless signal effectively reduces the power consumption of the terminal equipment on the basis of completing corresponding tasks.
  • each network element may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may include a transceiver unit 920 .
  • the communication device 900 may correspond to the terminal device in the above method embodiment, and the communication device 900 may be a terminal device or a device configured on the terminal device, such as a chip.
  • the communication apparatus 900 may correspond to the terminal device in the method according to the above embodiments of the present application, and the communication apparatus 900 may include a unit for performing the method performed by the terminal device in the methods in FIG. 3 and FIG. 4A . Moreover, each unit in the communication device 900 and the above-mentioned other operations and/or functions are respectively intended to implement a corresponding flow of the method in FIG. 6 .
  • the communication device 900 may further include a processing unit 910, and the processing unit 910 may be used to process instructions or data to implement corresponding operations.
  • the transceiver unit 920 in the communication device 900 may be an input/output interface or circuit of the chip, and the processing in the communication device 900 Unit 910 may be a processor in a chip.
  • the communication device 900 may further include a storage unit 930, which may be used to store instructions or data, and the processing unit 910 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 930 which may be used to store instructions or data
  • the processing unit 910 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 920 in the communication device 900 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the transceiver 1010 in the communication device 1000 shown in FIG. 10 .
  • the processing unit 910 in the communication apparatus 900 may be implemented by at least one processor, for example, may correspond to the processor 1020 in the communication device 1000 shown in FIG. 10 .
  • the processing unit 910 in the communication device 900 may also be implemented by at least one logic circuit.
  • the storage unit 930 in the communication device 900 may correspond to the memory in the communication device 1000 shown in FIG. 10 .
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 may be applied to the system shown in FIG. 1 to perform functions of a terminal device or a communication device in the foregoing method embodiments.
  • the communication device 1000 includes a processor 1020 and a transceiver 1010 .
  • the communications device 1000 further includes a memory.
  • the processor 1020, the transceiver 1010, and the memory may communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory is used to store computer programs, and the processor 1020 is used to execute the computer programs in the memory to control the transceiver 1010 to send and receive signals.
  • the processor 1020 and the memory may be combined into a processing device, and the processor 1020 is configured to execute the program codes stored in the memory to realize the above functions.
  • the memory may also be integrated in the processor 1020, or be independent of the processor 1020.
  • the processor 1020 may correspond to the processing unit in FIG. 9 .
  • the above-mentioned transceiver 1010 may correspond to the transceiver unit in FIG. 9 .
  • the transceiver 1010 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the communication device 1000 shown in Figure 10 can implement the process involving the terminal device in the method embodiments shown in Figure 3 and Figure 4A.
  • the operations and/or functions of the various modules in the communication device 1000 are respectively for implementing the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned processor 1020 can be used to execute the actions implemented inside the terminal device described in the foregoing method embodiments, and the transceiver 1010 can be used to execute the sending or receiving actions described in the foregoing method embodiments.
  • the transceiver 1010 can be used to execute the sending or receiving actions described in the foregoing method embodiments.
  • the communication device 1000 may further include a power supply, configured to provide power to various devices or circuits in the communication device.
  • a power supply configured to provide power to various devices or circuits in the communication device.
  • the communication device 1000 may also include input and output devices, such as including one or more of an input unit, a display unit, an audio circuit, a camera, and a sensor, etc., the audio circuit Speakers, microphones, etc. may also be included.
  • input and output devices such as including one or more of an input unit, a display unit, an audio circuit, a camera, and a sensor, etc.
  • the audio circuit Speakers, microphones, etc. may also be included.
  • the embodiment of the present application also provides a processing device, including a processor and a (communication) interface; the processor is used to execute the method in the embodiment shown in FIG. 3 and FIG. 4A.
  • the embodiment of the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is executed by one or more processors, the device including the processor executes the steps shown in Figure 3 and Figure 4A. method in the example shown.
  • the present application further provides a system, which includes the foregoing one or more terminal devices.
  • the system may also further include the aforementioned one or more network devices.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号接收方法和通信装置,该方法包括:通信装置确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,第一时间资源包含用于测量信号质量的第一信号,第二时间资源包含服务小区的第二信号,其中,L个第一时间资源与L个第二时间资源在时间上相交。通信装置根据第一时间间隔内待接收第一信号的第一时间资源的个数N,和待接收第二信号的第二时间资源的个数M,确定在时间上相交的Q个第一时间资源和Q个第二时间资源,在包含该Q个第一时间资源的N个第一时间资源内接收第一信号,以及在包含该Q个第二时间资源的M个第二时间资源内接收第二信号。能够减小终端设备的功率消耗。

Description

信号接收方法和通信装置 技术领域
本申请涉及通信领域,更具体地,涉及一种信号接收方法和通信装置。
背景技术
移动通信系统中,为了减小终端设备功耗引入了非连续接收(discontinuous reception,DRX)机制,处于空闲(idle)状态的终端设备可以周期性地执行DRX操作,终端设备在每个DRX周期内的寻呼机会(paging occasion,PO)资源上唤醒并监听控制信息,以确认是否存在寻呼消息或是否需要接收更新后的系统信息。而终端设备在PO资源以外的时间可以不监听控制信息。
为了保证寻呼性能,终端设备在PO资源之前需要唤醒并接收服务小区同步信号进行波束测量和/或时频同步。另外,终端设备还需要基于配置接收来自其他小区的信号进行无线资源管理(radio resource management,RRM)测量以便及时进行小区重选。可见,终端设备在执行DRX操作期间基于不同目的,仍需要在不同时间段内唤醒接收不同的信号,减小终端设备的功率消耗的效率还有待提高。
发明内容
本申请提供了一种信号接收方法和通信装置,能够减小终端设备的功率消耗。
第一方面,提供了一种信息传输方法,该方法可以由通信设备或配置于(或用于)通信设备的模块(如芯片)执行。
该方法包括:确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,该第一时间资源包含来自至少一个小区的第一信号,该第一信号用于第一信号质量,该第二时间资源包含服务小区的至少一个第二信号,该第二信号用于时间同步、频率同步或波束测量中的一项或多项,其中,P个该第一时间资源与P个该第二时间资源在时间上相交,L、K和P均为正整数,且L大于或等于P,K大于或等于P;在N个该第一时间资源内接收该第一信号,在M个该第二时间资源内接收该第二信号,N、M为正整数,且N小于L,和/或M小于K,其中,该M个该第二时间资源中包括该P个该第二时间资源中的Q个该第二时间资源,以及,该N个该第一时间资源中包括与该Q个该第二时间资源在时间上相交的Q个该第一时间资源,Q为正整数。
根据上述方案,终端设备综合各机制在第一时间间隔内的任务需求,优先选择各相交的资源打开射频模块接收无线信号,能够减小终端设备打开、关闭的次数,以及在第一时间间隔内接收无线信号的持续时长,在完成相应任务的基础上有效地减小了终端设备的功率消耗。
可选地,在某些实施方式中,该L与该P相等,每个该第一时间资源与一个该第二时间资源在时间上相交,该Q为该N与该M中的最小值。
即,该方法具体包括:
确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,该第一时间资 源包含来自至少一个小区的第一信号,该第一信号用于第一信号质量,该第二时间资源包含服务小区的至少一个第二信号,该第二信号用于时间同步、频率同步或波束测量中的一项或多项,其中,该L个第一时间资源与L个该第二时间资源在时间上相交,L和K为正整数,且K大于或等于L;
根据该第一时间间隔内待接收该第一信号的该第一时间资源的个数N,和待接收该第二信号的该第二时间资源的个数M,确定在时间上相交的Q个该第一时间资源和Q个该第二时间资源,其中,Q为N与M中的最小值,N、M为正整数,且N小于L,和/或M小于K;
在N个该第一时间资源内接收该第一信号,在M个该第二时间资源内接收该第二信号,其中,该N个第一时间资源中包括该Q个第一时间资源,该M个第二时间资源中包括该Q个第二时间资源。
根据上述方案,每个第一时间资源与一个第二时间资源在时间上相交,终端设备根据M和N中的最小值Q,确定至少在时间上相交的Q个第一时间资源和Q个第二时间资源上分别接受第一信号和第二信号。也就是说,终端设备在第一时间间隔内选择的最大个数个相交资源接收无线信号,能够最大限度地减小终端设备的功率消耗。
可选地,在某些实施方式中,该第一时间间隔为一个或多个非连续接收(DRX周期。
根据上述方案,上述方案可以应用在DRX操作中,能够减小终端设备DRX周期内接收无线信号的时长,从而降低了终端设备的功率消耗。
可选地,在某些实施方式中,该第一时间间隔包括寻呼机会资源,该Q个该第一时间资源包括该P个该第一时间资源中在时间上距该寻呼机会资源最近的Q个第一时间资源,该Q个该第二时间资源包括该P个该第二时间资源中在时间上距该寻呼机会资源最近的Q个第二时间资源。
作为示例非限定,第一时间资源为SMTC资源,第二时间资源为SS burst set资源。
根据上述方案,终端设备在寻呼机会资源最近的Q组相交资源上接收第一信号、第二信号,能够及时地基于第一信号判断是否需要小区重选,以及基于第二信号进行波束校准、时频同步等,以保证接收寻呼消息的性能。
可选地,在某些实施方式中,若N大于Q,该N个该第一时间资源包括X个该第一时间资源,其中,X=N-Q,该X个该第一时间资源包括除该Q个该第一时间资源以外的在时间上距离该寻呼机会资源最近的X个该第一时间资源;或者,若M大于Q,该M个该第二时间资源包括Y个该第二时间资源,其中,Y=M-Q,该Y个该第二时间资源包括除该Q个该第二时间资源以外的在时间上距离该寻呼机会资源最近的Y个该第二时间资源。
可选地,在某些实施方式中,该在时间上距该寻呼机会资源最近的,包括:在该寻呼机会资源之前最近的,和/或,在该寻呼机会资源之后最近的。
可选地,在某些实施方式中,该至少一个小区的工作频段与该终端设备的服务小区的工作频段相同。
作为示例非限定,该第一时间资源为同频SMTC资源。
可选地,在某些实施方式中,该在N个该第一时间资源内接收该第一信号,包括: 在该N个该第一时间资源内射频模块处于接收状态,并通过该射频模块接收该第一信号;以及,该在M个该第二时间资源内接收该第二信号,包括:在该M个该第二时间资源内射频模块处于接收状态,并通过该射频模块接收该第二信号。
可选地,在某些实施方式中,该确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,包括:接收第一配置信息,该第一配置信息用于配置包含该第一信号的时间资源;根据该第一配置信息,确定该第一时间间隔包括该L个第一时间资源。
可选地,在某些实施方式中,该确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,包括:接收第二配置信息,该第二配置信息用于配置包含该第二信号的时间资源;根据该第二配置信息,确定该第一时间间隔包括该K个第二时间资源。
第二方面,提供了一种通信装置,该通信装置具有实现上述第一方面的方法实例中行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该通信装置的有益效果可以参见第一方面的描述此处不再赘述。在一个可能的设计中,该通信装置包括:处理单元,用于确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,该第一时间资源包含来自至少一个小区的第一信号,该第一信号用于第一信号质量,该第二时间资源包含服务小区的至少一个第二信号,该第二信号用于时间同步、频率同步或波束测量中的一项或多项,其中,P个该第一时间资源与P个该第二时间资源在时间上相交,L、K和P均为正整数,且L大于或等于P,K大于或等于P;收发单元,用于在N个该第一时间资源内接收该第一信号,在M个该第二时间资源内接收该第二信号,N、M为正整数,且N小于L,和/或M小于K,其中,该M个该第二时间资源中包括该P个该第二时间资源中的Q个该第二时间资源,以及,该N个该第一时间资源中包括与该Q个该第二时间资源在时间上相交的Q个该第一时间资源,Q为正整数。
可选地,在某些实施方式中,该L与该P相等,每个该第一时间资源与一个该第二时间资源在时间上相交,该Q为该N与该M中的最小值。
则在该可选实施方式中,该处理单元用于确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,该第一时间资源包含来自至少一个小区的第一信号,该第一信号用于第一信号质量,该第二时间资源包含服务小区的至少一个第二信号,该第二信号用于时间同步、频率同步或波束测量中的一项或多项,其中,该L个第一时间资源与L个该第二时间资源在时间上相交,L和K为正整数,且K大于或等于L;该处理单元还用于根据该第一时间间隔内待接收该第一信号的该第一时间资源的个数N,和待接收该第二信号的该第二时间资源的个数M,确定在时间上相交的Q个该第一时间资源和Q个该第二时间资源,其中,Q为N与M中的最小值,N、M为正整数,且N小于L,和/或M小于K;收发单元,用于在N个该第一时间资源内接收该第一信号,在M个该第二时间资源内接收该第二信号,其中,该N个第一时间资源中包括该Q个第一时间资源,该M个第二时间资源中包括该Q个第二时间资源。
可选地,在某些实施方式中,该第一时间间隔为一个或多个非连续接收DRX周期。
可选地,在某些实施方式中,该第一时间间隔包括寻呼机会资源,该Q个该第一时间资源包括该P个该第一时间资源中在时间上距该寻呼机会资源最近的Q个第一时间资源,该Q个该第二时间资源包括该P个该第二时间资源中在时间上距该寻呼机会 资源最近的Q个第二时间资源。
可选地,在某些实施方式中,若N大于Q,该N个该第一时间资源包括X个该第一时间资源,其中,X=N-Q,该X个该第一时间资源包括除该Q个该第一时间资源以外的在时间上距离该寻呼机会资源最近的X个该第一时间资源;或者,若M大于Q,该M个该第二时间资源包括Y个该第二时间资源,其中,Y=M-Q,该Y个该第二时间资源包括除该Q个该第二时间资源以外的在时间上距离该寻呼机会资源最近的Y个该第二时间资源。
可选地,在某些实施方式中,该在时间上距该寻呼机会资源最近的,包括:在该寻呼机会资源之前最近的,和/或,在该寻呼机会资源之后最近的。
可选地,在某些实施方式中,该至少一个小区的工作频段与该终端设备的服务小区的工作频段相同。
可选地,在某些实施方式中,该在N个该第一时间资源内接收该第一信号,包括:在该N个该第一时间资源内射频模块处于接收状态,并通过该射频模块接收该第一信号;以及,该在M个该第二时间资源内接收该第二信号,包括:在该M个该第二时间资源内射频模块处于开启接收状态,并通过该射频模块接收该第二信号。
可选地,在某些实施方式中,该收发单元还用于接收第一配置信息,该第一配置信息用于配置包含该第一信号的时间资源;该处理单元具体用于根据该第一配置信息,确定该第一时间间隔包括该L个第一时间资源。
可选地,在某些实施方式中,该收发单元还用于接收第二配置信息,该第二配置信息用于配置包含该第二信号的时间资源;该处理单元具体用于根据该第二配置信息,确定该第一时间间隔包括该K个第二时间资源。
第三方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的通信设备,或者为设置在通信设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置实现上述第一方面或第一方面中任一种可能实现方式中的方法。
第四方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面以及第一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,能够实现第一方面以及第一方面中任一种可能实现方式中的方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,能够实现第一方面以及第一方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请实施例的无线通信系统100的示意图;
图2是本申请中的一种信号接收方式的示意图;
图3是本申请实施例提供的信号接收方法的示意性流程图;
图4是本申请实施例提供的信号接收方法的示意图;
图4A是本申请实施例提供的另一个示意性流程图;
图5至图8是本申请实施例提供的信号接收方法的示意图;
图9是本申请的通信装置的一例的示意性框图;
图10是本申请的通信设备的一例的示意性结构图。
具体实施方式
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例中,至少一个(种)还可以描述为一个(种)或多个(种),多个(种)可以是两个(种)、三个(种)、四个(种)或者更多个(种),本申请不做限制。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)通信系统、未来的通信系统(如第六代(6th generation,6G)通信系统)、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
图1是适用于本申请实施例的通信系统的一个示意图。
如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110。该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110可以包括至少一个小区,终端设备120可以通过接收其中一个小区的信号接入网络,与网络设备110通过无线链路进行通信,该小区可以称为终端设备120的服务小区。图1所示的终端设备可以根据本申请实施例提供的信号接收方法接收来自网络设备110的无线信号。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:eMBB通信、URLLC、机器类型通信(machine type communication,MTC)、mMTC、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、车到互联网(vehicle to network,V2N)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)、和物联网(internet of things,IoT)等。可选 地,mMTC可以包括以下通信中的一种或多种:工业无线传感器网络(industrial wireless sens or network,IWSN)的通信、视频监控(video surveillance)场景中的通信、和可穿戴设备的通信等。
本申请实施例涉及到的终端设备还可以称为终端。终端可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内、室外、手持、和/或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市中的无线终端、和/或智慧家庭中的无线终端等等。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站或接入点等。本申请实施例涉及到的基站可以是5G系统中的基站、LTE系统中的基站或其它系统中的基站,不做限制。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。其中,基站可以是一体化的基站,也可以是分离成多个网元的基站,不予限制。例如,基站是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的基站,即基站包括CU和DU。
为了更好地理解本申请实施例,下面对本文中涉及到的技术及术语做简单说明。
1、同步信号
同步信号可以是用于时间同步、频率同步或波束测量中的一项或多项。
在NR系统中,同步信号块(synchronization signal block,SSB)包含同步信号,每个SSB占4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)组成。标准化协议规定了发送SSB资源的时域位置,NR的帧时长为10ms,一帧的前5ms称为前半帧,帧的后5ms称为后半帧,SSB被限制在一个半帧内发送,一个半帧内包含的SSB的个数、位置与子载波间隔(subcarrier space,SCS)和频段相关。终端设备可以基于SSB中的PBCH可以确定该小区的SSB位于前半帧还是后半帧。在一个半帧内的多个SSB称为一个SS突发集合(SS burst set),网络设备周期性地发送SS burst set。SS burst set的周期可以是{5ms,10ms,20ms,40ms,80ms,160ms}中的一个值,SSburst set周期间的相同SSB位置对应相同的发射波束方向。网络设备可以通过配置参数ssb-PositionsInBurst指定SS burst set中实际发送的SSB的位置,SSB的位置和个数决定了SS burst set持续时间(duration)。
2、RRM测量
RRM测量包括对服务小区的SSB进行测量获得服务小区的信号质量,以及对邻小区的测量信号(测量信号可以包括SSB和/或信道状态信息参考信号(channel state  information-reference signal,CSI-RS))进行测量获得邻小区的信号质量,以基于信号质量判断是否进行小区重选,以便终端重选到更合适的小区。邻小区包括与服务小区工作频点相同的邻小区(称为同频邻小区)、与服务小区工作频点不同的邻小区(称为异频邻小区)、异系统中的邻小区。终端设备可以具体测量SSB的以下一项或多项信号质量参数:
参考信号接收功率(reference signal received power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、参考信号接收质量(reference signal receiving quality,RSRQ)或接收信号强度指示(received signal strength indication,RSSI)。
终端设备测量一个小区的SSB得到的信号质量参数可以用于表征该小区的信号质量。
3、SSB测量时间配置(SSB measurement time configuration,SMTC)
在NR系统中,针对RRM测量引入了SMTC的概念,网络设备可以通过无线帧源控制(radio resource control,RRC)消息配置SMTC资源,SMTC资源在时域以一定的周期出现,且持续时间固定,终端设备在SMTC资源内执行RRM测量。网络设备通过测量配置信息配置SMTC资源的偏移量(offset)、周期(periodicity)及持续时间(duration)。SMTC资源的周期可以是{5ms,10ms,20ms,40ms,80ms,160ms}中的一个值,持续时间可以是{1ms,2ms,3ms,4ms,5ms}中的一个值。终端设备根据来自网络设备的测量配置可以确定SMTC资源的时域位置。SMTC资源还可以包括同频SMTC资源和异频SMTC资源,异频SMTC资源用于测量异频邻小区的信号质量,同频SMTC资源用于测量服务小区的信号质量以及同频邻小区的信号质量。其中,同频SMTC资源的周期大于或等于服务小区SS burst set的周期。由于同频SMTC资源即用于测量服务小区的信号质量又用于测量邻小区的信号质量,每个同频SMTC资源均包含服务小区SS burst set中的至少一个SSB以及至少一个邻小区的测量信号。因此,每个同频SMTC资源均与一个SS burst set资源重叠。如前文描述,SMTC资源最大持续时间为5ms,而SS burst set资源最小周期为5ms,使得一个SMTC资源仅与一个SS burst set资源重叠。
4、非连续接收(discontinuous reception,DRX)机制
终端设备可以采用DRX机制监听寻呼消息,具体地,每个DRX周期起始的一段时间为DRX激活时间,该DRX激活时间内包含终端设备的寻呼机会(paging occasion,PO)资源,处于空闲状态的终端设备在每个DRX周期内的PO资源上检测下行控制信息(downlink control information,DCI),确定网络设备是否发送了寻呼消息或网络是否更新了系统信息(system information,SI)。空闲状态的终端设备在非激活时间内可以处于休眠状态。其中,PO资源也可以称为寻呼时机资源。终端设备处于空闲状态(idle-mode)执行的DRX操作可以称为空闲态DRX操作(idle-mode DRX,IDRX),而终端设备处于连接状态(connected-mode)时也可以基于DRX操作接收寻呼消息,终端设备处于连接状态执行的DRX操作可以称为连接态DRX操作(connected-mode DRX,CDRX)。需要说明的是,本申请实施例提供的信号接收方法既可以应用在终端设备执行IDRX操作的过程中也可以应用在终端设备执行CDRX操作的过程中。然而,为了保证寻呼性能,终端设备需要在DRX激活时间之前唤醒,并在服务小区的 SS burst set内接收同步信号进行波束测量和/或时频同步。若终端设备需要在寻呼资源之前需要接收M个SS burst set,则终端设备在PO资源之前最近的M个SS burst set接收服务小区的SSB,基于SSB进行波束测量和/或时频同步。另外,终端设备还需要在SMTC资源内接收来自其他小区的信号进行无线资源管理(radio resource management,RRM)测量以便及时进行小区重选,终端设备可以选择网络设备配置的部分SMTC接收来自其他小区的信号进行RRM测量。
例如,SS突发资源(SS burst set)、SMTC资源和PO资源占用的时域资源分别如图2所示。另外,图2还示出了PO1和PO2两个PO资源,PO资源以DRX周期为间隔周期性地出现。在图2中Wk表示终端设备处于唤醒(Wake)状态的时间段(即终端设备接收无线信号或射频模块处于接收状态的时间段)。比如,终端设备除在每个DRX周期内的PO资源开启射频模块监听控制信息以外,还在每个PO资源之前的服务小区的1个SS burst set资源内开启射频模块接收SSB。则终端设备根据规则确定在PO资源之前距PO资源最近的SS burst set资源,并在该SS burst set资源的时间段内开启射频模块接收SSB,例如图2所示PO1之前距PO1最近的一个SS burst set资源以及PO2之前距PO2最近的一个SS burst set资源,终端设备处于唤醒状态。以及,若该终端设备在每个SMTC资源进行RRM测量,如图2所示,终端设备在每个SMTC内进行开启射频模块进行RRM测量。这使得终端设备在执行DRX操作期间,仍然需要基于不同目的在不同时间段内唤醒接收不同的信号,如图2所示示例中,PO1结束至PO2结束的一个DRX周期内,终端设备处于唤醒状态的时间长度包括2个SMTC资源的持续时间、1个SS burst set资源持续时间以及1个PO资源的持续时间。
需要说明的是,在本申请中,终端设备唤醒可以理解为终端设备处于接收状态接收无线信号。具体地,可以是终端设备中的射频模块处于接收状态,由射频模块接收无线信号。
综上,目前终端设备分别基于DRX、SMTC、SS burst set的时域资源配置以及相应的规则,如在距PO资源最近的M个SS burst set资源接收SSB,完成PO资源内的控制信息监听、基于服务小区的SSB的波束测量和/或时频同步以及RRM测量。并未考虑如何融合各机制在完成相应任务的基础上减小终端设备的功率消耗。
由于部分SS burst set资源与同频SMTC资源在时间上相交,如一个SMTC资源可能包含一个SS burst set或与一个SS burst set在时间上部分相交(如图2所示)。本申请实施例提出终端设备需要在一段时间内接收部分SS burst set资源内的SSB且接收部分SMTC资源内的测量信号的情况下,终端设备可以优先选择重叠的SS burst set资源与SMTC资源接收服务小区的SSB与邻小区的SSB,执行波束测量和/或时频同步,以及RRM测量。能够缩短终端设备接收无线信号的时间,减小终端设备的功率消耗。
下面结合附图对本申请实施例提供的信号接收方法进行详细说明。
图3是本申请实施例提供的信号接收方法的一个示意性流程图。该信号接收方法可以由通信设备或配置于(或用于)通信设备的模块(如芯片)执行。下面以终端设备执行该信号接收方法为例进行说明。但本申请不限于此。
S301,终端设备确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,其 中,P个第一时间资源与P个第二时间资源在时间上相交,第一时间资源包括来自至少一个小区的第一信号,第二时间资源包括服务小区的至少一个第二信号,L、K、P为正整数,且L大于或等于P,K大于或等于P。
其中,第一信号用于第一信号质量。至少一个小区包括该终端设备的服务小区的一个或多个邻小区。终端设备可以在第一时间资源内来自一个或多个邻小区的第一信号,基于第一信号确定该一个或多个邻小区的信号质量。例如,终端设备可以在第一时间资源内接收第一邻小区的第一信号和第二邻小区的第一信号,并基于第一邻小区的第一信号确定第一邻小区的信号质量,基于第二邻小区的第一信号确定第二邻小区的信号质量。
可选地,该至少一个小区还包括终端设备的服务小区。例如,终端设备还在该第一时间资源内接收来自服务小区的第一信号,根据服务小区的第一信号确定服务小区的信号质量。
可选地,终端设备可以基于一个小区的第一信号,得到RSRP、SINR、RSSI或RSRQ中的一项或多项信号质量参数,测量得到的信号质量参数可以表征该小区的信号质量。
作为示例非限定,该第一时间资源为SMTC资源。
可选地,终端设备接收第一配置信息,该第一配置信息用于配置包含第一信号的时间资源,终端设备根据该第一配置信息,确定第一时间间隔内的L个第一时间资源。该第一配置信息可以来自网络设备。
作为示例非限定,该第一配置信息可以包含在来自网络设备的RRC消息中。
例如,第一时间资源为SMTC资源。网络设备可以向终端设备发送RRC消息,该RRC消息中包括该第一配置信息,该第一配置信息用于配置SMTC资源,该第一配置信息可以包括第一个SMTC资源相对于预设参考资源的偏移量、SMTC资源的周期,以及每个SMTC资源的持续时间,终端设备根据第一配置信息可以确定每个SMTC资源的时间位置。从而使得终端设备可以确定一个时间间隔内包含的SMTC资源的个数,如终端设备可以确定第一时间间隔内包括L个第一时间资源,以及该L个第一时间资源在第一时间间隔内的位置。以图2为例,比如第一时间间隔为一个DRX周期,如PO1结束时刻至PO2结束时刻之间的一个DRX周期,终端设备可以根据第一配置信息确定每个SMTC资源,如每个SMTC资源的时间位置,从而确定在该DRX周期内包含2个SMTC资源。
终端设备可以在第二时间资源内接收服务小区的第二信号,该第二信号用于波束测量、时间同步或频率同步中的一项或多项。
可选地,终端设备接收第二配置信息,该第二配置信息用于配置包含第二信号的时间资源,终端设备根据该第二配置信息确定第一时间间隔内的K个第二时间资源。该第二配置信息可以来自网络设备。
例如,该第二时间资源为SS burst set资源。该第二配置信息可以是系统信息,该第二配置信息可以是包含在PBCH中。终端设备可以根据第二配置信息确定该服务小区的每个SS burst set资源,如终端设备可以确定每个SS burst set的时间位置,从而确定第一时间间隔内包括K个SS burst set资源,以及每个SS burst set资源在第一时间 间隔内的时间位置。
终端设备确定第一时间间隔内包含的第一时间资源和第二时间资源后,终端设备可以确定在第一时间间隔内在时间上相交的第一时间资源和第二时间资源。如该L个第一时间资源中的P个第一时间资源与该K个第二时间资源中的P个第二时间资源在时间上相交。
S302,终端设备在N个第一时间资源上接收第一信号,在M个第二时间资源上接收第二信号,该N个第一时间资源包括该P个第一时间资源中的Q个第一时间资源,该M个第二时间资源中的Q个第二时间资源与Q个第一时间资源与在时间上相交。
其中,N、M为正整数。以及N小于L,和/或M小于K。也就是说,若终端设备需要在第一时间间隔内的部分第一时间资源上接收第一信号,和/或终端设备在第一时间间隔内的部分第二时间资源上接收第二信号,则终端设备选择在时间上相交的至少一组第一时间资源与第二时间资源接收第一信号和第二信号。能够减小终端设备的功率消耗,提高终端设备的工作效率。避免在第一时间间隔内包含相交的第一时间资源与第二时间资源的情况下,终端设备在不相交的资源上分别接收第一信号和第二信号,带来的不必要的功率消耗。
例如图4所示,第一时间间隔内包含3个第一时间资源(即L=3),6个第二时间资源(即K=6),其中,3个第一时间资源与3个第二时间资源在时间上相交(即P=3),终端设备需要在第一时间间隔内的2个第一时间资源接收第一信号(即N=2),1个第二时间资源接收第二信号(即M=1)。则第一时间间隔内终端设备接收第一信号的2个第一时间资源中包括至少一个第一时间资源与第二时间资源在时间上相交,且终端设备接收第二信号的1个第二时间资源与该至少一个第一时间资源在时间上相交。比如,终端设备可以在第一时间间隔内的三组相交的第一时间资源和第二时间资源确定其中一组,如该组相交资源可以是时间上由早至晚的顺序(即图4由左至右顺序)的第三个第一时间资源以及与该第一时间资源相交的第二时间资源(即由时间由早至晚的第六个第二时间资源),再确定一个第一时间资源,如图4所示的第二个第一时间资源。终端设备在第二个第一时间资源和第三个第一时间资源上接收第一信号,以及终端设备在与该第三个第一时间资源相交的第二时间资源(即第六个第二时间资源)上接收第二信号。若第一时间资源的持续时间为T1,第二时间资源的持续时间为T2,且第一时间资源的持续时间与第二时间资源的持续时间相交的时间为T3,则终端设备在第一时间间隔接收无线信号的时长为2×T1+T2-T3。使得终端设备在第一时间间隔内仅需打开2次射频模块接收无线信号,在第一时间资源与第二时间资源重叠的可以即接收到第二信号又接收到第一信号,终端设备可以基于接收到的第一信号确定信号质量,基于接收到的第二信号,进行波束测量、时间同步或频率同步中的一项或多项。能够提高终端设备的工作效率,减小终端设备的功率消耗。然而,终端设备若基于其他规则,或分别在第一时间间隔内确定2个第一时间资源和1个第二时间资源,可能确定的第二时间资源不与第一时间资源重叠,使得终端设备可能会3次打开、关闭射频模块接收无线信号,将造成不必要的资源浪费。
作为示例非限定,该第一时间间隔可以是一个或多个DRX周期。
在一种可选地实施方式中,每个第一时间资源可以与一个第二时间资源在时间上 相交,即L=P。
也就是说,L个第一时间资源与K个第二时间资源中的L个第二时间资源相交,其中,一个第一时间资源与一个第二时间资源相交。
在S302之前,终端设备可以根据第一时间间隔内待接收第一信号的第一时间资源的个数N,和待接收第二信号的第二时间资源的个数M,在确定在时间上相交的Q个第一时间资源和Q个第二时间资源,其中,Q可以是N与M中的最小值。
即Q=min(M,N),若M>N,则Q=N,若M小于N,则Q=M,若M=N,则Q=N=M。终端设备根据M和N中的最小值Q确定至少在时间上相交的Q个第一时间资源和Q个第二时间资源上分别接受第一信号和第二信号。实现终端设备在第一时间间隔内选择的最大数量的第一时间资源与第二时间资源的相交资源接收无线信号,能够最大限度地减小射频模块开关的次数,从而减小终端设备的功率消耗。
在该可选实施方式中中,本申请提供的信号接收方法可以具体如图4A所示,具体可以包括但不限于如下步骤:S401,终端设备确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,其中,第一时间资源包括来自至少一个小区的第一信号,第二时间资源包括服务小区的至少一个第二信号,其中,L个第一时间资源与L个第二时间资源在时间上相交。
S401为上述S301中P=L的一种情况,S401的具体实施方式可以参考前文中S301的描述,为了简要,在此不再赘述。
S402,终端设备根据第一时间间隔内待接收第一信号的第一时间资源的个数N,和待接收第二信号的第二时间资源的个数M,确定在时间上相交的Q个第一时间资源和Q个第二时间资源,其中Q为N和M中的最小值。
S403,终端设备在N个第一时间资源内接收第一信号,在M个第二时间资源内接收第二信号,该N个第一时间资源包括该Q个第一时间资源,该M个第二时间资源中的该Q个第二时间资源。
作为示例非限定,第二时间资源为SS burst set资源,第一时间资源可以是终端设备的服务小区的同频SMTC资源,每个同频SMTC资源与一个SS burst set资源在时间上相交。
例如,第一时间资源为同频SMTC资源,第二时间资源为SS burst set,由于每个同频SMTC资源均与一个SS burst set资源相交,则当终端设备在第一时间间隔内需要接收N个SMTC资源内的第一信号,以及需要接收M个SS burst set资源内的第二信号时,终端设备可以在第一时间间隔内确定Q组重叠的SMTC资源和SS burst set资源,Q=min(M,N),即Q为N与M中的最小值。终端设备在该Q组重叠的SMTC资源和SS burst set资源内接收第一信号及第二信号,基于第一信号进行RRM测量确定信号质量,基于第二信号进行波束测量、时间同步或频率同步中的一项或多项。
可选地,该第一时间间隔可以包括PO资源,该Q个第一时间资源包括该P个第一时间资源中在时间上距该PO资源最近的Q个第一时间资源,该Q个第二时间资源包括该P个第二时间资源中在时间上距该寻呼机会资源最近的Q个第二时间资源。
一种实施方式中,N≤M,则Q=N(其中,若N=M,则Q=M=N),终端设备确定PO资源最近的N组在时间上相交的第一时间资源和第二时间资源,再确定M-N个 第二时间资源。
其中,在时间上距PO资源最近的可以是在PO资源之前最近的,或者可以是在PO资源之后距PO资源最近的,或者可以是无论在PO资源之前还是之后距PO资源最近的。
例如,第一时间间隔为一个DRX周期,如图5所示,PO1和PO2分别为两个DRX周期内的PO资源,比如,终端设备需要在PO1到来之前的一个DRX周期内接收1个SMTC资源内的第一信号(N=1),以及1个SS burst set资源内的第二信号(M=1)。如图5所示,Wk表示的时间段为终端设备处于唤醒(wake)状态接收无线信号的时间段,或者具体表示终端设备的射频模块处于接收状态接收无线信号的时间段,则终端设备可以在PO1之前距PO1最近的一组在时间上相交的SMTC资源和SS burst set资源内接收第一信号和第二信号。再比如,PO2到来之前的一个DRX周期内包括2个SMTC资源(L=2)和4个SS burst set资源(K=4),终端设备需要在该DRX周期内的2个SMTC资源内接收第一信号(N=2),以及1个SS burst set资源内接收第二信号(M=1)。则Q=min(N,M)=1,终端设备首先确定在该PO2之前距PO2最近的一组SMTC资源和SS burst set资源内接收第一信号和第二信号,再确定在该周期内的另一个SMTC资源内接收第一信号。如图5所示,终端设备在Wk表示的时间段内处于接收无线信号的状态。对比图2所示的示例,相较于图2所示的示例中终端设备基于不同机制(如RRM测量、波束测量、时频同步)分别确定接收无线信号的资源,本申请的方案能够减少终端设备接收无线信号的次数,并且能够减小接收无线信号持续时长,有效地实现终端设备减小功耗的目的。
另一种实施方式中,N>M,则Q=M,终端设备确定PO资源最近的M组相交的第一时间资源和第二时间资源,再确定N-M个第一时间资源。
例如,第一时间间隔为一个DRX周期,如图6所示PO资源之前的一个DRX周期内包括3个SMTC资源(L=3)和8个SS burst set资源(K=8),该3个SMTC资源中的每个SMTC资源均与一个SS burst set资源相交。若终端设备需要在该DRX周期内的2个SMTC资源内接收第一信号(N=2),以及3个SS burst set资源内接收第二信号(M=3),则Q=min(N,M)=2,终端设备确定在该PO资源之前距PO资源最近的两组SMTC资源和SS burst set资源内接收第一信号和第二信号,再确定在该DRX周期内的另一个SS burst set资源内接收第一信号,比如可以是图6所示的确定的两组相交资源之间的SS burst set资源。但本申请不限于此,还可以是其他SS burst set资源。终端设备确定接收信号的资源后,在已确定的SMTC资源内接收第一信号,在已确定的SS burst set资源上接收第二信号。
可选地,若N大于Q,该N个第一时间资源包括X个第一时间资源,其中,X=N-Q,该X个第一时间资源包括除该Q个第一时间资源以外的在时间上距离该寻呼机会资源最近的X个第一时间资源。或者,若M大于Q,该M个第二时间资源包括Y个第二时间资源,其中,Y=M-Q,该Y个第二时间资源包括除该Q个第二时间资源以外的在时间上距离该寻呼机会资源最近的Y个第二时间资源。
例如,上述示例中一个DRX周期内的L=3,K=8,若N=2,M=3,则终端设备确定接收无线信号的SMTC资源和SS burst set资源如图7所示的Wk时间段,终端设备 确定在该PO资源之前距PO资源最近的两组在时间上相交的SMTC资源和SS burst set资源内分别接收第一信号和第二信号之后,再确定在除该两组资源以外的距PO最近的SS burst set资源上接收第二信号。终端设备确定了接收信号的第一时间资源和第二时间资源后,在已确定的第一时间资源内接收第一信号,在已确定的第二时间资源内接收第二信号。能够实现在PO资源之前进行波束测量和/或时频同步,使得终端设备具有较高的波束质量和/或同步性能在PO资源上监听控制信息。
上述示例均以第一时间间隔为一个DRX周期为例进行说明,应理解,本申请并不限于此,第一时间间隔也可以包括一个PO资源之前后之后的2个或2个以上的时间间隔。距PO资源最近的资源也可以是在PO资源前后距PO资源最近的资源。
例如图8所示,第一时间间隔为一个PO资源之前和之后的两个DRX周期,该2个DRX周期内包括4个SMTC资源(L=4),8个SS burst set资源(K=8),其中,每个SMTC资源与一个SS burst set资源相交,即包括4组在时间上相交的SMTC资源和SS burst set资源。若终端设备需要在该2个DRX周期内的2个SMTC资源内接收第一信号(N=2)以及3个SS burst set资源内接收第二信号(M=3),则Q=min(N,M)=2,终端设备可以首先确定距PO资源最近的2组重叠的SMTC资源和SS burst set资源,则该2组重叠的SMTC资源和SS burst set资源包括该PO资源之前的1组相交资源以及该PO资源之后的一组相交资源,终端设备再确定一个SS burst set资源接收第二信号,可选地,终端设备可以确定除该2组相交资源以外的距该PO资源最近的SS burst set资源,即在PO资源之前距该PO资源最近的SS burst set资源,终端设备接收无线信号的时间段如图8所示的Wk标识的时间段。
需要说明的是,本申请实施例提供的信号接收方法可以应用于终端设备执行IDRX操作期间也可以应用于终端设备执行CDRX操作期间。当终端设备执行CDRX操作应用本申请实施例提供的信号接收方法时,该第一时间间隔可以是一个或多个CDRX周期,第一时间间隔包括DRX的激活时间(on duration time)资源,该Q个第一时间资源包括该P个第一时间资源中在时间上距该激活时间资源最近的Q个第一时间资源,该Q个第二时间资源包括该P个第二时间资源中在时间上距该激活时间资源最近的Q个第二时间资源。可选地,终端设备还可以基于激活时间资源确定除该Q个第一时间资源以外的在时间上距离该激活时间资源最近的X个第一时间资源,或除该Q个第二时间资源以外的在时间上距离该激活时间资源最近的Y个第二时间资源。
根据上述方案,终端设备综合各机制在第一时间间隔内的任务需求,优先选择各相交的资源打开射频模块接收无线信号,能够减小终端设备打开、关闭的次数,以及在第一时间间隔内接收无线信号的持续时长,在完成相应任务的基础上有效地减小了终端设备的功率消耗。
以上,结合图3至图8详细说明了本申请实施例提供的方法。以下,结合图9至图9详细说明本申请实施例提供的通信装置和通信设备。为了实现上述本申请实施例提供的方法中的各功能,各网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图9是本申请实施例提供的通信装置的示意性框图。如图9所示,该通信装置900可以包括收发单元920。
在一种可能的设计中,该通信装置900可对应于上文方法实施例中的终端设备,该通信装置900可以是终端设备或配置于终端设备的装置,例如芯片。
应理解,该通信装置900可对应于根据上述本申请实施例的方法中的终端设备,该通信装置900可以包括用于执行图3、图4A中的方法中终端设备执行的方法的单元。并且,该通信装置900中的各单元和上述其他操作和/或功能分别为了实现图6中的方法的相应流程。
通信装置900还可以包括处理单元910,该处理单元910可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置900为配置于(或用于)终端设备中的芯片时,该通信装置900中的收发单元920可以为芯片的输入/输出接口或电路,该通信装置900中的处理单元910可以为芯片中的处理器。
可选地,通信装置900还可以包括存储单元930,该存储单元930可以用于存储指令或者数据,处理单元910可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,该通信装置900中的收发单元920为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图10中示出的通信设备1000中的收发器1010。该通信装置900中的处理单元910可通过至少一个处理器实现,例如可对应于图10中示出的通信设备1000中的处理器1020。该通信装置900中的处理单元910还可以通过至少一个逻辑电路实现。该通信装置900中的存储单元930可对应于图10中示出的通信设备1000中的存储器。
图10是本申请实施例提供的通信设备1000的结构示意图。该通信设备1000可应用于如图1所示的系统中,执行上述方法实施例中终端设备或通信装置的功能。如图所示,该通信设备1000包括处理器1020和收发器1010。可选地,该通信设备1000还包括存储器。其中,处理器1020、收发器1010和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器用于存储计算机程序,该处理器1020用于执行该存储器中的该计算机程序,以控制该收发器1010收发信号。
上述处理器1020可以和存储器可以合成一个处理装置,处理器1020用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器1020中,或者独立于处理器1020。该处理器1020可以与图9中的处理单元对应。
上述收发器1010可以与图9中的收发单元对应。收发器1010可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图10所示的通信设备1000能够实现图3、图4A所示方法实施例中涉及 终端设备的过程。通信设备1000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器1020可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器1010可以用于执行前面方法实施例中描述的发送或接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述通信设备1000还可以包括电源,用于给通信设备中的各种器件或电路提供电源。
除此之外,为了使得通信设备的功能更加完善,该通信设备1000还可以包括输入输出装置,如包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,该音频电路还可以包括扬声器、麦克风等。
本申请实施例还提供了一种处理装置,包括处理器和(通信)接口;该处理器用于执行图3、图4A所示实施例中的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行图3、图4A所示实施例中的方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行图3、图4A所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备。还系统还可以进一步包括前述的一个或多个网络设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种信号接收方法,其特征在于,包括:
    确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,所述第一时间资源包含来自至少一个小区的第一信号,所述第一信号用于测量信号质量,所述第二时间资源包含服务小区的至少一个第二信号,所述第二信号用于时间同步、频率同步或波束测量中的一项或多项,其中,所述L个第一时间资源与L个所述第二时间资源在时间上相交,L和K为正整数,且K大于或等于L;
    根据所述第一时间间隔内待接收所述第一信号的所述第一时间资源的个数N,和待接收所述第二信号的所述第二时间资源的个数M,确定在时间上相交的Q个所述第一时间资源和Q个所述第二时间资源,其中,Q为N与M中的最小值,N、M为正整数,且N小于L,和/或M小于K;
    在N个所述第一时间资源内接收所述第一信号,在M个所述第二时间资源内接收所述第二信号,其中,所述N个第一时间资源中包括所述Q个第一时间资源,所述M个第二时间资源中包括所述Q个第二时间资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间间隔为一个或多个非连续接收DRX周期。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一时间间隔包括寻呼机会资源,所述寻呼机会资源用于承载控制信息,所述控制信息用于调度承载寻呼消息的资源,
    所述Q个第一时间资源包括所述L个第一时间资源中在时间上距所述寻呼机会资源最近的Q个第一时间资源,
    所述Q个第二时间资源包括所述L个第二时间资源中在时间上距所述寻呼机会资源最近的Q个第二时间资源。
  4. 根据权利要求3所述的方法,其特征在于,
    若N大于Q,所述N个第一时间资源包括X个所述第一时间资源,其中,X=N-Q,所述X个第一时间资源包括除所述Q个第一时间资源以外的在时间上距离所述寻呼机会资源最近的X个所述第一时间资源;或者,
    若M大于Q,所述M个第二时间资源包括Y个所述第二时间资源,其中,Y=M-Q,所述Y个第二时间资源包括除所述Q个第二时间资源以外的在时间上距离所述寻呼机会资源最近的Y个所述第二时间资源。
  5. 根据权利要求4所述的方法,其特征在于,所述在时间上距所述寻呼机会资源最近的,包括:
    在所述寻呼机会资源之前最近的,和/或,在所述寻呼机会资源之后最近的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述至少一个小区的工作频段与服务小区的工作频段相同。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述在N个所述第一时间资源内接收所述第一信号,包括:
    在所述N个第一时间资源内射频模块处于接收状态,并通过所述射频模块接收所述第一信号;
    以及,
    所述在M个所述第二时间资源内接收所述第二信号,包括:
    在所述M个第二时间资源内射频模块处于接收状态,并通过所述射频模块接收所述第二信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,包括:
    接收第一配置信息,所述第一配置信息用于配置包含所述第一信号的时间资源;
    根据所述第一配置信息,确定所述第一时间间隔包括所述L个第一时间资源;
    接收第二配置信息,所述第二配置信息用于配置包含所述第二信号的时间资源;
    根据所述第二配置信息,确定所述第一时间间隔包括所述K个第二时间资源。
  9. 一种信号接收装置,其特征在于,包括:
    处理单元,用于确定第一时间间隔内包括L个第一时间资源和K个第二时间资源,所述第一时间资源包含来自至少一个小区的第一信号,所述第一信号用于测量信号质量,所述第二时间资源包含服务小区的至少一个第二信号,所述第二信号用于时间同步、频率同步或波束测量中的一项或多项,其中,所述L个第一时间资源与L个所述第二时间资源在时间上相交,L和K为正整数,且K大于或等于L;
    所述处理单元还用于根据所述第一时间间隔内待接收所述第一信号的所述第一时间资源的个数N,和待接收所述第二信号的所述第二时间资源的个数M,确定在时间上相交的Q个所述第一时间资源和Q个所述第二时间资源,其中,Q为N与M中的最小值,N、M为正整数,且N小于L,和/或M小于K;
    收发单元,用于在N个所述第一时间资源内接收所述第一信号,在M个所述第二时间资源内接收所述第二信号,其中,所述N个第一时间资源中包括所述Q个第一时间资源,所述M个第二时间资源中包括所述Q个第二时间资源。
  10. 根据权利要求9所述的装置,其特征在于,所述第一时间间隔为一个或多个非连续接收DRX周期。
  11. 根据权利要求9或10所述的装置,其特征在于,所述第一时间间隔包括寻呼机会资源,所述寻呼机会资源用于承载控制信息,所述控制信息用于调度承载寻呼消息的资源,
    所述Q个第一时间资源包括所述L个第一时间资源中在时间上距所述寻呼机会资源最近的Q个第一时间资源,
    所述Q个第二时间资源包括所述L个第二时间资源中在时间上距所述寻呼机会资源最近的Q个第二时间资源。
  12. 根据权利要求11所述的装置,其特征在于,
    若N大于Q,所述N个第一时间资源包括X个所述第一时间资源,其中,X=N-Q,所述X个第一时间资源包括除所述Q个第一时间资源以外的在时间上距离所述寻呼机会资源最近的X个所述第一时间资源;或者,
    若M大于Q,所述M个第二时间资源包括Y个所述第二时间资源,其中,Y=M-Q,所述Y个第二时间资源包括除所述Q个第二时间资源以外的在时间上距离所述寻呼机会资源最近的Y个所述第二时间资源。
  13. 根据权利要求12所述的装置,其特征在于,所述在时间上距所述寻呼机会资源最近的,包括:
    在所述寻呼机会资源之前最近的,和/或,在所述寻呼机会资源之后最近的。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,所述至少一个小区的工作频段与服务小区的工作频段相同。
  15. 根据权利要求9至14中任一项所述的装置,其特征在于,
    所述收发单元包括射频模块,所述射频模块在所述N个第一时间资源内处于接收状态,用于接收所述第一信号;以及,
    所述射频模块在所述M个第二时间资源内射频模块处于接收状态,用于接收所述第二信号。
  16. 根据权利要求9至15中任一项所述的装置,其特征在于,
    所述收发单元还用于接收第一配置信息,所述第一配置信息用于配置包含所述第一信号的时间资源;
    所述处理单元还用于根据所述第一配置信息,确定所述第一时间间隔包括所述L个第一时间资源;
    所述收发单元还用于接收第二配置信息,所述第二配置信息用于配置包含所述第二信号的时间资源;
    所述处理单元还用于根据所述第二配置信息,确定所述第一时间间隔包括所述K个第二时间资源。
  17. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合;
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求1至8中任一项所述的方法。
  18. 一种芯片,其特征在于,包括至少一个处理器和通信接口;
    所述通信接口用于接收输入所述芯片的信号或从所述芯片输出的信号,所述处理器与所述通信接口通信且通过逻辑电路或执行代码指令实现如权利要求1至8中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2021/143653 2021-12-31 2021-12-31 信号接收方法和通信装置 WO2023123341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143653 WO2023123341A1 (zh) 2021-12-31 2021-12-31 信号接收方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143653 WO2023123341A1 (zh) 2021-12-31 2021-12-31 信号接收方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023123341A1 true WO2023123341A1 (zh) 2023-07-06

Family

ID=86997231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143653 WO2023123341A1 (zh) 2021-12-31 2021-12-31 信号接收方法和通信装置

Country Status (1)

Country Link
WO (1) WO2023123341A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913444A (zh) * 2019-12-25 2020-03-24 展讯通信(上海)有限公司 一种待机态的nr小区测量方法及装置
CN111294903A (zh) * 2019-07-15 2020-06-16 展讯半导体(南京)有限公司 节能信号的接收方法及装置、存储介质、终端
CN111867017A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种发送和接收参考信号集合的方法及装置
CN112586049A (zh) * 2018-08-10 2021-03-30 苹果公司 Nr空闲中的寻呼和测量
US20210288773A1 (en) * 2020-03-10 2021-09-16 Samsung Electronics Co., Ltd. Method and apparatus for csi-rs in rrc_idle/inactive state
WO2021180206A1 (en) * 2020-03-12 2021-09-16 Mediatek Inc. Power efficient paging mechanism with paging early indicator
WO2021258311A1 (en) * 2020-06-23 2021-12-30 Lenovo (Beijing) Limited Methods and apparatuses for resource configuration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112586049A (zh) * 2018-08-10 2021-03-30 苹果公司 Nr空闲中的寻呼和测量
CN111867017A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种发送和接收参考信号集合的方法及装置
CN111294903A (zh) * 2019-07-15 2020-06-16 展讯半导体(南京)有限公司 节能信号的接收方法及装置、存储介质、终端
CN110913444A (zh) * 2019-12-25 2020-03-24 展讯通信(上海)有限公司 一种待机态的nr小区测量方法及装置
US20210288773A1 (en) * 2020-03-10 2021-09-16 Samsung Electronics Co., Ltd. Method and apparatus for csi-rs in rrc_idle/inactive state
WO2021180206A1 (en) * 2020-03-12 2021-09-16 Mediatek Inc. Power efficient paging mechanism with paging early indicator
WO2021258311A1 (en) * 2020-06-23 2021-12-30 Lenovo (Beijing) Limited Methods and apparatuses for resource configuration

Similar Documents

Publication Publication Date Title
TWI828716B (zh) 傳輸訊號的方法、網路設備及終端設備
CN107371206B (zh) 一种进行数据传输的方法和设备
JP2021533628A (ja) 信号を伝送する方法、端末機器及びネットワーク機器
CN113810924B (zh) 一种小区测量方法及装置
WO2020221318A1 (zh) 一种上行波束管理方法及装置
CN113473549B (zh) 一种测量间隙的配置方法及装置
CN110249705A (zh) 以减小的信令开销接入无线通信网络
JP2021517416A (ja) 信号伝送方法、ネットワーク装置及び端末装置
CN113747577B (zh) 通信方法及装置
US20230308141A1 (en) Communication Method, Device, and System
WO2022022491A1 (zh) 通信方法及装置
CN110073716A (zh) 用于非连续接收的信号传输方法、终端设备和网络设备
US20240022380A1 (en) Communication method and apparatus
CN113473517A (zh) 一种异频或异系统的测量方法及装置
EP4387313A1 (en) Measurement method, apparatus and system
WO2023123341A1 (zh) 信号接收方法和通信装置
WO2022022340A1 (zh) 一种通信方法及装置
WO2020147086A1 (zh) 一种信号传输方法、相关设备及系统
CN116746198A (zh) 一种通信方法及装置
WO2018040894A1 (zh) 干扰处理方法及基站和计算机存储介质
CN113225846B (zh) 一种通信方法及装置
US20230413253A1 (en) Channel State Measurement Method and Related Device
WO2023143269A1 (zh) 一种通信方法及装置
WO2022022679A1 (zh) 一种信号传输的方法及其相关设备
WO2023273935A1 (zh) 下行控制信息的接收方法、信息的发送方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969694

Country of ref document: EP

Kind code of ref document: A1