WO2023123255A1 - 一种机器人的远程控制方法及装置 - Google Patents

一种机器人的远程控制方法及装置 Download PDF

Info

Publication number
WO2023123255A1
WO2023123255A1 PCT/CN2021/143287 CN2021143287W WO2023123255A1 WO 2023123255 A1 WO2023123255 A1 WO 2023123255A1 CN 2021143287 W CN2021143287 W CN 2021143287W WO 2023123255 A1 WO2023123255 A1 WO 2023123255A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact force
robot
remote control
end effector
force
Prior art date
Application number
PCT/CN2021/143287
Other languages
English (en)
French (fr)
Inventor
贺银增
高腾飞
孙洪佳
徐晨
张少联
王睿
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to PCT/CN2021/143287 priority Critical patent/WO2023123255A1/zh
Publication of WO2023123255A1 publication Critical patent/WO2023123255A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors

Definitions

  • the present invention mainly relates to the field of robot remote control, in particular to a robot remote control method and device.
  • the user When remotely controlling a robot (such as an ultrasonic robot), the user inputs motion parameters through the handle assembly, and the remote robot moves according to the motion parameters.
  • This control is called compliant control.
  • the force sensor forms a feedback control loop, which depends on the performance of network communication. When the quality of network communication is poor, it will seriously affect the remote control performance and control effect of the robot, and even threaten the personal safety of patients in the medical field. .
  • the present invention provides a remote control method and device for a robot, so as to reduce the dependence on network communication quality and improve the performance and control effect of remote control.
  • the present invention proposes a remote control method for a robot.
  • the remote control method includes: detecting a contact force between an end effector of the robot and an operating object of the robot; comparing the contact force with a threshold, and When the contact force is greater than the threshold, keep the contact force at a constant preset force in the Z direction based on the coordinate system of the operation object; receive motion parameters input by the user through the handle assembly, and control the terminal The actuator moves along the XY direction based on the coordinate system of the operation object according to the motion parameter.
  • the contact force between the end effector and the operation object when it is detected that the contact force between the end effector and the operation object reaches the threshold value, the contact force between the end effector and the operation object in the Z direction of the operation object coordinate system is kept constant, so as to enter the suction cup compliance control Mode, which can decouple the contact force from the control loop, reduce the dependence on the quality of network communication, and improve the reliability and control effect of remote control.
  • keeping the contact force in the Z direction based on the coordinate system of the operation object at a constant preset force includes: using admittance control to make the contact force reach the constant preset force.
  • the contact force is brought to a constant preset force by means of admittance control.
  • the method further includes: after detecting the contact force between the end effector of the robot and the operation object of the robot, performing gravity deviation compensation on the contact force. Therefore, by compensating the gravity deviation of the contact force, the error caused by the gravity of the end effector on the contact force can be eliminated, and the accuracy of the contact force can be improved.
  • the method further includes: when it is detected that the contact force continues to decrease, controlling the end effector to separate from the robot's operating object. To this end, the automatic exit of the suction cup type compliance control mode has been realized.
  • the handle assembly includes a mode switching button
  • the method further includes: when it is detected that the user presses the mode switching button, controlling the end effector to separate from the operation object of the robot. For this reason, the manual exit suction cup type compliance control mode has been realized.
  • the present invention also proposes a remote control device for a robot.
  • the remote control device includes: a detection module for detecting the contact force between the end effector of the robot and the operating object of the robot; a fixing module for comparing the contact force and a threshold value, and when the contact force is greater than the threshold value, the contact force is kept at a constant preset force in the Z direction based on the coordinate system of the operation object; the control module receives the The motion parameters input by the component control the end effector to move along the XY direction based on the coordinate system of the operation object according to the motion parameters.
  • the fixing module keeping the contact force in the Z direction based on the coordinate system of the operation object at a constant preset force includes: using admittance control to make the contact force reach the constant preset force.
  • the device further includes: after the detection module detects the contact force between the end effector of the robot and the operation object of the robot, the gravity deviation compensation is performed on the contact force.
  • the device further includes: when the detection module detects that the contact force continues to decrease, it controls the end effector to separate from the operation object of the robot.
  • the handle assembly includes a mode switch button
  • the device further includes: when the detection module detects that the user presses the mode switch button, it controls the end effector to separate from the operation object of the robot.
  • the present invention also proposes an electronic device, including a processor, a memory, and instructions stored in the memory, wherein the instructions implement the above-mentioned method when executed by the processor.
  • the present invention also proposes a computer-readable storage medium on which computer instructions are stored, and the computer instructions execute the above-mentioned method when executed.
  • Fig. 1 is a flowchart of a remote control method for a robot according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a remote control method for a robot according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a remote control device for a robot according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a remote control method for a robot according to an embodiment of the present invention.
  • the method takes a remote ultrasonic robot as an example. It can be understood that the remote control method is not limited thereto.
  • the user remotely controls the robot 223 through the handle assembly 214.
  • the 3D camera 222 collects the image data of the robot 223 and the working environment, the image data is processed by the second processor 2233 and then sent to the second processor 2233.
  • a processor 212 the first processor 212 establishes the simulation model of the robot 223 and the working environment according to the image data, and displays it on the display 213, the user browses the simulation model of the robot 223, the working environment and the ultrasonic images collected by the ultrasonic probe, and operates the handle Component 214, the movement of the handle component is mapped to the end effector 2231 of the robot 223, and the end effector 2231 (ultrasound probe) moves on the abdominal surface of the patient P according to the mapped motion parameters, so that the user can remotely realize ultrasound image acquisition.
  • FIG. 1 is a flowchart of a remote control method 100 for a robot according to an embodiment of the present invention. As shown in FIG. 1 , the remote control method 100 includes:
  • Step 110 detecting the contact force between the end effector of the robot and the operating object of the robot.
  • a force sensor is installed on the end effector, and the force sensor detects the contact force between the end effector of the robot and the operating object of the robot.
  • the force sensor can be installed at the end of the end effector to improve the accuracy of contact force detection, the contact force It can be a vector based on the robot coordinate system or a vector based on the operation object.
  • a force sensor is installed on the ultrasonic probe, and the contact force between the ultrasonic probe and the patient is detected by the force sensor.
  • the method further includes: after detecting the contact force between the end effector of the robot and the operation object of the robot, performing gravity deviation compensation on the contact force. Since the end effector itself has gravity, the detected contact force between the end effector of the robot and the robot's operating object includes the gravity of the end effector. By compensating the gravity deviation of the contact force, the gravity of the end effector can be eliminated. For errors caused by contact force, improve the accuracy of contact force.
  • Step 120 comparing the contact force with a threshold, and when the contact force is greater than the threshold, keep the contact force at a constant preset force in the Z direction based on the coordinate system of the operation object.
  • the threshold can be a preset fixed value, or an input value entered by the user.
  • the contact force is greater than the threshold, for example, the threshold is 2N, and the detected contact force is 3N, which indicates that the end effector has a certain contact with the operating object, and can Enter the suction cup compliance control mode, on this basis, keep the contact force in the Z direction based on the coordinate system of the operation object to maintain a constant preset force, for example, keep the contact force at a constant 5N, which can make the contact force and the control loop
  • Decoupling reduces the dependence on network communication quality and improves the reliability and control effect of remote control.
  • the contact force in the Z direction perpendicular to the surface of the human body
  • the human body coordinate system is kept at a constant 5N.
  • keeping the contact force in the Z direction based on the coordinate system of the operation object at a constant preset force includes: adopting admittance control to make the contact force reach the constant preset force. Specifically, the contact force and preset force are input into an adder to calculate the force difference, and the force difference is input into the admittance controller, and the admittance controller outputs an adjustment value according to the force difference, and according to the adjustment value and the end effector The current motion parameters of the end effector are controlled until the contact force reaches a constant preset force.
  • Step 130 receiving motion parameters input by the user through the handle assembly, and controlling the end effector to move in the XY direction based on the coordinate system of the operation object according to the motion parameters.
  • the user inputs motion parameters through the handle assembly 214, that is, moves a certain distance along a certain orientation, and the motion parameters are mapped to the motion parameters of the end effector, and the end effector follows the coordinates of the operation object according to the mapped motion parameters.
  • the XY direction movement based on the coordinate system of the operation object that is, the movement of the end effector in the XY direction of the operation object coordinate system is remotely controlled by the user, and the end effector maintains a constant contact force in the Z direction of the operation object coordinate system, and is not remotely controlled by the user , For this reason, the contact force can be decoupled from the control loop, reducing the dependence on the quality of network communication, and improving the reliability and control effect of remote control.
  • the method further includes: when it is detected that the contact force continues to decrease, controlling the end effector to separate from the robot's operating object. Specifically, it is detected that the contact force continues to decrease within a certain period of time, indicating that the end effector tends to move away from the operating object. At this time, the end effector is controlled to separate from the operating object of the robot to automatically exit the suction cup compliance control mode.
  • the handle assembly includes a mode switching button
  • the method further includes: when it is detected that the user presses the mode switching button, controlling the end effector to separate from the robot's operating object.
  • the handle assembly 214 is provided with a press mode switch button, and when it is detected that the user presses the mode switch button, it indicates that the user wants to exit the suction cup-type compliance control mode. Manual exit for Suction Cup Compliant Control mode.
  • An embodiment of the present invention provides a remote control method for a robot.
  • the distance between the end effector and the operation object in the Z direction of the operation object coordinate system is The contact force is kept constant to enter the suction cup-type compliant control mode, which can decouple the contact force from the control ring, reduce the dependence on the quality of network communication, and improve the reliability and control effect of remote control.
  • FIG. 3 is a schematic diagram of a remote control device 300 for a robot according to an embodiment of the present invention. As shown in FIG. 3 , the remote control device 300 includes:
  • the detection module 310 detects the contact force between the end effector of the robot and the operation object of the robot.
  • the fixing module 320 compares the contact force with a threshold, and when the contact force is greater than the threshold, keeps the contact force at a constant preset force in the Z direction based on the coordinate system of the operation object.
  • the control module 330 receives motion parameters input by the user through the handle assembly, and controls the end effector to move along the XY direction based on the coordinate system of the operation object according to the motion parameters.
  • the fixing module 320 keeping the contact force in the Z direction based on the coordinate system of the operation object at a constant preset force includes: adopting admittance control to make the contact force reach a constant preset force.
  • the apparatus 300 further includes: after the detection module 310 detects the contact force between the end effector of the robot and the operation object of the robot, it performs gravity deviation compensation on the contact force.
  • the device 300 further includes: when the detection module 310 detects that the contact force continues to decrease, it controls the end effector to separate from the robot's operating object.
  • the handle assembly includes a mode switching button
  • the device 300 further includes: when the detection module 310 detects that the user presses the mode switching button, it controls the end effector to separate from the operating object of the robot.
  • FIG. 4 is a schematic diagram of an electronic device 400 according to an embodiment of the present invention.
  • the electronic device 400 includes a processor 410 and a memory 420 , and the memory 420 stores instructions, wherein the instructions are executed by the processor 410 to implement the method 100 as described above.
  • the present invention also proposes a computer-readable storage medium on which computer instructions are stored, and when executed, the computer instructions execute the method 100 as described above.
  • Some aspects of the method and apparatus of the present invention may be entirely implemented by hardware, may be entirely implemented by software (including firmware, resident software, microcode, etc.), or may be implemented by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • the processor can be one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DAPDs), Programmable Logic Devices (PLCs), Field Programmable Gate Arrays (FPGAs), processors , a controller, a microcontroller, a microprocessor, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DAPDs Digital Signal Processing Devices
  • PLCs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors a controller, a microcontroller, a microprocessor, or a combination thereof.
  • aspects of the present invention may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
  • computer-readable media may include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic tape, ...), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) %), smart cards And flash memory devices (eg, cards, sticks, key drives).
  • a flow chart is used here to illustrate operations performed by the method according to the embodiment of the present application. It should be understood that the preceding operations are not necessarily performed in an exact order. Instead, various steps may be processed in reverse order or concurrently. At the same time, other operations are either added to these procedures, or a certain step or steps are removed from these procedures.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明提供一种机器人的远程控制方法,所述远程控制方法包括:检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力;比较所述接触力与一阈值,并在所述接触力大于所述阈值时,使所述接触力在以所述操作对象坐标系为基准的Z方向保持恒定的预设力;接收用户通过手柄组件输入的运动参数,控制所述末端执行器根据所述运动参数沿以所述操作对象坐标系为基准的XY方向运动。

Description

一种机器人的远程控制方法及装置 技术领域
本发明主要涉及机器人远程控制领域,尤其涉及一种机器人的远程控制方法及装置。
背景技术
在对机器人(例如超声机器人)进行远程控制时,用户通过手柄组件输入运动参数,远程机器人根据该运动参数进行运动,此控制称为柔顺控制,在柔顺控制中,手柄组件的运动与机器人上的力传感器形成反馈的控制环,该控制环依赖于网络通信的性能,在网络通信质量不佳时,将会严重影响机器人的远程控制的性和控制效果,在医疗领域甚至会威胁患者的人身安全。
发明内容
为了解决上述技术问题,本发明提供一种机器人的远程控制方法及装置,以降低对网络通信质量的依赖,提高远程控制的性和控制效果。
本发明提出了一种机器人的远程控制方法,所述远程控制方法包括:检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力;比较所述接触力与一阈值,并在所述接触力大于所述阈值时,使所述接触力在以所述操作对象坐标系为基准的Z方向保持恒定的预设力;接收用户通过手柄组件输入的运动参数,控制所述末端执行器根据所述运动参数沿以所述操作对象坐标系为基准的XY方向运动。为此,在检测到末端执行器与操作对象之间的接触力达到阈值时,使末端执行器与操作对象之间在操作对象坐标系Z方向上的接触力保持恒定,以进入吸盘式柔顺控制模式,可以使接触力与控制环脱钩,降低了对网络通信质量的依赖,提高了远程控制的性和控制效果。
可选地,使以所述操作对象坐标系为基准的Z方向的接触力保持恒定的预设力包括:采用导纳控制使所述接触力到达所述恒定的预设力。为此,通过导纳控制实现了使接触力到达恒定的预设力。
可选地,所述方法还包括:检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力之后,对所述接触力进行重力偏差补偿。为此,通过对接触力进行重力偏差补偿,可以消除末端执行器的重力对接触力导致的误差,提高接触力的准确性。
可选地,所述方法还包括:在检测到所述接触力持续减小时,控制所述末端执行器脱离所述机器人的操作对象。为此,实现了自动退出吸盘式柔顺控制模式。
可选地,所述手柄组件包括模式切换按键,所述方法还包括:在检测到用户按压所述模式切换按键时,控制所述末端执行器脱离所述机器人的操作对象。为此,实现了手动退出吸盘式柔顺控制模式。
本发明还提出了一种机器人的远程控制装置,所述远程控制装置包括:检测模块,检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力;固定模块,比较所述接触力与一阈值,并在所述接触力大于所述阈值时,使所述接触力在以所述操作对象坐标系为基准的Z方向保持恒定的预设力;控制模块,接收用户通过手柄组件输入的运动参数,控制所述末端执行器根据所述运动参数沿以所述操作对象坐标系为基准的XY方向运动。
可选地,所述固定模块使以所述操作对象坐标系为基准的Z方向的接触力保持恒定的预设力包括:采用导纳控制使所述接触力到达所述恒定的预设力。
可选地,所述装置还包括:所述检测模块检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力之后,对所述接触力进行重力偏差补偿。
可选地,所述装置还包括:所述检测模块在检测到所述接触力持续减小时,控制所述末端执行器脱离所述机器人的操作对象。
可选地,所述手柄组件包括模式切换按键,所述装置还包括:所述检测模块在检测到用户按压所述模式切换按键时,控制所述末端执行器脱离所述机器人的操作对象。
本发明还提出了一种电子设备,包括处理器、存储器和存储在所述存储器中的指令,其中所述指令被所述处理器执行时实现如上所述的方法。
本发明还提出了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令在被运行时执行如上所述的方法。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,
图1是根据本发明的一实施例的一种机器人的远程控制方法的流程图;
图2是根据本发明的一实施例的一种机器人的远程控制方法的示意图;
图3是根据本发明的一实施例的一种机器人的远程控制装置的示意图;
图4是根据本发明的一实施例的一种电子设备的示意图。
附图标记说明
100 机器人的远程控制方法
110,120,130 步骤
212 第一处理器
213 显示器
214 手柄组件
222 3D摄像头
223 机器人
2231 力传感器
2232 末端执行器
2233 第二处理器
224 成像仪
300 机器人的控制装置
310 检测模块
320 固定模块
330 控制模块
400 电子设备
410 处理器
420 存储器
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
图2是根据本发明的一实施例的一种机器人的远程控制方法的示意图,该方法以远程超声机器人作为示例,可以理解,远程控制方法并非局限于此。如图2所示,用户(医生)通过手柄组件214对机器人223进行远程控制,3D摄像头222采集到机器人223和工作环境的图像数据之后,该图像数据经过第二处理器2233处理后发送给第一处理器212,第一处理器212根据图像数据建立机器人223和工作环境的仿真模型,并显示在显示器213上, 用户浏览机器人223、工作环境的仿真模型以及超声探头采集的超声图像,操作手柄组件214,手柄组件的运动映射到机器人223的末端执行器2231,末端执行器2231(超声探头)根据映射的运动参数在患者P的腹部表面移动,从而实现用户在远程实现超声图像采集。
本发明提出一种机器人的远程控制方法,图1是根据本发明的一实施例的一种机器人的远程控制方法100的流程图,如图1所示,远程控制方法100包括:
步骤110,检测机器人的末端执行器与机器人的操作对象之间的接触力。
末端执行器上安装有力传感器,通过力传感器检测机器人的末端执行器与机器人的操作对象之间的接触力,力传感器可以安装在末端执行器的末端,以提高接触力检测的准确性,接触力可以是以机器人坐标系为基准的矢量,也可以是以操作对象为基准的矢量。在远程超声机器人中,超声探头上安装有力传感器,通过力传感器检测超声探头与患者之间的接触力。
在一些实施例中,方法还包括:检测机器人的末端执行器与机器人的操作对象之间的接触力之后,对接触力进行重力偏差补偿。由于末端执行器本身具有重力,检测的机器人的末端执行器与机器人的操作对象之间的接触力中包含了末端执行器的重力,通过对接触力进行重力偏差补偿,可以消除末端执行器的重力对接触力导致的误差,提高接触力的准确性。
步骤120,比较接触力与一阈值,并在接触力大于阈值时,使接触力在以操作对象坐标系为基准的Z方向保持恒定的预设力。
阈值可以是预设的固定值,也可以是用户输入的输入值,在接触力大于阈值时,例如阈值为2N,检测的接触力为3N,表明末端执行器与操作对象具有一定的接触,可以进入吸盘式柔顺控制模式,在此基础上,使以操作对象坐标系为基准的Z方向的接触力保持恒定的预设力,例如使接触力保持为恒定的5N,可以使接触力与控制环脱钩,降低了对网络通信质量的依赖,提高了远程控制的性和控制效果。在远程超声机器人中,使以人体坐标系为基准的Z方向(垂直于人体表面方向)的接触力保持在恒定的5N。
在一些实施例中,使以操作对象坐标系为基准的Z方向的接触力保持恒定的预设力包括:采用导纳控制使接触力到达恒定的预设力。具体地,将接触力和预设力输入到一加法器中计算力差,将力差输入到导纳控制器中,导纳控制器根据力差输出一调整值,根据调整值和末端执行器的当前运动参数对末端执行器进行控制,直至接触力达到恒定的预设力。
步骤130,接收用户通过手柄组件输入的运动参数,控制末端执行器根据运动参数沿以操作对象坐标系为基准的XY方向运动。
如图2所示,用户通过手柄组件214输入运动参数,即沿某方位移动某距离,该运动 参数被映射为末端执行器的运动参数,末端执行器根据映射后的运动参数沿以操作对象坐标系为基准的XY方向运动,即末端执行器在操作对象坐标系XY方向的运动受用户的远程控制,末端执行器在操作对象坐标系Z方向的保持恒定的接触力,不受用户的远程控制,为此,可以使接触力与控制环脱钩,降低了对网络通信质量的依赖,提高了远程控制的性和控制效果。
在一些实施例中,方法还包括:在检测到接触力持续减小时,控制末端执行器脱离机器人的操作对象。具体地,在某时间段内检测到接触力在持续减少,表明末端执行器有远离操作对象的趋势,此时控制末端执行器脱离机器人的操作对象,以自动退出吸盘式柔顺控制模式。
在一些实施例中,手柄组件包括模式切换按键,方法还包括:在检测到用户按压模式切换按键时,控制末端执行器脱离机器人的操作对象。具体地,手柄组件214上设置有按压模式切换按键,在检测到用户按压模式切换按键时,表明用户想要退出吸盘式柔顺控制模式,此时控制末端执行器脱离机器人的操作对象,从而实现了吸盘式柔顺控制模式的手动退出。
本发明的实施例提供了一种机器人的远程控制方法,在检测到末端执行器与操作对象之间的接触力达到阈值时,使末端执行器与操作对象之间在操作对象坐标系Z方向上的接触力保持恒定,以进入吸盘式柔顺控制模式,可以使接触力与控制环脱钩,降低了对网络通信质量的依赖,提高了远程控制的性和控制效果。
本发明还提出一种机器人的远程控制装置,图3是根据本发明的一实施例的一种机器人的远程控制装置300的示意图,如图3所示,远程控制装置300包括:
检测模块310,检测机器人的末端执行器与机器人的操作对象之间的接触力。
固定模块320,比较接触力与一阈值,并在接触力大于阈值时,使接触力在以操作对象坐标系为基准的Z方向保持恒定的预设力。
控制模块330,接收用户通过手柄组件输入的运动参数,控制末端执行器根据运动参数沿以操作对象坐标系为基准的XY方向运动。
在一些实施例中,固定模块320使以操作对象坐标系为基准的Z方向的接触力保持恒定的预设力包括:采用导纳控制使接触力到达恒定的预设力。
在一些实施例中,装置300还包括:检测模块310检测机器人的末端执行器与机器人的操作对象之间的接触力之后,对接触力进行重力偏差补偿。
在一些实施例中,装置300还包括:检测模块310在检测到接触力持续减小时,控制末端执行器脱离机器人的操作对象。
在一些实施例中,手柄组件包括模式切换按键,装置300还包括:检测模块310在检测到用户按压模式切换按键时,控制末端执行器脱离机器人的操作对象。
本发明还提出一种电子设备400。图4是根据本发明的一实施例的一种电子设备400的示意图。如图4所示,电子设备400包括处理器410和存储器420,存储器420存储中存储有指令,其中指令被处理器410执行时实现如上文所述的方法100。
本发明还提出一种计算机可读存储介质,其上存储有计算机指令,计算机指令在被运行时执行如上文所述的方法100。
本发明的方法和装置的一些方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。处理器可以是一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理器件(DAPD)、可编程逻辑器件(PLC)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器或者其组合。此外,本发明的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。例如,计算机可读介质可包括,但不限于,磁性存储设备(例如,硬盘、软盘、磁带……)、光盘(例如,压缩盘(CD)、数字多功能盘(DVD)……)、智能卡以及闪存设备(例如,卡、棒、键驱动器……)。
在此使用了流程图用来说明根据本申请的实施例的方法所执行的操作。应当理解的是,前面的操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,或将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化、修改与结合,均应属于本发明保护的范围。

Claims (12)

  1. 一种机器人的远程控制方法(100),其特征在于,所述远程控制方法(100)包括:
    检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力(110);
    比较所述接触力与一阈值,并在所述接触力大于所述阈值时,使所述接触力在以所述操作对象坐标系为基准的Z方向保持恒定的预设力(120);
    接收用户通过手柄组件输入的运动参数,控制所述末端执行器根据所述运动参数沿以所述操作对象坐标系为基准的XY方向运动(130)。
  2. 根据权利要求1所述的远程控制方法(100),其特征在于,使以所述操作对象坐标系为基准的Z方向的接触力保持恒定的预设力包括:采用导纳控制使所述接触力到达所述恒定的预设力。
  3. 根据权利要求1所述的远程控制方法(100),其特征在于,所述方法(100)还包括:检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力之后,对所述接触力进行重力偏差补偿。
  4. 根据权利要求1所述的远程控制方法(100),其特征在于,所述方法(100)还包括:在检测到所述接触力持续减小时,控制所述末端执行器脱离所述机器人的操作对象。
  5. 根据权利要求1所述的远程控制方法(100),其特征在于,所述手柄组件包括模式切换按键,所述方法(100)还包括:在检测到用户按压所述模式切换按键时,控制所述末端执行器脱离所述机器人的操作对象。
  6. 一种机器人的远程控制装置(300),其特征在于,所述远程控制装置(300)包括:
    检测模块(310),检测所述机器人的末端执行器与所述机器人的操作对象之间的接触力;
    固定模块(320),比较所述接触力与一阈值,并在所述接触力大于所述阈值时,使所述接触力在以所述操作对象坐标系为基准的Z方向保持恒定的预设力;
    控制模块(330),接收用户通过手柄组件输入的运动参数,控制所述末端执行器根据所述运动参数沿以所述操作对象坐标系为基准的XY方向运动。
  7. 根据权利要求6所述的远程控制装置(300),其特征在于,所述固定模块(320)使以所述操作对象坐标系为基准的Z方向的接触力保持恒定的预设力包括:采用导纳控制使所述接触力到达所述恒定的预设力。
  8. 根据权利要求6所述的远程控制装置(300),其特征在于,所述装置(300)还包括:所述检测模块(310)检测所述机器人的末端执行器与所述机器人的操作对象之间的 接触力之后,对所述接触力进行重力偏差补偿。
  9. 根据权利要求6所述的远程控制装置(300),其特征在于,所述装置(300)还包括:所述检测模块(310)在检测到所述接触力持续减小时,控制所述末端执行器脱离所述机器人的操作对象。
  10. 根据权利要求6所述的远程控制装置(300),其特征在于,所述手柄组件包括模式切换按键,所述装置(300)还包括:所述检测模块(310)在检测到用户按压所述模式切换按键时,控制所述末端执行器脱离所述机器人的操作对象。
  11. 一种电子设备(400),包括处理器(410)、存储器(420)和存储在所述存储器(420)中的指令,其中所述指令被所述处理器(410)执行时实现如权利要求1-5任一项所述的方法。
  12. 一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令在被运行时执行如权利要求1-5中任一项所述的方法。
PCT/CN2021/143287 2021-12-30 2021-12-30 一种机器人的远程控制方法及装置 WO2023123255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143287 WO2023123255A1 (zh) 2021-12-30 2021-12-30 一种机器人的远程控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143287 WO2023123255A1 (zh) 2021-12-30 2021-12-30 一种机器人的远程控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023123255A1 true WO2023123255A1 (zh) 2023-07-06

Family

ID=86997041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143287 WO2023123255A1 (zh) 2021-12-30 2021-12-30 一种机器人的远程控制方法及装置

Country Status (1)

Country Link
WO (1) WO2023123255A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204955A (zh) * 2023-11-06 2023-12-12 华东交通大学 柔性手术机器人的力控制系统及其装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082293A (ja) * 2002-08-28 2004-03-18 Japan Science & Technology Corp 遠隔操作方法及び装置
US20110152690A1 (en) * 2009-12-18 2011-06-23 Anthony Brian W Handheld force-controlled ultrasound probe
CN106041933A (zh) * 2016-07-06 2016-10-26 上海交通大学 机器人磨抛系统及被动柔顺与主动柔顺混合控制方法
CN106335057A (zh) * 2016-09-27 2017-01-18 东南大学 一种基于实时力控的装配机器人全空间柔顺插孔控制方法
US20200194117A1 (en) * 2018-12-13 2020-06-18 University Of Maryland, College Park Systems, methods, and media for remote trauma assessment
CN113842165A (zh) * 2021-10-14 2021-12-28 合肥合滨智能机器人有限公司 便携式远程超声扫查系统与安全超声扫查柔顺控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082293A (ja) * 2002-08-28 2004-03-18 Japan Science & Technology Corp 遠隔操作方法及び装置
US20110152690A1 (en) * 2009-12-18 2011-06-23 Anthony Brian W Handheld force-controlled ultrasound probe
CN106041933A (zh) * 2016-07-06 2016-10-26 上海交通大学 机器人磨抛系统及被动柔顺与主动柔顺混合控制方法
CN106335057A (zh) * 2016-09-27 2017-01-18 东南大学 一种基于实时力控的装配机器人全空间柔顺插孔控制方法
US20200194117A1 (en) * 2018-12-13 2020-06-18 University Of Maryland, College Park Systems, methods, and media for remote trauma assessment
CN113842165A (zh) * 2021-10-14 2021-12-28 合肥合滨智能机器人有限公司 便携式远程超声扫查系统与安全超声扫查柔顺控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204955A (zh) * 2023-11-06 2023-12-12 华东交通大学 柔性手术机器人的力控制系统及其装置

Similar Documents

Publication Publication Date Title
US10780585B2 (en) Robot and electronic device for performing hand-eye calibration
US10071484B2 (en) Mobile videoconferencing robot system with network adaptive driving
WO2023123255A1 (zh) 一种机器人的远程控制方法及装置
US20170303899A1 (en) Ultrasound adaptive power management systems and methods
US20230181271A1 (en) Method of remotely supporting surgery assistant robot and remote support system
JP2021168160A (ja) 医療用観察装置、医療用観察方法、およびプログラム
KR20160024412A (ko) 웨어러블 디바이스의 센서가 측정하는 임피던스 값을 보정하는 방법 및 장치
AU2021265597A1 (en) A system for acquiring ultrasound images of internal organs of a human body
US20190004633A1 (en) Touch panel device and process method for touch panel device
US20210219817A1 (en) Measurement apparatus, measurement method, and recording medium
TW201233509A (en) Sensor relay control device
JP2008104774A (ja) 超音診断装置及び診断プログラム
US20220080143A1 (en) Robotic Ventilation Method Configured for Automatic Gas Delivery
US20240173018A1 (en) System and apparatus for remote interaction with an object
JP2010273858A (ja) X線撮影装置及びその制御方法
Toporek et al. Autonomous image-based ultrasound probe positioning via deep learning
WO2023123259A1 (zh) 一种机器人的远程控制方法及装置
WO2023123257A1 (zh) 一种机器人的控制方法及装置
US20230218270A1 (en) System and apparatus for remote interaction with an object
JP2012175456A (ja) 画像処理装置、画像処理方法、および画像処理プログラム
WO2021148008A1 (en) Systems and methods for automatically adjusting display system using user tracking
JP7394046B2 (ja) システム、撮像装置、情報処理装置、情報処理方法および情報処理プログラム
US20220287643A1 (en) Systems and methods for detecting physical contact of a surgical instrument with patient tissue
WO2023189218A1 (ja) 情報処理装置、情報処理方法、記録媒体
US20240111359A1 (en) Information processing device, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969614

Country of ref document: EP

Kind code of ref document: A1