WO2023122961A1 - 低压电池的状态校准方法及装置、电动车辆 - Google Patents

低压电池的状态校准方法及装置、电动车辆 Download PDF

Info

Publication number
WO2023122961A1
WO2023122961A1 PCT/CN2021/142096 CN2021142096W WO2023122961A1 WO 2023122961 A1 WO2023122961 A1 WO 2023122961A1 CN 2021142096 W CN2021142096 W CN 2021142096W WO 2023122961 A1 WO2023122961 A1 WO 2023122961A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
voltage battery
battery
voltage
state
Prior art date
Application number
PCT/CN2021/142096
Other languages
English (en)
French (fr)
Inventor
左希阳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/142096 priority Critical patent/WO2023122961A1/zh
Priority to CN202180101322.3A priority patent/CN117769655A/zh
Publication of WO2023122961A1 publication Critical patent/WO2023122961A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • the present application relates to the field of battery technology, in particular to a method and device for state calibration of a low-voltage battery, and an electric vehicle.
  • the battery as a key component is the main source of power for electric vehicles, and the stability and reliability of its product quality is very important.
  • the battery includes a low-voltage battery and a high-voltage battery.
  • the voltage and temperature of the battery cells are usually collected directly through the battery management system (Battery Management System, BMS) to calculate the state of health (State Of Health, SOH) of the low-voltage battery.
  • BMS Battery Management System
  • the present application aims to provide a state calibration method and device for a low-voltage battery, and an electric vehicle, which can improve the detection accuracy of SOH.
  • the present application provides a method for calibrating the state of a low-voltage battery, wherein the low-voltage battery includes at least one cell, and the method includes controlling the low-voltage battery to discharge at a first discharge rate until there is at least one battery in the low-voltage battery The voltage of one cell is not greater than the first voltage threshold.
  • the low-voltage battery is controlled to be charged at the first charging rate until the voltage of at least one battery cell in the low-voltage battery is not less than the second voltage threshold.
  • Obtain the charged power of the low-voltage battery. Obtain the state of health value of each battery cell according to the charge of the low-voltage battery, and calibrate the state of health value of the low-voltage battery according to the state of health value of each cell.
  • this method obtains the SOH value of each battery cell according to the charged electricity by controlling the charging and discharging process of the low-voltage battery, and finally determines the current SOH value of the low-voltage battery according to the SOH value of each battery cell, so as to obtain a more accurate SOH value.
  • the full charge and discharge process of the battery can be realized, and the SOH value of the low-voltage battery can be calibrated during this process, so that a more accurate SOH value can be obtained, which is beneficial to Provide more energy to low-voltage loads through low-voltage batteries.
  • the power output of the low-voltage battery can be controlled more accurately, thereby effectively reducing the risk of battery damage, which is conducive to improving the stability of battery performance and prolonging the service life of the battery.
  • the method before controlling the low-voltage battery to charge at the first discharge rate, the method further includes: controlling the low-voltage battery to be in a static state within a first time period.
  • the polarization of the low-voltage battery can be eliminated to stabilize the state of the low-voltage battery. Therefore, relatively reliable data can be obtained, which is conducive to improving the accuracy of calculating the state of health value of the battery.
  • obtaining the health state value of each battery cell according to the charged power of the low-voltage battery includes: obtaining the rated capacity of the battery cell before calibration. Calculate the ratio of the charged power of the low-voltage battery to the rated capacity of the battery cell before calibration to obtain the health status value of each battery cell.
  • calibrating the state-of-health value of the low-voltage battery according to the state-of-health value of each cell includes: taking the minimum value of the state-of-health values of each cell as the current state-of-health value of the low-voltage battery.
  • the minimum value as the current state of health of the low-voltage battery can ensure that there is enough power to be released.
  • the available capacity of the battery can be increased, even if the performance of the battery is fully utilized.
  • it also ensures a certain remaining capacity to prevent the battery from being over-discharged, so as to protect the battery and prolong the service life of the battery.
  • the low-voltage battery is set in the electric vehicle, and before controlling the low-voltage battery to discharge at a first discharge rate, the method further includes: if the electric vehicle is in a static state, according to the SOC value of the low-voltage battery Get the second duration.
  • the second duration is the duration for calibrating the state of the low-voltage battery
  • the SOC value is a ratio of the remaining battery power to the battery nominal capacity.
  • the electric vehicle Before the calibration, the electric vehicle should be placed in a static working condition to ensure that the low-voltage battery can be calibrated without being disturbed by external conditions, which can improve the accuracy of the calibration. Then, after it is determined that the electric vehicle is in a stationary state, the SOC value of the low-voltage battery can be used to determine the duration of the entire process of calibrating the state of the low-voltage battery, so as to better manage the subsequent calibration process.
  • the method further includes: displaying the second duration by the electric vehicle.
  • the electric vehicle displays the second duration to remind the user of the electric vehicle. Then, after the user knows the time required for the state calibration of the low-voltage battery, he can arrange the use time and calibration time of the electric vehicle according to his own actual situation, which can bring convenience to the user and improve the user experience.
  • the method further includes: if the electric vehicle fails to display the second duration, if the calibration of the low-voltage battery is not completed within the second duration, determining that the calibration of the low-voltage battery is invalid.
  • the electric vehicle does not display the second duration
  • the user starts the vehicle within the second duration and the calibration of the low-voltage battery is not completed, at this time, it should be determined that the calibration of the low-voltage battery is invalid. Therefore, the probability of miscalibration can be reduced, which is beneficial to making subsequent calibration results more reliable.
  • the electric vehicle further includes a high-voltage battery, a bidirectional DC/DC module and a low-voltage load
  • the high-voltage battery is connected to the low-voltage battery through the bidirectional DC/DC module
  • the low-voltage battery is connected to the low-voltage load.
  • Controlling the low-voltage battery to discharge at the first discharge rate includes: controlling the bidirectional DC/DC module to control the low-voltage battery to discharge to the high-voltage battery at the first discharge rate.
  • controlling the low-voltage battery to charge at the first charging rate includes: controlling the bidirectional DC/DC module to control the high-voltage battery to charge the low-voltage battery at the first charging rate.
  • the charging and discharging process between the high-voltage battery and the low-voltage battery can be realized. Then, it can create conditions for the full charge and discharge process of the low-voltage battery. If the state of the low-voltage battery is adjusted during this process, a more accurate SOH value can be obtained, which is conducive to providing more energy to the low-voltage load through the low-voltage battery.
  • the present application provides a state calibration device for a low-voltage battery, wherein the low-voltage battery includes at least one cell, and the device includes a discharge control unit, a charge control unit, a power acquisition unit, and a state calibration unit.
  • the discharge control unit is used to control the low-voltage battery to discharge at a first discharge rate until the voltage of at least one battery cell in the low-voltage battery is not greater than the first voltage threshold.
  • the charging control unit is used to control the low-voltage battery to be charged at the first charging rate until the voltage of at least one battery cell in the low-voltage battery is not less than the second voltage threshold.
  • the power acquisition unit is used to obtain the power charged by the low-voltage battery.
  • the state calibration unit is used to obtain the state of health value of each battery cell according to the charged power of the low-voltage battery, and calibrate the state of health value of the low-voltage battery according to the state of health value of each cell.
  • the present application provides a main control unit, including: a memory; and a processor coupled to the memory, where the processor is configured to execute the method in the first aspect based on instructions stored in the memory.
  • the present application provides an electric vehicle, including: a low-voltage battery and a main control unit as in the third aspect.
  • the main control unit is used to calibrate the state of the low-voltage battery.
  • the electric vehicle further includes a high-voltage battery and a bidirectional DC/DC module.
  • the high-voltage battery is connected to the low-voltage battery through a bidirectional DC/DC module, and the bidirectional DC/DC module is connected to the main control unit.
  • the main control unit is used to control the bidirectional DC/DC module, so that the high-voltage battery charges the low-voltage battery, or the low-voltage battery charges the high-voltage battery.
  • the main control unit includes a vehicle controller, a low-voltage battery control unit, a logic control unit of a bidirectional DC/DC module, and a high-voltage battery control unit.
  • the vehicle controller is used to control the low-voltage battery control unit, the logic control unit of the bidirectional DC/DC module and the high-voltage battery control unit.
  • the low-voltage battery control unit is used to control the charging and discharging of the low-voltage battery.
  • the logic control unit of the bidirectional DC/DC module is used for Control the bidirectional DC/DC module, and the high-voltage battery control unit is used to control the charging and discharging of the high-voltage battery.
  • the present application provides a computer-readable storage medium, including: storing computer-executable instructions, and the computer-executable instructions are configured as the method flow in the first aspect.
  • the state calibration method of the low-voltage battery provided in the present application includes controlling the low-voltage battery to discharge at a first discharge rate until the voltage of at least one battery cell in the low-voltage battery is not greater than the first voltage threshold.
  • the low-voltage battery is controlled to be charged at the first charging rate until the voltage of at least one battery cell in the low-voltage battery is not less than the second voltage threshold.
  • This method controls the charging and discharging process of the low-voltage battery to obtain the SOH value of each cell according to the charged electricity, and finally determines the current SOH value of the low-voltage battery according to the SOH value of each cell, so that a more accurate SOH value can be obtained.
  • the full charge and discharge process of the battery can be realized, and the SOH value of the low-voltage battery can be calibrated during this process, so that a more accurate SOH value can be obtained, which is beneficial to Provide more energy to low-voltage loads through low-voltage batteries.
  • the power output of the low-voltage battery can be controlled more accurately, thereby effectively reducing the risk of battery damage, which is conducive to improving the stability of battery performance and prolonging the service life of the battery.
  • FIG. 1 is a schematic structural view of an electric vehicle disclosed in an embodiment of the present application.
  • Fig. 2 is a flowchart of a state calibration method for a low-voltage battery disclosed in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an implementation of step 24 shown in FIG. 2 disclosed in an embodiment of the present application;
  • Fig. 4 is a flowchart of a state calibration method for a low-voltage battery disclosed in another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a state calibration device for a low-voltage battery disclosed in an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a master control unit disclosed in an embodiment of the present application.
  • the battery is the core of electric vehicles, and it is also a comprehensive embodiment of automotive engineering and power engineering technology.
  • the battery includes a low-voltage battery and a high-voltage battery.
  • a low-voltage battery it is usually necessary to detect its SOH value to determine the performance status of the current low-voltage battery. Therefore, how to accurately detect the SOH value of the low-voltage battery is particularly important.
  • the inventors of the present application found that the current common way to calculate the SOH value of the low-voltage battery is to collect the voltage and temperature of the battery cell through the BMS to calculate the SOH value of the voltage battery.
  • the calculated SOH value will deviate greatly from the actual SOH value. That is to say, the accuracy of the calculated SOH value is poor, so that it cannot reflect the real situation of the SOH value of the low-voltage battery.
  • the applicant designed a state calibration method for low-voltage batteries.
  • This method obtains the SOH value of each battery cell according to the charged electricity by controlling the charging and discharging process of the low-voltage battery, and according to the SOH value of each battery cell A more accurate SOH value can be obtained by finally determining the current SOH value of the low-voltage battery. Then, by obtaining a relatively accurate SOH value in real time, it is possible to fully utilize the performance of the battery cell and at the same time prolong the service life of the battery.
  • the battery including the battery cell disclosed in the embodiment of the present application can be used, but not limited to, in electrical equipment such as vehicles, ships, or aircrafts.
  • the power supply system comprising the electrical equipment disclosed in this application, such as cells and batteries, can be used.
  • the power output of the battery can be controlled according to the detected SOH value of the battery, which can effectively reduce the risk of battery damage, which is beneficial to Improve the stability of battery performance and prolong the service life of the battery.
  • An embodiment of the present application provides an electric device using a battery as a power source, wherein the battery includes at least one battery cell.
  • Electrical equipment can be, but not limited to, mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric vehicles, ships, spacecraft, etc.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a capacitor vehicle 10 is used as an example for illustration.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the interior of the vehicle is equipped with a vehicle controller 11, a high-voltage battery control unit 12, a bidirectional DC/DC module logic control unit 13, a low-voltage battery control unit 14, a high-voltage battery 15, a bidirectional DC/DC module 16 and a low-voltage battery 17.
  • the bidirectional DC/DC module 16 is connected between the high-voltage battery 15 and the low-voltage battery 17 for realizing the charging and discharging process between the high-voltage battery 15 and the low-voltage battery 17 .
  • both the high-voltage battery 15 and the low-voltage battery 17 include at least one battery cell, which is used for charging or discharging, and can be recharged repeatedly in a rechargeable manner.
  • the high-voltage battery 15 generally refers to a battery that can provide a voltage above 48V
  • the low-voltage battery 17 generally refers to a battery that can provide a voltage within 48V (including 48V).
  • the high-voltage battery 15 can be used for the power supply of high-voltage loads in vehicles
  • the low-voltage battery 17 can be used for the power supply of low-voltage loads in vehicles.
  • the vehicle controller 11 is respectively connected with the control unit 12 of the high-voltage battery, the logic control unit 13 of the bidirectional DC/DC module, and the control unit 14 of the low-voltage battery through communication lines.
  • the vehicle controller 11 can issue operation commands to the control unit 12 of the high-voltage battery, the logic control unit 13 of the bidirectional DC/DC module, and the control unit 14 of the low-voltage battery, or receive the control unit 12 of the high-voltage battery and the bidirectional DC/DC module
  • the control unit 12 of the high voltage battery is used to control the charging and discharging process of the high voltage battery 15 .
  • the control unit 14 of the low voltage battery is used to control the charging and discharging process of the low voltage battery 17 .
  • the logic control unit 13 of the bidirectional DC/DC module is used to control the bidirectional DC/DC module 16 so that the high voltage battery 15 charges the low voltage battery 17 or the low voltage battery 17 charges the high voltage battery 15 .
  • FIG. 1 is only an example for illustrating the high voltage battery 15 and the low voltage battery 17 .
  • the high-voltage battery 15 and the low-voltage battery 17 may also include more or less elements, or have different element configurations, which are not limited in this embodiment of the present application.
  • the high-voltage battery 15 and the low-voltage battery 17 in the embodiment of the present application can be lithium-ion batteries, lithium metal batteries, lead-acid batteries, nickel batteries, nickel-metal hydride batteries, lithium-sulfur batteries, lithium-air batteries or sodium-ion batteries, etc. It is not limited here.
  • the high-voltage battery 15 and the low-voltage battery 17 in the embodiment of the present application can be battery cells, or a battery module composed of multiple battery cells connected in series and/or parallel, or can be A battery pack composed of multiple battery modules connected in series and/or in parallel may also be a power supply device composed of multiple battery packs connected in parallel, which is not limited here.
  • the high-voltage battery 15 and the low-voltage battery 17 can be used in power devices such as automobiles and ships. For example, it can be applied to electric vehicles to supply power to the motors of electric vehicles as the power source of electric vehicles.
  • the battery can also supply power to other electrical devices in electric vehicles, such as in-car air conditioners and car players.
  • the hardware structure of the electric vehicle 10 shown in FIG. 1 is only an example, and the electric vehicle 10 may have more or fewer components than those shown in the figure, and two or more components may be combined. components, or may have different component configurations, the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • control unit 14 of the low-voltage battery can be integrated with the logic control unit 13 of the bidirectional DC/DC module.
  • Car controller 11 controls.
  • the logic control unit 13 of the bidirectional DC/DC module and the control unit 14 of the low-voltage battery can be integrated into the vehicle controller 11, and the charging and discharging process of the high-voltage voltage 15 is still controlled by the high-voltage battery
  • the control unit 12 controls.
  • the control unit 12 of the high-voltage battery, the logic control unit 13 of the bidirectional DC/DC module, and the control unit 14 of the low-voltage battery can also be integrated into the vehicle controller 11.
  • the vehicle controller 11, the control unit 12 of the high-voltage battery, the logic control unit 13 of the bidirectional DC/DC module, and the control unit 14 of the low-voltage battery can be collectively referred to as the main control unit.
  • the main control unit can perform the functions of the vehicle controller 11, the control unit 12 of the high-voltage battery, the logic control unit 13 of the bidirectional DC/DC module, and the control unit 14 of the low-voltage battery, so as to calibrate the state of the low-voltage battery 17 , that is, to calibrate the health state value of the low-voltage battery 17 .
  • FIG. 2 is a flow chart of a state calibration method for a low-voltage battery provided in an embodiment of the present application.
  • the state calibration method of the low-voltage battery comprises the following steps:
  • Step 21 Control the low-voltage battery to discharge at a first discharge rate until the voltage of at least one battery cell in the low-voltage battery is not greater than the first voltage threshold.
  • the low-voltage battery includes at least one battery cell.
  • the first discharge rate is a preset discharge rate
  • the first voltage threshold is a preset voltage value
  • the specific values of the first discharge rate and the first voltage threshold can be set according to actual application conditions. The embodiment of the application does not specifically limit this.
  • the first discharge rate can be set to any value between (0.05C-10C), wherein C is used to represent the ratio of the current magnitude during charging and discharging of the battery.
  • C is used to represent the ratio of the current magnitude during charging and discharging of the battery.
  • 0.2C means that the current of the battery is 240mA (0.2 times of 1200mAh) when charging and discharging
  • 1C means that the current of the battery is 1200mA (1 times of 1200mAh) when charging and discharging.
  • the first voltage threshold may be set as a dischargeable cut-off voltage of the battery cell.
  • the cut-off voltage of the battery refers to the minimum voltage of the battery without over-discharge, that is, if the voltage of the battery is lower than the cut-off voltage, it means that the battery has been over-discharged. Therefore, it can also ensure that the low-voltage battery does not experience abnormal over-discharge during the discharge process, so as to protect the low-voltage battery and help prolong the service life of the low-voltage battery.
  • the method for calibrating the state of the low-voltage battery further includes: if the electric vehicle is in a stationary state, acquiring the second duration according to the SOC value of the low-voltage battery.
  • the second duration is a duration for calibrating the state of the low-voltage battery.
  • the SOC value is the ratio of the remaining power of the battery to the nominal capacity of the battery.
  • the SOC (state of charge, state of charge) value of the battery can be the ratio of the remaining charge of the battery to the nominal capacity of the battery, or the ratio of the remaining charge of the battery to the current nominal capacity of the battery.
  • the ratio of capacity; the nominal capacity of the battery can be a preset fixed value (for example, the value determined by the battery manufacturer when the battery leaves the factory), or it can be the sum of the remaining charge of the battery and the amount of electricity that the battery has discharged.
  • the embodiments of the present disclosure do not limit how to determine the SOC of the battery, and any existing or future implementations of determining the SOC of the battery can be applied to one or more embodiments provided in the present disclosure.
  • the stationary state can be understood as the state when the electric vehicle is not started. At this time, except for charging or discharging the battery during the calibration process, there is no Other situations in which the battery is used (for example, controlling the battery to power the air conditioner in an electric vehicle, etc.). Therefore, it can be ensured that the low-voltage battery performs a state calibration process without being disturbed by external conditions, and the calibration accuracy can be improved.
  • the SOC value of the low-voltage battery can be used to determine the duration of the entire process of calibrating the state of the low-voltage battery, so as to better manage the subsequent calibration process.
  • the method further includes: displaying the second duration by the electric vehicle.
  • the second duration of time on the electric vehicle By displaying the second duration of time on the electric vehicle, a user of the electric vehicle can be reminded.
  • the state calibration process of the low-voltage battery it can reduce the probability that the customer starts the electric vehicle by mistake and causes the calibration process to fail or the calibration result to be inaccurate.
  • the user after the user knows the time required for the state calibration of the low-voltage battery, he can arrange the use time and calibration time of the electric vehicle according to his actual situation, which can bring convenience to the user and improve the user experience.
  • the method further includes: if the second duration is not displayed by the electric vehicle, if the calibration of the low-voltage battery is not completed within the second duration, then determine that the low-voltage battery calibration is invalid.
  • the electric vehicle does not display the second duration, but completes the state calibration process of the low-voltage battery autonomously.
  • the calibration process of the low-voltage battery should be completed within the second time period to ensure the accuracy of the calibration result.
  • the calibration of the low-voltage battery is not completed due to an abnormality such as the user starting the vehicle, it should be determined that the calibration of the low-voltage battery is invalid, so as to reduce the probability of miscalibration, thereby helping to make the calibration result more reliable.
  • the electric vehicle can be set to autonomously perform the state calibration process of the low-voltage battery after a fixed time interval.
  • the state calibration of the low-voltage battery can be set as a standard detection item when the electric vehicle is undergoing annual inspection, that is, the state calibration of the low-voltage battery is automatically started at this time.
  • the calibration condition can be automatically triggered to perform the state calibration of the low-voltage battery when the vehicle is left standing for a long time or the vehicle system is upgraded. process.
  • the electric vehicle further includes a high voltage battery, a bidirectional DC/DC module and a low voltage load.
  • the high-voltage battery is connected to the low-voltage battery through a bidirectional DC/DC module, and the low-voltage battery is connected to a low-voltage load.
  • FIG. 1 for the structure of the electric vehicle, reference may be made to the above specific description for FIG. 1 , which will not be repeated here.
  • the specific process of controlling the low-voltage battery to discharge at the first discharge rate in step 21 may include: controlling the bidirectional DC/DC module to control the low-voltage battery to discharge to the high-voltage battery at the first discharge rate.
  • a plurality of switch tubes are provided in the bidirectional DC/DC module, which can control the conduction or disconnection of the switch tubes in the bidirectional DC/DC module, so as to realize the current flowing from the low-voltage battery to the high-voltage battery, thereby Realize the process of discharging the low-voltage battery to the high-voltage battery.
  • the rate at which the low-voltage battery discharges to the high-voltage battery is the first discharge rate.
  • the charging and discharging process between the high voltage battery and the low voltage battery can be realized. Then, conditions can be created for the full charge and discharge process of the low-voltage battery. If the state of the low-voltage battery is adjusted during the full charge and discharge process of the low-voltage battery, a more accurate SOH value can be obtained, which is conducive to providing more energy to the low-voltage load through the low-voltage battery.
  • the voltage of at least one cell in the low-voltage battery is not greater than the first voltage threshold, it may be that only one cell in the low-voltage battery has been discharged to a voltage less than or equal to the first voltage threshold, or there may be more than one cell in the low-voltage battery.
  • the voltage of the battery cell is simultaneously discharged to be less than or equal to the first voltage threshold, which is not specifically limited in this embodiment of the present application.
  • Step 22 Control the low-voltage battery to charge at the first charging rate until the voltage of at least one battery cell in the low-voltage battery is not less than the second voltage threshold.
  • the first charge rate is a preset discharge rate
  • the second voltage threshold is a preset voltage value
  • the specific values of the first charge rate and the second voltage threshold can be set according to actual application conditions.
  • the embodiment of the application does not specifically limit this.
  • the first charging rate may be the same as or different from the first discharging rate.
  • the second voltage threshold can be set as the maximum voltage that the battery cell can charge.
  • the maximum voltage of the battery refers to the maximum voltage of the battery without overcharging, that is, if the voltage of the battery is greater than the maximum voltage, it means that the battery is overcharged.
  • setting the first voltage threshold as the dischargeable cut-off voltage of the battery cell and setting the second voltage threshold as the maximum chargeable voltage of the battery cell can realize the full charge and discharge of the battery cell. process. During this process, the state of the low-voltage lithium battery pack is calibrated, and the calibrated low-voltage battery can provide more energy for the low-voltage load.
  • the method for calibrating the state of the low-voltage battery further includes: controlling the low-voltage battery to be in a resting state within a first period of time.
  • the low-voltage battery stops discharging, and the low-voltage battery is controlled to be in a static state for a period of time.
  • the polarization of the low-voltage battery can be eliminated to stabilize the state of the low-voltage battery. Therefore, relatively reliable data can be obtained, which is conducive to improving the accuracy of calculating the state of health value of the battery.
  • the time period for controlling the low-voltage battery to be in the static state can be set to any time period between (0.1h, 10h), for example, 0.2h, that is, 0.2 hours.
  • the time period for controlling the low-voltage battery to be in the static state can be set according to actual application conditions, as long as the polarization phenomenon of the low-voltage battery can be eliminated, which is not specifically limited in the embodiment of the present application.
  • the voltage of at least one battery cell in the low-voltage battery is not less than the second voltage threshold, it may be that the voltage of only one battery cell in the low-voltage battery has been charged to be greater than or equal to the second voltage threshold, or there may be The voltages of the multiple battery cells are simultaneously charged to be greater than or equal to the second voltage threshold, which is not specifically limited in this embodiment of the present application.
  • Step 23 Obtain the charged power of the low-voltage battery.
  • the electricity charged in the low-voltage battery can be obtained through the ampere-hour integration method.
  • the amount of electricity Q charged by the low-voltage battery is:
  • I is the discharge current
  • the time t can be the end time of the discharge
  • the time t0 is the time when the discharge just starts
  • d ⁇ represents the integral of time.
  • Step 24 Obtain the health status value of each battery cell according to the charged power of the low-voltage battery, and calibrate the health status value of the low-voltage battery according to the health status value of each battery cell.
  • the process of obtaining the health status value of each battery cell according to the electric quantity charged in the low-voltage battery in step 24 includes the following steps:
  • Step 31 Obtain the rated capacity of the battery cell before calibration.
  • Step 32 Calculate the ratio of the charged power of the low-voltage battery to the rated capacity to obtain the health status value of each battery cell.
  • the rated capacity of the battery cell before calibration indicates the rated capacity of each battery cell before performing the state calibration method of the low-voltage battery.
  • the battery cell usually gradually ages, causing its rated capacity to gradually decay.
  • the specific calculation method is to use the ratio of the charge Q of the low-voltage battery to the rated power Q1 of the cell before calibration, that is, Q/Q1, as the health status value of each cell.
  • the actual health status value of the battery as a whole can be reflected more accurately, so that the difference between the battery health status value obtained in subsequent calculations and the actual battery health status value If the deviation is small, a more accurate health status value can be obtained.
  • the process of calibrating the state of health value of the low voltage battery according to the state of health value of each cell in step 24 includes: taking the minimum value of the state of health values of each cell as the current state of health value of the low voltage battery.
  • the minimum value is used as the current state of health value of the low-voltage battery to ensure that there is enough power to be released.
  • the usable capacity of the battery can be increased, that is, the performance of the battery can be more fully utilized.
  • it also ensures a certain remaining capacity to prevent the battery from being over-discharged, so as to protect the battery and prolong the service life of the battery.
  • the minimum value is used as the current state of health value of the low-voltage battery as an example, and in other embodiments, after obtaining the state of health of each battery cell, other battery
  • the health status value of the core is used as the current health status value of the low-voltage battery, which is not specifically limited in this embodiment of the present application.
  • FIG. 4 is a flow chart of a method for calibrating the state of a low-voltage battery disclosed in another embodiment of the present application.
  • FIG. 4 is a flow chart of a method for calibrating the state of a low-voltage battery disclosed in another embodiment of the present application.
  • the vehicle controller in the electric vehicle judges whether the electric vehicle is in a stationary state. If so, the control unit of the low-voltage battery can calculate the time period for calibrating the state of the low-voltage battery according to the current SOC value of the low-voltage battery, which is the second time period. Then, the control unit of the low-voltage battery can provide the second duration to the human-machine system, for example, display the second duration to the user's mobile phone and ask the user for confirmation. After being confirmed by the man-machine system, the state calibration process of the low-voltage battery is started.
  • the low-voltage voltage is controlled to discharge at the first discharge rate, and it is judged in real time whether there is at least one cell whose voltage is not greater than the first voltage threshold in the low-voltage battery. If the voltage of at least one battery cell is greater than the first voltage threshold, the discharge is stopped, and the low-voltage battery is controlled to be in a static state within the first time period. After the rest time is over, that is, after the first period of time is over, the low-voltage battery is controlled to be charged at the first charging rate, and it is judged in real time whether there is at least one cell in the low-voltage battery whose voltage is not less than the second voltage threshold.
  • the health state value of each cell is the ratio of the charge of the low-voltage battery to the rated capacity of the cell before calibration. Then, the health status value of the low-voltage battery can be calibrated according to the health status of each battery cell, specifically, the minimum value of the health status values of each battery cell is used as the current health status value of the low-voltage battery. Thus, the state calibration process of the low-voltage battery is completed.
  • the SOH value of each battery cell is obtained according to the charged electricity, and the current SOH value of the low-voltage battery is finally determined according to the SOH value of each battery cell, so that it is more accurate The SOH value.
  • the process of fully charging and discharging the battery can also be realized. If the SOH value of the low-voltage battery is calibrated during this process, a more accurate SOH value can be obtained, which is beneficial to Provide more energy to low-voltage loads through low-voltage batteries. At the same time, after obtaining a more accurate SOH value, the power output of the low-voltage battery can be controlled more accurately, which can effectively reduce the risk of battery damage, help improve the stability of battery performance and prolong the service life of the battery.
  • FIG. 5 shows a schematic structural diagram of a low-voltage battery state calibration device provided by an embodiment of the present application, wherein the low-voltage battery includes at least one battery cell.
  • the state calibration device 500 for a low-voltage battery includes: a discharge control unit 501 , a charge control unit 502 , a power acquisition unit 503 and a state calibration unit 504 .
  • the discharge control unit 501 is used to control the low-voltage battery to discharge at a first discharge rate until the voltage of at least one battery cell in the low-voltage battery is not greater than the first voltage threshold.
  • the charging control unit 502 is used to control the low-voltage battery to be charged at the first charging rate until the voltage of at least one battery cell in the low-voltage battery is not less than the second voltage threshold.
  • the power acquisition unit 503 is used to acquire the power charged by the low-voltage battery.
  • the state calibration unit 504 is used to obtain the state of health value of each battery cell according to the charged power of the low voltage battery, and calibrate the state of health value of the low voltage battery according to the state of health value of each cell.
  • the above-mentioned product can execute the method provided by the embodiment of the present application shown in FIG. 2 , and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 2 For technical details not described in detail in this embodiment, refer to the method provided in the embodiment of this application.
  • FIG. 6 shows a schematic structural diagram of a master control unit provided by an embodiment of the present application.
  • the main control unit 600 includes one or more processors 601 and a memory 602 .
  • one processor 601 is taken as an example in FIG. 6 .
  • the processor 601 and the memory 602 may be connected through a bus or in other ways, and connection through a bus is taken as an example in FIG. 6 .
  • the memory 602 as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the state calibration method of the low-voltage battery in the embodiment of the present application. program instructions/modules (for example, each unit described in FIG. 5 ).
  • the processor 601 executes various functional applications and data processing of the low-voltage battery state calibration device by running the non-volatile software programs, instructions and modules stored in the memory 602, that is, realizes the low-voltage battery in the above-mentioned method embodiments.
  • the state calibration method and the functions of each unit of the above-mentioned device embodiment can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the state calibration method of the low-voltage battery in the embodiment of the present application. program instructions/modules (for example, each unit described in FIG. 5 ).
  • the processor 601 executes various functional applications and data
  • the memory 602 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 602 may optionally include memory that is remotely located relative to the processor 601, and these remote memories may be connected to the processor 601 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Program instructions/modules are stored in the memory 602, and when executed by one or more processors 601, perform the state calibration method of the low-voltage battery in any of the above method embodiments, for example, perform the above-described Fig. 2 and Fig. 3 And each step shown in Fig. 4; Also can realize the function of each unit described in Fig. 5.
  • An embodiment of the present application also provides an electric vehicle, including a low-voltage battery and the main control unit in any one of the above embodiments.
  • the embodiment of the present application also provides a non-volatile computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, which can make the above-mentioned one or more processors
  • the method for calibrating the state of the low-voltage battery in any of the above method embodiments may be implemented. For example, execute the steps shown in FIG. 2 , FIG. 3 and FIG. 4 described above; and also implement the functions of the units shown in FIG. 5 .
  • the device or device embodiments described above are only illustrative, and the unit modules described as separate components may or may not be physically separated, and the components shown as modular units may or may not be physical units , which can be located in one place, or can be distributed to multiple network module units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course also by hardware.
  • the essence of the above technical solutions or the part that contributes to related technologies can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, disk , optical disc, etc., including several instructions for a computer device (which may be a personal computer, server, or network device, etc.) to execute the methods described in various embodiments or some parts of the embodiments.

Abstract

本申请提供一种低压电池的状态校准方法及装置、电动车辆,其中,低压电池包括至少一个电芯,方法包括控制低压电池以第一放电倍率进行放电,直至低压电池中存在至少一个电芯的电压不大于第一电压阈值。控制低压电池以第一充电倍率进行充电,直至低压电池中存在至少一个电芯的电压不小于第二电压阈值。获取低压电池充入的电量。根据低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准低压电池的健康状态值。通过上述方式,能够提高SOH的检测精度。

Description

低压电池的状态校准方法及装置、电动车辆 技术领域
本申请涉及电池技术领域,特别是涉及一种低压电池的状态校准方法及装置、电动车辆。
背景技术
随着能源问题和环境问题日益严峻,国家对新能源的大力扶持,以及动力电池技术的日益成熟,电动车辆已经成为未来汽车工业发展新方向。电动车辆的续航里程成为影响电动车辆普及的重要因素。作为关键零部件的电池,是电动车辆的主要动力来源,其产品质量的稳定可靠至关重要。其中,电池包括低压电池与高压电池。
对于低压电池而言,在现有技术中通常直接通过电池管理系统(Battery Management Sysytem,BMS)采集电芯的电压跟温度等状态,以计算低压电池的健康状态值(State Of Health,SOH)。
然而,因低压电池存在使用环境复杂、充放电倍率较大等环境因素,导致在现有技术中所检测到的SOH精度较低。
发明内容
本申请旨在提供一种低压电池的状态校准方法及装置、电动车辆,能够提高SOH的检测精度。
为实现上述目的,第一方面,本申请提供一种低压电池的状态校准方法,其中,低压电池包括至少一个电芯,方法包括控制低压电池以第一 放电倍率进行放电,直至低压电池中存在至少一个电芯的电压不大于第一电压阈值。控制低压电池以第一充电倍率进行充电,直至低压电池中存在至少一个电芯的电压不小于第二电压阈值。获取低压电池充入的电量。根据低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准低压电池的健康状态值。
首先,该方法通过控制低压电池的充放电过程,以根据所充入的电量获得各电芯的SOH值,并根据各电芯的SOH值最终确定低压电池当前的SOH值,可获得较为准确的SOH值。同时,可通过设置第一电压阈值与第二电压阈值,以实现电芯的满充满放过程,并在该过程中对低压电池的SOH值进行校准,则可获得更加准确的SOH值,有利于通过低压电池对低压负载提供更多能量。并且,在获得较为准确的SOH值后,可更加准确的控制低压电池的功率输出,从而有效的降低电池损坏的风险,有利于提高电池性能的稳定性以及延长电池的使用寿命。
在一种可选的方式中,在控制低压电池以第一放电倍率进行充电之前,方法还包括:在第一时长内,控制低压电池处于静置状态。
通过使低压电池处于静置状态,能够消除低压电池的极化现象,以使低压电池的状态稳定下来。从而,能够获得较为可靠的数据,有利于提高计算电池的健康状态值的准确度。
在一种可选的方式中,根据低压电池充入的电量获取各电芯的健康状态值,包括:获取电芯在校准前的额定容量。计算低压电池充入的电量与电芯在校准前的额定容量的比值,以获得各电芯的健康状态值。
通过获得每个电芯的健康状态值,能够更准确的反应电池整体实际的健康状态值,以使后续计算所获得的电池的健康状态值与电池实际的健康状态值的偏差较小,即可获得较为准确的健康状态值。
在一种可选的方式中,根据各电芯的健康状态值校准低压电池的健康状态值,包括:将各电芯的健康状态值中的最小值作为低压电池当前的健康状态值。
以最小值作为低压电池当前的健康状态值,可保证有足够的电量能够进行释放,换言之,可使电池的可用容量增加,即使电池的性能得到更加充分的利用。同时,也保证有一定剩余容量,防止电池出现过放,以对电池起到保护作用,有利于延长电池的使用寿命。
在一种可选的方式中,低压电池设于电动车辆中,在控制低压电池以第一放电倍率进行放电之前,方法还包括:若电动车辆处于静置工况,则根据低压电池的SOC值获取第二时长。其中,第二时长为校准低压电池的状态的时长,SOC值为电池剩余电量与电池标称容量的比值。
在校准之前,首先要使电动车辆处于静置工况,以保证低压电池在不受外界情况干扰的情况下进行校准,能够提升校准的准确度。继而,在确定电动车辆处于静置工况后,可通过低压电池的SOC值确定校准低压电池的状态的整个过程所需的时长,以更好的管理后续的校准过程。
在一种可选的方式中,方法还包括:通过电动车辆显示第二时长。
通过电动车辆显示第二时长以对电动车辆的用户进行提醒。继而,用户在获知进行低压电池的状态校准所需的时间后,可根据自身的实际情况安排好电动车辆的使用时间与校准时间,能够为用户带来便利性,用户的体验更佳。
在一种可选的方式中,方法还包括:在未通过电动车辆显示第二时长的场合,若在第二时长内,未完成低压电池的校准,则确定低压电池的校准失效。
在未通过电动车辆显示第二时长的场合,若在第二时长内出现用户 启动车辆等情况而导致低压电池的校准未完成,此时,应确定低压电池的校准失效。从而,能够减少出现误校准的几率,有利于使后续的校准结果更加的可靠。
在一种可选的方式中,电动车辆还包括高压电池、双向DC/DC模块与低压负载,高压电池通过所述双向DC/DC模块与低压电池连接,低压电池与低压负载连接。控制低压电池以第一放电倍率进行放电,包括:控制双向DC/DC模块,以控制低压电池以第一放电倍率向高压电池放电。
在一种可选的方式中,控制低压电池以第一充电倍率进行充电,包括:控制双向DC/DC模块,以控制高压电池以第一充电倍率为低压电池进行充电。
通过使用双向DC/DC模块,可实现高压电池与低压电池之间的充放电过程。继而,能够为低压电池的满充满放过程创造条件,若在该过程对低压电池进行状态调整,能够获得更加准确的SOH值,有利于通过低压电池对低压负载提供更多能量。
第二方面,本申请提供一种低压电池的状态校准装置,其中,低压电池包括至少一个电芯,装置包括放电控制单元、充电控制单元、电量获取单元与状态校准单元。其中,放电控制单元用于控制低压电池以第一放电倍率进行放电,直至低压电池中存在至少一个电芯的电压不大于第一电压阈值。充电控制单元用于控制低压电池以第一充电倍率进行充电,直至低压电池中存在至少一个电芯的电压不小于第二电压阈值。电量获取单元用于获取低压电池充入的电量。状态校准单元用于根据低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准低压电池的健康状态值。
第三方面,本申请提供一种主控单元,包括:存储器;以及耦接至 存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行如第一方面中的方法。
第四方面,本申请提供一种电动车辆,包括:低压电池以及如第三方面中的主控单元。其中,主控单元用于校准低压电池的状态。
在一种可选的方式中,电动车辆还包括高压电池与双向DC/DC模块。高压电池通过双向DC/DC模块与低压电池连接,且双向DC/DC模块与主控单元连接。主控单元用于控制双向DC/DC模块,以使高压电池为低压电池充电,或使低压电池为高压电池充电。
在一种可选的方式中,主控单元包括整车控制器、低压电池控制单元、双向DC/DC模块的逻辑控制单元与高压电池控制单元。整车控制器用于控制低压电池控制单元、双向DC/DC模块的逻辑控制单元与高压电池控制单元,低压电池控制单元用于控制低压电池的充放电,双向DC/DC模块的逻辑控制单元用于控制双向DC/DC模块,高压电池控制单元用于控制高压电池的充放电。
第五方面,本申请提供一种计算机可读存储介质,包括:存储有计算机可执行指令,计算机可执行指令设置为如第一方面中的方法流程。
本申请实施例的有益效果是:本申请所提供的低压电池的状态校准方法包括控制低压电池以第一放电倍率进行放电,直至低压电池中存在至少一个电芯的电压不大于第一电压阈值。控制低压电池以第一充电倍率进行充电,直至低压电池中存在至少一个电芯的电压不小于第二电压阈值。获取低压电池充入的电量。根据低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准低压电池的健康状态值。该方法通过控制低压电池的充放电过程,以根据所充入的电量获得各电芯的SOH值,并根据各电芯的SOH值最终确定低压电池当前的SOH值,可获得较为准确 的SOH值。同时,可通过设置第一电压阈值与第二电压阈值,以实现电芯的满充满放过程,并在该过程中对低压电池的SOH值进行校准,则可获得更加准确的SOH值,有利于通过低压电池对低压负载提供更多能量。并且,在获得较为准确的SOH值后,可更加准确的控制低压电池的功率输出,从而有效的降低电池损坏的风险,有利于提高电池性能的稳定性以及延长电池的使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的电动车辆的结构示意图;
图2是本申请一实施例公开的低压电池的状态校准方法的流程图;
图3是本申请一实施例公开的图2中示出的步骤24的一实施方式的示意图;
图4是本申请另一实施例公开的低压电池的状态校准方法的流程图;
图5是本申请一实施例公开的低压电池的状态校准装置的结构示意图;
图6是本申请一实施例公开的主控单元的结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来 限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
近几年,新能源汽车行业迎来了爆发式增长。电池是电动汽车的核心,也是汽车工程与电力工程技术的综合体现。其中,电池包括低压电池与高压电池。在低压电池中,通常需要检测其SOH值,以确定当前低压电池的性能状态。因此,如何准确检测出低压电池的SOH值,就显得尤为重要。
本申请的发明人在实现本申请的过程中,发现:目前常见的计算低压电池的SOH值的方式为:通过BMS采集电芯的电压跟温度等状态,以计算电压电池的SOH值。
然而,因低压电池存在使用环境复杂、充放电倍率较大等环境因素,会导致所计算出来的SOH值与实际SOH值偏差较大。亦即,计算获得的SOH值的准确度较差,从而无法反应低压电池的SOH值的真实情况。
基于此,申请人设计了一种低压电池的状态校准方法,该方法通过控制低压电池的充放电过程,以根据所充入的电量获得各电芯的SOH值,并根据各电芯的SOH值最终确定低压电池当前的SOH值,即可获得较为准 确的SOH值。继而,通过实时获得较为准确的SOH值,则能够在使电芯的性能得到较为充分的发挥的同时,延长电池的使用寿命。
本申请实施例公开的包括电芯的电池可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电芯、电池等组成该用电设备的电源系统,这样,能够根据所检测到的电池的SOH值,控制电池的功率输出,可有效降低电池损坏的风险,有利于提升电池性能的稳定性和延长电池的使用寿命。
本申请实施例提供一种使用电池作为电源的用电设备,其中,电池包括至少一个电芯。用电设备可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为电容车辆10为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆的内部设置有整车控制器11、高压电池的控制单元12、双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14、高压电池15、双向DC/DC模块16与低压电池17。其中,双向DC/DC模块16连接于高压电池15与低压电池17之间,用于实现高压电池15与低压电池17之间的充放电过程。
其中,高压电池15与低压电池17均包括至少一个电芯,电芯用于充电或放电,且可以采用可循环再充电的方式反复充电。高压电池15通常指可提供48V以上电压的电池,低压电池17通常指可提供48V以内(包括48V)的电池。高压电池15可以用于车辆中高压负载的供电,低压电池17可用于车辆中低压负载的供电,例如,高压电池15可以作为车辆中空调的电源,低压电池17可以作为车辆中指示灯的电源。
整车控制器11通过通信线分别与高压电池的控制单元12、双向 DC/DC模块的逻辑控制单元13、低压电池的控制单元14连接。整车控制器11可下发操作指令至高压电池的控制单元12、双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14,或接收高压电池的控制单元12、双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14所上传的指令。高压电池的控制单元12用于控制高压电池15的充放电过程。低压电池的控制单元14用于控制低压电池17的充放电过程。双向DC/DC模块的逻辑控制单元13用于控制双向DC/DC模块16,以使高压电池15为低压电池17充电,或使低压电池17为高压电池15充电。
需要说明的是,图1仅为举例说明高压电池15与低压电池17。在其他的实施例中,高压电池15与低压电池17也可以包括更多或更少的元件,或者具有不同的元件配置,本申请实施例对此不作限制。比如,本申请实施例中的高压电池15与低压电池17可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的高压电池15与低压电池17可以为电芯单体,也可以是为由多个电芯单体串联和/或并联组成的电池模组,又可以是由多个电池模组串联和/或并联组成的电池包,还可以为由多个电池包并联组成的供电装置,在此不做限定。从应用场景而言,该高压电池15与低压电池17可应用于汽车、轮船等动力装置内。例如,可以应用于动力汽车,以为动力汽车的电机供电,作为电动汽车的动力源。该电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
同时,如图1所示的电动车辆10的硬件结构仅是一个示例,并且,电动车辆10可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
例如,在一实施例中,可将低压电池的控制单元14与双向DC/DC模块的逻辑控制单元13集成,同时,将集成至整车控制器11,即高压电压15的充放电过程由整车控制器11控制。又如,在另一实施例中,可将 双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14均集成至整车控制器11,而高压电压15的充放电过程仍由高压电池的控制单元12控制。再如,在又一实施例中,还可将高压电池的控制单元12、双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14均集成至整车控制器11,此时,整车控制器11、高压电池的控制单元12、双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14可合并称之为主控单元。该主控单元能够执行整车控制器11、高压电池的控制单元12、双向DC/DC模块的逻辑控制单元13、低压电池的控制单元14的功能,以用于对低压电池17的状态进行校准,即校准低压电池17的健康状态值。
请参阅图2,图2为本申请实施例提供的低压电池的状态校准方法的流程图。该低压电池的状态校准方法包括以下步骤:
步骤21:控制低压电池以第一放电倍率进行放电,直至低压电池中存在至少一个电芯的电压不大于第一电压阈值。
其中,低压电池包括至少一个电芯。
其中,第一放电倍率为一预先设定的放电倍率,第一电压阈值为一预先设定的电压值,第一放电倍率与第一电压阈值的具体数值均可根据实际应用情况进行设置,本申请实施例对此不作具体限制。
例如,在一实施方式中,第一放电倍率可设置为(0.05C-10C)之间的任一数值,其中,C用来表示电池充放电时电流大小的比率。如1200mAh的电池,0.2C表示电池充放电时电流为240mA(1200mAh的0.2倍率),1C表示电池充放电时电流为1200mA(1200mAh的1倍率)。
又如,在另一实施方式中,第一电压阈值可设置为电芯可放电的截止电压。其中,电芯的截止电压指电芯不出现过放的最小电压,即若电芯的电压小于截止电压意味着电芯出现了过放。从而,还能够确保低压电池在放电过程中不出现过放的异常,以对低压电池起到保护作用,有利于延长低压电池的使用寿命。
在一实施例中,在执行步骤21之前,该低压电池的状态校准方法还包括:若电动车辆处于静置工况,则根据低压电池的SOC值获取第二时长。
其中,第二时长为校准低压电池的状态的时长。SOC值为电池剩余电量与电池标称容量的比值。本领域技术人员能够理解,电池的SOC(state of charge,荷电状态)值可以是电池的电荷余量与电池的标称容量的比值,还可以是电池的电荷余量与电池的当前标称容量的比值;电池的标称容量可以是预设的固定值(例如电池生产厂家在电池出厂时确定的值),还可以是电池的电荷余量与电池已经放出电量之和。本公开实施例对于如何确定电池的SOC不作限定,任何现有的、将来的确定电池的SOC的实施方式均能够应用到本公开提供的一个或多个实施例。
在校准之前,首先要使电动车辆处于静置工况,其中,静置工况可理解为电动车辆未被启动时的工况,此时,除了在校准过程对电池进行充电或放电,不存在其他对电池进行使用的情况(例如,控制电池为电动车辆中的空调供电等情况)。从而,可保证低压电池在不受外界情况干扰的情况下执行状态校准过程,能够提升校准的准确度。同时,在确定电动车辆处于静置工况后,可通过低压电池的SOC值确定校准低压电池的状态的整个过程所需的时长,以更好的管理后续的校准过程。
在一实施例中,在获取到第二时长之后,该方法还包括:通过电动车辆显示第二时长。
通过电动车辆显示第二时长,能够对电动车辆的用户起到提醒作用。一方面,在低压电池的状态校准过程中,能够减少客户误启动电动车辆而导致校准过程失效或校准结果不准确的几率。另一方面,用户在获知进行低压电池的状态校准所需的时间后,可根据自身的实际情况安排好电动车辆的使用时间与校准时间,能够为用户带来便利性,用户的体验更佳。
在另一实施例中,在获取到第二时长之后,该方法还包括:在未通过电动车辆显示第二时长的场合,若在第二时长内,未完成低压电池的校准,则确定低压电池的校准失效。
在该实施例中,电动车辆并未显示第二时长,而是自主完成低压电池的状态校准过程。此时,低压电池的校准过程应在第二时长内完成,以保证校准结果的准确性。而若在第二时长内,因用户启动车辆等异常而导致低压电池的校准未完成,则应确定低压电池的校准失效,以减少出现误 校准的几率,从而有利于使校准结果更加的可靠。
进而,在一实施方式中,可设置电动车辆在间隔固定时长后自主进行低压电池的状态校准过程。例如,在一实施例中,可设置在电动车辆进行年检时,将低压电池的状态校准作为一种标准的检测项目,即此时自动启动低压电池的状态校准。又如,在另一实施例中,若超过预设时长未进行低压电池的状态校准,则可在车辆长时间静置或车辆的系统升级时,自动触发校准条件,以进行低压电池的状态校准过程。从而,能够更好的保持所获取到的SOH值与实际的SOH值之间具有较小的偏差,有利于使低压电池的性能得到较为充分的发挥。并且,对低压电池的保护效果也更佳,能够进一步延长电池的使用寿命。
在一实施例中,若电动车辆还包括高压电池、双向DC/DC模块与低压负载。其中,高压电池通过双向DC/DC模块与低压电池连接,低压电池与低压负载连接。这里,电动车辆的结构可以参考上述针对图1的具体描述,这里不再赘述。
在该实施例中,步骤21中控制低压电池以第一放电倍率进行放电的具体过程可包括:控制双向DC/DC模块,以控制低压电池以第一放电倍率向高压电池放电。
具体地,在一实施方式中,双向DC/DC模块中设有多个开关管,可控制双向DC/DC模块中开关管的导通或断开,以实现电流由低压电池流向高压电池,从而实现低压电池向高压电池放电的过程。同时,在一实施例中,可通过控制双向DC/DC模块中开关管的开关频率,以实现低压电池向高压电池放电的倍率为第一放电倍率。
在此实施例中,通过使用双向DC/DC模块,可实现高压电池与低压电池之间的充放电过程。继而,能够为低压电池的满充满放过程创造条件。若在低压电池的满充满放过程对低压电池进行状态调整,则能够获得更加准确的SOH值,有利于通过低压电池对低压负载提供更多能量。
可以理解的是,低压电池中存在至少一个电芯的电压不大于第一电压阈值,可以为电压电池中只有一个电芯的电压已放电至小于或等于第一电压阈值,也可以为有多个电芯的电压同时放电至小于或等于第一电压阈 值,本申请实施例对此不作具体限制。
步骤22:控制低压电池以第一充电倍率进行充电,直至低压电池中存在至少一个电芯的电压不小于第二电压阈值。
其中,第一充电倍率为一预先设定的放电倍率,第二电压阈值为一预先设定的电压值,第一充电倍率与第二电压阈值的具体数值均可根据实际应用情况进行设置,本申请实施例对此不作具体限制。同时,第一充电倍率可以与第一放电倍率相同,也可以不同。
在一实施方式中,第二电压阈值可设置为电芯可充电的最大电压。其中,电芯的最大电压指电芯不出现过充的最大电压,即若电芯的电压大于该最大电压意味着电芯出现了过充。此时,结合上述实施例中,将第一电压阈值设置为电芯可放电的截止电压,并将第二电压阈值可设置为电芯可充电的最大电压,则能够实现电芯的满充满放过程。在此过程中对低压锂电池组进行状态校准,校准后的低压电池能够为低压负载提供更多能量。
在一实施例中,在执行步骤22之前,该低压电池的状态校准方法还包括:在第一时长内,控制低压电池处于静置状态。
具体地,在低压电池中存在至少一个电芯的电压不大于第一电压阈值之后,低压电池停止放电,并控制低压电池在一时长内处于静置状态。通过使低压电池处于静置状态,能够消除低压电池的极化现象,以使低压电池的状态稳定下来。从而,能够获得较为可靠的数据,有利于提高计算电池的健康状态值的准确度。
在一实施方式中,控制低压电池处于静置状态的时长可设置为(0.1h,10h)之间的任一时长,例如0.2h,即0.2小时。当然,在其他的实施例中,控制低压电池处于静置状态的时长可根据实际应用情况进行设置,只要满足能够消除低压电池的极化现象即可,本申请实施例对此不作具体限制。
同样,可以理解的是,低压电池中存在至少一个电芯的电压不小于第二电压阈值,可以为电压电池中只有一个电芯的电压已充电至大于或等于第二电压阈值,也可以为有多个电芯的电压同时充电至大于或等于第二电压阈值,本申请实施例对此不作具体限制。
步骤23:获取低压电池充入的电量。
其中,可通过安时积分法获得低压电池充入的电量。具体地,低压电池充入的电量Q为:
Figure PCTCN2021142096-appb-000001
其中,I为放电电流,t时刻可为放电的结束时刻,t0时刻为刚开始放电的时刻,d τ表示对时间的积分。通过对上述公式的积分进行计算,可得到低压电池充入的电量Q。
步骤24:根据低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准低压电池的健康状态值。
在一实施例中,如图3所示,步骤24中根据低压电池充入的电量获取各电芯的健康状态值的过程包括如下步骤:
步骤31:获取电芯在校准前的额定容量。
步骤32:计算低压电池充入的电量与额定容量的比值,以获得各电芯的健康状态值。
电芯在校准前的额定容量表示在执行低压电池的状态校准方法之前,每个电芯的额定容量。在电池的使用过程中,电芯通常会逐渐老化,并导致其额定容量逐渐衰减。通过获取到电芯在校准前的额定容量,能够更好的反应出电芯的实际状态,有利于提升后续对低压电池的状态校准的准确性。
继而,可计算每一个电芯的健康状态值。具体的计算方式为,以低压电池充入的电量Q与电芯在校准前的额定电量Q1的比值,即Q/Q1作为每个电芯的健康状态值。
在此实施例中,通过获得每个电芯的健康状态值,能够更准确的反应电池整体实际的健康状态值,以使后续计算所获得的电池的健康状态值与电池实际的健康状态值的偏差较小,即可获得较为准确的健康状态值。
在一实施例中,步骤24中根据各电芯的健康状态值校准低压电池的健康状态值的过程包括:将各电芯的健康状态值中的最小值作为低压电池当前的健康状态值。
具体地,在获得每个电芯的健康状态值之后,将各电芯的健康状态值两两之间进行对比,以获得电池中健康状态值最小的电芯。可理解,健 康状态时最小的电芯可以只有一个,也可以为多个(该多个电芯的状态时相等,且均为最小值),本申请实施例对此不作具体限制。
在该实施例中,以最小值作为低压电池当前的健康状态值,可保证有足够的电量能够进行释放。换言之,能够使电池的可用容量增加,即使电池的性能得到更加充分的利用。同时,也保证有一定剩余容量,防止电池出现过放,以对电池起到保护作用,有利于延长电池的使用寿命。
需要说明的是,在本实施例中,仅以最小值作为低压电池当前的健康状态值为例,而在其他的实施例中,在获得各电芯的健康状态时之后,也可以将其他电芯的健康状态值作为低压电池当前的健康状态值,本申请实施例对此不作具体限制。
在一实施例中,请参照图4,图4为本申请另一实施例公开的低压电池的状态校准方法的流程图。其中,电动车辆的结构可以参考上述针对图1的具体描述,这里不再赘述。
如图4所示,首先,电动车辆中的整车控制器判断电动车辆是否处于静置状态下。如果是,则低压电池的控制单元能够根据当前低压电池的SOC值,计算校准低压电池的状态的时长,即为第二时长。接着,低压电池的控制单元可将第二时长提供给人机系统,比如,将第二时长显示至用户的手机端,并请求用户确认。在得到人机系统的确认后,开始进行低压电池的状态校准过程。然后,控制低压电压以第一放电倍率进行放电,并实时判断低压电池中是否存在至少一个电芯的电压不大于第一电压阈值。如果存在至少一个电芯的电压大于第一电压阈值,则停止放电,并在第一时长内,控制低压电池处于静置状态。在静置时间结束后,即第一时长结束后,控制低压电池以第一充电倍率进行充电,并实时判断低压电池中是否存在至少一个电芯的电压不小于第二电压阈值。如果存在至少一个电芯的电压不小于第二电压阈值,即计算低压电池以所充入的电量,并根据充入的电量计算每个电芯的健康状态值。其中,每个电芯的健康状态值为低压电池充入的电量与电芯在校准前的额定容量的比值。继而,可根据每个电芯的健康状态时校准低压电池的健康状态值,具体为,将各电芯的健康状态值中的最小值作为低压电池当前的健康状态值。从而,完成了低压电 池的状态校准过程。
在此实施例中,通过控制低压电池的充放电过程,以根据所充入的电量获得各电芯的SOH值,并根据各电芯的SOH值最终确定低压电池当前的SOH值,从而较为准确的SOH值。另外,通过设置第一电压阈值与第二电压阈值,还能够实现电芯的满充满放过程,若在该过程中对低压电池的SOH值进行校准,则可获得更加准确的SOH值,有利于通过低压电池对低压负载提供更多能量。同时,在获得较为准确的SOH值后,可更加准确的控制低压电池的功率输出,能够有效的降低电池损坏的风险,有利于提高电池性能的稳定性以及延长电池的使用寿命。
请参见图5,其示出了本申请实施例提供的一种低压电池的状态校准装置的结构示意图,其中,低压电池包括至少一个电芯。低压电池的状态校准装置500包括:放电控制单元501、充电控制单元502、电量获取单元503及状态校准单元504。
放电控制单元501用于控制低压电池以第一放电倍率进行放电,直至低压电池中存在至少一个电芯的电压不大于第一电压阈值。
充电控制单元502用于控制低压电池以第一充电倍率进行充电,直至低压电池中存在至少一个电芯的电压不小于第二电压阈值。
电量获取单元503用于获取低压电池充入的电量。
状态校准单元504用于根据低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准低压电池的健康状态值。
上述产品可执行图2所示的本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
请参见图6,其示出本申请实施例提供一种主控单元的结构示意图。如图6所示,主控单元600包括一个或多个处理器601以及存储器602。其中,图6中以一个处理器601为例。
处理器601和存储器602可以通过总线或者其他方式连接,图6中以通过总线连接为例。
存储器602作为一种非易失性计算机可读存储介质,可用于存储 非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的低压电池的状态校准方法对应的程序指令/模块(例如,附图5所述的各个单元)。处理器601通过运行存储在存储器602中的非易失性软件程序、指令以及模块,从而执行低压电池的状态校准装置的各种功能应用以及数据处理,即实现上述方法实施例中的低压电池的状态校准方法以及上述装置实施例的各个单元的功能。
存储器602可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器602可选包括相对于处理器601远程设置的存储器,这些远程存储器可以通过网络连接至处理器601。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
程序指令/模块存储在所述存储器602中,当被一个或者多个处理器601执行时,执行上述任意方法实施例中的低压电池的状态校准方法,例如,执行以上描述的图2、图3和图4所示的各个步骤;也可实现附图5所述的各个单元的功能。
本申请实施例还提供一种电动车辆,包括低压电池以及如上任一实施例中的主控单元。
其中,电动车辆的结构可以参考上述针对图1的具体描述,这里不再赘述。
本申请实施例还提供了一种非易失性计算机存储介质,计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,可使得上述一个或多个处理器可执行上述任意方法实施例中的低压电池的状态校准方法。例如,执行以上描述的图2、图3和图4所示的各个步骤;也可实现附图5所述的各个单元的功能。
以上所描述的装置或设备实施例仅仅是示意性的,其中所述作为分离部件说明的单元模块可以是或者也可以不是物理上分开的,作为模块单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络模块单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用于一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种低压电池的状态校准方法,其中,所述低压电池包括至少一个电芯,所述方法包括:
    控制所述低压电池以第一放电倍率进行放电,直至所述低压电池中存在至少一个电芯的电压不大于第一电压阈值;
    控制所述低压电池以第一充电倍率进行充电,直至所述低压电池中存在至少一个电芯的电压不小于第二电压阈值;
    获取所述低压电池充入的电量;
    根据所述低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准所述低压电池的健康状态值。
  2. 根据权利要求1所述的方法,其中,在控制所述低压电池以第一放电倍率进行充电之前,所述方法还包括:
    在第一时长内,控制所述低压电池处于静置状态。
  3. 根据权利要求1所述的方法,其中,所述根据所述低压电池充入的电量获取各电芯的健康状态值,包括:
    获取所述电芯在校准前的额定容量;
    计算所述低压电池充入的电量与所述额定容量的比值,以获得各电芯的健康状态值。
  4. 根据权利要求3所述的方法,其中,所述根据各电芯的健康状态值校准所述低压电池的健康状态值,包括:
    将各电芯的健康状态值中的最小值作为所述低压电池当前的健康状态值。
  5. 根据权利要求1所述的方法,其中,所述低压电池设于电动车辆中,在所述控制所述低压电池以第一放电倍率进行放电之前,所述方法还包括:
    若所述电动车辆处于静置工况,则根据所述低压电池的SOC值获取第二时长;
    其中,所述第二时长为校准所述低压电池的状态的时长。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    通过所述电动车辆显示所述第二时长。
  7. 根据权利要求5所述的方法,其中,所述方法还包括:
    在未通过所述电动车辆显示所述第二时长的场合,若在所述第二时长内,未完成所述低压电池的校准,则确定所述低压电池的校准失效。
  8. 根据权利要求5所述的方法,其中,所述电动车辆还包括高压电池、双向DC/DC模块与低压负载,所述高压电池通过所述双向DC/DC模块与所述低压电池连接,所述低压电池与所述低压负载连接;
    所述控制所述低压电池以第一放电倍率进行放电,包括:
    控制所述双向DC/DC模块,以控制所述低压电池以所述第一放电倍率向所述高压电池放电。
  9. 根据权利要求8所述的方法,其中,所述控制所述低压电池以第一充电倍率进行充电,包括:
    控制所述双向DC/DC模块,以控制所述高压电池以所述第一充电倍率为所述低压电池进行充电。
  10. 一种低压电池的状态校准装置,其中,所述低压电池包括至少一个电芯,所述装置包括:
    放电控制单元,用于控制所述低压电池以第一放电倍率进行放电,直至所述低压电池中存在至少一个电芯的电压不大于第一电压阈值;
    充电控制单元,用于控制所述低压电池以第一充电倍率进行充电,直至所述低压电池中存在至少一个电芯的电压不小于第二电压阈值;
    电量获取单元,用于获取所述低压电池充入的电量;
    状态校准单元,用于根据所述低压电池充入的电量获取各电芯的健康状态值,并根据各电芯的健康状态值校准所述低压电池的健康状态值。
  11. 一种主控单元,包括:
    存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求1至9中任一项所述的方法。
  12. 一种电动车辆,包括:低压电池以及如权利要求11所述的主控单元;
    所述主控单元用于校准所述低压电池的状态。
  13. 根据权利要求12所述的电动车辆,其中,所述电动车辆还包括高压电池与双向DC/DC模块;
    所述高压电池通过所述双向DC/DC模块与所述低压电池连接,且所述双向DC/DC模块与所述主控单元连接;
    所述主控单元用于控制所述双向DC/DC模块,以使所述高压电池为所述低压电池充电,或使所述低压电池为所述高压电池充电。
  14. 根据权利要求13所述的主控单元,其中,所述主控单元包括整车控制器、低压电池控制单元、双向DC/DC模块的逻辑控制单元与高压电池控制单元;
    所述整车控制器用于控制所述低压电池控制单元、所述双向DC/DC模块的逻辑控制单元与所述高压电池控制单元,所述低压电池控制单元用于控制所述低压电池的充放电,所述双向DC/DC模块的逻辑控制单元用于控制所述双向DC/DC模块,所述高压电池控制单元用于控制所述高压电池的充放电。
  15. 一种计算机可读存储介质,包括:存储有计算机可执行指令,所述计算机可执行指令设置为如权利要求1至9中任一项所述的方法流程。
PCT/CN2021/142096 2021-12-28 2021-12-28 低压电池的状态校准方法及装置、电动车辆 WO2023122961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/142096 WO2023122961A1 (zh) 2021-12-28 2021-12-28 低压电池的状态校准方法及装置、电动车辆
CN202180101322.3A CN117769655A (zh) 2021-12-28 2021-12-28 低压电池的状态校准方法及装置、电动车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142096 WO2023122961A1 (zh) 2021-12-28 2021-12-28 低压电池的状态校准方法及装置、电动车辆

Publications (1)

Publication Number Publication Date
WO2023122961A1 true WO2023122961A1 (zh) 2023-07-06

Family

ID=86996924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142096 WO2023122961A1 (zh) 2021-12-28 2021-12-28 低压电池的状态校准方法及装置、电动车辆

Country Status (2)

Country Link
CN (1) CN117769655A (zh)
WO (1) WO2023122961A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074973A (zh) * 2023-07-19 2023-11-17 浙江凌骁能源科技有限公司 电芯soc估计方法、装置、计算机设备和存储介质
CN117517993A (zh) * 2023-11-02 2024-02-06 安徽智途科技有限公司 基于电芯性能评估的车辆电池能量智能管理方法及系统
CN117517993B (zh) * 2023-11-02 2024-05-17 安徽智途科技有限公司 基于电芯性能评估的车辆电池能量智能管理方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721926A (zh) * 2012-03-02 2012-10-10 友达光电股份有限公司 电池芯健康状态的评估方法
US20140077764A1 (en) * 2011-05-09 2014-03-20 Commisariat A L'energie Atomique Et Aux Energies Alternatives Method for Battery Management and Diagnosis
EP3276364A1 (fr) * 2016-07-29 2018-01-31 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination de l'état de santé des cellules d'une batterie
CN109507611A (zh) * 2018-11-22 2019-03-22 安徽江淮汽车集团股份有限公司 一种电动汽车的soh修正方法及系统
CN110967631A (zh) * 2019-05-17 2020-04-07 宁德时代新能源科技股份有限公司 Soh修正方法和装置、电池管理系统和存储介质
CN110988690A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质
EP3667345A1 (fr) * 2018-12-12 2020-06-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination de l'état de santé des cellules d'une batterie
EP3671243A1 (fr) * 2018-12-12 2020-06-24 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination de l'état de santé des cellules d'une batterie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077764A1 (en) * 2011-05-09 2014-03-20 Commisariat A L'energie Atomique Et Aux Energies Alternatives Method for Battery Management and Diagnosis
CN102721926A (zh) * 2012-03-02 2012-10-10 友达光电股份有限公司 电池芯健康状态的评估方法
EP3276364A1 (fr) * 2016-07-29 2018-01-31 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination de l'état de santé des cellules d'une batterie
CN109507611A (zh) * 2018-11-22 2019-03-22 安徽江淮汽车集团股份有限公司 一种电动汽车的soh修正方法及系统
EP3667345A1 (fr) * 2018-12-12 2020-06-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination de l'état de santé des cellules d'une batterie
EP3671243A1 (fr) * 2018-12-12 2020-06-24 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination de l'état de santé des cellules d'une batterie
CN110988690A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质
CN110967631A (zh) * 2019-05-17 2020-04-07 宁德时代新能源科技股份有限公司 Soh修正方法和装置、电池管理系统和存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074973A (zh) * 2023-07-19 2023-11-17 浙江凌骁能源科技有限公司 电芯soc估计方法、装置、计算机设备和存储介质
CN117517993A (zh) * 2023-11-02 2024-02-06 安徽智途科技有限公司 基于电芯性能评估的车辆电池能量智能管理方法及系统
CN117517993B (zh) * 2023-11-02 2024-05-17 安徽智途科技有限公司 基于电芯性能评估的车辆电池能量智能管理方法及系统

Also Published As

Publication number Publication date
CN117769655A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US11201361B2 (en) Battery charger with battery state detection
US9142980B2 (en) Apparatus and method for controlling charge capacity balancing operation of secondary battery cell
CN111293739B (zh) 一种充电方法及装置
EP3056918B1 (en) Apparatus for estimating state of hybrid secondary battery and method therefor
JP6197479B2 (ja) 蓄電システム及び蓄電装置の満充電容量推定方法
US11912158B2 (en) Battery management apparatus, battery management method, battery pack, and electric vehicle
US20130293006A1 (en) Battery balancing system and battery balancing method using the same
CN105759213A (zh) 一种测量蓄电池剩余容量soc的方法
US9366728B2 (en) Degradation measurement device, secondary battery pack, degradation measurement method, and program
EP3059600B1 (en) Apparatus for estimating voltage of hybrid secondary battery and method therefor
US10048320B2 (en) Systems and methods for estimating battery system power capability
JP7223135B2 (ja) バッテリーパックの状態診断装置及び方法
KR101614046B1 (ko) 배터리 시스템 관리 장치
WO2023122961A1 (zh) 低压电池的状态校准方法及装置、电动车辆
US10338150B2 (en) Systems and methods for estimating battery system energy capability
CN103872727B (zh) 一种锂离子动力电池最大使用电流的确定方法
CN116194786A (zh) 用于计算电池电阻的装置和方法
WO2023131025A1 (zh) 电池测试组件、电池组件、充电组件及用电设备
WO2023027049A1 (ja) 補正方法、コンピュータプログラム、補正装置及び蓄電デバイス
EP4050697B1 (en) Method and apparatus for equalizing a battery module, battery module, and power management controller
JP2023550859A (ja) 電池パックの充電制御方法、装置、電子機器及び記憶媒体
WO2023071197A1 (zh) 电池包的充电控制方法、装置、电子设备及存储介质
WO2023122960A1 (zh) 电池系统的充放电方法及装置、电池系统与电动车辆
EP4105668A1 (en) Relay state management device and operation method therefor
KR20130079751A (ko) 전지 soc 추정 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969340

Country of ref document: EP

Kind code of ref document: A1