WO2023122939A1 - 一种微环调制器及光信号传输方法 - Google Patents

一种微环调制器及光信号传输方法 Download PDF

Info

Publication number
WO2023122939A1
WO2023122939A1 PCT/CN2021/141984 CN2021141984W WO2023122939A1 WO 2023122939 A1 WO2023122939 A1 WO 2023122939A1 CN 2021141984 W CN2021141984 W CN 2021141984W WO 2023122939 A1 WO2023122939 A1 WO 2023122939A1
Authority
WO
WIPO (PCT)
Prior art keywords
junction
optical signal
waveguide
ring waveguide
controller
Prior art date
Application number
PCT/CN2021/141984
Other languages
English (en)
French (fr)
Inventor
李芮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/141984 priority Critical patent/WO2023122939A1/zh
Publication of WO2023122939A1 publication Critical patent/WO2023122939A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Definitions

  • the present application relates to the field of optical communication, in particular to a microring modulator and an optical signal transmission method.
  • the microring modulator is one of the important devices used to implement on-chip optical interconnection technology.
  • the modulator can select an optical signal of a specific wavelength from multiple optical signals with different wavelengths and output it to other devices.
  • a microring modulator is composed of multiple cascaded microrings, and different microrings can be used to output optical signals of different wavelengths under the action of control signals.
  • multiple optical signals with different wavelengths can be input to the first microring (i.e. the first microring) in multiple cascaded microrings, and the resonance wavelength of the first microring is the first microring under the action of the control signal.
  • the first microring can select and transmit the first optical signal with the first wavelength from the plurality of optical signals.
  • the remaining optical signals except the first optical signal can be input to the second microring (i.e.
  • the second microring in the plurality of microrings, and the resonance wavelength of the second microring under the action of the control signal is The second wavelength, so the second microring can select and transmit the second optical signal with the second wavelength from the plurality of optical signals. By analogy, until the last microring transmits the last optical signal.
  • an optical signal with a specific wavelength needs a microring to be locked and transmitted.
  • the number of optical signals input to the microring modulator is usually large, so a large number of microrings need to be deployed in the microring modulator, resulting in Microring modulators are prohibitively large in size and power consumption, and prohibitively expensive to manufacture.
  • the embodiment of the present application provides a microring modulator and an optical signal transmission method, which can reduce the size of the microring modulator by reducing the number of devices in the microring modulator, and reduce the power consumption and fabrication of the microring modulator cost.
  • the first aspect of the embodiments of the present application provides a microring modulator, the microring modulator includes: a first ring waveguide (also can be understood as a microring), a first PN junction, a first controller and a second A controller, wherein the first PN junction is deployed on the first ring waveguide, the first controller is connected to the first ring wave conductor, and the second controller is electrically connected to the first PN junction.
  • a first ring waveguide also can be understood as a microring
  • the first controller is connected to the first ring wave conductor
  • the second controller is electrically connected to the first PN junction.
  • the first controller can send a first electrical signal to the first ring waveguide.
  • the first electrical signal is usually a direct current signal.
  • the first electrical signal can act on the first ring waveguide , so the first electrical signal can control the resonant wavelength of the first ring waveguide through electrical effect or thermal effect.
  • the second controller can control the state of the first PN junction, for example, make the first PN junction work in a forward bias state, or make the first PN junction work in a reverse bias state, etc. It is illustrated that the first PN junction acts on the first ring waveguide, so the first PN junction can control the resonant wavelength of the first ring waveguide through electrical effects in different states. In this way, the second controller can implement double electro-optic modulation on the first ring waveguide, so as to adjust the resonant wavelength of the first ring waveguide jointly with the first controller.
  • the first ring waveguide when the first PN junction is in a forward biased state, the first ring waveguide can make the resonant wavelength of the first ring waveguide be the first wavelength under the action of the first electrical signal and the first PN junction, then, After the first ring waveguide acquires the multiple optical signals, the first optical signal with the first wavelength can be selected among the multiple optical signals and transmitted.
  • the first ring waveguide when the first PN junction is in the reverse bias state, the first ring waveguide can make the resonant wavelength of the first ring waveguide be the second wavelength under the action of the first electrical signal and the first PN junction, then, After the first ring waveguide acquires a plurality of optical signals, the second optical signal with the second wavelength can be selected among the plurality of optical signals and transmitted.
  • the above microring modulator includes a first ring waveguide, a first PN junction, a first controller and a second controller.
  • the first controller can send a first electrical signal to the first ring waveguide
  • the second controller can control the state of the first PN junction disposed on the first ring waveguide, then, when the second When a PN junction is in a forward-biased state, the first ring waveguide can transmit a first optical signal with a first wavelength under the action of the first electrical signal and the first PN junction; when the first PN junction is in a reverse-biased state
  • the first ring waveguide can transmit the second optical signal with the second wavelength under the action of the first electrical signal and the first PN junction.
  • one ring waveguide can be used to transmit two optical signals with different wavelengths. If there are N optical signals with different wavelengths, only N/2 rings need to be deployed in the microring modulator.
  • the waveguide is enough, which is beneficial to reduce the number of devices in the microring modulator, thereby reducing the size of the microring modulator, and reducing the power consumption and production cost of the microring modulator.
  • the first PN junction includes an N-type doped region and a P-type doped region, and a part of the N-type doped region and a part of the P-type doped region penetrate into the first ring waveguide.
  • a part of the N-type doped region of the first PN junction and a part of the P-type doped region of the first PN junction penetrate into the first ring waveguide.
  • a part of the N-type doped region of the first PN junction and a part of the P-type doped region of the first PN junction may or may not be in contact. In this way, the effect of the first PN junction on the first ring waveguide can be realized.
  • another part of the N-type doped region is arranged on the inner circle side of the first ring waveguide, and another part of the P-type doped region is arranged on the outer circle side of the first ring waveguide, or, N
  • the other part of the P-type doped region is arranged on the outer circle side of the first ring waveguide, and the other part of the P-type doped region is arranged on the inner circle side of the first ring waveguide.
  • another part of the N-type doped region of the first PN junction is arranged on the inner circle side of the first ring waveguide (for example, this part of the N-type doped region can be set at the cavity of the ring waveguide), and the second The other part of the P-type doped region of a PN junction is arranged on the outer circle side of the first ring waveguide (for example, the part of the P-type doped region can be respectively arranged on both sides outside the first ring waveguide), or, the second A part of the P-type doped region of a PN junction is arranged on the inner circle side of the first ring waveguide (for example, this part of the P-type doped region can be provided with the cavity of the ring waveguide), and the N-type doped region of the first PN junction A part of the impurity region is arranged on the outer circular side of the first ring waveguide (for example, the part of the N-type doped region can be respectively arranged on both sides outside the first ring waveguide), and the
  • the resonant wavelength of the first ring waveguide is located between the first wavelength and the second wavelength.
  • the second controller controls the first PN junction to be in a normal state, it means that the first PN junction does not act on the first ring waveguide, then, only under the action of the first electrical signal, the first ring waveguide
  • the resonant wavelength of can be understood as the resonant wavelength of the first ring waveguide in the initial stage, at this time, the resonant wavelength of the first ring waveguide can be located between the first wavelength and the second wavelength.
  • the second controller is configured to send a second electrical signal to the first PN junction to control the first PN junction to be in a forward bias state or a reverse bias state, wherein the second electrical signal Usually a pair of voltage signals, the first voltage signal is applied to the P-type doped region of the first PN junction, and the second voltage signal is applied to the N-type doped region of the first PN junction.
  • the microring modulator further includes: a first straight waveguide, one end of the first straight waveguide is used to acquire multiple optical signals with different wavelengths, and send the multiple optical signals to the first ring In the waveguide, the plurality of optical signals includes a first optical signal and a second optical signal.
  • the microring modulator further includes: a second straight waveguide, one end of the second straight waveguide is used to receive the first optical signal or the second optical signal from the first ring waveguide, and output the first optical signal to the outside.
  • a light signal or a second light signal is used to generate the first optical signal or the second optical signal from the first ring waveguide.
  • the microring modulator further includes: a second ring waveguide and a second PN junction; the first straight waveguide is also used to transmit the remaining optical signals except the first optical signal or the second optical signal , sent to the second ring waveguide, and the remaining optical signals include a third optical signal with a third wavelength and a fourth optical signal with a fourth wavelength; the first controller is also used to send a third electrical signal to the first ring waveguide; The second controller is also used to control the state of the second PN junction; the second ring waveguide is used to convert the second PN junction from the remaining optical signals under the action of the third electrical signal and the second PN junction in a forward bias state.
  • the microring modulator further includes: a second ring waveguide and a second PN junction, the second PN junction is deployed on the second ring waveguide, the second ring waveguide is cascaded with the first ring waveguide, and the second ring waveguide The next-stage ring waveguide as the first ring waveguide.
  • the first straight waveguide can send the remaining optical signals to the second ring waveguide except the first optical signal or the second optical signal, and the remaining optical signals
  • the signals include a third optical signal having a third wavelength and a fourth optical signal having a fourth wavelength.
  • the first controller also sends a third electrical signal to the first ring waveguide
  • the second controller also controls (via a fourth electrical signal) the state of the second PN junction.
  • the second ring waveguide can send the third optical signal to the second straight waveguide from the remaining optical signals under the action of the third electrical signal and the second PN junction, So that the second straight waveguide outputs the third optical signal to the outside.
  • the second ring waveguide can send the fourth optical signal to the second straight waveguide from the remaining optical signals under the action of the third electrical signal and the second PN junction, So that the second straight waveguide outputs the fourth optical signal to the outside.
  • the microring modulator can be extended to a cascaded structure including N/2 ring waveguides (N/2 microrings), and each microring is equipped with a PN junction, since each ring waveguide can output With 2 optical signals of different wavelengths, N/2 ring waveguides can output a total of N optical signals with different wavelengths, which is beneficial to reduce the number of devices in the micro-ring modulator, thereby reducing the size of the micro-ring modulator, Reduce the power consumption and production cost of the microring modulator. Furthermore, since the controller (namely the aforementioned first controller and second controller) only needs to realize the control of N/2 ring waveguides (that is, only need to provide N/2 channels), it can Reduce the integration complexity of the microring modulator.
  • the second aspect of the embodiment of the present application provides an optical signal transmission method, which is implemented by a micro-ring modulator.
  • the micro-ring modulator includes: a first ring waveguide, a first PN junction, a first controller, and a second controller
  • the method includes: sending a first electrical signal to the first ring waveguide through a first controller; controlling the state of the first PN junction through a second controller; Under the action of the PN junction, the first optical signal with the first wavelength is transmitted through the first ring waveguide, or, under the action of the first electrical signal and the first PN junction in a reverse bias state, through the first ring waveguide A second optical signal having a second wavelength is transmitted.
  • the microring modulator used to implement the above method includes a first ring waveguide, a first PN junction, a first controller and a second controller.
  • the first controller can send a first electrical signal to the first ring waveguide
  • the second controller can control the state of the first PN junction disposed on the first ring waveguide, then, when the second When a PN junction is in a forward-biased state, the first ring waveguide can transmit a first optical signal with a first wavelength under the action of the first electrical signal and the first PN junction; when the first PN junction is in a reverse-biased state
  • the first ring waveguide can transmit the second optical signal with the second wavelength under the action of the first electrical signal and the first PN junction.
  • one ring waveguide can be used to transmit two optical signals with different wavelengths. If there are N optical signals with different wavelengths, only N/2 rings need to be deployed in the microring modulator.
  • the waveguide is enough, which is beneficial to reduce the number of devices in the microring modulator, thereby reducing the size of the microring modulator, and reducing the power consumption and production cost of the microring modulator.
  • the first PN junction includes an N-type doped region and a P-type doped region, and a part of the N-type doped region and a part of the P-type doped region penetrate into the first ring waveguide.
  • another part of the N-type doped region is arranged on the inner circle side of the first ring waveguide, and another part of the P-type doped region is arranged on the outer circle side of the first ring waveguide, or, N
  • the other part of the P-type doped region is arranged on the outer circle side of the first ring waveguide, and the other part of the P-type doped region is arranged on the inner circle side of the first ring waveguide.
  • the resonant wavelength of the first ring waveguide is located between the first wavelength and the second wavelength.
  • controlling the state of the first PN junction through the second controller includes: sending a second electrical signal to the first PN junction through the second controller, so as to control the first PN junction to be in forward bias state or reverse bias state.
  • the microring modulator further includes: a first straight waveguide
  • the method further includes: acquiring a plurality of optical signals through the first straight waveguide, and the plurality of optical signals include the first optical signal and the second optical signal Signals; sending a plurality of optical signals to the first ring waveguide through the first straight waveguide.
  • the microring modulator further includes: a second straight waveguide
  • the method further includes: receiving the first optical signal or the second optical signal from the first ring waveguide through the second straight waveguide; The two straight waveguides output the first optical signal or the second optical signal.
  • the microring modulator further includes: a second ring waveguide and a second PN junction
  • the method further includes: transferring signals other than the first optical signal or the second optical signal through the first straight waveguide
  • the remaining optical signals are sent to the second ring waveguide, and the remaining optical signals include a third optical signal with a third wavelength and a fourth optical signal with a fourth wavelength
  • the third electrical signal is sent to the first ring waveguide through the first controller ; control the state of the second PN junction through the second controller; under the action of the third electrical signal and the second PN junction in the forward bias state, the third light is transferred from the remaining optical signals through the second ring waveguide
  • the signal is sent to the second straight waveguide, or, under the action of the third electrical signal and the second PN junction in the reverse bias state, the fourth optical signal is sent to the first optical signal from the remaining optical signals through the second ring waveguide Two straight waveguides; the third optical signal or the fourth optical signal is output through the second straight waveguide.
  • the microring modulator provided in the embodiment of the present application includes a first ring waveguide, a first PN junction, a first controller, and a second controller.
  • the first controller can send a first electrical signal to the first ring waveguide
  • the second controller can control the state of the first PN junction disposed on the first ring waveguide, then, when the second When a PN junction is in a forward-biased state, the first ring waveguide can transmit a first optical signal with a first wavelength under the action of the first electrical signal and the first PN junction; when the first PN junction is in a reverse-biased state
  • the first ring waveguide can transmit the second optical signal with the second wavelength under the action of the first electrical signal and the first PN junction.
  • one ring waveguide can be used to transmit two optical signals with different wavelengths. If there are N optical signals with different wavelengths, only N/2 rings need to be deployed in the microring modulator.
  • the waveguide is enough, which is beneficial to reduce the number of devices in the microring modulator, thereby reducing the size of the microring modulator, and reducing the power consumption and production cost of the microring modulator.
  • Fig. 1 is a structural representation of the microring modulator of related art
  • Fig. 2 is a schematic structural diagram of the microring modulator provided by the embodiment of the present application.
  • Fig. 3 is another structural schematic diagram of the microring modulator provided by the embodiment of the present application.
  • Figure 4a is a schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application.
  • Figure 4b is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application.
  • Figure 4c is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application.
  • Figure 5a is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application.
  • Figure 5b is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application.
  • Figure 5c is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application.
  • Fig. 6 is another structural schematic diagram of the microring modulator provided by the embodiment of the present application.
  • Fig. 7 is another structural schematic diagram of the microring modulator provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of adjusting the resonance wavelength provided by the embodiment of the present application.
  • FIG. 9 is another structural schematic diagram of the microring modulator provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an optical switch provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical network card provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a laser radar transmitting end provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of an optical signal transmission method provided by an embodiment of the present application.
  • the microring modulator is one of the important devices used to implement on-chip optical interconnection technology.
  • the modulator can select an optical signal of a specific wavelength from multiple optical signals with different wavelengths and output it to other devices.
  • a microring modulator is composed of multiple cascaded microrings, and different microrings can be used to output optical signals of different wavelengths under the action of control signals.
  • the microring modulator can include cascaded N microrings, a switch controller and a wavelength controller, and N is a positive value greater than 1. integer.
  • N optical signals with wavelengths of ⁇ 1 , ⁇ 2 , ..., ⁇ N are input to the first microring among the N microrings, and the wavelength controller can control the resonant wavelength of the first microring to be ⁇ 1
  • the resonant wavelength of the second microring is ⁇ 2 ...... and so on.
  • the switch controller enables the first microring to be in the open state (the remaining microrings are in the closed state), at this time the first microring can select and output an optical signal with a wavelength of ⁇ 1 from the N optical signals .
  • the switch controller enables the second microring to be in the open state (the rest of the microrings are in the closed state), at this time the second microring can select and output an optical signal with a wavelength of ⁇ 2 from the N optical signals .
  • the Nth microring outputs an optical signal with a wavelength of ⁇ N .
  • an optical signal with a specific wavelength needs a microring to be locked and transmitted.
  • the number N of optical signals input to the microring modulator is usually large, so the number N of microrings needs to be deployed in the microring modulator , resulting in excessive size and power consumption of the microring modulator, and high manufacturing cost.
  • the controller needs to control N microrings, and the integration complexity is also high.
  • the embodiment of the present application provides a new microring modulator, as shown in Figure 2 ( Figure 2 is a schematic structural diagram of the microring modulator provided by the embodiment of the present application), the microring modulator includes : a first ring waveguide (also can be understood as a microring), a first PN junction, a first controller and a second controller, wherein the first PN junction is deployed on the first ring waveguide (the first PN junction and the first connected to the ring waveguide), the first controller is connected to the first ring waveguide, and the second controller is electrically connected to the first PN junction.
  • a first ring waveguide also can be understood as a microring
  • the first PN junction is deployed on the first ring waveguide (the first PN junction and the first connected to the ring waveguide)
  • the first controller is connected to the first ring waveguide
  • the second controller is electrically connected to the first PN junction.
  • the first controller can send a first electrical signal to the first ring waveguide
  • the first electrical signal is usually a DC signal
  • the DC signal can be either a DC current signal or a DC voltage signal, Not limited here
  • the first electrical signal can act on the first ring waveguide, so the first electrical signal can control the resonant wavelength of the first ring waveguide through electrical effect or thermal effect (hereinafter referred to as electrical effect for an illustrative presentation).
  • the second controller can control the state of the first PN junction, for example, make the first PN junction work in a forward bias state, or make the first PN junction work in a reverse bias state, or make the first PN junction work in a reverse bias state, or make The first PN junction is in a normal state, etc.
  • the first PN junction acts on the first ring waveguide, so the first PN junction can control the resonant wavelength of the first ring waveguide through the electro-optical effect in different states.
  • the second controller via the first PN junction
  • the movement direction of carriers (electrons and holes) inside the first PN junction is different, specifically, when the first PN junction is in a forward biased state, it can It can be regarded as injecting carriers into the first PN junction from the outside, that is, inside the first PN junction, electrons in the N-type doped region increase, and holes in the P-type doped region increase.
  • the first PN junction is in the reverse biased state, it can be considered that the internal consumption of the first PN junction moves to the outside, that is, in the first PN junction, the electrons in the N-type doped region decrease, and the P-type doped region Cavitation is reduced.
  • the first PN junction When the first PN junction is in a normal state, it can be considered that no carrier is injected into the first PN junction, and no carrier is consumed inside the first PN junction, that is, inside the first PN junction, electrons and holes are There is no movement from or to the outside between the movement of the N-type doped region of the first PN junction and the movement of the P-type doped region of the first PN junction.
  • the effective refractive index of the optical signal in the first ring waveguide changes, which is equivalent to affecting the first ring waveguide.
  • the resonant wavelength of the ring waveguide because there is a positive mathematical relationship between the effective refractive index of the optical signal in the first ring waveguide and the resonant wavelength of the first ring waveguide, it will not be expanded here).
  • the first ring waveguide when the first PN junction is in a forward biased state, the first ring waveguide can make the resonant wavelength of the first ring waveguide be the first wavelength under the action of the first electrical signal and the first PN junction, then, After the first ring waveguide acquires the multiple optical signals, the first optical signal with the first wavelength can be selected among the multiple optical signals and transmitted.
  • the first ring waveguide when the first PN junction is in the reverse bias state, the first ring waveguide can make the resonant wavelength of the first ring waveguide be the second wavelength under the action of the first electrical signal and the first PN junction, then, After the first ring waveguide acquires a plurality of optical signals, the second optical signal with the second wavelength can be selected among the plurality of optical signals and transmitted.
  • the microring modulator includes: a microring (that is, the aforementioned first ring waveguide), The PN junction, the wavelength controller (i.e. the aforementioned first controller) and the dual-mode switch controller (i.e. the aforementioned second controller), the microring acquires N with wavelengths respectively ⁇ 1 , ⁇ 2 , ..., ⁇ N After receiving an optical signal, the wavelength controller can directly load a DC signal on the microring.
  • the dual-mode switch controller can control the PN junction to be in the forward bias state, which can make the resonant wavelength of the microring be ⁇ 1 , so the microring can select and output the wavelength as ⁇ 1 among N optical signals light signal.
  • the DC signal dual-mode switch controller can control the PN junction to be in the reverse bias state, which can make the resonant wavelength of the microring ⁇ 2 , so the microring can select and output the wavelength of N optical signals as ⁇ 2 optical signal.
  • connection manner between the first PN junction and the first ring waveguide may be:
  • the first PN junction is made of an N-type doped region and a P-type doped region, and a part of the N-type doped region of the first PN junction is arranged on the inner circle side of the first ring waveguide (for example, N-type doped This part of the region can be arranged at the cavity of the ring waveguide), and a part of the P-type doped region of the first PN junction is arranged on the outer circle side of the first ring waveguide (for example, this part of the P-type doped region can be respectively arranged On both sides outside the first ring waveguide, another example, this part of the P-type doped region can surround the outside of the first ring waveguide), another part of the N-type doped region of the first PN junction and the first PN junction Another part of the P-type doped region penetrates into the first ring waveguide.
  • 4c is another schematic diagram of the connection between the micro-ring and the PN junction provided by the embodiment of the present application
  • the main part of the N-type doped region fills the cavity of the micro-ring, and one part of the N-type doped region A small portion penetrates into the microring itself.
  • the main part of the P-type doped region is arranged outside the micro-ring, and a small part of the P-type doped region penetrates into the micro-ring itself.
  • the first PN junction is made of an N-type doped region and a P-type doped region, and a part of the P-type doped region of the first PN junction is arranged on the inner circle side of the first ring waveguide (for example, P-type doped This part of the region can be set at the cavity of the ring waveguide), and a part of the N-type doped region of the first PN junction is arranged on the outer circle side of the first ring waveguide (for example, this part of the N-type doped region can be respectively set On both sides outside the first ring waveguide, another example, this part of the N-type doped region can surround the outside of the first ring waveguide), another part of the N-type doped region of the first PN junction and the first PN junction Another part of the P-type doped region penetrates into the first ring waveguide.
  • the other part of the N-type doped region of the first PN junction and the P-type of the first PN junction Another portion of the doped region may or may not be in contact.
  • Figure 5a to Figure 5c Figure 5a is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application
  • Figure 5b is the connection between the microring and the PN junction provided by the embodiment of the present application
  • Figure 5c is another schematic diagram of the connection between the microring and the PN junction provided by the embodiment of the present application
  • the main part of the P-type doped region fills the cavity of the microring, and the P-type doped region A small fraction penetrates into the microring itself.
  • the main part of the N-type doped region is arranged outside the micro-ring, and a small part of the N-type doped region penetrates into the micro-ring itself.
  • the way the second controller controls the state of the first PN junction may be: the second controller sends a second electrical signal to the first PN junction to control the first PN junction to be in a forward bias
  • the second electrical signal is usually a pair of voltage signals, wherein the first voltage signal is applied to the P-type doped region of the first PN junction, and the second voltage signal is applied to the first PN junction. N-type doped region of the junction.
  • the first PN junction When the first voltage signal is greater than the second voltage signal, the first PN junction is in a forward biased state, and when the first voltage signal is smaller than the second voltage signal, the first PN junction is in a reverse biased state.
  • Figure 6 Fig. 6 is another structural schematic diagram of the microring modulator provided by the embodiment of the present application, and Fig. 6 is drawn on the basis of Fig. 3
  • the cavity of the microring is filled with
  • the dual-mode switch controller can load a differential signal on the PN junction.
  • the differential signal includes the voltage signal V RF1 and the voltage signal V RF2 with equal amplitudes, and the voltage signal V RF1 and the voltage signal V RF2 . opposite polarity.
  • the cavity of the microring is filled up
  • the differential signal includes voltage signals V RF1 and voltage signals V RF2 with equal amplitudes, voltage signals V RF1 and voltage signals V RF2 opposite in polarity.
  • the voltage signal V RF1 is greater than the voltage signal V RF2 (that is, the voltage signal V RF1 is a positive voltage signal and the voltage signal V RF2 is a negative voltage signal)
  • the PN junction is in a forward bias state.
  • the PN junction is in a reverse bias state.
  • the second controller controls the first PN junction to be in a normal state (for example, the first voltage signal input by the second controller to the first PN junction is equal to the second voltage signal, and for example , the second controller does not input an electrical signal to the first PN junction), which means that the first PN junction does not act on the first ring waveguide, then, only under the action of the first electrical signal, the resonance wavelength of the first ring waveguide It can be understood as the resonant wavelength of the first ring waveguide in the initial stage, at this time, the resonant wavelength of the first ring waveguide is between the first wavelength and the second wavelength.
  • Figure 8 is a schematic diagram of adjusting the resonance wavelength provided by the embodiment of the present application, and Figure 8 is drawn on the basis of Figure 6 or Figure 7
  • the resonance wavelength of the microring can be between ⁇ 1 and ⁇ 2 .
  • the voltage signal V RF1 is greater than the voltage signal V RF2
  • the PN junction is in a forward biased state.
  • the resonance wavelength of the microring can be moved to the left until it is equal to ⁇ 1 .
  • the voltage signal V RF1 is less than the voltage signal V RF2 , the PN junction is in a reverse bias state, and under the double action of the DC signal of the wavelength controller and the PN junction, the resonant wavelength of the microring can be moved to the right until it is equal to ⁇ 2 .
  • the microring modulator further includes: a first straight waveguide, the first straight waveguide is coupled to the first ring waveguide, and one end (also referred to as an input end) of the first straight waveguide is used to obtain multiple Therefore, the first straight waveguide can send a plurality of optical signals with different wavelengths to the first ring waveguide, and the plurality of optical signals include a first optical signal with a first wavelength and a second optical signal with a second wavelength. Signal. Still in the example shown in Figure 3, after the upper straight waveguide (i.e.
  • the aforementioned first straight waveguide acquires N optical signals with wavelengths of ⁇ 1 , ⁇ 2 , ..., ⁇ N , these N optical signals can be
  • the optical signal is sent to the microring, so that the microring locks and outputs the optical signal of a corresponding wavelength.
  • the microring modulator further includes: a second straight waveguide, the first straight waveguide is coupled with the first ring waveguide, and one end (also referred to as an output end) of the second straight waveguide is used to receive signals from the first optical signal or the second optical signal of the first ring waveguide, and output the first optical signal or the second optical signal to the outside.
  • the straight-through waveguide located below i.e. the aforementioned second straight waveguide
  • the straight-through waveguide located below can output an optical signal with a wavelength of ⁇ 1 to the outside world .
  • the straight-through waveguide located below receives the optical signal with a wavelength of ⁇ 2 , it can output an optical signal with a wavelength of ⁇ 2 to the outside world.
  • the microring modulator can be a cascaded structure, that is, the microring modulator also includes: a second ring waveguide and a second PN junction, and the second PN junction is disposed on the second ring waveguide ( That is, the second PN junction is connected to the second ring waveguide), the second ring waveguide is cascaded with the first ring waveguide, and the second ring waveguide is used as a next-stage ring waveguide of the first ring waveguide.
  • the first straight waveguide can send the remaining optical signals to the second ring waveguide except the first optical signal or the second optical signal, and the remaining optical signals A third optical signal having a third wavelength and a fourth optical signal having a fourth wavelength are included.
  • the first controller also sends a third electrical signal to the first ring waveguide
  • the second controller also controls (via a fourth electrical signal) the state of the second PN junction.
  • the second ring waveguide can send the third optical signal to the second straight waveguide from the remaining optical signals under the action of the third electrical signal and the second PN junction, So that the second straight waveguide outputs the third optical signal to the outside.
  • the second ring waveguide can send the fourth optical signal to the second straight waveguide from the remaining optical signals under the action of the third electrical signal and the second PN junction, So that the second straight waveguide outputs the fourth optical signal to the outside.
  • the process of transmitting the third optical signal and the fourth optical signal by the second ring waveguide reference may be made to the process of transmitting the first optical signal and the second optical signal by the first ring waveguide, which will not be repeated here.
  • the microring modulator includes a straight-through waveguide at the top, a straight-through waveguide at the bottom, and four cascaded Microrings, 4 PN junctions, wavelength controllers (i.e. the aforementioned first controller) and dual mode switch controllers (i.e. the aforementioned second controllers), 4 microrings are located between two straight-through waveguides, and each A PN junction is deployed on a microring.
  • the dual-mode switch controller can send differential signals to the i-th PN junction in the corresponding time period, and when all PN junctions are not loaded with differential signals, the wavelength controller can continuously control the resonant wavelengths of all microrings in the initial stage through DC signals, so that the resonant wavelength of the i-th microring is between ⁇ 2i-1 and ⁇ 2i .
  • the dual-mode switch controller After the straight-through waveguide at the top sends eight optical signals with wavelengths of ⁇ 1 , ⁇ 2 , ..., ⁇ 8 to the microring 1 (that is, the aforementioned first ring waveguide), in the time period [0, ⁇ T] Inside, the dual-mode switch controller outputs V RF1 and V RF2 to PN junction 1 (namely the aforementioned first PN junction), and V RF1 is a positive voltage signal, and V RF2 is a negative voltage signal, and the dual-mode switch controller does not send The rest of the PN junctions are output, so that the microring 1 inputs an optical signal with a wavelength of ⁇ 1 .
  • the dual-mode switch controller outputs V RF3 and V RF4 to PN junction 2 (that is, the aforementioned second PN junction), and V RF4 is a positive voltage signal, and V RF3 is a negative voltage signal.
  • the dual-mode switch controller does not output to the remaining PN junctions, so that the microring 2 (i.e., the aforementioned first ring waveguide) inputs an optical signal with a wavelength of ⁇ 4 , ..., and so on, until [7 ⁇ T, 8 ⁇ T ], the microring 4 inputs an optical signal with a wavelength of ⁇ 7 .
  • the wavelengths of the output multiple optical signals are in the order of ⁇ 1 , ⁇ 4 , ⁇ 3 , ⁇ 8 , ⁇ 6 , ⁇ 2 , ⁇ 5 , and ⁇ 7 in the time domain.
  • the fast switching of optical signals of eight wavelengths can be realized. Both modulation modes can work at higher frequencies, that is, the frequency of the loaded RF signal can be greater than 2GHz.
  • the corresponding switch switching speed is 0.5ns. It should be understood that the switching speed of 0.5 ns is the switching time between optical signals of two wavelengths, not that the duration of optical signals of each wavelength in the time domain is ⁇ T, which is related to actual service requirements, and not here Do limit.
  • microring modulator provided in the embodiment of the present application (introduced with the example shown in Figure 9) can also be compared with the microring modulator in the related art, and the comparison results are shown in Table 1:
  • the superscript "2” is estimated based on carrier injection modulation power consumption of 68fJ/bit and carrier depletion modulation power consumption of 31fJ/bit.
  • the superscript "3” is estimated based on the thermal adjustment power consumption of the microring 10mW.
  • the microring modulator provided in the embodiment of the present application includes a first ring waveguide, a first PN junction, a first controller, and a second controller.
  • the first controller can send a first electrical signal to the first ring waveguide
  • the second controller can control the state of the first PN junction disposed on the first ring waveguide, then, when the second When a PN junction is in a forward-biased state, the first ring waveguide can transmit a first optical signal with a first wavelength under the action of the first electrical signal and the first PN junction; when the first PN junction is in a reverse-biased state
  • the first ring waveguide can transmit the second optical signal with the second wavelength under the action of the first electrical signal and the first PN junction.
  • one ring waveguide can be used to transmit two optical signals with different wavelengths. If there are N optical signals with different wavelengths, only N/2 rings need to be deployed in the microring modulator.
  • the waveguide is enough, which is beneficial to reduce the number of devices in the microring modulator, thereby reducing the size of the microring modulator, and reducing the power consumption and production cost of the microring modulator.
  • the controller since the controller only needs to control N/2 ring waveguides, the integration complexity of the microring modulator can be reduced.
  • microring modulator provided in the embodiment of this application can also be applied in various scenarios, which will be introduced below:
  • FIG. 10 is a schematic structural diagram of the optical switch provided by the embodiment of the application, and Figure 10 is drawn on the basis of Figure 9
  • multiple micro switches provided by the embodiment of the application can be set A ring modulator, wherein the input of each microring modulator is connected to a demultiplexer (demultiplexer, DEMUX), and the output end of each microring modulator is connected to a multiplexer (multiplexer, MUX), To form an optical switch.
  • DEMUX demultiplexer
  • MUX multiplexer
  • the optical signal input by the optical frequency comb can be divided into multiple optical signals in different wavelength ranges by DEMUX, and input to different microring modulators respectively.
  • the MUX can receive optical signals with specific wavelengths output by each microring modulator in a specific time period, so in different time periods, the MUX outputs optical signals with different wavelengths to the outside. It can be seen that by multiplexing the microring modulator provided by the embodiment of the present application, combined with DEMUX and MUX, an ultra-wideband sub-nanosecond level optical switch can be realized, which can cover S+C+L bands, and even 1270-1675nm, etc. All bands beyond 400nm (that is, O+E+S+C+L+U bands).
  • Figure 11 is a schematic structural diagram of the optical network card provided by the embodiment of the present application, and Figure 11 is drawn on the basis of Figure 10
  • the output end of the optical switch shown in Figure 10 can be An electro-optic modulator is connected, so the optical carrier signal (optical signal without content) output by the optical switch can be modulated into an optical data signal (ie, an optical signal with certain content) by the electro-optic modulator.
  • the optical network card can be applied to servers in a data communication network (DCN) cabinet to realize communication between servers based on optical data signals.
  • DCN data communication network
  • Figure 12 is a schematic structural diagram of the laser radar transmitting end provided by the embodiment of the present application, and Figure 12 is drawn on the basis of Figure 10
  • An optical phased array (OPA) can be connected, so the optical signal output by the optical switch can be emitted by the OPA at a certain angle as a radar signal.
  • OPA optical phased array
  • Fig. 13 is a schematic flow chart of the optical signal transmission method provided by the embodiment of the present application. As shown in Fig. 13, the method is implemented by the aforementioned micro-ring modulator, and the micro-ring modulator includes: a first ring waveguide, a first PN junction, The first controller and the second controller, the method includes:
  • the first optical signal with the first wavelength Under the action of the first electrical signal and the first PN junction in the forward bias state, transmit the first optical signal with the first wavelength through the first ring waveguide, or, under the action of the first electrical signal and the first PN junction in the reverse direction Under the action of the first PN junction in the bias state, the second optical signal with the second wavelength is transmitted through the first ring waveguide.
  • steps 1301 to 1303 For descriptions of steps 1301 to 1303, reference may be made to relevant descriptions of the embodiment shown in FIG. 2 or FIG. 3 , and details are not repeated here.
  • the microring modulator provided in the embodiment of the present application includes a first ring waveguide, a first PN junction, a first controller, and a second controller.
  • the first controller can send a first electrical signal to the first ring waveguide
  • the second controller can control the state of the first PN junction disposed on the first ring waveguide, then, when the second When a PN junction is in a forward-biased state, the first ring waveguide can transmit a first optical signal with a first wavelength under the action of the first electrical signal and the first PN junction; when the first PN junction is in a reverse-biased state
  • the first ring waveguide can transmit the second optical signal with the second wavelength under the action of the first electrical signal and the first PN junction.
  • one ring waveguide can be used to transmit two optical signals with different wavelengths. If there are N optical signals with different wavelengths, only N/2 rings need to be deployed in the microring modulator.
  • the waveguide is enough, which is beneficial to reduce the number of devices in the microring modulator, thereby reducing the size of the microring modulator, and reducing the power consumption and production cost of the microring modulator.
  • the first PN junction includes an N-type doped region and a P-type doped region, and a part of the N-type doped region and a part of the P-type doped region penetrate into the first ring waveguide.
  • another part of the N-type doped region is arranged on the inner circle side of the first ring waveguide, and another part of the P-type doped region is arranged on the outer circle side of the first ring waveguide, or, N
  • the other part of the P-type doped region is arranged on the outer circle side of the first ring waveguide, and the other part of the P-type doped region is arranged on the inner circle side of the first ring waveguide.
  • the resonant wavelength of the first ring waveguide is located between the first wavelength and the second wavelength.
  • controlling the state of the first PN junction through the second controller includes: sending a second electrical signal to the first PN junction through the second controller, so as to control the first PN junction to be in forward bias state or reverse bias state.
  • the microring modulator further includes: a first straight waveguide
  • the method further includes: acquiring a plurality of optical signals through the first straight waveguide, and the plurality of optical signals include the first optical signal and the second optical signal Signals; sending a plurality of optical signals to the first ring waveguide through the first straight waveguide.
  • the microring modulator further includes: a second straight waveguide
  • the method further includes: receiving the first optical signal or the second optical signal from the first ring waveguide through the second straight waveguide; The two straight waveguides output the first optical signal or the second optical signal.
  • the microring modulator further includes: a second ring waveguide and a second PN junction
  • the method further includes: transferring signals other than the first optical signal or the second optical signal through the first straight waveguide
  • the remaining optical signals are sent to the second ring waveguide, and the remaining optical signals include a third optical signal with a third wavelength and a fourth optical signal with a fourth wavelength
  • the third electrical signal is sent to the first ring waveguide through the first controller ; control the state of the second PN junction through the second controller; under the action of the third electrical signal and the second PN junction in the forward bias state, the third light is transferred from the remaining optical signals through the second ring waveguide
  • the signal is sent to the second straight waveguide, or, under the action of the third electrical signal and the second PN junction in the reverse bias state, the fourth optical signal is sent to the first optical signal from the remaining optical signals through the second ring waveguide Two straight waveguides; the third optical signal or the fourth optical signal is output through the second straight waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本申请提供了一种微环调制器及光信号传输方法,可通过减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。本申请的微环调制器包括第一环形波导、第一PN结、第一控制器和第二控制器。当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,且第二控制器可控制部署于第一环形波导上的第一PN结的状态,那么,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第一波长的第一光信号,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第二波长的第二光信号。

Description

一种微环调制器及光信号传输方法 技术领域
本申请涉及光通信领域,尤其涉及一种微环调制器及光信号传输方法。
背景技术
针对未来提高处理器计算速率、突破信息传输速率和功耗瓶颈的需求,业界提出了采用片上光互连取代片上电互连的方案。微环调制器是用于实现片上光互连技术的重要器件之一,该调制器可从具有不同波长的多个光信号中,选择特定波长的光信号,并输出到其他器件。
目前,微环调制器由级联的多个微环构成,不同微环在控制信号的作用下,可用于输出不同波长的光信号。具体地,可将具有不同波长的多个光信号输入至多个级联微环中的第一微环(即首个微环),第一微环在控制信号的作用下,其谐振波长为第一波长,故第一微环可从多个光信号中,选择并传输具有第一波长的第一光信号。接着,可将除第一光信号之外的其余光信号输入至多个微环中的第二微环(即第二个微环),第二微环在控制信号的作用下,其谐振波长为第二波长,故第二微环可从多个光信号中,选择并传输具有第二波长的第二光信号。以此类推,直至最后一个微环传输最后一个光信号。
可见,一个具有特定波长的光信号需要一个微环来锁定并进行传输,然而,输入至微环调制器的光信号通常数量较大,故微环调制器中需要部署数量众多的微环,导致微环调制器的尺寸和功耗过大,且制作成本过高。
发明内容
本申请实施例提供了一种微环调制器及光信号传输方法,可通过减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。
本申请实施例的第一方面提供了一种微环调制器,该微环调制器包括:第一环形波导(也可以理解为一个微环)、第一PN结、第一控制器和第二控制器,其中,第一PN结部署于第一环形波导上,第一控制器和第一环形波导电连接,第二控制器和第一PN结电连接。
当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,第一电信号通常为直流电信号,需要说明的是,第一电信号可作用于第一环形波导上,故第一电信号可通过电效应或热效应来控制第一环形波导的谐振波长。与此同时,第二控制器可控制第一PN结的状态,例如,令第一PN结工作于正向偏置状态,或,令第一PN结工作于反向偏置状态等等,需要说明的是,第一PN结作用于第一环形波导,故第一PN结可在不同的状态下,通过电效应来控制第一环形波导的谐振波长。如此一来,第二控制器可对第一环形波导实现双重电光调制,从而联合第一控制器调整第一环形波导的谐振波长。
具体地,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可使得第一环形波导的谐振波长为第一波长,那么,第一环形波导在获取多个光信号后,可在多个光信号中选定具有第一波长的第一光信号并进行传输。相应的,当第 一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可使得第一环形波导的谐振波长为第二波长,那么,第一环形波导在获取多个光信号后,可在多个光信号中选定具有第二波长的第二光信号并进行传输。
上述微环调制器包括第一环形波导、第一PN结、第一控制器和第二控制器。当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,且第二控制器可控制部署于第一环形波导上的第一PN结的状态,那么,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第一波长的第一光信号,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第二波长的第二光信号。前述微环调制器中,一个环形波导(微环)可用于传输具有不同波长的两个光信号,若存在具有不同波长的N个光信号,微环调制器中仅需部署N/2个环形波导即可,有利于减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。
在一种可能的实现方式中,第一PN结包括N型掺杂区和P型掺杂区,N型掺杂区的一部分和P型掺杂区的一部分渗透于第一环形波导中。前述实现方式中,第一PN结的N型掺杂区的一部分和第一PN结的P型掺杂区的一部分渗透于第一环形波导中,需要说明的是,在第一环形波导自身中,第一PN结的N型掺杂区的一部分和第一PN结的P型掺杂区的一部分既可接触,也可不接触。如此一来,可实现第一PN结对第一环形波导的作用。
在一种可能的实现方式中,N型掺杂区的另一部分设于第一环形波导的内圆侧,P型掺杂区的另一部分设于第一环形波导的外圆侧,或,N型掺杂区的另一部分设于第一环形波导的外圆侧,P型掺杂区的另一部分设于第一环形波导的内圆侧。前述实现方式中,第一PN结的N型掺杂区的另一部分设于第一环形波导的内圆侧(例如,N型掺杂区的该部分可设置环形波导的空腔处),第一PN结的P型掺杂区的另一部分设于第一环形波导的外圆侧(例如,P型掺杂区的该部分可分别设置在第一环形波导外部的两侧),或者,第一PN结的P型掺杂区的一部分设于第一环形波导的内圆侧(例如,P型掺杂区的该部分可设置环形波导的空腔处),第一PN结的N型掺杂区的一部分设于第一环形波导的外圆侧(例如,N型掺杂区的该部分可分别设置在第一环形波导外部的两侧),从而提供了第一PN结合第一环形波导之间的多种作用方式。
在一种可能的实现方式中,在第一电信号的作用下,第一环形波导的谐振波长位于第一波长和第二波长之间。前述实现方式中,当第二控制器控制第一PN结处于常态时,相当于第一PN结未对第一环形波导发生作用,那么,仅在第一电信号的作用下,第一环形波导的谐振波长可理解为第一环形波导处于初始阶段的谐振波长,此时,第一环形波导的谐振波长可位于第一波长和第二波长之间。
在一种可能的实现方式中,第二控制器用于向第一PN结发送第二电信号,以控制第一PN结处于正向偏置状态或反向偏置状态,其中,第二电信号通常为一对电压信号,第一个电压信号加载在第一PN结的P型掺杂区,第二个电压信号加载在第一PN结的N型掺杂区。
在一种可能的实现方式中,微环调制器还包括:第一直波导,第一直波导的一端用于获取具备不同波长的多个光信号,并将多个光信号发送至第一环形波导,多个光信号包含 第一光信号和第二光信号。
在一种可能的实现方式中,微环调制器还包括:第二直波导,第二直波导的一端用于接收来自第一环形波导的第一光信号或第二光信号,并对外输出第一光信号或第二光信号。
在一种可能的实现方式中,微环调制器还包括:第二环形波导和第二PN结;第一直波导还用于将除第一光信号或第二光信号之外的其余光信号,发送至第二环形波导,其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号;第一控制器还用于向第一环形波导发送第三电信号;第二控制器还用于控制第二PN结的状态;第二环形波导用于在第三电信号和处于正向偏置状态的第二PN结的作用下,从其余光信号中,将第三光信号发送至第二直波导,或,在第三电信号和处于反向偏置状态的第二PN结的作用下,从其余光信号中,将第四光信号发送至第二直波导;第二直波导还用于输出第三光信号或第四光信号。前述实现方式中,微环调制器还包括:第二环形波导和第二PN结,第二PN结部署与第二环形波导上,第二环形波导与第一环形波导级联,第二环形波导作为第一环形波导的下一级环形波导。当第一光信号或第二光信号被第二直波导输出后,第一直波导可将将除第一光信号或第二光信号之外的其余光信号发送至第二环形波导,其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号。那么,第一控制器还向第一环形波导发送第三电信号,且第二控制器还可(通过第四电信号)控制第二PN结的状态。当第二PN结处于正向偏置状态时,第二环形波导在第三电信号和第二PN结的作用下,可从其余光信号中,将第三光信号发送至第二直波导,以使得第二直波导对外输出第三光信号。当第二PN结处于反向偏置状态时,第二环形波导在第三电信号和第二PN结的作用下,可从其余光信号中,将第四光信号发送至第二直波导,以使得第二直波导对外输出第四光信号。由此可见,微环调制器可拓展为包含N/2个环形波导(N/2个微环)的级联结构,且每一个微环上部署有一个PN结,由于每一个环形波导可输出具备不同波长的2个光信号,可N/2个环形波导一共可输出具备不同波长的N个光信号,有利于减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。更进一步地,由于控制器(即前述的第一控制器和第二控制器)仅需实现对N/2个环形波导的控制即可(即仅需提供N/2个通道即可),可减小微环调制器的集成复杂度。
本申请实施例的第二方面提供了一种光信号传输方法,该方法通过微环调制器实现,微环调制器包括:第一环形波导、第一PN结、第一控制器和第二控制器,该方法包括:通过第一控制器向第一环形波导发送第一电信号;通过第二控制器控制第一PN结的状态;在第一电信号和处于正向偏置状态的第一PN结的作用下,通过第一环形波导传输具有第一波长的第一光信号,或,在第一电信号和处于反向偏置状态的第一PN结的作用下,通过第一环形波导传输具有第二波长的第二光信号。
用于实现上述方法的微环调制器包括第一环形波导、第一PN结、第一控制器和第二控制器。当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,且第二控制器可控制部署于第一环形波导上的第一PN结的状态,那么,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第一波长的第一光信号,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下, 可传输具有第二波长的第二光信号。前述微环调制器中,一个环形波导(微环)可用于传输具有不同波长的两个光信号,若存在具有不同波长的N个光信号,微环调制器中仅需部署N/2个环形波导即可,有利于减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。
在一种可能的实现方式中,第一PN结包括N型掺杂区和P型掺杂区,N型掺杂区的一部分和P型掺杂区的一部分渗透于第一环形波导中。
在一种可能的实现方式中,N型掺杂区的另一部分设于第一环形波导的内圆侧,P型掺杂区的另一部分设于第一环形波导的外圆侧,或,N型掺杂区的另一部分设于第一环形波导的外圆侧,P型掺杂区的另一部分设于第一环形波导的内圆侧。
在一种可能的实现方式中,在第一电信号的作用下,第一环形波导的谐振波长位于第一波长和第二波长之间。
在一种可能的实现方式中,通过第二控制器控制第一PN结的状态包括:通过第二控制器向第一PN结发送第二电信号,以控制第一PN结处于正向偏置状态或反向偏置状态。
在一种可能的实现方式中,微环调制器还包括:第一直波导,该方法还包括:通过第一直波导获取多个光信号,多个光信号包含第一光信号和第二光信号;通过第一直波导将多个光信号发送至第一环形波导。
在一种可能的实现方式中,微环调制器还包括:第二直波导,该方法还包括:通过第二直波导接收来自第一环形波导的第一光信号或第二光信号;通过第二直波导输出第一光信号或第二光信号。
在一种可能的实现方式中,微环调制器还包括:第二环形波导和第二PN结,该方法还包括:通过第一直波导将除第一光信号或第二光信号之外的其余光信号,发送至第二环形波导,其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号;通过第一控制器向第一环形波导发送第三电信号;通过第二控制器控制第二PN结的状态;在第三电信号和处于正向偏置状态的第二PN结的作用下,通过第二环形波导从其余光信号中,将第三光信号发送至第二直波导,或,在第三电信号和处于反向偏置状态的第二PN结的作用下,通过第二环形波导从其余光信号中,将第四光信号发送至第二直波导;通过第二直波导输出第三光信号或第四光信号。
本申请实施例提供的微环调制器包括第一环形波导、第一PN结、第一控制器和第二控制器。当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,且第二控制器可控制部署于第一环形波导上的第一PN结的状态,那么,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第一波长的第一光信号,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第二波长的第二光信号。前述微环调制器中,一个环形波导(微环)可用于传输具有不同波长的两个光信号,若存在具有不同波长的N个光信号,微环调制器中仅需部署N/2个环形波导即可,有利于减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。
附图说明
图1为相关技术的微环调制器的一个结构示意图;
图2为本申请实施例提供的微环调制器的一个结构示意图;
图3为本申请实施例提供的微环调制器的另一结构示意图;
图4a为本申请实施例提供的微环和PN结之间连接的一个示意图;
图4b为本申请实施例提供的微环和PN结之间连接的另一示意图;
图4c为本申请实施例提供的微环和PN结之间连接的另一示意图;
图5a为本申请实施例提供的微环和PN结之间连接的另一示意图;
图5b为本申请实施例提供的微环和PN结之间连接的另一示意图;
图5c为本申请实施例提供的微环和PN结之间连接的另一示意图;
图6为本申请实施例提供的微环调制器的另一结构示意图;
图7为本申请实施例提供的微环调制器的另一结构示意图;
图8为本申请实施例提供的调整谐振波长的一个示意图;
图9为本申请实施例提供的微环调制器的另一结构示意图;
图10为本申请实施例提供的光开关的一个结构示意图;
图11为本申请实施例提供的光网卡的一个结构示意图;
图12为本申请实施例提供的激光雷达发射端的一个结构示意图;
图13为本申请实施例提供的光信号传输方法的一个流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”并他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
针对未来提高处理器计算速率、突破信息传输速率和功耗瓶颈的需求,业界提出了采用片上光互连取代片上电互连的方案。微环调制器是用于实现片上光互连技术的重要器件之一,该调制器可从具有不同波长的多个光信号中,选择特定波长的光信号,并输出到其他器件。
一般地,微环调制器由级联的多个微环构成,不同微环在控制信号的作用下,可用于输出不同波长的光信号。如图1所示(图1为相关技术的微环调制器的一个结构示意图),微环调制器可包含级联的N个微环,开关控制器以及波长控制器,N为大于1的正整数。将波长分别为λ 1、λ 2、…、λ N的N个光信号输入至N个微环中的第1个微环,波长控制器可控制第1个微环的谐振波长为λ 1,第2个微环的谐振波长为λ 2……以此类推。在某一时刻,开关控制器使得第1个微环处于开启状态(其余微环处于关闭状态),此时第一微环 可从N个光信号中,选择并输出波长为λ 1的光信号。下一时刻,开关控制器使得第2个微环处于开启状态(其余微环处于关闭状态),此时第2个微环可从N个光信号中,选择并输出波长为λ 2的光信号。以此类推,直至第N个微环输出波长为λ N的光信号。
可见,一个具有特定波长的光信号需要一个微环来锁定并进行传输,然而,输入至微环调制器的光信号的数量N通常较大,故微环调制器中需要部署数量N个微环,导致微环调制器的尺寸和功耗过大,且制作成本过高。相应地,控制器需要实现对N个微环的控制,集成复杂度也很高。
为了解决上述问题,本申请实施例提供一种新的微环调制器,如图2所示(图2为本申请实施例提供的微环调制器的一个结构示意图),该微环调制器包括:第一环形波导(也可以理解为微环)、第一PN结、第一控制器和第二控制器,其中,第一PN结部署于第一环形波导上(第一PN结与第一环形波导连接),第一控制器和第一环形波导电连接,第二控制器和第一PN结电连接。
当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,第一电信号通常为直流电信号(该直流电信号既可以为直流电流信号,也可以为直流电压信号,此处不做限制),需要说明的是,第一电信号可作用于第一环形波导上,故第一电信号可通过电效应或热效应来控制第一环形波导的谐振波长(下文以电效应进行示意性介绍)。与此同时,第二控制器可控制第一PN结的状态,例如,令第一PN结工作于正向偏置状态,或,令第一PN结工作于反向偏置状态,或,令第一PN结处于常态等等,需要说明的是,第一PN结作用于第一环形波导,故第一PN结可在不同的状态下,通过电光效应来控制第一环形波导的谐振波长。如此一来,第二控制器(通过第一PN结)可对第一环形波导实现双重电光调制,从而联合第一控制器(通过第一电信号)调整第一环形波导的谐振波长。
值得注意的是,第一PN结处于不同状态时,第一PN结内部的载流子(电子和空穴)移动方向不同,具体地,当第一PN结处于正向偏置状态时,可视为外部向第一PN结注入载流子,即在第一PN结内部,N型掺杂区电子增多,P型掺杂区空穴增多。当第一PN结处于反向偏置状态时,可视为第一PN结内部消耗载流子移动至外部,即在第一PN结内部,N型掺杂区电子减少,P型掺杂区空穴减少。当第一PN结处于常态时,可视为既未向第一PN结注入载流子,且第一PN结内部也未消耗载流子,即在第一PN结内部,电子和空穴在第一PN结的N型掺杂区移动和第一PN结的P型掺杂区之间,未发生任何来自外部或向外部的移动。
由于第一PN结可作用于第一环形波导,第一PN结内部的载流子在发生移动时,光信号在第一环形波导中的有效折射率发生改变,也就相当于影响了第一环形波导的谐振波长(因为光信号在第一环形波导中的有效折射率与第一环形波导的谐振波长之间存在正相关的数学关系,此处不做展开)。具体地,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可使得第一环形波导的谐振波长为第一波长,那么,第一环形波导在获取多个光信号后,可在多个光信号中选定具有第一波长的第一光信号并进行传输。相应的,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可使得第一环形波导的谐振波长为第二波长,那么,第一环形波导在获取 多个光信号后,可在多个光信号中选定具有第二波长的第二光信号并进行传输。
例如,如图3所示(图3为本申请实施例提供的微环调制器的另一结构示意图),微环调制器包括:微环(即前述的第一环形波导)、微环上的PN结、波长控制器(即前述的第一控制器)以及双重模式开关控制器(即前述的第二控制器),微环在获取波长分别为λ 1、λ 2、…、λ N的N个光信号后,波长控制器可直接在微环上加载一个直流电信号。在某个时刻,双重模式开关控制器可控制PN结处于正向偏置状态,可令微环的谐振波长为λ 1,故微环可在N个光信号中,选择并输出波长为λ 1的光信号。在另一时刻,直流电信号双重模式开关控制器可控制PN结处于反向偏置状态,可使得微环的谐振波长为λ 2,故微环可在N个光信号中,选择并输出波长为λ 2的光信号。
在一种可能的实现方式中,第一PN结与第一环形波导之间的连接方式可以为:
(1)第一PN结由N型掺杂区和P型掺杂区构成,第一PN结的N型掺杂区的一部分设于第一环形波导的内圆侧(例如,N型掺杂区的该部分可设置环形波导的空腔处),第一PN结的P型掺杂区的一部分设于第一环形波导的外圆侧(例如,P型掺杂区的该部分可分别设置在第一环形波导外部的两侧,又如,P型掺杂区的该部分可包围第一环形波导的外部),第一PN结的N型掺杂区的另一部分和第一PN结的P型掺杂区的另一部分渗透于第一环形波导中,需要说明的是,在第一环形波导自身中,第一PN结的N型掺杂区的另一部分和第一PN结的P型掺杂区的另一部分既可接触,也可不接触。例如,如图4a至图4c所示(图4a为本申请实施例提供的微环和PN结之间连接的一个示意图、图4b为本申请实施例提供的微环和PN结之间连接的另一示意图、图4c为本申请实施例提供的微环和PN结之间连接的另一示意图),N型掺杂区的主体部分填满微环的空腔,N型掺杂区的一小部分渗入于微环自身中。P型掺杂区的主体部分设置于微环外部,P型掺杂区的一小部分渗入于微环自身中。
(2)第一PN结由N型掺杂区和P型掺杂区构成,第一PN结的P型掺杂区的一部分设于第一环形波导的内圆侧(例如,P型掺杂区的该部分可设置环形波导的空腔处),第一PN结的N型掺杂区的一部分设于第一环形波导的外圆侧(例如,N型掺杂区的该部分可分别设置在第一环形波导外部的两侧,又如,N型掺杂区的该部分可包围第一环形波导的外部),第一PN结的N型掺杂区的另一部分和第一PN结的P型掺杂区的另一部分渗透于第一环形波导中,需要说明的是,在第一环形波导自身中,第一PN结的N型掺杂区的另一部分和第一PN结的P型掺杂区的另一部分既可接触,也可不接触。例如,如图5a至图5c所示(图5a为本申请实施例提供的微环和PN结之间连接的另一示意图、图5b为本申请实施例提供的微环和PN结之间连接的另一示意图、图5c为本申请实施例提供的微环和PN结之间连接的另一示意图),P型掺杂区的主体部分填满微环的空腔,P型掺杂区的一小部分渗入于微环自身中。N型掺杂区的主体部分设置于微环外部,N型掺杂区的一小部分渗入于微环自身中。
在一种可能的实现方式中,第二控制器控制第一PN结的状态的方式可以为:第二控制器向第一PN结发送第二电信号,以控制第一PN结处于正向偏置状态或反向偏置状态,第二电信号通常为一对电压信号,其中,第一个电压信号加载在第一PN结的P型掺杂区,第 二个电压信号加载在第一PN结的N型掺杂区。
当第一个电压信号大于第二个电压信号时,第一PN结处于正向偏置状态,当第一个电压信号小于第二个电压信号时,第一PN结处于反向偏置状态。例如,如图6所示(图6为本申请实施例提供的微环调制器的另一结构示意图,图6是图3的基础上进行绘制得到的),设微环的空腔填满有PN结的N型掺杂区,双重模式开关控制器可在PN结上加载差分信号,差分信号包含幅值相等的电压信号V RF1和电压信号V RF2,电压信号V RF1和电压信号V RF2的极性相反。当电压信号V RF1大于电压信号V RF2时(即电压信号V RF1为正电压信号,电压信号V RF2为负电压信号),PN结处于正向偏置状态,当电压信号V RF1小于电压信号V RF2时(即电压信号V RF1为负电压信号,电压信号V RF2为正电压信号),PN结处于反向偏置状态。又如,如图7所示(图7为本申请实施例提供的微环调制器的另一结构示意图,图7是图3的基础上进行绘制得到的),设微环的空腔填满有PN结的P型掺杂区,双重模式开关控制器可在PN结上加载差分信号,差分信号包含幅值相等的电压信号V RF1和电压信号V RF2,电压信号V RF1和电压信号V RF2的极性相反。当电压信号V RF1大于电压信号V RF2时(即电压信号V RF1为正电压信号,电压信号V RF2为负电压信号),PN结处于正向偏置状态,当电压信号V RF1小于电压信号V RF2时(即电压信号V RF1为负电压信号,电压信号V RF2为正电压信号),PN结处于反向偏置状态。
在一种可能的实现方式中,当第二控制器控制第一PN结处于常态时(例如,第二控制器输入至第一PN结的第一个电压信号等于第二个电压信号,又如,第二控制器未向第一PN结输入电信号),相当于第一PN结未对第一环形波导发生作用,那么,仅在第一电信号的作用下,第一环形波导的谐振波长可理解为第一环形波导处于初始阶段的谐振波长,此时,第一环形波导的谐振波长位于第一波长和第二波长之间。例如,如图8所示(图8为本申请实施例提供的调整谐振波长的一个示意图,图8是图6或图7的基础上进行绘制得到的),当双重模式开关控制器输出的电压信号V RF1等于于电压信号V RF2时,PN结处于常态,仅在波长控制器的直流电信号的作用下,可令微环的谐振波长处于λ 1和λ 2之间。当电压信号V RF1大于于电压信号V RF2时,PN结处于正向偏置状态,在波长控制器的直流电信号和PN结的双重作用下,可令微环的谐振波长向左移动,直至等于λ 1。当电压信号V RF1小于于电压信号V RF2时,PN结处于反向偏置状态,在波长控制器的直流电信号和PN结的双重作用下,可令微环的谐振波长向右移动,直至等于λ 2
在一种可能的实现方式中,微环调制器还包括:第一直波导,第一直波导与第一环形波导耦合,第一直波导的一端(也可称为输入端)用于获取多个光信号,故第一直波导可将具备不同波长的多个光信号发送至第一环形波导,这多个光信号包含具有第一波长的第一光信号和具有第二波长的第二光信号。依旧如图3所示的例子,位于上方的直通波导(即前述的第一直波导)在获取波长分别为λ 1、λ 2、…、λ N的N个光信号后,可将这N个光信号发送至微环,以使得微环对相应波长的光信号进行锁定并输出。
在一种可能的实现方式中,微环调制器还包括:第二直波导,第一直波导与第一环形波导耦合,第二直波导的一端(也可称为输出端)用于接收来自第一环形波导的第一光信号或第二光信号,并对外输出第一光信号或第二光信号。依旧如图3所示的例子,在某个 时刻,位于下方的直通波导(即前述的第二直波导)接收到波长为λ 1的光信号后,可向外界输出波长为λ 1的光信号。在另一时刻,位于下方的直通波导接收到波长为λ 2的光信号后,可向外界输出波长为λ 2的光信号。
在一种可能的实现方式中,微环调制器可以为级联的结构,即微环调制器还包括:第二环形波导和第二PN结,第二PN结部署于第二环形波导上(即第二PN结与第二环形波导连接),第二环形波导与第一环形波导级联,第二环形波导作为第一环形波导的下一级环形波导。当第一光信号或第二光信号被第二直波导输出后,第一直波导可将除第一光信号或第二光信号之外的其余光信号发送至第二环形波导,其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号。那么,第一控制器还向第一环形波导发送第三电信号,且第二控制器还可(通过第四电信号)控制第二PN结的状态。当第二PN结处于正向偏置状态时,第二环形波导在第三电信号和第二PN结的作用下,可从其余光信号中,将第三光信号发送至第二直波导,以使得第二直波导对外输出第三光信号。当第二PN结处于反向偏置状态时,第二环形波导在第三电信号和第二PN结的作用下,可从其余光信号中,将第四光信号发送至第二直波导,以使得第二直波导对外输出第四光信号。关于第二环形波导传输第三光信号和第四光信号的过程,可参考前述第一环形波导传输第一光信号和第二光信号的过程,此处不再赘述。
例如,如图9所示(图9为本申请实施例提供的微环调制器的另一结构示意图),微环调制器包含位于上方的直通波导、位于下方的直通波导、级联的4个微环、4个PN结、波长控制器(即前述的第一控制器)以及双重模式开关控制器(即前述的第二控制器),4个微环位于两个直通波导之间,且每一个微环上部署有一个PN结。双重模式开关控制器可在相应时间段向第i个PN结发送差分信号,且在所有PN结未加载差分信号时,波长控制器可通过直流电信号持续控制所有微环处于初始阶段的谐振波长,以使得第i个微环的谐振波长位于λ 2i-1和λ 2i之间。
位于上方的直通波导将波长分别为λ 1、λ 2、…、λ 8的8个光信号发送至微环1(即前述的第一环形波导)后,在[0,ΔT]这一时间段内,双重模式开关控制器向PN结1(即前述的第一PN结)输出V RF1和V RF2,且V RF1为正电压信号、V RF2为负电压信号,双重模式开关控制器并不向其余PN结输出,以使得微环1输入波长为λ 1的光信号。[ΔT,2ΔT]这一时间段,双重模式开关控制器向PN结2(即前述的第二PN结)输出V RF3和V RF4,且V RF4为正电压信号、V RF3为负电压信号,双重模式开关控制器并不向其余PN结输出,以使得微环2(即前述的第一环形波导)输入波长为λ 4的光信号,...,以此类推,直至在[7ΔT,8ΔT],微环4输入波长为λ 7的光信号。那么,输出多个光信号的波长在,时域上的顺序为λ 1,λ 4,λ 3,λ 8,λ 6,λ 2,λ 5,λ 7。可见,通过控制加载在4个微环上的差分信号的开关与极性,即可实现8种波长的光信号的快速切换。两种调制模式都能工作在较高频率下,即所加载RF信号的频率可大于2GHz,在此情况下,对应开关切换速度为0.5ns。应理解,0.5ns的开关切换速度为两个波长的光信号之间的切换时间,并非每个波长的光信号在时域上的持续时间为ΔT,后者与实际业务需求有关,此处不做限制。
此外,还可将本申请实施例提供的微环调制器(以图9所示的例子进行介绍)与相关 技术中的微环调制器进行比较,比较结果如表1所示:
表1
Figure PCTCN2021141984-appb-000001
在表1中,上标“2”按照载流子注入调制功耗68fJ/bit,载流子耗尽调制功耗31fJ/bit估算。上标“3”按照微环热调功耗10mW估算。
基于表1可知,本申请实施例仅用4个微环,且控制器仅需对4个微环发送信号(即双重模式开关控制器仅需实现4通道的差分信号、波长控制器仅需实现4通道的直流电信号),在器件数量、功耗、集成复杂度均优于相关技术。
本申请实施例提供的微环调制器包括第一环形波导、第一PN结、第一控制器和第二控制器。当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,且第二控制器可控制部署于第一环形波导上的第一PN结的状态,那么,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第一波长的第一光信号,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第二波长的第二光信号。前述微环调制器中,一个环形波导(微环)可用于传输具有不同波长的两个光信号,若存在具有不同波长的N个光信号,微环调制器中仅需部署N/2个环形波导即可,有利于减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。
进一步地,由于控制器仅需实现对N/2个环形波导的控制即可,可减小微环调制器的集成复杂度。
值得注意的是,本申请实施例提供的微环调制器还可应用于各类场景中,下文将分别进行介绍:
(1)如图10所示(图10为本申请实施例提供的光开关的一个结构示意图,图10是图9的基础上进行绘制得到的),可设置多个本申请实施例提供的微环调制器,其中,每个微环调制器的输入端均与解复用器(demultiplexer,DEMUX)连接,且每个微环调制器的输出端均与复用器(multiplexer,MUX)连接,以组成光开关。可见,光频梳输入的光信号可被DEMUX分为多个不同波长范围的光信号,并分别输入到不同的微环调制器中。那么,MUX可接收到各个微环调制器在特定时间段所输出的具有特定波长的光信号,故在不同时间段,MUX对外输出不同波长的光信号。可见,通过复用本申请实施例提供微环调制器, 并结合DEMUX和MUX,可实现超宽谱亚纳秒级别的光开关,可覆盖S+C+L波段,甚至可以覆盖1270-1675nm等超400nm的全部波段(即O+E+S+C+L+U波段)。
(2)如图11所示(图11为本申请实施例提供的光网卡的一个结构示意图,图11是图10的基础上进行绘制得到的),图10所示的光开关的输出端可连接一个电光调制器,故光开关所输出光载波信号(未带有内容的光信号),可被电光调制器调制为光数据信号(即带有一定内容的光信号)。那么,该光网卡可被应用在数据通信网格(data communication network,DCN)机柜的服务器上,实现服务器之间基于光数据信号的通信。
(3)如图12所示(图12为本申请实施例提供的激光雷达发射端的一个结构示意图,图12是图10的基础上进行绘制得到的),图10所示的光开关的输出端可连接一个光相控阵列(optical phased array,OPA),故光开关输出的光信号可被OPA按照一定的角度发射出去,作为雷达信号。
以上是对本申请实施例提供的微环调制器所进行的详细说明,以下将对本申请实施例提供的光信号传输方法进行介绍。图13为本申请实施例提供的光信号传输方法的一个流程示意图,如图13所示,该方法通过前述微环调制器实现,微环调制器包括:第一环形波导、第一PN结、第一控制器和第二控制器,该方法包括:
1301、通过第一控制器向第一环形波导发送第一电信号。
1302、通过第二控制器控制第一PN结的状态。
1303、在第一电信号和处于正向偏置状态的第一PN结的作用下,通过第一环形波导传输具有第一波长的第一光信号,或,在第一电信号和处于反向偏置状态的第一PN结的作用下,通过第一环形波导传输具有第二波长的第二光信号。
关于步骤1301至步骤1303的说明,可参考图2或图3所示实施例的相关说明部分,此处不再赘述。
本申请实施例提供的微环调制器包括第一环形波导、第一PN结、第一控制器和第二控制器。当微环调制器工作时,第一控制器可向第一环形波导发送第一电信号,且第二控制器可控制部署于第一环形波导上的第一PN结的状态,那么,当第一PN结处于正向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第一波长的第一光信号,当第一PN结处于反向偏置状态时,第一环形波导在第一电信号和第一PN结的作用下,可传输具有第二波长的第二光信号。前述微环调制器中,一个环形波导(微环)可用于传输具有不同波长的两个光信号,若存在具有不同波长的N个光信号,微环调制器中仅需部署N/2个环形波导即可,有利于减少微环调制器中的器件数量,进而减小微环调制器的尺寸,降低微环调制器的功耗和制作成本。
在一种可能的实现方式中,第一PN结包括N型掺杂区和P型掺杂区,N型掺杂区的一部分和P型掺杂区的一部分渗透于第一环形波导中。
在一种可能的实现方式中,N型掺杂区的另一部分设于第一环形波导的内圆侧,P型掺杂区的另一部分设于第一环形波导的外圆侧,或,N型掺杂区的另一部分设于第一环形波导的外圆侧,P型掺杂区的另一部分设于第一环形波导的内圆侧。
在一种可能的实现方式中,在第一电信号的作用下,第一环形波导的谐振波长位于第 一波长和第二波长之间。
在一种可能的实现方式中,通过第二控制器控制第一PN结的状态包括:通过第二控制器向第一PN结发送第二电信号,以控制第一PN结处于正向偏置状态或反向偏置状态。
在一种可能的实现方式中,微环调制器还包括:第一直波导,该方法还包括:通过第一直波导获取多个光信号,多个光信号包含第一光信号和第二光信号;通过第一直波导将多个光信号发送至第一环形波导。
在一种可能的实现方式中,微环调制器还包括:第二直波导,该方法还包括:通过第二直波导接收来自第一环形波导的第一光信号或第二光信号;通过第二直波导输出第一光信号或第二光信号。
在一种可能的实现方式中,微环调制器还包括:第二环形波导和第二PN结,该方法还包括:通过第一直波导将除第一光信号或第二光信号之外的其余光信号,发送至第二环形波导,其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号;通过第一控制器向第一环形波导发送第三电信号;通过第二控制器控制第二PN结的状态;在第三电信号和处于正向偏置状态的第二PN结的作用下,通过第二环形波导从其余光信号中,将第三光信号发送至第二直波导,或,在第三电信号和处于反向偏置状态的第二PN结的作用下,通过第二环形波导从其余光信号中,将第四光信号发送至第二直波导;通过第二直波导输出第三光信号或第四光信号。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种微环调制器,其特征在于,所述微环调制器包括:第一环形波导、第一PN结、第一控制器和第二控制器;
    所述第一控制器用于向所述第一环形波导发送第一电信号;
    所述第二控制器用于控制所述第一PN结的状态;
    所述第一环形波导用于在所述第一电信号和处于正向偏置状态的第一PN结的作用下,传输具有第一波长的第一光信号,或,在所述第一电信号和处于反向偏置状态的第一PN结的作用下,传输具有第二波长的第二光信号。
  2. 根据权利要求1所述的微环调制器,其特征在于,所述第一PN结包括N型掺杂区和P型掺杂区,所述N型掺杂区的一部分和所述P型掺杂区的一部分渗透于所述第一环形波导中。
  3. 根据权利要求2所述的微环调制器,其特征在于,所述N型掺杂区的另一部分设于所述第一环形波导的内圆侧,所述P型掺杂区的另一部分设于所述第一环形波导的外圆侧,或,所述N型掺杂区的另一部分设于所述第一环形波导的外圆侧,所述P型掺杂区的另一部分设于所述第一环形波导的内圆侧。
  4. 根据权利要求1至3所述的微环调制器,其特征在于,在所述第一电信号的作用下,所述第一环形波导的谐振波长位于所述第一波长和所述第二波长之间。
  5. 根据权利要求1至4任意一项所述的微环调制器,其特征在于,所述第二控制器用于向所述第一PN结发送第二电信号,以控制所述第一PN结处于正向偏置状态或反向偏置状态。
  6. 根据权利要求1至5任意一项所述的微环调制器,其特征在于,所述微环调制器还包括:第一直波导,所述第一直波导用于获取多个光信号,并将所述多个光信号发送至所述第一环形波导,所述多个光信号包含所述第一光信号和所述第二光信号。
  7. 根据权利要求6所述的微环调制器,其特征在于,所述微环调制器还包括:第二直波导,所述第二直波导用于接收来自所述第一环形波导的所述第一光信号或第二光信号,并输出所述第一光信号或第二光信号。
  8. 根据权利要求7所述的微环调制器,其特征在于,所述微环调制器还包括:第二环形波导和第二PN结;
    所述第一直波导还用于将除所述第一光信号或所述第二光信号之外的其余光信号,发送至所述第二环形波导,所述其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号;
    所述第一控制器还用于向所述第一环形波导发送第三电信号;
    所述第二控制器还用于控制所述第二PN结的状态;
    所述第二环形波导用于在所述第三电信号和处于正向偏置状态的第二PN结的作用下,从所述其余光信号中,将所述第三光信号发送至所述第二直波导,或,在所述第三电信号和处于反向偏置状态的第二PN结的作用下,从所述其余光信号中,将所述第四光信号发送至所述第二直波导;
    所述第二直波导还用于输出所述第三光信号或第四光信号。
  9. 一种光信号传输方法,其特征在于,所述方法通过微环调制器实现,所述微环调制器包括:第一环形波导、第一PN结、第一控制器和第二控制器;该方法包括:
    通过所述第一控制器向所述第一环形波导发送第一电信号;
    通过所述第二控制器控制所述第一PN结的状态;
    在所述第一电信号和处于正向偏置状态的第一PN结的作用下,通过所述第一环形波导传输具有第一波长的第一光信号,或,在所述第一电信号和处于反向偏置状态的第一PN结的作用下,通过所述第一环形波导传输具有第二波长的第二光信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一PN结包括N型掺杂区和P型掺杂区,所述N型掺杂区的一部分和所述P型掺杂区的一部分渗透于所述第一环形波导中。
  11. 根据权利要求10所述的方法,其特征在于,所述N型掺杂区的另一部分设于所述第一环形波导的内圆侧,所述P型掺杂区的另一部分设于所述第一环形波导的外圆侧,或,所述N型掺杂区的另一部分设于所述第一环形波导的外圆侧,所述P型掺杂区的另一部分设于所述第一环形波导的内圆侧。
  12. 根据权利要求9至11所述的方法,其特征在于,在所述第一电信号的作用下,所述第一环形波导的谐振波长位于所述第一波长和所述第二波长之间。
  13. 根据权利要求9至12任意一项所述的方法,其特征在于,所述通过所述第二控制器控制所述第一PN结的状态包括:
    通过所述第二控制器向所述第一PN结发送第二电信号,以控制所述第一PN结处于正向偏置状态或反向偏置状态。
  14. 根据权利要求9至13任意一项所述的方法,其特征在于,所述微环调制器还包括:第一直波导,所述方法还包括:
    通过所述第一直波导获取多个光信号,所述多个光信号包含所述第一光信号和所述第二光信号;
    通过所述第一直波导将所述多个光信号发送至所述第一环形波导。
  15. 根据权利要求14所述的方法,其特征在于,所述微环调制器还包括:第二直波导,所述方法还包括:
    通过所述第二直波导接收来自所述第一环形波导的所述第一光信号或第二光信号;
    通过所述第二直波导输出所述第一光信号或第二光信号。
  16. 根据权利要求15所述的方法,其特征在于,所述微环调制器还包括:第二环形波导和第二PN结,所述方法还包括:
    通过所述第一直波导将除所述第一光信号或所述第二光信号之外的其余光信号,发送至所述第二环形波导,所述其余光信号包含具有第三波长的第三光信号和具有第四波长的第四光信号;
    通过所述第一控制器向所述第一环形波导发送第三电信号;
    通过所述第二控制器控制所述第二PN结的状态;
    在所述第三电信号和处于正向偏置状态的第二PN结的作用下,通过所述第二环形波导 从所述其余光信号中,将所述第三光信号发送至所述第二直波导,或,在所述第三电信号和处于反向偏置状态的第二PN结的作用下,通过所述第二环形波导从所述其余光信号中,将所述第四光信号发送至所述第二直波导;
    通过所述第二直波导输出所述第三光信号或第四光信号。
PCT/CN2021/141984 2021-12-28 2021-12-28 一种微环调制器及光信号传输方法 WO2023122939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141984 WO2023122939A1 (zh) 2021-12-28 2021-12-28 一种微环调制器及光信号传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141984 WO2023122939A1 (zh) 2021-12-28 2021-12-28 一种微环调制器及光信号传输方法

Publications (1)

Publication Number Publication Date
WO2023122939A1 true WO2023122939A1 (zh) 2023-07-06

Family

ID=86996938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141984 WO2023122939A1 (zh) 2021-12-28 2021-12-28 一种微环调制器及光信号传输方法

Country Status (1)

Country Link
WO (1) WO2023122939A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452921A (zh) * 2014-07-18 2016-03-30 华为技术有限公司 波长选择开关和选择波长的方法
US10215925B1 (en) * 2018-08-22 2019-02-26 Mcmaster University Systems and methods for resonance stabilization of microring resonator
CN112230448A (zh) * 2020-10-15 2021-01-15 中国科学院上海微系统与信息技术研究所 微环电光调制器及其制备方法
CN112379539A (zh) * 2020-11-18 2021-02-19 联合微电子中心有限责任公司 一种硅基微环调制器及其调制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452921A (zh) * 2014-07-18 2016-03-30 华为技术有限公司 波长选择开关和选择波长的方法
US10215925B1 (en) * 2018-08-22 2019-02-26 Mcmaster University Systems and methods for resonance stabilization of microring resonator
CN112230448A (zh) * 2020-10-15 2021-01-15 中国科学院上海微系统与信息技术研究所 微环电光调制器及其制备方法
CN112379539A (zh) * 2020-11-18 2021-02-19 联合微电子中心有限责任公司 一种硅基微环调制器及其调制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PO DONG ; SHIRONG LIAO ; DAZENG FENG ; HONG LIANG ; ROSHANAK SHAFIIHA ; NING-NING FENG ; GUOLIANG LI ; XUEZHE ZHENG ; ASHOK V. KRI: "Tunable high speed silicon microring modulator", CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010 : 16 - 21 MAY 2010, SAN JOSE, CA, USA, IEEE, PISCATAWAY, NJ , USA, 16 May 2010 (2010-05-16), Piscataway, NJ , USA , pages 1 - 2, XP031701935, ISBN: 978-1-55752-890-2 *

Similar Documents

Publication Publication Date Title
US10714895B2 (en) Rapidly tunable silicon modulated laser
CN104635297B (zh) 光学谐振器设备、光学发射机和光学谐振器的控制方法
CN100397230C (zh) 利用具有电荷调制区的环形谐振器调制光束的方法和装置
US7657130B2 (en) Silicon-based optical modulator for analog applications
CN106461987A (zh) 检测器再调制器
US20160363835A1 (en) Mzm linear driver for silicon photonics device characterized as two-channel wavelength combiner and locker
CN107430292A (zh) 电光和热光调制器
US8300990B2 (en) Slotted optical waveguide with electro-optic material
US11394116B2 (en) Dual optical and RF phased array and photonic integrated circuit
Chen et al. A WDM silicon photonic transmitter based on carrier-injection microring modulators
CN114167555A (zh) 一种面向高速光通信的6.4 Tbps硅基光引擎收发芯片组件
US20230253760A1 (en) 6.4 tbps silicon-based photonics engine transceiver chip module for high-speed optical communication
CN113132013B (zh) 一种直调型多信道协同的可重构微波光子采集芯片
WO2023122939A1 (zh) 一种微环调制器及光信号传输方法
CN110941108A (zh) 一种掺杂结构及光调制器
WO2021227357A1 (zh) 光学相控阵、其制备方法及移相控制系统
US9876582B2 (en) Integrated multichannel photonic receiver
Palermo et al. Silicon photonic microring resonator-based transceivers for compact WDM optical interconnects
CN115037380B (zh) 幅度相位可调的集成微波光子混频器芯片及其控制方法
CN111276562A (zh) 基于铌酸锂-氮化硅晶圆的光电单片集成系统
Chen et al. DWDM silicon photonic transceivers for optical interconnect
CN115598871A (zh) 基于微环结构的硅基电光调制器及其调制方法
Omirzakhov et al. 12.1 Monolithically Integrated Sub-63 fJ/b 8-Channel 256Gb/s Optical Transmitter with Autonomous Wavelength Locking in 45nm CMOS SOI
CN217156861U (zh) 一种含补偿装置的波长选择光开关
CN117872544B (zh) 硅-锆钛酸铅异质光电融合单片集成系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969320

Country of ref document: EP

Kind code of ref document: A1