WO2021227357A1 - 光学相控阵、其制备方法及移相控制系统 - Google Patents

光学相控阵、其制备方法及移相控制系统 Download PDF

Info

Publication number
WO2021227357A1
WO2021227357A1 PCT/CN2020/121462 CN2020121462W WO2021227357A1 WO 2021227357 A1 WO2021227357 A1 WO 2021227357A1 CN 2020121462 W CN2020121462 W CN 2020121462W WO 2021227357 A1 WO2021227357 A1 WO 2021227357A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
output
lithium niobate
phase modulation
phase shift
Prior art date
Application number
PCT/CN2020/121462
Other languages
English (en)
French (fr)
Inventor
金里
蒋平
路侑锡
韩建忠
郭进
冯俊波
刘祖文
曹睿
刘其鑫
吴蓓蓓
杨米杰
李同辉
Original Assignee
联合微电子中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010413445.8A external-priority patent/CN113671769B/zh
Priority claimed from CN202010427704.2A external-priority patent/CN113687552A/zh
Application filed by 联合微电子中心有限责任公司 filed Critical 联合微电子中心有限责任公司
Priority to US17/925,416 priority Critical patent/US20230400630A1/en
Publication of WO2021227357A1 publication Critical patent/WO2021227357A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon

Definitions

  • the invention belongs to the field of silicon optical device design and manufacturing, and particularly relates to an optical phased array based on a lithium niobate film material, a preparation method thereof, and a phase shift control system.
  • Silicon-based materials have low cost and good ductility, and can use mature silicon CMOS technology to make optical devices to facilitate integration with other existing components.
  • the linear electro-optical effect of silicon is relatively weak, making the optical modulation in silicon mainly dependent on the free carrier dispersion effect.
  • the amplitude of optical modulation is reduced, and signal distortion may be caused when using advanced modulation formats. This makes the silicon light modulator either show a lower photoelectric bandwidth or show a higher operating voltage.
  • thermo-optical phase modulation and carrier injection phase modulation have the disadvantages of high phase-shifting power consumption, low speed, and high waveguide loss, respectively, they will greatly affect the performance of the optical phased array, and thus affect the performance of the optical phased array. Ranging system.
  • Lithium niobate film material has the above-mentioned characteristics, with small phase shift power, phase shift loss and high phase shift rate. However, due to the characteristics of lithium niobate materials, we need a circuit system with a small current and large voltage modulation range to drive our phase shifter for optical phase shift control.
  • the traditional control method is to use multi-channel dedicated digital-to-analog converter (DAC) chips; as the array scale increases, it becomes more and more difficult to control the volume, power consumption, and cost of the system. In particular, there is the problem of low phase modulation efficiency.
  • DAC digital-to-analog converter
  • phased array 256
  • a single channel can reach tens of milliwatts, and the entire phase shift control system requires tens of watts of power consumption. It is more sensitive to temperature, which increases the difficulty of temperature control, making the stability of the system more difficult to achieve, and the efficiency of phase modulation is lower.
  • phase shift control circuit that can improve the efficiency of phase modulation, improve the integration of the circuit system to which the phase shift control circuit belongs, and reduce the volume and power consumption of the system.
  • thermo-optical phase modulation and carrier injection phase modulation have the shortcomings of high phase-shifting power consumption, low speed, and high waveguide loss, respectively, they will greatly affect the performance of optical phased arrays; traditional silicon-based
  • the phase control mostly uses a dedicated DAC chip. As the array size increases, it becomes more and more difficult to control the volume, power consumption, cost, and performance of the system. Taking the OPA 256 array chip as an example, a single channel has a power consumption of tens of milliwatts. This entire phase shift control requires about tens of watts of power consumption, and the system is sensitive to temperature, which increases the difficulty of temperature control. The stability of the system is difficult to achieve.
  • the purpose of the present invention is to provide an optical phased array based on lithium niobate film material, its preparation method and phase shift control system, so as to achieve a new type of optical phased array
  • the phase modulation mode reduces the power consumption of the silicon-based optical phased array system, increases the modulation rate of the silicon-based optical phased array, and reduces the waveguide loss of the system.
  • the optical phased array system of the present invention can effectively reduce the optical phased array Control complexity and reduce the volume of the system; at the same time, the phase-shifting control circuit of the present invention can adjust the voltage of another phase-modulation unit to be phase-modulated while outputting the voltage of the phase-modulation unit currently to be phase-modulated through the output port Effectively use the time of the output voltage to adjust the next output voltage and wait for the voltage to stabilize to the preset value, thereby improving the efficiency of phase modulation, improving the integration of the circuit system of the phase shift control circuit, and reducing the volume and volume of the system. Power consumption.
  • the optical phased array includes: a silicon substrate; a silicon oxide layer on the silicon substrate
  • the optical waveguide layer is located on the silicon oxide layer, the optical waveguide layer includes a coupling beam splitter and a grating antenna, and there is a gap between the coupling beam splitter and the grating antenna; a silicon oxide cladding layer is filled in the Around the optical waveguide layer and the gap band; a lithium niobate phase shifter, including a lithium niobate film located on the gap band, located on the lithium niobate film and connected to the coupling beam splitter and grating antenna A lithium niobate optical waveguide and a modulation electrode on the lithium niobate film located on both sides of the lithium niobate optical waveguide.
  • a laser is also connected, and the laser output terminal is connected to the input terminal of the coupling beam splitter.
  • the laser light emitted by the laser is a narrow linewidth beam.
  • the coupling beam splitter includes multiple 50:50 beam splitting units connected in series in sequence, the coupling beam splitter includes an input terminal and a plurality of output terminals, and each output terminal outputs The light intensity is equal.
  • the lithium niobate optical waveguide is connected across the output port of the coupling beam splitter and the grating antenna input port of the last stage, and overlaps with the output port of the coupling beam splitter and the grating antenna input port .
  • the material of the optical waveguide layer includes one of silicon and silicon nitride.
  • the lithium niobate optical waveguide is a ridge waveguide.
  • the modulation electrode includes a ground electrode and a control electrode, the ground electrode is grounded, and the control electrode is used to input a control signal.
  • the control signal is applied to the lithium niobate optical waveguide via the control electrode.
  • the present invention also provides a method for preparing an optical phased array based on phase shift control of lithium niobate film material, including the steps: 1) providing an SOI substrate, the SOI substrate including a silicon base, a silicon oxide layer and a silicon base layer; 2) The top silicon layer is etched to form an optical waveguide layer, the optical waveguide layer includes a coupling beam splitter and a grating antenna, and there is a gap between the coupling beam splitter and the grating antenna; 3) a silicon oxide package is filled Layer around the optical waveguide layer and the gap zone; 4) bond a lithium niobate layer on the optical waveguide layer and the silicon oxide cladding layer, and etch to form niobium on the gap zone A lithium niobate film and a lithium niobate optical waveguide connected to the coupling beam splitter and the grating antenna; 5) Preparation of modulation electrodes on the lithium niobate film on both sides of the lithium niobat
  • the present invention also provides an application method of an optical phased array based on phase shift control of lithium niobate film material, including: 1) a laser injects a narrow linewidth laser into the coupling component The input end of the beamer is divided into multiple channels of light waves by the coupling beam splitter; 2) The light waves in each channel enter the lithium niobate phase shifter for phase modulation, so that the light waves of each channel are Having a predetermined phase offset; 3) The light wave with a predetermined phase difference in each channel enters the grating antenna and is emitted to a predetermined angle in space through the grating antenna.
  • step 2) after the light wave enters the lithium niobate phase shifter, based on the electro-optical effect of lithium niobate, a control signal is applied to the modulation electrode to change the refractive index of the lithium niobate in the channel , Thereby performing phase modulation on the light waves in the corresponding channel.
  • the present invention also provides an optical phased array phase shift control circuit based on lithium niobate film material, including: the control circuit includes: a power output unit for outputting voltage; MOS tube The switch array is connected between the power output unit and the control electrode of the optical phased array, and is used to provide a phase modulation channel for the optical phased array; a capacitor array, two of each capacitor unit of the capacitor array The terminals are respectively connected with the control electrode and the ground electrode of the optical phased array; the control unit is used for providing logic and timing control for the optical phased array system through the control bus.
  • the control circuit includes: a power output unit for outputting voltage; MOS tube The switch array is connected between the power output unit and the control electrode of the optical phased array, and is used to provide a phase modulation channel for the optical phased array; a capacitor array, two of each capacitor unit of the capacitor array The terminals are respectively connected with the control electrode and the ground electrode of the optical phased array; the control unit is used for providing logic and timing control for the optical phased
  • the MOS transistor switch array includes a plurality of MOS transistor switch units, and each of the MOS transistor switch units includes a unidirectional diode, a PMOS transistor, an NMOS transistor, and a resistor: the unidirectional diode is connected in series with each phase modulation In the channel, it is used to isolate the current in each phase modulation channel; the first pole of the PMOS tube is connected to the one-way diode, the second pole is connected to one end of the capacitor unit, and the gate is connected to the NMOS tube. The first pole is connected, the second pole of the NMOS tube is grounded, the gate is connected to the control bus, and the resistor is connected between the first pole and the gate of the PMO tube.
  • control circuit is fabricated into a control chip through a CMOS process, and is bonded to the optical phased array chip based on the phase shift control of the lithium niobate thin film material through a three-dimensional integration process to obtain the niobate-based Optical phased array and phase shift control circuit for lithium thin film materials.
  • the present invention also provides a phase shift control circuit, including: a power output unit having a plurality of output ports, the output ports are used to output respective output voltages; output channels, the output The input end of the channel is alternatively coupled to one of the plurality of output ports; the phase modulation unit array includes a plurality of phase modulation units; wherein the output end of the output channel is alternatively coupled to the plurality of phase modulation units one of the.
  • a power output switch the power output switch has multiple phase modulation input terminals and a single phase modulation output terminal; wherein, the multiple output ports of the power output unit are all switched via corresponding power output The switch is coupled to the input end of the output channel.
  • the output terminal of the output channel is sequentially coupled to each phase modulation unit according to a preset sequence, and when the current output port of the power output unit outputs the required phase modulation voltage to the currently coupled phase modulation unit, The output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, wherein, after a preset period of time, the other output port is coupled to the input end of the output channel to provide The next coupled phase modulation unit outputs the required phase modulation voltage.
  • a first switch control unit for controlling the output port to be coupled to the input end of the output channel to output the required phase modulation voltage to the phase modulation unit.
  • phase modulation unit switch the phase modulation unit switch has a single phase modulation input terminal and a plurality of phase modulation output terminals; wherein the output terminal of the output channel is switched via the phase modulation unit The switch is coupled to each phase modulation unit.
  • a second switch control unit configured to sequentially control the output terminals of the output channels to be coupled to the corresponding phase modulation units according to the preset sequence.
  • the phase modulation unit includes: a capacitor; an optical waveguide device, and the optical waveguide device corresponds to the capacitor in a one-to-one manner and is connected in parallel.
  • the optical waveguide device is a lithium niobate optical waveguide device.
  • control unit configured to provide logic and timing control for the phase shift control circuit through a control bus.
  • phase shift control circuit can be applied to a silicon-based optical phased array, photonic AI, MEMS switch, piezoelectric material phase shift control system.
  • the present invention also provides a phase shift control system.
  • the phase shift control circuit includes the phase shift control circuit as described in any one of the above solutions, wherein the phase modulation unit array in the phase shift control circuit includes any of the above An optical phased array based on phase shift control of a lithium niobate thin film material described in a scheme.
  • the optical phased array based on lithium niobate film material As mentioned above, the optical phased array based on lithium niobate film material, its preparation method and system of the present invention have the following
  • the present invention provides a new type of optical phase shifter based on lithium niobate film materials, and is applied to silicon-based optical phased arrays.
  • the present invention uses materials with high electro-optic coefficient and low loss, such as lithium niobate, to replace the traditional
  • the thermal resistance or carrier injection phase modulation method used in the optical phased array can perform optical phase modulation with low power consumption, high speed and low waveguide loss in the optical phased array.
  • the invention attaches the lithium niobate film to the optical phased array through a bonding process, then etches the optical waveguide on the lithium niobate, and finally generates an optical phase modulator electrode on the surface of the lithium niobate film through a sputtering process.
  • the modulation signal is loaded through the low half-wave voltage of the lithium niobate thin-film phase shifter, which can be combined with the existing CMOS process, has low optical transmission loss and high modulation speed, and can greatly improve the silicon-based optical phase.
  • the emitted light power and scanning speed of the array enhances the performance of the optical phased array.
  • the invention is based on the characteristics of large impedance and low power consumption of the lithium niobate thin film phase shifter, and adopts a MOS tube switch array to scan and control the electric field control voltage, which can greatly reduce the complexity of the system and improve the integration.
  • the control circuit of the lithium niobate optical phased array adopts the current CMOS process to make a control chip, and the three-dimensional integration process is combined with the lithium niobate optical phased array optical chip to greatly reduce the system volume.
  • the phase shift control circuit of the present invention is provided with a power output unit, and has multiple output ports, the output ports are used to output respective output voltages, and the input ends of the output channels are alternatively coupled to one of the multiple output ports.
  • the phase modulation unit takes time to adjust the output voltage.
  • the phase shift control circuit of the present invention is provided with a power output switch, and multiple output ports of the power output unit are all coupled to the input end of the output channel through the power output switch, which can realize the output of the current waiting state through the output port. While adjusting the voltage of the phase-modulating unit, adjust the voltage of another phase-modulating unit to be phase-modulated, so as to effectively use the output voltage time to adjust the next output voltage and wait for the voltage to stabilize to the preset value. The efficiency of phase modulation can be improved.
  • the phase-shifting control circuit of the present invention couples each phase-modulation unit in sequence in a preset order by setting the output terminal of the output channel, and the current output port of the power output unit is outputting the required modulation unit to the currently-coupled phase-modulation unit.
  • the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, wherein, after the currently coupled phase modulation unit completes phase modulation, the other output port and The input end of the output channel is coupled to output the required phase-modulation voltage to the next-coupled phase-modulation unit, which can be realized when the current output port of the power output unit is connected to the currently-coupled phase-modulation unit
  • the output voltage of the other output port to the phase-modulation voltage required by the next-coupled phase-modulation unit, so as to effectively use the time of outputting the phase-modulation voltage to adjust the next-coupled phase-modulation voltage. Adjusting the phase modulation voltage required by the phase unit and waiting for the voltage to stabilize to a preset value can improve the phase modulation efficiency.
  • the phase shift control circuit of the present invention is provided with a first switch control unit, and controls the output port to be coupled to the input end of the output channel to output the required phase modulation voltage to the phase modulation unit, which can realize the When the current output port of the power output unit outputs the required phase modulation voltage to the currently coupled phase modulation unit, the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, and After the currently coupled phase modulation unit completes the phase modulation, the next coupled phase modulation unit outputs the required phase modulation voltage, thereby effectively using the output voltage time and improving the phase modulation efficiency.
  • the phase-shifting control circuit of the present invention is provided with a phase-modulation unit switch and a second switch control unit, and an appropriate phase-modulation unit can be selected for coupling, thereby further improving the phase-modulation efficiency.
  • Figures 1 to 3 show schematic structural diagrams of an optical phased array based on phase shift control of lithium niobate thin film materials according to an embodiment of the present invention, wherein Figure 2 shows a schematic cross-sectional structural diagram at A-A' in Figure 1. 3 is shown as a schematic diagram of the cross-sectional structure at B-B' in Fig. 1.
  • FIG. 4 is a schematic diagram showing the steps of a method for preparing an optical phased array based on phase shift control of lithium niobate film materials according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical phased array system based on lithium niobate thin film materials according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the structure of the control circuit of the optical phased array system based on lithium niobate film material according to an embodiment of the present invention.
  • Fig. 7 shows a circuit diagram of a phase shift control circuit in the prior art.
  • FIG. 8 shows a circuit diagram of a phase shift control circuit in an embodiment of the present invention.
  • FIG. 9 shows a circuit diagram of another phase shift control circuit in an embodiment of the present invention.
  • spatial relation words such as “below”, “below”, “below”, “below”, “above”, “up”, etc. may be used herein to describe an element or The relationship between a feature and other elements or features. It will be understood that these spatial relationship terms are intended to encompass directions other than those depicted in the drawings of the device in use or operation.
  • a layer when referred to as being “between” two layers, it may be the only layer between the two layers, or one or more intervening layers may also be present.
  • the described structure in which the first feature is "above" the second feature may include an embodiment in which the first and second features are formed in direct contact, or may include other features formed on the first and second features.
  • the embodiment between the second feature, so that the first and second features may not be in direct contact.
  • diagrams provided in this embodiment only illustrate the basic idea of the present invention in a schematic manner, so the diagrams only show the components related to the present invention instead of the number, shape, and shape of the components in actual implementation.
  • the type, quantity, and proportion of each component can be changed at will during actual implementation, and the component layout type may also be more complicated.
  • this embodiment provides an optical phased array 20 based on phase shift control of lithium niobate film materials.
  • the optical phased array 20 includes a silicon substrate 301, a silicon oxide layer 302, and a light The waveguide layer 303, the silicon oxide cladding layer 304, and the lithium niobate phase shifter 202.
  • the silicon substrate 301 may be a single crystal silicon substrate, and the silicon oxide layer 302 is located on the silicon substrate 301 and may be formed by thermal oxidation growth or other processes.
  • the optical waveguide layer 303 is located on the silicon oxide layer 302, and the optical waveguide layer 303 includes a coupling beam splitter 201 and a grating antenna 203, and there is a gap 307 between the coupling beam splitter 201 and the grating antenna 203.
  • the material of the optical waveguide layer 303 can be one of silicon and silicon nitride. In this embodiment, the material of the optical waveguide layer 303 is selected to be silicon.
  • the coupling beam splitter 201 includes multiple 50:50 beam splitting units connected in series in sequence.
  • the coupling beam splitter 201 includes an input end and a plurality of output ends, and the light output from each output end is Strongly equal.
  • the coupling beam splitter 201 includes two stages of 50:50 beam splitting units connected in series in sequence. As shown in FIG. 1, each stage of beam splitting unit includes two optical channels. The light wave of the first-stage beam splitting unit is divided into two equally, and the coupling beam splitter 201 includes one input end and four output ends.
  • the coupling beam splitter 201 may also include more stages of beam splitting units, such as 3 stages, 4 stages, etc., which can be configured according to actual needs and are not limited to those listed here. Example.
  • the grating antenna 203 includes a plurality of silicon-based antennas arranged in parallel and spaced apart, and the number of the silicon-based antennas is the same as the number of the output ends of the coupling beam splitter 201.
  • the coupling beam splitter 201 and the grating antenna 203 are separated by a gap band 307, and the area of the gap band 307 is used to prepare the lithium niobate phase shifter 202
  • the silicon oxide cladding layer 304 is filled around the optical waveguide layer 303 and the gap zone 307, and the top surface of the silicon oxide cladding layer 304 is flush with the top surface of the optical waveguide layer 303, and at least in the gap Both ends of the band 307 reveal the end of the coupling beam splitter 201 and the end of the grating antenna 203 to facilitate the connection of the lithium niobate phase shifter 202, as shown in FIG. 3.
  • the lithium niobate phase shifter 202 includes a lithium niobate film 305 located on the gap band 307, a niobate film located on the lithium niobate film 305 and connected to the coupling beam splitter 201 and the grating antenna 203
  • the lithium niobate phase shifter 202 is used to phase-modulate the light wave input by the coupling beam splitter 201 and output it to the grating antenna 203.
  • the lithium niobate optical waveguide 306 may be a ridge waveguide, and the ridge waveguide extends linearly.
  • the lithium niobate optical waveguide 306 is connected across the output port of the coupling beam splitter 201 and the input port of the grating antenna 203 in the last stage, and is connected to the output port of the coupling beam splitter 201
  • the port and the input port of the grating antenna 203 have an overlap.
  • the lithium niobate film 305 is in direct contact with the optical waveguide layer 303.
  • the propagation path is shown by the arrow in Figure 3.
  • the modulation electrode includes a ground electrode 308 and a control electrode 309.
  • the ground electrode 308 is grounded.
  • the control electrode 309 is used to input a control signal.
  • the two sides of the lithium niobate optical waveguide 306 are used to change the refractive index of the light wave transmission area, thereby changing the phase of the light wave in the transmission process.
  • the optical phased array 20 is also connected to an optical circulator and a laser 101, and the output end of the optical circulator is connected to the input end of the coupling beam splitter 201
  • the output end of the laser 101 is connected to the input end of the optical circulator.
  • the laser light emitted by the laser 101 includes a narrow linewidth beam.
  • this embodiment also provides a method for preparing an optical phased array 20 based on the phase shift control of the lithium niobate film material, which includes the steps:
  • step 1) S11 is first performed to provide an SOI substrate.
  • the SOI substrate includes a silicon base 301, a silicon oxide layer 302, and a silicon base layer.
  • a silicon substrate 301 is provided.
  • the silicon substrate 301 may be a single crystal silicon substrate, and a silicon oxide layer 302 is formed on the silicon substrate 301 by using, for example, thermal oxidation growth or other processes. Then, a high refractive index silicon or silicon nitride layer is grown on the silicon oxide layer 302 as the silicon base layer.
  • step 2) S12 is then performed.
  • the top silicon layer is etched to form an optical waveguide layer 303.
  • the optical waveguide layer 303 includes a coupling beam splitter 201 and a grating antenna 203.
  • the coupling beam splitter There is a gap 307 between the 201 and the grating antenna 203.
  • step 3) S13 is then performed to fill the silicon oxide cladding layer 304 around the optical waveguide layer 303 and the gap zone 307.
  • step 4) bond a lithium niobate layer on the optical waveguide layer 303 and the silicon oxide cladding layer 304, and etch to form the niobium on the gap zone 307
  • step 5) S15 is finally performed to prepare modulation electrodes on the lithium niobate thin films 305 on both sides of the lithium niobate optical waveguide 306 to form the lithium niobate phase shifter 202.
  • the modulation electrode can be prepared on the lithium niobate thin film 305 on both sides of the lithium niobate optical waveguide 306 through a metal sputtering process and an etching process, or a metal stripping process.
  • This embodiment also provides an application method of the optical phased array 20 based on the phase shift control of the lithium niobate thin film material.
  • the structure of the optical phased array 20 based on the phase shift control of the lithium niobate thin film material is as the above embodiment.
  • the application method includes:
  • Step 1) the laser 101 injects the laser light with a narrow line width into the input end of the coupling beam splitter 201, and divides the light waves into a plurality of channels by the coupling beam splitter 201.
  • the laser light emitted by the laser 101 is injected into the coupling beam splitter 201, and the laser light is evenly distributed to each channel.
  • Step 2 the light waves in each channel enter the lithium niobate phase shifter 202 for phase modulation, so that the light waves in each channel have a predetermined phase shift.
  • phase modulation is performed on the light waves in the corresponding channels.
  • the phase modulation is performed by the lithium niobate phase shifter 202, and the light waves in each channel have different phase shifts.
  • Step 3 the light wave with the set phase in each channel enters the grating antenna 203 and is emitted to a predetermined angle in space through the grating antenna 203.
  • this embodiment also provides an optical phased array phase shift control circuit based on lithium niobate thin film material, including: the above-mentioned optical phase shift control based on lithium niobate thin film material Array phase shifter and control circuit 204;
  • the control circuit 204 includes: a power output unit 205 for outputting voltage; a MOS transistor switch array 206 connected to the power output unit and the control electrode of the optical phased array Between, used to provide a phase modulation channel for the optical phased array; a capacitor array 207, the two ends of each capacitor unit of the capacitor array 207 are respectively connected to the control electrode and the ground electrode of the optical phased array; control unit 208. Used to provide logic and timing control for the optical phased array system through a control bus.
  • the control circuit is made into a control chip through a CMOS process, and is bonded to the optical phased array chip based on the phase shift control of the lithium niobate film material through a three-dimensional integration process to obtain the lithium niobate film material based
  • the optical phased array system can greatly reduce the volume of the system.
  • the MOS transistor switch array 206 includes a plurality of MOS transistor switch units, and each of the MOS transistor switch units includes a unidirectional diode 401, a PMOS transistor 402, an NMOS transistor 403, and a resistor 404:
  • the unidirectional diode 401 is connected in series in each phase modulation channel to isolate the current in each phase modulation channel; the first pole of the PMOS tube 402 is connected to the unidirectional diode 401, and the second pole is connected to the capacitor One end of the unit is connected, the gate is connected to the first pole of the NMOS tube 403, the second pole of the NMOS tube 403 is grounded, and the gate is connected to the control bus.
  • the control bus includes a control pin, the resistor Connected between the first pole of the PMO tube and the gate.
  • a unidirectional diode 401 is connected in series in each phase modulation channel to isolate the current in each phase modulation channel; when the gate of the NMOS tube 403 is at a low level, it is turned off At this time, the PMOS transistor 402 is also in the off state under the action of the resistor 404, and the voltage remains at the previous output state.
  • the gate of a certain NMOS transistor 403 is at a high level through the control pin output At this time, the gate of the PMOS tube 402 is at a low voltage, and the PMOS tube 402 is turned on.
  • the voltage of the power output unit (such as DAC output) can be output to the corresponding capacitor of the MOS tube switching unit, and the voltage can be maintained , So as to control the phase of each phase modulation unit (as shown in Figure 4 a, b, c, d output to the phase modulation unit).
  • the MOS tube switch array is switched to the modulation channel of the optical phased array to be modulated, and the required voltage for the DAC output is set.
  • the control pin output is switched to In the modulation channel of the next optical phased array, the lights of different channels are respectively modulated by the lithium niobate thin film phase shifters of the corresponding channels, so that the phase reaches the set value.
  • the optical signal of each channel reaches a specific phase difference, a beam with a specific waveform and deflection direction will be emitted at the antenna transmitting end of the optical phased array.
  • FIG. 7 is a circuit diagram of a phase shift control circuit in the prior art.
  • the phase shift control circuit may include: a power output unit 11, an output channel 12, and a phase modulation unit array.
  • the phase modulation unit array may include a plurality of phase modulation units 13; the output ends of the output channel 12 may be respectively coupled to the plurality of phase modulation units 13; the power output unit 11 and the output channel The input terminal of 12 is coupled, and outputs a phase modulation voltage to the phase modulation unit array through the output channel 12.
  • the phase adjustment unit 13 can be used to adjust the phase of the output light.
  • the plurality of phase modulation units 13 may be, for example, the phase modulation unit N, the phase modulation unit N+1, the phase modulation unit N+2, the phase modulation unit N+3, and the phase modulation unit N+ shown in FIG. 4.
  • FIG. 7 takes six phase modulation units 13 as an example for description, but in specific implementation, the specific number of phase modulation units 13 is not limited.
  • phase-shifting control circuit may further include a phase-modulation unit switch 14, and the phase-modulation unit switch 14 may have a single phase-modulation input terminal and multiple phase-modulation output terminals; wherein, the output channel 12 The output terminal is coupled to each phase modulation unit 13 via the phase modulation unit switch 14.
  • the phase-modulation steps are: firstly switch the phase-modulation output terminal of the phase-modulation unit switch 14 to the phase-modulation unit 13 currently to be phase-modulated (that is, the designated phase-modulation unit 13), Then adjust the output voltage of the power output unit 11, wait for a certain period of time until the voltage stabilizes to a set value, and then output to the phase modulation unit 13 to be phase adjusted. After that, you can switch the phase-modulation unit switch 14 to the next phase-modulation unit 13 to be phase-modulated, and then adjust the output voltage of the power output unit 11, wait a certain period of time until the voltage stabilizes to the set value, and then output to the next phase-modulation unit to be adjusted Phase modulation unit 13. It should be pointed out that the waiting for a certain period of time may be waiting for the voltage establishment time of the DAC chip and the RC charging time.
  • the inventor of the present invention has discovered through research that, compared to only using the phase modulation unit switch 14 to control and select the phase modulation unit 13 currently to be phase adjusted, and then use the power output unit to output voltage to the selected phase modulation unit 13, thus
  • the obtained phase modulation step needs to switch the phase modulation output end of the phase modulation unit switch 14 first, and then adjust the output voltage of the power output unit 11, and need to wait for a certain period of time. Since the adjustment of the output voltage often takes a long time, the waiting time is long. Too much, the efficiency of phase modulation is low, and in severe cases, the stability of the circuit system to which the phase shift control circuit belongs is insufficient.
  • the power output unit is provided with multiple output ports, the output ports are used to output respective output voltages, and the input ends of the output channels are alternatively coupled to one of the multiple output ports.
  • the phase modulation unit takes time to adjust the output voltage.
  • FIG. 8 is a circuit diagram of a phase shift control circuit in an embodiment of the present invention.
  • the phase shift control circuit may include: a power output unit 21, an output channel 22, and a phase modulation unit array.
  • the power output unit 21 may have multiple output ports 25 (output port 1 and output port 2 shown in FIG. 8), and the output ports 25 are used to output respective output voltages, that is, they may be output via different Port 25 outputs different output voltages.
  • the phase modulation unit array may include a plurality of phase modulation units 23.
  • the phase adjusting unit 23 can be used to adjust the phase of the output light.
  • the plurality of phase modulation units 23 may be, for example, the phase modulation unit N, the phase modulation unit N+1, the phase modulation unit N+2, the phase modulation unit N+3, and the phase modulation unit N+ shown in FIG. 4. Phase modulation unit N+5. It should be noted that FIG. 8 takes 6 phase modulation units 23 as an example for description, but in specific implementation, the specific number of phase modulation units 23 is not limited.
  • the input end of the output channel 22 may alternatively be coupled to one of the plurality of output ports (as shown in the output port 2 in FIG. 8), and the output end of the output channel 22 may alternatively be coupled to the plurality of output ports.
  • One of the phase modulation units 23 may alternatively be coupled to one of the plurality of output ports (as shown in the output port 2 in FIG. 8), and the output end of the output channel 22 may alternatively be coupled to the plurality of output ports.
  • One of the phase modulation units 23 may alternatively be coupled to one of the plurality of output ports (as shown in the output port 2 in FIG. 8), and the output end of the output channel 22 may alternatively be coupled to the plurality of output ports.
  • the power output unit is provided with multiple output ports, the output ports are used to output respective output voltages, and the input ends of the output channels are alternatively coupled to one of the multiple output ports.
  • the output terminal of the output channel is alternatively coupled to one of the plurality of phase modulation units.
  • phase shift control circuit may further include a power output switch 26, the power output switch 26 has a plurality of phase modulation input terminals and a single phase modulation output terminal; wherein, a plurality of the power output unit 21
  • the output ports 25 are all coupled to the input end of the output channel 22 via the corresponding power output switch 26.
  • the multiple output ports 25 of the power output unit are all coupled to the input end of the output channel via the power output switch 26, which can be realized through the output port While outputting the voltage of the phase-modulating unit to be phase-modulated, adjust the voltage of another phase-modulating unit to be phase-modulated, so as to effectively use the output voltage time to adjust the next output voltage and wait for the voltage to stabilize to a preset value Value, which can improve the efficiency of phase modulation.
  • the output end of the output channel 22 is sequentially coupled to each phase modulation unit 23 according to a preset sequence, and the current output port of the power output unit 21 outputs the required phase modulation voltage to the currently coupled phase modulation unit. , Adjusting the output voltage of the other output port to the phase modulation voltage required by the next coupled phase modulation unit, wherein, after a preset period of time, the other output port is coupled to the input end of the output channel, Output the required phase modulation voltage with the next coupled phase modulation unit.
  • the preset duration may be affected by the phase modulation duration of the currently coupled phase modulation unit.
  • the phase modulation unit may include a capacitor, and after outputting the required phase modulation voltage to the capacitor of the phase modulation unit, another output port and the output channel may be used.
  • the input terminal of is coupled to the next coupled phase modulation unit to output the required phase modulation voltage.
  • the previous phase modulation unit can still use the voltage stored in the capacitor for phase modulation.
  • the phase modulation unit may or may not include a capacitor, and the preset duration may be outputting the required phase modulation voltage to the phase modulation unit, and waiting for the phase modulation unit. After the phase modulation unit completes phase modulation, another output port is used to couple with the input end of the output channel to output the required phase modulation voltage to the next coupled phase modulation unit.
  • the other output port is one of the other output ports except the current output port.
  • the current output port of the power output unit 21 is outputting to the currently coupled phase modulation unit
  • the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, wherein, after a preset period of time, the other output port and the output channel
  • the input terminal of the power output unit is coupled to output the required phase modulation voltage to the next coupled phase modulation unit, which can realize the output of the required modulation voltage to the currently coupled phase modulation unit through the current output port of the power output unit
  • the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, so as to effectively use the time for outputting the phase modulation voltage to meet the requirements of the next coupled phase modulation unit. Adjusting the phase modulation voltage and waiting for the voltage to stabilize to a preset value can improve the phase modulation efficiency
  • phase shift control circuit may further include a first switch control unit (not shown) for controlling the output port to be coupled to the input end of the output channel to output the required modulation to the phase modulation unit Phase voltage.
  • the output voltage of the power output unit 21 is adjusted to the voltage of the phase modulation unit 23 currently to be phase-modulated, and output to one of the plurality of output ports 25, the output is controlled
  • the input terminal of the channel 22 is coupled to the output port.
  • the power output unit 21 may have two output ports, which are output port 1 and output port 2 respectively.
  • the power output switch 26 may be a single-pole double-throw switch.
  • the current output port (for example, output port 2) of the power output unit 21 can be set to output the required phase modulation voltage to the currently coupled phase modulation unit (for example, phase modulation unit N+2). , Adjust the output voltage of another output port (for example, output port 1) to the phase modulation voltage required by the next coupled phase modulation unit (for example, phase modulation unit N+3), and after a preset period of time, the The other output port is coupled to the input end of the output channel to output the required phase modulation voltage to the next coupled phase modulation unit.
  • the control output port is coupled to the input end of the output channel to output the required phase modulation voltage to the phase modulation unit.
  • the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, and After the preset time period, the next coupled phase modulation unit outputs the required phase modulation voltage, so that the output voltage time can be effectively used, and the phase modulation efficiency can be improved.
  • phase-shifting control circuit may further include a phase-modulation unit switch 24, which may have a single phase-modulation input terminal and multiple phase-modulation output terminals; wherein, the output channel 22 The output terminal is coupled to each phase modulation unit 23 via the phase modulation unit switch 24.
  • phase-modulation unit switch 24 by setting the phase-modulation unit switch 24, an appropriate phase-modulation unit 23 can be selected for coupling, so that the efficiency of the phase-modulation can be further improved.
  • phase shift control circuit may further include a second switch control unit 24, configured to sequentially control the output terminals of the output channels 22 and the corresponding ones according to the preset phase modulation sequence of the phase modulation unit.
  • the phase modulation unit 23 is coupled.
  • the plurality of phase-modulation units 23 may be the phase-modulation unit N, the phase-modulation unit N+1, the phase-modulation unit N+2, and the phase-modulation unit N shown in FIG. +3, phase modulation unit N+4, phase modulation unit N+5.
  • the phase modulation unit switch 24 may be a single-pole multi-throw switch.
  • the current output port (for example, output port 2) of the power output unit 21 can be set to output the required phase modulation voltage to the currently coupled phase modulation unit (for example, phase modulation unit N+2).
  • Controlling the input end of the output channel 22 to be coupled to the output port 2, and controlling the output end of the output channel 22 to be coupled to the phase modulation unit N+2, so as to output a voltage to the phase modulation unit N+2 Perform phasing.
  • the output voltage of another output port can be adjusted to the phase modulation voltage required by the next coupled phase modulation unit (for example, phase modulation unit N+3), and after a preset period of time ,
  • the other output port is coupled to the input end of the output channel 22, and the output end of the output channel 22 is controlled to be coupled to the phase modulation unit N+3 to output to the next coupled phase modulation unit The required phase modulation voltage.
  • phase-modulation unit switch 24 by providing the phase-modulation unit switch 24 and the second switch control unit, an appropriate phase-modulation unit 23 can be selected for coupling, so that the efficiency of the phase-modulation can be further improved.
  • the phase-modulation step is: firstly adjust the output voltage of the power output unit 21 to the phase-modulation voltage of the phase-modulation unit N+2 currently to be phase-modulated, and wait for a certain period of time Until the voltage stabilizes to the set value, then switch the power output switch 26 so that the input end of the output channel 22 is coupled to the output port 2, and the phase modulation output end of the switch phase modulation unit switch 24 is coupled to the current standby
  • the phase-modulation unit N+2 is phase-modulated, and the output voltage is used to phase-modulate the phase-modulation unit N+2.
  • the power output switch 26 is switched so that the input terminal of the output channel 22 is connected to the output port 1.
  • the phase-modulation output terminal of the phase-modulation unit switch 24 is coupled to the phase-modulation unit N+3 to be phase-modulated, and the output voltage modulates the phase-modulation unit N+3.
  • the power output unit 21 is provided with multiple output ports 25, the output ports 25 are used to output respective output voltages, and the input ends of the output channels 22 are alternatively coupled to the multiple output ports.
  • the phase modulation unit needs to be connected first, and then it takes time to adjust the output voltage. With the solution of the embodiment of the present invention, it is possible to output the required phase modulation voltage to the currently coupled phase modulation unit through the current output port of the power output unit.
  • Adjusting and waiting for the voltage to stabilize to a preset value can improve the efficiency of phase modulation, improve the integration of the circuit system to which the phase shift control circuit belongs, and reduce the volume and power consumption of the system.
  • FIG. 9 is a circuit diagram of another phase shift control circuit in an embodiment of the present invention.
  • the another phase shift control circuit may include a power output unit 31, an output channel 32, a phase modulation unit 33, and a phase modulation unit switch 34.
  • the power output unit 31 has a plurality of output terminals 35, which may include an output port 1 and an output port 2, for example.
  • phase modulation unit 33 may include: a capacitor 331; and an optical waveguide device 332, the optical waveguide device 332 corresponds to the capacitor 331 in a one-to-one manner and is coupled in parallel.
  • the phase modulation unit 33 including the capacitor 331 and the optical waveguide device 332 connected in parallel, the phase modulation function can be effectively realized, and the phase modulation efficiency can be further improved.
  • the optical waveguide device 332 can be made of a suitable optical waveguide material, for example, a silicon (Si) waveguide material or a suitable piezoelectric material can be used.
  • a suitable optical waveguide material for example, a silicon (Si) waveguide material or a suitable piezoelectric material can be used.
  • the optical waveguide device 332 may be a lithium niobate (LiNbO 3 ) optical waveguide device.
  • the optical waveguide device 332 may be as described in Embodiment 1. Optical phased array based on phase shift control of lithium niobate thin film material.
  • the light wave can be better restricted and conducted, and the stability of the circuit system to which the phase shift control circuit belongs can be improved.
  • phase shift control circuit may further include a control unit 37 for providing logic and timing control for the phase shift control circuit through a control bus.
  • control unit 37 by providing the control unit 37, it can be effectively implemented to provide logic and timing control for the phase shift control circuit, and further improve the phase modulation efficiency.
  • phase shift control circuit can be used in silicon-based optical phased arrays, photonic AI, Micro-Electro-Mechanical System (MEMS) switches, and piezoelectric material phase shift control systems.
  • MEMS Micro-Electro-Mechanical System
  • phase shift control circuit shown in Figure 9 can be applied to a silicon-based optical phased array.
  • the phase shift control circuit can greatly reduce the phase shift control power consumption and high-speed array control.
  • the control system adopts simple basic electronic devices, has simple design, simple process, easy mass production, and effective cost reduction.
  • phase shift control circuit can be constructed using separate components, or can be integrated into a single chip, thereby helping to achieve flexible and simple circuit control.
  • the optical phased array based on lithium niobate film material As mentioned above, the optical phased array based on lithium niobate film material, its preparation method and system of the present invention have the following beneficial effects:
  • the present invention provides a new type of optical phase shifter based on lithium niobate film materials, and is applied to silicon-based optical phased arrays.
  • the present invention uses materials with high electro-optic coefficient and low loss, such as lithium niobate, to replace the traditional
  • the thermal resistance or carrier injection phase modulation method used in the optical phased array can perform optical phase modulation with low power consumption, high speed and low waveguide loss in the optical phased array.
  • the invention attaches the lithium niobate film to the optical phased array through a bonding process, then etches the optical waveguide on the lithium niobate, and finally generates an optical phase modulator electrode on the surface of the lithium niobate film through a sputtering process.
  • the modulation signal is loaded through the low half-wave voltage of the lithium niobate thin-film phase shifter, which can be combined with the existing CMOS process, has low optical transmission loss and high modulation speed, and can greatly improve the silicon-based optical phase.
  • the emitted light power and scanning speed of the array enhances the performance of the optical phased array.
  • the invention is based on the characteristics of large impedance and low power consumption of the lithium niobate thin film phase shifter, and adopts a MOS tube switch array to scan and control the electric field control voltage, which can greatly reduce the complexity of the system and improve the integration.
  • the control circuit of the lithium niobate optical phased array adopts the current CMOS process to make a control chip, and the three-dimensional integration process is combined with the lithium niobate optical phased array optical chip to greatly reduce the system volume.
  • the phase shift control circuit of the present invention is provided with a power output unit, and has multiple output ports, the output ports are used to output respective output voltages, and the input ends of the output channels are alternatively coupled to one of the multiple output ports.
  • the phase modulation unit takes time to adjust the output voltage.
  • the phase shift control circuit of the present invention is provided with a power output switch, and multiple output ports of the power output unit are all coupled to the input end of the output channel through the power output switch, which can realize the output of the current waiting state through the output port. While adjusting the voltage of the phase-modulating unit, adjust the voltage of another phase-modulating unit to be phase-modulated, so as to effectively use the output voltage time to adjust the next output voltage and wait for the voltage to stabilize to the preset value. The efficiency of phase modulation can be improved.
  • the phase-shifting control circuit of the present invention couples each phase-modulation unit in sequence in a preset order by setting the output terminal of the output channel, and the current output port of the power output unit is outputting the required modulation unit to the currently-coupled phase-modulation unit.
  • the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, wherein, after the currently coupled phase modulation unit completes phase modulation, the other output port and The input end of the output channel is coupled to output the required phase-modulation voltage to the next-coupled phase-modulation unit, which can be realized when the current output port of the power output unit is connected to the currently-coupled phase-modulation unit
  • the output voltage of the other output port to the phase-modulation voltage required by the next-coupled phase-modulation unit, so as to effectively use the time of outputting the phase-modulation voltage to adjust the next-coupled phase-modulation voltage. Adjusting the phase modulation voltage required by the phase unit and waiting for the voltage to stabilize to a preset value can improve the phase modulation efficiency.
  • the phase shift control circuit of the present invention is provided with a first switch control unit, and controls the output port to be coupled to the input end of the output channel to output the required phase modulation voltage to the phase modulation unit, which can realize the When the current output port of the power output unit outputs the required phase modulation voltage to the currently coupled phase modulation unit, the output voltage of the other output port is adjusted to the phase modulation voltage required by the next coupled phase modulation unit, and After the currently coupled phase modulation unit completes the phase modulation, the next coupled phase modulation unit outputs the required phase modulation voltage, thereby effectively using the output voltage time and improving the phase modulation efficiency.
  • the phase-shifting control circuit of the present invention is provided with a phase-modulation unit switch and a second switch control unit, and an appropriate phase-modulation unit can be selected for coupling, thereby further improving the phase-modulation efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种基于铌酸锂薄膜移相器的光学相控阵(20)、其制备方法及移相控制系统,光学相控阵(20)包括:硅基底(301);氧化硅层(302),位于硅基底(301)上;光波导层(303),位于氧化硅层(302)上,光波导层(303)包括耦合分束器(201)及光栅天线(203),耦合分束器(201)及光栅天线(203)之间具有间隙带(307);氧化硅包层(304),填充于光波导层(303)周围及间隙带(307);铌酸锂移相器(202),包括位于间隙带(307)上的铌酸锂薄膜(305)、位于铌酸锂薄膜(305)上且连接耦合分束器(201)及光栅天线(203)的铌酸锂光波导(306)、以及位于铌酸锂光波导(306)两侧的铌酸锂薄膜(305)上的调制电极。采用具有高电光系数、低损耗的材料如铌酸锂来代替传统的光学相控阵(20)中所用的热调电阻或者载流子注入的相位调制方式,可以在光学相控阵(20)中进行低功耗、高速、低波导损耗的光学相位调制。

Description

光学相控阵、其制备方法及移相控制系统 技术领域
本发明属于硅光器件设计及制造领域,特别是涉及一种基于铌酸锂薄膜材料的光学相控阵、其制备方法及移相控制系统。
背景技术
硅光技术发展至今,在光源、调制器、波导、探测器等光电器件上已取得不少突破和成果。硅基材料成本低且延展性好,可以利用成熟的硅CMOS工艺制作光器件,方便与其他现有的元器件集成。
受制于硅的晶格特性,硅的线性电光效应较为微弱,使得硅中的光调制主要依赖于自由载流子色散效应。然而,由于自由载流子色散的本征吸收和非线性特性,会降低光调制的振幅,并且在使用高级调制格式时可能导致信号失真。这使得硅光调制器要么显示出较低的光电带宽,要么显示出较高的工作电压。
光学相控阵作为一种可以实现光束空间扫描的器件,在距离传感、激光扫描成像、自由空间光通信等领域有着广泛的潜在应用,在现有技术中,单纯的基于硅材料的光学相控阵激光雷达大多数采用热光效应或者基于电光效应的载流子注入方式来改变光学相控阵每一个通道光学相位,从而达到波束成形的效果。然而,如上所述,由于硅的热光调相和载流子注入调相分别具有移相功耗高、速率低和波导损耗高的缺点,会极大地影响光学相控阵的性能,进而影响测距系统。
同时,硅光光学相控阵和光子人工智能(Artificial Intelligence,AI)等大多数采用热光效应或者基于电光效应的载流子注入方式来改变每一个通道光学相位,从而达到光学相位控制的效果。随着技术的发展,对硅光光学相控阵和光子AI芯片的光学阵列提出了越来越大的要求,相应地光学调相控制也面临着移相控制规模的提升,对整体功耗以及热稳定性也有着更高的需求。就需要一种移相效率更高、移相损耗更小、移相速率更快的新型光学移相器。
铌酸锂薄膜材料具有上面所说的特点,具有很小的移相功率、移相损耗和高的移相速率。但是由于铌酸锂材料的特点,我们需要一种小电流、大电压调制范围的电路系统来驱动我们的移相器进行光学移相控制。
目前,传统的控制方式,是采用多通道专用数模转换(Digital-to-analog Converter,DAC)芯片;随着阵列规模的增大,对系统的体积、功耗、成本等越来越难于控制,尤其存在调相效率较低的问题。
以传统的激光阵列芯片,如光学相控阵(Optical phased array,OPA)256为例,单个通道就可达到数十毫瓦,则整个的移相控制系统需要数十瓦的功耗,而系统对温度又比较敏感,增加了温度控制的难度,使得系统的稳定性更加难于实现,调相效率更低。
亟需一种移相控制电路,能够提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
进一步地,由于硅的热光调相和载流子注入调相分别具有移相功耗高、速率低和波导损耗高的缺点,会极大地影响光学相控阵的性能;传统的基于硅的相位控制多采用专用的DAC芯片,随着阵列规模的增大,对系统的体积、功耗、成本、性能等越来越难于控制。以OPA 256阵列芯片为例,单个通道就有数十毫瓦的功耗,这整个的移相控制大约需要数十瓦的功耗,而系统对温度又比较敏感,增加了温度控制的难度,系统的稳定性难于实现。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于铌酸锂薄膜材料的光学相控阵、其制备方法及移相控制系统,以实现一种新型的光学相控阵的调相方式,降低硅基光学相控阵系统的功耗,提升硅基光学相控阵的调制速率,并且降低系统的波导损耗,本发明的光学相控阵系统可有效降低光学相控阵的控制复杂度和减少系统的体积;同时,本发明的移相控制电路,可以在通过输出端口输出当前待调相的调相单元的电压的同时,调整另一待调相的调相单元的电压,有效地利用输出电压的时间,对下一输出电压进行调整并等待电压稳定到预设值,从而可以提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
为实现上述目的及其他相关目的,本发明提供一种基于铌酸锂薄膜材料移相控制的光学相控阵,所述光学相控阵包括:硅基底;氧化硅层,位于所述硅基底上;光波导层,位于所述氧化硅层上,所述光波导层包括耦合分束器及光栅天线,所述耦合分束器及光栅天线之间具有间隙带;氧化硅包层,填充于所述光波导层周围及所述间隙带;铌酸锂移相器,包括位于所述间隙带上的铌酸锂薄膜、位于所述铌酸锂薄膜上且连接所述耦合分束器及光栅天线的铌酸锂光波导、以及位于所述铌酸锂光波导两侧的铌酸锂薄膜上的调制电极。
可选地,还连接有激光器,所述激光器输出端连接于所述耦合分束器的输入端。所述激光器所发射的激光为窄线宽光束。
可选地,所述耦合分束器包括依次串接的多级50:50的分束单元,所述耦合分束器包括一个输入端以及多个输出端,且每个所述输出端所输出的光强相等。
可选地,所述铌酸锂光波导跨接于最后一级所述耦合分束器输出端口及光栅天线输入端口上方,且与所述耦合分束器输出端口及光栅天线输入端口具有交叠。
可选地,所述光波导层的材料包括硅及氮化硅中的一种。
可选地,所述铌酸锂光波导为脊型波导。
可选地,所述调制电极包括地电极以及控制电极,所述地电极接地,所述控制电极用于输入控制信号,通过将控制信号经由所述控制电极加载到所述铌酸锂光波导的两侧,以改变光波传输区域的折射率,从而改变光波在传输过程中的相位。
本发明还提供一种基于铌酸锂薄膜材料移相控制的光学相控阵的制备方法,包括步骤:1)提供SOI衬底,所述SOI衬底包括硅基底、氧化硅层及硅基层;2)刻蚀所述顶硅层以形成光波导层,所述光波导层包括耦合分束器及光栅天线,所述耦合分束器及光栅天线之间具有间隙带;3)填充氧化硅包层于所述光波导层周围及所述间隙带;4)键合铌酸锂层于所述光波导层及所述氧化硅包层上,并刻蚀以形成位于所述间隙带上的铌酸锂薄膜以及连接所述耦合分束器及光栅天线的铌酸锂光波导;5)制备调制电极于所述铌酸锂光波导两侧的铌酸锂薄膜上,以形成铌酸锂移相器。
为实现上述目的及其他相关目的,本发明还提供一种基于铌酸锂薄膜材料移相控制的光学相控阵的应用方法,包括:1)激光器将窄线宽的激光注入到所述耦合分束器的输入端,并通过所述耦合分束器分成多个通道的光波;2)每个通道内的光波进入所述铌酸锂移相器进行相位调制,使每个通道的光波之间具有预定的相位偏移;3)每个通道具有预定相位差的光波进入光栅天线并通过所述光栅天线发射到空间中预定角度。
可选地,步骤2)中,光波进入所述铌酸锂移相器后,基于铌酸锂的电光效应,通过对所述调制电极施加控制信号,以改变通道中的铌酸锂的折射率,从而对所述相应通道内的光波进行相位调制。
为实现上述目的及其他相关目的,本发明还提供一种基于铌酸锂薄膜材料的光学相控阵移相控制电路,包括:所述控制电路包括:功率输出单元,用于输出电压;MOS管开关阵列,连接于所述功率输出单元及所述光学相控阵的控制电极之间,用于为所述光学相控阵提供调相通道;电容阵列,所述电容阵列的各电容单元的两端分别连接所述光学相控阵的控制电极及地电极;控制单元,用于通过控制总线,为所述光学相控阵系统提供逻辑和时序控制。
可选地,所述MOS管开关阵列包括多个MOS管开关单元,每个所述MOS管开关单元包括单向二极管、PMOS管、NMOS管及电阻:所述单向二极管串联在每个调相通道中,用于隔离各调相通道中的电流;所述PMOS管的第一极与所述单向二极管连接,第二极与所述 电容单元的一端连接,栅极与所述NMOS管的第一极连接,所述NMOS管的第二极接地,栅极连接所述控制总线,所述电阻连接于所述PMO管的第一极与栅极之间。
可选地,所述控制电路通过CMOS工艺制作成控制芯片,并通过三维集成工艺与所述基于铌酸锂薄膜材料移相控制的光学相控阵芯片进行键合,以获得所述基于铌酸锂薄膜材料的光学相控阵以及移相控制电路。
为实现上述目的及其他相关目的,本发明还提供一种移相控制电路,包括:功率输出单元,具有多个输出端口,所述输出端口用于输出各自的输出电压;输出通道,所述输出通道的输入端择一耦接所述多个输出端口中的一个;调相单元阵列,包含多个调相单元;其中,所述输出通道的输出端择一耦接所述多个调相单元中的一个。
可选地,还包括:功率输出切换开关,所述功率输出切换开关具有多个调相输入端以及单个调相输出端;其中,所述功率输出单元的多个输出端口均经由对应功率输出切换开关耦接至所述输出通道的输入端。
可选地,所述输出通道的输出端按照预设顺序依次耦接各个调相单元,所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,其中,在预设时长后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压。
可选地,还包括:第一开关控制单元,用于控制输出端口与所述输出通道的输入端耦接,以向所述调相单元输出需要的调相电压。
可选地,还包括:调相单元切换开关,所述调相单元切换开关具有单个调相输入端以及多个调相输出端;其中,所述输出通道的输出端经由所述调相单元切换开关耦接至各个调相单元。
可选地,还包括:第二开关控制单元,用于依照所述预设顺序,依次控制所述输出通道的输出端与对应的调相单元耦接。
可选地,所述调相单元包括:电容;光波导器件,所述光波导器件与所述电容一一对应并且以并联方式连接。
可选地,所述光波导器件为铌酸锂光波导器件。
可选地,还包括:控制单元,用于通过控制总线,为所述移相控制电路提供逻辑和时序控制。
可选地,所述移相控制电路可以应用于硅基光学相控阵、光子AI、MEMS开关、压电材料的移相控制系统。
本发明还提供一种移相控制系统,所述移相控制电路包括:如上任一方案所述的移相控制电路,其中,所述移相控制电路中的所述调相单元阵列包括如上任一方案所述的基于铌酸锂薄膜材料移相控制的光学相控阵。
如上所述,本发明的基于铌酸锂薄膜材料的光学相控阵、其制备方法及系统,具有以下
有益效果:
本发明提供了一种新型的基于铌酸锂薄膜材料的光学移相器,并应用于硅基光学相控阵中,本发明采用具有高电光系数、低损耗的材料如铌酸锂来代替传统的光学相控阵中所用的热调电阻或者载流子注入的相位调制方式,可以在光学相控阵中进行低功耗、高速、低波导损耗的光学相位调制。
本发明通过键合工艺把铌酸锂薄膜附着在光学相控阵上,然后在铌酸锂上刻蚀光波导,最后通过溅射工艺在铌酸锂薄膜表面生成光学相位调制器电极,用于调制信号的加载通过铌酸锂薄膜移相器所具有的低半波电压,可以实现与现有的CMOS工艺相结合,具有低光传输损耗和高的调制速度,可以极大地提升硅基光学相控阵的发射光功率以及扫描速度,提升光学相控阵性能。
本发明基于铌酸锂薄膜移相器阻抗大、功耗低的特点,采用MOS管开关阵列对电场控制电压进行扫描控制,可大大降低系统的复杂度,并提高可集成性。
本发明将铌酸锂光学相控阵的控制电路采用现用CMOS工艺,做成控制芯片,并通过三维集成工艺和铌酸锂光学相控阵光学芯片进行键合,可大大缩小系统体积。
本发明的移相控制电路通过设置功率输出单元,具有多个输出端口,所述输出端口用于输出各自的输出电压,所述输出通道的输入端择一耦接所述多个输出端口中的一个,其中,所述输出通道的输出端择一耦接所述多个调相单元中的一个,相比于现有技术中仅能通过单个输出端口向输出通道输出调相电压,需要先连接调相单元,再耗费时间调整输出电压,采用本发明实施例的方案,有机会在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,从而可以提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
本发明的移相控制电路通过设置功率输出切换开关,所述功率输出单元的多个输出端口均经由功率输出切换开关耦接至所述输出通道的输入端,可以实现在通过输出端口输出当前待调相的调相单元的电压的同时,调整另一待调相的调相单元的电压,从而有效地利用输出 电压的时间,对下一输出电压进行调整并等待电压稳定到预设值,从而可以实现调相效率的提高。
本发明的移相控制电路通过设置所述输出通道的输出端按照预设顺序依次耦接各个调相单元,所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,其中,在当前耦接的调相单元完成调相后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压,可以实现在在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,从而有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,可以提高调相效率。
本发明的移相控制电路通过设置第一开关控制单元,控制输出端口与所述输出通道的输入端耦接,以向所述调相单元输出需要的调相电压,可以实现在在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,并在当前耦接的调相单元完成调相后,向下一耦接的调相单元输出需要的调相电压,从而有效地利用输出电压的时间,可以提高调相效率。
本发明的移相控制电路通过设置调相单元切换开关以及第二开关控制单元,可以选择适当的调相单元进行耦接,从而可以进一步实现调相效率的提高。
附图说明
图1~图3显示为本发明实施例的基于铌酸锂薄膜材料移相控制的光学相控阵的结构示意图,其中,图2显示为图1中A-A’处的截面结构示意图,图3显示为图1中B-B’处的截面结构示意图。
图4显示为本发明实施例的基于铌酸锂薄膜材料移相控制的光学相控阵的制备方法步骤流程示意图。
图5显示为本发明实施例的基于铌酸锂薄膜材料的光学相控阵系统的架构示意图。
图6显示为本发明实施例的基于铌酸锂薄膜材料的光学相控阵系统的控制电路的架构示意图。
图7显示为现有技术中一种移相控制电路的电路图。
图8显示为本发明实施例中一种移相控制电路的电路图。
图9显示为本发明实施例中另一种移相控制电路的电路图。
元件标号说明
101                    激光器
20                     光学相控阵
201                    耦合分束器
202                    铌酸锂移相器
203                    光栅天线
204                    控制电路
205                    功率输出单元
206                    MOS管开关阵列
207                    电容阵列
208                    控制单元
301                    硅基底
302                    氧化硅层
303                    光波导层
304                    氧化硅包层
305                    铌酸锂薄膜
306                    铌酸锂光波导
307                    间隙带
308                    地电极
309                    控制电极
S11~S15               步骤
401                    单向二极管
402                    PMOS管
403                    NMOS管
404                    电阻
11、21、31             功率输出单元
12、22、32             输出通道
13、23、33             调相单元
14、24、34             调相单元切换开关
25、35                 输出端口
26                     功率输出切换开关
331                    电容
332                    光波导器件
37                     控制单元
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例1
如图1~图3所示,本实施例提供一种基于铌酸锂薄膜材料移相控制的光学相控阵20,所述光学相控阵20包括:硅基底301、氧化硅层302、光波导层303、氧化硅包层304及铌酸锂移相器202。
所述硅基底301可以为单晶硅基底,所述氧化硅层302,位于所述硅基底301上,可以采用如热氧化生长或其他工艺形成。
所述光波导层303位于所述氧化硅层302上,所述光波导层303包括耦合分束器201及光栅天线203,所述耦合分束器201及光栅天线203之间具有间隙带307。所述光波导层303的材料可以硅及氮化硅中的一种。在本实施例中,所述光波导层303的材料选用为硅。
所述耦合分束器201包括依次串接的多级50:50的分束单元,所述耦合分束器201包括一个输入端以及多个输出端,且每个所述输出端所输出的光强相等。例如,在本实施例中,所述耦合分束器201包括依次串接的两级50:50的分束单元,如图1所示,每级分束单元包括两个光学通道,将前一级分束单元的光波平均分成两份,所述耦合分束器201包括一个输入端以及四个输出端。当然,在其他的实施例中,所述耦合分束器201也可以包括更多级数的分束单元,如3级、4级等,可依据实际需求进行配置,并不限于此处所列举的示例。
所述光栅天线203包括多根平行且间隔排列的硅基天线,所述硅基天线的数量与所述耦合分束器201的输出端的数量一致。所述耦合分束器201及光栅天线203之间由间隙带307隔开,所述间隙带307的区域用于制备铌酸锂移相器202
所述氧化硅包层304填充于所述光波导层303周围及所述间隙带307,所述氧化硅包层304的顶面与光波导层303的顶面齐平,且至少在所述间隙带307两端显露出所述耦合分束器201的端部及光栅天线203的端部,以利于铌酸锂移相器202的连接,如图3所示。
如图2及图3所示,其中,图2显示为图1中A-A’处的截面结构示意图,图3显示为图1中B-B’处的截面结构示意图,如图2所示,所述铌酸锂移相器202包括位于所述间隙带307上的铌酸锂薄膜305、位于所述铌酸锂薄膜305上且连接所述耦合分束器201及光栅天线203的铌酸锂光波导306、以及位于所述铌酸锂光波导306两侧的铌酸锂薄膜305上的调制电极。所述铌酸锂移相器202用于对所述耦合分束器201输入的光波进行相位调制后,输出至所述光栅天线203。
例如,所述铌酸锂光波导306可以为脊型波导,该脊型波导呈直线型延伸。
如图3所示,所述铌酸锂光波导306跨接于最后一级所述耦合分束器201的输出端口及光栅天线203的输入端口上方,且与所述耦合分束器201的输出端口及光栅天线203的输入端口具有交叠,所述铌酸锂薄膜305与所述光波导层303为直接接触,光波在所述耦合分束器201、铌酸锂薄膜305及光栅天线203的传播路径如图3中的箭头所示。
如图2所示,所述调制电极包括地电极308以及控制电极309,所述地电极308接地,所述控制电极309用于输入控制信号,通过将控制信号经由所述控制电极309加载到所述铌酸锂光波导306的两侧,以改变光波传输区域的折射率,从而改变光波在传输过程中的相位。
在本实施例中,如图1所示,所述光学相控阵20还连接有一光环行器及一激光器101, 所述光环行器的输出端连接于所述耦合分束器201的输入端,所述激光器101的输出端连接于所述光环行器的输入端。所述激光器101所发射的激光包括窄线宽光束。
如图1~图4所示,本实施例还提供一种基于铌酸锂薄膜材料移相控制的光学相控阵20的制备方法,包括步骤:
如图4所示,首先进行步骤1)S11,提供一SOI衬底,所述SOI衬底包括硅基底301、氧化硅层302及硅基层。
具体地,提供一硅基底301,所述硅基底301可以为单晶硅基底,采用如热氧化生长或其他工艺于所述硅基底301上形成氧化硅层302。然后在所述氧化硅层302上生长一层高折射率的硅或者氮化硅层,作为所述硅基层。
如图4所示,然后进行步骤2)S12,刻蚀所述顶硅层以形成光波导层303,所述光波导层303包括耦合分束器201及光栅天线203,所述耦合分束器201及光栅天线203之间具有间隙带307。
如图4所示,接着进行步骤3)S13,填充氧化硅包层304于所述光波导层303周围及所述间隙带307。
如图4所示,然后进行步骤4)S14,键合铌酸锂层于所述光波导层303及所述氧化硅包层304上,并刻蚀以形成位于所述间隙带307上的铌酸锂薄膜305以及连接所述耦合分束器201及光栅天线203的铌酸锂光波导306。
如图4所示,最后进行步骤5)S15,制备调制电极于所述铌酸锂光波导306两侧的铌酸锂薄膜305上,以形成铌酸锂移相器202。例如,可以通过金属溅射工艺及刻蚀工艺,或采用金属剥离工艺制备调制电极于所述铌酸锂光波导306两侧的铌酸锂薄膜305上。
本实施例还提供一种基于铌酸锂薄膜材料移相控制的光学相控阵20的应用方法,所述基于铌酸锂薄膜材料移相控制的光学相控阵20的结构如上面的实施例所示,所述应用方法包括:
步骤1),激光器101将窄线宽的激光注入到所述耦合分束器201的输入端,并通过所述耦合分束器201分成多个通道的光波。
在本实施例中,所述激光器101发射的激光注入到所述耦合分束器201中,且将激光均匀的分配到每一个通道中。
步骤2),每个通道内的光波进入所述铌酸锂移相器202进行相位调制,使每个通道的光波之间具有预定的相位偏移。
在本实施例中,光波进入所述铌酸锂移相器202后,基于铌酸锂的电光效应,通过对所 述调制电极施加控制信号,以改变通道中的铌酸锂的折射率,从而对所述相应通道内的光波进行相位调制。具体地,经过所述铌酸锂移相器202进行相位调制,每个通道内的光波均具有不同的相位偏移。
步骤3),每个通道具有设定相位的光波进入光栅天线203并通过所述光栅天线203发射到空间中预定角度。
如图5~图6所示,本实施例还提供一种基于铌酸锂薄膜材料的光学相控阵移相控制电路,包括:如上所述的基于铌酸锂薄膜材料移相控制的光学相控阵移相器以及控制电路204;所述控制电路204包括:功率输出单元205,用于输出电压;MOS管开关阵列206,连接于所述功率输出单元及所述光学相控阵的控制电极之间,用于为所述光学相控阵提供调相通道;电容阵列207,所述电容阵列207的各电容单元的两端分别连接所述光学相控阵的控制电极及地电极;控制单元208,用于通过控制总线,为所述光学相控阵系统提供逻辑和时序控制。
所述控制电路通过CMOS工艺制作成控制芯片,并通过三维集成工艺与所述基于铌酸锂薄膜材料移相控制的光学相控阵芯片进行键合,以获得所述基于铌酸锂薄膜材料的光学相控阵系统,可大大缩小系统体积。
如图6所示,具体地,所述MOS管开关阵列206包括多个MOS管开关单元,每个所述MOS管开关单元包括单向二极管401、PMOS管402、NMOS管403及电阻404:所述单向二极管401串联在每个调相通道中,用于隔离各调相通道中的电流;所述PMOS管402的第一极与所述单向二极管401连接,第二极与所述电容单元的一端连接,栅极与所述NMOS管403的第一极连接,所述NMOS管403的第二极接地,栅极连接所述控制总线,所述控制总线包括控制引脚,所述电阻连接于所述PMO管的第一极与栅极之间。
如图6所示,所述MOS管开关阵列中,单向二极管401串联在每个调相通道中,隔离各个调相通道中的电流;当NMOS管403的栅极处于低电平时处于关断状态,此时PMOS管402在电阻404的作用下也处于关断状态,此时电压保持在上一个输出状态上,当通过控制引脚输出,使某路NMOS管403的栅极处于高电平时,此时PMOS管402的栅极处于低电压,PMOS管402导通,此时可将功率输出单元(如DAC输出)的电压输出到该MOS管开关单元对应的电容中,并保持住该电压,从而控制各个调相单元的相位(如图4中a,b,c,d输出到调相单元)。基于上述时序,通过控制引脚,将MOS管开关阵列切换到待调制的光学相控阵的调制通道,设置DAC输出所需电压,待电压通过电容阵列稳定后,然后使控制引脚输出切换到下一个光学相控阵的调制通道,不同通道的光分别被对应通道的铌酸锂薄膜移相器进行调制,使得相位达到设定的值。每个通道的光学信号达到特定的相位差之后,将在光学 相控阵的天线发射端发射出具有特定波形和偏转方向的光束。
实施例2
参照图7,图7是现有技术中一种移相控制电路的电路图。
如图7所示,所述移相控制电路可以包括:功率输出单元11、输出通道12以及调相单元阵列。
其中,所述调相单元阵列可以包含多个调相单元13;所述输出通道12的输出端可以分别与所述多个调相单元13耦接;所述功率输出单元11与所述输出通道12的输入端耦接,并通过所述输出通道12向所述调相单元阵列输出调相电压。其中,所述调相单元13可以用于调整输出光的相位。
进一步地,所述多个调相单元13例如可以为图7示出的调相单元N、调相单元N+1、调相单元N+2、调相单元N+3、调相单元N+4、调相单元N+5。需要指出的是,图7以6个调相单元13为例进行说明,然而在具体实施中,对于调相单元13的具体数量不做限制。
进一步地,所述移相控制电路还可以包括调相单元切换开关14,所述调相单元切换开关14可以具有单个调相输入端以及多个调相输出端;其中,所述输出通道12的输出端经由所述调相单元切换开关14耦接至各个调相单元13。
在图7示出的移相控制电路中,调相步骤为:首先切换调相单元切换开关14的调相输出端至当前待调相的调相单元13(即指定的调相单元13),然后调整功率输出单元11的输出电压,等待一定时长直至电压稳定到设定值,然后输出至所述待调相的调相单元13。之后还可以切换调相单元切换开关14到下一个待调相的调相单元13,然后调整功率输出单元11的输出电压,等待一定时长直至电压稳定到设定值,然后输出至下一个待调相的调相单元13。需要指出的是,所述等待一定时长可以是等待DAC芯片电压建立时间和RC充电时间。
本发明的发明人经过研究发现,相比于仅采用调相单元切换开关14控制选择当前待调相的调相单元13,进而采用功率输出单元输出电压至选定的调相单元13,由此得到的调相步骤需要先切换调相单元切换开关14的调相输出端,后调整功率输出单元11的输出电压,并且需要等待一定时长,由于调整输出电压的耗费时间往往较长,导致等待时长过多,调相效率较低,严重时导致该移相控制电路所属电路系统的稳定性不足。
在本发明实施例中,通过设置功率输出单元,具有多个输出端口,所述输出端口用于输出各自的输出电压,所述输出通道的输入端择一耦接所述多个输出端口中的一个,其中,所述输出通道的输出端择一耦接所述多个调相单元中的一个,相比于现有技术中仅能通过单个 输出端口向输出通道输出调相电压,需要先连接调相单元,再耗费时间调整输出电压,采用本发明实施例的方案,有机会在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,从而可以提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参照图8,图8是本发明实施例中一种移相控制电路的电路图。
如图8所示,所述移相控制电路可以包括:功率输出单元21、输出通道22以及调相单元阵列。
其中,所述功率输出单元21可以具有多个输出端口25(图8示出的输出端口1和输出端口2),所述输出端口25用于输出各自的输出电压,也即可以经由不同的输出端口25输出不同的输出电压。其中,所述调相单元阵列可以包含多个调相单元23。其中,所述调相单元23可以用于调整输出光的相位。
进一步地,所述多个调相单元23例如可以为图8示出的调相单元N、调相单元N+1、调相单元N+2、调相单元N+3、调相单元N+4、调相单元N+5。需要指出的是,图8以6个调相单元23为例进行说明,然而在具体实施中,对于调相单元23的具体数量不做限制。
所述输出通道22的输入端可以择一耦接所述多个输出端口中的一个(如图8中的输出端口2),所述输出通道22的输出端可以择一耦接所述多个调相单元23中的一个。
在本发明实施例中,通过设置功率输出单元,具有多个输出端口,所述输出端口用于输出各自的输出电压,所述输出通道的输入端择一耦接所述多个输出端口中的一个,其中,所述输出通道的输出端择一耦接所述多个调相单元中的一个,相比于仅能通过单个输出端口向输出通道输出调相电压,需要先连接调相单元,再耗费时间调整输出电压,采用本发明实施例的方案,有机会在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,从而可以提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
进一步地,所述移相控制电路还可以包括功率输出切换开关26,所述功率输出切换开关 26具有多个调相输入端以及单个调相输出端;其中,所述功率输出单元21的多个输出端口25均经由对应功率输出切换开关26耦接至所述输出通道22的输入端。
在本发明实施例中,通过设置功率输出切换开关26,所述功率输出单元的多个输出端口25均经由功率输出切换开关26耦接至所述输出通道的输入端,可以实现在通过输出端口输出当前待调相的调相单元的电压的同时,调整另一待调相的调相单元的电压,从而有效地利用输出电压的时间,对下一输出电压进行调整并等待电压稳定到预设值,从而可以实现调相效率的提高。
进一步地,所述输出通道22的输出端按照预设顺序依次耦接各个调相单元23,所述功率输出单元21的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,其中,在预设时长后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压。
需要指出的是,所述预设时长可以受到当前耦接的调相单元的调相时长的影响。
在本发明实施例的一种具体实施方式中,所述调相单元可以包含电容,可以在输出需要的调相电压至调相单元的电容后,即可采用另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压,此时前一调相单元仍然可以采用电容中存储的电压进行调相。
在本发明实施例的另一种具体实施方式中,所述调相单元可以包含电容还可以不包含电容,所述预设时长可以为输出需要的调相电压至调相单元,并等待所述调相单元完成调相后,采用另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压。
需要指出的是,所述另一输出端口是除所述当前输出端口之外的其他输出端口中的一个。
在本发明实施例中,通过设置所述输出通道22的输出端按照预设顺序依次耦接各个调相单元23,所述功率输出单元21的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,其中,在预设时长后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压,可以实现在在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,从而有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,可以提高调相效率。
进一步地,所述移相控制电路还可以包括第一开关控制单元(图未示),用于控制输出端 口与所述输出通道的输入端耦接,以向所述调相单元输出需要的调相电压。
具体地,每当所述功率输出单元21的输出电压被调整至当前待调相的调相单元23的电压,并输出至所述多个输出端口25中的一个输出端口时,控制所述输出通道22的输入端与该输出端口耦接。
在图8示出的移相控制电路中,所述功率输出单元21可以具有2个输出端口,分别为输出端口1以及输出端口2。所述功率输出切换开关26可以为单刀双掷开关。
在具体实施中,可以设置所述功率输出单元21的当前输出端口(例如为输出端口2)在向当前耦接的调相单元(例如为调相单元N+2)输出需要的调相电压时,将另一输出端口(例如为输出端口1)的输出电压调节至下一耦接的调相单元(例如为调相单元N+3)需要的调相电压,在预设时长后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压。
在本发明实施例中,通过设置第一开关控制单元,控制输出端口与所述输出通道的输入端耦接,以向所述调相单元输出需要的调相电压,可以实现在在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,并在预设时长后,向下一耦接的调相单元输出需要的调相电压,从而有效地利用输出电压的时间,可以提高调相效率。
进一步地,所述移相控制电路还可以包括调相单元切换开关24,所述调相单元切换开关24可以具有单个调相输入端以及多个调相输出端;其中,所述输出通道22的输出端经由所述调相单元切换开关24耦接至各个调相单元23。
在本发明实施例中,通过设置调相单元切换开关24,可以选择适当的调相单元23进行耦接,从而可以进一步实现调相效率的提高。
进一步地,所述移相控制电路还可以包括第二开关控制单元24,用于依照所述预设的调相单元的调相顺序,依次控制所述输出通道22的输出端与对应的所述调相单元23耦接。
在图8示出的移相控制电路中,所述多个调相单元23可以为图8示出的调相单元N、调相单元N+1、调相单元N+2、调相单元N+3、调相单元N+4、调相单元N+5。所述调相单元切换开关24可以为单刀多掷开关。
在具体实施中,可以设置所述功率输出单元21的当前输出端口(例如为输出端口2)在向当前耦接的调相单元(例如为调相单元N+2)输出需要的调相电压时,控制所述输出通道22的输入端与该输出端口2耦接,以及控制所述输出通道22的输出端与调相单元N+2耦接,以向所述调相单元N+2输出电压进行调相。
此时可以将另一输出端口(例如为输出端口1)的输出电压调节至下一耦接的调相单元(例如为调相单元N+3)需要的调相电压,并在预设时长后,所述另一输出端口与所述输出通道22的输入端耦接,以及控制所述输出通道22的输出端与调相单元N+3耦接,以向下一耦接的调相单元输出需要的调相电压。
在本发明实施例中,通过设置调相单元切换开关24以及第二开关控制单元,可以选择适当的调相单元23进行耦接,从而可以进一步实现调相效率的提高。
由上可知,在图8示出的移相控制电路中,调相步骤为:首先调整功率输出单元21的输出电压至当前待调相的调相单元N+2的调相电压,等待一定时长直至电压稳定到设定值,然后切换所述功率输出切换开关26以使得输出通道22的输入端与输出端口2耦接,并且切换调相单元切换开关24的调相输出端耦接至当前待调相的调相单元N+2,输出电压对调相单元N+2进行调相。
在输出电压对调相单元N+2进行调相的同时,调整功率输出单元21的输出电压至下一个待调相的调相单元(例如为调相单元N+3)的调相电压,并等待一定时长直至电压稳定到设定值。需要指出的是,所述等待一定时长可以是等待DAC芯片电压建立时间和RC充电时间。
进而在电压稳定到设定值,并且前一个待调相的调相单元N+2的调相电压输出结束后,切换所述功率输出切换开关26以使得输出通道22的输入端与输出端口1耦接,并且切换调相单元切换开关24的调相输出端耦接至待调相的调相单元N+3,输出电压对调相单元N+3进行调相。
在本发明实施例中,通过设置功率输出单元21,具有多个输出端口25,所述输出端口25用于输出各自的输出电压,所述输出通道22的输入端择一耦接所述多个输出端口25中的一个,其中,所述输出通道22的输出端择一耦接所述多个调相单元23中的一个,相比于仅能通过单个输出端口向输出通道输出调相电压,需要先连接调相单元,再耗费时间调整输出电压,采用本发明实施例的方案,可以实现在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,从而可以提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
参照图9,图9是本发明实施例中另一种移相控制电路的电路图。
如图9所示,所述另一种移相控制电路可以包括功率输出单元31、输出通道32、调相单 元33以及调相单元切换开关34。
其中,所述功率输出单元31具有多个输出端35,例如可以包括输出端口1以及输出端口2。
进一步地,所述调相单元33可以包括:电容331;光波导器件332,所述光波导器件332与所述电容331一一对应并且以并联方式耦接。
在本发明实施例中,通过设置调相单元33包括并联的电容331以及光波导器件332,可以有效地实现调相功能,进一步提高调相效率。
进一步地,所述光波导器件332可以采用适当的光波导材料制成,例如可以采用硅(Si)波导材料或适当的压电材料。
作为一个非限制性的例子,所述光波导器件332可以为铌酸锂(LiNbO 3)光波导器件,例如,在本实施例中,所述光波导器件332可以为如实施例1所述的基于铌酸锂薄膜材料移相控制的光学相控阵。
在本发明实施例中,通过设置采用铌酸锂光波导器件,可以更好地限制和传导光波,提高该移相控制电路所属电路系统的稳定性。
进一步地,所述移相控制电路还可以包括控制单元37,用于通过控制总线,为所述移相控制电路提供逻辑和时序控制。
在本发明实施例中,通过设置控制单元37,可以有效地实现为所述移相控制电路提供逻辑和时序控制,进一步提高调相效率。
进一步地,所述移相控制电路可以用于硅基光学相控阵、光子AI、微机电系统(Micro-Electro-Mechanical System,MEMS)开关、压电材料的移相控制系统。
如图9示出的移相控制电路即可以应用于硅基光学相控阵。
所述移相控制电路可以大幅度降低移相控制功耗和高速的阵列控制,控制系统采用简单的基本电子器件,设计简单、工艺简单,易于批量化生产,成本可有效降低。
进一步地,所述移相控制电路可以采用分离元器件构建,也可集成到单颗芯片中,从而有助于实现灵活简易的电路控制。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
如上所述,本发明的基于铌酸锂薄膜材料的光学相控阵、其制备方法及系统,具有以下有益效果:
本发明提供了一种新型的基于铌酸锂薄膜材料的光学移相器,并应用于硅基光学相控阵中,本发明采用具有高电光系数、低损耗的材料如铌酸锂来代替传统的光学相控阵中所用的热调电阻或者载流子注入的相位调制方式,可以在光学相控阵中进行低功耗、高速、低波导损耗的光学相位调制。
本发明通过键合工艺把铌酸锂薄膜附着在光学相控阵上,然后在铌酸锂上刻蚀光波导,最后通过溅射工艺在铌酸锂薄膜表面生成光学相位调制器电极,用于调制信号的加载通过铌酸锂薄膜移相器所具有的低半波电压,可以实现与现有的CMOS工艺相结合,具有低光传输损耗和高的调制速度,可以极大地提升硅基光学相控阵的发射光功率以及扫描速度,提升光学相控阵性能。
本发明基于铌酸锂薄膜移相器阻抗大、功耗低的特点,采用MOS管开关阵列对电场控制电压进行扫描控制,可大大降低系统的复杂度,并提高可集成性。
本发明将铌酸锂光学相控阵的控制电路采用现用CMOS工艺,做成控制芯片,并通过三维集成工艺和铌酸锂光学相控阵光学芯片进行键合,可大大缩小系统体积。
本发明的移相控制电路通过设置功率输出单元,具有多个输出端口,所述输出端口用于输出各自的输出电压,所述输出通道的输入端择一耦接所述多个输出端口中的一个,其中,所述输出通道的输出端择一耦接所述多个调相单元中的一个,相比于现有技术中仅能通过单个输出端口向输出通道输出调相电压,需要先连接调相单元,再耗费时间调整输出电压,采用本发明实施例的方案,有机会在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,从而可以提高调相效率,提高该移相控制电路所属电路系统的集成度,减少系统的体积和功耗。
本发明的移相控制电路通过设置功率输出切换开关,所述功率输出单元的多个输出端口均经由功率输出切换开关耦接至所述输出通道的输入端,可以实现在通过输出端口输出当前待调相的调相单元的电压的同时,调整另一待调相的调相单元的电压,从而有效地利用输出电压的时间,对下一输出电压进行调整并等待电压稳定到预设值,从而可以实现调相效率的提高。
本发明的移相控制电路通过设置所述输出通道的输出端按照预设顺序依次耦接各个调相单元,所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,其中,在当前耦接 的调相单元完成调相后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压,可以实现在在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,从而有效地利用输出调相电压的时间,对下一耦接的调相单元需要的调相电压进行调整并等待电压稳定到预设值,可以提高调相效率。
本发明的移相控制电路通过设置第一开关控制单元,控制输出端口与所述输出通道的输入端耦接,以向所述调相单元输出需要的调相电压,可以实现在在通过所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,并在当前耦接的调相单元完成调相后,向下一耦接的调相单元输出需要的调相电压,从而有效地利用输出电压的时间,可以提高调相效率。
本发明的移相控制电路通过设置调相单元切换开关以及第二开关控制单元,可以选择适当的调相单元进行耦接,从而可以进一步实现调相效率的提高。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (23)

  1. 一种基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于,所述光学相控阵包括:
    硅基底;
    氧化硅层,位于所述硅基底上;
    光波导层,位于所述氧化硅层上,所述光波导层包括耦合分束器及光栅天线,所述耦合分束器及光栅天线之间具有间隙带;
    氧化硅包层,填充于所述光波导层周围及所述间隙带;
    铌酸锂移相器,包括位于所述间隙带上的铌酸锂薄膜、位于所述铌酸锂薄膜上且连接所述耦合分束器及光栅天线的铌酸锂光波导、以及位于所述铌酸锂光波导两侧的铌酸锂薄膜上的调制电极。
  2. 根据权利要求1所述的基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于:还连接有激光器,所述激光器的输出端连接于所述耦合分束器的输入端。
  3. 根据权利要求1所述的基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于:所述耦合分束器包括依次串接的多级50:50的分束单元,所述耦合分束器包括一个输入端以及多个输出端,且每个所述输出端所输出的光强相等。
  4. 根据权利要求1所述的基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于:所述铌酸锂光波导跨接于最后一级所述耦合分束器输出端口及光栅天线输入端口上方,且与所述耦合分束器输出端口及光栅天线输入端口具有交叠。
  5. 根据权利要求1所述的基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于:所述光波导层的材料包括硅及氮化硅中的一种。
  6. 根据权利要求1所述的基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于:所述铌酸锂光波导为脊型波导。
  7. 根据权利要求1所述的基于铌酸锂薄膜材料移相控制的光学相控阵,其特征在于:所述调制电极包括地电极以及控制电极,所述地电极接地,所述控制电极用于输入控制信号,通过将控制信号经由所述控制电极加载到所述铌酸锂光波导的两侧,以改变光波传输区域的折射率,从而改变光波在传输过程中的相位。
  8. 一种如权利要求1~7任意一项所述的基于铌酸锂薄膜材料移相控制的光学相控阵的制备方法,其特征在于,包括步骤:
    1)提供SOI衬底,所述SOI衬底包括硅基底、氧化硅层及硅基层;
    2)刻蚀所述顶硅层以形成光波导层,所述光波导层包括耦合分束器及光栅天线,所述耦合分束器及光栅天线之间具有间隙带;
    3)填充氧化硅包层于所述光波导层周围及所述间隙带;
    4)键合铌酸锂层于所述光波导层及所述氧化硅包层上,并刻蚀以形成位于所述间隙带上的铌酸锂薄膜以及连接所述耦合分束器及光栅天线的铌酸锂光波导;
    5)制备调制电极于所述铌酸锂光波导两侧的铌酸锂薄膜上,以形成铌酸锂移相器。
  9. 一种如权利要求1~7任意一项所述的基于铌酸锂薄膜材料移相控制的光学相控阵的应用方法,其特征在于,包括:
    1)激光器将窄线宽的激光注入到所述耦合分束器的输入端,并通过所述耦合分束器分成多个通道的光波;
    2)每个通道内的光波进入所述铌酸锂移相器进行相位调制,使每个通道的光波之间具有预定的相位偏移;
    3)每个通道具有预定相位差的光波进入光栅天线并通过所述光栅天线发射到空间中预定角度。
  10. 根据权利要求9所述的基于铌酸锂薄膜材料移相控制的光学相控阵的应用方法,其特征在于:步骤2)中,光波进入所述铌酸锂移相器后,基于铌酸锂的电光效应,通过对所述调制电极施加控制信号,以改变通道中的铌酸锂的折射率,从而对所述相应通道内的光波进行相位调制。
  11. 一种基于铌酸锂薄膜材料的光学相控阵系统,其特征在于,包括:
    如权利要求1~7任意一项所述的基于铌酸锂薄膜材料移相控制的光学相控阵以及控制电路;所述控制电路包括:
    功率输出单元,用于输出电压;
    MOS管开关阵列,连接于所述功率输出单元及所述光学相控阵的控制电极之间,用于为所述光学相控阵提供调相通道;
    电容阵列,所述电容阵列的各电容单元的两端分别连接所述光学相控阵的控制电极及 地电极;
    控制单元,用于通过控制总线,为所述光学相控阵系统提供逻辑和时序控制。
  12. 根据权利要求11所述的基于铌酸锂薄膜材料的光学相控阵系统,其特征在于:所述MOS管开关阵列包括多个MOS管开关单元,每个所述MOS管开关单元包括单向二极管、PMOS管、NMOS管及电阻:所述单向二极管串联在每个调相通道中,用于隔离各调相通道中的电流;所述PMOS管的第一极与所述单向二极管连接,第二极与所述电容单元的一端连接,栅极与所述NMOS管的第一极连接,所述NMOS管的第二极接地,栅极连接所述控制总线,所述电阻连接于所述PMO管的第一极与栅极之间。
  13. 一种移相控制电路,其特征在于,包括:
    功率输出单元,具有多个输出端口,所述输出端口用于输出各自的输出电压;
    输出通道,所述输出通道的输入端择一耦接所述多个输出端口中的一个;
    调相单元阵列,包含多个调相单元;
    其中,所述输出通道的输出端择一耦接所述多个调相单元中的一个。
  14. 根据权利要求13所述的移相控制电路,其特征在于,还包括:功率输出切换开关,所述功率输出切换开关具有多个调相输入端以及单个调相输出端;其中,所述功率输出单元的多个输出端口均经由对应功率输出切换开关耦接至所述输出通道的输入端。
  15. 根据权利要求14所述的移相控制电路,其特征在于,所述输出通道的输出端按照预设顺序依次耦接各个调相单元,所述功率输出单元的当前输出端口在向当前耦接的调相单元输出需要的调相电压时,将另一输出端口的输出电压调节至下一耦接的调相单元需要的调相电压,其中,在预设时长后,所述另一输出端口与所述输出通道的输入端耦接,以向下一耦接的调相单元输出需要的调相电压。
  16. 根据权利要求15所述的移相控制电路,其特征在于,还包括:第一开关控制单元,用于控制输出端口与所述输出通道的输入端耦接,以向所述调相单元输出需要的调相电压。
  17. 根据权利要求16所述的移相控制电路,其特征在于,还包括:调相单元切换开关,所述调相单元切换开关具有单个调相输入端以及多个调相输出端;其中,所述输出通道的输 出端经由所述调相单元切换开关耦接至各个调相单元。
  18. 根据权利要求16所述的移相控制电路,其特征在于,还包括:第二开关控制单元,用于依照所述预设顺序,依次控制所述输出通道的输出端与对应的调相单元耦接。
  19. 根据权利要求13所述的移相控制电路,其特征在于,所述调相单元包括:电容;光波导器件,所述光波导器件与所述电容一一对应并且以并联方式连接。
  20. 根据权利要求19所述的移相控制电路,其特征在于,所述光波导器件为铌酸锂光波导器件。
  21. 根据权利要求13所述的移相控制电路,其特征在于,还包括:控制单元,用于通过控制总线,为所述移相控制电路提供逻辑和时序控制。
  22. 根据权利要求13所述的移相控制电路,其特征在于,所述移相控制电路用于硅基光学相控阵、光子AI、MEMS开关、压电材料的移相控制系统。
  23. 一种移相控制系统,其特征在于,所述移相控制电路包括:
    如权利要求13~22任意一项所述的移相控制电路,其中,所述移相控制电路中的所述调相单元阵列包括如权利要求1~7任一项所述的基于铌酸锂薄膜材料移相控制的光学相控阵。
PCT/CN2020/121462 2020-05-15 2020-10-16 光学相控阵、其制备方法及移相控制系统 WO2021227357A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/925,416 US20230400630A1 (en) 2020-05-15 2020-10-16 Optical phased array, method for preparing optical phased array and phase-shifting control system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010413445.8A CN113671769B (zh) 2020-05-15 2020-05-15 基于铌酸锂薄膜材料移相控制的光学相控阵及制备方法
CN202010413445.8 2020-05-15
CN202010427704.2 2020-05-19
CN202010427704.2A CN113687552A (zh) 2020-05-19 2020-05-19 一种移相控制电路

Publications (1)

Publication Number Publication Date
WO2021227357A1 true WO2021227357A1 (zh) 2021-11-18

Family

ID=78526198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121462 WO2021227357A1 (zh) 2020-05-15 2020-10-16 光学相控阵、其制备方法及移相控制系统

Country Status (2)

Country Link
US (1) US20230400630A1 (zh)
WO (1) WO2021227357A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534343A (zh) * 2021-07-09 2021-10-22 华东师范大学 一种高品质波导结构及制备方法
CN115128573A (zh) * 2022-08-30 2022-09-30 北京摩尔芯光半导体技术有限公司 用于光学相控阵的驱动电路、驱动方法及激光雷达装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300888A (ja) * 2008-06-16 2009-12-24 Fujitsu Ltd 光導波路デバイス
CN107843957A (zh) * 2017-11-13 2018-03-27 上海理工大学 氮化硅‑铌酸锂异质集成波导器件结构及制备方法
CN109581329A (zh) * 2018-12-29 2019-04-05 中科天芯科技(北京)有限公司 一种相控阵集成光学芯片和光学相控阵发射装置
CN109839625A (zh) * 2019-01-21 2019-06-04 浙江大学 一种基于铌酸锂薄膜的电光相控阵激光雷达
CN110609399A (zh) * 2019-08-05 2019-12-24 华南师范大学 折叠式硅-铌酸锂混合集成电光调制器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300888A (ja) * 2008-06-16 2009-12-24 Fujitsu Ltd 光導波路デバイス
CN107843957A (zh) * 2017-11-13 2018-03-27 上海理工大学 氮化硅‑铌酸锂异质集成波导器件结构及制备方法
CN109581329A (zh) * 2018-12-29 2019-04-05 中科天芯科技(北京)有限公司 一种相控阵集成光学芯片和光学相控阵发射装置
CN109839625A (zh) * 2019-01-21 2019-06-04 浙江大学 一种基于铌酸锂薄膜的电光相控阵激光雷达
CN110609399A (zh) * 2019-08-05 2019-12-24 华南师范大学 折叠式硅-铌酸锂混合集成电光调制器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534343A (zh) * 2021-07-09 2021-10-22 华东师范大学 一种高品质波导结构及制备方法
CN115128573A (zh) * 2022-08-30 2022-09-30 北京摩尔芯光半导体技术有限公司 用于光学相控阵的驱动电路、驱动方法及激光雷达装置

Also Published As

Publication number Publication date
US20230400630A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CN107430297B (zh) 电光调制器
CN109901263B (zh) 一种基于共用电极的硅基集成光学相控阵芯片
JP5433919B2 (ja) 光機能素子、その駆動方法及び製造方法
WO2021227357A1 (zh) 光学相控阵、其制备方法及移相控制系统
US20050271313A1 (en) Optical device
CN110729630A (zh) 一种采用铌酸锂材料制成的波长高速调谐的激光器
WO2019218385A1 (zh) 硅和铌酸锂混合集成光调制器及其制备方法
US6522799B1 (en) Optical planar waveguide device and method of fabrication
CN116088244B (zh) 一种级联式相控阵光学扫描系统
CN112764287A (zh) 一种基于平板光栅天线的半波排布二维扫描光学相控阵
CN113671769B (zh) 基于铌酸锂薄膜材料移相控制的光学相控阵及制备方法
TW201300924A (zh) 光元件以及光調變裝置
Talkhooncheh et al. A 100 Gb/s PAM-4 silicon photonic transmitter with two binary-driven EAMs in MZI structure
Kato et al. Switching operation in tunable add-drop multiplexer with si-grating waveguides featuring ferroelectric liquid crystal cladding
CN111276562A (zh) 基于铌酸锂-氮化硅晶圆的光电单片集成系统
US6618179B2 (en) Mach-Zehnder modulator with individually optimized couplers for optical splitting at the input and optical combining at the output
CN115755442A (zh) 一种基于波导上硫化锑的o波段多模干涉型硅基光开关
US7738745B2 (en) Method of biasing and operating electro-optic polymer optical modulators
US20080008412A1 (en) Optical device
JPH04172316A (ja) 導波型光制御デバイス
CN117872544B (zh) 硅-锆钛酸铅异质光电融合单片集成系统
CN116400522B (zh) 电极分层爬坡的薄膜铌酸锂调制器及其制备方法
WO2023198035A1 (zh) 移相器、电光器件、光通信系统及移相器的制造方法
JPH0548890B2 (zh)
CN116679505A (zh) 一种采用电光调制的光学相控阵芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935421

Country of ref document: EP

Kind code of ref document: A1