CN116679505A - 一种采用电光调制的光学相控阵芯片 - Google Patents

一种采用电光调制的光学相控阵芯片 Download PDF

Info

Publication number
CN116679505A
CN116679505A CN202310672541.8A CN202310672541A CN116679505A CN 116679505 A CN116679505 A CN 116679505A CN 202310672541 A CN202310672541 A CN 202310672541A CN 116679505 A CN116679505 A CN 116679505A
Authority
CN
China
Prior art keywords
waveguide
phase modulation
beam splitter
type layer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310672541.8A
Other languages
English (en)
Inventor
郭东辉
涂宇航
李磊磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202310672541.8A priority Critical patent/CN116679505A/zh
Publication of CN116679505A publication Critical patent/CN116679505A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29301Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on a phased array of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种采用电光调制的光学相控阵芯片,所述芯片包括依次连接的光栅耦合器、多级MMI分光器、调相阵列和光栅发射器,所述光栅耦合器通过输入连接波导连接所述多级MMI分光器,所述多级MMI分光器通过输出连接波导连接所述调相阵列,所述调相阵列通过电场驱动调节自身的折射率,所述光栅发射器由等间隔周期性排列的发射光栅组成,同一个周期内的发射光栅的宽度、刻蚀周期和深度各不相同。本发明采用电光调制的光学相控阵芯片,实现调相波导中的传输光的相位的精准调节,同时采用周期性排列的非均匀宽度的光栅发射器,在实现更宽的扫描角度的同时,避免发射光栅之间的串扰耦合问题,提高发射能量和扫描性能。

Description

一种采用电光调制的光学相控阵芯片
技术领域
本发明涉及光学技术领域,特别涉及一种采用电光调制的光学相控阵芯片。
背景技术
光学相控阵(Optical Phased Arrays,OPA)技术是通过调制方式使阵列波导之间产生特定相位差以实现光束角度的旋转,是一种灵活、快速和精确的非机械光束定向扫描技术,具有分辨率高、抗干扰性强和高保密性等特点。
为了实现对OPA光芯片的调制,需要将OPA光芯片和起调制控制作用的集成电路进行电连接。现有的OPA芯片中,大多采用热光效应实现相位调制,但通过热光效应进行相位调制,缺点也十分明显:首先,热光调制会产生大量热,对OPA芯片的散热造成很大的压力,同时会影响芯片周围控制电路的性能;其次,加热会使得光波导的折射率发生改变,而加热的温度很难做到精确控制,由于温度升高或降低需要较长的时间,导致热光效应的调制速度很低,从而限制整个光学相控阵芯片的性能。
发明内容
为解决上述问题,本发明提供了一种采用电光调制的光学相控阵芯片。
本发明采用以下技术方案:
一种采用电光调制的光学相控阵芯片,所述芯片包括依次连接的光栅耦合器、多级MMI分光器、调相阵列和光栅发射器,所述光栅耦合器通过输入连接波导连接所述多级MMI分光器,所述多级MMI分光器通过输出连接波导连接所述调相阵列,所述调相阵列通过电场驱动调节自身的折射率,所述光栅发射器由等间隔周期性排列的发射光栅组成,同一个周期内的发射光栅的宽度、刻蚀周期和深度各不相同。
进一步地,所述多级MMI分光器包括依次连接的第一级分光器、第二级分光器和第三级分光器,所述第一级分光器通过分光器连接波导连接所述第二级分光器,所述第二级分光器通过分光器连接波导连接所述第三级分光器。
进一步地,所述输入连接波导、输出连接波导和分光器连接波导均为单模波导。
进一步地,所述调相阵列由多个调相波导组成,所述调相波导的折射率变化与调相波导中的传输光的相位变化的关系为:
其中,Δφ为所述调相波导中的传输光的相位变化,Δn为所述调相波导的折射率变化,L为所述调相波导的长度,λ为传输光的波长。
进一步地,所述调相波导采用PIN结构,所述PIN结构由中间的i型层和位于所述i型层两边的p+型层和n+型层组成,所述i型层为无掺杂硅材质。
进一步地,所述调相波导的折射率随外加电场的变化而变化,所述调相波导的折射率与外加电场的关系为:
Δn=Δne+Δnh=-[8.8×10-22ΔNe+8.5×10-18(ΔNh)0.8]
其中,Δn表示调相波导的折射率改变量,Δne和Δnh分别代表调相波导中电子和空穴浓度变化引起的折射率改变量,ΔNe和ΔNh代表由外加电场引起的调相波导内的电子和空穴浓度的变化。
进一步地,所述调相波导的制作过程包括如下步骤:
S1、以绝缘体上硅为衬底,其顶部设有硅顶层,在所述硅顶层上刻蚀出脊型波导以形成i型层,并在所述i型层的表面覆盖二氧化硅保护层;
S2、在所述i型层的两侧分别进行p+型和n+型的注入,以形成p+型层和n+型层,所述i型层、p+型和n+型构成PIN结构;
S3、在所述PIN结构的表面沉积二氧化硅,然后在p+型层和n+型层上方光刻出通孔,并溅射金属电极。
进一步地,所述发射光栅的间距与所述芯片的扫描角度的关系为:
其中,θx为芯片的扫描角度,q为整数,代表远场的衍射的不同级次,Δφx是相邻发射光栅之间的相位差,λ为光的波长,Λx为发射光栅的间距。
进一步地,所述发射光栅的间距Λx小于所述光的波长λ的二分之一。
采用上述技术方案后,本发明与背景技术相比,具有如下优点:
1、本发明采用电光调制的光学相控阵芯片,其通过控制电场的变化以驱动精准调节调相阵列中调相波导的折射率,进而影响在调相波导中的传输光的相位变化,克服了现有的采用热光效应调节相位时难以精确控制的缺点;
2、本发明采用周期性排列的非均匀宽度的光栅发射器,在实现更宽的扫描角度的同时,避免发射光栅之间的串扰耦合问题,提高发射能量和扫描性能。
附图说明
图1为本发明芯片的整体结构示意图;
图2为本发明光栅耦合器的顶视图;
图3为本发明光栅耦合器的侧视图;
图4为本发明分光器的结构图;
图5为本发明PIN结构的示意图;
图6为本发明调相波导的结构示意图;
图7为本发明光栅发射阵列的结构示意图。
附图标记说明:
10、光栅耦合器;20、第一级分光器;30、第二级分光器;40、第三级分光器;50、调相阵列;60、光栅发射器。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例
一种采用电光调制的光学相控阵芯片,所述芯片包括依次连接的光栅耦合器10、多级MMI分光器、调相阵列50和光栅发射器60,所述光栅耦合器10通过输入连接波导连接所述多级MMI分光器,所述多级MMI分光器通过输出连接波导连接所述调相阵列50,所述调相阵列50通过电场驱动调节自身的折射率,所述光栅发射器60由等间隔周期性排列的发射光栅组成,同一个周期内的发射光栅的宽度、刻蚀周期和深度各不相同。
所述多级MMI分光器包括依次连接的第一级分光器20、第二级分光器30和第三级分光器40,所述第一级分光器20通过分光器连接波导连接所述第二级分光器30,所述第二级分光器30通过分光器连接波导连接所述第三级分光器40。
整体架构如图1所示,一个片外激光通过光纤照入光栅耦合器10,光栅耦合器10将入射光耦合到输入连接波导内,并使其以基模的形式传播,以减小传播损耗。输入连接波导连接光栅耦合器10与第一级分光器20。第一级分光器20将光分为相位相同、光强相同的两束光。每一级分光器之间采用分光器连接波导进行连接,经过多级MMI分光器后将光分为多个相位、强度相同的光后,进入到调相阵列50进行调相,经过调相后使相邻的波导之间产生一个固定的相位差,最后通过非均匀光栅发射器60发射到自由空间内。
从上述原理出发,首先需要将片外激光器发出的光耦合到光波导内,本实施例采用周期刻蚀的光栅耦合器10,其顶视图和侧视图如图2和图3所示。通过调制周期数N、刻蚀深度h、刻蚀周期T和占空比τ,达到最佳耦合效率。激光以一定角度入射到光栅表面耦合,然后进入与之连接的输入连接波导。其中,输入连接波导为一种单模光波导。
随后,输入连接波导的光进入多级MMI分光器,其中,分光器的作用是使输出的两束光与输入的一束光相比,相位相同且强度变为输入光的二分之一。MMI分光器的工作原理是基于多模干涉,在特定位置处形成自成像,周期性地复现输入光场。不同模式的相位相同的光,相干叠加后,光场分布与初始光场分布相同,即所谓的“自成像”。在其他位置,还可以得到二重像、四重像,此时能量分别二等分和四等分。利用多模干涉的原理,本发明通过合理选择MMI的长度用来做分光器,使MMI的长度等于出现二重像的位置,即可达到输出端口光强相同,那么每个端口的能量为输入的1/2。
图4分别是本实施例针对1550nm为输入波长的激光设计的MMI分光器。每一级分光器之间采用分光器连接波导进行连接。本实施例采用3级分光器将输入光束分为8路光强相等的光。光路越多,发射时可以实现更小的发射光束宽度和更大的发射能量,后续可以根据性能要求和成本限制调整光路个数。
第三级分光器40通过输出连接波导与调相阵列50连接。目前调相阵列50有两种实现方式:热光效应和电光效应。(1)热光效应指的是光介质的光学性质随着温度的变化而发生变化的物理效应,材料的折射率会随着温度的变化而变化,而且在相同温度下,不同材料的折射率即热光系数也是不一样的,热光效应的本质是通过将晶体加热或者降温度使其分子排布发生变化,从而使得晶体的光学特性发生随温度的改变而改变的现象。热光效应其原理和结构简单,但面临散热和调制速度慢,调制精度不准确的问题。(2)而电光效应的本质是指某些同向性的透明物质在电场驱动下所表现的某些光学特性,其中主要体现在材料的折射率会随着外加电场的变化而发生变化,调相波导的有效折射率是由基于自由载流子等离子体色散效应的载流子浓度控制的。
本实施例的调相阵列50由多个调相波导组成,如图5所示,所述调相波导采用PIN结构,所述PIN结构由中间的i型层和位于所述i+型层两边的p+型层和n+型层组成,所述i型层为无掺杂硅材质。
那么,所述调相波导的折射率变化(即i型层硅材质的折射率变化)与调相波导中的传输光的相位变化的关系为:
其中,Δφ为所述调相波导中的传输光的相位变化,Δn为所述调相波导的折射率变化,L为所述调相波导的长度,λ为传输光的波长。
而所述调相波导的折射率随外加电场的变化而变化,所述调相波导的折射率与外加电场的关系为:
Δn=Δne+Δnh=-[8.8×10-22ΔNe+8.5×10-18(ΔNh)0.8]
其中,Δn表示调相波导的折射率改变量,Δne和Δnh分别代表调相波导中电子和空穴浓度变化引起的折射率改变量,ΔNe和ΔNh代表由外加电场引起的调相波导内的电子和空穴浓度的变化。因此,通过施加不同的电压,就可以使每个调相波导中的折射率Δn发生变化,进而使每个调相波导中光的相位发生变化,完成调制。
由上面的分析得到:只需要在光波导外部施加一个电场之后,调相波导的折射率就会发生改变,经过调相波导的光束会产生一定的相位延迟,并且这种相位延迟是可控的,与施加的电压具有正相关的关系,那么就可以通过控制调相波导芯片电极层上的电压来改变通过调相波导的折射率,从而改变光束的相位大小。电光效应对光相位的控制较为准确,且调制速度很高,更加适合高速激光雷达的要求。
上述的采用PIN结构的调相波导的制作过程包括如下步骤:
S1、以绝缘体上硅为衬底,其顶部设有硅顶层,在所述硅顶层上刻蚀出脊型波导以形成i型层,并在所述i型层的表面覆盖二氧化硅保护层;
S2、在所述i型层的两侧分别进行p+型和n+型的注入,以形成p+型层和n+型层,所述i型层、p+型和n+型构成PIN结构;
S3、在所述PIN结构的表面沉积二氧化硅,然后在p+型层和n+型层上方光刻出通孔,并溅射金属电极。
当对金属电极加上电压后,p+型层和n+型层内的空穴和电子会定向移动,波导中部空穴和电子的浓度变化会引起波导折射率的改变,从而控制波导中传输光的相位改变。
由于相邻之间的调相波导中产生了可控相位差,使其光束产生偏转,进而达到光束扫描的目的。同时本发明中的金属电极与调相波导之间有一层较厚的二氧化硅隔离,可以减小施加电压对光路的影响,并且电极通过通孔生长在顶层二氧化硅上,如图6所示。因为电光调制器长度较大,所以其需要的电极较大,但其与波导设计分开,在电极设计时受到的限制更小,可以采取更好的电极排布方式。
本发明的光栅发射器60是一种具备周期性结构的器件。前面提到的输入光栅耦合器10就是起到将空间光或者光纤光耦合进入硅波导的功能。反之,光栅耦合器10也可以将硅波导中的光波辐射到空间中。光经过调相阵列50调制后,进入光栅发射器60,OPA芯片一个重要参数扫描角度受到发射光栅间隔大小的影响,所述发射光栅的间距与所述芯片的扫描角度的关系为:
其中,θx为芯片的扫描角度,q为整数,代表远场的衍射的不同级次,Δφx是相邻发射光栅之间的相位差,λ为光的波长,Λx为发射光栅的间距。所述发射光栅的间距Λx小于所述光的波长λ的二分之一。
据上式可以看出,当Λx<(λ/2)时,-π≤φx≤π,由sinθx的取值范围可知,此时在远场仅有一个可见光斑,扫描角度仅跟相位差有关且随着相位差变化线性变化,远场不会有旁瓣出现,即在间距小于半波长的情况下,远场光束扫描范围会增大,旁瓣不会出现,因此其光束扫描的质量也会得到明显提升。本发明中使用波长为1550nm,为了达到最大扫描角度,期望的发射光栅间距为775nm。为了实现更宽的扫描,需要发射光栅间隔尽可能的等于二分之一波长,但是过小的发射光栅间距间距会引入强耦合串扰,导致发射能量以及扫描性能严重降低,为此本发明采用特殊的光栅发射天线,其结构如图7所示,使用非均匀厚度等间隔周期排列的光栅发射阵列(W1-W5为一个周期),减少串扰耦合。需要注意的是,由于每个发射光栅的宽度不同,导致每个光栅的发射角度不同,需要重新设计每个光栅的刻蚀周期和深度,以此减少远场衍射的混乱现象。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

1.一种采用电光调制的光学相控阵芯片,其特征在于:所述芯片包括依次连接的光栅耦合器、多级MMI分光器、调相阵列和光栅发射器,所述光栅耦合器通过输入连接波导连接所述多级MMI分光器,所述多级MMI分光器通过输出连接波导连接所述调相阵列,所述调相阵列通过电场驱动调节自身的折射率,所述光栅发射器由等间隔周期性排列的发射光栅组成,同一个周期内的发射光栅的宽度、刻蚀周期和深度各不相同。
2.如权利要求1所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述多级MMI分光器包括依次连接的第一级分光器、第二级分光器和第三级分光器,所述第一级分光器通过分光器连接波导连接所述第二级分光器,所述第二级分光器通过分光器连接波导连接所述第三级分光器。
3.如权利要求2所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述输入连接波导、输出连接波导和分光器连接波导均为单模波导。
4.如权利要求3所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述调相阵列由多个调相波导组成,所述调相波导的折射率变化与调相波导中的传输光的相位变化的关系为:
其中,Δφ为所述调相波导中的传输光的相位变化,Δn为所述调相波导的折射率变化,L为所述调相波导的长度,λ为传输光的波长。
5.如权利要求4所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述调相波导采用PIN结构,所述PIN结构由中间的i型层和位于所述i型层两边的p+型层和n+型层组成,所述i型层为无掺杂硅材质。
6.如权利要求5所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述调相波导的折射率随外加电场的变化而变化,所述调相波导的折射率与外加电场的关系为:
Δn=Δne+Δnh=-[8.8×10-22ΔNe+8.5×10-18(ΔNh)0.8]
其中,Δn表示调相波导的折射率改变量,Δne和Δnh分别代表调相波导中电子和空穴浓度变化引起的折射率改变量,ΔNe和ΔNh代表由外加电场引起的调相波导内的电子和空穴浓度的变化。
7.如权利要求6所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述调相波导的制作过程包括如下步骤:
S1、以绝缘体上硅为衬底,其顶部设有硅顶层,在所述硅顶层上刻蚀出脊型波导以形成i型层,并在所述i型层的表面覆盖二氧化硅保护层;
S2、在所述i型层的两侧分别进行p+型和n+型的注入,以形成p+型层和n+型层,所述i型层、p+型和n+型构成PIN结构;
S3、在所述PIN结构的表面沉积二氧化硅,然后在p+型层和n+型层上方光刻出通孔,并溅射金属电极。
8.如权利要求7所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述发射光栅的间距与所述芯片的扫描角度的关系为:
其中,θx为芯片的扫描角度,q为整数,代表远场的衍射的不同级次,Δφx是相邻发射光栅之间的相位差,λ为光的波长,Λx为发射光栅的间距。
9.如权利要求8所述的一种采用电光调制的光学相控阵芯片,其特征在于:所述发射光栅的间距Λx小于所述光的波长λ的二分之一。
CN202310672541.8A 2023-06-08 2023-06-08 一种采用电光调制的光学相控阵芯片 Pending CN116679505A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310672541.8A CN116679505A (zh) 2023-06-08 2023-06-08 一种采用电光调制的光学相控阵芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310672541.8A CN116679505A (zh) 2023-06-08 2023-06-08 一种采用电光调制的光学相控阵芯片

Publications (1)

Publication Number Publication Date
CN116679505A true CN116679505A (zh) 2023-09-01

Family

ID=87780610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310672541.8A Pending CN116679505A (zh) 2023-06-08 2023-06-08 一种采用电光调制的光学相控阵芯片

Country Status (1)

Country Link
CN (1) CN116679505A (zh)

Similar Documents

Publication Publication Date Title
CN110174661B (zh) 一种基于偏振复用的光学相控阵二维激光雷达扫描芯片
Zhu et al. Silicon integrated microwave photonic beamformer
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
KR20180020035A (ko) 광 조향용 OPA, 및 그 OPA를 구비한 LiDAR 시스템
US11347129B2 (en) Rphase-controlled optical waveguide antenna array
US20070211982A1 (en) Optical Functional Waveguide Optical Modulator Arrayed Waveguide Grating And Dispersion Compensation Circuit
CN116088244B (zh) 一种级联式相控阵光学扫描系统
USRE41644E1 (en) Method for optical modulation at periodic optical structure band edges
US5652807A (en) Semiconductor optical modulator
CN111158173B (zh) 一种基于阵列波导光栅和声光调制光栅的集成激光扫描器
CN113534167A (zh) 可切换天线的相控阵激光雷达芯片、使用方法及激光雷达
EP1027628B1 (en) Device for, and method of, spatially separating frequency components of incident optical radiation
CN110750003A (zh) 一种快速二维扫描光波导相控阵列结构
Tan et al. Two-dimensional beam steering based on LNOI optical phased array
CN111220964B (zh) 混合材料相控阵激光雷达发射芯片、制作方法及激光雷达
CN111487602B (zh) 光相控阵列、激光雷达及光功率分配方法
CN116679505A (zh) 一种采用电光调制的光学相控阵芯片
CN113703244B (zh) 一种大规模集成的电光微环光学相控阵
CN100365471C (zh) 光学相控阵器
CN112904597A (zh) 一种光学相控阵器件及扫描方法
Zhou et al. Multi-line selective optical phased array with improved uniformity of radiated beam patterns
CN117250779B (zh) 激光扫描单元、模块、激光发射装置和激光雷达
CN113534564A (zh) 一种提升光学相控阵扫描角度的方法及器件
CN113204132A (zh) 一种端面耦合器及其制备方法
CN117270282A (zh) 一种基于二维光栅阵列的紧凑型InP基光学相控阵

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination