WO2023122842A1 - Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene - Google Patents

Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene Download PDF

Info

Publication number
WO2023122842A1
WO2023122842A1 PCT/CL2021/050136 CL2021050136W WO2023122842A1 WO 2023122842 A1 WO2023122842 A1 WO 2023122842A1 CL 2021050136 W CL2021050136 W CL 2021050136W WO 2023122842 A1 WO2023122842 A1 WO 2023122842A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
apalutamide
compound
preparation
preparation process
Prior art date
Application number
PCT/CL2021/050136
Other languages
English (en)
French (fr)
Inventor
Juan ARATA
Guillermo MENENDEZ
Maria Beatriz Garcia
Julieta LEITOFUTER
Dora Tombari
Constanza MANGONE
Original Assignee
Gador Limitada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gador Limitada filed Critical Gador Limitada
Priority to PCT/CL2021/050136 priority Critical patent/WO2023122842A1/es
Priority to ARP220103529A priority patent/AR128049A1/es
Publication of WO2023122842A1 publication Critical patent/WO2023122842A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/30Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention refers to the process for the preparation of Apalutamide: 4-[7-[6-cyano-5-(trifluoromethyl)-pyridin-3-yl]-8-oxo-6-thioxo-5,7-diazaspiro[3.4 ]oct-5-yl]-2-fluoro-N-methylbenzamide, of formula (I)
  • the present invention refers to the synthesis intermediates of formula XI used in the preparation process of Apalutamide. N-(6-cyano-5-(trifluoromethyl)pyridin-3-yl)-2-oxopyridin-1(2//)-carbothioamide and of formula XII
  • the present invention also comprises a process for preparing the Amorphous Solid Dispersion (DSA) containing Apalutamide, a pharmaceutically acceptable excipient in one or more solvents selected from methylene chloride, methanol, acetone, or their mixtures.
  • DSA Amorphous Solid Dispersion
  • Apalutamide is an antiandrogen and is indicated for the treatment of patients with non-metastatic, castration-resistant prostate cancer.
  • the compound of formula (III) is generated from the pyridine of formula (II) by treatment with thiophosgene and the compound of formula (V) by reaction of the aniline of formula (IV) with cyclobutanone in the presence of sodium cyanide in an acid medium.
  • Treatment with cyanide salts of a halogenated analogue of N-methylamide of formula (IV) is also present in a process described in document W02016/100645.
  • a way to obtain Apalutamide is completed through carbon-carbon coupling reactions, using metal catalysts.
  • DSA Amorphous Solid Dispersions
  • These DSAs consist of two or more components, generally a "polymeric carrier", the drug or API, and a stabilizing agent and/or surfactant.
  • the most important role of the carrier in DSA is to minimize the mobility of the active molecule to avoid phase separation and recrystallization of the drug during storage.
  • possibly the improvement in solubility is due to the change in the polymorphic state of the drug from being a crystalline solid to being an amorphous solid.
  • These DSA are considered homogeneous systems, not recognizing the phase separation between the components.
  • the present invention provides a novel process for obtaining Apalutamide of formula (I) and its DSA.
  • the synthesis process is advantageous compared to known methods because it does not require the use of highly toxic compounds that are difficult to obtain commercially, such as thiophosgene or cyanide salts.
  • it is economically efficient since it does not use expensive catalysts or protection/deprotection steps that negatively impact atom economy.
  • the process of the present invention is easy to scale to an industrial level and has a low environmental impact since it replaces thiophosgene with a solid, safe, non-volatile thiocarbonylating agent that is easy to transport.
  • the process object of the present invention includes novel intermediates, as well as the methods for their preparation.
  • the synthetic process object of the invention comprises: a) nucleophilic substitution of 1-aminocyclobutane-l-carboxylic acid on a compound of formula 4-halo-2-fluoro-N-methylbenzamide (Xl) where the halogen in position 4 is selected from the chloro, bromo or iodo group; to give the compound of formula (Al): l-((3-fluoro-4-(methylcarbamoyl)phenyl)amino)cyclobutane-l-carboxylic acid.
  • the process object of the present invention also offers significant advantages over similar processes described in the previously cited documents.
  • Compound A-2 is directly isolated by precipitation with water and isolated by filtration with yields ranging between 92-95%.
  • a thiocarbonylating agent preferably selected from a group of safe and commercially available thiocarbonylating agents
  • the compound of formula (II) can be treated with a safe and commercially available thiocarbonylating agent to obtain the intermediate of formula (XII) or a mixture thereof.
  • a thiocarbonylating agent instead of thiophosgene provides numerous operational advantages at the industrial level: it avoids the handling of a highly toxic reagent that is difficult to transport, impacting supply times and costs.
  • the thiocarbonylating agents used are solids that are easy to handle in large quantities, are nonvolatile, and are easy to transport. d) condensation of one of the activated intermediates of formula (XI) or (XII) or a mixture of them, either isolated or in a one pot process, with an ester of formula (A-2) to obtain crude Apalutamide.
  • the process detailed in the present invention provides the necessary conditions to carry out the last two stages in a single synthetic stage ("one-pot"), which provides the reduction of numerous hours of work and industrial isolation operations, resulting in lower operating costs. .
  • the conditions developed in the present invention result in a product that only requires a simple purification by recrystallization to achieve the quality suitable for use in humans. e) purification of crude Apalutamide obtained in step d).
  • the intermediates of formula (XI) and (XII) are novel and form part of the present invention. Their use is particularly advantageous since they give rise to the thiohydantoin nucleus of Apalutamide and other antiandrogenic agents, avoiding the use of thiophosgene. Instead, they are generated using safe, commercially available thiocarbonylating agents.
  • the thiocarbonylating agents of step c) can be: l,l'-thiocarbonylbis(pyridin-2(lH)-one), 1,1-thiocarbonylbis(lH-benzotriazole, 1-1-thiocarbonyldiimidazole, phenylthionochloroformate, 0,0-di (pyridin-2-yl)carbonothionate.
  • the process for obtaining the amorphous solid dispersion (DSA) containing the Apalutamide obtained by the process of the present invention a pharmaceutically acceptable excipient in one or more solvents selected from methanol, acetone, or their mixes.
  • “Pharmaceutically acceptable excipients” can be selected from Hydroxypropylmethylcellulose acetate succinate (HPMCAS) cas number 71138-97-1, it is a mixture of acetic acid and hydroxypropylmethylcellulose monosuccinic acid esters (IUPAC name cellulose, 2-hydroxypropylmethyl, acetate, hydrogen butanedioate). Different grades are available, differing based on degree/ratio of substitution (acetyl content/succinoyl content) and particle size (micronized and granular).
  • HPMCAS Hydroxypropylmethylcellulose acetate succinate
  • the HPMCAS with Apalutamide is HPMCAS-LG (granular grade) or HPMCAS-LF (micronized grade), particularly HPMCAS-LG in a batch size of 2 Kg.
  • Patent W02016090098A1 describes conditions that require longer process time, drying of the dispersion and use of solvents such as dichloromethane. Our process preferably uses acetone as a solvent, and applies conditions that prevent the subsequent drying of the dispersion with the consequent reduction in operating times and handling of a high-power asset with the potential impact on the health of operators.
  • solid dispersion refers to a solid state system comprising at least two components, where one component is more or less uniformly dispersed throughout the other component.
  • said dispersion of the components is such that the system is chemically or physically uniform or homogeneous or consists of one phase, said solid dispersion will be referred to herein as a solid solution.
  • Solid solutions are preferred physical systems because the components in them are often readily bioavailable to the organisms to which they are administered. This advantage allows said solid solutions to form liquid solutions when they come into contact with a liquid medium such as gastric juices.
  • the ease of dissolution can be attributed at least in part to the fact that the energy required for the dissolution of the components of a solid solution is less than that required for the dissolution of the components of a crystalline or microcrystalline solid phase.
  • Example 1 Synthesis of l-((3-fluoro-4-(methylcarbamoyl)phenyl)amino)cyclobutane-l-carboxylic acid (Al)
  • the 1-((3-fluoro-4-(methylcarbamoyl)phenyl)amino)cyclobutane-1 was charged in a 3-L three-necked flask equipped with magnetic stirring, a refrigerant, a temperature sensor, distillation equipment and a Nitrogen stream.
  • the resulting solution was concentrated to reach an estimated final volume of 600 mL.
  • the solution was gradually cooled down to an internal temperature of less than 5 °C.
  • the resulting suspension was kept under stirring at said temperature for one hour.
  • Example 7 Purification of methyl l-((3-fluoro-4-(methylcarbamoyl)phenyl)amino)cyclobutane-l-carboxylate (A-2)
  • Apalutamide (885 g) obtained in Example 10 and Methanol (4.0 L) were charged into a 12 L three-necked flask equipped with mechanical agitation, refrigerant and temperature sensor. It was brought to reflux and the resulting solution was filtered through a cellulose pad. The plate was washed with hot Methanol (0.4 L), the clear solution refluxed, and 880 mL of water added. It gradually cooled down to an internal temperature of less than 5 °C. The resulting suspension was kept under stirring at said temperature for one hour.
  • a solids percentage (Apalutamide and pharmaceutically acceptable excipient) of 12.5% w/w in acetone (75.15 g) was used.
  • the nozzle inlet temperature (T°inlet) was adjusted to achieve a cyclone outlet temperature of 65-70°C.
  • a total of 2.25 kg of DSA-PLT100 were obtained with an average DSA/h of 67.3g/h. The yields were on average 92.6%.
  • the solid obtained was characterized by X-ray powder diffraction (Figure 1) corresponding to an amorphous solid with a Particle Size Distribution of less than 40 microns and with a characteristic infrared spectrum (Fig. 2 a and b).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención se refiere al proceso de preparación de Apalutamida, de fórmula (I) FNONHCH3NNCF3CNOS(I) Además, se refiere a los intermediarios de síntesis utilizados en el proceso de preparación de la Apalutamida, de formula XI Compuesto XINOSN CNCF3NHN-(6-ciano-5-(trifluorometil)piridin-3-il)-2-oxopiridin-1(2H)-carbotioamida y de formula XII SN CNCF3NHNNCF3C NHCompuesto XII1,3-bis(6-ciano-5-(trifluorometil)piridin-3-il)tiourea También la presente invención comprende un proceso de preparación de la Dispersión Solida Amorfa que contiene Apalutamida, un excipiente farmacéuticamente aceptable en uno o más solventes seleccionados entre metanol, acetona, o sus mezclas.

Description

PROCESO PARA LA PREPARACIÓN DE APALUTAMIDA, INTERMEDIARIOS DE
SINTESIS Y LA DISPERSION SOLIDA AMORFA QUE LA CONTIENE
MEMORIA DESCRIPTIVA
CAMPO DE LA INVENCIÓN
La presente invención se refiere al proceso de preparación de Apalutamida: 4-[7-[6-ciano-5- (trifluorometil)-piridin-3-il]-8-oxo-6-tioxo-5,7-diazaespiro[3.4]oct-5-il]-2-fluor-N- metilbenzamida, de fórmula (I)
Figure imgf000003_0001
Además, la presente invención se refiere a los intermediarios de síntesis de formula XI utilizados en el proceso de preparación de la Apalutamida
Figure imgf000003_0002
N- (6-ciano-5-(trifluorometil)piridin-3-il)-2-oxopiridin-l(2//)-carbotioamida y de formula XII
Figure imgf000003_0003
Compuesto XII
1 ,3 -bis(6-ciano-5-(trifluorometil)piridin-3 -il)tiourea También la presente invención comprende un proceso de preparación de la Dispersión Solida Amorfa (DSA) que contiene Apalutamida, un excipiente farmacéuticamente aceptable en uno o más solventes seleccionados entre cloruro de metileno, metanol, acetona, o sus mezclas.
ANTECEDENTES DE LA INVENCIÓN
Apalutamida es un antiandrógeno y está indicado para el tratamiento de pacientes con cáncer de próstata no metastásico, resistente a la castración.
El documento WO2007/126765 A2 describe compuestos derivados del núcleo hidantoína y métodos para su síntesis, como se muestra en el Esquema 1. Incluye un proceso de preparación de Apalutamida consistente en hacer reaccionar el isotiocianato de formula (III) con el nitrilo de formula (V) por aplicación de microondas a 80°C durante 20 hs.
Esquema 1
Figure imgf000004_0001
A su vez, el compuesto de formula (III) es generado a partir de la piridina de formula (II) por tratamiento con tiofosgeno y el compuesto de formula (V) por reacción de la anilina de formula (IV) con ciclobutanona en presencia de cianuro de sodio en medio ácido.
Los documentos W02008/119015 A2 y WO 2011/103202 describen métodos similares que, si bien prescinden del empleo de microondas, obtienen Apalutamida a través del intermediario de formula (III) generado por tratamiento con tiofosgeno.
El tratamiento con sales de cianuro de un análogo halogenado de laN-metilamida de formula (IV) también está presente en un proceso descripto en el documento W02016/100645. En este documento, un camino de obtención de Apalutamida se completa a través de reacciones de acoplamiento carbono-carbono, empleando catalizadores metálicos.
El documento W02016/100652 A2 reporta un proceso que se resume en el Esquema 2. Un derivado A-protegido del ácido ciclobutancarboxílico de formula (VII) se hace reaccionar con la piridina de formula (II), la amida resultante de formula (VIII) se desprotege en el paso siguiente para dar la consiguiente amina de formula (IX). Dicha amina se somete a N-aril ación con halogenuro de arilo de formula (X). Finalmente, la formación del núcleo de tiohidantoína lleva a Apalutamida, por un camino directo cuando el sustituyente W es N- mctilamida o por previa amidación cuando el sustituyente W es metoxi-.
Esquema 2
Figure imgf000005_0001
Si bien este enfoque evita el empleo de sales de cianuro, obtiene Apalutamida a través de un camino largo, de sucesivas transformaciones, protecciones y desprotecciones.
Como se muestra en el esquema 3, diversos documentos muestran vías de síntesis que evitan los derivados de cianuro a través del uso de derivados de ácido carboxílico o ésteres de ácido carboxílico o sus sales (compuestos A¡). En los documentos W02018/136001, CN108069869, US2019/0276424 Al y WO2019/229625 Al, estos intermedios (A¡) se hacen reaccionar preferentemente con el derivado isotiocianato de formula (III), generado previamente por el tratamiento de la piridina de formula (II) con tiofosgeno. Por otro lado, en el documento CN 107501237 se prefiere generar el compuesto de formula (III) in situ poniendo en contacto uno de los compuestos (A¡) con la piridina de formula (II) en presencia de tiofosgeno. El documento US2020/0024250 Al emplea sales orgánicas o inorgánicas de formula (Ai) (G = OH) para obtener Apalutamida a partir del isotiocianato de formula (III). Esquema 3
Figure imgf000006_0001
En función de lo expuesto, se evidencia la necesidad de contar con un proceso de síntesis de Apalutamida que sea sencillo, que no emplee reactivos extremadamente tóxicos y difíciles de transportar como el tiofosgeno o los cianuros, que no involucre el empleo de radiación de microondas, ni métodos largos de protección y desprotección, que no emplee catalizadores y/o reactivos costosos o nocivos para el medio ambiente. Se requiere de un proceso que posea aplicabilidad industrial siendo económicamente viable en escala productiva. Es de destacar los procesos mencionados anteriormente en la solicitud US 2019/0276424 ya que presenta ejemplos ejecutados en viales sellados en cantidades de miligramos, tiempos de reacción superiores a 60 hs y en donde ni siquiera se aísla el producto motivo de la invención. Los rendimientos son estimados empleando técnicas analíticas. Además, la pureza de las muestras no es reportada siendo esto una de las condiciones indiscutibles a cumplir en el caso de ingredientes farmacéuticos activos de uso en humanos.
El documento WO2019016747 describe dispersiones solidas amorfas de Apalutamida con excipientes farmacéuticamente aceptables, en especial hidroxipropilmetilcelulosa ftalato (HPMC ftalato), copovidona, acetato de celulosa ftalato, polivinil acetato ftalato. Los procedimientos utilizados en este antecedente no comprenden escalado industrial ya que utilizan evaporación del solvente con vacío de la solución obtenida. Además, se observan rendimientos muy bajos y la necesidad de realizar un posterior secado luego de producida la dispersión solida amorfa.
Finalmente, teniendo en cuenta la pobre solubilidad de Apalutamida en los medios acuosos, se presentan las condiciones para la obtención de la Dispersión Solida Amorfa que contiene este activo. Es conocido que la formación de dispersiones solidas amorfas es la estrategia más importante y de avanzada para mejorar la velocidad de disolución y la solubilidad aparente de drogas pobremente solubles en medios acuosos. Existen otras estrategias posibles para mejorar las características físicas de drogas con baja solubilidad en agua como por ejemplo la disminución del tamaño de partículas por micronización, o bien el empleo de fases solidas amorfas de los activos, pero ambas presentan severos inconvenientes al evaluar las estabilidades de estas durante los procesos de formulación ya que existe una marcada tendencia de los amorfos a cristalizar o transformarse en las fases solidas cristalinas termodinámicamente más estables. Las Dispersiones Solidas Amorfas (DSA) han demostrado su estabilidad en estas condiciones. Estas DSA consisten en dos o más componentes, generalmente un “carrier polimérico”, la droga o IFA y un agente estabilizante y/o surfactante. El rol más importante del carrier en la DSA es minimizar la movilidad de la molécula de activo para evitar la separación de fases y la recristalización de la droga durante el almacenamiento. Por otro lado, posiblemente la mejora de la solubilidad se deba al cambio en el estado polimórfico de la droga pasando de ser un sólido cristalino a ser un sólido amorfo. Estas DSA son consideradas sistemas homogéneos, no reconociéndose la separación de fases entre los componentes.
DESCRIPCION DETALLADA DE LA INVENCIÓN
La presente invención provee un proceso novedoso para la obtención de Apalutamida de formula (I) y de su DSA. El proceso de síntesis es ventajoso en comparación con los métodos conocidos porque no requiere del uso de compuestos altamente tóxicos ni difíciles de obtener comercialmente como tiofosgeno o como las sales de cianuro. Además, resulta económicamente eficiente ya que no emplea catalizadores costosos ni etapas de protección/desprotección que impactan negativamente en la economía de átomos. El proceso de la presente invención es sencillo de escalar a nivel industrial y tiene bajo impacto medioambiental ya que reemplaza el tiofosgeno por un agente tiocarbonilante sólido, seguro, no volátil y sencillo de transportar. El proceso objeto de la presente invención incluye intermediarios novedosos, así como los métodos para su preparación.
Como se muestra en el Esquema 4, el proceso sintético objeto de la invención, comprende: a) sustitución nucleofílica del ácido 1-aminociclobutano-l-carboxílico sobre un compuesto de fórmula 4-halo-2-fluoro-N-metilbenzamida (X-l) donde el halógeno en posición 4 se selecciona del grupo cloro, bromo o yodo; para dar el compuesto de fórmula (A-l): ácido l-((3-fluoro-4- (metilcarbamoil)fenil)amino)ciclobutano-l-carboxílico. Durante esta etapa, el proceso objeto de la presente invención, también ofrece ventajas significativas respecto de procesos similares descriptos en los documentos previamente citados. Las ventajas se detallan a continuación: empleo para la sustitución nucleofilica sales de cobre, específicamente yoduro cuproso en presencia de carbonato de potasio en dimetilsulfóxido lo que facilita el proceso de aislamiento del intermedio de formula A-l, el que es obtenido directamente por agregado de agua al medio de reacción lográndose así la precipitación del compuesto y evitando procesos extractivos tediosos y de difícil aplicación industrial. b) esterificación del grupo carboxílico del compuesto de fórmula (A-l) para dar el compuesto de fórmula (A-2). En esta etapa se desarrollaron condiciones de reacción que permiten la obtención del intermedio A-2 en un corto período de tiempo (1,5-3 hs) versus los tiempos reportados en los documentos previamente mencionados que oscilan entre 16 y 22 hs. El compuesto A-2 es aislado directamente por precipitación con agua y aislado por filtración con rendimientos que oscilan entre 92-95%. c) tratamiento del compuesto de fórmula (II) con un agente tiocarbonilante, preferentemente seleccionado de un grupo de agentes tiocarbonilantes seguros y comercialmente disponibles, para obtener el intermediario de fórmula (XI). Alternativamente, el compuesto de fórmula (II) puede tratarse con un agente tiocarbonilante seguro y comercialmente disponible, para obtener el intermediario de fórmula (XII) o una mezcla de ellos. El empleo de un agente tiocarbonilante en lugar de tiofosgeno brinda numerosas ventajas operativas a nivel industrial: evita el manipuleo de un reactivo altamente toxico y de difícil transporte impactando en los tiempos y costos de provisión. Los agentes tiocarbonilantes empleados son sólidos de fácil manipuleo en grandes cantidades, son no volátiles y de fácil transporte. d) condensación de uno de los intermediarios activados de fórmula (XI) o (XII) o una mezcla de ellos, ya sea aislados o en un proceso one pot, con un éster de fórmula (A-2) para obtener Apalutamida crudo. El proceso detallado en la presente invención brinda las condiciones necesarias para realizar las dos últimas etapas en una única etapa sintética ( “one-pot”) lo que brinda la reducción de numerosas horas de trabajo y operaciones industriales de aislamiento redundando en un menor costo operativo. Las condiciones desarrolladas en la presente invención originan un producto que solo requiere de una purificación simple por recristalización para lograr la calidad adecuada para su uso en humanos. e) purificación de Apalutamida crudo obtenido en el paso d). Esquema 4
Figure imgf000009_0001
Los intermediarios de fórmula (XI) y (XII) son novedosos y forman parte de la presente invención. Su uso es particularmente ventajoso ya que dan origen al núcleo de tiohidantoína propio de Apalutamida y otros agentes antiandrogénicos, evitando el uso de tiofosgeno. En cambio, se generan empleando agentes tiocarbonilantes seguros y comercialmente disponibles. Los agentes tiocarbonilantes del paso c) pueden ser: l,l'-tiocarbonilbis(piridin-2(lH)-ona), 1,1 - tiocarbonilbis(lH-benzotriazol, 1-1 -tiocarbonildiimidazol, feniltionocloroformiato, 0,0- di(piridin-2-il)carbonotionato .
Además, en la presente invención, se describe el proceso de obtención de la dispersión sólida amorfa (DSA) que contiene la Apalutamida obtenido por el proceso de la presente invención, un excipiente farmacéuticamente aceptable en uno o más solventes seleccionados entre metanol, acetona, o sus mezclas.
Los “excipientes farmacéuticamente aceptables” pueden seleccionarse entre succinato acetato de hidroxipropilmetilcelulosa (HPMCAS) número cas 71138-97-1, es una mezcla de ácido acético y esteres de ácido monosuccinico de hidroxipropilmetilcelulosa (nombre IUPAC celulosa, éter de 2-hidroxipropilmetilo, acetato, butanodioato de hidrogeno). Hay distintos grados disponibles que se diferencian en función del grado/relación de sustitución (contenido de acetilo/contenido de succinoilo) y el tamaño de partícula (micronizado y granular). En un aspecto particular de la invención, el HPMCAS con Apalutamida es HPMCAS-LG (grado granular) o HPMCAS-LF (grado micronizado), particularmente HPMCAS-LG en un tamaño de lote de 2 Kg. La patente W02016090098A1 describe condiciones que requieren de mayor tiempo de proceso, secado de la dispersión y empleo de solventes tales como diclorometano. Nuestro proceso emplea como solvente preferentemente acetona, y aplica condiciones que evitan el posterior secado de la dispersión con la consiguiente reducción de tiempos operativos y manipuleo de un activo de alta potencia con el potencial impacto en la salud de los operadores.
El empleo de acetona como solvente de formulación junto con el excipiente HPMCAS-LG y las condiciones desarrolladas en nuestros laboratorios conducen como resultado a un proceso robusto y fácil de escalar. Al utilizar acetona como solvente de formulación, no fue necesario incluir un proceso de secado en estufa a 40°C posterior al proceso de dispersión.
Se optimizaron los parámetros de formulación diferenciándose significativamente de la patente W02016090098A1.
Operativamente se optimizó el uso del equipo spray dryer Buchi Mini Spray Dryer B-290 mejorándose notablemente la cantidad obtenida de DSA/h con respecto a la bibliografía existente.
El término "dispersión solida" se refiere a un sistema en estado solido que comprende al menos dos componentes, donde un componente se dispersa mas o menos de manera uniforme en la totalidad del otro componente. Cuando dicha dispersión de los componentes es tal que el sistema es química o físicamente uniforme u homogéneo o consiste en una fase, dicha dispersión solida será denominada una solución solida en la presente. Las soluciones solidas son sistemas físicos que se prefieren debido a que los componentes en ellas suelen ser fácilmente biodisponibles para los organismos a las que se los administran. Esta ventaja permite que dichas soluciones solidas pueden formar soluciones liquidas cuando entran en contacto con un medio liquido tal como los jugos gástricos. La facilidad de disolución puede ser atribuida al menos en parte al hecho de que la energía requerida para la disolución de los componentes de una solución solida es menor que la requerida para la disolución de los componentes de una fase solida cristalina o microcristalina.
EJEMPLOS DE REALIZACION DE LA INVENCION
Los siguientes ejemplos son ilustrativos de algunos aspectos de la invención y se proveen con el sólo efecto de ayudar a entender el alcance de la invención y de ninguna manera deben interpretarse como limitantes del alcance de la invención que se describe en las reivindicaciones que siguen a continuación. Ejemplo 1: Síntesis del ácido l-((3-fluoro-4-(metilcarbamoil)fenil)amino)ciclobutano-l- carboxílico (A-l)
Figure imgf000011_0001
En un balón de tres bocas de 5 L, provisto de agitación mecánica, refrigerante, sensor de temperatura y atmósfera de Nitrógeno, se cargaron 4-bromo-2-fluoro-N-metilbenzamida (249,3 g; 1,07 mol), ácido 1-aminociclobutano-l-carboxílico (172,9 g; 1,50 mol), carbonato de potasio (327,4 g; 2,37 mol), yoduro cuproso (41,2 g; 0,22 mol), 1,2 L de DMSO y 50 mL de agua. La mezcla de reacción se mantuvo a 85-95 °C durante 7 - 9 hs (control de fin de reacción por UPLC). Finalizada la reacción se agregó agua (1,25 L) gota a gota, se homogeneizó la suspensión por agitación y se filtró. El filtrado obtenido se sometió a lavados con diclorometano (3 x 500 mL). Se separaron las fases y se ajustó el pH de la fase acuosa con una solución de ácido clorhídrico 6N. Alcanzado pH =3, se obtuvo una suspensión que se enfrió, se mantuvo a 2 °C durante una hora y se filtró. El sólido húmedo se lavó con agua y resolvió completamente en una solución de hidróxido de sodio 4N. La solución se mantuvo bajo agitación a 20 °C durante una hora. Se ajustó el pH de la fase acuosa con una solución de ácido clorhídrico 6N. Alcanzado pH =3-4, se obtuvo una suspensión que se mantuvo a 2-5 °C durante una hora y se filtró. El sólido húmedo se lavó con agua (3 x 300 mL) y secó en estufa con vacío a 40 °C para obtener 104,0 g del compuesto (A-l). Las aguas madres resultantes se llevaron a pH= 1-2 con 320 mL de solución de ácido clorhídrico 6 N, se filtró el sólido obtenido y se lavó con agua. El sólido obtenido se secó en estufa a presión reducida a 40 °C para obtener una segunda cosecha de 119,2 g del compuesto (A-l). (Masa total obtenida: 222,1 g, 0,83 mol, Rendimiento: 78%, Pureza (UPLC): 99%)
Ejemplo 2: Síntesis del ácido l-((3-fluoro-4-(metilcarbamoil)fenil)amino)ciclobutano-l- carboxílico (A-l)
En un balón de 22 L de tres bocas, provisto de agitación mecánica, refrigerante, sensor de temperatura y corriente de Nitrógeno, se cargaron 4-bromo-2-fluoro-N-metilbenzamida (995 g; 4,29 mol), ácido 1-aminociclobutano-l-carboxílico (691 g; 6,0 mol), carbonato de potasio (1304 g; 9,43 mol), yoduro cuproso (163 g; 8,6 mol), DMSO (5 L) y agua (200 mL). La mezcla de reacción se mantuvo a 80-95 °C durante 9-11 hs. Finalizada la reacción se llevó a 40 °C y se agregó lentamente agua (5 L). Se homogeneizó la suspensión por agitación y se aisló un insoluble. El fdtrado obtenido se sometió a un lavado con diclorometano (3 L). Se separaron las fases y se ajustó el pH de la fase acuosa con una solución de ácido clorhídrico 6N. Alcanzado pH =3, se obtuvo una suspensión que se enfrió, se mantuvo a menos de 5 °C durante una hora y se filtró. El sólido húmedo se lavó con agua fría (3 x 800 mL y seco hasta peso constante para rendir 983 g del Compuesto (A-l) crudo (Rendimiento = 86%, Pureza (UPLC): 99%)
Ejemplo 3: Purificación del ácido l-((3-fluoro-4-(metilcarbamoil)fenil)amino)ciclobutano-l- carboxílico (A-l)
En un balón de 12 L provisto de agitación, refrigerante, sensor de temperatura y corriente de Nitrógeno se cargó el ácido l-((3-fhioro-4-(metilcarbamoil)fenil)amino)ciclobutano-l- carboxílico crudo (983 g). Se agregó lentamente una solución de hidróxido de sodio 4N hasta que se alcanzó disolución total a 25-30°C. La solución se mantuvo bajo agitación a 25 °C durante una hora. Se llevó a pH =1 con una solución de ácido clorhídrico 6N. Alcanzado pH = 1, se obtuvo una suspensión espesa que se mantuvo a 2-5 °C durante una hora y se filtró. El sólido húmedo se lavó repetidas veces con agua y se secó en estufa con corriente de aire a 40 °C para obtener 981 g del compuesto (A-l) (Rendimiento = 99,8%, Pureza (UPLC): 99%). 1H-NMR (300MHz, DMSO-d6): 5 = 12.61 (sa, 1H), 7.63 (t, 1H, J= 4.6Hz), 7.46 (t, 1H, J = 8,7Hz), 7.16 (s, 1H), 6.23 (dd, 1H, J = 8.7Hz, 2.1Hz), 6.00 (dd, 1H, J = 14.4Hz, 2.1Hz), 2.72 (d, 3H, J = 4.5Hz), 2.60 (m, 2H), 2.14 (m, 2H), 1.97 (m, 2H).
Ejemplo 4: Preparación de l-((3-fluoro-4-(metillcarbamoil)fenil)amino)ciclobutano-l- carboxilato de metilo (A-2)
Figure imgf000012_0001
En un balón de 5 L de tres bocas, provisto de agitación magnética, refrigerante, sensor de temperatura y atmósfera de Nitrógeno, se cargaron el ácido l-((3-fluoro-4- (metilcarbamoil)fenil)amino)ciclobutano-l-carboxílico (A-l) (216,7 g; 0,81 mol) y 1,1 L de Metanol. Se enfrío con baño de hielo/agua. Cuando se alcanzó una temperatura interior menor a 10 °C, se agregó lentamente cloruro de tionilo (110 mL; 1,52 mol). Al finalizar el agregado, se llevó la mezcla de reacción a reflujo, hasta alcanzar conversión completa luego de 1 hora. Finalizada la reacción, se cortó por agregado de agua (1,1 L). La suspensión resultante se enfrió lentamente y se mantuvo con agitación durante una hora a una temperatura menor a 5 °C. Se filtró el sólido, lavó con agua (3 x 200 mL) y luego con una solución de hidróxido de sodio 0,5 N (50 ml). El sólido húmedo se secó con vacío a 40 °C para obtener 216,2 g (0,77 mol) del compuesto (A-2) como un sólido blanco (Rendimiento = 95%, Pureza (UPLC): 99%).
Ejemplo 5: Purificación de l-((3-fluoro-4-(metillcarbamoil)fenil)amino)ciclobutano-l- carboxilato de metilo (A-2)
En un balón de 3 L de tres bocas provisto de agitación magnética, refrigerante, sensor de temperatura, equipo de destilación y corriente de Nitrógeno se cargó el l-((3-fluoro-4- (metillcarbamoil)fenil)amino)ciclobutano-l-carboxilato de metilo crudo (209,0 g) y Metanol (1,45 L). Se llevó a reflujo y se alcanzó disolución total luego de una hora de iniciado el calentamiento. Se concentró la solución resultante hasta alcanzar un volumen final estimado de 600 mL. La solución se enfrió progresivamente hasta una temperatura interior menor a 5 °C. La suspensión resultante se mantuvo bajo agitación a dicha temperatura durante una hora. El producto así obtenido se filtró, se lavó con agua (2 x 150 mL) y secó en estufa con vacio a 40 °C para obtener 198.3 g del compuesto (A-2) (Rendimiento = 95%, Pureza (UPLC): 99.6%).
Ejemplo 6: Preparación del l-((3-fluoro-4-(metillcarbamoil)fenil)amino)ciclobutano-l- carboxilato de metilo (A-2)
En un balón de 12 L de tres bocas, provisto de agitación mecánica, refrigerante, sensor de temperatura, frascos lavadores conteniendo hidróxido de sodio 4N y atmósfera de Nitrógeno, se cargaron el ácido l-((3-fluoro-4-(metilcarbamoil)fenil)amino)ciclobutano-l-carboxílico (A-l) (980 g; 3,68 mol) y 4,9 L de Metanol. Se enfrió con baño de hielo/agua. Cuando se alcanzó una temperatura interior menor a 5 °C, se agregó lentamente cloruro de tionilo (495 mL; 6,81 mol), manteniendo la temperatura interior por debajo de 20 °C. Al finalizar el agregado, se llevó la mezcla de reacción a reflujo, hasta alcanzar conversión completa luego de 1- 1,5 horas, finalizada la reacción, se agregó agua (4,9 L) lentamente a 50-60 °C. La suspensión resultante se enfrió lentamente y se mantuvo con agitación durante una hora a una temperatura menor a 5 °C. Se filtró y lavó el sólido con agua y con una solución de hidróxido de sodio 0,5 N. El sólido húmedo se secó parcialmente en estufa con corriente de aire a 40 °C para obtener 957 g de un sólido blanco cristalino ligeramente húmedo que se recristaliza tal cual en el ejemplo 7.
Ejemplo 7: Purificación de l-((3-fluoro-4-(metillcarbamoil)fenil)amino)ciclobutano-l- carboxilato de metilo (A-2)
En un balón de 12 L de tres bocas provisto de agitación magnética, refrigerante, sensor de temperatura, equipo de destilación y atmósfera de Nitrógeno se cargó el l-((3-fluoro-4- (metillcarbamoil)fenil)amino)ciclobutano-l-carboxilato de metilo crudo (957 g) proveniente del Ejemplo 6. Luego de agregar Metanol (6,7 L), se llevó a reflujo y se alcanzó disolución total luego de una hora de iniciado el calentamiento. Se concentró la solución resultante a presión reducida hasta alcanzar un volumen final estimado de 2,9 L. Al alcanzar el volumen establecido, se llevó a reflujo a presión atmosférica y se realizó un ajuste de pH hasta pH= 12 con solución metanólica al 10% de hidróxido de potasio (90 mL). La solución se enfrió progresivamente hasta alcanzar una temperatura menor a 5 °C. La suspensión resultante se mantuvo bajo agitación a dicha temperatura durante una hora. El producto así obtenido se filtró, se lavó con agua (3 x 600 mL) y se secó en estufa con corriente de aire a 40 °C para obtener 876 g del compuesto (A-2) (Rendimiento global de preparación y purificación = 85%, Pureza (UPLC): 99%). 1H-NMR (500MHz, CDC13-dl): 5 = 7.90 (t, 1H, J = 9.0Hz), 6.58 (d, 1H, J = 9.0Hz), 6.30 (dd, 1H, J = 8.5Hz, 2.5Hz), 6.05 (dd, 1H, 15.0Hz, 2.0Hz), 4.76 (sa, 1H), 3.70 (s, 3H), 2.98 (dd, 3H, 5.0Hz, 1.0Hz), 2.75 (m, 2H), 2.20 (m, 2H), 2.10 (m, 2H).
Ejemplo 8: Preparación de Apalutamida
Figure imgf000014_0001
En un equipo de 5 L de tres bocas, provisto de agitación mecánica, refrigerante, sensor de temperatura y corriente de Nitrógeno, se cargaron l-((3-fluoro-4- (metillcarbamoil)fenil)amino)ciclobutano-l-carboxilato de metilo (A-2) (150 g; 0,53 mol), 5- amino-3-(trifluorometil)picolinonitrilo (160,3 g; 0,86 mol), l,l'-tiocarbonilbis(piridin-2(lH)- ona) (236,3 g; 1,02 mol) y tolueno (2,2 L). La mezcla de reacción se agitó y calentó a 100 °C hasta que no se observó mayor avance de reacción. Este avance se logró luego de 5 hs de calentamiento. Finalizada la reacción, se llevó lentamente a 5 °C, y se mantuvo durante una hora. Se filtró por placa de celulosa para eliminar subproductos sólidos: 2-hidroxipiridina y (A-2) remanente. El sólido se lavó con tolueno frío (3 x 75 mL). El filtrado total se concentró a presión reducida y se cristalizó el producto por agregado de isopropanol (900 mL) a 50-60 °C. La suspensión se enfrió progresivamente hasta una temperatura interior menor a 5 °C y se mantuvo bajo agitación a dicha temperatura durante una hora. El sólido así obtenido se filtró, lavó con isopropanol frío (3 x 75 mL) y se secó en estufa con vacio a 60 °C para obtener 178 g de Apalutamida (Rendimiento = 70%, Pureza (UPLC): 94%).
Ejemplo 9: Purificación de Apalutamida
En un balón de 3 L de tres bocas provisto de agitación mecánica, refrigerante y sensor de temperatura se cargó Apalutamida (174 g) obtenido en el Ejemplo 8. Se agregó Metanol (1040 mL) y agua (175 mL). Se llevó a reflujo y la solución resultante se filtró a través de placa de celulosa. La solución se enfrió progresivamente hasta una temperatura interior menor a 5 °C. La suspensión resultante se mantuvo bajo agitación a dicha temperatura durante una hora. El sólido así obtenido se filtró, lavó con una mezcla de Metanokagua = 3:7 (260 mL) y secó en estufa con vacio a 40 °C para obtener 140 g de Apalutamida como un sólido blanco. (Rendimiento = 81%, Pureza (UPLC): 97%).
Ejemplo 10: Preparación de Apalutamida
En un balón de 22 L de tres bocas, provisto de agitación mecánica, refrigerante, sensor de temperatura y corriente de Nitrógeno, se cargaron l-((3-fluoro-4- (metillcarbamoil)fenil)amino)ciclobutano-l-carboxilato de metilo (A-2) (845 g; 3,02 mol), 5- amino-3-(trifluorometil)picolinonitrilo (903 g; 4,83 mol), l,l'-tiocarbonilbis(piridin-2(lH)-ona) (1,33 kg; 5,73 mol) y tolueno (12,7 L). La mezcla de reacción se agitó a 90-100 °C hasta que no se observó mayor avance de reacción. Este avance se logró luego de 9 - 11 hs de calentamiento. Finalizada la reacción, se llevó lentamente a 5 °C y se mantuvo durante una hora. Se fdtró por lona para eliminar subproductos sólidos: 2-hidroxipiridina y (A-2) remanente. El sólido se lavó con tolueno frío (3 x 220 mL). El filtrado total se concentró a presión reducida hasta Rv = 3-4 y se cristalizó el producto por agregado de isopropanol (5 L) a 50-60 °C. La suspensión se enfrió progresivamente hasta una temperatura interior menor a 5 °C y se mantuvo bajo agitación a dicha temperatura durante una hora. El sólido así obtenido se fdtró, lavó con isopropanol frío (3 x 440 mL) y secó en estufa con vacío a 60 °C para obtener 979 g de Apalutamida (Rendimiento = 68%, Pureza (UPLC): 91%).
Ejemplo 11: Purificación de Apalutamida
En un balón de 12 L de tres bocas provisto de agitación mecánica, refrigerante y sensor de temperatura se cargó Apalutamida (885 g) obtenido en el Ejemplo 10 y Metanol (4,0 L). Se llevó a reflujo y la solución resultante se filtró a través de placa de celulosa. Se lavó la placa con Metanol caliente (0,4 L), la solución límpida se volvió a llevar a reflujo y se agregó 880 mL de agua. Se enfrió progresivamente hasta una temperatura interior menor a 5 °C. La suspensión resultante se mantuvo bajo agitación a dicha temperatura durante una hora. El producto así obtenido se filtró, se lavó en embudo con una mezcla de Metanol :agua = 3:7 (2 x 800 mL) y se secó en estufa a presión reducida a 60 °C para obtener 765 g de Apalutamida como un sólido blanco. (Rendimiento = 86%, Pureza (UPLC):> 96%). 1H-NMR (300MHz, DMSO-d6): 5 = 9.22 (dd, 1H,J= 2.1Hz, 0.6Hz), 8.76 (1H, J = 2.1Hz, 0.3Hz), 8,48 (ddd, 1H, J= 4.8Hz, 3.6Hz, 1.2Hz), 7.84 (1H, t, J = 8,1Hz), 7.47 (1H, dd, J = 10.5Hz, 1.8Hz), 7.39 (dd, J = 8.1Hz, 1.8Hz), 2.81 (d, 3H, J = 4.5Hz), 2.67 (m, 2H), 2.50 (m, 2H), 1.99 (m, 1H), 1.60, (m, 1H). Ejemplo 12: Dispersión Solida Amorfa de Apalutamida
Se trabajó con un porcentaje de sólidos (Apalutamida y excipiente farmacéuticamente aceptable) de 12,5% p/p en acetona (75.15 g). Se ajustó la temperatura de entrada de la tobera (T°inlet) para lograr una temperatura de salida al ciclón de 65-70°C. Condiciones: T°inlet: 145°C, Aspiración%: 100%, TTnert Loop: -18°C, CBomba: 30% T°outlet: 65-70°C y PtO: -59mbar. Se obtuvieron un total de 2,25 kg de DSA-PLT100 con una DSA/h promedio de 67,3g/h. Los rendimientos fueron en promedio del 92,6%. El sólido obtenido fue caracterizado por Difracción de Rayos X de polvo (Figura 1) correspondiendo a un sólido amorfo con una Distribución de Tamaño de Partícula menor a 40 micrones y con espectro infrarrojo característico (Fig. 2 a y b).
Figura 1
Figure imgf000016_0001
Referencia: Difracción Rayos X de polvo correspondiendo a un sólido amorfo (DSA de Apalutamida) con una Distribución de Tamaño de Partícula menor a 40 micrones Figura 2
Figure imgf000017_0001
Referencia: Espectro infrarrojo característico
Figura 2 cont.
Figure imgf000018_0001
El experto en la técnica tiene los conocimientos como para reconocer las condiciones, soluciones, reactivos, parámetros e instrumentos equivalentes a los descriptos anteriormente. El experto en la técnica tiene los conocimientos como para reconocer soluciones de referencia, métodos de calculo y ensayos de idoneidad adecuados.
Se hace constar que, con relación a esta fecha, el mejor método conocido por el solicitante para llevar a la practica la citada invención es el que resulta claro de la presente descripción de la invención.

Claims

REIVINDICACIONES n proceso de preparación de apalutamida de formula (I)
Figure imgf000019_0001
CARACTERIZADO porque comprende las siguientes etapas: a. Sustitución nucleofilica del ácido 1-aminociclobutano-l-carboxilico haciendo reaccionar el compuesto de fórmula (X-I): 4-halogeno-2-fluoro-N- metilbenzamida en presencia de carbonato de potasio, yoduro cuproso, dimetilsulfoxido y agua, para obtener el compuesto de formula (A-l): ácido 1- ((3-fluoro-4-(metilcarbamoil)fenil)amino)ciclobutano-l-carboxílico, b. purificación por recristalización del compuesto A-l empleando el sólido húmedo o seco. c. Esterificación del compuesto obtenido en el paso (a) o (b) para dar un compuesto de formula (A-2): l-((3-fhioro-4-(metillcarbamoil)fenil)amino)ciclobutano-l- carboxilato de metilo, en presencia de metanol y cloruro de tionilo, d. Hacer reaccionar un compuesto de formula (II): 5-amino-3- (trifluorometil)picolinonitrilo con un agente tiocarbonilante para obtener un compuesto intermediario de formula (XI),
Figure imgf000019_0002
N- (6-ciano-5-(trifluorometil)piridin-3-il)-2-oxopiridin-l(2//)-carbotioamida e. Condensación del intermediario de formula (XI) o (XII) o su mezcla con un éster de formula A-2 del paso b) para obtener apalutamida cruda de formula (I),
Figure imgf000020_0001
Compuesto XII l,3-bis(6-ciano-5-(triíluorometil)piridin-3-il)tiourea f. Purificación del producto del paso d. Un proceso de preparación de acuerdo con la reivindicación 1, CARACTERIZADO porque el halógeno del paso a) puede seleccionarse entre cloro, bromo, iodo. Un proceso de preparación de acuerdo con la reivindicación 1, CARACTERIZADO porque el paso b) se utiliza metanol y cloruro de tionilo como agentes de reacción. Un proceso de preparación de acuerdo con la reivindicación 1, CARACTERIZADO porque donde el agente tiocarbonilante del paso c) es l,r-tiocarbonilbis(piridin-2(lH)- ona), 1,1 -tiocarbonilbis(lH-benzotriazol, 1-1 -tiocarbonildiimidazol, feniltionocloroformiato, O,O-di(piridin-2-il)carbonotionato. Un proceso de preparación de acuerdo con la reivindicación 4, CARACTERIZADO porque el agente tiocarbonilante del paso c) es l,r-tiocarbonilbis(piridin-2(lH)-ona). Un proceso de preparación de acuerdo con la reivindicación 1, CARACTERIZADO porque la reacción del paso c) obtiene el intermediario de formula XI, o el intermediario de formula XII o una mezcla de ambos intermediarios. Un proceso de preparación de acuerdo con la reivindicación 6, CARACTERIZADO porque el intermediario obtenido en la reacción del paso c es el compuesto de formula XI. Un proceso de preparación de acuerdo con la reivindicación 6, CARACTERIZADO porque el intermediario obtenido en la reacción del paso c es el compuesto de formula XII. Un proceso de preparación de acuerdo con la reivindicación 6, CARACTERIZADO porque el intermediario obtenido en la reacción del paso c) es una mezcla de los compuestos de formula XI y XII. Un proceso de preparación de acuerdo con la reivindicación 1, CARACTERIZADO porque la purificación del paso e) se realiza con metanol. Un compuesto intermediario de formula XI utilizado en el proceso de preparación de la cláusula 1.
Figure imgf000021_0001
N- (6-ciano-5-(trifluorometil)piridin-3-il)-2-oxopiridin-l(2//)-carbotioamida Un compuesto intermediario de formula XII utilizado en el proceso de preparación de la cláusula 1.
Figure imgf000021_0002
Compuesto XII l,3-bis(6-ciano-5-(trifluorometil)piridin-3-il)tiourea Un proceso para la preparación de una dispersión solida amorfa (DSA) que contiene la apalutamida obtenida en la reivindicación 1, CARACTERIZADO porque un excipiente farmacéuticamente aceptable en uno o más solventes seleccionados entre metanol, acetona, o sus mezclas. Un proceso para la preparación de una dispersión solida amorfa (DSA) de acuerdo con la reivindicación 13, CARACTERIZADO porque el solvente es acetona pura. Un proceso para la preparación de una dispersión solida amorfa (DSA) de acuerdo con la reivindicación 13, CARACTERIZADO porque el excipiente farmacéuticamente aceptable es seleccionado entre HPMCAS, HPMCAS-LG, HPMCAS-LF. Un proceso para la preparación de una dispersión solida amorfa (DSA) de acuerdo con la reivindicación 13, CARACTERIZADO porque el excipiente farmacéuticamente aceptable es seleccionado HPMCAS-UG. Un proceso para la obtención de una Dispersión Solida Amorfa de apalutamida de acuerdo con la reivindicación 13, CARACTERIZADO porque comprende: a. El empleo de uno o más solventes, donde el/los solventes seleccionados pueden ser metanol, acetona, o sus mezclas, b. El empleo en el medio dispersante de un excipiente como HPMCAS, HPMCAS-LG, HPMCAS-LF, c. Empleo de soluciones que contienen apalutamida y el excipiente en una concentración aproximada de solidos que van del 8 al 15% p/p en el solvente/s elegido/s d. Aislamiento de la dispersión solida amorfa seca con una distribución de tamaño de partículas menor a 40 micrones e. Empleo de condiciones de temperatura de entrada y salida del equipo que permiten obtener rendimientos superiores al 90%. Un proceso para la obtención de una DSA de apalutamida de acuerdo con la reivindicación 15, CARACTERIZADO porque el solvente seleccionado es acetona pura.
PCT/CL2021/050136 2021-12-31 2021-12-31 Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene WO2023122842A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CL2021/050136 WO2023122842A1 (es) 2021-12-31 2021-12-31 Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene
ARP220103529A AR128049A1 (es) 2021-12-31 2022-12-21 Proceso de preparación de apalutamida, compuestos intermediarios utilizados en dicho proceso y proceso para la preparación de una dispersión sólida amorfa (dsa) que contiene la apalutamida

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050136 WO2023122842A1 (es) 2021-12-31 2021-12-31 Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene

Publications (1)

Publication Number Publication Date
WO2023122842A1 true WO2023122842A1 (es) 2023-07-06

Family

ID=86996733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050136 WO2023122842A1 (es) 2021-12-31 2021-12-31 Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene

Country Status (2)

Country Link
AR (1) AR128049A1 (es)
WO (1) WO2023122842A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090098A1 (en) * 2014-12-05 2016-06-09 Aragon Pharmaceuticals, Inc. Anticancer compositions
CN108069869A (zh) * 2016-11-09 2018-05-25 上海医药工业研究院 一种Apalutamide的制备方法及其中间体
WO2018136001A1 (en) * 2017-01-18 2018-07-26 Scinopharm Taiwan, Ltd. Process for preparing apalutamide
IN202041007966A (es) * 2020-02-25 2021-08-27

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090098A1 (en) * 2014-12-05 2016-06-09 Aragon Pharmaceuticals, Inc. Anticancer compositions
CN108069869A (zh) * 2016-11-09 2018-05-25 上海医药工业研究院 一种Apalutamide的制备方法及其中间体
WO2018136001A1 (en) * 2017-01-18 2018-07-26 Scinopharm Taiwan, Ltd. Process for preparing apalutamide
IN202041007966A (es) * 2020-02-25 2021-08-27

Also Published As

Publication number Publication date
AR128049A1 (es) 2024-03-20

Similar Documents

Publication Publication Date Title
US8563556B2 (en) Crystalline forms and two solvated forms of 4-amino-5-fluoro-3-[5-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl]quinolin-2(1H)-one lactic acid salts
US8722722B2 (en) Raltegravir salts and crystalline forms thereof
US20080275055A1 (en) Imatinib production process
EP3453708A1 (en) Process for the preparation of 5-chloro-n-(2-isopropoxy-5-methyl-4-piperidin-4-yl-phenyl)-n-2-(isopropylsulfonyl)phenyl)-2,4-diamine di-hydrochloride
EP2409967A1 (en) Polymorphs of n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide
US9133188B2 (en) Methods for preparing naphthyridines
ES2879294T3 (es) Formas polimórficas de Belinostat y procesos para la preparación de las mismas
JP2015508090A (ja) 固体形態のダビガトランエテキシレートメシレート及びその調製方法
KR20150045458A (ko) 페메트렉시드 및 이의 라이신 염의 제조공정
DK2656843T3 (en) Esters of bendamustine and related compounds, and medical use thereof
US9580414B2 (en) Salts and hydrates of antipsychotics
CN112430216B (zh) 消杀剂和农药中苯并咪唑类化合物的制备方法
WO2023122842A1 (es) Proceso para la preparación de apalutamida, intermediarios de sintesis y la dispersion solida amorfa que la contiene
WO2016188444A1 (zh) 一种尿酸转运蛋白抑制剂的钠盐及其结晶形式
US20180370958A1 (en) Route Of Synthesis For Opicapone
US20120245346A1 (en) Maleic acid salt and crystal thereof
US9981985B2 (en) Pharmaceutical formulations containing 3-(4-cinnamyl-l-piperazinyl) amino derivatives of 3-formylrifamycin SV and 3-formylrifamycin S and a process of their preparation
WO2012129942A1 (zh) 手性3-羟基吡啶-4-酮类衍生物及其合成和用途
WO2021100019A1 (en) Prodrugs of abiraterone
WO2020119772A1 (zh) 盐酸美呋哌瑞多晶型物及其制备方法
EP0669911B1 (en) Indole derivative having prolonged immunostimulating activity and pharmaceutical compositions therefrom
JP4030683B2 (ja) ベンズアミド誘導体の合成法
CN112457309B (zh) 一种苯基取代吡啶并嘧啶胺类化合物及其作为抗菌药物的应用
US20170044137A1 (en) Omeprazole sodium semihydrate and preparation method thereof
US10343984B2 (en) Process for the preparation of the compound N-(3,5-dimethylphenyl)-N′-(2-trifluoromethylphenyl) guanidine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969236

Country of ref document: EP

Kind code of ref document: A1