WO2023121344A1 - 열교환기 - Google Patents

열교환기 Download PDF

Info

Publication number
WO2023121344A1
WO2023121344A1 PCT/KR2022/021066 KR2022021066W WO2023121344A1 WO 2023121344 A1 WO2023121344 A1 WO 2023121344A1 KR 2022021066 W KR2022021066 W KR 2022021066W WO 2023121344 A1 WO2023121344 A1 WO 2023121344A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
header
plate
heat exchanger
hole
Prior art date
Application number
PCT/KR2022/021066
Other languages
English (en)
French (fr)
Inventor
전영하
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220180673A external-priority patent/KR20230095859A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2023121344A1 publication Critical patent/WO2023121344A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger, and more particularly, to a heat exchanger capable of securing sufficient cooling performance and drainage performance even in a narrow width and being easy to assemble.
  • the heat exchange system includes a heat exchanger that absorbs heat from the surroundings, a compressor that compresses the refrigerant or heat medium, a condenser that discharges heat to the surroundings, and an expansion valve that expands the refrigerant or heat medium.
  • the gaseous refrigerant flowing into the compressor from the heat exchanger is compressed to a high temperature and high pressure in the compressor, and liquefaction heat is released to the surroundings in the process of liquefying the compressed gaseous refrigerant while passing through the condenser,
  • the liquefied refrigerant passes through the expansion valve again to become a low-temperature and low-pressure saturated vapor state, then flows into the heat exchanger again and vaporizes to form a cycle. It is caused by a heat exchanger that absorbs and vaporizes.
  • An object of the present invention is to increase efficiency and reduce cost through a change in the structure of a heat exchanger.
  • an object of the present invention is to propose a structure of a heat exchanger capable of securing sufficient cooling performance and drainage performance even when the width is narrowly manufactured.
  • an object of the present invention is to propose a heat exchanger structure having a stable and simple assembly form.
  • a heat exchanger for solving the above problems is a first header tank and a second header tank disposed spaced apart from each other by a predetermined distance while a heat cooling fluid flows in and out; and the first header tank and the A core part disposed between the second header tanks and provided with a plurality of tubes and fins to perform movement of the cooling fluid and heat exchange of the cooling fluid, wherein the first header tank or the second header tank comprises an outer circumference of the tank An outer header plate forming a; and an inner header plate to which the plurality of tubes are coupled and coupled to the outer header plate to form a closed section, wherein the center of the outer header plate is formed to be concave toward the core portion. 1 includes a bent portion, and a drainage hole is formed on the first bent portion.
  • components such as through holes and baffles can be stably and easily assembled.
  • 1 is a diagram for explaining the structure of a general heat exchange system.
  • FIG. 2 is a perspective view for explaining a flow path structure of a heat exchanger according to an embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view taken along line A-A' of FIG. 2;
  • FIG. 4 is a view for explaining a condensate drain hole according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a through hole and a throttle according to an embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of a header tank according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a main through hole and an auxiliary through hole according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining a fastening structure of a main through hole cover and an auxiliary through hole cover according to an embodiment of the present invention.
  • FIG. 9 is a perspective view of a main through hole cover according to an embodiment of the present invention.
  • FIG. 10 is a perspective view of an auxiliary communication hole cover according to an embodiment of the present invention.
  • FIG. 11 is a view for explaining a main through hole seating part and an auxiliary through hole seating part according to an embodiment of the present invention.
  • FIG. 12 is a view from above to explain a coupling structure of a main through hole cover, an auxiliary through hole cover, and a header plate according to an embodiment of the present invention.
  • FIG. 13 is a view for explaining a coupling structure of a baffle according to an embodiment of the present invention.
  • FIG. 14 is a diagram for explaining a coupling structure of a throttle plate according to an embodiment of the present invention.
  • 15 is a graph of test results for examining the influence of heat generation performance and temperature distribution according to the ratio of the opening cross-section area of the throttle plate and the tank cross section.
  • 16 is a graph of test results for examining the effect of heat generation performance and temperature distribution according to the cross-sectional area ratio of the throttle plate and the cross section of the tube passage.
  • 17 is a diagram for explaining the position of the throttle plate.
  • 19 is a test result graph for examining the influence of heat generation performance and temperature distribution according to the deflection rate of the second throttle plate.
  • a first header tank and a second header tank are disposed spaced apart from each other by a predetermined distance while a heat cooling fluid flows in and out; and between the first header tank and the second header tank. and a core portion provided with a plurality of tubes and fins to perform movement of the cooling fluid and heat exchange of the cooling fluid, wherein the first header tank or the second header tank includes an outer header plate forming an outer circumference of the tank and an inner header plate to which the plurality of tubes are coupled and coupled to the outer header plate to form a closed section, and a center of the outer header plate includes a first bent portion formed to be concave toward the core portion, A drainage hole is formed on the first bent portion.
  • a predetermined area of the outer header plate is penetrated to form a main through-hole and an auxiliary through-hole for communicating flow paths divided into a plurality of tank zones.
  • a main through hole plate is coupled to a through region of the outer header plate where the main through hole is formed
  • an auxiliary through hole cover is coupled to a through region of the outer header plate where the auxiliary through hole is formed.
  • the main communication hole is formed to have a larger area than the auxiliary communication hole, and the height of the main communication cover plate is larger than the height of the auxiliary communication cover plate.
  • the area of the auxiliary through-hole is 6.5% or less of the area of the main through-hole.
  • a header plate fastening tab for coupling with an outer header plate protrudes from the concave portion of the inner header plate, and a header plate fixing groove into which the header plate fastening tab is inserted is formed in the concave portion of the outer header plate. , It is characterized in that the condensed water is drained through the header plate fixing groove.
  • a main through hole and an auxiliary through hole are formed through a certain area of the outer header plate through which cooling fluid communicates, and a main through hole cover is coupled to the through area of the outer header plate where the main through hole is formed.
  • An auxiliary communication hole plate is coupled to the through region of the outer header plate where the communication hole is formed, and when the main communication hole cover is coupled to the main tube fastening tab for coupling the main communication hole cover to the concave portion of the inner header plate, and the auxiliary communication hole cover is coupled. It is characterized in that the auxiliary communication fastening tab for the device is protruded.
  • main communication hole cover has auxiliary communication connection protrusions protruding from both sides to be coupled with the main communication connection tab, or the auxiliary communication hole cover has auxiliary communication connection protrusions formed to protrude from both sides and engage with the auxiliary communication connection tab. characterized by being
  • the outer header plate includes a first outer partition wall that is concave and bent toward the inside of the header tank, an outer coupling part that is bent and extended from the first outer partition wall, and an outer first partition that is bent and extended from the outer coupling part to the outside of the header tank.
  • 2 includes a bulkhead
  • the inner header plate includes: an inner first partition wall that is recessed and bent toward the inside of the header tank, an inner coupling part that is bent and extended from the first inner partition wall, and is bent toward the outside of the header tank at the inner coupling part. It may include an extending inner second barrier rib, and the outer coupling portion of the outer header plate and the inner coupling portion of the inner header plate come into contact with each other to form a closed section.
  • the height of the outer first partition wall and the outer second partition wall of the outer header plate is formed to be 60% or more of the height of the header tank.
  • the first header tank further includes a baffle that divides the flow path in the longitudinal direction or closes one end in the longitudinal direction, and the baffle blocks the flow path and is formed on both sides of the partition wall, the baffle plate A connecting baffle connection part, an outer baffle coupling part formed on the upper side of the baffle plate and inserted into an outer coupling groove formed in the outer header plate, and a baffle outer coupling portion formed on the lower side of the baffle plate and inserted into an inner coupling groove formed in the inner header plate Characterized in that it is formed including a baffle inner coupling portion.
  • baffle coupling groove is formed in the concave portion of the inner header plate, and the baffle connection portion is inserted into the baffle coupling groove.
  • first header tank and the second header tank are divided according to the flow of the fluid, and the area where the fluid flows into the first header tank is the first tank zone, and the fluid flow from the first tank zone to the second header tank
  • the end area of the first path on which is descended is a second tank zone
  • the one end area of the second path connected to the second tank zone in the longitudinal direction and the fluid ascending to the first header tank is a third tank zone, the second tank zone.
  • An area at one end of a fourth path connected to the sixth tank zone in the longitudinal direction and a fluid ascending to the first header tank is a seventh tank zone and an area at the other end of the fourth path, the heat exchanger
  • an area where fluid is discharged to the outside is referred to as an eighth tank zone
  • a first throttle plate is disposed in the third tank zone and a second throttle plate is disposed in the seventh tank zone.
  • first throttle plate or the second throttle plate includes a throttle opening through which fluid passes, an inner throttle coupling portion coupled to the inner header plate, and an outer throttle coupling portion coupled to the outer header plate. , heat exchanger.
  • the cross-sectional area of the throttle opening is 25 to 30% of the cross-sectional area of the header tank.
  • the cross-sectional area of the throttle opening is 18 to 21% of the cross-sectional area of the tube passage.
  • the first throttle plate is biased from the center of the third tank zone to the second tank zone, or the second throttle plate is biased from the center of the seventh tank zone to the sixth tank zone. It is characterized by being arranged.
  • the first throttle plate is disposed to be biased from the center of the third tank zone to the second tank zone by 8 to 9% of the length of the third tank zone, or the second throttle plate is disposed in the seventh tank zone. It is characterized in that the arrangement is biased by 11 to 12% of the length of the seventh tank zone from the center of the sixth tank zone.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when described as “and (and) at least one (or more than one) of B and C,” A, B, and C may be combined.
  • terms such as first, second, A, B, (a), (b), etc. may be used in describing the components of the embodiment of the present invention. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • a component when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected to, combined with, or connected to the other component, but also with the component. It may also include the case of being 'connected', 'combined', or 'connected' due to another component between the other components.
  • the top (top) or bottom (bottom) when it is described as being formed or disposed on the "top (above) or bottom (bottom)" of each component, the top (top) or bottom (bottom) is not only a case where two components are in direct contact with each other, but also one A case in which another component above is formed or disposed between two components is also included.
  • up (up) or down (down) it may include the meaning of not only an upward direction but also a downward direction based on one component.
  • FIG. 1 shows the structure of a general heat exchange system 1.
  • the heat exchange system 1 includes a compressor 2 for compressing a refrigerant or a heat medium, a condenser 3 for discharging heat to the surroundings, It is configured to include an expansion valve 4 that expands the refrigerant or fruit and an evaporator 5 that absorbs heat by liquid evaporation by introducing the liquid refrigerant reduced to a low temperature and low pressure through the expansion valve and exchanging heat with an object to be cooled. .
  • the thickness of the evaporator 5 directly affects the cooling performance and the size of the heat exchange system 1, and when the thickness of the evaporator 5 is thick, it is easy to achieve sufficient cooling performance, but the heat exchange system 1 There is a disadvantage that the thickness is also increased, and on the contrary, when the evaporator is designed thinly, the size of the heat exchange system (1) can be reduced, but it is difficult to achieve sufficient cooling performance and there is a limit to applying a structure for draining condensate generated in the evaporator (5). , which adversely affects cooling performance, odor, and corrosion.
  • the thickness of the evaporator is designed to be 40 mm or less according to the recent demand for volume reduction of heat exchange systems for compact designs, it is difficult to form a smooth condensate drainage structure while achieving sufficient cooling performance.
  • FIG. 2 shows a flow path structure of a heat exchanger 1000 according to an embodiment of the present invention.
  • fluid is introduced into the first tank zone TZ_1 of the first header tank 100 located at the upper side from the outside, and the fluid flows from the first tank zone TZ_1 through the first path to the second header tank ( 200), the fluid descends to the second tank zone TZ_2, passes through the third tank zone TZ_3 connected to the second tank zone TZ_2 in the longitudinal direction, and passes through the first header tank 100 through the second path.
  • the fluid rises
  • the elevated fluid flows into the fourth tank zone TZ_4 of the first header tank 100, flows into the fifth tank zone TZ_5 through the communication hole, and then enters the second header tank 200 through the third pass.
  • the fluid descends into the sixth tank zone TZ_6 of Thereafter, it flows into the eighth tank zone TZ_8 of the first header tank 100 through the fourth pass via the seventh tank zone TZ_7 connected in the longitudinal direction with the sixth tank zone TZ_6, and the eighth tank It has a flow flowing out from the zone (TZ_8).
  • the flow path is separated in the width direction by the bent portion of the outer header plate 110 and/or the inner header plate 120, and the flow path is separated in the longitudinal direction by the baffle 300. It is divided into a plurality of tank zones.
  • the first header tank 100 of the present invention includes an outer header plate 110 forming an outer circumference of the header tank, and a plurality of tubes 10 is combined with the outer header plate 110 to form a closed cross-section.
  • the center of the outer header plate 110 and the center of the inner header plate 120 are formed. It is concave and bent into the tank, and the bent parts are joined to each other to partition the flow path, through which the flow path of the first header tank 100 is divided into a plurality of spaces in the width direction.
  • the outer header plate 110 includes an outer first partition wall 111 concave and bent toward the inside of the header tank, and the outer first partition wall
  • the outer coupling portion 113 bent and extended at 111 and the outer second partition wall 112 bent and extended to the outside of the header tank at the outer coupling portion 113 form a first bent portion 110_1
  • the inner header plate 120 includes an inner first partition wall 121 concave and bent toward the inside of the header tank, an inner coupling part 123 bent and extended from the inner first partition wall 121, and the inner coupling part ( At 123, the inner second partition wall 122 bent and extended outward of the header tank forms the second bent portion 120_1.
  • the outer coupling portion 113 of the outer header plate 110 and the inner coupling portion 123 of the inner header plate 120 may come into contact with each other to form a closed section.
  • the outer header plate 110 It is preferable that the height (h2) of the outer first partition 111 and the outer second partition 112 be greater than the height (h) of the header tank, and the outer first partition 111 and the outer second partition 112 ) It is more preferable that the height (h2) of the header tank is formed to be 60% or more than the height (h) of the header tank.
  • the first bent part 110_1 of the outer header plate 110 is a flat part of the inner header plate 120 without the second bent part 120_1. They may come into contact to form a closed cross section.
  • FIG. 4 is a view for explaining a condensate drain hole according to an embodiment of the present invention.
  • a first through hole 110_2 is formed in the first bent part 110_1, and the second bent part 120_1
  • a second through hole 120_2 is formed, and the first through hole 110_2 communicates with the second through hole 120_2 to form a drainage hole through which condensed water is discharged.
  • Arrows in FIG. 4 schematically indicate that condensed water is discharged through the first through hole 110_2 and the second through hole 120_2.
  • FIG. 5 is a diagram showing a through hole and a throttle according to an embodiment of the present invention.
  • the main through hole 130 and the auxiliary communication hole 140 are formed in the separating wall of the first header tank 100, and through the main through hole 130 and the auxiliary communication hole 140, a fourth communication hole 130 is formed.
  • the fluid moves from the tank zone TZ_4 to the fifth tank zone TZ_5.
  • the second header tank 200 is formed by including a plurality of throttle plates 210 and 220 for adjusting the flow rate in the longitudinal direction.
  • the first throttle plate 210 is disposed in the previously described third tank zone TZ_3 and the second throttle plate 220 is disposed in the seventh tank zone TZ_7.
  • the refrigerant is evenly distributed for each tube, thereby improving cooling performance and temperature distribution.
  • FIG. 6 is an exploded perspective view of a header tank according to an embodiment of the present invention. Referring to FIG. 6, the structure of the first header tank 100 is described. An outer header plate 110 forming an outer circumference of the header tank and a plurality of tubes 10 are coupled, and the outer header plate 110 is coupled to the outer header plate 110. The first header tank ( 100) is divided into a plurality of spaces in the width direction.
  • the present invention has the advantage of effectively assembling the header tank by implementing a refrigerant communication structure between the first row and the second row as a cover structure in a structure in which the center of the header tank is spaced apart so that condensate can be drained.
  • a flow path baffle 310 having a fluid inlet hole is disposed at one end in the longitudinal direction of the first header tank 100, and a baffle 300 for blocking the flow path is disposed at the other end and the center in the longitudinal direction.
  • the structure of the second header tank 200 located on the opposite side of the first header tank 100 is not shown in detail in the drawing, except for the configuration of the central baffle and communication hole, the structure of the first header tank 100 same as configuration
  • FIG. 6 is a view for explaining the main through hole 130 and the auxiliary through hole 140 according to an embodiment of the present invention. Referring to FIG. 6 , it is preferable that the area of the auxiliary communication hole 140 is smaller than that of the peripheral through hole 130 .
  • Table 1 below compares the performance and the temperature difference of the core part while changing the area ratio with the main through hole 130 for the case where there is no auxiliary communication hole 140 (Base) and the case where there is an auxiliary communication hole 140. This is the result.
  • ⁇ Table 1> in Case 4 where the area ratio is 6.5%, the temperature difference of the core part becomes uniform at 45% compared to the base, and the performance is also 100.8%, which is higher than that of the base.
  • the area ratio of the auxiliary communication hole 140 is 10% or more compared to the main communication hole 130, the refrigerant is concentrated in the auxiliary communication hole 140 more than necessary, and the distribution of the refrigerant deteriorates, resulting in a decrease in performance. It can be seen that the distribution becomes uniform and the temperature distribution is improved.
  • the area of the auxiliary communication hole 140 is formed smaller than that of the main through hole 130, and the smaller the area of the auxiliary communication hole 140 compared to the main through hole 130, the more uniform the distribution of the refrigerant and the better the temperature distribution. It can be confirmed that it can be, and preferably, the area of the auxiliary communication hole 140 is formed to be 6.5% or less of the area of the main through hole 130 while maintaining equal distribution of the refrigerant and improving the performance, In addition, condensed water can be drained effectively. At this time, it is preferable that the peripheral through hole 130 is formed close to the baffle 300 in the center.
  • FIGS. 7 to 10 are views for explaining the structure and fastening structure of the main through hole cover 131 and the auxiliary through through hole cover 141 according to an embodiment of the present invention.
  • the main through hole cover 131 blocks the upper side of the main through hole main shield 131_1 and the main through hole which blocks both ends so that the fluid passing through the main through hole 130 does not leak out. It is molded including the side shield 131_2, and the main cylinder fastening protrusion 132 protrudes from both ends to a certain size.
  • the auxiliary communication hole cover 141 also blocks the upper side of the auxiliary communication hole so that the fluid passing through the auxiliary communication hole 140 is not leaked to the outside (141_1) and the auxiliary communication hole side shield (141_2) that blocks both ends.
  • auxiliary communication fastening protrusion 142 is formed protruding from both ends to a certain size.
  • auxiliary communication header plate insertion parts 141_3 additionally inserted into and coupled to the header plate are protruded from both sides of the upper part.
  • FIG. 11 is a view for explaining the main through-hole seating portion and the auxiliary through-hole seating portion according to an embodiment of the present invention.
  • Referring to FIG. 131 and the auxiliary communication hole cover 141 may be formed with a seating portion formed with some recesses so that they can be inserted and seated.
  • FIG. 12 is a view for explaining a coupling structure of a main through hole cover, an auxiliary through hole cover, and a header plate according to an embodiment of the present invention.
  • a main pipe connecting tab 151 for coupling the cover 131 and an auxiliary pipe connecting tab 152 for coupling the auxiliary pipe hole cover 141 are protrudingly formed, so that the main pipe hole cover 131
  • the main tubular coupling protrusion 132 is coupled to the main tubular coupling tab 151, and the auxiliary communication coupling projection 142 of the auxiliary communication hole cover 141 is coupled to the auxiliary communication coupling tab 152.
  • a header plate fastening tab 153 for coupling with the outer header plate 110 protrudes from the concave portion of the inner header plate 120, and the header plate fastening tab 153 protrudes from the concave portion of the outer header plate 110.
  • the header plate fixing groove 115 into which the tab 153 is inserted is formed, and the inner header plate 120 and the outer header plate 110 are coupled.
  • the heights of the main tube fastening tab 151 and the auxiliary communication fastening tab 152 are formed higher than the header plate fastening tab 153, so that the main tube fastening tab 151 and the auxiliary communication fastening tab 152 are more stable. can be combined.
  • assemblability can be improved by applying the same basic structure to the main through hole 130 and the auxiliary through hole 140, and the auxiliary through hole 140 having a small communication area is used in the header tank.
  • the auxiliary communication hole cover 141 is formed to be larger than the auxiliary communication hole 140, but it is preferable to form a lower height than the peripheral through hole cover 131.
  • the first header tank 100 further includes a baffle 300 that divides the flow path in the longitudinal direction or closes one end in the longitudinal direction, and the baffle 300 blocks the flow path and is a partition wall.
  • a baffle plate 320 formed on both sides of the baffle plate 320, a baffle connection portion 330 connecting the baffle plate 320, and an outer coupling groove formed on the upper side of the baffle plate 320 and formed in the outer header plate 110 ( 114) and the baffle inner coupling portion 350 formed on the lower side of the baffle plate 320 and inserted into the inner coupling groove 125 formed in the inner header plate 120.
  • a baffle coupling groove 126 is formed in the concave portion of the inner header plate 120, and the baffle connection portion 330 is inserted into the baffle coupling groove 126 to maintain a spaced structure of the header tank separating wall. It is possible to assemble the baffle more stably and improve the assemblability. That is, assemblability is improved by assembling the header tank after inserting and seating the baffle connecting portion 330 at the center of the baffle into the baffle coupling groove 126 formed through the header tank.
  • the coupling position of the outer header plate 110 and the inner header plate 120 may be guided by utilizing the step of the baffle side coupling portion 360 protruding from the side of the baffle, and the fastening strength may be improved.
  • the first throttle plate 210 includes a throttle opening 211 through which fluid passes, a throttle inner coupling part 212 coupled to the inner header plate 120, and the outer header plate 110. It is formed by including the throttle outer coupling part 213 coupled with, and, like the assembly structure of the baffle 300 described above, it is possible to improve assembly quality by guiding the coupling position by utilizing the concave partition wall in the center.
  • the second throttle plate 220 may also be formed and assembled in the same structure as the first throttle plate 210 .
  • the area of the throttle plate affects the heating performance and temperature distribution of the heat exchanger.
  • 15 is a graph of test results for examining the influence of heat generation performance and temperature distribution according to the ratio of the cross-sectional area of the opening of the throttle plate and the cross section of the tank. Referring to FIG. Describe the impact.
  • the cross-sectional area of the opening of the first throttle plate 210 or the second throttle plate 220 was changed to 10 to 30% of the cross-sectional area of the tank, and the heat generation performance and temperature distribution were compared.
  • the left side of the graph shows the relative heating performance test value when the standard heating performance is A, and the right side of the graph shows the relative temperature distribution test value when the standard temperature distribution is B.
  • the ratio of the opening cross-sectional area of the throttle plate and the cross section of the tube passage also affects the heat generation performance and temperature distribution of the heat exchanger.
  • 16 is a graph of test results for examining the influence of heat generation performance and temperature distribution according to the ratio of the cross-sectional area of the opening of the cross section of the throttle plate and the tube passage, referring to FIG. The effect on performance and temperature distribution is explained.
  • the horizontal axis of FIG. 16 represents the ratio of the cross-sectional area of the opening of the first or second throat plate to the cross-sectional area of the tube passage
  • the left side of the graph represents the relative heat generating performance test value when the reference heat generating performance is A
  • the right side of the graph shows the relative temperature distribution test value when the reference temperature distribution is B, and it is interpreted that the higher the heating performance and the smaller the temperature distribution, the better the result.
  • FIG. 17 is a view for explaining the deflection position of the throttle plate.
  • the first throttle plate 210 deflects from the center of the third tank zone TZ_3 toward the center of the second header tank 200.
  • the second throttle plate 220 is biased toward the center of the second header tank 200 from the center of the seventh tank zone TZ_7.
  • ⁇ Table 2> shows the deflection rates of the first throttle plate and the second throttle plate for each test case.
  • + and - indicate deflection positions
  • + means deflection toward the center of the entire heat exchanger
  • - means deflection away from the center.
  • the case where the first throttle plate 210 moves from the center of the third tank zone TZ_3 toward the second tank zone TZ_2 is +
  • the second throttle plate 220 moves toward the seventh tank zone ( The case of moving from the center of TZ_7) to the sixth tank zone (TZ_6) is +.
  • the amount of deflection is expressed as a percentage of the deflection length with respect to the length of each tank zone.
  • FIG. 18 is a test result graph for examining the influence of heat generation performance and temperature distribution according to the deflection ratio of the first throttle plate
  • FIG. 19 is a test result graph to examine the influence of heat generation performance and temperature distribution according to the deflection ratio of the second throttle plate.
  • the left side of the graph shows the performance ratio against the standard
  • the right side shows the temperature distribution.
  • the deflection rate of the first throttle plate is 8% to 9%, the effect of reducing thermal envelopes is excellent while maintaining heat generation performance.
  • the deflection rate of the second throttle plate is When silver was 11-12%, it was found that the effect of reducing the temperature cloth was excellent while maintaining the heating performance.
  • the first throttle plate 210 is displaced from the center of the third tank zone TZ_3 to the second tank zone TZ_2 by 8 to 9% of the length of the third tank zone TZ_3, and the second tank zone TZ_3 is biased. It is appropriate that the throttle plate 220 is displaced from the center of the seventh tank zone TZ_7 to the sixth tank zone TZ_6 by 11 to 12% of the length of the seventh tank zone TZ_7.
  • auxiliary communication hole 140_1 auxiliary communication hole seating part
  • auxiliary communication hole cover 141_1 auxiliary communication hole main shield
  • 141_2 auxiliary communication hole side shield 141_3: auxiliary communication header plate insertion part
  • main connecting tab 152 auxiliary connecting tab
  • first throttle plate 220 second throttle plate
  • throttle opening 212 throttle inner coupling part
  • throttle outer coupling portion 214 throttle side coupling portion
  • baffle 310 Euro baffle
  • baffle plate 330 baffle connection
  • baffle outer coupling portion 350 baffle inner coupling portion
  • TZ_1 1st tank zone
  • TZ_2 2nd tank zone
  • TZ_3 3rd tank zone
  • TZ_4 4th tank zone
  • TZ_5 5th Tank Zone
  • TZ_6 6th Tank Zone
  • TZ_7 7th Tank Zone
  • TZ_8 8th Tank Zone
  • the present invention relates to a heat exchanger and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

본 발명은 좁은 폭에서도 충분한 냉방성능과 배수성능을 확보할 수 있는 열교환기에 관한 것으로, 본 발명의 열교환기는 냉각 유체가 유입 및 유출되면서 서로 일정 거리 이격되어 배치되는 제1 헤더탱크와 제2 헤더탱크;, 및 상기 제1 헤더탱크와 상기 제2 헤더탱크 사이에 배치되며, 복수의 튜브와 핀을 구비하여, 냉각 유체의 이동과 냉각 유체의 열교환을 수행하는 코어부를 포함하고,외측 헤더플레이트의 중앙은 상기 코어부 측으로 요입되도록 형성된 제1 절곡부를 포함하며, 상기 제1 절곡부 상에 배수홀이 형성되어 응축수를 배출할 수 있다.

Description

열교환기
본 발명은 열교환기에 관한 것으로, 더욱 상세하게는 좁은 폭에서도 충분한 냉방성능과 배수성능을 확보할 수 있고, 조립이 간편한 열교환기에 관한 것이다.
열교환 시스템은 주변으로부터 열을 흡수하는 열교환기, 냉매 혹은 열매를 압축하는 압축기, 주변으로 열을 방출하는 응축기, 냉매 혹은 열매를 팽창시키는 팽창밸브를 포함하여 구성된다. 열교환 시스템 중 냉각 시스템에서는, 열교환기로부터 압축기로 유입되는 기체 상태의 냉매가 압축기에서 고온 및 고압으로 압축되고, 압축된 기체 상태의 냉매가 응축기를 통과하면서 액화되는 과정에서 주변으로 액화열이 방출되며, 액화된 냉매가 다시 팽창밸브를 통과함으로써 저온 및 저압의 습포화 증기 상태가 된 후 다시 열교환기로 유입되어 기화하게 되어 사이클을 이루게 되며, 실질적인 냉각 작용은 액체 상태의 냉매가 주변에서 기화열만큼의 열량을 흡수하여 기화되는 열교환기에 의해 일어나게 된다.
최근 자동차 산업에서는 연비를 포함한 각 부품 및 파트의 효율 개선이 꾸준히 이루어지고 있으며, 또한 다양한 소비자의 욕구를 만족시키기 위하여 자동차 외관 형태 역시 다양화되고 있는 추세이고, 이러한 경향에 따라, 차량의 각 부품들의 경량화ㆍ소형화 및 고기능화를 위한 연구 개발이 꾸준히 이루어지고 있다. 특히 차량용 냉각장치에 있어서도 엔진룸 내부에서 충분한 공간을 확보하며, 필요한 체적을 줄이기 위해 작은 크기를 가지면서도 높은 효율을 갖는 열교환시스템을 개발하기 위한 노력이 이어지고 있다.
본 발명은 열교환기의 구조의 변경을 통해 효율을 증대시키고, 비용을 절감하는 것을 목적으로 한다.
또한, 본 발명은 폭을 좁게 제작하여도 충분한 냉방성능과 배수성능을 확보할 수 있는 열교환기의 구조를 제안하는 것을 목적으로 한다.
또한, 본 발명은 안정적이면서도 간편한 조립형태를 갖는 열교환기 구조를 제안하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 열교환기는, 열냉각 유체가 유입 및 유출되면서 서로 일정 거리 이격되어 배치되는 제1 헤더탱크와 제2 헤더탱크;, 및 상기 제1 헤더탱크와 상기 제2 헤더탱크 사이에 배치되며, 복수의 튜브와 핀을 구비하여, 냉각 유체의 이동과 냉각 유체의 열교환을 수행하는 코어부를 포함하고, 상기 제1 헤더탱크 또는 제2 헤더탱크는, 탱크의 외주를 형성하는 외측 헤더플레이트;와 상기 복수의 튜브가 결합되고, 상기 외측 헤더플레이트와 결합되어 폐단면을 형성하는 내측 헤더플레이트를 포함하고, 상기 외측 헤더플레이트의 중앙은 상기 코어부 측으로 요입되도록 형성된 제1 절곡부를 포함하며, 상기 제1 절곡부 상에 배수홀이 형성된다.
본 발명의 실시예에 따르면, 종래 대비 열교환기의 제작비용을 절감할 수 있는 효과가 있다.
또한, 좁은 폭을 갖고도 충분한 열교환 성능과 배수 성능을 확보할 수 있다.
또한, 열교환기 냉매의 균등한 배분을 유지할 수 있으면서, 또한 효과적인 응축수 배수 구조를 구현할 수 있다.
또한, 연통홀 및 베플 등의 부품을 안정적이면서도 간편하게 조립할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 일반적인 열교환시스템의 구조를 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따른 열교환기의 유로 구조를 설명하기 위한 사시도이다.
도 3은 도 2의 A-A' 부분 단면도이다.
도 4는 본 발명의 실시예에 따른 응축수 배수홀을 설명하기 위한 도면이다.
도 5는 본 발명의 실시예에 따른 연통홀과 스로틀을 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 헤더탱크의 분해 사시도이다.
도 7은 본 발명의 실시예에 따른 주연통홀과 보조연톨홀을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 주연통홀커버 및 보조연통홀커버의 체결구조를 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따른 주연통홀커버의 사시도이다.
도 10은 본 발명의 실시예에 따른 보조연통홀커버의 사시도이다.
도 11은 본 발명의 실시예에 따른 주연통홀안착부와 보조연톨홀안착부를 설명하기 위한 도면이다.
도 12는 본 발명의 실시예에 따른 주연통홀커버, 보조연통홀커버, 헤더플레이트의 결합구조를 설명하기 위해 위에서 본 도면이다.
도 13은 본 발명의 실시예에 따른 베플의 결합 구조를 설명하기 위한 도면이다.
도 14는 본 발명의 실시예에 따른 스로틀플레이트의 결합 구조를 설명하기 위한 도면이다.
도 15는 스로틀플레이트와 탱크 단면의 개구 단면적 비율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프이다.
도 16은 스로틀플레이트와 튜브 유로 단면의 개구 단면적 비율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프이다.
도 17은 스로틀플레이트의 위치를 설명하기 위한 도면이다.
도 18은 제 1스로틀플레이트의 편향율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프이다.
도 19는 제 2스로틀플레이트의 편향율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프이다.
본 발명의 실시예에 따른 열교환기는, 열냉각 유체가 유입 및 유출되면서 서로 일정 거리 이격되어 배치되는 제1 헤더탱크와 제2 헤더탱크;, 및 상기 제1 헤더탱크와 상기 제2 헤더탱크 사이에 배치되며, 복수의 튜브와 핀을 구비하여, 냉각 유체의 이동과 냉각 유체의 열교환을 수행하는 코어부를 포함하고, 상기 제1 헤더탱크 또는 제2 헤더탱크는, 탱크의 외주를 형성하는 외측 헤더플레이트;와 상기 복수의 튜브가 결합되고, 상기 외측 헤더플레이트와 결합되어 폐단면을 형성하는 내측 헤더플레이트를 포함하고, 상기 외측 헤더플레이트의 중앙은 상기 코어부 측으로 요입되도록 형성된 제1 절곡부를 포함하며, 상기 제1 절곡부 상에 배수홀이 형성된다.
또한, 상기 외측 헤더플레이트의 일정 영역이 관통되어, 복수의 탱크존으로 서로 구획된 유로를 연통하는 주연통홀과 보조연통홀이 형성되는 것을 특징으로 한다.
또한, 상기 주연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 주연통 홀플레이트가 결합되고, 상기 보조연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 보조연통홀커버가 결합되는 것을 특징으로 한다.
또한, 상기 주연통홀은 상기 보조연통홀 보다 큰 면적을 갖도록 형성되며, 상기 주연통 커버플레이트의 높이가 상기 보조연통 커버플레이트의 높이 보다 크게 형성되는 것을 특징으로 한다.
또한, 상기 보조연통홀의 면적은 상기 주연통홀의 면적의 6.5% 이하인 것을 특징으로 한다.
또한, 상기 내측 헤더플레이트의 요입부에는 외측 헤더플레이트와의 결합을 위한 헤더플레이트 체결탭이 돌출 형성되고, 상기 외측 헤더플레이트의 요입부에는 상기 헤더플레이트 체결탭이 삽입되는 헤더플레이트 고정홈이 형성되며, 상기 헤더플레이트 고정홈을 통해 응축수가 배수되는 것을 특징으로 한다.
또한, 상기 외측 헤더플레이트의 일정 영역이 관통되어 냉각 유체가 연통하는 주관통홀과 보조관통홀이 형성되며, 상기 주연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 주연통홀커버가 결합되고, 상기 보조연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 보조연통 홀플레이트가 결합되며, 상기 내측 헤더플레이트의 요입부에 상기 주연통홀커버를 결합시키기 위한 주연통체결탭과, 상기 보조연통홀커버를 결합시기기 위한 보조연통체결탭이 돌출 형성되는 것을 특징으로 한다.
또한, 상기 주연통홀커버는 양측으로 주연통체결돌출부가 돌출형성되어 상기 주연통체결탭과 결합되거나, 또는 상기 보조연통홀커버는 양측으로 보조연통체결돌출부가 돌출형성되어 상기 보조연통체결탭과 결합되는 것을 특징으로 한다.
또한, 상기 외측 헤더플레이트는, 헤더탱크의 내측으로 요입 절곡된 외측 제1 격벽, 상기 외측 제1 격벽에서 절곡 연장되는 외측 결합부, 및 상기 외측 결합부에서 헤더탱크의 외측으로 절곡 연장되는 외측 제2 격벽을 포함하고, 상기 내측 헤더플레이트는, 헤더탱크의 내측으로 요입 절곡된 내측 제1 격벽, 상기 내측 제1 격벽에서 절곡 연장되는 내측 결합부, 및 상기 내측 결합부에서 헤더탱크의 외측으로 절곡 연장되는 내측 제2 격벽을 포함하며, 상기 상기 외측 헤더플레이트의 외측 결합부와 상기 내측 헤더플레이트의 내측 결합부가 서로 맞닿아 폐단면을 형성하는 것을 특징으로 한다.
또한, 상기 외측 헤더플레이트의 외측 제1 격벽 및 외측 제2 격벽의 높이는, 헤더탱크 높이의 60% 이상으로 형성되는 것을 특징으로 한다.
또한, 상기 제1 헤더탱크는 길이방향으로 유로를 구획하거나, 길이방향 일단을 폐쇄하는 베플을 더 포함하고, 상기 베플은, 유로를 차단하며 분리벽의 양측에 형성되는 베플플레이트, 상기 베플플레이트를 연결하는 베플연결부, 상기 베플플레이트의 상측에 형성되어 상기 외측 헤더플레이트에 형성된 외측 결합홈에 삽입되는 베플외측결합부, 상기 베플플레이트의 하측에 형성되어 상기 내측 헤더플레이트에 형성된 내측 결합홈에 삽입되는 베플내측결합부를 포함하여 형성되는 것을 특징으로 한다.
또한, 상기 내측 헤더플레이트의 요입부에는 베플 결합홈이 형성되고, 상기 베플연결부가 상기 베플 결합홈에 삽입되는 것을 특징으로 한다.
또한, 상기 제1 헤더탱크와 제2 헤더탱크를 유체의 흐름에 따라 구분하여, 상기 제1 헤더탱크로 유체가 유입되는 영역을 제1 탱크존, 상기 제1 탱크존에서 제2 헤더탱크로 유체가 하강하는 제1 패스의 단부 영역을 제2 탱크존, 상기 제2 탱크존과 길이방향으로 연결되어 제1 헤더탱크로 유체가 상승하는 제2 패스의 일단 영역을 제3 탱크존, 상기 제2 패스의 타단 영역을 제4 탱크존, 상기 제4 탱크존과 주연통홀 및 보조연통홀로 연결된 영역을 제5 탱크존, 상기 제5 탱크존에서 제2 헤더탱크로 유체가 하강하는 제3 패스의 단부 영역을 제6 탱크존, 상기 제6 탱크존과 길이방향으로 연결되어 제1 헤더탱크로 유체가 상승하는 제4 패스의 일단 영역을 제7 탱크존, 상기 제4 패스의 타단 영역으로서, 열교환기 외부로 유체가 유출되는 영역을 제8 탱크존이라고 할 때, 상기 제3 탱크존에 제1 스로틀플레이트가 배치되고, 상기 제7 탱크존에 제2 스로틀플레이트가 배치되는 것을 특징으로 한다.
또한, 상기 제1 스로틀플레이트 또는 제2 스로틀플레이트는, 유체가 통과하는 스로틀개구, 상기 내측 헤더플레이트와 결합되는 스로틀내측결합부, 및 상기 외측 헤더플레이트와 결합되는 스로틀외측결합부를 포함하는 것을 특징으로 하는, 열교환기.
또한, 상기 스로틀개구의 단면적은, 헤더탱크 단면적의 25~30%인 것을 특징으로 한다.
또한, 상기 스로틀개구의 단면적은, 튜브 유로 단면적의 18~21%인 것을 특징으로 한다.
또한, 상기 제1 스로틀플레이트는 상기 제3 탱크존의 중심에서 상기 제2 탱크존으로 편향되어 배치되고, 또는, 상기 제2 스로틀플레이트는 상기 제7 탱크존의 중심에서 상기 제6 탱크존으로 편향되어 배치되는 것을 특징으로 한다.
또한, 상기 제1 스로틀플레이트는 상기 제3 탱크존의 중심에서 상기 제2 탱크존으로 제3 탱크존 길이의 8~9% 편향되어 배치되고, 또는, 상기 제2 스로틀플레이트는 상기 제7 탱크존의 중심에서 상기 제6 탱크존으로 제7 탱크존 길이의 11~12% 편향되어 배치되는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다. 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "및(와) B, C 중 적어도 하나(또는 한 개 이상"으로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다. 또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다. 또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
먼저, 도 1은 일반적인 열교환 시스템(1)의 구조를 나타내고 있으며, 도 1을 참조하면 열교환 시스템(1)은 냉매 혹은 열매를 압축하는 압축기(2), 주변으로 열을 방출하는 응축기(3), 냉매 혹은 열매를 팽창시키는 팽창밸브(4) 및 팽창 밸브를 통과하여 저온 저압으로 감압된 액체 냉매를 유입하여 피냉각 물체와 열교환시킴으로써 액체증발에 의해 열을 흡수하는 증발기(5)를 포함하여 구성된다.
이 때, 증발기(5)의 두께는 냉방성능과 열교환 시스템(1)의 크기에 직접적인 영향을 미치게 되며, 증발기(5)의 두께가 두꺼울 경우 충분한 냉방성능 달성에는 용이하지만, 열교환 시스템(1)의 두께 또한 두꺼워진다는 단점이 있으며, 반대로 증발기를 얇게 설계하는 경우에는 열교환 시스템(1)의 크기를 줄일 수 있지만 충분한 냉방성능을 달성하기 어렵고 증발기(5)에서 발생한 응축수를 배수하는 구조를 적용하는데 한계가 있어, 냉방성능과 냄새, 부식 등에 나쁜 영향을 미치게 된다. 특히, 최근 컴팩트한 디자인을 위한 열교환시스템의 체적 축소 요구에 따라 증발기의 두께를 40mm 이하로 설계하는 경우에는 충분한 냉방성능 달성하면서 원활한 응축수 배수구조를 형성하는 데에 어려움이 있으며, 본 발명은 이러한 문제를 해결하기 위해 증발기의 폭을 좁게 제작하여도 충분한 냉방성능과 배수성능을 확보할 수 있는 구조를 제안한 것이다. 본 발명의 제안은 증발기(5) 이외의 열교환기(1000) 구조에 적용될 수 있으므로, 이하 증발기의 상위 개념인 열교환기(1000)의 용어를 사용하며 본 발명의 실시예에 대해 자세히 설명한다.
먼저, 도 2는 본 발명의 실시예에 따른 열교환기(1000)의 유로 구조를 나타낸다. 도 2를 참조하면, 외부로부터 상측에 위치한 제1 헤더탱크(100)의 제1 탱크존(TZ_1)으로 유체가 유입되고, 제1 패스를 통해 제1 탱크존(TZ_1)에서 제2 헤더탱크(200)로 제2 탱크존(TZ_2)으로 유체가 하강하며, 제2 탱크존(TZ_2)과 길이방향으로 연결된 제3 탱크존(TZ_3)을 경유하여 제2 패스를 통해 제1 헤더탱크(100)로 유체가 상승한다. 상승된 유체는 제1 헤더탱크(100)의 제4 탱크존(TZ_4)으로 유입되고, 연통홀을 통해 제5 탱크존(TZ_5)으로 유입된 후 제3 패스를 통해 제2 헤더탱크(200)의 제6 탱크존(TZ_6)으로 유체가 하강한다. 이후 제6 탱크존(TZ_6)과 길이방향으로 연결된 제7 탱크존(TZ_7)을 경유하여 제4 패스를 통해 제1 헤더탱크(100)의 제8 탱크존(TZ_8)으로 유입되고, 제8 탱크존(TZ_8)에서 외부로 유출되는 흐름을 갖게 된다.
이때, 제1 헤더탱크(100)는 외측 헤더플레이트(110) 및/또는 내측 헤더플레이트(120)의 절곡부에 의해 폭방향으로 유로가 분리되고, 베플(300)에 의해 길이방향으로 유로가 분리되어 복수의 탱크존으로 구별되는 것이다.
도 3의 도 2의 A-A' 부분 단면도로서, 도 3을 참조하면, 본 발명의 제1 헤더탱크(100)는 헤더탱크의 외주를 형성하는 외측 헤더플레이트(110)와, 복수의 튜브(10)가 결합되고 외측 헤더플레이트(110)와 결합되어 폐단면을 형성하는 내측 헤더플레이트(120)를 포함하여 형성되고, 이때, 외측 헤더플레이트(110)의 중앙과 상기 내측 헤더플레이트(120)의 중앙이 탱크 내측으로 요입 절곡되고, 절곡된 부분이 서로 접합되어 유로를 구획하게 되며, 이를 통해 제1 헤더탱크(100)의 유로가 폭방향으로 복수의 공간으로 분리된다.
본 발명의 헤더탱크 구조에 대해 좀 더 자세히 설명하면, 본 발명의 일실시예에 따른 외측 헤더플레이트(110)는 헤더탱크의 내측으로 요입 절곡된 외측 제1 격벽(111), 상기 외측 제1 격벽(111)에서 절곡 연장되는 외측 결합부(113), 및 상기 외측 결합부(113)에서 헤더탱크의 외측으로 절곡 연장되는 외측 제2 격벽(112)가 제1 절곡부(110_1)을 형성하고, 상기 내측 헤더플레이트(120)는, 헤더탱크의 내측으로 요입 절곡된 내측 제1 격벽(121), 상기 내측 제1 격벽(121)에서 절곡 연장되는 내측 결합부(123), 및 상기 내측 결합부(123)에서 헤더탱크의 외측으로 절곡 연장되는 내측 제2 격벽(122)가 제2 절곡부(120_1)을 형성한다. 상기 외측 헤더플레이트(110)의 외측 결합부(113)와 상기 내측 헤더플레이트(120)의 내측 결합부(123)가 서로 맞닿아 폐단면을 형성할 수 있고, 이때, 상기 외측 헤더플레이트(110)의 외측 제1 격벽(111) 및 외측 제2 격벽(112)의 높이(h2)가 헤더탱크 높이(h) 보다 크게 형성되는 것이 바람직하며, 외측 제1 격벽(111) 및 외측 제2 격벽(112)의 높이(h2)가 헤더탱크 높이(h) 보다 60% 이상으로 형성되는 것이 보다 바람직하다.
만일, 내측 헤더플레이트(120)가 절곡되지 않고 편평하게 형성되는 경우에는 제2 절곡부(120_1) 없이 외측 헤더플레이트(110)의 제1 절곡부(110_1)가 내측 헤더플레이트(120)의 편평한 부분가 맞닿아 폐단면을 형성할 수 있다.
도 4 본 발명의 실시예에 따른 응축수 배수홀을 설명하기 위한 도면으로서, 도 4를 참조하면 제1 절곡부(110_1)에는 제1 관통홀(110_2)가 형성되고, 제2 절곡부(120_1)에는 제2 관통홀(120_2)이 형성되고, 상기 제1 관통홀(110_2)과 제2 관통홀(120_2)이 연통되어 응축수를 배출하는 배수홀을 형성할 수 있다. 도 4의 화살표는 제1 관통홀(110_2)과 제2 관통홀(120_2)을 통해 응축수가 배출되는 것을 도식적으로 나타내고 있다.
도 5는 본 발명의 실시예에 따른 연통홀과 스로틀을 나타내는 도면이다. 도 5를 참조하면, 제1 헤더탱크(100)의 분리벽에는, 주연통홀(130)과 보조연통홀(140)이 형성되고, 주연통홀(130)과 보조연통홀(140)을 통해 제4 탱크존(TZ_4)에서 제5 탱크존(TZ_5)으로 유체가 이동하게 된다.
또한, 제2 헤더탱크(200)는 길이 방향으로 유량을 조절하는 복수의 스로틀플레이트(210, 220)를 포함하여 형성된다. 이때, 앞서 설명한 제3 탱크존(TZ_3)에는 제1 스로틀플레이트(210)가 배치되고, 제7 탱크존(TZ_7)에 제2 스로틀플레이트(220)가 배치되는 것이 좋다. 이와 같이 2개의 스로틀플레이트가 제2 헤더탱크(200)의 탱크존에 배치됨으로써, 냉매가 튜브별로 균등하게 배분되어 냉방성능 및 온도분포가 개선된다.
도 6은 본 발명의 실시예에 따른 헤더탱크의 분해 사시도이다. 도 6을 참조하여 제1 헤더탱크(100)의 구조를 설명하면, 헤더탱크의 외주를 형성하는 외측 헤더플레이트(110)와 복수의 튜브(10)가 결합되고, 외측 헤더플레이트(110)와 결합되어 폐단면을 형성하는 내측 헤더플레이트(120)를 포함하여 형성되고, 내측 헤더플레이트(120)와 외측 헤더플레이트(110)의 중앙이 내측으로 절곡되어 유로를 구획하고, 이를 통해 제1 헤더탱크(100)의 유로가 폭방향으로 복수의 공간으로 분리된다.
상기 외측 헤더플레이트(110)에는, 주연통홀(130)과 보조연통홀(140)이 형성되고, 주연통홀(130)과 보조연통홀(140)을 통해 제4 탱크존(TZ_4)에서 제5 탱크존(TZ_5)으로 유체가 이동하게 된다. 이때, 상기 주연통홀(130) 주연통홀커버(131)가 삽입되고, 상기 보조연통홀(140) 위치에는 보조연통홀커버(141)가 삽입된다. 이와 같이 본 발명은 헤더탱크의 중앙을 응축수가 배수될 수 있도록 이격 시킨 구조에서 1열과 2열 간 냉매 연통 구조를 커버 구조로 구현하여 헤더탱크를 효과적으로 조립할 수 있는 장점이 있다.
한편, 제1 헤더탱크(100)의 길이방향 일단에는 유체 유입 구멍이 형성된 유로베플(310)이 배치되고, 길이 방향 타단과 중앙에는 유로를 차단하는 베플(300)이 배치된다.
제1헤더탱크(100)의 반대편에 위치하는 제2 헤더탱크(200)의 구조가 도면에는 자세히 나타나 있지 않으나, 중앙의 베플과 연통홀 등의 구성을 제외하고는 제1 헤더탱크(100)의 구성과 동일하다.
도 6은 본 발명의 실시예에 따른 주연통홀(130)과 보조연톨홀(140)을 설명하기 위한 도면이다. 도 6을 참조하면, 보조연통홀(140)의 면적은 주연통홀(130)보다 작게 형성되는 것이 좋다.
아래 <표 1>은 보조연통홀(140)이 없는 경우(Base)와 보조연통홀(140)이 있는 경우에 대해 주연통홀(130)과의 면적비를 변경하면서 성능과 코어부 온도차를 비교 실험한 결과이다. <표 1>에서와 같이 면적비가 6.5%인 Case 4에서 코어부 온도차가 Base 대비 45%로 균일해지고, 성능 역시 100.8%로 Base 보다 더 높은 성능을 나타내는 것을 확인할 수 있다. 보조연통홀(140)의 면적비가 주연통홀(130) 대비 10% 이상 인 경우, 냉매가 보조연통홀(140)에 필요 이상으로 쏠려 냉매 배분이 악화되어 성능이 저하되고, 면적비가 작을수록 냉매의 분배가 균일해져 온도분포가 개선됨을 알 수 있다.
Base Case 1 Case 2 Case 3 Case 4 Case 5
면적비 보조연통홀 없음 20% 14.7% 10.2% 6.5% 3.7%
성능 비율 100%(기준) 97.9% 98.8% 98.7% 100.8% 101.7%
코어부
온도차 비율
100%(기준) 91% 82% 82% 45% 36%
이를 통해, 보조연통홀(140)의 면적이 주연통홀(130)보다 작게 형성되며, 주연통홀(130) 대비 보조연통홀(140)의 면적이 작을수록 냉매의 분배가 균일해셔 온도분포가 개선될 수 있음을 확인할 수 있으며, 바람직하게는 보조연통홀(140)의 면적이 주연통홀(130)의 면적의 6.5% 이하로 형성되는 것이 냉매의 균등한 배분을 유지하면서, 성을 높일 수 있고, 또한 효과적으로 응축수를 배수할 수 있게 된다. 이 때, 주연통홀(130)은 중앙의 베플(300)에 가깝게 형성되는 것이 바람직하다.
도 7 내지 도 10은 본 발명의 실시예에 따른 주연통홀커버(131) 및 보조연통홀커버(141)의 구조 및 체결구조를 설명하기 위한 도면이다. 도 7 내지 도 10을 참조하면, 주연통홀커버(131)는 주연통홀(130)을 통과하는 유체가 외부로 유출되지 않도록 상측을 차단하는 주연통홀메인차폐부(131_1)와 양단을 차단하는 주연통홀측면차폐부(131_2)를 포함하여 형덩되며, 양단으로부터 일정 크기로 주연통체결돌출부(132)가 돌출 형성된다. 보조연통홀커버(141) 역시 보조연통홀(140)을 통과하는 유체가 외부로 유출되지 않도록 상측을 차단하는 보조연통홀메인차폐부(141_1)와 양단을 차단하는 보조연통홀측면차폐부(141_2)를 포함하여 형성되며, 양단으로부터 일정 크기로 보조연통체결돌출부(142)가 돌출 형성된다. 보조연통홀커버(141)는 추가적으로 헤더플레이트에 삽입 결합되는 보조연통헤더플레이트삽입부(141_3)가 상부 양측으로 돌출 형성된다.
도 11은 본 발명의 실시예에 따른 주연통홀안착부와 보조연톨홀안착부를 설명하기 위한 도면으로서, 도 11을 참조하면, 주연통홀(130)과 보조연통홀(140) 주변으로는 주연통홀커버(131)와 보조연통홀커버(141)가 삽입되어 안착될 수 있도록 일부 요입 형성된 안착부가 형성될 수 있다.
도 12는 본 발명의 실시예에 따른 주연통홀커버, 보조연통홀커버, 헤더플레이트의 결합구조를 설명하기 위한 도면으로서, 도 12를 참조하면, 내측 헤더플레이트(120)의 요입부에 상기 주연통홀커버(131)를 결합시키기 위한 주연통체결탭(151)과, 상기 보조연통홀커버(141)를 결합시기기 위한 보조연통체결탭(152)이 돌출 형성되어, 상기 주연통홀커버(131)의 주연통체결돌출부(132)가 주연통체결탭(151)과 결합되고, 상기 보조연통홀커버(141)의 보조연통체결돌출부(142)가 보조연통체결탭(152)과 결합된다.
또한, 상기 내측 헤더플레이트(120)의 요입부에는 외측 헤더플레이트(110)와의 결합을 위한 헤더플레이트 체결탭(153)이 돌출 형성되고, 상기 외측 헤더플레이트(110)의 요입부에는 상기 헤더플레이트 체결탭(153)이 삽입되는 헤더플레이트 고정홈(115)이 형성되어, 내측 헤더플레이트(120)와 외측 헤더플레이트(110)가 결합된다. 이때, 주연통체결탭(151)과 보조연통체결탭(152)의 높이를 헤더플레이트 체결탭(153) 보다 높게 형성하여, 보다 안정적으로 주연통체결탭(151)과 보조연통체결탭(152)을 결합시킬 수 있다.
본 발명의 일실시예에 따르면, 주연통홀(130)와 보조연통홀(140)을 동일한 기본 구조로 적용하여 조립성을 향상시킬 수 있으며, 작은 연통 면적을 가진 보조연통홀(140)을 헤더탱크와 안정적으로 접합하기 위해 보조연통홀커버(141)는 보조연통홀(140)보다는 크게 형성하되, 주연통홀커버(131)보다는 높이를 낮게 형성하는 것이 바람직하다.
도 13은 본 발명의 실시예에 따른 베플(300)의 결합 구조를 설명하기 위한 도면이다. 도 13을 참조하면, 상기 제1 헤더탱크(100)는 길이방향으로 유로를 구획하거나, 길이방향 일단을 폐쇄하는 베플(300)을 더 포함하고, 상기 베플(300)은 유로를 차단하며 분리벽의 양측에 형성되는 베플플레이트(320), 상기 베플플레이트(320)를 연결하는 베플연결부(330), 상기 베플플레이트(320)의 상측에 형성되어 상기 외측 헤더플레이트(110)에 형성된 외측 결합홈(114)에 삽입되는 베플외측결합부(340), 상기 베플플레이트(320)의 하측에 형성되어 상기 내측 헤더플레이트(120)에 형성된 내측 결합홈(125)에 삽입되는 베플내측결합부(350)를 포함하여 형성된다. 이때, 상기 내측 헤더플레이트(120)의 요입부에는 베플 결합홈(126)이 형성되고, 상기 베플연결부(330)가 상기 베플 결합홈(126)에 삽입되어, 헤더탱크 분리벽의 이격된 구조를 활용하여 베플을 보다 안정적으로 조립할 수 있고, 조립성을 개선할 수 있다. 즉, 베플 중앙의 베플연결부(330)를 헤더탱크에 관통 형성된 베플 결합홈(126)에 삽입 안착시킨 후 헤더탱크를 조립함으로써 조립성을 개선하게 되는 것이다.
또한, 베플의 측면에 돌출된 베플측면결합부(360)의 단차를 활용하여 외측 헤더플레이트(110)와 내측 헤더플레이트(120)의 결합 위치를 가이드하고, 체결 강도를 향상시킬 수 있다.
도 14는 본 발명의 실시예에 따른 스로틀플레이트의 결합 구조를 설명하기 위한 도면이다. 도 14를 참조하면, 제1 스로틀플레이트(210)는 유체가 통과하는 스로틀개구(211), 상기 내측 헤더플레이트(120)와 결합되는 스로틀내측결합부(212), 및 상기 외측 헤더플레이트(110)와 결합되는 스로틀외측결합부(213)를 포함하여 형성되며, 앞서 설명한 베플(300)의 조립구조와 같이 중앙의 요입 분리벽을 활용하여 결합 위치를 가이드함으로써 조립성을 향상시킬 수 있다. 제2 스로틀플레이트(220) 또한 제1 스로틀플레이트(210)와 동일한 구조로 형성되어 조립될 수 있다.
한편, 스로틀플레이트의 면적은 열교환기의 발열성능과 온도분포에 영향을 주게 된다. 도 15는 스로틀플레이트와 탱크 단면의 개구 단면적 비율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프로서 도 15를 참조하여, 스로틀플레이트의 개구 단면적 비율이 열교환기의 발열성능과 온도분포에 미치는 영향에 대해 설명한다.
도 15의 시험 결과에 대해 자세히 설명하면, 제1 스로틀플레이트(210) 또는 상기 제2 스로틀플레이트(220)의 개구 단면적을 탱크 단면적의 10~30%까지 변경하여 발열성능과 온도분포를 비교 실험하였다. 그래프의 좌측은 기준 발열성능을 A라 할 때의 상대적인 발열성능 시험값을 나타내고, 그래프의 우측은 기준 온도분포를 B라 할 때의 상대적인 온도분포 시험값을 나타내며, 발열성능이 높을수록, 온도분포가 작을수록 더 좋은 결과를 나타내는 것으로 해석된다.
시험결과 제1 스로틀플레이트(210) 또는 상기 제2 스로틀플레이트(220)의 개구 단면적이 탱크 단면적의 25~30%의 범위를 가질 때 기준 대비 월등한 발열성능을 나타내면서도 온도분포가 크게 벗어나지 않는 것을 확인할 수 있었다. 즉, 제1 스로틀플레이트(210) 또는 상기 제2 스로틀플레이트(220)가 탱크 단면적의 25~30%의 범위이면, 온도분포가 크게 나빠지지 않으면서도 월등한 발열성능을 나타내게 된다.
또한, 스로틀플레이트와 튜브 유로 단면의 개구 단면적 비율도 열교환기의 발열성능과 온도분포에 영향을 주게 된다. 도 16은 스로틀플레이트와 튜브 유로 단면의 개구 단면적 비율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프로서, 도 16을 참조하여 스로틀플레이트와 튜브 유로 단면의 개구 단면적 비율이 열교환기의 발열성능과 온도분포에 미치는 영향에 대해 설명한다.
도 16의 가로축은 튜브 유로 단면적에 대해 제 1스토를플레이트 또는 제 2 스로틒플레이트의 개구 단면적의 비율을 나타내고, 그래프의 좌측은 기준 발열성능을 A라 할 때의 상대적인 발열성능 시험값을 나타내고, 그래프의 우측은 기준 온도분포를 B라 할 때의 상대적인 온도분포 시험값을 나타내며, 발열성능이 높을수록, 온도분포가 작을수록 더 좋은 결과를 나타내는 것으로 해석된다.
시험결과 제1 스로틀플레이트(210) 또는 상기 제2 스로틀플레이트(220)의 개구 단면적이 튜브 유로 단면적의 18~21%의 범위를 가질 때 기준 대비 월등한 발열성능을 나타내면서도 온도분포가 크게 벗어나지 않는 것을 확인할 수 있었다. 즉, 제1 스로틀플레이트(210) 또는 상기 제2 스로틀플레이트(220)가 탱크 단면적의 18~21%의 범위이면, 온도분포가 크게 나빠지지 않으면서도 월등한 발열성능을 나타내게 된다.
한편, 스로틀플레이트의 위치는 각 탱크존의 중심에서 약간씩 편향되어 배치되는 것이 적절하다. 도 17은 스로틀플레이트의 편향 위치를 설명하기 위한 도면으로서, 도 18을 참조하면, 제1 스로틀플레이트(210)는 제3 탱크존(TZ_3)의 중심에서 제2 헤더탱크(200)의 중심쪽으로 편향되어 배치되고, 제2 스로틀플레이트(220)는 상기 제7 탱크존(TZ_7)의 중심에서 제2 헤더탱크(200)의 중심쪽으로 편향되어 배치되는 것이 적절하다.
아래 <표 2>와 도 18 및 도 19를 참조하여 스로틀플레이트의 편향이 열교환기의 발열성능과 온도분포에 미치는 영향에 대해 설명한다.
Case 1 Case 2 Case 3 Case 4 Case 5
제 1스로틀플레이트 편향율 (%) -22.2% -11.9% -1.6% +8.7% +19.0%
제 2스로틀플레이트 편향율 (%) -20.7% -9.9% -1.0% +11.9% +22.8%
<표 2>는 각 시험 Case별 제 1스로틀플레이트와 제 2스로틀플레이트의 편향율 나타낸다. 여기서 +, -는 편향 위치를 나타내며, +는 전체 열교환기의 중심 쪽으로 편향되는 것을 의미하고, -는 중심에서 반대 쪽으로 편향되는 것을 의미한다. 예를 들어, 제1 스로틀플레이트(210)가 제3 탱크존(TZ_3)의 중심에서 제2 탱크존(TZ_2) 쪽으로 이동하는 경우가 +이고, 제2 스로틀플레이트(220)가 제7 탱크존(TZ_7)의 중심에서 제6 탱크존(TZ_6)으로 이동하는 경우가 +인 것이다. 한편, 편향량은 각 탱크존의 길이에 대한 편향 길이의 백분율로 나타낸다.
도 18은 제 1스로틀플레이트의 편향율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프이고, 도 19는 제 2스로틀플레이트의 편향율에 따른 발열성능과 온도분포 영향을 살펴보기 위한 시험 결과 그래프로서, 그래프의 좌측은 기준 대비 성능비율, 우측은 온도분포를 나타낸다.
도 18을 참조하면, 제 1스로틀플레이트의 편향율은 8~9%일 때 발열성능을 유지하면서도 온도포의 저감효과가 탁월한 것으로 나타났으며, 도 19를 참조하면, 제 2스로틀플레이트의 편향율은 11~12%일 때 발열성능을 유지하면서도 온도포의 저감효과가 탁월한 것으로 나타났다.
즉, 제1 스로틀플레이트(210)는 제3 탱크존(TZ_3)의 중심에서 상기 제2 탱크존(TZ_2)으로 제3 탱크존(TZ_3) 길이의 8~9% 편향되어 배치되고, 상기 제2 스로틀플레이트(220)는 상기 제7 탱크존(TZ_7)의 중심에서 상기 제6 탱크존(TZ_6)으로 제7 탱크존(TZ_7) 길이의 11~12% 편향되어 배치되는 것이 적절하다.
[부호의 설명]
1: 열교환 시스템
2: 압축기 3: 응축기
4: 팽창밸브 5: 증발기
10: 튜브
1000: 열교환기
100: 제1 헤더탱크
110: 외측 헤더플레이트 110_1: 제1 절곡부
110_2: 제1 관통홀
111: 외측 제1 격벽 112: 외측 제2 격벽
113: 외측 결합부 114: 외측 결합홈
115: 헤더플레이트 고정홈
120: 내측 헤더플레이트 120_1: 제2 절곡부
120_2: 제2 관통홀
121: 내측 제1 격벽 122: 내측 제2 격벽
123: 내측 결합부 124: 튜브 결합홈
125: 내측 결합홈 126: 베플 결합홈
130: 주연통홀 130_1: 주연통홀안착부
131: 주연통홀커버 131_1: 주연통홀메인차폐부
131_2: 주연통홀측면차폐부 132: 주연통체결돌출부
140: 보조연통홀 140_1: 보조연통홀안착부
141: 보조연통홀커버 141_1: 보조연통홀메인차폐부
141_2: 보조연통홀측면차폐부 141_3: 보조연통헤더플레이트삽입부
142: 보조연통체결돌출부
151: 주연통체결탭 152: 보조연통체결탭
153: 헤더플레이트 체결탭
200: 제2 헤더탱크
210: 제1 스로틀플레이트 220: 제2 스로틀플레이트
211: 스로틀개구 212: 스로틀내측결합부
213: 스로틀외측결합부 214: 스로틀측면결합부
300: 베플 310: 유로베플
320: 베플플레이트 330: 베플연결부
340: 베플외측결합부 350: 베플내측결합부
360: 베플측면결합부
TZ_1: 제1 탱크존 TZ_2: 제2 탱크존
TZ_3: 제3 탱크존 TZ_4: 제4 탱크존
TZ_5: 제5 탱크존 TZ_6: 제6 탱크존
TZ_7: 제7 탱크존 TZ_8: 제8 탱크존
이상으로 본 발명의 실시 예에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다.
따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 열교환기에 관한 것으로 산업상 이용가능성이 있다.

Claims (18)

  1. 냉각 유체가 유입 및 유출되면서 서로 일정 거리 이격되어 배치되는 제1 헤더탱크와 제2 헤더탱크;, 및
    상기 제1 헤더탱크와 상기 제2 헤더탱크 사이에 배치되며, 복수의 튜브와 핀을 구비하여, 냉각 유체의 이동과 냉각 유체의 열교환을 수행하는 코어부를 포함하는 열교환기에 있어서,
    상기 제1 헤더탱크 또는 제2 헤더탱크는,
    탱크의 외주를 형성하는 외측 헤더플레이트;와
    상기 복수의 튜브가 결합되고, 상기 외측 헤더플레이트와 결합되어 폐단면을 형성하는 내측 헤더플레이트를 포함하고,
    상기 외측 헤더플레이트의 중앙은 상기 코어부 측으로 요입되도록 형성된 제1 절곡부를 포함하며, 상기 제1 절곡부 상에 배수홀이 형성되어 있는, 열교환기.
  2. 제1항에 있어서,
    상기 외측 헤더플레이트의 일정 영역이 관통되어,
    복수의 탱크존으로 서로 구획된 유로를 연통하는 주연통홀과 보조연통홀이 형성되는 것을 특징으로 하는, 열교환기.
  3. 제2항에 있어서,
    상기 주연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 주연통 홀플레이트가 결합되고,
    상기 보조연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 보조연통홀커버가 결합되는 것을 특징으로 하는, 열교환기.
  4. 제3항에 있어서,
    상기 주연통홀은 상기 보조연통홀 보다 큰 면적을 갖도록 형성되며,
    상기 주연통 커버플레이트의 높이가 상기 보조연통 커버플레이트의 높이 보다 크게 형성되는 것을 특징으로 하는, 열교환기.
  5. 제4항에 있어서,
    상기 보조연통홀의 면적은 상기 주연통홀의 면적의 6.5% 이하인 것을 특징으로 하는, 열교환기.
  6. 제1항에 있어서,
    상기 내측 헤더플레이트의 요입부에는 외측 헤더플레이트와의 결합을 위한 헤더플레이트 체결탭이 돌출 형성되고,
    상기 외측 헤더플레이트의 요입부에는 상기 헤더플레이트 체결탭이 삽입되는 헤더플레이트 고정홈이 형성되며,
    상기 헤더플레이트 고정홈을 통해 응축수가 배수되는 것을 특징으로 하는, 열교환기.
  7. 제6항에 있어서,
    상기 외측 헤더플레이트의 일정 영역이 관통되어 냉각 유체가 연통하는 주관통홀과 보조관통홀이 형성되며,
    상기 주연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 주연통홀커버가 결합되고,
    상기 보조연통홀이 형성되는 외측 헤더플레이트의 관통 영역에는 보조연통 홀플레이트가 결합되며,
    상기 내측 헤더플레이트의 요입부에 상기 주연통홀커버를 결합시키기 위한 주연통체결탭과, 상기 보조연통홀커버를 결합시기기 위한 보조연통체결탭이 돌출 형성되는 것을 특징으로 하는, 열교환기.
  8. 제7항에 있어서,
    상기 주연통홀커버는 양측으로 주연통체결돌출부가 돌출형성되어 상기 주연통체결탭과 결합되거나, 또는
    상기 보조연통홀커버는 양측으로 보조연통체결돌출부가 돌출형성되어 상기 보조연통체결탭과 결합되는 것을 특징으로 하는, 열교환기.
  9. 제1항에 있어서,
    상기 외측 헤더플레이트는, 헤더탱크의 내측으로 요입 절곡된 외측 제1 격벽,
    상기 외측 제1 격벽에서 절곡 연장되는 외측 결합부, 및 상기 외측 결합부에서 헤더탱크의 외측으로 절곡 연장되는 외측 제2 격벽을 포함하고,
    상기 내측 헤더플레이트는, 헤더탱크의 내측으로 요입 절곡된 내측 제1 격벽,
    상기 내측 제1 격벽에서 절곡 연장되는 내측 결합부, 및 상기 내측 결합부에서 헤더탱크의 외측으로 절곡 연장되는 내측 제2 격벽을 포함하며,
    상기 상기 외측 헤더플레이트의 외측 결합부와 상기 내측 헤더플레이트의 내측 결합부가 서로 맞닿아 폐단면을 형성하는 것을 특징으로 하는, 열교환기.
  10. 제9항에 있어서,
    상기 외측 헤더플레이트의 외측 제1 격벽 및 외측 제2 격벽의 높이는,
    헤더탱크 높이의 60% 이상으로 형성되는 것을 특징으로 하는, 열교환기.
  11. 제10항에 있어서,
    상기 제1 헤더탱크는 길이방향으로 유로를 구획하거나, 길이방향 일단을 폐쇄하는 베플을 더 포함하고,
    상기 베플은,
    유로를 차단하며 분리벽의 양측에 형성되는 베플플레이트,
    상기 베플플레이트를 연결하는 베플연결부,
    상기 베플플레이트의 상측에 형성되어 상기 외측 헤더플레이트에 형성된 외측 결합홈에 삽입되는 베플외측결합부,
    상기 베플플레이트의 하측에 형성되어 상기 내측 헤더플레이트에 형성된 내측 결합홈에 삽입되는 베플내측결합부를 포함하여 형성되는 것을 특징으로 하는, 열교환기.
  12. 제11항에 있어서,
    상기 내측 헤더플레이트의 요입부에는 베플 결합홈이 형성되고,
    상기 베플연결부가 상기 베플 결합홈에 삽입되는 것을 특징으로 하는, 열교환기.
  13. 제1항에 있어서,
    상기 제1 헤더탱크와 제2 헤더탱크를 유체의 흐름에 따라 구분하여,
    상기 제1 헤더탱크로 유체가 유입되는 영역을 제1 탱크존,
    상기 제1 탱크존에서 제2 헤더탱크로 유체가 하강하는 제1 패스의 단부 영역을 제2 탱크존,
    상기 제2 탱크존과 길이방향으로 연결되어 제1 헤더탱크로 유체가 상승하는 제2 패스의 일단 영역을 제3 탱크존,
    상기 제2 패스의 타단 영역을 제4 탱크존,
    상기 제4 탱크존과 주연통홀 및 보조연통홀로 연결된 영역을 제5 탱크존,
    상기 제5 탱크존에서 제2 헤더탱크로 유체가 하강하는 제3 패스의 단부 영역을 제6 탱크존,
    상기 제6 탱크존과 길이방향으로 연결되어 제1 헤더탱크로 유체가 상승하는 제4 패스의 일단 영역을 제7 탱크존,
    상기 제4 패스의 타단 영역으로서, 열교환기 외부로 유체가 유출되는 영역을 제8 탱크존이라고 할 때,
    상기 제3 탱크존에 제1 스로틀플레이트가 배치되고,
    상기 제7 탱크존에 제2 스로틀플레이트가 배치되는 것을 특징으로 하는, 열교환기.
  14. 제13항에 있어서,
    상기 제1 스로틀플레이트 또는 제2 스로틀플레이트는,
    유체가 통과하는 스로틀개구,
    상기 내측 헤더플레이트와 결합되는 스로틀내측결합부, 및
    상기 외측 헤더플레이트와 결합되는 스로틀외측결합부를 포함하는 것을 특징으로 하는, 열교환기.
  15. 제14항에 있어서, 상기 스로틀개구의 단면적은, 헤더탱크 단면적의 25~30%인 것을 특징으로 하는, 열교환기.
  16. 제14항에 있어서, 상기 스로틀개구의 단면적은, 튜브 유로 단면적의 18~21%인 것을 특징으로 하는, 열교환기.
  17. 제13항에 있어서,
    상기 제1 스로틀플레이트는 상기 제3 탱크존의 중심에서 상기 제2 탱크존으로 편향되어 배치되고, 또는,
    상기 제2 스로틀플레이트는 상기 제7 탱크존의 중심에서 상기 제6 탱크존으로 편향되어 배치되는 것을 특징으로 하는, 열교환기.
  18. 제17항에 있어서,
    상기 제1 스로틀플레이트는 상기 제3 탱크존의 중심에서 상기 제2 탱크존으로 제3 탱크존 길이의 8~9% 편향되어 배치되고, 또는,
    상기 제2 스로틀플레이트는 상기 제7 탱크존의 중심에서 상기 제6 탱크존으로 제7 탱크존 길이의 11~12% 편향되어 배치되는 것을 특징으로 하는, 열교환기.
PCT/KR2022/021066 2021-12-22 2022-12-22 열교환기 WO2023121344A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0184531 2021-12-22
KR20210184531 2021-12-22
KR1020220180673A KR20230095859A (ko) 2021-12-22 2022-12-21 열교환기
KR10-2022-0180673 2022-12-21

Publications (1)

Publication Number Publication Date
WO2023121344A1 true WO2023121344A1 (ko) 2023-06-29

Family

ID=86903165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021066 WO2023121344A1 (ko) 2021-12-22 2022-12-22 열교환기

Country Status (1)

Country Link
WO (1) WO2023121344A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207994A (ja) * 2004-12-28 2006-08-10 Showa Denko Kk エバポレータ
KR20080075983A (ko) * 2007-02-14 2008-08-20 한라공조주식회사 증발기
KR20100058026A (ko) * 2008-11-24 2010-06-03 한라공조주식회사 열교환기
JP5002798B2 (ja) * 2007-04-16 2012-08-15 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
KR20200080158A (ko) * 2018-12-26 2020-07-06 한온시스템 주식회사 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207994A (ja) * 2004-12-28 2006-08-10 Showa Denko Kk エバポレータ
KR20080075983A (ko) * 2007-02-14 2008-08-20 한라공조주식회사 증발기
JP5002798B2 (ja) * 2007-04-16 2012-08-15 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
KR20100058026A (ko) * 2008-11-24 2010-06-03 한라공조주식회사 열교환기
KR20200080158A (ko) * 2018-12-26 2020-07-06 한온시스템 주식회사 열교환기

Similar Documents

Publication Publication Date Title
WO2013176391A1 (ko) 증발기
WO2014058181A1 (en) Heat exchanger
WO2013176393A1 (ko) 증발기
WO2013176392A1 (ko) 증발기
EP3662190A1 (en) Vacuum adiabatic body and refrigerator
WO2016017927A1 (ko) 차량용 에어컨시스템
WO2014116055A1 (en) Heat exchanger equipped with cold reserving part and manufacturing method thereof
AU2018220495B2 (en) Vacuum adiabatic body, refrigerating or warming apparatus, and vehicle
WO2016013869A1 (ko) 차량용 에어컨시스템
WO2017052071A1 (ko) 차량용 egr 쿨러
WO2023121344A1 (ko) 열교환기
WO2020204596A1 (ko) 실외열교환기 및 이를 포함하는 공기조화기
WO2022050586A1 (ko) 베이퍼 인젝션 모듈 및 이를 이용하는 히트펌프 시스템
WO2017003075A1 (ko) 실외열교환기
AU2018215766B2 (en) Refrigerator for vehicle and vehicle
WO2014204066A1 (en) Heat exchanger for an air conditioner and an air conditioner having the same
JP2003524733A (ja) 高温ガス案内構成要素特にガスタービンの構造部分に対する熱遮蔽装置
WO2020138850A1 (ko) 열교환기
WO2018230826A1 (ko) 배기가스 냉각장치
WO2020022726A1 (ko) 수냉식 응축기
WO2023121302A1 (ko) 열교환기
WO2019124853A1 (ko) 열교환기
WO2020138851A1 (ko) 열교환기
WO2018151454A1 (ko) 공기조화기
WO2021015456A1 (ko) 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911977

Country of ref document: EP

Kind code of ref document: A1