WO2023120985A1 - 열간성형용 강재, 열간성형 부재 및 이들의 제조방법 - Google Patents

열간성형용 강재, 열간성형 부재 및 이들의 제조방법 Download PDF

Info

Publication number
WO2023120985A1
WO2023120985A1 PCT/KR2022/017875 KR2022017875W WO2023120985A1 WO 2023120985 A1 WO2023120985 A1 WO 2023120985A1 KR 2022017875 W KR2022017875 W KR 2022017875W WO 2023120985 A1 WO2023120985 A1 WO 2023120985A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel
steel sheet
annealing
Prior art date
Application number
PCT/KR2022/017875
Other languages
English (en)
French (fr)
Inventor
이세웅
오진근
김성우
김상헌
전효식
이루리
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023120985A1 publication Critical patent/WO2023120985A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to steel materials for hot forming used in automobiles, etc., hot forming members, and methods for manufacturing them.
  • the hot forming method is a method of increasing the strength of a final product by forming a low-temperature structure such as martensite in the steel material by processing the steel material at a high temperature suitable for processing and then rapidly cooling it to a low temperature. In this case, it is possible to minimize workability problems when manufacturing a member having high strength.
  • Patent Document 1 proposes a technique for securing ultra-high strength with a tensile strength of 1600 MPa or more by heating an Al-Si plated steel sheet to 850 ° C. or higher and then forming a member structure into martensite by hot forming and rapid cooling by pressing.
  • Patent Document 1 since it is molded at a high temperature, it is possible to easily mold complex shapes, and a weight reduction effect due to high strength can be expected through an increase in strength due to rapid cooling in the mold.
  • Fatigue characteristics which are a major factor determining the durability of materials, have been considered as characteristics required for steel mainly used in bearings and vehicle chassis.
  • the importance of fatigue characteristics is continuously increasing even for hot-formed steel materials or members thereof applied to automobile pillars.
  • Patent Document 2 proposes a method of improving durability of a part by securing surface hardness through heat treatment after surface carbonitriding of a product.
  • Patent Literature 3 proposes a method of improving the fatigue life of a material by subjecting the surface of the product to a shot peening process to form compressive residual stress in the surface layer.
  • Patent Document 1 US Patent No. 6296805
  • Patent Document 2 Korea Patent Registration No. 10-1129370
  • Patent Document 3 Korea Patent Registration No. 10-0373280
  • One aspect of the present invention is to provide a hot-formed member having high strength and at the same time having excellent surface quality and fatigue characteristics, a hot-formed member manufactured using the same, and a manufacturing method thereof.
  • One aspect of the present invention includes a base steel sheet and a plating layer formed on the base steel plate,
  • Carbon enrichment index before hot forming C (peak, before HPF) / C (nom, before HPF) ⁇ 1.5
  • C (peak, before HPF) is the highest carbon value of the carbon peak that appears first in the carbon profile as a result of GDS analysis from 1/3 of the thickness of the plating layer on the surface to the direction of the base steel sheet, C (nom, before HPF) is the nominal carbon value of the steel.
  • C 0.04 ⁇ 0.45%
  • Si 1.5% or less (excluding 0%)
  • Mn 0.2 ⁇ 2.5%
  • P 0.05% or less
  • S 0.02% or less
  • Al Obtaining a coated steel sheet using a steel slab containing 0.01 to 0.1%, Cr: 0.01 to 5.0%, N: 0.02% or less, the balance Fe and unavoidable impurities;
  • It relates to a method for manufacturing a steel for hot forming comprising a.
  • Holding time (t1) 1 minute or more (holding time at target temperature)
  • Heating rate (H1) 20 ⁇ 160°C/hr (heating rate up to the target temperature)
  • C 0.04 ⁇ 0.45%
  • Si 1.5% or less (excluding 0%)
  • Mn 0.2 ⁇ 2.5%
  • P 0.05% or less
  • S 0.02% or less
  • Al Obtaining a coated steel sheet using a steel slab containing 0.01 to 0.1%, Cr: 0.01 to 5.0%, N: 0.02% or less, the balance Fe and unavoidable impurities;
  • It relates to a method for manufacturing a steel for hot forming comprising a.
  • C 0.04 ⁇ 0.45%
  • Si 1.5% or less (excluding 0%)
  • Mn 0.2 ⁇ 2.5%
  • P 0.05% or less
  • S 0.02% or less
  • Al 0.01 ⁇ 0.1%
  • Cr 0.01 ⁇ 5.0%
  • N 0.02% or less, including a base material containing Fe and unavoidable impurities and a plating layer included on the base material,
  • C peak, after HPF is the highest carbon value of the carbon peak that appears first in the carbon profile as a result of GDS analysis from 1/3 of the thickness of the plating layer on the surface to the steel sheet direction, and C ( nom, after HPF) is the nominal carbon value of the steel.
  • Another aspect of the present invention comprises the steps of obtaining a blank using the steel for hot forming
  • It relates to a method for manufacturing a hot-formed member comprising a.
  • a hot-formed member having excellent durability by having high strength after hot-forming and at the same time excellent surface quality and fatigue characteristics. It is possible to provide a steel material for hot forming for this purpose, a hot forming member manufactured therefrom, and a manufacturing method thereof.
  • FIG. 1 is a graph showing a carbon profile (b) as a result of a Glow Discharge Spectrometer (GDS) analysis performed to measure a cross-sectional structure (a) of steel and a C peak value before and after hot forming.
  • GDS Glow Discharge Spectrometer
  • Figure 2 (a) and (b) shows a TEM image of the cross section observed after the phase annealing heat treatment of Inventive Example 1 and Comparative Example 1, respectively.
  • Figure 3 (a) and (b) shows an optical microscope image of the surface observed after the phase annealing heat treatment of Inventive Example 2 and Comparative Example 7, respectively.
  • the steel of the present invention by weight%, C: 0.04 ⁇ 0.45%, Si: 1.5% or less (excluding 0%), Mn: 0.2 ⁇ 2.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.01 ⁇ 0.1%, Cr: 0.01 to 5.0%, N: 0.02% or less, the balance may include Fe and unavoidable impurities.
  • each alloy composition will be described in detail, wherein % means % by weight.
  • the C is an essential element added to improve the strength of the member. If the C content is less than 0.04%, it is difficult to secure sufficient strength, and ultimately, even if the bendability is high, the collision energy absorption capacity is rather low, so it is effective to add 0.04% or more. On the other hand, when the C content exceeds 0.45%, the strength increases, but the bendability decreases and the impact energy absorption capacity decreases. Therefore, it is effective that the C content is less than 0.45%.
  • the Si not only needs to be added as a deoxidizer in steelmaking, but also contributes to increasing the strength of hot-formed members as a solid-solution strengthening element and a carbide formation inhibiting element, and is added as an effective element for material uniformity.
  • the content exceeds 1.5%, plating properties may be deteriorated due to Si oxide generated on the surface of the steel sheet during annealing. Accordingly, it is effective that the Si is included in an amount of 1.5% or less (excluding 0%).
  • the Mn needs to be added not only to secure the solid solution strengthening effect, but also to suppress the formation of ferrite during hot forming through the improvement of hardenability. If the content of Mn is less than 0.2%, there is a limit to obtaining the above effect, and other expensive alloy elements are excessively required to improve insufficient hardenability, which may cause a problem of greatly increasing manufacturing cost. On the other hand, if the Mn content exceeds 2.5%, the strength of the steel sheet before the hot forming process may increase and the cold rolling property may deteriorate, and the band structure arranged in the rolling direction deepens in the microstructure, resulting in poor collision energy absorption capacity. it can be done Therefore, it is effective that the content of Mn is 0.2 to 2.5%.
  • the P is present as an impurity in steel, and when the content exceeds 0.05%, the weldability of the hot-formed member may be greatly weakened.
  • P is an unavoidable impurity in the manufacture of steel, and the lower limit may not be particularly limited, but it may be 0.001% or more because a lot of manufacturing cost may be required to control the P content to less than 0.001%.
  • S is present as an impurity in steel and is an element that impairs ductility, impact properties and weldability of hot-formed members, so it is effective to limit it to a maximum of 0.02%.
  • the S is an unavoidable impurity, and the lower limit may not be particularly limited, but it may be 0.0001% or more because a lot of manufacturing cost may be required to control it to less than 0.0001%.
  • the Al is an element that, together with Si, acts as a deoxidizer in steelmaking to increase the cleanliness of the steel. If the Al content is less than 0.01%, it is difficult to obtain the above effect, and if the Al content exceeds 0.1%, there is a problem in that high-temperature ductility due to excessive AlN formed during the casting process is poor and slab cracks occur. Therefore, it is effective that the Al content is 0.01 to 0.1%.
  • Cr like Mn
  • the Cr content is less than 0.01%, it may be difficult to secure sufficient hardenability.
  • the content exceeds 5.0%, the effect of improving the hardenability compared to the added amount is insignificant, and it may promote the formation of coarse Cr-based carbides to deteriorate the impact energy absorption capacity, so it is effective not to exceed 5.0%.
  • the N is included as an impurity in steel.
  • the lower limit of N as an impurity may not be particularly limited, but may be 0.001% or more because a lot of manufacturing cost may be required to manage the N content to less than 0.001%.
  • the steel material may further include one or more of Mo: 0.5% or less, Ni: 0.5% or less, Nb: 0.1% or less, Ti: 0.1% or less, B: 0.01% or less in addition to the above-described alloy components.
  • the Mo not only has the effect of improving hardenability of steel, such as Cr and Mn, but also can obtain effects such as increase in bendability due to crystal grain refinement through the formation of fine precipitates.
  • the Mo content exceeds 0.5%, it causes an excessive increase in ferroalloy cost compared to the effect, so it is effective that the content does not exceed 0.5%.
  • the Mo content is more effective when 0.45% or less, more effectively 0.4% or less, and more effectively 0.35% or less.
  • Ni is an austenite stabilizing element, and the hardenability of the steel can be improved through the addition of Ni.
  • Ni is an expensive alloy element, it is effective to set the upper limit to 0.5% considering the increase in manufacturing cost compared to the effect of improving hardenability.
  • it is effective to include at least 0.01% or more, more effectively 0.03% or more, and more effectively 0.05% or more.
  • the upper limit of Ni is more effectively 0.45%, more effectively 0.4%, and most effective 0.35%.
  • the Nb is an element capable of obtaining a precipitation hardening effect through the formation of fine precipitates, and through this, an effect of improving bendability by increasing strength and refining crystal grains can be obtained. In addition, by suppressing excessive crystal grain growth during heating for hot forming, it is possible to promote robustness against variations in heat treatment conditions.
  • the Nb content exceeds 0.1%, not only the effect is saturated, but also relatively coarse precipitates increase due to an increase in precipitation temperature, which may reduce cost effectiveness. Therefore, it is effective that the Nb content is 0.1% or less.
  • the lower limit of the Nb content is effectively 0.005%, more effectively 0.01%, and more effectively 0.015%.
  • the upper limit of the Nb content is more effective at 0.09%, more effectively at 0.08%, and most effectively at 0.07%.
  • the Ti is an element that is also added together when B is added to secure hardenability by combining with nitrogen remaining as an impurity in steel to produce TiN.
  • TiC precipitates, precipitation strengthening and grain refinement effects can be expected.
  • the upper limit is 0.1%.
  • the lower limit of Ti is effectively 0.005%, more effectively 0.01%, and even more effectively 0.015%.
  • the upper limit of Ti is more effective at 0.08%, more effectively at 0.06%, and most effectively at 0.05%.
  • B is an element that can improve hardenability even with the addition of a small amount, and can effectively suppress brittleness of the hot-formed member due to grain boundary segregation of P and / or S by being segregated at the old austenite grain boundary.
  • the content exceeds 0.01%, it is effective that the upper limit is 0.01% because the Fe 23 CB 6 composite compound is formed, causing brittleness in hot rolling.
  • the lower limit of the B content is effectively 0.0001%, more effectively 0.0003%, and more effectively 0.0005%.
  • the upper limit of the B content is more effective at 0.009%, more effectively at 0.007%, and most effectively at 0.005%.
  • the rest includes iron (Fe), and since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, they cannot be excluded. Since these impurities are known to anyone skilled in the art during the manufacturing process, not all of them are specifically mentioned in the present specification.
  • the steel material for hot forming includes a plating layer on at least one surface.
  • the type of the plating layer such as a zinc (Zn)-based plating layer or an aluminum (Al)-based plating layer, is not particularly limited, and a method of forming the plating layer, such as hot-dip plating or electroplating, is not particularly limited.
  • an Al-based plating layer may be formed.
  • the Al-based plating is not particularly limited, but as an example, the Al-based plating layer is plated in a plating bath containing Si: 6 to 12%, Fe: 1 to 4%, and the rest including Al and unavoidable impurities in weight%.
  • the plating layer formed after processing may be an alloyed plating layer by subsequent phase annealing. That is, in the steel material, it is difficult to view the plating layer as a pure plating layer plated by a plating bath, and it is preferable to view it as an alloyed plating layer of the base steel sheet and the plating layer.
  • the steel for hot forming has a surface carbon segregation factor of 1.5 or more before hot forming, which is defined by the following [Relational Expression 1].
  • C (peak, before HPF) is the highest carbon value of the carbon peak (Peak) that appears first in the carbon profile as a result of GDS analysis from 1/3 of the thickness of the plating layer on the surface to the steel sheet direction, and C ( nom, before HPF) refers to the nominal carbon value of the steel, and usually refers to the target carbon content in the steel.
  • the inventors of the present invention applied normal annealing to the steel sheet for hot forming, observed the surface characteristics after the normal annealing, and observed the surface properties and fatigue characteristics of the member after hot forming. It has been recognized that when the surface characteristics are constantly managed, it is possible to improve the fatigue characteristics as well as to secure the surface quality of the hot-formed member.
  • the surface carbon segregation factor of the steel for hot forming defined by [Relational Equation 1] is 1.5 or more in order to improve fatigue characteristics for increasing durability in the hot formed member.
  • the microstructure of the steel for hot forming includes 50 to 90 area % of ferrite, and may include one or more of 30 area % or less of pearlite, 20 area % or less of bainite, and 20 area % or less of martensite.
  • the ferrite is a structure that is effective in reducing the load of the blanking process of steel materials when manufacturing blanks in a soft phase, and for this purpose, it is effective that it is 50 area% or more. However, if it exceeds 90 area%, there is a possibility that carbon is excessively distributed to structures other than ferrite during blank production, resulting in uneven distribution of carbon even after hot forming. Therefore, it is effective that the ferrite is 50 to 90 area%.
  • pearlite content exceeds 30 area%, cementite is incompletely dissolved after hot forming, which may reduce strength or cause material non-uniformity.
  • bainite or martensite exceeds 20 area%, respectively, the strength of the steel sheet is excessively increased, which may cause problems such as mold wear during blank manufacturing.
  • the whiteness of the steel for hot forming may be 60 or more. If the heat treatment of the phase annealing for alloying (pre-alloying) of the plating layer of the steel for hot forming is excessive, surface oxides are excessively formed and the whiteness may be inferior to less than 60. If the surface quality is inferior, problems such as roll contamination may occur during hot forming, so it is effective to perform the normal annealing conditions described later.
  • a coated steel sheet is manufactured and obtained using a steel slab satisfying the aforementioned alloy composition, and the coated steel sheet is subjected to annealing.
  • upper annealing is performed.
  • the upper annealing may be performed in one-step or two-step, and accordingly, the upper annealing conditions are different, and are divided into [normal annealing condition 1] and [normal annealing condition 2], respectively. to explain in detail.
  • Holding time (t1) 1 minute or more (holding time at target temperature)
  • Heating rate (H1) 20 ⁇ 160°C/hr (heating rate up to the target temperature)
  • the temperature increase rate (H1) is less than 20 °C / hr, the surface quality is deteriorated due to the formation of oxides on the surface layer due to excessive heat treatment time, and if the temperature increase rate (H1) exceeds 160 °C / hr, due to the temperature deviation in the width direction Surface quality may be deteriorated due to melting of the plating layer due to overheating of the edge portion.
  • the upper annealing is performed at a temperature of less than 500° C. in the target temperature range T1
  • surface quality and fatigue characteristics may be deteriorated due to defects in alloying of the plating layer as well as defects in surface layer carbon enrichment index.
  • the surface quality may be inferior due to excessive alloying.
  • a holding time of 1 minute or more at the target temperature is effective, and if the holding time is less than 1 minute, there is a risk that the entire plating layer may not be alloyed.
  • the holding time exceeds 100 hours, the surface quality may be deteriorated due to excessive alloying.
  • the heat treatment time may be excessive and the surface quality may be deteriorated, and if it exceeds 160 ° C / hr, the surface quality may be deteriorated due to the occurrence of edge melting.
  • the heating rate in section 2 is less than 0.25°C/hr, the surface quality may be deteriorated due to the increase in surface oxide due to excessive heat treatment, and if it exceeds 160°C/hr, the surface quality may be deteriorated due to melting of the plating layer at the edge.
  • the upper limit is not particularly limited, but when the holding time exceeds 100 hours, surface quality may be deteriorated due to excessive alloying, and processing costs may be excessively increased.
  • the holding time at the target temperature in the second section is less than 50 minutes, it is difficult to satisfy the surface layer carbon enrichment index.
  • the upper limit is not particularly limited, but when the holding time exceeds 100 hours, process costs increase excessively, and surface oxides increase, resulting in poor surface quality.
  • the target temperatures of section 1 and section 2 do not exceed 780°C and 800°C, respectively.
  • the target temperature is exceeded, surface whiteness due to over-alloying may be inferior to less than 60, and the process cost may be excessively increased due to an increase in the amount of heat input.
  • the target temperature of section 1 and section 2 is less than 500°C and 600°C, respectively, it is necessary to maintain heat treatment for more than 100 hours for complete alloying during normal annealing, resulting in excessive process cost due to poor surface quality and increase in input heat. can
  • the target temperature of section 2 is higher than the target temperature of section 1
  • the purge gas in the upper annealing furnace is any one of hydrogen (H 2 ), nitrogen (N 2 ) and a mixed gas thereof, and the purge amount is effectively 0.1 to 100 m 3 /hr. If the purge amount is less than 0.1 m3 / hr, the atmosphere in the annealing furnace is not controlled and the surface quality may be poor, and if the purge amount exceeds 100 m3 / hr, the amount of heat input to maintain the temperature in the furnace increases, which increases the manufacturing cost can become excessive.
  • a circulation fan may be operated during the annealing, and at this time, it is effective that the circulation fan operation amount is 10 rpm or more. If the operating amount of the circulation fan is small and is less than 10 rpm, a melting phenomenon may occur due to temperature deviation in the coil width direction and overheating of the edge portion, resulting in poor surface quality. The higher the operating amount of the circulation fan, the better, and since it is determined according to the capacity of the circulation fan motor, the upper limit is not particularly limited.
  • a steel slab satisfying the above-described composition range may be obtained by heating, hot rolling, winding, cooling, cold rolling, annealing, plating, and the like.
  • each process is explained.
  • the steel slab is heated at 1050-1300 °C.
  • the heating temperature of the steel slab is less than 1050 ° C., it is difficult to homogenize the structure of the steel slab, and it may be difficult to re-dissolve the steel slab when using precipitated elements.
  • the heating temperature exceeds 1300 ° C., an excessive oxide layer is formed, which may increase the possibility of causing surface defects after hot rolling. Therefore, it is effective that the steel slab heating temperature is 1050 ⁇ 1300 °C.
  • the lower limit of the steel slab heating temperature is more effectively 1070°C, and more effectively 1100°C.
  • the upper limit of the steel slab heating temperature is more effectively 1280 ° C, and more effectively 1250 ° C.
  • the heated steel slab is hot-rolled and finished hot-rolled at 800 to 950° C. to obtain a hot-rolled steel sheet.
  • the finish hot rolling temperature is less than 800° C., a mixed texture occurs in the surface layer of the steel sheet due to abnormal reverse rolling, and it may be difficult to control the plate shape.
  • the finish hot rolling temperature exceeds 950 ° C., there is a problem in that grain coarsening easily occurs due to hot rolling. Therefore, it is effective that the finish hot rolling temperature is 800 ⁇ 950 °C.
  • the lower limit of the finish hot rolling temperature is more effectively 810°C, and more effectively 820°C.
  • the upper limit of the finish hot rolling temperature is more effectively 940°C, and more effectively 930°C.
  • the hot-rolled steel sheet is wound at 500 to 700°C. If the coiling temperature is less than 500 ° C., martensite is formed in whole or in part of the steel sheet, making it difficult to control the shape of the sheet, and due to the increase in strength of the hot-rolled steel sheet, a problem of poor rollability in the subsequent cold rolling process may occur. . On the other hand, when the coiling temperature exceeds 700° C., coarse carbonaceous materials may be formed, and thus, the ability to absorb collision energy of the hot-formed member may decrease. Therefore, it is effective that the coiling temperature is 500 ⁇ 700 °C. The lower limit of the coiling temperature is more effective to be 520°C, and more effectively to be 550°C. The upper limit of the coiling temperature is more effectively 680 ° C, and more effectively 650 ° C.
  • the coiled hot-rolled steel sheet is cooled (hot-rolled cooling) at a cooling rate of 10° C./hr or more from the coiling temperature to 400° C., but when the cooling rate is less than 10° C./hr, the hot-rolled coil has sufficient time for carbides to grow
  • the cooling rate is 10°C/hr or more, more effectively 12°C/hr or more, and more effectively 15°C/hr or more.
  • the upper limit is not particularly limited.
  • a process of pickling before cold rolling may be added.
  • the surface quality of the product may be improved by removing scale formed on the surface of the steel sheet through the pickling process.
  • the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet.
  • the reduction rate during the cold rolling is not particularly limited, but a reduction rate of 30 to 80% may be applied to obtain a target steel thickness.
  • Annealing is performed on the cold-rolled steel sheet, and for this purpose, the cold-rolled steel sheet is heated, and at this time, it is effective to heat the temperature range from 400° C. to the annealing temperature at a rate of 20° C./s or less.
  • the heating rate exceeds 20 °C/s from 400 °C to the annealing temperature, there is not enough time for the carbides precipitated in the hot rolling step to be re-dissolved, so coarse carbides may remain, and collisions of the finally obtained hot-formed member Energy absorption may be reduced. Therefore, it is effective that the heating rate from 400 ° C. to the annealing temperature is 20 ° C. / s or less.
  • the heating rate is more effective when it is 18° C./s or less, and more effectively when it is 15° C./s or less.
  • the lower limit of the heating rate is not particularly limited.
  • the heating rate may be 0.5 ° C / s or more, more effectively 1 ° C / s or more, and more effectively 1.5 ° C / s or more.
  • the heating rate is not particularly limited in the temperature range from the cold rolling temperature to less than 400 ° C., because even if the heating rate is controlled, the effect on carbide re-dissolution is insignificant.
  • the annealing temperature is 740 to 860 ° C. If the annealing temperature is less than 740 ° C., the cold-rolled structure may not be sufficiently recrystallized, resulting in a poor plate shape or excessively high strength after plating, which may cause mold wear during the blanking process. On the other hand, if the annealing temperature exceeds 860 ° C, since surface oxides such as Si and Mn may be formed during the annealing process, the plating surface may be defective, so it is effective that the annealing temperature is 740 to 860 ° C. The lower limit of the annealing temperature is more effectively 750 ° C, and more effectively 760 ° C. The upper limit of the annealing temperature is more effective to be 850 ° C, and more effectively to be 840 ° C.
  • the dew point of the atmospheric gas may be -70 to -30 °C.
  • additional equipment for control is required, which increases manufacturing costs, and when the dew point exceeds -30 ° C, excessive annealing oxide is formed on the surface of the steel sheet during annealing. It may cause defects such as non-plating. Therefore, it is effective that the dew point temperature (Dew point) of the atmosphere gas during the continuous annealing is -70 to -30 ° C.
  • the lower limit of the dew point temperature of the atmospheric gas is more effectively -65°C, and more effectively -60°C.
  • the upper limit of the dew point temperature of the atmosphere gas is more effectively -35°C, and more effectively -40°C.
  • the annealed cold-rolled steel sheet is cooled (annealed cooling) from an annealing temperature to 660° C. at a cooling rate of 1° C./s or more.
  • the cooling rate is less than 1° C./s, a large amount of coarse carbide is formed, and thus the ability to absorb collision energy of the finally obtained hot-formed member may decrease. Therefore, it is effective that the cooling rate is 1°C/s or more.
  • the cooling rate is more effective when it is 1.5°C/s or more, and more effectively when it is 2°C/s or more.
  • the upper limit of the cooling rate is not particularly limited. However, the cooling rate may be 50 °C/s or less, more effectively 45 °C/s or less, and more effectively 40 °C/s or less in terms of suppressing steel sheet shape defects.
  • Plating may be additionally performed on the annealed cold-rolled steel sheet.
  • the type and method of plating are not particularly limited, but an example of Al-based plating will be described.
  • the annealed cold-rolled steel sheet is cooled and immersed in an Al-based plating bath to form an aluminum-based plating layer.
  • the composition and plating conditions of the Al-based plating bath are not particularly limited.
  • the composition of the plating bath may include Si: 6 to 12%, Fe: 1 to 4%, the balance Al and other unavoidable impurities by weight%, and the plating amount is conventional in the art. It may be 30 ⁇ 130g / m2 based on one side applied as.
  • the Si content in the plating bath composition is less than 6% by weight, the plating bath temperature is excessively raised and the equipment is deteriorated.
  • the Fe content is less than 1% by weight, plating adhesion or spot weldability may be inferior, and if the Fe content exceeds 4% by weight, dross generation in the plating bath may be excessive, causing poor surface quality.
  • the coating weight is less than 30 g/m2 on one side, it may be difficult to secure the desired corrosion resistance of the hot-formed member, and if it exceeds 130 g/m2, the manufacturing cost will increase due to the excessive plating weight, and the coating weight on the steel sheet will It may not be easy to plate uniformly in the longitudinal direction.
  • continuous annealing and plating may be performed on the cold-rolled steel sheet as described above, but plating may be performed immediately after pickling on the cooled hot-rolled steel sheet.
  • the hot-formed member of the present invention can be produced by hot press-forming the above-described steel for hot forming.
  • thermo-rigid formed member includes a base material and a plating layer included on the base material, and has a surface carbon segregation factor of 0.1 or more after hot forming defined by the following [Relational Expression 2].
  • C peak, after HPF is the highest carbon value of the carbon peak that appears first in the carbon profile as a result of GDS analysis from 1/3 of the thickness of the plating layer on the surface to the steel sheet direction, and C ( nom, after HPF) is the nominal carbon value of the steel.
  • the hot-formed member has a surface carbon segregation factor of 0.1 or more after the hot-formed member, so that excellent surface quality and fatigue resistance can be secured. It is effective that the surface carbon segregation factor after hot forming defined by the [Relationship 2] does not exceed 1.0.
  • C (nom, after HPF) is the nominal carbon value of steel, and it can be seen that there is little difference before and after hot forming. Therefore, in some descriptions, it is also described as C nom without distinguishing before and after HPF.
  • the base material of the hot-formed member satisfies the alloy composition described above.
  • the microstructure of the base material may have a martensite single-phase structure or a mixed structure including martensite and bainite of 40 area% or less. Since the martensite is an effective structure for securing strength, which is the target of the present invention, the microstructure of the member may be a single-phase martensite structure.
  • bainite is a structure with slightly lower strength than martensite, it does not greatly reduce bendability when formed in the martensite matrix and is advantageous for securing strength, so in the present invention, it is 40 area% or less together with the martensite. may have a mixed structure containing bainite of However, when the fraction of the bainite exceeds 40 area %, it may be difficult to secure the strength targeted in the present invention.
  • the microstructure may further include one or more of 10 area % or less of ferrite and 5% or less of retained austenite.
  • the ferrite and retained austenite may inevitably be formed in the manufacturing process.
  • the ferrite structure exceeds 10 area %, not only the strength is lowered, but also the bending properties may be significantly inferior, and when the retained austenite structure exceeds 5 area %, the strength is lowered or the atmosphere during hot forming Hydrogen inflow from the gas may increase, increasing the possibility of hydrogen embrittlement.
  • the plated layer of the hot-formed member means a plated layer obtained after hot forming with respect to the plated layer of the steel material described above.
  • the hot-formed member may have a fatigue limit improvement of 5% or more.
  • the fatigue limit improvement refers to the improvement rate of the fatigue limit compared to a material without surface layer carbon enrichment because pre-alloying is not performed.
  • the fatigue limit improvement can be confirmed in a tension-compression fatigue test. When the improvement in the fatigue limit is 5% or more, durability can be improved even with similar tensile properties.
  • the above-described hot-formed steel or hot-formed steel produced by the above method is prepared, a blank is prepared using this, and the blank is heated to a temperature equal to or higher than the austenite single-phase temperature range, more specifically Ac3 to 980 ° C. After that, keep it for 1 ⁇ 1000 seconds.
  • the blank heating temperature is Ac3 to 980 ° C.
  • the lower limit of the blank heating temperature is more effectively Ac3+5°C, and more effectively Ac3+10°C.
  • the upper limit of the blank heating temperature is more effectively 970°C, and more effectively 960°C.
  • the holding time is 1 to 1000 seconds.
  • the lower limit of the holding time it is more effective that it is 30 seconds, and it is more effective that it is 60 seconds.
  • the upper limit of the holding time is more effectively 900 seconds, and more effectively 800 seconds.
  • the heated and maintained blank is hot-formed and then cooled to room temperature (molding cooling) to finally manufacture a hot-formed member.
  • Specific conditions for the hot forming are not particularly limited, and a hot forming method commonly known in the art to which the present invention belongs can be applied as it is. As a preferred example, a mold cooling method may be used.
  • the steel slab was heated to 1250 ° C, hot rolled at a finishing hot rolling temperature of 900 ° C, and coiled at a coiling temperature of 640 ° C, to prepare a hot-rolled steel sheet having a final thickness of 2.5 mm.
  • cold-rolling was performed at a cold rolling reduction of 45% to manufacture a cold-rolled steel sheet.
  • annealing at a temperature of 780° C., which is a typical annealing temperature, in a 5% hydrogen-95% nitrogen atmosphere, the cold-rolled steel sheet was cooled, and Al-based plating was performed.
  • the composition of the Al-based plating bath was composed of Al-9%Si-2%Fe and the rest unavoidable impurities, and the coating weight was 70 g/m 2 based on one side.
  • H1 1st stage upper annealing temperature increase rate
  • T1 1st stage upper annealing target temperature
  • t1 1st stage upper annealing holding time
  • H2-1 2nd stage upper annealing 1 section temperature increase rate
  • T2-1 2 Target temperature of stage 1 annealing section 1
  • t2-1 holding time of stage 2 upper annealing section 1
  • H2-2 temperature increase rate of stage 2 upper annealing section 2
  • T2-2 target temperature of stage 2 upper annealing section 2
  • t2-2 It means the holding time of the 2nd phase of the 2nd phase annealing.
  • a hot-formed member was manufactured by making the steel sheet thus prepared into a blank and then hot-forming it using a hot-forming mold. At this time, the heating temperature of the blank was 900 ° C, the holding time was 5 minutes, and the transfer time from the heating furnace to molding was 10 seconds.
  • the surface carbon segregation factor of the hot-formed steel material and the hot-formed member was measured and shown in Table 3 below.
  • the carbon distribution in the depth direction was measured through a GDS analysis device, and a detailed analysis method is shown in FIG. 1.
  • the highest carbon content of the first carbon peak in the GDS carbon distribution from 1/3 of the surface layer including the plating layer is C peak , and C nom is the average carbon content of each steel type.
  • the solid line is before HPF
  • the dotted line shows the distribution of tinso after HPF.
  • relational expressions 1 and 2 are calculated values of C (peak, before HPF) / C (nom, before HPF) and C (peak, after HPF) / C (nom, after HPF) , respectively.
  • the whiteness is a value measured using a color difference meter with a tape removed after being attached to the material surface.
  • fatigue limit it is a value derived by repeating compression-tension tests under specific load conditions, and the fatigue limit improvement rate compared to materials without surface thickening due to no pre-alloy heat treatment is expressed as a fatigue limit improvement fraction (%).
  • the edge of the pre-alloyed material was observed with an electron microscope to determine whether the edge was melted, and marked as O/X.
  • Comparative Examples 1, 5, 10, and 15 satisfy the alloy composition proposed in the present invention, but do not perform phase annealing heat treatment, and thus fail to secure surface layer carbon enrichment index as well as alloying of the plating layer.
  • Comparative Example 3 is a material subjected to one-step phase annealing heat treatment, and the flow rate of the purge gas and the driving speed of the circulation fan are satisfactory, but the temperature rise rate is less than 20 ° C / hr and the whiteness is less than 60 due to the formation of surface oxide.
  • the temperature increase rate exceeded the range of the present invention, and the surface quality was deteriorated due to melting of the plating layer due to overheating of the edge portion.
  • Comparative Examples 4 and 6 the temperature increase rate and holding time were satisfied, but the flow rate of the purge gas did not satisfy the scope of the present invention, and therefore, sufficient surface whiteness was not secured.
  • Comparative Examples 9 and 16 the operation of the circulation fan in the furnace was less than 10 rpm during the annealing heat treatment, and it was confirmed that the surface quality was deteriorated due to the melting of the plating layer due to overheating of the edge portion due to the unevenness of the temperature in the furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차 등에 사용되는 열간성형용 강재, 열간성형 부재와 이들을 제조하는 방법에 관한 것이다.

Description

열간성형용 강재, 열간성형 부재 및 이들의 제조방법
본 발명은 자동차 등에 사용되는 열간성형용 강재, 열간성형 부재와 이들을 제조하는 방법에 관한 것이다.
최근 자동차의 경량화를 통한 연비 향상을 도모하고 있다. 이를 위해 강재의 두께를 감소시킬 수 있으나, 두께를 감소시킬 경우에는 자동차의 안정성에 문제가 발생할 수 있으므로, 강재의 강도 향상이 뒷받침되어야 한다. 이러한 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였고, 다양한 종류의 강재가 개발된 바 있다. 그러나, 이러한 강재는 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다.
이러한 문제를 해결하기 위해, Hot Forming 또는 Hot Press Forming(HPF)으로 일컬어지는 열간성형법이 제안된 바 있다. 열간성형법은 강재를 가공하기 좋은 고온에서 가공한 후, 이를 낮은 온도로 급냉함으로써 강재 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화 할 수 있다.
이러한 열간성형에 관한 기술로서, 특허문헌 1이 있다. 특허문헌 1은 Al-Si 도금강판을 850℃ 이상으로 가열한 후 프레스에 의한 열간성형 및 급냉에 의해 부재 조직을 마르텐사이트로 형성시킴으로써, 인장강도 1600MPa 이상의 초고강도를 확보하는 기술을 제안하고 있다. 특허문헌 1에서 제안된 기술의 경우, 고온에서 성형하기 때문에 복잡한 형상도 쉽게 성형이 가능하며, 금형 내 급냉에 따른 강도 상승을 통해 고강도화에 따른 경량화 효과를 기대할 수 있다.
한편, 승객 보호 목적으로 사용되는 열간성형 부재는 우수한 내구성이 요구되면, 대표적인 지표로서 우수한 피로특성이 요구되고 있다. 예를 들어, 자동차 비-필라(B-pillar)와 같은 경우, 장시간에 걸친 응력과 변형 사이클이 반복된 후 항복강도나 인장강도 보다 훨씬 낮은 응력하에서 파단이 발생할 수 있어 특정 사이클 이상에도 파단 없이 버틸 수 있는 특성(피로특성)이 요구된다.
재료의 내구성을 결정짓는 주요한 인자인 피로특성은 그 동안 주로 베어링, 차량 샤시 등에 적용되는 강에 요구되는 특성으로 여겨졌다. 그러나 최근 열간성형강의 고강도화에 따라 자동차 필라(pillar)류에 적용되는 열간성형용 강재 또는 그 부재에도 피로특성의 중요성은 지속적으로 높아지고 있다.
상기 피로특성을 향상하기 위한 다양한 방법이 제안되어 왔다. 예를 들어, 특허문헌 2에서는 제품의 표층 침탄 질화 처리 후 열처리를 통해 표층 경도를 확보함으로써, 부품의 내구성을 향상하는 방법을 제시하고 있다. 특허문헌 3은 제품의 표면에 숏 피닝(shot peening) 처리를 행하여 표층에 압축 잔류 응력을 형성함으로써, 재료의 피로수명을 향상시키는 방법을 제안하고 있다.
그러나, 위와 같은 방안은 제품의 성형 완료 후 적용하는 방법이며, 도금 등이 행해진 경우에는 표면 품질을 저해할 수 있기 때문에, 위와 같은 방법을 적용할 수 없는 한계가 있다.
(특허문헌 1) 미국등록특허 제6296805호
(특허문헌 2) 한국등록특허 제10-1129370호
(특허문헌 3) 한국등록특허 제10-0373280호
본 발명의 일측면은 열간성형 부재가 높은 강도를 가지면서, 동시에 우수한 표면 품질 및 피로특성을 갖는 열간성형용 강재와 이를 이용하여 제조된 열간성형 부재, 그리고 이들의 제조방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일태양은 소지강판 및 상기 소지강판 상에 형성된 도금층을 포함하고,
상기 소지강판은 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고,
하기 [관계식 1]을 만족하는 열간성형용 강재에 관한 것이다.
[관계식 1]
열간성형 전 탄소농화지수 : C(peak, HPF전) / C(nom, HPF전) ≥ 1.5
(관계식 1에서 C(peak, HPF전) 은 표면에서 도금층 두께의 1/3지점으로부터 상기 소지강판 방향으로, GDS 분석 결과 탄소 프로파일 중 첫번째로 나타나는 탄소 피크(Peak)의 가장 높은 탄소값이며, C(nom, HPF전)은 강의 노미널(Nominal) 탄소값임.)
본 발명의 다른 일태양은 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 이용하여 도금강판을 얻는 단계; 및
상기 도금강판을 하기 [상소둔 조건 1]의 1단계 방식으로 상소둔하는 단계;
를 포함하는 열간성형용 강재의 제조방법에 관한 것이다.
[상소둔 조건 1]
온도범위(T1): 500~800℃
유지시간(t1): 1분 이상 (목표온도에서의 유지시간임)
승온속도(H1): 20~160℃/hr (목표온도까지의 승온속도임)
본 발명의 또 다른 일태양은 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 이용하여 도금강판을 얻는 단계; 및
상기 도금강판을 하기 [상소둔 조건 2]의 2단계 방식으로 상소둔하는 단계;
를 포함하는 열간성형용 강재의 제조방법에 관한 것이다.
[상소둔 조건 2]
1구간 온도범위(T2-1): 500~780℃
1구간 유지시간(t2-1): 1분 이상 (목표온도에서의 유지시간임)
1구간 승온속도(H2-1): 20~160℃/hr (목표온도까지의 승온속도임)
2구간 온도범위 (T2-2): 600~800℃
2구간 유지시간(t2-2): 50분 이상 (목표온도에서의 유지시간임)
2구간 승온속도(H2-2): 0.25~160℃/hr (목표온도까지의 승온속도임)
본 발명의 또 다른 일태양은 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 모재 및 상기 모재 상에 포함된 도금층을 포함하고,
하기 [관계식 2]의 조건을 만족하는 열간성형 부재에 관한 것이다.
[관계식 2]
C(peak, HPF후) / C(nom, HPF후) ≥ 0.1
(관계식 2에서 C(peak, HPF후) 은 표면에서 도금층 두께의 1/3지점으로부터 소지강판 방향으로, GDS 분석 결과 탄소 프로파일 중 첫번째로 나타나는 탄소 피크(Peak)의 가장 높은 탄소값이며, C(nom, HPF후)은 강의 노미널(Nominal) 탄소값임.)
본 발명의 또 다른 일태양은 상기 열간성형용 강재를 이용하여 블랭크를 얻는 단계;
상기 블랭크를 Ac3~980℃의 온도로 가열한 후, 1~1000초간 유지하는 단계; 및
상기 가열 및 유지된 블랭크를 열간성형한 후 냉각하는 단계
를 포함하는 열간성형 부재의 제조방법에 관한 것이다.
본 발명의 일예에 의하면, 열간성형 후 높은 강도를 가지면서, 동시에 우수한 표면 품질과 피로특성을 가져 내구성이 우수한 열간성형 부재를 제조할 수 있다. 이를 위한 열간성형용 강재와 이로부터 제조된 열간성형 부재 및 이들의 제조방법을 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 태양을 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 강의 단면 구조(a) 및 열간성형 전후의 Cpeak 값을 측정하기 위해 실시한 GDS(Glow Discharge Spectrometer) 분석 결과 탄소의 프로파일(b)을 나타낸 그래프이다.
도 2의 (a) 및 (b)는 각각 발명예 1과 비교예 1의 상소둔 열처리 후 단면을 관찰한 TEM 이미지를 나타낸 것이다.
도 3의 (a) 및 (b)는 각각 발명예 2와 비교예 7의 상소둔 열처리 후 표면을 관찰한 광학현미경 이미지를 나타낸 것이다.
본 명세서에서 사용되는 용어는 본 발명을 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다.
명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것은 아니다.
달리 정의하지 않는 한, 본 명세서에서 사용되는 기술 용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지도록 해석된다.
먼저, 본 발명 열간성형용 강재의 일구현예에 대해 상세히 설명한다. 본 발명의 강재는 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함할 수 있다. 이하, 각 합금조성에 대해 상세히 설명하며, 이때 %는 중량%를 의미한다.
탄소(C): 0.04~0.45%
상기 C는 부재의 강도를 향상시키기 위해 첨가되는 필수적인 원소이다. 상기 C 함량이 0.04% 미만이면 충분한 강도를 확보하는 것이 곤란하여 궁극적으로 굽힘성이 높아도 충돌에너지 흡수능은 오히려 떨어지기 때문에 0.04% 이상 첨가되는 것이 효과적이다. 반면 C 함량이 0.45%를 초과하게 되면 강도가 높아지나 굽힘성이 저하되어 충돌에너지 흡수능은 떨어지게 때문에 0.45%이하인 것이 효과적이다.
실리콘(Si): 1.5% 이하 (0% 제외)
상기 Si는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 고용강화 원소이자 탄화물 생성억제 원소로 열간성형 부재의 강도 상승에 기여하며, 재질 균일화에 효과적인 원소로써 첨가된다. 그 함유량이 1.5%를 초과하는 경우에는 소둔 중 강판 표면에 생성되는 Si 산화물에 의해 도금성이 저하될 수 있다. 이에 상기 Si는 1.5% 이하(0% 제외)로 포함되는 것이 효과적이다.
망간(Mn): 0.2~2.5%
상기 Mn은 고용강화 효과를 확보할 수 있을 뿐만 아니라, 경화능 향상을 통하여 열간성형 시 페라이트 형성을 억제하기 위해 첨가될 필요가 있다. 상기 Mn의 함량이 0.2% 미만이면 상기 효과를 얻는데 한계가 있고, 부족한 경화능 향상을 위해 다른 고가의 합금원소가 과다하게 필요하여 제조원가를 크게 증가시키는 문제가 발생할 수 있다. 반면 상기 Mn이 2.5%를 초과하게 되면 열간성형 공정 전 강판의 강도 상승으로 냉간압연성이 저하될 수 있으며, 미세조직상 압연방향으로 배열된 밴드(band)성 조직이 심화되어 충돌에너지 흡수능이 열위해질 수 있다. 따라서, 상기 Mn의 함량은 0.2~2.5%인 것이 효과적이다.
인(P): 0.05% 이하
상기 P는 강 중 불순물로서 존재하며, 그 함량이 0.05%를 초과하는 경우에는 열간성형 부재의 용접성을 크게 취화시킬 수 있다. 한편, 상기 P는 강재 제조시 불가피한 불순물로써 그 하한에 대해 특별히 한정하지 않을 수 있으나, P 함량을 0.001% 미만으로 제어하기 위해서는 많은 제조비용이 소요될 수 있으므로, 0.001% 이상일 수 있다.
황(S): 0.02% 이하
상기 S은 강 중 불순물로 존재하며, 열간성형 부재의 연성, 충격특성 및 용접성을 저해시키는 원소이므로, 최대 0.02%로 제한하는 것이 효과적이다. 한편, 상기 S는 불가피한 불순물로서, 그 하한에 대해 특별히 한정하기 않을 수 있으나, 0.0001% 미만으로 제어하기 위해서는 많은 제조비용이 소요될 수 있으므로, 0.0001% 이상일 수 있다.
알루미늄(Al): 0.01~0.1%
상기 Al은 Si와 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높이는 원소이다. 상기 Al 함량이 0.01% 미만에서는 상기 효과를 얻기 어렵고, 그 함량이 0.1%를 초과하는 경우에는 연주공정 중 형성되는 과다한 AlN에 의한 고온 연성이 떨어져 슬라브 크랙이 발생하기 위한 문제점이 있다. 따라서, 상기 Al의 함량은 0.01~0.1%인 것이 효과적이다.
크롬(Cr): 0.01~5.0%
상기 Cr은 Mn과 같이 강의 경화능의 확보 및 HPF 공정 시 미려한 표면을 확보하기 위해 첨가된다. 상기 Cr 함량이 0.01% 미만이면 충분한 경화능을 확보하기 어려울 수 있다. 반면에 그 함량이 5.0%를 초과하게 되면 첨가량 대비 경화능 향상 효과는 미미하고, 조대한 Cr계 탄화물 형성을 조장하여 충돌에너지 흡수능을 열위하게 할 수 있으므로, 5.0%를 넘지 않는 것이 효과적이다.
질소(N): 0.02% 이하
상기 N은 강 중 불순물로 포함된다. 상기 N 함량이 0.02%를 초과하면, 앞서 Al의 경우와 마찬가지로 AlN 형성에 의한 슬라브 크랙이 발생하기 쉬워지는 문제가 있다. 상기 N은 불순물로서 그 하한에 대해 특별히 한정하지 않을 수 있으나, N 함량을 0.001% 미만으로 관리하기 위해서는 많은 제조비용이 소요될 수 있기 때문에 0.001% 이상일 수 있다.
한편, 상기 강재는 상술한 합금성분 이외에 Mo: 0.5% 이하, Ni: 0.5% 이하, Nb: 0.1% 이하, Ti: 0.1% 이하, B: 0.01% 이하 중 1종 이상을 더 포함할 수 있다.
몰리브덴(Mo): 0.5% 이하
상기 Mo는 Cr, Mn 등과 같이 강이 경화능을 향상하는 효과가 있을 뿐만 아니라, 미세 석출물 형성을 통한 결정립 미세화에 의한 굽힘성 증가 등의 효과를 얻을 수 있다. 다만, 상기 Mo 함량이 0.5%를 초과하게 되면 효과 대비 과도한 합금철 비용 상승을 야기시키기 때문에, 그 함량은 0.5%를 넘지 않는 것이 효과적이다. 상기 Mo 함량은 0.45% 이하인 것이 보다 효과적이고, 0.4% 이하인 것이 보다 더 효과적이며, 0.35% 이하인 것이 더욱 효과적이다.
니켈(Ni): 0.5% 이하
상기 Ni은 오스테나이트 안정화 원소로서 Ni 첨가를 통하여 강의 경화능을 향상시킬 수 있다. 다만, Ni은 고가의 합금원소이기 때문에, 경화능 향상효과 대비 제조원가 상승을 고려하면, 그 상한을 0.5%로 하는 것이 효과적이다. 한편, Ni을 첨가에 따른 경화능 향상 효과를 충분히 얻기 위해서는 최소 0.01% 이상 포함하는 것이 효과적이며, 0.03% 이상인 것이 더 효과적이며, 0.05% 이상의 것이 보다 더 효과적이다. 상기 Ni의 상한은 0.45%인 것이 보다 효과적이고, 0.4%인 것이 보다 더 효과적이며, 0.35%인 것이 가장 효과적이다.
니오븀(Nb): 0.1% 이하
상기 Nb는 미세 석출물 형성을 통한 석출강화 효과를 얻을 수 있는 원소로서, 이를 통해 강도 상승 및 결정립 미세화에 의한 굽힘성을 개선하는 효과를 얻을 수 있다. 그 뿐만 아니라, 열간성형을 위한 가열 중 지나친 결정립 성장을 억제하여 열처리 조건 변동에 대한 강건화를 도모할 수 있다. 다만, 상기 Nb 함량이 0.1%를 초과하면 그 효과가 포화될 뿐만 아니라, 석출온도의 증가로 상대적으로 조대한 석출물이 증가하여 비용 대비 효율성이 떨어질 수 있다. 따라서, 상기 Nb 함량은 0.1% 이하인 것이 효과적이다. 상기 Nb 함량의 하한은 0.005%인 것이 효과적이고, 0.01%인 것이 보다 효과적이며, 0.015%인 것이 보다 더 효과적이다. 상기 Nb 함량의 상한은 0.09%인 것이 보다 효과적이고, 0.08%인 것이 보다 더 효과적이며, 0.07%인 것이 가장 효과적이다.
타이타늄(Ti): 0.1% 이하
상기 Ti는 강에 불순물로 잔존하는 질소와 결합하여 TiN을 생성시킴으로써, 경화능 확보를 위하여 B를 첨가하는 경우에 함께 첨가되기도 하는 원소이다. 또한, TiC 석출물 형성을 통하여, 석출강화 및 결정립 미세화 효과를 기대할 수 있다. 다만 Ti 함량이 0.1%를 초과하게 되면 오히려 조대한 TiN이 다량 형성되어 충돌에너지 흡수능을 열위하게 하므로, 그 상한은 0.1%인 것이 효과적이다. 상기 Ti의 하한은 0.005%인 것이 효과적이고, 0.01%인 것이 보다 효과적이며, 0.015%인 것이 보다 더 효과적이다. 상기 Ti의 상한은 0.08%인 것이 보다 효과적이고, 0.06%인 것이 보다 더 효과적이며, 0.05%인 것이 가장 효과적이다.
보론(B): 0.01% 이하
상기 B는 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 및/또는 S의 입계편석에 의한 열간성형 부재의 취성을 효과적으로 억제할 수 있는 원소이다. 그러나, 그 함량이 0.01%를 초과하게 되면, Fe23CB6 복합화합물의 형성으로, 열간압연에서 취성을 야기시키기 때문에 그 상한은 0.01%인 것이 효과적이다. 한편, 상기 B 함량의 하한은 0.0001%인 것이 효과적이고, 0.0003%인 것이 보다 효과적이며, 0.0005%인 것이 보다 더 효과적이다. 상기 B 함량의 상한은 0.009%인 것이 보다 효과적이고, 0.007%인 것이 보다 더 효과적이며, 0.005%인 것이 가장 효과적이다.
나머지는 철(Fe)를 포함하며, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 제조과정에서 통상의 기술자가라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상기 열간성형용 강재는 적어도 일면에 도금층을 포함한다. 상기 도금층은 아연(Zn)계 도금층, 알루미늄(Al)계 도금층 등 그 종류를 특별히 한정하는 것은 아니고, 용융도금, 전기도금 등 도금층 형성 방식에 대해서도 특별히 한정하지 않는다. 바람직한 예로써 Al계 도금층이 형성될 수 있다. 상기 Al계 도금에 대해 특별히 한정하지 않으나, 일예로써, 상기 Al계 도금층은 중량%로, Si: 6~12%, Fe: 1~4%, 나머지는 Al 및 불가피한 불순물을 포함하는 도금욕을 도금한 후 형성된 도금층이 후속하는 상소둔에 의해 합금화된 도금층일 수 있다. 즉 상기 강재에서 도금층은 도금욕에 의해 도금된 순수 도금층으로 보기 어렵고, 소지강판과 도금층의 합금화가 된 도금층으로 보는 것이 바람직하다.
상기 열간성형용 강재는 하기 [관계식 1]로 정의되는 열간성형 전 표층탄화농화지수(Surface carbon segregation factor)가 1.5 이상인 것이 효과적이다.
[관계식 1]
C(peak, HPF전) / C(nom, HPF전) ≥ 1.5
(관계식 1에서 C(peak, HPF전) 은 표면에서 도금층 두께의 1/3지점으로부터 소지강판 방향으로, GDS 분석 결과 탄소 프로파일 중 첫번째로 나타나는 탄소 피크(Peak)의 가장 높은 탄소값이며, C(nom, HPF전)은 강의 노미널(Nominal) 탄소값을 말하며, 통상 강내의 타겟 탄소 함량을 의미함.)
본 발명의 발명자들은 열간성형용 강판에 상소둔을 적용하고, 상소둔 후의 표면 특성 등을 관찰하고, 열간성형 후 부재의 표면특성, 피로특성 등을 관찰한 결과, 상소둔 조건, 상소둔 후의 강판 표면 특성 등을 일정하게 관리할 경우에 열간성형 부재의 표면 품질확보뿐만 아니라, 피로특성을 향상시킬 수 있다는 점을 인지하게 되었다.
구체적으로, 상기 열간성형 부재에서의 내구성을 높이기 위한 피로특성 향상을 위해, 상기 [관계식 1]로 정의되는 열간성형용 강재의 표층탄화농화지수(Surface carbon segregation factor)가 1.5 이상인 것이 효과적이다.
상기 열간성형용 강재의 미세조직은 페라이트 50~90 면적%를 포함하고, 펄라이트 30 면적% 이하, 베이나이트 20 면적% 이하 및 마르텐사이트 20 면적% 이하 중 하나 이상을 포함할 수 있다.
상기 페라이트는 연질상으로 블랭크 제작시 강재의 블랭킹 공정 부하 저감에 효과적인 조직이며, 이를 위해 50 면적% 이상인 것이 효과적이다. 다만, 90 면적%를 초과하는 경우에는 블랭크 제작시 페라이트 외 조직으로 탄소가 과도하게 분배되어 열간성형 후에도 탄소가 불균일하게 분포할 가능성이 있다. 따라서, 상기 페라이트는 50~90 면적%인 것이 효과적이다.
상기 펄라이트가 30 면적%를 초과하는 경우에는 열간성형 후 세멘타이트가 불완전 용해되어 강도를 저하시키거나 재질 불균일성을 야기할 수 있다. 한편, 베이나이트나 마르텐사이트가 각각 20 면적%를 초과하는 경우에는 강판의 강도가 과도하게 상승되어 블랭크 제작시 금형 마모와 같은 문제가 야기될 수 있다.
한편, 상기 열간성형용 강재의 백색도는 60 이상일 수 있다. 열간성형용 강재의 도금층에 대한 합금화(선합금화)를 위한 상소둔의 열처리가 과도하게 되면, 표면 산화물이 과도하게 형성되어 백색도가 열위해져 60 미만이 될 수 있다. 표면 품질이 열위해질 경우 열간성형시 롤 오염 등의 문제가 발생할 수 있어, 후술하는 상소둔 조건을 행하는 것이 효과적이다.
다음으로, 본 발명 열간성형용 강재 제조방법의 일구현예에 대해 상세히 설명한다. 이하에서 설명하는 제조방법은 모든 가능한 실시 형태 중 하나의 실시 형태일 뿐이며, 상기 열간성형용 강재가 반드시 이하의 제조방법에 의해서만 제조되어야 함을 의미하는 것은 아니다.
상기 전술한 합금조성을 만족하는 강 슬라브를 이용하여 도금강판을 제조하여 얻고, 상기 도금강판을 상소둔한다.
전술한 [관계식 1]로 정의되는 열간성형 전 강재의 표층탄소농화지수 1.5 이상 또는 후술하는 [관계식 2]로 정의되는 열간성형 후 부재의 표층탄소농화지수 0.1 이상을 확보하기 위해, 상소둔을 행할 수 있다. 상기 상소둔은 1단계(One-step) 또는 2단계(Two-step)로 행할 수 있으며, 이에 따라, 상소둔 조건을 달리하며, 각각 [상소둔 조건 1] 및 [상소둔 조건 2]로 구분하여 상세히 설명한다.
[상소둔 조건 1]
온도범위(T1): 500~800℃
유지시간(t1): 1분 이상 (목표온도에서의 유지시간임)
승온속도(H1): 20~160℃/hr (목표온도까지의 승온속도임)
상기 승온속도(H1)가 20℃/hr 미만이면, 열처리 시간 과다로 인해 표층의 산화물 형성으로 표면 품질이 열위해지며, 승온속도(H1)가 160℃/hr를 초과하면 폭방향 온도편차로 인한 엣지(edge)부 과열로 도금층 용융 현상에 의해 표면 품질이 열위해질 수 있다. 상기 목표로 하는 온도범위(T1)가 500℃ 미만의 온도에서 상소둔을 진행할 경우에는 도금층의 합금화 불량은 물론 표층탄소농화지수 불량으로 표면 품질 및 피로특성이 열위해질 수 있다. 반면, 800℃를 초과할 경우에는 과도한 합금화로 인해 표면 품질이 열위해질 수 있다. 또한 목표 온도에서의 유지 시간이 1분 이상이 효과적이며, 유지시간이 1분 미만이면 도금층 전체를 합금화하지 못할 우려가 있다. 다만, 유지시간이 100시간을 초과하는 경우에는 과도한 합금화로 인해 표면 품질이 열위해질 수 있다.
[상소둔 조건 2]
1구간 온도범위(T2-1): 500~780℃
1구간 유지시간(t2-1): 1분 이상 (목표온도에서의 유지시간임)
1구간 승온속도(H2-1): 20~160℃/hr (목표온도까지의 승온속도임)
2구간 온도범위 (T2-2): 600~800℃
2구간 유지시간(t2-2): 50분 이상 (목표온도에서의 유지시간임)
2구간 승온속도(H2-2): 0.25~160℃/hr (목표온도까지의 승온속도임)
상기 1구간 승온속도가 20℃/hr 미만일 경우에는 열처리 시간이 과도하여 표면 품질이 열위해질 수 있으며, 160℃/hr를 초과하게 되면 엣지부 녹음 현상 발생으로 표면 품질이 열위해질 수 있다. 2구간 승온속도가 0.25℃/hr 미만이 경우에는 열처리 과도로 인한 표면 산화물 증가로 표면 품질이 열위해질 수 있으며, 160℃/hr을 초과하게 되면 엣지부 도금층 용융현상에 기인하여 표면 품질이 열위해질 수 있다.
상기 1구간 목표온도에서의 유지시간이 1분 미만인 경우에는 표층 탄소농화지수를 만족하기 어렵다. 다만 그 상한을 특별히 한정하지 않으나, 유지시간이 100시간을 초과할 경우에는 과도한 합금화로 인해 표면 품질이 열위해질 수 있고, 공정비용이 과도하게 증가되는 문제가 발생할 수 있다. 한편, 2구간 목표온도에서의 유지시간이 50분 미만인 경우에는 표층 탄소농화지수를 만족하기 어렵다. 다만 그 상한을 특별히 한정하지 않으나, 유지시간이 100시간을 초과할 경우에는 공정 원가가 과도하게 증가하고, 표면 산화물이 증가하여 표면 품질이 열위해질 우려가 있다.
한편, 상기 1구간 및 2구간의 목표 온도가 각각 780℃ 및 800℃를 초과하지 않는 것이 효과적이다. 상기 목표 온도를 초과할 경우 과합금화에 의한 표면 백색도가 60 미만으로 표면 품질이 열위해 질 수 있으며, 투입되는 열량의 증가로 공정비가 과도하게 증가될 수 있다. 반면, 1구간과 2구간의 목표 온도가 각각 500℃ 및 600℃ 미만에서는 상소둔 시 완전 합금화를 위해 100 시간 넘게 열처리를 유지해야 될 필요하여 표면 품질 열위 및 투입 열량의 증가로 공정비가 과도하게 될 수 있다. 상기 2구간의 목표온도는 1구간의 목표온도보다 높다
상기 상소둔 로내의 퍼지 가스는 수소(H2), 질소(N2) 및 이들의 혼합가스 중 어느 하나인 것이 효과적이며, 퍼지(purge)량은 0.1~100㎥/hr인 것이 효과적이다. 상기 퍼지량이 0.1㎥/hr 미만이면, 상소둔 로내 분위기가 제어되지 않아 표면 품질이 열위해질 수 있으며, 퍼지량이 100㎥/hr를 초과하게 되면 로내 온도 유지를 위해 투입되는 열량이 상승하여 제조비용이 과도해질 수 있다.
또한, 상소둔 시 순환팬이 작동될 수 있으며, 이때 순환팬 작동량은 10rpm 이상인 것이 효과적이다. 상기 순환팬 작동량이 작아 10rpm 미만이면 코일 폭방향 온도 편차 및 엣지부 과열로 인해 용융 현상이 발생하여 표면 품질이 열위해질 수 있다. 상기 순환팬 작동량은 높을수록 좋으며, 이는 순환팬 모터의 능력에 따라 결정되는 것이므로, 그 상한을 특별히 한정하지 않은다.
상기 도금강판을 제조하기 위해서는 다양한 방법이 있으며, 일예로 전술한 조성범위를 만족하는 강 슬라브를 가열, 열간압연, 권취, 냉각, 냉간압연, 소둔, 도금 등의 과정을 거쳐 얻어질 수 있다. 이하, 각 과정에 대해 설명한다.
강 슬라브 가열
상기 강 슬라브를 1050~1300℃에서 가열한다. 상기 강 슬라브의 가열온도가 1050℃ 미만인 경우에는 강 슬라브의 조직이 균질화되기 어려울 뿐만 아니라, 석출원소를 활용할 경우 재고용시키기 어려울 수 있다. 반면, 가열온도가 1300℃를 초과하는 경우 과다한 산화층이 형성되어 열간압연 후 표면 결함을 유발할 가능성이 높아질 수 있다. 따라서, 상기 강 슬라브 가열온도는 1050~1300℃인 것이 효과적이다. 상기 강 슬라브 가열온도의 하한은 1070℃인 것이 보다 효과적이고, 1100℃인 것이 보다 더 효과적이하다. 상기 강 슬라브 가열온도의 상한은 1280℃인 것이 보다 효과적이고, 1250℃인 것이 보다 더 효과적이다.
열간압연
상기 가열된 강 슬라브를 열간압연하고, 800~950℃에서 마무리 열간압연하여 열연강판을 얻는다. 상기 마무리 열간압연 온도가 800℃ 미만이면 이상역 압연에 따른 강판 표층부의 혼립 조직이 발생하여 판형상 제어가 어려울 수 있다. 반면에 상기 마무리 열간압연 온도가 950℃를 초과하면 열간압연에 의한 결정립 조대화가 쉽게 발생하는 문제가 있다. 따라서, 상기 마무리 열간압연 온도는 800~950℃인 것이 효과적이다. 상기 마무리 열간압연 온도의 하한은 810℃인 것이 보다 효과적이고, 820℃인 것이 보다 더 효과적이다. 상기 마무리 열간압연 온도의 상한은 940℃인 것이 보다 효과적이고, 930℃인 것이 보다 더 효과적이다.
권취
상기 열연강판을 500~700℃에서 권취한다. 상기 권취온도가 500℃ 미만이면 강판의 전체 또는 부분적으로 마르텐사이트가 형성되어 판형상 제어가 어려울 뿐만 아니라, 열연강판의 강도 상승으로 인해, 이후 냉간압연 공정에서의 압연성이 떨어지는 문제가 발생할 수 있다. 반면, 권취온도가 700℃를 초과하면 조대한 탄하물이 형성되어 열간성형 부재의 충돌에너지 흡수능이 저하될 수 있다. 따라서, 상기 권취온도는 500~700℃인 것이 효과적이다. 상기 권취온도의 하한은 520℃인 것이 보다 효과적이고, 550℃인 것이 보다 더 효과적이다. 상기 권취온도의 상한은 680℃인 것이 보다 효과적이고, 650℃인 것이 보다 더 효과적이다.
냉각
상기 권취된 열연강판은 권취온도로부터 400℃까지 10℃/hr 이상의 냉각속도로 냉각(열연 냉각)하나, 상기 냉각속도가 10℃/hr 미만인 경우에는 탄화물이 성장할 수 있는 충분한 시간으로 인해 열연코일의 냉각 중 조대한 탄화물이 다수 형성되는 단점이 발생할 수 있다. 따라서, 상기 냉각속도는 10℃/hr 이상인 것이 효과적이고, 12℃/hr 이상인 것이 보다 효과적이고, 15℃/hr 이상인 것이 보다 더 효과적이다. 한편, 상기 냉각속도가 10℃/hr 이상이기만 하면, 본 발명을 통해 얻고자 하는 효과를 얻을 수 있으므로, 그 상한에 대해서는 특별히 한정하지 않는다.
한편, 상기 냉각 후, 냉간압연 전에 산세하는 공정을 추가할 수 있다. 상기 산세 공정을 통해 강판 표면에 형성된 스케일(scale)을 제거하여 제품 표면 품질을 향상시킬 수 있다.
냉간압연
상기 공정 이후, 열연강판을 냉간압연하여 냉연강판을 얻는다. 상기 냉간압연시 압하율에 대해서는 특별히 한정하지 않으나, 목표하는 강재 두께를 얻기 위해서 30~80%의 압하율을 적용할 수 있다.
소둔 및 냉각
상기 냉연강판에 대해 소둔을 행하며 이를 위해, 상기 냉연강판을 가열하며, 이때 400℃부터 소둔온도까지의 온도범위를 20℃/s이하의 속도로 가열하는 것이 효과적이다. 상기 400℃~소둔온도까지 가열속도가 20℃/s를 초과하게 되면, 열연단계에서 석출된 탄화물이 재고용될 시간이 충분하지 못하여 조대한 탄화물이 잔류할 수 있으며, 최종적으로 얻어지는 열간성형 부재의 충돌에너지 흡수능이 저하될 수 있다. 따라서, 상기 400℃~소둔온도까지 가열속도는 20℃/s 이하인 것이 효과적이다. 상기 가열속도는 18℃/s 이하인 것이 보다 효과적이고, 15℃/s 이하인 것이 보다 더 효과적이다. 한편, 본 발명에서는 상기 가열속도가 20℃/s 이하이기만 하면, 본 발명이 얻고자 하는 효과를 얻을 수 있으므로, 상기 가열속도의 하한에 대해서는 특별히 한정하지 않는다. 다만, 소둔 생산성을 고려할 때 상기 가열속도는 0.5℃/s 이상일 수 있고, 보다 효과적이게는 1℃/s 이상, 보다 더 효과적이게는 1.5℃/s 이상일 수 있다. 한편, 본 발명에서는 냉간압연 온도에서부터 400℃ 미만까지의 온도 범위에서는 가열속도에 대해서 특별히 한정하지 않으며, 이는 가열속도를 제어하더라도 탄화물 재고용에 대한 효과가 미미하기 때문이다.
상기 가열된 냉연강판을 소둔온도 740~860℃에서 소둔하는 것이 효과적이다. 상기 소둔온도가 740℃ 미만이면 냉간압연되 조직의 재결정이 충분히 되지 않아, 판형상이 불량해지거나, 도금 후 강도가 지나치게 높아져 블랭킹 공정 중 금형 마모를 유발할 수 있다. 반면, 소둔온도가 860℃를 초과하는 경우, 소둔공정 중 Si, Mn 등의 표면 산화물을 형성하여 도금표면이 불량해지는 문제가 발생할 수 있으므로, 상기 소둔온도는 740~860℃인 것이 효과적이다. 상기 소둔온도의 하한은 750℃인 것이 보다 효과적이고, 760℃인 것이 보다 더 효과적이다. 상기 소둔온도의 상한은 850℃인 것이 보다 효과적이고, 840℃인 것이 보다 더 효과적이다.
상기 소둔시 분위기는 비산화성 분위기로 하는 것이 효과적이다. 예를 들어 수소-질소 혼합가스를 사용할 수 있으며, 이때 분위기 가스의 이슬점온도(Dew point)는 -70~ -30℃일 수 있다. 상기 이슬점 온도가 -70℃ 미만이 되기 위해서는 제어를 위한 부가적인 설비가 필요하여 제조비용이 상승하는 문제가 있고, 이슬점이 -30℃를 초과하게 되면 소둔 중 강판표면에 소둔산화물이 과다하게 형성되어 미도금 등의 불량을 야기할 수 있다. 따라서, 상기 연속소둔시 분위기 가스의 이슬점온도(Dew point)는 -70~ -30℃인 것이 효과적이다. 상기 분위기 가스의 이슬점온도의 하한은 -65℃인 것이 보다 효과적이고, -60℃인 것이 보다 더 효과적이다. 상기 분위기 가스의 이슬점온도의 상한은 -35℃인 것이 보다 효과적이고, -40℃인 것이 보다 더 효과적이다.
상기 소둔된 냉연강판을 소둔온도로부터 660℃까지 1℃/s 이상의 냉각속도로 냉각(소둔 냉각)한다. 냉각속도가 1℃/s 미만인 경우에는 조대한 탄화물이 다량 형성되어 최종적으로 얻어지는 열간성형 부재의 충돌에너지 흡수능이 저하될 수 있다. 따라서, 상기 냉각속도는 1℃/s 이상인 것이 효과적이다. 상기 냉각속도는 1.5℃/s 이상인 것이 보다 효과적이고, 2℃/s 이상인 것이 보다 더 효과적이다. 상기 냉각속도의 상한에 대해서는 특별히 한정하지 않는다. 다만, 강판 형상 불량 억제 측면에서 상기 냉각속도는 50℃/s 이하일 수 있고, 보다 효과적이게는 45℃/s 이하, 보다 더 효과적이게는 40℃/s 이하일 수 있다.
도금
상기 소둔된 냉연강판에 도금을 추가로 행할 수 있다. 본 발명에서 도금의 종류 및 방식에 대해 특별히 한정하지 않으나, Al계 도금의 일예에 대해 설명한다. 상기 도금은 상기 소둔된 냉연강판을 냉각하고, Al계 도금욕에 침지하여 알루미늄계 도금층을 형성한다. Al계 도금욕의 조성 및 도금조건에 대해서는 특별히 한정하지 않는다.
다만, 비제한적인 일예로서, 도금욕의 조성은 중량%로, Si: 6~12%, Fe: 1~4%, 잔부 Al 및 기타 불가피한 불순물을 포함할 수 있으며, 도금량은 당해 기술분야에서 통상적으로 적용되는 편면 기준 30~130g/㎡ 일 수 있다. 상기 도금욕 조성 중 Si 함량이 6 중량% 미만인 경우에는 도금욕 온도가 과도하게 올라가 설비를 열화시키는 단점이 있고, 12 중량%를 초과하는 경우에는 합금화를 과도하게 지연시켜 열간성형을 위한 가열시간을 길게 해야 하는 단점이 있다. Fe 함량이 1 중량% 미만인 경우에는 도금밀착성이나 점용접성이 열위해질 수 있고, 4 중량%를 초과하는 경우에는 도금욕 내 드로스 발생이 과다하여 표면 품질 불량을 유발할 수 있다. 도금 부착량이 편면 기준 30g/㎡ 미만인 경우에는 원하는 열간성형 부재의 내식성을 확보하기 어려울 수 있고, 130g/㎡를 초과하는 경우에는 과도한 도금 부착량으로 인하여 제조원가가 상승할 뿐만 아니라 강판에 도금량을 코일 전폭 및 길이 방향으로 균일하게 도금하기가 용이하지 않을 수 있다.
한편, 본 발명의 다른 측면에 따르면 위와 같이, 냉연강판에 대해 연속소둔 및 도금을 실시할 수 있으나, 냉각된 열연강판에 대해 산세 후 바로 도금을 실시할 수도 있다.
다음으로, 본 발명 열간성형 부재의 일구현예에 대해 상세히 설명한다. 본 발명의 열간성형 부재는 전술한 열간성형용 강재를 열간 프레스 성형하여 제조할 수 있다.
상기 열강성형 부재는 모재 및 상기 모재 상에 포함된 도금층을 포함하고, 하기 [관계식 2]로 정의되는 열간성형 후 표층탄화농화지수(Surface carbon segregation factor)가 0.1 이상인 것이 효과적이다.
[관계식 2]
C(peak, HPF후) / C(nom, HPF후) ≥ 0.1
(관계식 2에서 C(peak, HPF후) 은 표면에서 도금층 두께의 1/3지점으로부터 소지강판 방향으로, GDS 분석 결과 탄소 프로파일 중 첫번째로 나타나는 탄소 피크(Peak)의 가장 높은 탄소값이며, C(nom, HPF후)은 강의 노미널(Nominal) 탄소값임.)
상기 열간성형 부재는 상기 열간성형 후 표층탄화농화지수(Surface carbon segregation factor)가 0.1 이상을 만족하여, 우수한 표면 품질 및 내피로특성을 확보할 수 있다. 상기 [관계식 2]로 정의되는 열간성형 후 표층탄화농화지수(Surface carbon segregation factor)는 1.0을 넘지 않는 것이 효과적이다.
상기 관계식 1로 정의되는 열간성형 전 표층탄화농화지수는 관계식 2로 정의되는 열간성형 후 표층탄화농화지수에 비해 큰 것이 효과적이다([관계식 1] > [관계식 2]).
한편, C(nom, HPF후)은 강의 노미널(Nominal) 탄소값으로, 이는 열간성형 전후에 차이는 거의 없다고 볼 수 있다. 따라서, 일부 기재에서 HPF 전후를 구분하지 않고, Cnom으로 기재하기도 한다.
상기 열간성형 부재의 모재 전술한 합금조성을 충족한다. 한편, 상기 모재의 미세조직은 마르텐사이트 단상 조직 또는 마르텐사이트와 40면적% 이하의 베이나이트를 포함하는 혼합 조직을 가질 수 있다. 상기 마르텐사이트는 본 발명이 목표로 하는 강도 확보에 효과적인 조직이므로, 상기 부재의 미세조직은 마르텐사이트 단상 조직일 수 있다. 한편, 베이나이트는 마르텐사이트 보다 다소 강도가 낮은 조직이기는 하나, 마르텐사이트 기지 내에 형성시 굽힘성을 크게 저하시키지 않고, 강도를 확보하는데 유리한 조직이므로, 본 발명에서는 상기 마르텐사이트와 함께 40 면적%이하의 베이나이트를 포함하는 혼합 조직을 가질 수도 있다. 다만, 상기 베이나이트의 분율이 40 면적%을 초과하는 경우에는 본 발명에서 목표로 하는 강도 확보가 어려울 수 있다.
한편, 상기 미세조직은 10 면적% 이하의 페라이트 및 5% 이하의 잔류 오스테나이트 중 하나 이상을 추가로 포함할 수 있다. 상기 페라이트 및 잔류 오스테나이트는 제조공정상 불가피하게 형성될 수 있는 것이다. 상기 페라이트 조직이 10 면적%를 초과하는 경우에는 강도가 저하될 뿐만 아니라, 굽힘특성이 크게 열위해질 수 있고, 상기 잔류 오스테나이트 조직이 5 면적%를 초과하는 경우에는 강도가 저하되거나 열간성형 중 분위기 가스로부터 수소유입이 증가되어 수소취성이 발생할 가능성이 높아질 수 있다.
상기 열간성형 부재의 도금층은 전술한 강재의 도금층에 대해, 열간 성형 후 얻어진 도금층을 의미한다.
상기 열간성형 부재는 피로한도 개선이 5% 이상일 수 있다. 상기 피로한도 개선은 선합금화를 행하지 않아 표층 탄소 농화가 없는 소재 대비 피로한도의 개선율을 의미한다. 상기 피로한도 개선은 인장-압축 피로시험에서 확인될 수 있다. 상기 피로한도의 개선이 5% 이상이면, 유사한 인장 물성에서도 내구성이 향상될 수 있다.
다음으로, 본 발명 열간성형 부재를 제조하는 방법의 일구현예에 대해 상세히 설명한다. 이하에서 설명하는 제조방법은 모든 가능한 실시 형태 중 하나의 실시 형태일 뿐이며, 상기 열간성형 부재가 반드시 이하의 제조방법에 의해서만 제조되어야 함을 의미하는 것은 아니다.
전술한 열간성형 강재 또는 전술한 방법으로 제조된 열간성형 강재를 준비하고, 이를 이용하여 블랭크를 제조하고, 상기 블랭크를 오스테나이트 단상역 온도 이상, 보다 상세하게는 Ac3~980℃의 온도로 가열한 후, 1~1000초간 유지한다.
상기 블랭크 가열온도가 Ac3 온도 미만이면, 미변태된 페라이트의 존재로 인해 소정의 강도를 확보하기 어려울 수 있다. 반면에 가열온도가 980℃를 초과하는 경우에는 부재 표면에 과다한 산화물 생성으로 점용접성을 확보하기 어려울 수 있다. 따라서, 상기 블랭크 가열 온도는 Ac3~980℃인 것이 효과적이다. 상기 블랭크 가열 온도의 하한은 Ac3+5℃인 것이 보다 효과적이고, Ac3+10℃인 것이 보다 더 효과적이다. 상기 블랭크 가열 온도의 상한은 970℃인 것이 보다 효과적이고, 960℃인 것이 보다 더 효과적이다.
상기 유지하는 시간이 1초 미만이면 블랭크 전체에서 온도가 균일화 되지 못하여 부위별 재질차이를 유발할 수 있으며, 유지시간이 1000초를 초과하게 되면 가열온도 과다와 마찬가지로 부재 표면에 과다한 산화물 생성으로 점용접성을 확보하기 어려울 수 있다. 따라서, 상기 유지시간은 1~1000초인 것이 효과적이다. 상기 유지시간의 하한은 30초인 것이 보다 효과적이고, 60초인 것이 보다 더 효과적이다. 상기 유지시간의 상한은 900초인 것이 보다 효과적이고, 800초인 것이 보다 더 효과적이다.
이후, 상기 가열 및 유지된 블랭크를 열간성형한 후 상온까지 냉각(성형 냉각)하여 최종적으로 열간성형 부재를 제조한다. 상기 열간성형 시 구체적인 조건에 대해서는 특별히 한정하지 않으며, 본 발명이 속하는 기술분야에서 통상적으로 알려져 있는 열간성형 공법을 그대로 적용할 수 있다. 바람직한 일예로 금형냉각 방식을 이용할 수 있다.
다음으로, 본 발명의 실시예에 대해 설명한다.
하기 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 하기 실시예는 본 발명의 이해를 위한 것으로서, 본 발명의 권리범위는 하기 실시예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.
(실시예)
하기 표 1의 조성(중량%, 나머지는 Fe와 불가피한 불순물임)을 갖는 두께 100㎜의 강 슬라브를 진공 용해를 통해 제조하였다.
상기 강 슬라브를 1250℃로 가열한 뒤, 900℃의 마무리 열간압연 온도로 열간압연하고, 640℃의 권취 온도로 권취한 후, 최종 두께 2.5㎜의 열연강판을 제조하였다. 열연강판을 산세처리한 후, 냉간압하율 45%로 냉간압연을 실시하여 냉연강판을 제조하였다. 5%수소-95%질소 분위기하에서 통상적인 소둔온도인 780℃의 온도로 소둔한 뒤, 상기 냉연강판을 냉각한 후, Al계 도금을 실시하였다.
이 때, Al계 도금욕 조성은 Al-9%Si-2%Fe 및 나머지는 불가피한 불순물로 구성되며, 도금 부착량은 편면 기준 70g/m2로 하였다.
상기 도금된 강판 표층에 탄소 농화를 위한 상소둔 열처리를 행하였으며, 상기 상소둔 열처리는 공정 종류에 따라, 1단계(One-step) 또는 2단계(Two-step) 방식을 이용하여 상소둔을 행하였고, 구체적은 조건은 하기 표 2에 기재하였다.
강종 C Si Mn P S Al Cr Mo N Ti B
A 0.09 0.24 0.90 0.01 0.00 0.04 0.15 0.03 0.00 0.07 -
B 0.22 0.26 1.15 0.01 0.00 0.04 0.19 - 0.00 0.22 0.0027
C 0.31 0.40 0.87 0.01 0.00 0.03 0.23 0.16 0.00 0.03 0.0021
D 0.34 0.15 1.28 0.01 0.00 0.03 0.14 0.09 0.00 0.03 0.0020
구분 강종 퍼지
가스
가스
유량
(㎥/hr)
순환팬
rpm
1단계 상소둔 적용 2단계 상소둔 적용
H1
(℃/hr)
T1
(℃)
t1
(분)
H2-1
(℃/hr)
T2-1
(℃)
t2-1
(분)
H2-2
(℃/hr)
T2-2
(℃)
t2-2
(분)
비교예1 A - - - - - - - - - - - -
비교예2 A H2 15 100 30 450 20 - - - - - -
비교예3 A H2 15 100 10 550 120 - - - - - -
비교예4 A H2 0 500 - - - 50 550 50 15 700 50
발명예1 A H2 15 500 - - - 50 550 50 15 700 50
비교예5 B - - - - - - - - - - - -
비교예6 B H2 0 1500 30 780 300 - - - - - -
발명예2 B H2 15 1500 30 780 300 - - - - - -
비교예7 B H2 25 1000 - - - 175 650 300 30 700 60
발명예3 B H2 25 1000 - - - 150 650 300 30 700 120
비교예8 B H2 25 50 - - - 150 650 300 185 700 120
비교예9 B H2 80 5 - - - 30 650 300 30 720 50
발명예4 B H2 80 50 - - - 30 550 120 30 720 50
비교예10 C - - - - - - - - - - - -
발명예5 C N2 25 2000 30 740 120 - - - - - -
비교예11 C N2 25 2000 170 740 120 - - - - - -
비교예12 C N2 25 1200 30 450 120 - - - - - -
발명예6 C N2 15 1200 - - - 30 650 300 30 720 60
비교예13 C N2 15 1800 - - - 30 650 300 0.15 720 60
비교예14 C N2 15 1800 - - - 185 650 300 30 720 60
비교예15 D - - - - - - - - - - - -
발명예7 D H2 25 500 - - - 30 650 120 35 720 80
비교예16 D H2 25 5 - - - 30 650 120 35 720 80
상기 표 2에서, H1: 1단계 상소둔 승온속도, T1: 1단계 상소둔 목표온도, t1: 1단계 상소둔 유지시간, H2-1: 2단계 상소둔 1구간 승온속도, T2-1: 2단계 상소둔 1구간 목표온도, t2-1: 2단계 상소둔 1구간 유지시간, H2-2: 2단계 상소둔 2구간 승온속도, T2-2: 2단계 상소둔 2구간 목표온도, t2-2: 2단계 상소둔 2구간 유지시간을 의미한다.
이와 같이 제조된 강판을 블랭크로 제작한 뒤, 열간성형용 금형을 이용하여 열간성형함으로써 열간성형 부재를 제조하였다. 이 때, 상기 블랭크의 가열온도는 900℃였으며, 유지시간은 5분이었으며, 가열로로부터 성형하기까지의 이송시간은 모두 10초로 동일하게 적용하였다.
상기 열간성형 강재와 열간성형 부재의 표층탄화농화지수(Surface carbon segregation factor)를 측정하여 하기 표 3에 나타내었다. 상기 표층탄화농화지수는 위해 GDS 분석 장치를 통해 깊이 방향으로의 탄소 분포를 측정하였고, 도 1에 상세한 분석 방법을 나타내었다. 도금층을 포함한 표층 1/3 지점으로부터의 GDS 탄소 분포 중 첫번째 탄소 피크의 가장 높은 탄소량이 Cpeak이고, Cnom는 각 강종의 평균 탄소량이다. 한편, 도 1 (b)의 그래프에서, 실선은 HPF전이고, 점선은 HPF 후의 틴소 분포를 나타낸 것이다.
구분 강종 상소둔
종류
C(peak, HPF전) C(peak, HPF후) Cnom 관계식1 관계식2 백색도 피로
한도
피로한도
개선
(%)
엣지부
용융
비교예1 A X 0 0 0.085 0.00 0.00 - 275 0.0 X
비교예2 A 1단계 0.1 0.008 0.085 1.18 0.09 66.6 277 0.7 X
비교예3 A 1단계 0.13 0.0243 0.085 1.53 0.29 58.5 292 6.2 X
비교예4 A 2단계 0.35 0.071 0.085 4.12 0.84 56.8 293 6.5 X
발명예1 A 2단계 0.37 0.075 0.085 4.35 0.88 69.7 297 8.0 X
비교예5 B X 0 0 0.22 0.00 0.00 - 520 0.0 X
비교예6 B 1단계 0.53 0.11 0.22 2.41 0.50 57.9 533 2.5 X
발명예2 B 1단계 0.52 0.095 0.22 2.36 0.43 71.5 567 9.0 X
비교예7 B 2단계 0.45 0.087 0.22 2.05 0.40 75.1 529 1.7 O
발명예3 B 2단계 0.516 0.15 0.22 2.35 0.68 75.3 571 9.8 X
비교예8 B 2단계 0.54 0.158 0.22 2.45 0.72 75.4 533 2.5 O
비교예9 B 2단계 0.641 0.07 0.22 2.91 0.32 61.5 538 3.5 O
발명예4 B 2단계 0.509 0.087 0.22 2.31 0.40 75.8 561 7.9 X
비교예10 C X 0 0 0.31 0.00 0.00 - 682 0.0 X
발명예5 C 1단계 1.25 0.2535 0.31 4.03 0.82 73.8 718 5.3 X
비교예11 C 1단계 1.41 0.2859 0.31 4.55 0.92 74.0 725 6.3 O
비교예12 C 1단계 0.12 0.0215 0.31 0.39 0.07 74.2 689 1.0 X
발명예6 C 2단계 1.66 0.3366 0.31 5.35 1.09 74.3 735 7.8 X
비교예13 C 2단계 1.78 0.3609 0.31 5.74 1.16 52.1 740 8.5 X
비교예14 C 2단계 1.89 0.3832 0.31 6.10 1.24 73.1 745 9.2 O
비교예15 D X 0 0 0.345 0.00 0.00 - 803 0.0 X
발명예7 D 2단계 1.7 0.3447 0.345 4.93 1.00 77.2 860 7.1 X
비교예16 D 2단계 1.75 0.3548 0.345 5.06 1.03 77.5 862 7.1 O
상기 표 3에서 관계식 1 및 관계식 2는 각각 C(peak, HPF전) / C(nom, HPF전) 및 C(peak, HPF후) / C(nom, HPF후) 의 계산값이다.
한편, 백색도는 소재 표면에 부착 후 때어낸 테이프로 색차계를 이용하여 측정된 값이다. 피로한도의 경우 특정한 하중 조건에서 압축-인장 시험을 반복하여 도출된 값이며, 선합금화 열처리가 안되어 표층 농화가 없는 소재 대비 피로한도 개선율을 피로한도개선 분율(%)로 나타내었다. 선합금화 완료된 소재의 엣지부를 전자 현미경으로 관찰하여 엣지부 용융 여부를 판단하여, O/X로 표기하였다
상기 표 1 내지 2을 통해 알 수 있듯이, 본 발명에서 제안하는 합금조성 및 상소둔 조건을 모두 만족하는 발명예 1 내지 7의 경우, 우수한 표면품질 및 피로특성을 확보할 수 있음을 확인할 수 있었다.
비교예 1, 5, 10 및 15는 본 발명에서 제안하는 합금조성은 만족하나, 상소둔 열처리를 행하지 않는 것으로서, 도금층의 합금화는 물론 표층탄소농화지수를 확보하지 못하였다.
비교예 2 및 12는 상기 상소둔 과정에서 승온속도는 본 발명에서 제안하는 승온속도이나, 열처리 온도가 500℃ 미만으로 합금화가 부족으로 인해 열간성형 전 강재의 표층탄소농화지수가 본 발명 범위를 벗어난 것으로서, 피로한도 개선이 미미하였다. 도 2의 (a) 및 (b)는 각각 발명예 1과 비교예 2는 상소둔 열처리 후 도금층 단면을 관찰한 사진이다. 상기 도 2(b)를 보면, 비교예 2는 유지시간은 본 발명에서 제시하는 조건에 충족함에도 목표 온도를 충족하지 못하여 충분한 합금화를 얻지 못하였다. 반면, 선합금화 열처리 조건이 모두 충족된 발명예 1의 경우 합금화 열처리 후 합금화가 완료된 것을 알 수 있다.
비교예 3은 1단계 상소둔 열처리한 소재로 퍼지가스의 유량 및 순환팬의 구동속도는 만족하나, 승온속도가 20℃/hr 미만으로 표면 산화물 형성에 기인하여 백색도가 60 미만으로 열위한 것을 확인할 수 있었다. 반면, 비교예 11은 승온속도가 본 발명의 범위를 초과하여, 엣지부 과열로 인한 도금층 용융 현상으로 인해 표면 품질이 열위해졌다.
비교예 7 및 14는 2단계 상소둔 열처리를 적용하였으며, 2단계 중 1구간 열처리의 승온속도가 본 발명 범위를 초과한 것으로서, 과도한 열처리로 엣지부 과열로 인해 도금층 용융 현상으로 인해 표면 품질이 열위해졌다. 도 3의 (a) 및 (b)는 각각 발명예 2와 비교예 7을 광학현미경으로 관찰한 사진으로써, 도 3(a)의 발명예 2에 비해, 도 3(b)의 비교예 7에서는 엣지부에 도금층 용융이 발생한 후 응고되어 표면 품질이 균질하지 않은 현상(박스 부분)이 발생한 것을 확인할 수 있었다.
비교예 8 및 13은 각각 2단계 상소둔 열처리 공정에서 2구간의 승온속도가 본 발명의 범위를 초과하거나, 미치지 못한 것으로서, 각각 엣지부 도금층 용융이 발생하거나, 백색도가 60 미만으로 표면 품질이 열위해지는 것을 확인할 수 있었다.
비교예 4 및 6은 승온속도 및 유지시간은 만족하나, 퍼지가스의 유량이 본 발명의 범위를 만족하지 못하는 것으로서, 충분한 표면 백색도를 확보하지 못하였다. 비교예 9 및 16은 상소둔 열처리시에 로내 순환팬의 가동이 10rpm 미만이어서, 로내 온도의 분균일에 기인하여 엣지부 과열로 도금층 용융 현상이 발생해 표면 품질이 열위해지는 것을 확인할 수 있었다.

Claims (20)

  1. 소지강판 및 상기 소지강판 상에 형성된 도금층을 포함하고,
    상기 소지강판은 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고,
    하기 [관계식 1]을 만족하는 열간성형용 강재.
    [관계식 1]
    열간성형 전 탄소농화지수 : C(peak, HPF전) / C(nom, HPF전) ≥ 1.5
    (관계식 1에서 C(peak, HPF전) 은 표면에서 도금층 두께의 1/3지점으로부터 상기 소지강판 방향으로, GDS 분석 결과 탄소 프로파일 중 첫번째로 나타나는 탄소 피크(Peak)의 가장 높은 탄소값이며, C(nom, HPF전)은 강의 노미널(Nominal) 탄소값임.)
  2. 청구항 1에 있어서,
    상기 소지강판은 Mo: 0.5% 이하, Ni: 0.5% 이하, Nb: 0.1% 이하, Ti: 0.1% 이하, B: 0.01% 이하 중 1종 이상을 더 포함하는 열간성형용 강재.
  3. 청구항 1에 있어서,
    상기 소지강판의 미세조직은 면적분율로, 페라이트 50~90%를 포함하고, 펄라이트 30% 이하, 베이나이트 20% 이하 및 마르텐사이트 20% 이하 중 하나 이상을 포함하는 열간성형용 강재.
  4. 청구항 1에 있어서,
    상기 열간성형용 강재의 백색도는 60 이상인 열간성형용 강재.
  5. 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 이용하여 도금강판을 얻는 단계; 및
    상기 도금강판을 하기 [상소둔 조건 1]의 1단계 방식으로 상소둔하는 단계;
    를 포함하는 열간성형용 강재의 제조방법.
    [상소둔 조건 1]
    온도범위(T1): 500~800℃
    유지시간(t1): 1분 이상 (목표온도에서의 유지시간임)
    승온속도(H1): 20~160℃/hr (목표온도까지의 승온속도임)
  6. 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 이용하여 도금강판을 얻는 단계; 및
    상기 도금강판을 하기 [상소둔 조건 2]의 2단계 방식으로 상소둔하는 단계;
    를 포함하는 열간성형용 강재의 제조방법.
    [상소둔 조건 2]
    1구간 온도범위(T2-1): 500~780℃
    1구간 유지시간(t2-1): 1분 이상 (목표온도에서의 유지시간임)
    1구간 승온속도(H2-1): 20~160℃/hr (목표온도까지의 승온속도임)
    2구간 온도범위 (T2-2): 600~800℃
    2구간 유지시간(t2-2): 50분 이상 (목표온도에서의 유지시간임)
    2구간 승온속도(H2-2): 0.25~160℃/hr (목표온도까지의 승온속도임)
  7. 청구항 5 또는 6에 있어서,
    상기 강 슬라브는 Mo: 0.5% 이하, Ni: 0.5% 이하, Nb: 0.1% 이하, Ti: 0.1% 이하, B: 0.01% 이하 중 1종 이상을 더 포함하는 열간성형용 강재의 제조방법.
  8. 청구항 5 또는 6에 있어서,
    상기 상소둔시 로내의 퍼지 가스는 수소(H2), 질소(N2) 및 이들의 혼합가스 중 어느 하나이고, 퍼지량은 0.1~100㎥/hr인 열간성형용 강재의 제조방법.
  9. 청구항 5 또는 6에 있어서,
    상기 상소둔 시 순환팬이 작동될 수 있고, 상기 순환팬의 작동량은 10rpm 이상인 열간성형용 강재의 제조방법.
  10. 청구항 5 또는 6에 있어서,
    상기 도금강판을 얻는 단계는,
    상기 강 슬라브를 1050~1300℃에서 가열하는 단계;
    상기 가열된 강 슬라브를 800~950℃에서 마무리 열간압연하여 열연강판을 얻는 단계;
    상기 열연강판을 500~700℃에서 권취하는 단계;
    상기 권취된 열연강판을 권취온도로부터 400℃까지 10℃/Hr 이상의 냉각속도로 냉각하는 단계;
    상기 냉각된 열연강판을 30~80%의 압하율로 냉간압연하여 냉연강판을 얻는 단계;
    상기 냉연강판을 400℃부터 소둔온도까지의 온도범위를 20℃/s 이하의 속도로 가열하는 단계;
    상기 가열된 냉연강판을 소둔온도 740~860℃에서 소둔하는 단계;
    상기 소둔된 냉연강판을 소둔온도로부터 660℃까지 1℃/s 이상의 냉각속도로 냉각하는 단계; 및
    상기 소둔 후 도금을 행하는 단계를 포함하는 열간성형용 강재의 제조방법.
  11. 청구항 10에 있어서,
    상기 소둔시 분위기 가스의 이슬점 온도(Dew point)는 -70~ -30℃인 열간성형용 강재의 제조방법.
  12. 청구항 10에 있어서,
    상기 도금은 중량%로, Si: 6~12%, Fe: 1~4%, 잔부 Al 및 불가피한 불순물을 포함하는 Al계 도금욕에 침지하여 알루미늄 도금층을 형성하는 열간성형용 강재의 제조방법.
  13. 중량%로, C: 0.04~0.45%, Si: 1.5 % 이하(0% 제외), Mn: 0.2~2.5%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.01~0.1%, Cr: 0.01~5.0 %, N: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 모재 및 상기 모재 상에 포함된 도금층을 포함하고,
    하기 [관계식 2]의 조건을 만족하는 열간성형 부재.
    [관계식 2]
    C(peak, HPF후) / C(nom, HPF후) ≥ 0.1
    (관계식 2에서 C(peak, HPF후) 은 표면에서 도금층 두께의 1/3지점으로부터 소지강판 방향으로, GDS 분석 결과 탄소 프로파일 중 첫번째로 나타나는 탄소 피크(Peak)의 가장 높은 탄소값이며, C(nom, HPF후)은 강의 노미널(Nominal) 탄소값임.)
  14. 청구항 13에 있어서,
    상기 모재는 Mo: 0.5% 이하, Ni: 0.5% 이하, Nb: 0.1% 이하, Ti: 0.1% 이하, B: 0.01% 이하 중 1종 이상을 더 포함하는 열간성형 부재.
  15. 청구항 13에 있어서,
    상기 열간성형 부재의 미세조직이 마르텐사이트 단상 조직 또는 마르텐사이트와 40면적% 이하의 베이나이트를 포함하는 혼합 조직인 열간성형 부재.
  16. 청구항 13에 있어서,
    상기 [관계식 2]의 값은 1.0 이하인 열간성형 부재.
  17. 청구항 13에 있어서,
    상기 열간성형 부재의 피로한도 개선은 5% 이상인 열간성형 부재.
  18. 청구항 13에 있어서,
    상기 열간성형 부재는 청구항 1 내지 4 중 어느 한 항의 열간성형용 강재를 이용하여 제조된 열간성형 부재.
  19. 청구항 1 내지 4 중 어느 한 항의 열간성형용 강재를 이용하여 블랭크를 얻는 단계;
    상기 블랭크를 Ac3~980℃의 온도로 가열한 후, 1~1000초간 유지하는 단계; 및
    상기 가열 및 유지된 블랭크를 열간성형한 후 냉각하는 단계
    를 포함하는 열간성형 부재의 제조방법.
  20. 청구항 19에 있어서,
    상기 냉각은 금형냉각방식으로 행하는 열간성형 부재의 제조방법.
PCT/KR2022/017875 2021-12-22 2022-11-14 열간성형용 강재, 열간성형 부재 및 이들의 제조방법 WO2023120985A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0184705 2021-12-22
KR20210184705 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120985A1 true WO2023120985A1 (ko) 2023-06-29

Family

ID=86902931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017875 WO2023120985A1 (ko) 2021-12-22 2022-11-14 열간성형용 강재, 열간성형 부재 및 이들의 제조방법

Country Status (1)

Country Link
WO (1) WO2023120985A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380378A (en) * 1993-04-23 1995-01-10 Gas Research Institute Method and apparatus for batch coil annealing metal strip
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR100373280B1 (ko) 2000-07-18 2003-02-25 기아자동차주식회사 에어노즐 숏피이닝을 이용한 기어가공방법
KR101129370B1 (ko) 2007-10-24 2012-03-26 신닛뽄세이테쯔 카부시키카이샤 고온에서의 면압 피로 강도가 우수한 침탄 질화 고주파 담금질 강 부품 및 그 제조 방법
JP2016003389A (ja) * 2014-06-20 2016-01-12 株式会社神戸製鋼所 熱間プレス用鋼板、並びに該鋼板を用いた熱間プレス成形品及びその製造方法
KR20180074292A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 TWB 용접 특성이 우수한 열간성형용 Al-Fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
KR20210028627A (ko) * 2018-11-30 2021-03-12 주식회사 포스코 열간성형용 알루미늄 철 합금 도금강판 및 그 제조방법
KR20210080239A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 열간성형용 강재, 열간성형 부재 및 이들의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380378A (en) * 1993-04-23 1995-01-10 Gas Research Institute Method and apparatus for batch coil annealing metal strip
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR100373280B1 (ko) 2000-07-18 2003-02-25 기아자동차주식회사 에어노즐 숏피이닝을 이용한 기어가공방법
KR101129370B1 (ko) 2007-10-24 2012-03-26 신닛뽄세이테쯔 카부시키카이샤 고온에서의 면압 피로 강도가 우수한 침탄 질화 고주파 담금질 강 부품 및 그 제조 방법
JP2016003389A (ja) * 2014-06-20 2016-01-12 株式会社神戸製鋼所 熱間プレス用鋼板、並びに該鋼板を用いた熱間プレス成形品及びその製造方法
KR20180074292A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 TWB 용접 특성이 우수한 열간성형용 Al-Fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
KR20210028627A (ko) * 2018-11-30 2021-03-12 주식회사 포스코 열간성형용 알루미늄 철 합금 도금강판 및 그 제조방법
KR20210080239A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 열간성형용 강재, 열간성형 부재 및 이들의 제조방법

Similar Documents

Publication Publication Date Title
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2019124693A1 (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
WO2015099221A1 (ko) 고강도 저비중 강판 및 그 제조방법
WO2019124688A1 (ko) 충돌특성 및 성형성이 우수한 고강도 강판 및 이의 제조방법
WO2017222189A1 (ko) 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2018009041A1 (ko) 균열전파 저항성 및 연성이 우수한 열간성형 부재 및 이의 제조방법
WO2018117544A1 (ko) 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
WO2018056792A1 (ko) 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2016105059A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2020111702A1 (ko) 내구성이 우수한 고강도 강재 및 이의 제조방법
WO2018117523A1 (ko) 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법
WO2019124776A1 (ko) 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2019124807A1 (ko) 소부경화성 및 내식성이 우수한 강판 및 그 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2022086050A1 (ko) 연성이 우수한 초고강도 강판 및 그 제조방법
WO2022097965A1 (ko) 내수소취성 및 내충돌성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2023120985A1 (ko) 열간성형용 강재, 열간성형 부재 및 이들의 제조방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504232

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001344

Country of ref document: MX