WO2023120954A1 - Method for passivating injection-plated article - Google Patents

Method for passivating injection-plated article Download PDF

Info

Publication number
WO2023120954A1
WO2023120954A1 PCT/KR2022/016914 KR2022016914W WO2023120954A1 WO 2023120954 A1 WO2023120954 A1 WO 2023120954A1 KR 2022016914 W KR2022016914 W KR 2022016914W WO 2023120954 A1 WO2023120954 A1 WO 2023120954A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation
injection
plating
injection molding
plated
Prior art date
Application number
PCT/KR2022/016914
Other languages
French (fr)
Korean (ko)
Inventor
이경환
고영덕
김광주
김진주
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2023120954A1 publication Critical patent/WO2023120954A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the present invention relates to a passivation treatment method for an injection-plated product, and more particularly, to a passivation treatment method for an injection-plated product for improving corrosion resistance and chemical resistance by passivation treatment.
  • chrome plating is to visually enhance aesthetics, and functionally to cathode the material through a passivation film to create an electrochemically inactive state to increase corrosion resistance and abrasion resistance.
  • This naturally generated passivation film exists on the surface layer as very thin as 1-3 nm.
  • Types of chromium plating currently commercialized include trivalent chromium plating and hexavalent chromium plating.
  • trivalent chromium plating is gradually being regulated globally as carcinogens, and trivalent chromium plating is increasing as an alternative.
  • trivalent chromium plating is significantly inferior to hexavalent chromium in corrosion resistance and chemical resistance.
  • the trivalent chromium plating is plated at a high current density, microcracks due to internal stress may exist, and water or oxygen comes into contact with the nickel plating layer, which is an underlying layer, through the microcracks. Accordingly, a local battery in which the nickel plating layer serves as an anode is formed to promote corrosion.
  • iron (Fe) is used as a conduction aid, and the iron component forms vacancies in the plating layer to promote corrosion.
  • transparent coating is applied after trivalent chromium plating in order to prevent the above-mentioned defects, but a lot of money loss occurs due to cost increase and defect rate increase due to coating cost.
  • An object of the present invention to solve the above problems is to provide a passivation treatment method for an injection-plated material that improves corrosion resistance and chemical resistance through a passivation process while utilizing trivalent chromium plating.
  • a passivation treatment method for an injection-plated article includes the steps of racking and degreasing the injection-molded article; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying, wherein the plating step includes trivalent chromium plating, and the passivating step may be performed using Pulse Reverse Current (PR).
  • PR Pulse Reverse Current
  • the plating step may include chemical nickel plating.
  • the plating may include copper plating.
  • the plating step may include nickel plating.
  • the passivation step is composed of 1 to 3% of Chromium (III) sulfate, 5 to 10% of Etidronic acid, and 87 to 94% of distilled water as main components It can be carried out with a passivation solution containing
  • the passivation step may be performed with a passivation liquid containing 3,3'-Methylenebis as an additive.
  • the passivation step may be performed with a passivation liquid containing an organic salt.
  • the passivation step may apply a current density of 0.1 to 0.4 A/dm 2 .
  • the passivation step may be performed with a passivation liquid having a pH of 9.3 to 9.7 and a temperature of 25 to 35 °C.
  • the passivation step may be performed for 210 to 240 seconds.
  • the drying step may be performed at 60 to 70° C. for 5 to 10 minutes.
  • the passivation treatment method of the injection-plated article according to an embodiment of the present invention may further include a step of washing the water after the passivation step.
  • the washing step may be performed by immersing in ion-exchanged water or distilled water at 40 to 60 ° C. for 30 to 90 seconds.
  • the thickness of the passivation film generated through the passivation treatment method of injection-plated material according to an embodiment of the present invention may be 8 nm or more.
  • the passivation treatment method of injection molding includes the steps of racking and degreasing the injection molding; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying, and the resulting passivation film may have a thickness of 8 nm or more.
  • injection molding according to an embodiment of the present invention, the injection molding; a plating layer provided on the injection-molded product; and a passivation film provided on the plating layer, wherein the plating layer includes trivalent chromium plating, and the passivation film may have a thickness of 8 nm or more.
  • FIG. 1 is a flow chart showing a passivation treatment method for an injection-plated product according to an example of the present invention.
  • FIG. 2 is a schematic diagram showing the occurrence of corrosion due to micro cracks and surface vacancies present in a plated product subjected to trivalent chromium plating.
  • FIG 3 is a cross-sectional photograph of micro-cracks present in a plated product subjected to trivalent chromium plating using a scanning electron microscope (SEM).
  • FIG. 4 is a schematic diagram showing an injection-plated material subjected to passivation treatment according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the thickness of the passivation film subjected to the passivation process using a general DC current.
  • FIG. 6 is a graph showing the thickness of a passivation film subjected to passivation treatment using a PR current.
  • FIG. 7 is a photograph showing poor rusting as a result of performing a 72-hour salt spray test on a plated product plated with trivalent chromium.
  • FIG. 8 is a photograph showing defects in blistering as a result of performing a 72-hour salt spray test on a plate plated with trivalent chromium.
  • FIG. 9 is a photograph showing no defects as a result of performing a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test on the passivated injection molding according to an example of the present invention.
  • FIG. 10 is a photograph showing poor rusting as a result of performing a 24-hour detergent test on a plate plated with trivalent chromium.
  • FIG. 11 is a photograph showing peeling defects as a result of performing a 2-hour lax test on a plated material plated with trivalent chromium.
  • a passivation treatment method for an injection-plated article includes the steps of racking and degreasing the injection-molded article; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying, wherein the plating step includes trivalent chromium plating, and the passivating step may be performed using Pulse Reverse Current (PR).
  • PR Pulse Reverse Current
  • a passivation treatment method for an injection-plated article includes the steps of racking and degreasing the injection-molded article; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying.
  • FIG. 1 is a flow chart showing a passivation treatment method for an injection-plated product according to an example of the present invention.
  • a passivation treatment method for an injection-plated article may include steps of racking, degreasing, etching, neutralization, catalization, acceleration, plating, passivation, and drying. Each step is described in detail below.
  • the plastic material may be ABS or PC-ABS material, but is not limited thereto.
  • the plastic material may be manufactured as an injection molding product by injection molding according to the purpose.
  • a degreasing step for removing foreign substances from the injection-molded product may be performed.
  • the degreasing step may be performed by immersing the injection-molded product in a degreasing agent at 45 to 55° C. for 1 to 5 minutes.
  • the degreased injection molding product may generate an anchor by performing an etching step to remove the butadiene component on the surface.
  • the etching process may be performed by immersing for 8 to 12 minutes in a mixed solution containing 380 to 420 g/L of chromic anhydride and 200 to 240 ml/L of sulfuric acid at 68 to 70 °C.
  • a step of neutralizing the etching solution may be performed to prevent non-plating.
  • the neutralization step may be performed by immersing in a solution containing 30 to 35 ml/L of hydrochloric acid at 20 to 30° C. for 1 to 2 minutes.
  • a catalysing step for adsorbing Pd (palladium) and Sn (tin) components to the surface of the neutralized injection molding product may be performed.
  • the catalyzing step may be performed by immersing for 2 to 3 minutes in a mixed solution containing 50 ppm in Pd 30 and 200 to 300 ml / L of hydrochloric acid at 27 to 33 ° C.
  • the Catalyst injection molding product undergoes an Acceleration step, whereby the Sn (tin) component adsorbed in the Catalyst process can be removed.
  • the accelerating step may be performed by immersing in a solution containing 180 to 220 ml/L of sulfuric acid at 40 to 50° C. for 2 to 3 minutes.
  • a step of plating the accelerated injection-molded product may be performed.
  • the plating may include chemical nickel plating, copper plating, nickel plating, and trivalent chromium plating.
  • the chemical nickel plating is a process of forming an electroless nickel plating layer so that electricity can be applied using the Pd (palladium) component on the surface of the injection molding product as a catalyst. That is, the chemical nickel plating can be regarded as a preceding process for electroplating. According to one example of the present invention, the chemical nickel plating may be performed by dipping for 5 to 8 minutes in a solution containing 5 to 10 g/L of nickel sulfate and 12 to 18 g/L of hypophosphite at 25 to 45 ° C. .
  • the copper plating is a process of forming a copper plating layer on the surface of an injection-molded product so as to perform a role of imparting gloss through surface smoothing and buffering between the injection-molded product and the Ni (nickel) plating layer.
  • the copper plating may be performed with a solution containing 180 to 220 g/L of copper sulfate, 50 to 70 g/L of sulfuric acid, and additives at 22 to 30°C.
  • the copper plating layer formed through the copper plating may have a thickness of 15 ⁇ m or more.
  • the nickel plating is a process of forming a nickel plating layer on top of the copper plating layer in order to impart corrosion resistance and surface gloss to the injected product.
  • the nickel plating may be performed with a solution containing 250 to 280 g/L of nickel sulfate, 40 to 60 g/L of nickel chloride, and additives at 45 to 55 °C.
  • a thickness of the nickel plating layer formed through the nickel plating may be 10 ⁇ m or more.
  • the trivalent chromium plating is a process of forming a trivalent chromium plating layer on top of the nickel plating layer in order to improve corrosion resistance and surface hardness of an injection-molded product.
  • the trivalent chromium plating may be performed with a solution containing 100 to 120 g/L of chromium chloride and an additive at 20 to 30°C.
  • the trivalent chromium plating layer formed through the trivalent chromium plating may have a thickness of 0.15 ⁇ m or more.
  • a step of passivating the plated injection molding product may be performed.
  • the passivation liquid used in the passivation treatment step may include, as main components, 1 to 3% of Chromium (III) sulfate, 5 to 10% of Etidronic acid, and 87 to 94% of distilled water.
  • main components etidronic acid can play a role in adjusting the pH of the passivation solution.
  • the main component may be added in an amount of 23 to 27ml/L.
  • the passivation solution used in the passivation treatment step may contain 3,3'-Methylenebis as an additive.
  • the additive may serve to prevent trivalent chromium from being oxidized to hexavalent chromium.
  • the additive may be added in an amount of 0.3 to 0.7ml/L.
  • the passivation liquid used in the passivation treatment step may contain an organic salt.
  • the organic salt may include, for example, a surfactant.
  • the organic salt may play a role of increasing the reaction rate by lowering the surface tension, allowing the passivation liquid to spread uniformly on the surface of the injection-molded product.
  • the organic salt may be added in an amount of 14 to 16 g/L.
  • the passivating step may be performed with a passivation liquid having a pH of 9.3 to 9.7 and a temperature of 25 to 35 °C.
  • the above pH and temperature ranges are ranges in which a thick passivation film can be formed within a range that does not reduce productivity.
  • the passivating step may be performed for 210 to 240 seconds.
  • the passivation treatment time is short, the passivation film may be formed thinly.
  • the passivation treatment is performed for a long time, it may be difficult to secure sufficient corrosion resistance and chemical resistance.
  • the passivation process may be performed using Pulse Reverse Current (PR).
  • PR Pulse Reverse Current
  • the corrosion resistance of metal depends on how dense and chemically stable the oxide film formed on the metal surface is.
  • the PR current does not have a large current deviation between high current and low current, so it can play a role in forming a uniform and dense passivation film.
  • a current density of 0.1 to 0.4 A/dm 2 may be applied using an injection-molded product as a cathode.
  • the current density range may be set in consideration of productivity and passivation film thickness.
  • the drying step may be performed at 60 to 70° C. for 5 to 10 minutes.
  • the passivation treatment method of injection molding according to an embodiment of the present invention may further include a step of washing the water after the passivation step.
  • the rinsing may be performed to efficiently perform a drying process by removing chromic acid and organic substances, which are harmful components, remaining on the surface of the injection-molded product and removing moisture from the surface of the injection-molded product.
  • the step of washing the water may be performed by immersing in ion-exchanged water or distilled water at 40 to 60 ° C. for 30 to 90 seconds.
  • the thickness of the passivation film created through the passivation treatment method of the injection-plated material described above may be 8 nm or more.
  • the thickness of the passivation film that is naturally generated is 1 to 3 nm, and the thickness of the passivation film that is generated through a general DC current is about 3 nm. Therefore, corrosion resistance and chemical resistance can be improved by forming a uniform and thick passivation film through the passivation treatment method of injection molding according to one embodiment of the present invention.
  • An injection-plated product is an injection-molded product; a plating layer provided on the injection-molded product; and a passivation film provided on the plating layer, wherein the plating layer includes trivalent chromium plating, and the passivation film may have a thickness of 8 nm or more.
  • the plating layer may include a copper plating layer, a nickel plating layer, and a trivalent chromium plating layer.
  • FIG. 2 is a schematic diagram showing the occurrence of corrosion due to microcracks and surface vacancies present in a plating material plated with trivalent chromium
  • FIG. 3 shows microcracks present in a plating material plated with trivalent chromium using a scanning electron microscope (SEM) , a cross-sectional picture taken with a scanning electron microscope).
  • SEM scanning electron microscope
  • FIG. 4 is a schematic diagram showing an injection-plated material subjected to passivation treatment according to an embodiment of the present invention.
  • the resulting passivation film thickness was measured through XPS analysis.
  • a salt spray test, a detergent test, and a lax test are performed to determine corrosion resistance and chemical resistance. Evaluated.
  • XPS X-ray Photoelectron. Spectroscopy
  • FIG. 5 is a graph showing the thickness of the passivation film passivated using a general DC current
  • FIG. 6 is a graph showing the thickness of the passivation film subjected to the passivation process using a PR current.
  • the salt spray test was performed over a certain cycle by spraying 5 wt% sodium chloride (NaCl) for 8 hours and resting for 16 hours as one cycle at a temperature of 35 ° C.
  • FIG. 7 is a photograph showing poor rusting as a result of performing a 72-hour salt spray test on a plate plated with trivalent chromium
  • FIG. 8 is a 72-hour salt spray test for a plate plated with trivalent chromium.
  • FIG. 9 is a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test for the passivated injection plating material according to an example of the present invention, respectively. As a result, it is a picture without defects.
  • the detergent test was carried out by immersion in a 60° C. solution of 0.5% bleach, 0.5% detergent and the rest distilled water for a certain period of time or longer.
  • FIG. 10 is a photograph showing poor rusting as a result of performing a 24-hour detergent test on a plating material plated with trivalent chromium, and FIG. As a result of performing a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test, respectively, this is a photo showing no defects.
  • the lacquer test was performed by immersing 5% lacquer at room temperature for a certain period of time or longer.
  • FIG. 11 is a photograph showing peeling defects as a result of performing a 2-hour bleach test on a plating material plated with trivalent chromium, and FIG. As a result of performing a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test, respectively, this is a photo showing no defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

A method for passivation of an injection-plated article according to an embodiment of the present invention includes the steps of: racking and degreasing the injection-molded article; etching and neutralizing the degreased injection-molded article; catalyzing and accelerating the neutralized injection-molded article; plating the accelerated injection-molded article; passivating the plated injection-molded article; and drying same, wherein the plating step includes plating with trivalent chromium and the passivating step is carried out using a pulse reverse (PR) current.

Description

사출 도금물의 부동태 처리 방법Passivation treatment method for injection molding
본 발명은 사출 도금물의 부동태 처리 방법에 관한 것으로, 보다 상세하게는 부동태 처리함으로써 내식성 및 내화학성을 향상시키는, 사출 도금물의 부동태 처리 방법에 관한 것이다.The present invention relates to a passivation treatment method for an injection-plated product, and more particularly, to a passivation treatment method for an injection-plated product for improving corrosion resistance and chemical resistance by passivation treatment.
크롬 도금의 목적은 외관적으로 심미성을 높여주고, 기능적으로 부동태 피막을 통해 소재를 음극화(Cathode)하여 전기화학적 불활성상태를 만들어 내식성을 높여 주며, 내마모성 또한 높여준다. 이러한 자연 생성된 부동태 피막은 1~3nm 수준으로 아주 얇게 표면층에 존재한다. The purpose of chrome plating is to visually enhance aesthetics, and functionally to cathode the material through a passivation film to create an electrochemically inactive state to increase corrosion resistance and abrasion resistance. This naturally generated passivation film exists on the surface layer as very thin as 1-3 nm.
현재 상용화되어 있는 크롬 도금의 종류는 3가 크롬 도금과 6가 크롬 도금이 있다. 한편, 6가 크롬 이온은 발암 물질로 글로벌적으로 규제가 점차 늘어나고 있고, 그 대안으로써 3가 크롬 도금이 증가하는 추세이다.Types of chromium plating currently commercialized include trivalent chromium plating and hexavalent chromium plating. On the other hand, hexavalent chromium ions are gradually being regulated globally as carcinogens, and trivalent chromium plating is increasing as an alternative.
그러나, 3가 크롬 도금은 6가 크롬에 비해 내식성 및이 내화학성이 현저하게 떨어진다. However, trivalent chromium plating is significantly inferior to hexavalent chromium in corrosion resistance and chemical resistance.
3가 크롬 도금은 높은 전류밀도(Current density)로 도금되므로, 내부 응력에 의한 미세 크랙이 존재할 수 있고, 미세 크랙 틈을 통해 물이나 산소가 하지층인 니켈 도금층과 접하게 된다. 따라서, 니켈 도금층이 양극(Anode)로 존재하는 국부 전지를 형성하여 부식을 촉진하게 된다. Since the trivalent chromium plating is plated at a high current density, microcracks due to internal stress may exist, and water or oxygen comes into contact with the nickel plating layer, which is an underlying layer, through the microcracks. Accordingly, a local battery in which the nickel plating layer serves as an anode is formed to promote corrosion.
또한, 3가 크롬 도금 용액은 전류효율이 나쁘기 때문에 철(Fe)을 전도보조제로 사용하는데, 철 성분으로 도금층에 공석이 되어 부식을 촉진하게 된다.In addition, since the trivalent chromium plating solution has poor current efficiency, iron (Fe) is used as a conduction aid, and the iron component forms vacancies in the plating layer to promote corrosion.
상술한 불량을 방지하기 위해 3가 크롬 도금 후 투명 도장을 하는 경우도 있으나, 도장 비용으로 인한 원가 상승 및 불량율 증가로 금전적으로 많은 손실이 발생한다.In some cases, transparent coating is applied after trivalent chromium plating in order to prevent the above-mentioned defects, but a lot of money loss occurs due to cost increase and defect rate increase due to coating cost.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 3가 크롬 도금을 활용하면서도, 부동태 처리 공정을 통해 내식성 및 내화학성을 향상시키는, 사출 도금물의 부동태 처리 방법을 제공하는데 있다.An object of the present invention to solve the above problems is to provide a passivation treatment method for an injection-plated material that improves corrosion resistance and chemical resistance through a passivation process while utilizing trivalent chromium plating.
본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법은, 사출물을 랙킹 및 탈지하는 단계; 상기 탈지한 사출물을 에칭 및 중화하는 단계; 상기 중화한 사출물을 캐털리스팅 및 액셀러레이션하는 단계; 상기 액셀러레이션한 사출물을 도금하는 단계; 상기 도금한 사출물을 부동태 처리하는 단계; 및 건조하는 단계를 포함하고, 상기 도금하는 단계는, 3가 크롬 도금을 포함하고, 상기 부동태 처리하는 단계는, PR전류(Pulse Reverse Current)를 사용하여 수행할 수 있다.A passivation treatment method for an injection-plated article according to an embodiment of the present invention includes the steps of racking and degreasing the injection-molded article; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying, wherein the plating step includes trivalent chromium plating, and the passivating step may be performed using Pulse Reverse Current (PR).
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 도금하는 단계는, 화학 니켈 도금을 포함할 수 있다.In addition, in the method for passivating an injection-plated product according to an embodiment of the present invention, the plating step may include chemical nickel plating.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 도금하는 단계는, 구리 도금을 포함할 수 있다.In addition, in the passivation treatment method for an injection-plated article according to an embodiment of the present invention, the plating may include copper plating.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 도금하는 단계는, 니켈 도금을 포함할 수 있다.In addition, in the passivation treatment method of an injection-plated product according to an embodiment of the present invention, the plating step may include nickel plating.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 부동태 처리하는 단계는, Chromium(Ⅲ) sulfate 1 내지 3%, Etidronic acid 5 내지 10% 및 증류수 87 내지 94%을 주성분으로 포함하는 부동태 액으로 수행할 수 있다.In addition, in the passivation treatment method for injection molding according to an embodiment of the present invention, the passivation step is composed of 1 to 3% of Chromium (III) sulfate, 5 to 10% of Etidronic acid, and 87 to 94% of distilled water as main components It can be carried out with a passivation solution containing
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 부동태 처리하는 단계는, 3,3’-Methylenebis을 첨가제로 포함하는 부동태 액으로 수행할 수 있다.In addition, in the passivation treatment method for injection molding according to an embodiment of the present invention, the passivation step may be performed with a passivation liquid containing 3,3'-Methylenebis as an additive.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 부동태 처리하는 단계는, 유기염을 포함하는 부동태 액으로 수행할 수 있다.In addition, in the passivation treatment method for an injection-plated article according to an embodiment of the present invention, the passivation step may be performed with a passivation liquid containing an organic salt.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 부동태 처리하는 단계는, 전류밀도를 0.1 내지 0.4 A/dm2로 인가할 수 있다.In addition, in the passivation treatment method for injection-plated material according to an embodiment of the present invention, the passivation step may apply a current density of 0.1 to 0.4 A/dm 2 .
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 부동태 처리하는 단계는, pH가 9.3 내지 9.7이고, 온도가 25 내지 35℃인 부동태 액으로 수행할 수 있다.In addition, in the passivation treatment method for injection molding according to an embodiment of the present invention, the passivation step may be performed with a passivation liquid having a pH of 9.3 to 9.7 and a temperature of 25 to 35 °C.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 부동태 처리하는 단계는, 210 내지 240초동안 수행할 수 있다.In addition, in the passivation treatment method for injection-plated material according to an embodiment of the present invention, the passivation step may be performed for 210 to 240 seconds.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 건조하는 단계는, 60 내지 70℃에서 5 내지 10분간 수행할 수 있다.In addition, in the passivation treatment method for injection-plated material according to an embodiment of the present invention, the drying step may be performed at 60 to 70° C. for 5 to 10 minutes.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법은, 상기 부동태 처리하는 단계 이후에 탕세하는 단계를 더 포함할 수 있다.In addition, the passivation treatment method of the injection-plated article according to an embodiment of the present invention may further include a step of washing the water after the passivation step.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법에서, 상기 탕세하는 단계는, 40 내지 60℃의 이온교환수 또는 증류수로30 내지 90초간 침지하여 수행할 수 있다.In addition, in the passivation treatment method of injection molding according to an embodiment of the present invention, the washing step may be performed by immersing in ion-exchanged water or distilled water at 40 to 60 ° C. for 30 to 90 seconds.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법을 통해 생성된 부동태 피막의 두께가 8nm 이상일 수 있다.In addition, the thickness of the passivation film generated through the passivation treatment method of injection-plated material according to an embodiment of the present invention may be 8 nm or more.
또한, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법은, 사출물을 랙킹 및 탈지하는 단계; 상기 탈지한 사출물을 에칭 및 중화하는 단계; 상기 중화한 사출물을 캐털리스팅 및 액셀러레이션하는 단계; 상기 액셀러레이션한 사출물을 도금하는 단계; 상기 도금한 사출물을 부동태 처리하는 단계; 및 건조하는 단계를 포함하고, 생성된 부동태 피막의 두께가 8nm 이상일 수 있다.In addition, the passivation treatment method of injection molding according to an embodiment of the present invention includes the steps of racking and degreasing the injection molding; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying, and the resulting passivation film may have a thickness of 8 nm or more.
또한, 본 발명의 일 실시예에 따른 사출 도금물은, 사출물; 상기 사출물 상부에 마련되는 도금층; 및 상기 도금층 상부에 마련되는 부동태 피막을 포함하고, 상기 도금층은 3가 크롬 도금을 포함하고, 상기 부동태 피막은 두께가 8nm 이상일 수 있다.In addition, injection molding according to an embodiment of the present invention, the injection molding; a plating layer provided on the injection-molded product; and a passivation film provided on the plating layer, wherein the plating layer includes trivalent chromium plating, and the passivation film may have a thickness of 8 nm or more.
본 발명의 일 예에 의하면, 3가 크롬 도금을 활용하면서도, 부동태 처리 공정을 통해 균일하고 치밀한 부동태 피막을 형성함으로써 내식성 및 내화학성을 향상시킬 수 있는, 사출 도금물의 부동태 처리 방법을 제공할 수 있다.According to one example of the present invention, while utilizing trivalent chromium plating, it is possible to provide a passivation treatment method for injection-plated materials that can improve corrosion resistance and chemical resistance by forming a uniform and dense passivation film through a passivation treatment process. .
또한, 본 발명의 일 예에 의하면, 추가적인 도장 공정을 수행할 필요가 없으므로, 원가 상승을 억제하고 불량율을 개선한, 사출 도금물의 부동태 처리 방법을 제공할 수 있다.In addition, according to an example of the present invention, since there is no need to perform an additional painting process, it is possible to provide a passivation treatment method for an injection-plated material that suppresses a cost increase and improves a defect rate.
다만, 본 발명의 실시예들에 따른 사출 도금물의 부동태 처리 방법이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the effects that can be achieved by the passivation treatment method of injection-plated material according to embodiments of the present invention are not limited to those mentioned above, and other effects not mentioned are the technical fields to which the present invention belongs from the description below. will be clearly understood by those skilled in the art.
도 1은, 본 발명의 일 예에 따른 사출 도금물의 부동태 처리 방법을 도시한 흐름도이다.1 is a flow chart showing a passivation treatment method for an injection-plated product according to an example of the present invention.
도 2는, 3가 크롬 도금한 도금물에 존재하는 미세 크랙 및 표면 공석에 의한 부식 발생을 나타낸 모식도이다.2 is a schematic diagram showing the occurrence of corrosion due to micro cracks and surface vacancies present in a plated product subjected to trivalent chromium plating.
도 3은, 3가 크롬 도금한 도금물에 존재하는 미세 크랙을 주사전자현미경(SEM, scanning electron microscope)으로 촬영한 단면 사진이다.3 is a cross-sectional photograph of micro-cracks present in a plated product subjected to trivalent chromium plating using a scanning electron microscope (SEM).
도 4는, 본 발명의 일 실시예에 따른 부동태 처리한 사출 도금물을 나타낸 모식도이다.4 is a schematic diagram showing an injection-plated material subjected to passivation treatment according to an embodiment of the present invention.
도 5는, 일반 DC 전류를 사용하여 부동태 처리한 부동태 피막의 두께를 나타낸 그래프이다.5 is a graph showing the thickness of the passivation film subjected to the passivation process using a general DC current.
도 6은, PR 전류를 사용하여 부동태 처리한 부동태 피막의 두께를 나타낸 그래프이다.6 is a graph showing the thickness of a passivation film subjected to passivation treatment using a PR current.
도 7은, 3가 크롬 도금한 도금물에 대해, 72시간 염수분무시험을 수행한 결과, 발청 불량이 나타난 사진이다.7 is a photograph showing poor rusting as a result of performing a 72-hour salt spray test on a plated product plated with trivalent chromium.
도 8은, 3가 크롬 도금한 도금물에 대해, 72시간 염수분무시험을 수행한 결과, 부풀음 불량이 나타난 사진이다.8 is a photograph showing defects in blistering as a result of performing a 72-hour salt spray test on a plate plated with trivalent chromium.
도 9는, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물에 대해, 120시간 염수분무시험, 96시간 세제 시험 및 3시간 락스 시험을 각각 수행한 결과, 불량이 나타나지 않은 사진이다.9 is a photograph showing no defects as a result of performing a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test on the passivated injection molding according to an example of the present invention.
도 10은, 3가 크롬 도금한 도금물에 대해, 24시간 세제 시험을 수행한 결과, 발청 불량이 나타난 사진이다.10 is a photograph showing poor rusting as a result of performing a 24-hour detergent test on a plate plated with trivalent chromium.
도 11은, 3가 크롬 도금한 도금물에 대해, 2시간 락스 시험을 수행한 결과, 박리 불량이 나타난 사진이다.11 is a photograph showing peeling defects as a result of performing a 2-hour lax test on a plated material plated with trivalent chromium.
본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법은, 사출물을 랙킹 및 탈지하는 단계; 상기 탈지한 사출물을 에칭 및 중화하는 단계; 상기 중화한 사출물을 캐털리스팅 및 액셀러레이션하는 단계; 상기 액셀러레이션한 사출물을 도금하는 단계; 상기 도금한 사출물을 부동태 처리하는 단계; 및 건조하는 단계를 포함하고, 상기 도금하는 단계는, 3가 크롬 도금을 포함하고, 상기 부동태 처리하는 단계는, PR전류(Pulse Reverse Current)를 사용하여 수행할 수 있다.A passivation treatment method for an injection-plated article according to an embodiment of the present invention includes the steps of racking and degreasing the injection-molded article; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying, wherein the plating step includes trivalent chromium plating, and the passivating step may be performed using Pulse Reverse Current (PR).
이하에서는 본 발명의 실시 예를 첨부 도면을 참고하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the spirit of the present invention to those skilled in the art. The present invention may be embodied in other forms without being limited to only the embodiments presented herein. In the drawings, in order to clarify the present invention, illustration of parts irrelevant to the description may be omitted, and the size of components may be slightly exaggerated to aid understanding.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법은, 사출물을 랙킹 및 탈지하는 단계; 상기 탈지한 사출물을 에칭 및 중화하는 단계; 상기 중화한 사출물을 캐털리스팅 및 액셀러레이션하는 단계; 상기 액셀러레이션한 사출물을 도금하는 단계; 상기 도금한 사출물을 부동태 처리하는 단계; 및 건조하는 단계를 포함할 수 있다.A passivation treatment method for an injection-plated article according to an embodiment of the present invention includes the steps of racking and degreasing the injection-molded article; Etching and neutralizing the degreased injection product; Catalyzing and accelerating the neutralized injection molding product; plating the accelerated injection molding; Passivating the plated injection molding; and drying.
도 1은, 본 발명의 일 예에 따른 사출 도금물의 부동태 처리 방법을 도시한 흐름도이다.1 is a flow chart showing a passivation treatment method for an injection-plated product according to an example of the present invention.
도 1을 참고하면, 본 발명의 일 예에 따른 사출 도금물의 부동태 처리 방법은, 랙킹, 탈지, 에칭, 중화, 캐털리스팅, 액셀러레이션, 도금, 부동태 처리 및 건조하는 단계를 포함할 수 있다. 이하 각 단계에 대해 상세히 설명한다.Referring to FIG. 1 , a passivation treatment method for an injection-plated article according to an embodiment of the present invention may include steps of racking, degreasing, etching, neutralization, catalization, acceleration, plating, passivation, and drying. Each step is described in detail below.
먼저, 플라스틱 소재를 마련한다. 상기 플라스틱 소재는, ABS 또는 PC-ABS 소재일 수 있으나, 이에 한정되지는 않는다. 상기 플라스틱 소재는 목적에 맞게 사출 성형하여, 사출물로 제조될 수 있다.First, a plastic material is prepared. The plastic material may be ABS or PC-ABS material, but is not limited thereto. The plastic material may be manufactured as an injection molding product by injection molding according to the purpose.
다음으로, 전기를 인가해줄 수 있는 도금 치구에 상기 사출물을 연결하는 랙킹 단계를 거친 후, 사출물의 이물질을 제거하기 위한 탈지 단계를 수행할 수 있다.Next, after a racking step of connecting the injection-molded product to a plating jig capable of applying electricity, a degreasing step for removing foreign substances from the injection-molded product may be performed.
상기 탈지 단계는, 사출물을 45 내지 55℃의 탈지제에 1 내지 5분간 침적하여 수행될 수 있다.The degreasing step may be performed by immersing the injection-molded product in a degreasing agent at 45 to 55° C. for 1 to 5 minutes.
상기 탈지한 사출물은, 표면의 부타디엔 성분을 제거하는 에칭 단계를 수행하여 Anchor(앵커)를 생성할 수 있다. 상기 에칭 공정은, 68 내지 70℃에서, 무수크롬산 380 내지 420g/L 및 황산 200 내지 240ml/L을 포함하는 혼합용액에 8 내지 12분간 침적하여 수행될 수 있다.The degreased injection molding product may generate an anchor by performing an etching step to remove the butadiene component on the surface. The etching process may be performed by immersing for 8 to 12 minutes in a mixed solution containing 380 to 420 g/L of chromic anhydride and 200 to 240 ml/L of sulfuric acid at 68 to 70 °C.
그 후, 미도금을 방지하기 위하여 에칭 용액을 중화하는 단계를 수행할 수 있다. 중화 단계는, 20 내지 30℃에서, 염산 30 내지 35 ml/L을 포함하는 용액에 1 내지 2분간 침적하여 수행될 수 있다.Thereafter, a step of neutralizing the etching solution may be performed to prevent non-plating. The neutralization step may be performed by immersing in a solution containing 30 to 35 ml/L of hydrochloric acid at 20 to 30° C. for 1 to 2 minutes.
다음으로, 상기 중화한 사출물의 표면에 Pd(팔라듐) 및 Sn(주석) 성분을 흡착하기 위한 캐털리스팅(Catalysting) 단계를 수행할 수 있다. 본 발명의 일 예에 따르면, 상기 캐털리스팅 단계는, 27 내지 33℃에서, Pd 30 내 50 ppm 및 염산 200 내지 300ml/L을 포함하는 혼합용액에 2 내지 3분간 침적하여 수행될 수 있다.Next, a catalysing step for adsorbing Pd (palladium) and Sn (tin) components to the surface of the neutralized injection molding product may be performed. According to an example of the present invention, the catalyzing step may be performed by immersing for 2 to 3 minutes in a mixed solution containing 50 ppm in Pd 30 and 200 to 300 ml / L of hydrochloric acid at 27 to 33 ° C.
상기 캐털리스팅한 사출물은, 액셀러레이션(Acceleration) 단계를 거침으로써, 캐털리스팅 공정에서 흡착한 Sn(주석) 성분이 제거될 수 있다. 본 발명의 일 예에 따르면, 상기 액셀러레이션 단계는, 40 내지 50℃에서, 황산 180 내지 220ml/L을 포함하는 용액에 2 내지 3분간 침적하여 수행될 수 있다.The Catalyst injection molding product undergoes an Acceleration step, whereby the Sn (tin) component adsorbed in the Catalyst process can be removed. According to one example of the present invention, the accelerating step may be performed by immersing in a solution containing 180 to 220 ml/L of sulfuric acid at 40 to 50° C. for 2 to 3 minutes.
다음으로, 상기 액셀러레이션한 사출물을 도금하는 단계를 수행할 수 있다.Next, a step of plating the accelerated injection-molded product may be performed.
상기 도금하는 단계는 화학니켈 도금, 구리 도금, 니켈 도금 및 3가 크롬 도금하는 공정을 포함할 수 있다.The plating may include chemical nickel plating, copper plating, nickel plating, and trivalent chromium plating.
상기 화학니켈 도금은, 사출물 표면의 Pd(팔라듐) 성분을 촉매로 하여, 전기를 인가할 수 있도록 무전해 니켈 도금층을 형성하는 공정이다. 즉, 상기 화학니켈 도금은, 전기 도금을 위한 선행 공정이라고 볼 수 있다. 본 발명의 일 예에 따르면, 상기 화학니켈 도금은, 25 내지 45℃에서, 황산니켈 5 내지 10g/L 및 차아인산염 12 내지 18g/L를 포함하는 용액에 5 내지 8분간 침적하여 수행될 수 있다.The chemical nickel plating is a process of forming an electroless nickel plating layer so that electricity can be applied using the Pd (palladium) component on the surface of the injection molding product as a catalyst. That is, the chemical nickel plating can be regarded as a preceding process for electroplating. According to one example of the present invention, the chemical nickel plating may be performed by dipping for 5 to 8 minutes in a solution containing 5 to 10 g/L of nickel sulfate and 12 to 18 g/L of hypophosphite at 25 to 45 ° C. .
상기 구리 도금은, 표면 평활화를 통한 광택 부여 및 사출물과 Ni(니켈) 도금층 간 완충 작용 역할을 수행할 수 있도록, 사출물 표면에 구리 도금층을 형성시키는 공정이다. 본 발명의 일 예에 따르면, 상기 구리 도금은, 황산구리 180 내지 220 g/L, 황산 50 내지 70 g/L 및 첨가제를 포함하는, 22 내지 30℃의 용액으로 수행될 수 있다. 상기 구리 도금을 통해 형성되는 구리 도금층의 두께는 15 ㎛ 이상일 수 있다.The copper plating is a process of forming a copper plating layer on the surface of an injection-molded product so as to perform a role of imparting gloss through surface smoothing and buffering between the injection-molded product and the Ni (nickel) plating layer. According to one example of the present invention, the copper plating may be performed with a solution containing 180 to 220 g/L of copper sulfate, 50 to 70 g/L of sulfuric acid, and additives at 22 to 30°C. The copper plating layer formed through the copper plating may have a thickness of 15 μm or more.
상기 니켈 도금은, 사출물의 내식성 및 표면 광택을 부여하기 위해, 구리 도금층 상부에 니켈 도금층을 형성시키는 공정이다. 본 발명의 일 예에 따르면, 상기 니켈 도금은, 황산니켈 250 내지 280g/L, 염화니켈 40 내지 60g/L 및 첨가제를 포함하는, 45 내지 55℃의 용액으로 수행될 수 있다. 상기 니켈 도금을 통해 형성되는 니켈 도금층의 두께는 10㎛ 이상일 수 있다.The nickel plating is a process of forming a nickel plating layer on top of the copper plating layer in order to impart corrosion resistance and surface gloss to the injected product. According to one example of the present invention, the nickel plating may be performed with a solution containing 250 to 280 g/L of nickel sulfate, 40 to 60 g/L of nickel chloride, and additives at 45 to 55 °C. A thickness of the nickel plating layer formed through the nickel plating may be 10 μm or more.
상기 3가 크롬 도금은, 사출물의 내식성 및 표면 경도 향상을 위해, 니켈 도금층 상부에 3가 크롬 도금층을 형성시키는 공정이다. 본 발명의 일 예에 따르면, 상기 3가 크롬 도금은, 염화크롬 100 내지 120 g/L 및 첨가제를 포함하는, 20 내지 30℃의 용액으로 수행될 수 있다. 상기 3가 크롬 도금을 통해 형성되는 3가 크롬 도금층의 두께는 0.15㎛ 이상일 수 있다.The trivalent chromium plating is a process of forming a trivalent chromium plating layer on top of the nickel plating layer in order to improve corrosion resistance and surface hardness of an injection-molded product. According to an example of the present invention, the trivalent chromium plating may be performed with a solution containing 100 to 120 g/L of chromium chloride and an additive at 20 to 30°C. The trivalent chromium plating layer formed through the trivalent chromium plating may have a thickness of 0.15 μm or more.
다음으로, 상기 도금한 사출물을 부동태 처리하는 단계를 수행할 수 있다.Next, a step of passivating the plated injection molding product may be performed.
상기 부동태 처리하는 단계에서 사용하는 부동태 액은, 주성분으로 Chromium(Ⅲ) sulfate 1 내지 3%, Etidronic acid 5 내지 10% 및 증류수 87 내지 94%를 포함할 수 있다. 주성분 중 Etidronic acid는 부동태 액의 pH를 조절하는 역할을 수행할 수 있다. 본 발명의 일 예에 따르면, 상기 주성분은 23 내지 27ml/L 첨가될 수 있다.The passivation liquid used in the passivation treatment step may include, as main components, 1 to 3% of Chromium (III) sulfate, 5 to 10% of Etidronic acid, and 87 to 94% of distilled water. Among the main components, etidronic acid can play a role in adjusting the pH of the passivation solution. According to one example of the present invention, the main component may be added in an amount of 23 to 27ml/L.
또한, 상기 부동태 처리하는 단계에서 사용하는 부동태 액은, 첨가제로 3,3’-Methylenebis을 포함할 수 있다. 상기 첨가제는, 3가 크롬이 6가 크롬으로 산화하지 않도록 하는 역할을 수행할 수 있다. 본 발명의 일 예에 따르면, 상기 첨가제는 0.3 내지 0.7ml/L 첨가될 수 있다.In addition, the passivation solution used in the passivation treatment step may contain 3,3'-Methylenebis as an additive. The additive may serve to prevent trivalent chromium from being oxidized to hexavalent chromium. According to one example of the present invention, the additive may be added in an amount of 0.3 to 0.7ml/L.
또한, 상기 부동태 처리하는 단계에서 사용하는 부동태 액은, 유기염을 포함할 수 있다. 상기 유기염은, 일 예로, 계면활성제를 포함할 수 있다. 상기 유기염은, 표면장력을 낮춤으로써, 부동태 액이 사출물 표면에 균일하게 퍼지도록 하여, 반응속도를 높이는 역할을 수행할 수 있다. 본 발명의 일 예에 따르면, 상기 유기염은 14 내지 16 g/L 첨가될 수 있다.In addition, the passivation liquid used in the passivation treatment step may contain an organic salt. The organic salt may include, for example, a surfactant. The organic salt may play a role of increasing the reaction rate by lowering the surface tension, allowing the passivation liquid to spread uniformly on the surface of the injection-molded product. According to one example of the present invention, the organic salt may be added in an amount of 14 to 16 g/L.
또한, 상기 부동태 처리하는 단계는, pH가 9.3 내지 9.7이고, 온도가 25 내지 35℃인 부동태 액으로 수행될 수 있다. 상기 pH 및 온도 범위는, 생산성을 떨어뜨리지 않는 범위에서 부동태 피막을 두껍게 형성시킬 수 있도록 하는 범위이다.In addition, the passivating step may be performed with a passivation liquid having a pH of 9.3 to 9.7 and a temperature of 25 to 35 °C. The above pH and temperature ranges are ranges in which a thick passivation film can be formed within a range that does not reduce productivity.
또한, 상기 부동태 처리하는 단계는, 210 내지 240초동안 수행할 수 있다. 부동태 처리 수행 시간이 짧을 경우에는, 부동태 피막이 얇게 형성될 수 있다. 그러나, 부동태 처리 수행 시간이 긴 경우에는, 충분한 내식성 및 내화학성을 확보하기 어려울 수 있다.In addition, the passivating step may be performed for 210 to 240 seconds. When the passivation treatment time is short, the passivation film may be formed thinly. However, when the passivation treatment is performed for a long time, it may be difficult to secure sufficient corrosion resistance and chemical resistance.
다음으로, 부동태 처리하는 단계의 전해 조건을 설명한다.Next, electrolysis conditions in the step of passivation treatment will be described.
상기 부동태 처리하는 단계는, PR전류(Pulse Reverse Current)를 사용하여 수행할 수 있다.The passivation process may be performed using Pulse Reverse Current (PR).
일반적으로 금속의 내식성은 금속표면에서 형성된 산화피막이 얼마나 치밀하고 화학적으로 안정되는가에 달려있다. 일반 DC전류와 달리, 상기 PR전류는 고전류와 저전류 사이의 전류 편차가 크지 않으므로, 균일하고 치밀한 부동태 피막을 형성할 수 있도록 하는 역할을 수행할 수 있다.In general, the corrosion resistance of metal depends on how dense and chemically stable the oxide film formed on the metal surface is. Unlike general DC current, the PR current does not have a large current deviation between high current and low current, so it can play a role in forming a uniform and dense passivation film.
또한, 상기 부동태 처리하는 단계는, 사출물을 음극으로 하여, 전류밀도를 0.1 내지 0.4 A/dm2로 인가할 수 있다. 상기 전류밀도 범위는, 생산성 및 부동태 피막 두께를 고려하여 설정할 수 있다.In addition, in the step of passivating, a current density of 0.1 to 0.4 A/dm 2 may be applied using an injection-molded product as a cathode. The current density range may be set in consideration of productivity and passivation film thickness.
다음으로, 상기 건조하는 단계는, 60 내지 70℃에서 5 내지 10분간 수행할 수 있다.Next, the drying step may be performed at 60 to 70° C. for 5 to 10 minutes.
한편, 본 발명의 일 실시예에 따른 사출 도금물의 부동태 처리 방법은, 상기 부동태 처리하는 단계 이후에, 탕세하는 단계를 더 포함할 수 있다.On the other hand, the passivation treatment method of injection molding according to an embodiment of the present invention may further include a step of washing the water after the passivation step.
상기 탕세하는 단계는, 사출물 표면에 잔존하는 유해한 성분인 크롬산 및 유기물들을 제거하고, 사출물 표면의 물기를 제거하여 건조 공정을 효율적으로 하기 위해 수행될 수 있다. 본 발명의 일 예에 따르면, 상기 탕세하는 단계는, 40 내지 60℃의 이온교환수 또는 증류수로, 30 내지 90초간 침지하여 수행할 수 있다.The rinsing may be performed to efficiently perform a drying process by removing chromic acid and organic substances, which are harmful components, remaining on the surface of the injection-molded product and removing moisture from the surface of the injection-molded product. According to one example of the present invention, the step of washing the water may be performed by immersing in ion-exchanged water or distilled water at 40 to 60 ° C. for 30 to 90 seconds.
상술한 사출 도금물의 부동태 처리 방법을 통해 생성된 부동태 피막의 두께는 8nm 이상일 수 있다. 일반적으로 자연 생성되는 부동태 피막의 두께는 1 내지 3nm이고, 일반 DC전류를 통해 생성되는 부동태 피막의 두께는 약 3nm이다. 따라서, 본 발명의 일 예에 따른 사출 도금물의 부동태 처리 방법을 통해 균일하고 두꺼운 부동태 피막을 형성시킴으로써, 내식성 및 내화학성을 향상시킬 수 있다.The thickness of the passivation film created through the passivation treatment method of the injection-plated material described above may be 8 nm or more. In general, the thickness of the passivation film that is naturally generated is 1 to 3 nm, and the thickness of the passivation film that is generated through a general DC current is about 3 nm. Therefore, corrosion resistance and chemical resistance can be improved by forming a uniform and thick passivation film through the passivation treatment method of injection molding according to one embodiment of the present invention.
또한, 본 발명의 일 예에 따르면, 내식성 및 내화학성을 향상시키기 위한 추가적인 도장 공정을 수행할 필요가 없으므로, 원가 상승을 억제하고, 불량율을 개선할 수 있다.In addition, according to one embodiment of the present invention, since there is no need to perform an additional painting process for improving corrosion resistance and chemical resistance, cost increase can be suppressed and the defect rate can be improved.
다음으로, 본 발명의 다른 일 측면에 따른 사출 도금물에 대하여 설명한다.Next, an injection-plated product according to another aspect of the present invention will be described.
본 발명의 일 실시예에 따른 사출 도금물은, 사출물; 상기 사출물 상부에 마련되는 도금층; 및 상기 도금층 상부에 마련되는 부동태 피막을 포함하고, 상기 도금층은 3가 크롬 도금을 포함하고, 상기 부동태 피막은 두께가 8nm 이상일 수 있다. 상기 도금층은 구리 도금층, 니켈 도금층 및 3가 크롬 도금층을 포함할 수 있다.An injection-plated product according to an embodiment of the present invention is an injection-molded product; a plating layer provided on the injection-molded product; and a passivation film provided on the plating layer, wherein the plating layer includes trivalent chromium plating, and the passivation film may have a thickness of 8 nm or more. The plating layer may include a copper plating layer, a nickel plating layer, and a trivalent chromium plating layer.
도 2는, 3가 크롬 도금한 도금물에 존재하는 미세 크랙 및 표면 공석에 의한 부식 발생을 나타낸 모식도이고, 도 3은, 3가 크롬 도금한 도금물에 존재하는 미세 크랙을 주사전자현미경(SEM, scanning electron microscope)으로 촬영한 단면 사진이다.2 is a schematic diagram showing the occurrence of corrosion due to microcracks and surface vacancies present in a plating material plated with trivalent chromium, and FIG. 3 shows microcracks present in a plating material plated with trivalent chromium using a scanning electron microscope (SEM) , a cross-sectional picture taken with a scanning electron microscope).
도 4는, 본 발명의 일 실시예에 따른 부동태 처리한 사출 도금물을 나타낸 모식도이다.4 is a schematic diagram showing an injection-plated material subjected to passivation treatment according to an embodiment of the present invention.
도 2 및 도 3을 참고하면, 부동태 처리하지 않은 종래의 3가 크롬 도금한 도금물의 경우에는, 미세 크랙 및 표면 공석이 발생할 수 있고, 니켈 도금층을 양극으로 하는 국부 전지가 형성됨으로써, 부식이 발생할 수 있다.Referring to FIGS. 2 and 3, in the case of a conventional trivalent chromium plated plate that is not passivated, micro cracks and surface vacancies may occur, and a local battery having a nickel plated layer as an anode is formed, thereby causing corrosion. can
반면, 도 4를 참고하면, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물의 경우에는, 도금물 최외곽 표면에 치밀하고 두꺼운 부동태 피막을 형성시킴으로써, 부식 발생을 방지할 수 있다. 즉, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물의 경우에는, 내식성 및 내화학성이 향상되었다고 판단할 수 있다.On the other hand, referring to FIG. 4 , in the case of the passivated injection molding according to one embodiment of the present invention, corrosion can be prevented by forming a dense and thick passivation film on the outermost surface of the plating. That is, in the case of the passivated injection-plated material according to one embodiment of the present invention, it can be determined that corrosion resistance and chemical resistance are improved.
이하에서, 본 발명에 대한 이해를 돕기 위하여 실시예 및 비교예를 기재한다. 다만, 하기 기재는 본 발명의 내용 및 효과에 관한 일 예에 해당할 뿐, 본 발명의 권리범위 및 효과가 반드시 이에 한정되는 것은 아니다.Hereinafter, Examples and Comparative Examples are described to aid in understanding the present invention. However, the following description only corresponds to an example of the contents and effects of the present invention, and the scope and effects of the present invention are not necessarily limited thereto.
{실시예}{Example}
일반 DC 전류를 사용한 부동태 처리 방법에 의한 사출 도금물과, PR전류를 사용한 부동태 처리 방법에 의한 사출 도금물을 마련한 후, XPS 분석을 통해 생성된 부동태 피막 두께를 측정하였다.After preparing an injection-plated product by a passivation treatment method using a general DC current and an injection-plated product by a passivation treatment method using a PR current, the resulting passivation film thickness was measured through XPS analysis.
또한, 본 발명의 일 예에 의한 부동태 처리하는 단계를 거친 사출 도금물과, 부동태 처리를 하지 않은 사출 도금물을 마련한 후, 염수분무 시험, 세제 시험 및 락스 시험을 수행하여, 내식성 및 내화학성을 평가했다.In addition, after preparing an injection-plated product that has undergone passivation treatment and an injection-plated product that has not been subjected to passivation treatment according to an example of the present invention, a salt spray test, a detergent test, and a lax test are performed to determine corrosion resistance and chemical resistance. Evaluated.
<XPS 분석><XPS analysis>
XPS(엑스선 광전자 분광법, X-ray Photoelectron. Spectroscopy)은 고체시료 표면에 X선을 조사했을 때 방출되는 광전자의 에너지를 분석하는, 표면 분석법의 일종이다.XPS (X-ray Photoelectron. Spectroscopy) is a type of surface analysis method that analyzes the energy of photoelectrons emitted when X-rays are irradiated on the surface of a solid sample.
도 5는, 일반 DC 전류를 사용하여 부동태 처리한 부동태 피막의 두께를 나타낸 그래프이고, 도 6은, PR 전류를 사용하여 부동태 처리한 부동태 피막의 두께를 나타낸 그래프이다.5 is a graph showing the thickness of the passivation film passivated using a general DC current, and FIG. 6 is a graph showing the thickness of the passivation film subjected to the passivation process using a PR current.
도 5 및 도 6을 참고하면, 일반 DC 전류를 사용하여 부동태 처리한 부동태 피막의 두께를XPS 분석한 결과, 사출물 표면으로부터 3.7nm까지 부동태 피막이 형성된 것을 확인할 수 있었다. 그러나, PR전류를 사용하여 부동태 처리한 부동태 피막의 두께를 XPS 분석한 결과, 사출물 표면으로부터 9.9nm까지 부동태 피막이 형성된 것을 확인할 수 있었다. 두꺼운 부동태 피막이 형성된 이유는, 상술한 바와 같이, 일반 DC전류와 달리 PR전류가 전류 편차가 크지 않기 때문인 것으로 판단할 수 있다. 5 and 6, as a result of XPS analysis of the thickness of the passivation film passivated using a general DC current, it was confirmed that a passivation film was formed up to 3.7 nm from the surface of the injection product. However, as a result of XPS analysis of the thickness of the passivation film that was passivated using the PR current, it was confirmed that the passivation film was formed up to 9.9 nm from the surface of the injection product. As described above, it can be determined that the reason why the thick passivation film is formed is that the PR current does not have a large current deviation unlike the general DC current.
<염수분무 시험><Salt spray test>
염수분무 시험은, 35℃의 온도조건에서, 5wt% 염화나트륨(NaCl)을 8시간 분무 및 16시간 휴지를 1사이클(Cycle)로 하여 일정 사이클 이상 수행하였다.The salt spray test was performed over a certain cycle by spraying 5 wt% sodium chloride (NaCl) for 8 hours and resting for 16 hours as one cycle at a temperature of 35 ° C.
도 7은, 3가 크롬 도금한 도금물에 대해, 72시간 염수분무시험을 수행한 결과, 발청 불량이 나타난 사진이고, 도 8은, 3가 크롬 도금한 도금물에 대해, 72시간 염수분무시험을 수행한 결과, 부풀음 불량이 나타난 사진이고, 도 9는, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물에 대해, 120시간 염수분무시험, 96시간 세제 시험 및 3시간 락스 시험을 각각 수행한 결과, 불량이 나타나지 않은 사진이다.7 is a photograph showing poor rusting as a result of performing a 72-hour salt spray test on a plate plated with trivalent chromium, and FIG. 8 is a 72-hour salt spray test for a plate plated with trivalent chromium. As a result of performing, a photograph showing a swelling defect, and FIG. 9 is a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test for the passivated injection plating material according to an example of the present invention, respectively. As a result, it is a picture without defects.
도 7, 도 8 및 도 9를 참고하면, 부동태 처리하지 않은 종래의 3가 크롬 도금한 도금물의 경우에는, 염수분무 시험을 3 사이클 수행한 결과, 발청 또는 부풀음 불량이 나타났다. 그러나, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물의 경우에는, 염수분무 시험을 5사이클 수행한 결과, 불량이 나타나지 않고 양호한 상태를 유지하였다. 즉, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물은 내식성이 향상되었다고 판단할 수 있다.Referring to FIGS. 7, 8, and 9, in the case of conventional trivalent chromium-plated plating that is not passivated, as a result of performing a salt spray test for 3 cycles, defects in rusting or blistering were found. However, in the case of the passivated injection-plated article according to one embodiment of the present invention, as a result of performing the salt spray test for 5 cycles, no defects were observed and good conditions were maintained. That is, it can be determined that the corrosion resistance of the passivated injection-plated material according to an example of the present invention is improved.
<세제 시험><Detergent test>
세제 시험은, 표백제 0.5%, 세제 0.5% 및 나머지 증류수인, 60℃ 용액에, 일정 시간 이상 침적하여 수행했다.The detergent test was carried out by immersion in a 60° C. solution of 0.5% bleach, 0.5% detergent and the rest distilled water for a certain period of time or longer.
도 10은, 3가 크롬 도금한 도금물에 대해, 24시간 세제 시험을 수행한 결과, 발청 불량이 나타난 사진이고, 도 9는, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물에 대해, 120시간 염수분무시험, 96시간 세제 시험 및 3시간 락스 시험을 각각 수행한 결과, 불량이 나타나지 않은 사진이다.10 is a photograph showing poor rusting as a result of performing a 24-hour detergent test on a plating material plated with trivalent chromium, and FIG. As a result of performing a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test, respectively, this is a photo showing no defects.
도 10 및 도 9를 참고하면, 부동태 처리하지 않은 종래의 3가 크롬 도금한 도금물의 경우에는, 세제 시험을 24시간 수행한 결과, 발청 불량이 나타났다. 그러나, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물의 경우에는, 세제 시험을 96시간 수행한 결과, 불량이 나타나지 않고 양호한 상태를 유지하였다. 즉, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물은 내화학성성이 향상되었다고 판단할 수 있다.Referring to FIGS. 10 and 9, in the case of conventional trivalent chromium-plated plating that is not passivated, as a result of performing a detergent test for 24 hours, poor rusting was found. However, in the case of the passivated injection-plated article according to one embodiment of the present invention, as a result of performing the detergent test for 96 hours, no defects were observed and good conditions were maintained. That is, it can be determined that the passivated injection-plated material according to an example of the present invention has improved chemical resistance.
<락스 시험><Lax test>
락스 시험은, 5% 락스를, 상온에서, 일정시간 이상 침적하여 수행했다.The lacquer test was performed by immersing 5% lacquer at room temperature for a certain period of time or longer.
도 11은, 3가 크롬 도금한 도금물에 대해, 2시간 락스 시험을 수행한 결과, 박리 불량이 나타난 사진이고, 도 9는, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물에 대해, 120시간 염수분무시험, 96시간 세제 시험 및 3시간 락스 시험을 각각 수행한 결과, 불량이 나타나지 않은 사진이다.11 is a photograph showing peeling defects as a result of performing a 2-hour bleach test on a plating material plated with trivalent chromium, and FIG. As a result of performing a 120-hour salt spray test, a 96-hour detergent test, and a 3-hour bleach test, respectively, this is a photo showing no defects.
도 11 및 도 9를 참고하면, 부동태 처리하지 않은 종래의 3가 크롬 도금한 도금물의 경우에는, 락스 시험을 2시간 수행한 결과, 박리 불량이 나타났다. 그러나, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물의 경우에는, 락스 시험을 3시간 수행한 결과, 불량이 나타나지 않고 양호한 상태를 유지하였다. 즉, 본 발명의 일 예에 따른 부동태 처리한 사출 도금물은 내화학성성이 향상되었다고 판단할 수 있다.Referring to Figures 11 and 9, in the case of conventional trivalent chromium-plated plating that was not passivated, as a result of performing a 2-hour lax test, peeling defects appeared. However, in the case of the passivated injection-plated product according to an example of the present invention, as a result of the 3-hour lax test, no defects were observed and good conditions were maintained. That is, it can be determined that the passivated injection-plated material according to an example of the present invention has improved chemical resistance.
본 발명의 일 예에 따르면, 3가 크롬 도금을 활용하면서도, 부동태 처리 공정을 통해 내식성 및 내화학성을 향상시키는, 사출 도금물의 부동태 처리 방법을 제공할 수 있다.According to one example of the present invention, it is possible to provide a method for passivating an injection-plated material that improves corrosion resistance and chemical resistance through a passivation process while utilizing trivalent chromium plating.

Claims (15)

  1. 사출물을 랙킹 및 탈지하는 단계;Racking and degreasing the injection molding;
    상기 탈지한 사출물을 에칭 및 중화하는 단계;Etching and neutralizing the degreased injection product;
    상기 중화한 사출물을 캐털리스팅 및 액셀러레이션하는 단계;Catalyzing and accelerating the neutralized injection molding product;
    상기 액셀러레이션한 사출물을 도금하는 단계;plating the accelerated injection molding;
    상기 도금한 사출물을 부동태 처리하는 단계; 및Passivating the plated injection molding; and
    건조하는 단계를 포함하고,Including drying,
    상기 도금하는 단계는, 3가 크롬 도금을 포함하고,The plating step includes trivalent chromium plating,
    상기 부동태 처리하는 단계는, PR전류(Pulse Reverse Current)를 사용하여 수행하는, 사출 도금물의 부동태 처리 방법.The passivation process is performed using a PR current (Pulse Reverse Current).
  2. 청구항 1에 있어서,The method of claim 1,
    상기 도금하는 단계는, 화학 니켈 도금을 포함하는, 사출 도금물의 부동태 처리 방법.The plating step is a passivation treatment method of an injection-plated material comprising chemical nickel plating.
  3. 청구항1에 있어서,In claim 1,
    상기 도금하는 단계는, 구리 도금을 포함하는, 사출 도금물의 부동태 처리 방법.The plating step includes copper plating, a passivation treatment method for injection molding.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 도금하는 단계는, 니켈 도금을 포함하는, 사출 도금물의 부동태 처리 방법.The plating step includes nickel plating, a passivation treatment method for injection molding.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계는, Chromium(Ⅲ) sulfate 1 내지 3%, Etidronic acid 5 내지 10% 및 증류수 87 내지 94%을 주성분으로 포함하는 부동태 액으로 수행하는, 사출 도금물의 부동태 처리 방법.The passivation step is performed with a passivation solution containing 1 to 3% of Chromium (III) sulfate, 5 to 10% of Etidronic acid and 87 to 94% of distilled water as main components.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계는, 3,3’-Methylenebis을 첨가제로 포함하는 부동태 액으로 수행하는, 사출 도금물의 부동태 처리 방법.The passivation step is performed with a passivation solution containing 3,3'-Methylenebis as an additive.
  7. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계는, 유기염을 포함하는 부동태 액으로 수행하는, 사출 도금물의 부동태 처리 방법.The passivating step is performed with a passivation liquid containing an organic salt, a passivation treatment method for injection molding.
  8. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계는, 전류밀도를 0.1 내지 0.4 A/dm2로 인가하는, 사출 도금물의 부동태 처리 방법.In the step of passivating, a current density of 0.1 to 0.4 A/dm 2 is applied, a passivation treatment method for injection molding.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계는, pH가 9.3 내지 9.7이고, 온도가 25 내지 35℃인 부동태 액으로 수행하는, 사출 도금물의 부동태 처리 방법.The passivation treatment step is performed with a passivation liquid having a pH of 9.3 to 9.7 and a temperature of 25 to 35 ° C.
  10. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계는, 210 내지 240초동안 수행하는, 사출 도금물의 부동태 처리 방법.The passivating step is performed for 210 to 240 seconds, a passivation treatment method for injection molding.
  11. 청구항 1에 있어서,The method of claim 1,
    상기 건조하는 단계는, 60 내지 70℃에서 5 내지 10분간 수행하는, 사출 도금물의 부동태 처리 방법.The drying step is performed at 60 to 70 ° C. for 5 to 10 minutes.
  12. 청구항 1에 있어서,The method of claim 1,
    상기 부동태 처리하는 단계 이후에 탕세하는 단계를 더 포함하는, 사출 도금물의 부동태 처리 방법.Passivation treatment method of injection molding, further comprising the step of washing the water after the passivation step.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 탕세하는 단계는, 40 내지 60℃의 이온교환수 또는 증류수로30 내지 90초간 침지하여 수행하는, 사출 도금물의 부동태 처리 방법.The step of washing the water is performed by immersing in ion-exchanged water or distilled water at 40 to 60 ° C. for 30 to 90 seconds.
  14. 청구항 1에 있어서,The method of claim 1,
    생성된 부동태 피막의 두께가 8nm 이상인, 사출 도금물의 부동태 처리 방법.A passivation treatment method for injection-plated materials, wherein the resulting passivation film has a thickness of 8 nm or more.
  15. 사출물을 랙킹 및 탈지하는 단계;Racking and degreasing the injection molding;
    상기 탈지한 사출물을 에칭 및 중화하는 단계;Etching and neutralizing the degreased injection product;
    상기 중화한 사출물을 캐털리스팅 및 액셀러레이션하는 단계;Catalyzing and accelerating the neutralized injection molding product;
    상기 액셀러레이션한 사출물을 도금하는 단계;plating the accelerated injection molding;
    상기 도금한 사출물을 부동태 처리하는 단계; 및Passivating the plated injection molding; and
    건조하는 단계를 포함하고,Including drying,
    생성된 부동태 피막의 두께가 8nm 이상인, 사출 도금물의 부동태 처리 방법.A passivation treatment method for injection-plated materials, wherein the resulting passivation film has a thickness of 8 nm or more.
PCT/KR2022/016914 2021-12-21 2022-11-01 Method for passivating injection-plated article WO2023120954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210184248A KR20230094811A (en) 2021-12-21 2021-12-21 Passivation treatment method of injection plating
KR10-2021-0184248 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120954A1 true WO2023120954A1 (en) 2023-06-29

Family

ID=86902907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016914 WO2023120954A1 (en) 2021-12-21 2022-11-01 Method for passivating injection-plated article

Country Status (2)

Country Link
KR (1) KR20230094811A (en)
WO (1) WO2023120954A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209579A (en) * 2014-04-28 2015-11-24 ユケン工業株式会社 Colored member, method for manufacturing the same, liquid electrolyte, and concentration composition
JP2019108616A (en) * 2014-03-07 2019-07-04 マクダーミッド アキューメン インコーポレーテッド Passivation of micro-discontinuous chromium deposited from trivalent electrolyte
KR20200014970A (en) * 2018-08-02 2020-02-12 주식회사 주영테크 Plating method of double injection molded article having plating defective function
JP2020506292A (en) * 2017-02-13 2020-02-27 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Method for improving corrosion resistance by electrolytic passivation of outermost chromium layer or outermost chromium alloy layer
US20200340122A1 (en) * 2019-04-26 2020-10-29 Bulk Chemicals, Inc. Process and composition for passivating metal surfaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108616A (en) * 2014-03-07 2019-07-04 マクダーミッド アキューメン インコーポレーテッド Passivation of micro-discontinuous chromium deposited from trivalent electrolyte
JP2015209579A (en) * 2014-04-28 2015-11-24 ユケン工業株式会社 Colored member, method for manufacturing the same, liquid electrolyte, and concentration composition
JP2020506292A (en) * 2017-02-13 2020-02-27 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Method for improving corrosion resistance by electrolytic passivation of outermost chromium layer or outermost chromium alloy layer
KR20200014970A (en) * 2018-08-02 2020-02-12 주식회사 주영테크 Plating method of double injection molded article having plating defective function
US20200340122A1 (en) * 2019-04-26 2020-10-29 Bulk Chemicals, Inc. Process and composition for passivating metal surfaces

Also Published As

Publication number Publication date
KR20230094811A (en) 2023-06-28

Similar Documents

Publication Publication Date Title
US4673469A (en) Method of plating plastics
WO2014196692A1 (en) Intenna manufacturing method having capability to improve plating reliability
CN102650067A (en) Method for painting article to be treated
JP3281417B2 (en) Electroplating method and composition
US20080156652A1 (en) Cyanide-free pre-treating solution for electroplating copper coating layer on zinc alloy surface and a pre-treating method thereof
WO2023120954A1 (en) Method for passivating injection-plated article
CN1421547A (en) Electroplating of Zn-Ni alloy onto surface of Nd-Fe-B permanent magnet
CN109338343B (en) Chemical silver plating solution and silver plating method
WO2014092335A1 (en) Method for improving adhesion between polymer film and metal layer
CN110714216A (en) Nickel-plated copper strip and preparation method thereof
CN111020666A (en) Environment-friendly wide-temperature anodic oxidation process for aluminum alloy
WO2020256220A1 (en) Method for wet surface treating non-conductive plastic
CN106245084A (en) A kind of quasiconductor molybdenum sheet rhodanizing technique
CN108690948A (en) A kind of pretreating process of Vacuum Deposition ruthenium technology
Tzaneva et al. Uniformity of Electrochemical Deposition on Thin Copper Layers
US3700482A (en) Uranium surface preparation for electroless nickel plating
WO2017201640A1 (en) Method for electroplating release liner roller
WO2019177281A1 (en) Electroplated bead wire having excellent oxidation resistance
US20080156653A1 (en) Cyanide-free pre-treating solution for electroplating copper coating layer on magnesium alloy surface and a pre-treating method thereof
CN1250772C (en) Electroplating pretreatment solution and electroplating pretreatment method
CN109652806A (en) It is a kind of using red copper or brass as the decoating liquid and withdrawal plating of the bright tin auto parts and components of substrate
US5547559A (en) Process for plating metals onto various substrates in an adherent fashion
CN114045478B (en) Preparation method of aluminum alloy conductive conversion film
CN118147638A (en) High-oxidation-resistance ultrathin copper foil and method for improving oxidation resistance of ultrathin copper foil
KR20030075623A (en) Plating method for lusterless metal layer and products coated by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE