WO2023120604A1 - Measuring device, adjusting device, and measuring method - Google Patents

Measuring device, adjusting device, and measuring method Download PDF

Info

Publication number
WO2023120604A1
WO2023120604A1 PCT/JP2022/047217 JP2022047217W WO2023120604A1 WO 2023120604 A1 WO2023120604 A1 WO 2023120604A1 JP 2022047217 W JP2022047217 W JP 2022047217W WO 2023120604 A1 WO2023120604 A1 WO 2023120604A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beams
optical
lens
optical axis
Prior art date
Application number
PCT/JP2022/047217
Other languages
French (fr)
Japanese (ja)
Inventor
健司 福井
克誌 小林
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023120604A1 publication Critical patent/WO2023120604A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • the present disclosure relates to a measuring device, an adjusting device, and a measuring method.
  • a wavefront measurement device has been proposed that measures wavefront aberration in order to reduce errors caused by assembly when assembling optical components that include multiple lenses.
  • a test optical system to be measured is irradiated with light, and the transmitted wavefront of the light transmitted through the test optical system is detected using an imaging device to measure the wavefront. Is going.
  • a measuring device includes a light source unit, an optical element, and at least one imaging element.
  • the light source unit is configured to simultaneously irradiate the optical component to be measured with a plurality of light beams having different directions.
  • the optical element converts the plurality of light beams that converge or diverge after convergence after passing through the optical component.
  • the at least one imaging device receives the converted plurality of light beams.
  • the measurement method of the present disclosure includes a first step, a second step, and a third step.
  • the optical component to be measured is simultaneously irradiated with a plurality of light beams having directions different from each other.
  • the second step converts the plurality of light fluxes, which converge or diverge after convergence after passing through the optical component, using an optical element.
  • at least one imaging device receives the plurality of converted light beams.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a measuring device according to an embodiment of the present disclosure.
  • 2 is a diagram showing another configuration of the light source unit in FIG. 1.
  • FIG. 3 is a diagram showing a more detailed configuration of the optical element and wavefront sensor of FIG. 1.
  • FIG. 4 is a diagram showing another configuration of the wavefront sensor of FIG. 1.
  • FIG. 5 is a diagram showing still another configuration of the wavefront sensor of FIG. 1.
  • FIG. FIG. 6A is a plan view showing the structure of a microlens array, which is an example of an optical element.
  • FIG. 6B is a perspective view showing another example of the shape of the microlens.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a measuring device according to an embodiment of the present disclosure.
  • 2 is a diagram showing another configuration of the light source unit in FIG. 1.
  • FIG. 3 is a diagram showing a more detailed configuration of the optical element and wavefront sensor of FIG. 1.
  • FIG. 6C is a plan view showing a configuration example of another microlens array in which the microlenses of FIG. 6B are arranged.
  • FIG. 6D is a plan view showing still another configuration example of a microlens.
  • FIG. 7A is a diagram showing an example of a pattern in which a plurality of light beams transmitted through a microlens array irradiate an imaging element surface of an imaging element.
  • FIG. 7B is a diagram showing another example of a pattern in which a plurality of light beams transmitted through the microlens array irradiate the imaging element surface of the imaging element.
  • FIG. 8 is a diagram showing an example of a pattern in which one of the plurality of light beams shown in FIG.
  • FIG. 7A is irradiated on the surface of the imaging device by the light beam that has passed through the microlens array.
  • FIG. 9 is a diagram showing another pattern of areas on the surface of the imaging device illuminated by a plurality of light fluxes.
  • FIG. 10 is a diagram showing still another pattern of regions on the surface of the imaging device illuminated by a plurality of light fluxes.
  • FIG. 11 is a diagram showing the structure of a diffraction grating, which is an example of an optical element.
  • FIG. 12 is a diagram showing how one of the light beams transmitted through the diffraction grating generates an interference pattern on the surface of the imaging device.
  • FIG. 13 is a diagram showing an example of the configuration of a wavefront sensor using diffraction gratings.
  • FIG. 14 is a diagram for explaining a method of wavefront measurement according to the prior art.
  • FIG. 15 is a diagram for explaining a method of wavefront measurement according to the prior art.
  • FIG. 16 is a diagram for explaining a method of wavefront measurement according to the prior art.
  • FIG. 17 is a diagram for explaining a method of wavefront measurement according to the prior art.
  • the measurement may take time.
  • the measurement apparatus and measurement method of the present disclosure measure the transmitted wavefronts at a plurality of different image heights substantially simultaneously for the optical component to be measured.
  • FIGS. 14 to 16 show the arrangement of the constituent elements of the apparatus when measuring the wavefront of a light flux that has passed through a lens 120 to be measured by changing the image height using the conventional wavefront measuring apparatus 100. It is a figure explaining.
  • the measuring device 100 includes a light source 111 , a first collimating lens 112 , a second collimating lens 160 and a wavefront sensor 130 .
  • a diffused light flux emitted from a light source 111 positioned on the optical axis O of the lens 120 to be examined is converted into a parallel light flux centered on the optical axis O by the first collimator lens 112 . be irradiated.
  • the light beam emitted from the light source 111 which is displaced from the optical axis O is collimated by the first collimating lens 112, and the lens 120 to be inspected is irradiated with the light beam from outside the optical axis O.
  • the light flux irradiated to the lens 120 to be examined is refracted by the refractive power of the lens 120 to be examined when passing through the lens 120 to be examined.
  • the light beam transmitted through the lens 120 to be inspected is converted into a parallel light beam by the second collimator lens 160, and the wavefront is measured by the wavefront sensor 130.
  • the light source 111 and the wavefront sensor 130 when one light source 111 and one wavefront sensor 130 are used, the light source 111 and the wavefront sensor 130 must be moved. That is, it is necessary to move the light source 111 in a direction intersecting the optical axis O, and to move the wavefront sensor 130 to a position conjugate with the light source 111 corresponding to the movement of the light source 111 . For this reason, it takes time to perform wavefront measurement at a plurality of different image heights using the measurement apparatus 100 .
  • the position, orientation, etc. of the lens 120 to be measured are adjusted using the measurement apparatus 100 so as to reduce the transmitted wavefront aberration, the on-axis and off-axis transmitted wavefronts cannot be observed at the same time. Therefore, even if the lens under test 120 is adjusted so as to reduce the aberration of the transmitted wavefront of the on-axis light flux by the arrangement of FIG. 15, the transmitted wavefront of the off-axis light flux measured by the arrangement of FIG. may deteriorate. Moreover, the reverse may also occur in the same manner. Therefore, in the conventional measurement apparatus 100, there is a problem that it is difficult to adjust the lens 120 to be inspected so that a plurality of different image heights have good transmitted wavefronts.
  • the lens 120 to be measured is used in an imaging device
  • the sensor used in the wavefront sensor 130 of the measuring device 100 and the imaging device used in the imaging device are different. Therefore, the transmitted wavefront measured by the measuring device 100 and the transmitted wavefront observed on the imaging device of the imaging device may not necessarily match. Therefore, the measurement result obtained by the measurement apparatus 100 may not match the imaging performance of the imaging apparatus.
  • the measuring device 100A by combining a plurality of light sources 111a to 111c and a plurality of wavefront sensors 130a to 130c.
  • the measurement apparatus 100A irradiates the lens 120 to be inspected with three light beams in different directions, separates the transmitted light beams by prisms 170a, 170b, etc., and measures them with three wavefront sensors 130a, 130b, and 130c, respectively.
  • light beams emitted from the light sources 111a, 111b, and 111c arranged side by side are converted into three parallel light beams in different directions by the first collimating lens 112, and the lens 120 to be inspected is irradiated with the parallel light beams.
  • This method requires three wavefront sensors 130a, 130b and 130c, resulting in a larger apparatus and higher cost.
  • the measuring device 1 solves the above problems and makes it possible to measure the transmitted wavefronts of light beams incident from a plurality of different directions in a short time or substantially simultaneously.
  • being able to measure substantially simultaneously means being able to measure in parallel or sequentially without changing the arrangement configuration of the apparatus.
  • Being able to measure substantially simultaneously does not mean that the measurement results of the transmitted wavefront are obtained strictly at the same time.
  • the measuring device 1 is a device that measures the wavefront of a light flux passing through a test lens 20, which is an optical component to be measured.
  • the measuring device 1 includes a light source section 10 , a wavefront sensor 30 , a computing section 40 and a display section 50 .
  • the light source unit 10 includes a plurality of light sources 11a, 11b and 11c and a collimator lens 12.
  • the plurality of light sources 11a, 11b, and 11c may be collectively referred to as the light source 11.
  • the plurality of light sources 11a, 11b, and 11c may include, but are not limited to, LDs (laser diodes) or LEDs (light emitting diodes).
  • a plurality of light sources 11 a , 11 b , and 11 c emit diffused light beams toward the collimator lens 12 .
  • a plurality of light sources 11a, 11b, and 11c are arranged side by side in a plane perpendicular to the central ray of the emitted light beam.
  • the number of light sources 11 is not limited to three, and may be two or four or more. For example, a total of 9 light sources 11 can be arranged in a 3 ⁇ 3 matrix, or a total of 25 light sources 11 can be arranged in a 5 ⁇ 5 matrix.
  • the light source unit 10 does not have a plurality of light sources 11a, 11b, and 11c, and may be configured by combining one common light source 13, a pinhole array 14, and a collimating lens 12 as shown in FIG. .
  • the pinholes 14a, 14b, and 14c provided in the pinhole array 14 transmit the light from the common light source 13 to the lens 20 to be inspected.
  • Each pinhole 14a, 14b and 14c emits a light beam toward the collimating lens 12, like the light sources 11a, 11b and 11c in FIG.
  • the light source section 10 can be configured at a lower cost than when the individual light sources 11a, 11b and 11c are provided.
  • the collimating lens 12 converts the diffused light beams emitted from the respective light sources 11a, 11b and 11c into parallel light beams.
  • the collimator lens 12 is, for example, a convex lens.
  • a diffused light flux incident on the collimating lens 12 through the optical axis of the collimating lens 12 is emitted in a direction passing through the optical axis of the collimating lens 12 .
  • Diffused light beams passing through the outside of the optical axis of the collimating lens 12 and entering the collimating lens 12 parallel to the optical axis are deflected in the direction of the optical axis of the collimating lens 12 at different angles depending on the position of incidence on the collimating lens 12. .
  • the light source unit 10 can simultaneously irradiate the lens 20 to be inspected with a plurality of parallel light beams having different directions.
  • the configuration of the light source unit 10 is not limited to that shown in FIGS. 1 and 2.
  • the other end of a plurality of optical fibers having one end connected to the light source device may be arranged facing the collimating lens 12 side.
  • the test lens 20 is the object to be measured by the measuring device 1 .
  • the test lens 20 is composed of one or a plurality of lenses arranged in one direction.
  • the lens under test 20 is a set of lenses. At least one lens in the plurality of lenses may be adjustable in position and orientation to adjust the transmitted wavefront.
  • the lens 20 to be examined is indicated by one rectangle for convenience.
  • the test lens 20 is assumed to have a positive refractive power. When the lens 20 to be examined has a positive refractive power, the luminous flux transmitted through the lens 20 to be examined becomes convergent light as shown in FIG.
  • the lens 20 to be examined has an optical axis O.
  • the optical axis of a plurality of lenses included in the lens 20 to be examined do not match, the optical axis of the lens closest to the wavefront sensor 30 in the lens 20 to be examined may be taken as the optical axis O.
  • the light source unit 10 can be configured such that the optical axis of the collimating lens 12 coincides with the optical axis O, and one light source 11b is positioned on the optical axis. As a result, the luminous flux emitted from the light source 11b becomes an axial luminous flux that irradiates the lens 20 to be examined 20 as a luminous flux about the optical axis O as a luminous flux.
  • the on-axis luminous flux is indicated by a thick dashed line to distinguish it from other luminous fluxes.
  • the light beams emitted from the other light sources 11a and 11c become off-axis light beams.
  • Light fluxes emitted from the other light sources 11a and 11c are displayed with thin dashed lines.
  • the wavefront sensor 30 includes an optical element 31 and an imaging element 32 .
  • the optical element 31 converts a plurality of light fluxes that converge or diverge after convergence after passing through the lens 20 to be examined. For example, the optical element 31 changes the local direction of travel of the light contained in each of the plurality of light beams, and transforms the spatial intensity distribution of the light beams with which the imaging device 32 is irradiated.
  • the optical element 31 is, for example, a microlens array or a diffraction grating, but is not limited to these.
  • the optical element 31 is shown in a square shape when viewed along the optical axis O, but the shape of the optical element 31 is not limited to this.
  • optical element 31 may be rectangular.
  • the imaging device 32 is a device that converts an image formed on the imaging device surface 32a into an electric signal.
  • the imaging element 32 converts the electric signal into a digital image signal by an AD conversion circuit and outputs the digital image signal to the arithmetic unit 40 .
  • the imaging device 32 may be either a two-dimensional image sensor including a CCD image sensor (Charge-Coupled Device Image Sensor) and a CMOS image sensor (Complementary MOS Image Sensor).
  • a plurality of photoelectric conversion elements are two-dimensionally arranged on the imaging element surface 32 a of the imaging element 32 .
  • a plurality of photoelectric conversion elements are arranged, for example, in a grid pattern.
  • a plurality of photoelectric conversion elements correspond to pixels of an image captured by the imaging element 32, respectively.
  • the imaging device 32 receives a plurality of light beams converted by the optical device 31 on the imaging device surface 32a.
  • a plurality of luminous fluxes are received by different regions of the imaging element surface 32a.
  • the light intensity distribution of each light beam detected by the imaging element surface 32a reflects the wavefront shape of a plurality of light beams having different image heights that have passed through the lens 20 to be inspected. It becomes a thing.
  • the computing unit 40 acquires from the imaging device 32 the light intensity distributions of the plurality of light beams corresponding to the plurality of image heights formed on the imaging device 32 . Based on the obtained light intensity distribution of each light beam, the calculation unit 40 calculates the transmitted wavefront aberration corresponding to each of the plurality of light beams.
  • the computing unit 40 may be installed in a computer such as a portable information terminal, a PC (Personal Computer), or a workstation.
  • the computing unit 40 includes one or more processors.
  • the processor includes a general-purpose processor that loads a specific program to execute a specific function, and a dedicated processor that specializes in specific processing.
  • the display unit 50 displays the transmitted wavefront aberration corresponding to each of the plurality of light fluxes calculated by the calculation unit 40.
  • the transmitted wavefront aberrations corresponding to multiple beams may be displayed simultaneously or sequentially.
  • the display unit 50 employs any of various displays such as a liquid crystal display (LCD), an organic EL (Electro-Luminescence) display, an inorganic EL display, a field emission display (FED), and the like. I can.
  • the optical element 31 and the imaging element 32 can be arranged in various ways in relation to the focal plane 33 of the lens 20 to be examined.
  • the side of the lens to be examined 20 as viewed from the imaging device 32 is defined as the front side
  • the side of the imaging device 32 as viewed from the lens 20 is defined as the rear side.
  • optical element 31 can be positioned in front of focal plane 33 .
  • the imaging element 32 can be positioned behind the focal plane 33 .
  • the optical element 31 and the imaging element 32 can be positioned behind the focal plane 33 .
  • the optical element 31 and the imaging element 32 can be located in front of the focal plane 33, which is not shown in FIG. 5 because it overlaps the imaging element 32.
  • FIG. 5 the optical element 31 and the imaging element 32 can be located in front of the focal plane 33, which is not shown in FIG. 5 because it overlaps the imaging element 32.
  • the optical element 31 is positioned at a position where the light flux converges or diverges after convergence.
  • the wavefront sensor 30 does not employ a configuration in which the light beam is converted into a parallel light beam and then measured by the imaging device 32 . Therefore, unlike the measuring devices 100, 100A shown in FIGS. 14 to 17, this configuration does not include the second collimating lenses 160, 160a-160c. If a collimating lens is arranged immediately before the wavefront sensor 30, the collimating lens occupies a certain amount of space. Therefore, it becomes difficult to detect a plurality of luminous fluxes with one imaging device.
  • the measuring device 1 of the present embodiment since a plurality of light beams incident on the wavefront sensor 30 are not converted into parallel light beams, one imaging element 32 can be used for detecting a plurality of light beams, making the device simple and inexpensive. Can be configured. In addition, since no collimating lens is arranged, there is an advantage that the arrangement of the apparatus can be made easier and the measurement becomes easier.
  • a microlens array 35 as shown in FIG. 6A can be used.
  • the microlens array 35 is configured by arranging a plurality of circular microlenses 35a in a grid pattern in two mutually orthogonal directions.
  • a gap portion between the plurality of microlenses 35a of the microlens array 35 may be a non-transmissive portion 35b that does not transmit the light flux.
  • the arrangement of the plurality of microlenses 35a is not limited to the form shown in FIG. 6A.
  • the plurality of microlenses 35a may be arranged in a honeycomb pattern.
  • the outer shape of the microlenses 35a of the microlens array 35 is not limited to circular.
  • the microlens array 35 may be configured by arranging rectangular lenses 35c in a plane as shown in FIG. 6B.
  • the rectangular lens 35c may have a rectangular shape obtained by cutting out a circular convex lens.
  • the microlenses 35a included in the microlens array 35 are not limited to those using refraction of optical members.
  • the microlens 35a may be composed of a diffraction element.
  • the microlens 35a can be a Fresnel zone plate in which a first ring-shaped portion 35d and a second ring-shaped portion 35e are alternately arranged as concentric rings from the center.
  • the first ring-shaped portion 35d and the second ring-shaped portion 35e may have a structure in which a step is provided in a transparent material so that the transmitted light beams have a phase difference of 180° ( ⁇ [radian]). can.
  • a Fresnel zone plate is configured to focus the transmitted light beam to a single point.
  • the configuration of the Fresnel zone plate is not limited to that described above.
  • the first ring-shaped portion 35d and the second ring-shaped portion 35e may be configured to be transparent and opaque to the light of the wavelength of the luminous flux, respectively.
  • each microlens 35a of the optical element 31 forms a point image on the imaging element surface 32a of the imaging element 32 (see FIGS. 7A, 7B, and 8). That is, in FIGS. 3, 4 and 5, when the optical element 31 is the microlens array 35, the optical element 31 and the imaging device 32 are arranged such that the condensing position of each microlens 35a is the imaging device surface of the imaging device 32. 32a. Therefore, when the wavefront sensor 30 has the configuration of FIG. 3, each microlens 35a has a negative refractive power. On the other hand, when the wavefront sensor 30 has the configuration of FIGS. 4 and 5, each microlens 35a has a positive refractive power.
  • the wavefront sensor 30 may be configured as a Shack-Hartmann wavefront sensor.
  • the wavefront sensor 30 can detect the local gradient of the wavefront based on the displacement of the position of the imaging point of each microlens 35a on the imaging element surface 32a from the center point.
  • the light source unit 10 when viewed from the direction along the optical axis O, a total of nine light sources 11 are arranged, three each in a first direction and a second direction perpendicular to the first direction, and the wavefront sensor 30 is An example of the configuration shown in FIG. 5 will be described.
  • the first direction is, for example, the horizontal direction perpendicular to the optical axis.
  • the second direction is, for example, the vertical direction. In this case, nine light beams are emitted from the light source section 10 .
  • each luminous flux passes through a predetermined area of the microlens array 35 determined by the angle of incidence on the lens 20 to be inspected, and is incident on the imaging element surface 32a.
  • Each luminous flux is centered on the point where it intersects the optical axis O on the imaging device 32, and each of the regions spatially divided into a total of nine regions, three each in the first direction and the second direction. Irradiate.
  • the wavefront sensor 30 measures the converging or diverging light beams, so that the small diameter portions of the respective light beams can be received without overlapping on the imaging element surface 32a. . Therefore, using the imaging element surface 32a of the single imaging element 32, it is possible to measure wavefronts at a plurality of different image heights.
  • each light flux passes through different regions of the microlens array 35 without overlapping each other.
  • each luminous flux may irradiate different areas on the imaging element surface 32a, and may pass through overlapping areas in the microlens array 35 as shown in FIG. 7B. By doing so, it is possible to measure the wavefront of each light beam that has passed through a wider area of the lens 20 to be inspected.
  • FIG. 8 shows an enlarged transmission region R1 of the microlens array 35 through which one of the nine light beams is transmitted, and a light receiving region R2 of the imaging element surface 32a through which the light beam is received.
  • Light rays transmitted through each microlens 35a are condensed on the imaging element surface 32a to form an image of a light beam cross section called a heartmanogram 36.
  • the computing unit 40 Based on the heart manogram 36 detected by the imaging device 32, the computing unit 40 computes the center of gravity of the light intensity distribution of each region finely divided by each microlens 35a. In FIG. 8 the center of gravity is represented as a point of the heartmanogram 36 . The computing unit 40 further computes how much the center of gravity position deviates from each reference position on the imaging element surface 32a, and obtains the transmitted wavefront aberration in each light beam cross section.
  • the calculation unit 40 can calculate PV (Peak To Valley) value, Root Mean Square (RMS) value, Seidel's five aberrations, and/or Zernike's coefficient of the transmitted wavefront by a known method.
  • the calculation unit 40 can display at least one of these transmitted wavefront aberrations on the display unit 50 .
  • the measuring device 1 can simultaneously irradiate the lens 20 under test with light beams from nine different directions, and calculate the transmitted wavefront aberration corresponding to each light beam. Therefore, the measurement apparatus 1 can measure the transmitted wavefronts of light beams incident on the lens 20 under test from a plurality of different directions in a short period of time or substantially simultaneously. Furthermore, the user of the measurement apparatus 1 checks the transmitted wavefront aberration displayed on the display unit 50, and adjusts the wavefront aberrations of the light beams in different directions to reduce the wavefront aberrations of the individual lenses included in the lens 20 to be inspected. lens position and/or orientation can be adjusted. Therefore, by using the measurement device 1, it is possible to adjust the transmitted wavefronts of a plurality of light beams in different directions without moving the light source unit 10 and the wavefront sensor 30.
  • the measuring device 1 can also be used when adjusting the position of the subject lens 20 of an imaging device including the imaging device 32 that is actually used.
  • the measurement apparatus 1 is configured by disposing the optical element 31 between the lens 20 to be examined and the imaging element 32, and moving the imaging element 32 of the imaging apparatus by a predetermined amount from the image plane in the optical axis direction. can do.
  • the user of the measurement apparatus 1 can adjust the positions of the lenses included in the test lens 20 in this state. As a result, the measurement results obtained by the measurement apparatus 1 and the imaging performance of the actually used imaging apparatus are in good agreement with each other.
  • the number of luminous fluxes irradiating the subject lens 20 in different directions is not limited to nine.
  • the number of beams can be five.
  • the five light sources 11 when viewed in the direction along the optical axis O, can be arranged so as to be positioned at the center of gravity and the four vertices of a square. By doing so, the light source unit 10 can irradiate the lens 20 to be inspected with one axial light flux and four off-axis light fluxes.
  • two off-axis luminous fluxes are incident on the lens 20 to be inspected from directions inclined with respect to the optical axis O in two planes inclined by 45 degrees with respect to the horizontal and vertical directions.
  • the transmissive area R1 of the microlens array 35 and the light receiving area R2 of the imaging element surface 32a are as shown in FIG.
  • the two planes tilted 45 degrees with respect to the horizontal and vertical directions are the first plane and the second plane.
  • the five light sources 11 when viewed in the direction along the optical axis O, can be arranged so as to be positioned at the center of gravity and the center of each of the four sides of the square.
  • the light source unit 10 can irradiate the lens 20 to be inspected with one axial light flux and four off-axis light fluxes.
  • two off-axis luminous fluxes are incident on the lens 20 to be inspected from directions inclined with respect to the optical axis O in the horizontal plane and the vertical plane, respectively.
  • the transmissive area R1 of the microlens array 35 and the light receiving area R2 of the imaging element surface 32a are as shown in FIG.
  • the horizontal plane and the vertical plane are the first plane and the second plane.
  • the number of pixels contributing to the measurement per light beam is smaller than when irradiating with five light beams. Measurement accuracy of wavefront measurement becomes low.
  • the number of image positions to be measured that is, the number of measurement points increases, so that the aberration distribution of the entire image plane can be grasped.
  • the number of luminous fluxes that irradiate the lens 20 to be examined and the direction of irradiation are determined according to the required performance of the imaging device 32 and the lens 20 to be examined.
  • the measurement device 1 when performing measurement using five light beams in different directions, the number of light sources 11 is reduced, so that the measurement device 1 can be configured at a lower cost and with a simpler configuration than when nine light beams are emitted. can do. 9 and 10, the light receiving regions R2 of the four off-axis light beams are different from each other by 90 degrees, and each light receiving region R2 Equidistant from the center of surface 32a.
  • the center of the imaging element surface 32a is the position where the optical axis O crosses the imaging element surface 32a.
  • the measuring apparatus 1 can be configured so as to measure the wavefront at the maximum image height of the lens 20 to be measured using each off-axis light flux.
  • a Talbot interferometer can be used as the wavefront sensor 30 .
  • the optical element 31 can use a diffraction grating 37 instead of the microlens array 35 .
  • the diffraction grating 37 can be composed of, for example, a plate-like member having two types of translucent regions, a plurality of first regions 37a and a plurality of second regions 37b, as shown in FIG.
  • the first regions 37a and the second regions 37b are, for example, square regions when viewed along the optical axis O, arranged alternately in a first direction and a second direction that are orthogonal to each other.
  • the first region 37a and the second region 37b are configured such that the phases of light transmitted therethrough are different by 180°. The reason why the first region 37a and the second region 37b are configured in this way is to reduce the zero-order diffracted light.
  • the wavefront sensor 30 can employ any of the configurations shown in FIGS. A case where the wavefront sensor 30 is configured as shown in FIG. 5 will be described as an example.
  • one of the light beams transmitted through the lens 20 to be inspected is diffracted by the transmission region R1 of the diffraction grating 37 and received by the light receiving region R2 of the imaging device surface 32a of the imaging device 32.
  • the diffraction pattern is distorted by the transmitted wavefront aberration of the light flux that has passed through the lens 20 to be inspected. Wavefront aberration can be calculated by measuring the distortion of this diffraction pattern.
  • the calculation unit 40 calculates the transmitted wavefront aberration corresponding to each light flux based on the diffraction pattern of each light flux acquired by the imaging device 32 .
  • the calculation unit 40 analyzes the diffraction pattern using Fourier transform and inverse Fourier transform. As a result, the calculation unit 40 can calculate various transmitted wavefront aberrations in the same manner as when the microlens array 35 is used as the optical element 31 .
  • the wavefront sensor 30 can adopt the configuration shown in FIG. This is obtained by arranging a spatial filter 38 on the focal plane 33 in the configuration of the wavefront sensor 30 shown in FIG.
  • the spatial filter 38 is configured to block diffracted light of some orders from the diffracted light of the diffraction grating 37 and selectively transmit other diffracted lights of some orders.
  • the spatial filter 38 may be configured to block 0th-order diffracted light and transmit ⁇ 1st-order diffracted lights, as shown in FIG. Thereby, the optical element 31 can selectively detect the portion of the light that contributes to the calculation of the wavefront aberration.
  • the transmitted wavefronts at a plurality of different image heights of the lens 20 to be measured can be measured simultaneously in a short time or practically. .
  • the light source 11 and the wavefront sensor 30 do not need to be moved in order to measure the transmitted wavefront at a plurality of image heights.
  • the present disclosure includes a measurement method performed by the measurement device 1.
  • This measurement method includes a first step, a second step, and a third step.
  • the first step is to simultaneously irradiate the lens 20 to be inspected with a plurality of light beams having different directions.
  • the second step is a step of converting a plurality of light fluxes, which converge or diverge after convergence after passing through the lens 20 to be examined, by the optical element 31 .
  • the third step is a step of receiving the plurality of converted light beams by the imaging element 32 .
  • the measurement apparatus 1 of the present disclosure may be configured as an adjustment apparatus by adding an adjustment unit that adjusts the position and orientation of the lens 20 (optical component) to be inspected.
  • optical components are not limited to those with positive refractive power.
  • Optical components include, for example, those having an afocal system that emits an incident parallel light beam as a parallel light beam. In that case, by arranging a convex lens on the exit side of the afocal system to convert it into a convergent system, measurement by the measuring apparatus 1 of the present disclosure becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

This measuring device comprises a light source unit, an optical element, and at least one imaging element. The light source unit is configured to emit a plurality of light beams having mutually different directions simultaneously onto a lens under test that is to be measured. The optical element converts the plurality of light beams that have passed through the lens under test and that then converge or diverge after converging. The at least one imaging element receives the plurality of light beams that have been converted.

Description

計測装置、調整装置及び計測方法Measuring device, adjusting device and measuring method 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年12月23日に出願された日本国特許出願2021-209911号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims priority from Japanese Patent Application No. 2021-209911 filed on December 23, 2021, and the entire disclosure of this earlier application is incorporated herein for reference.
 本開示は、計測装置、調整装置及び計測方法に関する。 The present disclosure relates to a measuring device, an adjusting device, and a measuring method.
 複数のレンズを含む光学部品を組み立てる際に、組み立てにより生じる誤差を減らすために波面収差の計測を行う波面計測装置が提案されている。例えば、特許文献1によれば、計測対象の被検光学系に対して光を照射し、この被検光学系を透過した光の透過波面を、撮像装置を用いて検知して波面の計測を行っている。 A wavefront measurement device has been proposed that measures wavefront aberration in order to reduce errors caused by assembly when assembling optical components that include multiple lenses. For example, according to Patent Document 1, a test optical system to be measured is irradiated with light, and the transmitted wavefront of the light transmitted through the test optical system is detected using an imaging device to measure the wavefront. Is going.
特開2015-55544号公報JP 2015-55544 A
 本開示の計測装置は、光源部と、光学素子と、少なくとも1つの撮像素子とを備える。前記光源部は、互いに方向の異なる複数の光束を、計測対象の光学部品に同時に照射するように構成される。前記光学素子は、前記光学部品を透過した後、収束または収束後発散する、前記複数の光束を変換する。前記少なくとも1つの撮像素子は、変換された前記複数の光束を受光する。 A measuring device according to the present disclosure includes a light source unit, an optical element, and at least one imaging element. The light source unit is configured to simultaneously irradiate the optical component to be measured with a plurality of light beams having different directions. The optical element converts the plurality of light beams that converge or diverge after convergence after passing through the optical component. The at least one imaging device receives the converted plurality of light beams.
 本開示の計測方法は、第1の工程と、第2の工程と、第3の工程とを含む。前記第1の工程は、互いに方向の異なる複数の光束を、計測対象の光学部品に同時に照射する。前記第2の工程は、前記光学部品を透過した後、収束または収束後発散する、前記複数の光束を光学素子により変換する。前記第3の工程は、変換された前記複数の光束を少なくとも1つの撮像素子により受光する。 The measurement method of the present disclosure includes a first step, a second step, and a third step. In the first step, the optical component to be measured is simultaneously irradiated with a plurality of light beams having directions different from each other. The second step converts the plurality of light fluxes, which converge or diverge after convergence after passing through the optical component, using an optical element. In the third step, at least one imaging device receives the plurality of converted light beams.
図1は、本開示の一実施形態に係る計測装置の概略構成例を示す図である。FIG. 1 is a diagram illustrating a schematic configuration example of a measuring device according to an embodiment of the present disclosure. 図2は、図1の光源部の他の構成を示す図である。2 is a diagram showing another configuration of the light source unit in FIG. 1. FIG. 図3は、図1の光学素子及び波面センサのより詳細な構成を示す図である。3 is a diagram showing a more detailed configuration of the optical element and wavefront sensor of FIG. 1. FIG. 図4は、図1の波面センサの他の構成を示す図である。4 is a diagram showing another configuration of the wavefront sensor of FIG. 1. FIG. 図5は、図1の波面センサのさらに他の構成を示す図である。5 is a diagram showing still another configuration of the wavefront sensor of FIG. 1. FIG. 図6Aは、光学素子の一例であるマイクロレンズアレイの構造を示す平面図である。FIG. 6A is a plan view showing the structure of a microlens array, which is an example of an optical element. 図6Bは、他の一例のマイクロレンズの形状を示す斜視図である。FIG. 6B is a perspective view showing another example of the shape of the microlens. 図6Cは、図6Bのマイクロレンズを配列した他のマイクロレンズアレイの構成例を示す平面図である。FIG. 6C is a plan view showing a configuration example of another microlens array in which the microlenses of FIG. 6B are arranged. 図6Dは、さらに他のマイクロレンズの構成例を示す平面図である。FIG. 6D is a plan view showing still another configuration example of a microlens. 図7Aは、マイクロレンズアレイを透過した複数の光束が撮像素子の撮像素子面を照射するパターンの一例を示す図である。FIG. 7A is a diagram showing an example of a pattern in which a plurality of light beams transmitted through a microlens array irradiate an imaging element surface of an imaging element. 図7Bは、マイクロレンズアレイを透過した複数の光束が撮像素子の撮像素子面を照射するパターンの他の一例を示す図である。FIG. 7B is a diagram showing another example of a pattern in which a plurality of light beams transmitted through the microlens array irradiate the imaging element surface of the imaging element. 図8は、図7Aに示される複数の光束の一つについて、マイクロレンズアレイを透過した光束が撮像素子面を照射するパターンの一例を示す図である。FIG. 8 is a diagram showing an example of a pattern in which one of the plurality of light beams shown in FIG. 7A is irradiated on the surface of the imaging device by the light beam that has passed through the microlens array. 図9は、複数の光束により照射される撮像素子面の領域の他のパターンを示す図である。FIG. 9 is a diagram showing another pattern of areas on the surface of the imaging device illuminated by a plurality of light fluxes. 図10は、複数の光束により照射される撮像素子面の領域の更に他のパターンを示す図である。FIG. 10 is a diagram showing still another pattern of regions on the surface of the imaging device illuminated by a plurality of light fluxes. 図11は、光学素子の一例である回折格子の構造を示す図である。FIG. 11 is a diagram showing the structure of a diffraction grating, which is an example of an optical element. 図12は、回折格子を透過した光束の一つが撮像素子面上に干渉パターンを生成する様子を示す図である。FIG. 12 is a diagram showing how one of the light beams transmitted through the diffraction grating generates an interference pattern on the surface of the imaging device. 図13は、回折格子を用いた波面センサの構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of a wavefront sensor using diffraction gratings. 図14は、従来技術による波面計測の方法を説明する図である。FIG. 14 is a diagram for explaining a method of wavefront measurement according to the prior art. 図15は、従来技術による波面計測の方法を説明する図である。FIG. 15 is a diagram for explaining a method of wavefront measurement according to the prior art. 図16は、従来技術による波面計測の方法を説明する図である。FIG. 16 is a diagram for explaining a method of wavefront measurement according to the prior art. 図17は、従来技術による波面計測の方法を説明する図である。FIG. 17 is a diagram for explaining a method of wavefront measurement according to the prior art.
 従来の波面計測装置は、波面計測時に像高を変えようとすると、光源と波面センサとを移動する必要がある。このため、複数の像高に対応した波面収差を計測しようとすると、計測に時間を要することがある。 With conventional wavefront measurement devices, it is necessary to move the light source and wavefront sensor when trying to change the image height during wavefront measurement. Therefore, when trying to measure wavefront aberration corresponding to a plurality of image heights, the measurement may take time.
 本開示の計測装置及び計測方法は、計測対象の光学部品について複数の異なる像高の透過波面を、実質的に同時に計測している。 The measurement apparatus and measurement method of the present disclosure measure the transmitted wavefronts at a plurality of different image heights substantially simultaneously for the optical component to be measured.
 以下、本開示の実施形態について、図面を参照して説明する。以下の説明で用いられる図は模式的なものである。図面上の寸法及び比率等は現実のものとは必ずしも一致していない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The figures used in the following description are schematic. The dimensions, ratios, etc. on the drawings do not necessarily match the actual ones.
 まず、本開示の実施形態に係る計測装置について説明する前に、組レンズの調整などで使用される従来の波面の計測装置100について説明する。 First, before describing a measuring apparatus according to an embodiment of the present disclosure, a conventional wavefront measuring apparatus 100 used for adjusting a group lens will be described.
 図14から図16は、従来の波面の計測装置100を用いて、計測対象の被検レンズ120を透過した光束の波面を、像高を変えて計測するときの、装置の各構成要素の配置を説明する図である。計測装置100は、光源111、第1コリメートレンズ112、第2コリメートレンズ160、及び、波面センサ130を含む。 FIGS. 14 to 16 show the arrangement of the constituent elements of the apparatus when measuring the wavefront of a light flux that has passed through a lens 120 to be measured by changing the image height using the conventional wavefront measuring apparatus 100. It is a figure explaining. The measuring device 100 includes a light source 111 , a first collimating lens 112 , a second collimating lens 160 and a wavefront sensor 130 .
 図15では、被検レンズ120の光軸O上に位置する光源111から出射した拡散する光束が、第1コリメートレンズ112により光軸Oを中心とする平行光束に変換され、被検レンズ120に照射される。図14と図16とでは、光軸Oからずらして配置された光源111から出射した光束が第1コリメートレンズ112で平行光束となり、光軸O外から被検レンズ120に照射される。被検レンズ120に照射された光束は、被検レンズ120を透過する際、被検レンズ120の有する屈折力により屈折される。被検レンズ120を透過した光束は、第2コリメートレンズ160により平行光束に変換され、波面センサ130により波面が計測される。 In FIG. 15 , a diffused light flux emitted from a light source 111 positioned on the optical axis O of the lens 120 to be examined is converted into a parallel light flux centered on the optical axis O by the first collimator lens 112 . be irradiated. In FIGS. 14 and 16, the light beam emitted from the light source 111 which is displaced from the optical axis O is collimated by the first collimating lens 112, and the lens 120 to be inspected is irradiated with the light beam from outside the optical axis O. In FIGS. The light flux irradiated to the lens 120 to be examined is refracted by the refractive power of the lens 120 to be examined when passing through the lens 120 to be examined. The light beam transmitted through the lens 120 to be inspected is converted into a parallel light beam by the second collimator lens 160, and the wavefront is measured by the wavefront sensor 130. FIG.
 図14から図16に示されるように、一つの光源111と、一つの波面センサ130とを用いる場合、複数の異なる像高で被検レンズ120の透過波面の計測を行うためには、光源111と波面センサ130とを移動させる必要がある。すなわち、光源111を光軸Oに交差する方向に移動させ、さらに、光源111の移動に対応して、波面センサ130を光源111と共役な位置に移動させることが必要となる。このため、計測装置100を用いて異なる複数の像高の波面計測を行うには、計測に時間を要する。 As shown in FIGS. 14 to 16, when one light source 111 and one wavefront sensor 130 are used, the light source 111 and the wavefront sensor 130 must be moved. That is, it is necessary to move the light source 111 in a direction intersecting the optical axis O, and to move the wavefront sensor 130 to a position conjugate with the light source 111 corresponding to the movement of the light source 111 . For this reason, it takes time to perform wavefront measurement at a plurality of different image heights using the measurement apparatus 100 .
 また、計測装置100を用いて透過波面収差が小さくなるように被検レンズ120の位置及び向き等を調整する場合、軸上と軸外との透過波面を同時に観察することができない。このため、図15の配置により、軸上光束の透過波面の収差を小さくするように被検レンズ120の調整を行っても、図14又は図16の配置により計測される軸外光束の透過波面が劣化してしまうということが生じ得る。また、その逆も同様に生じ得る。したがって、従来の計測装置100では、被検レンズ120を異なる複数の像高について良好な透過波面となるように調整することが難しいという問題があった。 In addition, when the position, orientation, etc. of the lens 120 to be measured are adjusted using the measurement apparatus 100 so as to reduce the transmitted wavefront aberration, the on-axis and off-axis transmitted wavefronts cannot be observed at the same time. Therefore, even if the lens under test 120 is adjusted so as to reduce the aberration of the transmitted wavefront of the on-axis light flux by the arrangement of FIG. 15, the transmitted wavefront of the off-axis light flux measured by the arrangement of FIG. may deteriorate. Moreover, the reverse may also occur in the same manner. Therefore, in the conventional measurement apparatus 100, there is a problem that it is difficult to adjust the lens 120 to be inspected so that a plurality of different image heights have good transmitted wavefronts.
 さらに、計測対象の被検レンズ120が撮像装置に用いられる場合、計測装置100の波面センサ130で使用されるセンサと、撮像装置に使用される撮像素子とが異なることになる。このため、計測装置100で計測した透過波面と、撮像装置の撮像素子上で観察される透過波面とが必ずしも一致しないことがある。よって、計測装置100による計測結果と、撮像装置の結像性能が一致しないことがある。 Furthermore, when the lens 120 to be measured is used in an imaging device, the sensor used in the wavefront sensor 130 of the measuring device 100 and the imaging device used in the imaging device are different. Therefore, the transmitted wavefront measured by the measuring device 100 and the transmitted wavefront observed on the imaging device of the imaging device may not necessarily match. Therefore, the measurement result obtained by the measurement apparatus 100 may not match the imaging performance of the imaging apparatus.
 また、図17に示すように、複数の光源111a~111c及び複数の波面センサ130a~130cを組み合わせて計測装置100Aを構成することが想定できる。計測装置100Aは、互いに方向の異なる3つの光束を被検レンズ120に照射し、透過光束をプリズム170a、170b等により分離して、それぞれ、3つの波面センサ130a、130b及び130cで計測する。図17中で、並んで配置された光源111a、111b及び111cから出射した光束は、第1コリメートレンズ112で方向の異なる3つの平行光束となって、被検レンズ120に照射されている。この方法では、3つの波面センサ130a、130b及び130cが必要となるので、装置が大きくなりコストも高くなる。 Also, as shown in FIG. 17, it is possible to configure the measuring device 100A by combining a plurality of light sources 111a to 111c and a plurality of wavefront sensors 130a to 130c. The measurement apparatus 100A irradiates the lens 120 to be inspected with three light beams in different directions, separates the transmitted light beams by prisms 170a, 170b, etc., and measures them with three wavefront sensors 130a, 130b, and 130c, respectively. In FIG. 17, light beams emitted from the light sources 111a, 111b, and 111c arranged side by side are converted into three parallel light beams in different directions by the first collimating lens 112, and the lens 120 to be inspected is irradiated with the parallel light beams. This method requires three wavefront sensors 130a, 130b and 130c, resulting in a larger apparatus and higher cost.
 以下に説明する本実施形態に係る計測装置1は、上記問題点を解決し、複数の異なる方向から入射する光束の透過波面を、短時間で又は実質的に同時に計測することを可能にする。なお、実質的に同時に計測することができるとは、装置の配置構成を変えずに、並行して又は順次計測することができることを意味する。実質的に同時に計測することができるとは、透過波面の計測結果が厳密に同時刻に得られることを意味しない。 The measuring device 1 according to the present embodiment described below solves the above problems and makes it possible to measure the transmitted wavefronts of light beams incident from a plurality of different directions in a short time or substantially simultaneously. In addition, being able to measure substantially simultaneously means being able to measure in parallel or sequentially without changing the arrangement configuration of the apparatus. Being able to measure substantially simultaneously does not mean that the measurement results of the transmitted wavefront are obtained strictly at the same time.
 図1に示すように、本開示の一実施形態に係る計測装置1は、計測対象の光学部品である被検レンズ20を透過する光束の波面を計測する装置である。計測装置1は、光源部10と、波面センサ30と、演算部40と、表示部50とを含む。 As shown in FIG. 1, the measuring device 1 according to one embodiment of the present disclosure is a device that measures the wavefront of a light flux passing through a test lens 20, which is an optical component to be measured. The measuring device 1 includes a light source section 10 , a wavefront sensor 30 , a computing section 40 and a display section 50 .
 光源部10は、複数の光源11a、11b及び11cと、コリメートレンズ12とを含む。複数の光源11a、11b及び11cは、纏めて光源11と表記される場合がある。複数の光源11a、11b及び11cは、例えばLD(laser diode)又はLED(light emitting diode)を含んでよいが、これらに限定されない。複数の光源11a、11b及び11cは、拡散する光束をコリメートレンズ12に向けて出射する。複数の光源11a、11b及び11cは、出射される光束の中心光線に垂直な平面内に並んで配置される。複数の光源11の数は、3つに限定されず、2つ又は4つ以上とすることができる。例えば、複数の光源11は、3×3のマトリクス状に合計9個、又は、5×5のマトリクス状に合計25個配列することができる。 The light source unit 10 includes a plurality of light sources 11a, 11b and 11c and a collimator lens 12. The plurality of light sources 11a, 11b, and 11c may be collectively referred to as the light source 11. FIG. The plurality of light sources 11a, 11b, and 11c may include, but are not limited to, LDs (laser diodes) or LEDs (light emitting diodes). A plurality of light sources 11 a , 11 b , and 11 c emit diffused light beams toward the collimator lens 12 . A plurality of light sources 11a, 11b, and 11c are arranged side by side in a plane perpendicular to the central ray of the emitted light beam. The number of light sources 11 is not limited to three, and may be two or four or more. For example, a total of 9 light sources 11 can be arranged in a 3×3 matrix, or a total of 25 light sources 11 can be arranged in a 5×5 matrix.
 光源部10は、複数の光源11a、11b、11cを有するものではなく、図2に示すように一つの共通光源13と、ピンホールアレイ14と、コリメートレンズ12とを組み合わせて構成されてもよい。この場合、ピンホールアレイ14に設けられた各ピンホール14a、14b及び14cが、共通光源13からの光を被検レンズ20側に透過させる。各ピンホール14a、14b及び14cは、それぞれ図1の光源11a、11b及び11cのように、コリメートレンズ12に向けて光束を出射する。このように構成することにより、個々の光源11a、11b及び11cを設けるよりも、低コストで光源部10を構成することができる。 The light source unit 10 does not have a plurality of light sources 11a, 11b, and 11c, and may be configured by combining one common light source 13, a pinhole array 14, and a collimating lens 12 as shown in FIG. . In this case, the pinholes 14a, 14b, and 14c provided in the pinhole array 14 transmit the light from the common light source 13 to the lens 20 to be inspected. Each pinhole 14a, 14b and 14c emits a light beam toward the collimating lens 12, like the light sources 11a, 11b and 11c in FIG. By configuring in this way, the light source section 10 can be configured at a lower cost than when the individual light sources 11a, 11b and 11c are provided.
 コリメートレンズ12は、それぞれの光源11a、11b及び11cから出射した拡散光束を、平行光束に変換する。コリメートレンズ12は、例えば凸レンズである。コリメートレンズ12の光軸上を通ってコリメートレンズ12に入射する拡散する光束は、コリメートレンズ12の光軸上を通る方向に出射する。コリメートレンズ12の光軸の外側を通って光軸に平行にコリメートレンズ12に入射する拡散光束は、コリメートレンズ12に入射した位置により、それぞれ異なる角度でコリメートレンズ12の光軸方向に偏向される。これにより、光源部10は、互いに方向の異なる複数の平行光束を、被検レンズ20に同時に照射することができる。 The collimating lens 12 converts the diffused light beams emitted from the respective light sources 11a, 11b and 11c into parallel light beams. The collimator lens 12 is, for example, a convex lens. A diffused light flux incident on the collimating lens 12 through the optical axis of the collimating lens 12 is emitted in a direction passing through the optical axis of the collimating lens 12 . Diffused light beams passing through the outside of the optical axis of the collimating lens 12 and entering the collimating lens 12 parallel to the optical axis are deflected in the direction of the optical axis of the collimating lens 12 at different angles depending on the position of incidence on the collimating lens 12. . Thereby, the light source unit 10 can simultaneously irradiate the lens 20 to be inspected with a plurality of parallel light beams having different directions.
 なお、光源部10の構成は、図1及び図2に示したものに限られない。例えば、光源部10の各光源11に代えて、一端部を光源装置に接続された複数の光ファイバの他の端部が、コリメートレンズ12側に向けて配置されてもよい。 The configuration of the light source unit 10 is not limited to that shown in FIGS. 1 and 2. For example, instead of each light source 11 of the light source unit 10, the other end of a plurality of optical fibers having one end connected to the light source device may be arranged facing the collimating lens 12 side.
 被検レンズ20は、計測装置1の計測対象物である。被検レンズ20は、1つ又は一方向に配列された複数のレンズにより構成される。一実施形態において被検レンズ20は、複数のレンズからなる組レンズである。複数のレンズに含まれる少なくとも一つのレンズは、透過波面の調整のために位置及び向きを調整することができてよい。図1以下の図において、被検レンズ20は、便宜的に一つの四角形で表示される。本実施形態において、被検レンズ20は正の屈折力を有するものとする。被検レンズ20が正の屈折力を有する場合、被検レンズ20を透過した光束は、図1に示すように収束光となる。 The test lens 20 is the object to be measured by the measuring device 1 . The test lens 20 is composed of one or a plurality of lenses arranged in one direction. In one embodiment, the lens under test 20 is a set of lenses. At least one lens in the plurality of lenses may be adjustable in position and orientation to adjust the transmitted wavefront. In FIG. 1 and subsequent drawings, the lens 20 to be examined is indicated by one rectangle for convenience. In this embodiment, the test lens 20 is assumed to have a positive refractive power. When the lens 20 to be examined has a positive refractive power, the luminous flux transmitted through the lens 20 to be examined becomes convergent light as shown in FIG.
 被検レンズ20は、光軸Oを有する。被検レンズ20に含まれる複数のレンズの光軸が一致しない場合、被検レンズ20の最も波面センサ30側のレンズの光軸を光軸Oとしてよい。光源部10は、コリメートレンズ12の光軸が光軸Oと一致し、且つ、光軸上に一つの光源11bが位置するように構成することができる。これにより、光源11bから出射した光束は、被検レンズ20に対して光軸Oを略中心とする光束として照射される軸上光束となる。図1及び以下の図において、軸上光束は他の光束と区別して太い破線で表示されている。他の光源11a及び11cから出射した光束は、軸外光束となる。他の光源11a及び11cから出射した光束は、細い破線で表示される。 The lens 20 to be examined has an optical axis O. When the optical axes of a plurality of lenses included in the lens 20 to be examined do not match, the optical axis of the lens closest to the wavefront sensor 30 in the lens 20 to be examined may be taken as the optical axis O. The light source unit 10 can be configured such that the optical axis of the collimating lens 12 coincides with the optical axis O, and one light source 11b is positioned on the optical axis. As a result, the luminous flux emitted from the light source 11b becomes an axial luminous flux that irradiates the lens 20 to be examined 20 as a luminous flux about the optical axis O as a luminous flux. In FIG. 1 and the following figures, the on-axis luminous flux is indicated by a thick dashed line to distinguish it from other luminous fluxes. The light beams emitted from the other light sources 11a and 11c become off-axis light beams. Light fluxes emitted from the other light sources 11a and 11c are displayed with thin dashed lines.
 波面センサ30は、光学素子31及び撮像素子32を含んで構成される。 The wavefront sensor 30 includes an optical element 31 and an imaging element 32 .
 光学素子31は、被検レンズ20を透過した後、収束または収束後発散する複数の光束を変換する。例えば、光学素子31は、複数の光束のそれぞれに含まれる光の局所的な進行方向を変化させ、撮像素子32に照射される光束の空間的強度分布を変換する。光学素子31は、例えば、マイクロレンズアレイ、又は、回折格子であるが、これらに限られない。なお、以下の図面において、光学素子31は光軸Oに沿う方向に見たとき、正方形の形状で表示されるが、光学素子31の形状はこれに限られない。例えば、光学素子31は、長方形であってよい。 The optical element 31 converts a plurality of light fluxes that converge or diverge after convergence after passing through the lens 20 to be examined. For example, the optical element 31 changes the local direction of travel of the light contained in each of the plurality of light beams, and transforms the spatial intensity distribution of the light beams with which the imaging device 32 is irradiated. The optical element 31 is, for example, a microlens array or a diffraction grating, but is not limited to these. In the drawings below, the optical element 31 is shown in a square shape when viewed along the optical axis O, but the shape of the optical element 31 is not limited to this. For example, optical element 31 may be rectangular.
 撮像素子32は、撮像素子面32a上に結像された像を電気信号に変換する素子である。撮像素子32は、電気信号をAD変換回路によりデジタルの画像信号に変換し、演算部40に出力する。撮像素子32は、CCDイメージセンサ(Charge-Coupled Device Image Sensor)、及び、CMOSイメージセンサ(Complementary MOS Image Sensor)を含む二次元のイメージセンサの何れかであってよい。撮像素子32の撮像素子面32aには、複数の光電変換素子が2次元的に配列される。複数の光電変換素子は、例えば格子状に配列される。複数の光電変換素子は、それぞれ撮像素子32により撮像される画像の画素に対応する。 The imaging device 32 is a device that converts an image formed on the imaging device surface 32a into an electric signal. The imaging element 32 converts the electric signal into a digital image signal by an AD conversion circuit and outputs the digital image signal to the arithmetic unit 40 . The imaging device 32 may be either a two-dimensional image sensor including a CCD image sensor (Charge-Coupled Device Image Sensor) and a CMOS image sensor (Complementary MOS Image Sensor). A plurality of photoelectric conversion elements are two-dimensionally arranged on the imaging element surface 32 a of the imaging element 32 . A plurality of photoelectric conversion elements are arranged, for example, in a grid pattern. A plurality of photoelectric conversion elements correspond to pixels of an image captured by the imaging element 32, respectively.
 撮像素子32は、光学素子31により変換された複数の光束を撮像素子面32aで受光する。複数の光束は、撮像素子面32aのそれぞれ異なる領域で受光される。光束が光学素子31により変換されることにより、撮像素子面32aで検出されるそれぞれの光束の光強度分布は、被検レンズ20を透過したそれぞれ像高の異なる複数の光束の波面形状が反映されたものとなる。 The imaging device 32 receives a plurality of light beams converted by the optical device 31 on the imaging device surface 32a. A plurality of luminous fluxes are received by different regions of the imaging element surface 32a. As the light beams are converted by the optical element 31, the light intensity distribution of each light beam detected by the imaging element surface 32a reflects the wavefront shape of a plurality of light beams having different image heights that have passed through the lens 20 to be inspected. It becomes a thing.
 演算部40は、撮像素子32上に形成された複数の像高に対応した複数の光束の光強度分布を、撮像素子32から取得する。演算部40は、取得した各光束の光強度分布を基に、複数の光束のそれぞれに対応する透過波面収差を算出する。演算部40は、携帯型情報端末、PC(Personal Computer)、又は、ワークステーション等のコンピュータに搭載されてよい。演算部40は、一つ以上のプロセッサを備える。プロセッサには、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、及び、特定の処理に特化した専用のプロセッサが含まれる。 The computing unit 40 acquires from the imaging device 32 the light intensity distributions of the plurality of light beams corresponding to the plurality of image heights formed on the imaging device 32 . Based on the obtained light intensity distribution of each light beam, the calculation unit 40 calculates the transmitted wavefront aberration corresponding to each of the plurality of light beams. The computing unit 40 may be installed in a computer such as a portable information terminal, a PC (Personal Computer), or a workstation. The computing unit 40 includes one or more processors. The processor includes a general-purpose processor that loads a specific program to execute a specific function, and a dedicated processor that specializes in specific processing.
 表示部50は、演算部40により算出された複数の光束のそれぞれに対応する透過波面収差を表示する。複数の光束に対応する透過波面収差は、同時に又は順次表示されてよい。表示部50は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機EL(Electro-Luminescence)ディスプレイ、無機ELディスプレイ、電界放出ディスプレイ(FED:Field Emission Display)等の種々のディスプレイの何れかを採用しうる。 The display unit 50 displays the transmitted wavefront aberration corresponding to each of the plurality of light fluxes calculated by the calculation unit 40. The transmitted wavefront aberrations corresponding to multiple beams may be displayed simultaneously or sequentially. The display unit 50 employs any of various displays such as a liquid crystal display (LCD), an organic EL (Electro-Luminescence) display, an inorganic EL display, a field emission display (FED), and the like. I can.
 波面センサ30において、光学素子31と撮像素子32とは、被検レンズ20の焦点面33との関係で種々の配置が可能である。以下において、光軸Oに沿って撮像素子32から見て被検レンズ20側を前側とし、被検レンズ20からみて撮像素子32側を後側とする。例えば、図3に示すように、光学素子31は焦点面33の前側に位置することができる。撮像素子32は、焦点面33の後側に位置することができる。また、図4に示すように、光学素子31及び撮像素子32は、焦点面33の後側に位置することができる。さらに、図5に示すように、光学素子31及び撮像素子32は、図5において撮像素子32と重複するため表示されていない焦点面33の前側に位置することができる。 In the wavefront sensor 30, the optical element 31 and the imaging element 32 can be arranged in various ways in relation to the focal plane 33 of the lens 20 to be examined. In the following, along the optical axis O, the side of the lens to be examined 20 as viewed from the imaging device 32 is defined as the front side, and the side of the imaging device 32 as viewed from the lens 20 is defined as the rear side. For example, as shown in FIG. 3, optical element 31 can be positioned in front of focal plane 33 . The imaging element 32 can be positioned behind the focal plane 33 . Also, as shown in FIG. 4 , the optical element 31 and the imaging element 32 can be positioned behind the focal plane 33 . Furthermore, as shown in FIG. 5, the optical element 31 and the imaging element 32 can be located in front of the focal plane 33, which is not shown in FIG. 5 because it overlaps the imaging element 32. FIG.
 何れにおいても、光学素子31は、光束の収束または収束後発散する位置に位置づけられる。すなわち、従来技術とは異なり、波面センサ30では、光束を平行光束に変換してから撮像素子32で計測する構成を採用していない。そのため、この構成では、図14から図17に示した計測装置100、100Aとは異なり、第2コリメートレンズ160、160a-160cを含んでいない。波面センサ30の直前にコリメートレンズを配置すると、コリメートレンズは一定程度以上の空間を占める。そのため、一つの撮像素子で複数の光束を検出することは難しくなる。本実施形態の計測装置1では、波面センサ30に入射する複数の光束を平行光束に変換しないので、一つの撮像素子32を複数の光束の検出に使用することができ、装置を単純且つ安価に構成することができる。また、コリメートレンズを配置しないので、装置の配置に余裕ができ計測が容易になる利点もある。 In any case, the optical element 31 is positioned at a position where the light flux converges or diverges after convergence. In other words, unlike the conventional technology, the wavefront sensor 30 does not employ a configuration in which the light beam is converted into a parallel light beam and then measured by the imaging device 32 . Therefore, unlike the measuring devices 100, 100A shown in FIGS. 14 to 17, this configuration does not include the second collimating lenses 160, 160a-160c. If a collimating lens is arranged immediately before the wavefront sensor 30, the collimating lens occupies a certain amount of space. Therefore, it becomes difficult to detect a plurality of luminous fluxes with one imaging device. In the measuring device 1 of the present embodiment, since a plurality of light beams incident on the wavefront sensor 30 are not converted into parallel light beams, one imaging element 32 can be used for detecting a plurality of light beams, making the device simple and inexpensive. Can be configured. In addition, since no collimating lens is arranged, there is an advantage that the arrangement of the apparatus can be made easier and the measurement becomes easier.
 光学素子31は、例えば、図6Aに示すようなマイクロレンズアレイ35を用いることができる。マイクロレンズアレイ35は、複数の外形が円形のマイクロレンズ35aを、互いに直交する2方向に格子状に配列して構成される。マイクロレンズアレイ35の複数のマイクロレンズ35aの間の隙間部分は、光束を透過させない非透過部35bとしてよい。なお、複数のマイクロレンズ35aの配列は、図6Aに示された形態に限られない。例えば、複数のマイクロレンズ35aは、ハニカム状に配列されてもよい。 For the optical element 31, for example, a microlens array 35 as shown in FIG. 6A can be used. The microlens array 35 is configured by arranging a plurality of circular microlenses 35a in a grid pattern in two mutually orthogonal directions. A gap portion between the plurality of microlenses 35a of the microlens array 35 may be a non-transmissive portion 35b that does not transmit the light flux. Note that the arrangement of the plurality of microlenses 35a is not limited to the form shown in FIG. 6A. For example, the plurality of microlenses 35a may be arranged in a honeycomb pattern.
 マイクロレンズアレイ35のマイクロレンズ35aの外形は円形に限られない。例えば、マイクロレンズアレイ35は、図6Bに示す外形が矩形のレンズ35cを平面に配列して構成してよい。外形が矩形のレンズ35cは、外形が円形の凸レンズから四角く切り出した形状を有してよい。外形が矩形のレンズ35cを配列することにより、図6Cに示すように全面を、光束を透過させる透過領域としたマイクロレンズアレイ35を構成することができる。 The outer shape of the microlenses 35a of the microlens array 35 is not limited to circular. For example, the microlens array 35 may be configured by arranging rectangular lenses 35c in a plane as shown in FIG. 6B. The rectangular lens 35c may have a rectangular shape obtained by cutting out a circular convex lens. By arranging the lenses 35c each having a rectangular outer shape, it is possible to configure the microlens array 35 whose entire surface is a transmission region for transmitting the light flux, as shown in FIG. 6C.
 また、マイクロレンズアレイ35に含まれるマイクロレンズ35aは、光学部材の屈折を用いたものに限られない。マイクロレンズ35aは、回折素子により構成されてもよい。例えば、マイクロレンズ35aは、図6Dに示すように、第1輪帯部35dと第2輪帯部35eとを同心円の輪帯として中心から交互に配列したフレネルゾーンプレートとすることができる。第1輪帯部35dと第2輪帯部35eとは、透過した光束に互いに180°(π[radian])の位相差が生じるように、透明な材料に段差を設けた構造とすることができる。フレネルゾーンプレートは、透過した光束が1点に集光するように構成される。なお、フレネルゾーンプレートの構成は、上述のものに限られない。例えば、第1輪帯部35d及び第2輪帯部35eは、それぞれ、光束の波長の光に対して透明及び不透明となるように構成されてよい。 Further, the microlenses 35a included in the microlens array 35 are not limited to those using refraction of optical members. The microlens 35a may be composed of a diffraction element. For example, as shown in FIG. 6D, the microlens 35a can be a Fresnel zone plate in which a first ring-shaped portion 35d and a second ring-shaped portion 35e are alternately arranged as concentric rings from the center. The first ring-shaped portion 35d and the second ring-shaped portion 35e may have a structure in which a step is provided in a transparent material so that the transmitted light beams have a phase difference of 180° (π [radian]). can. A Fresnel zone plate is configured to focus the transmitted light beam to a single point. Note that the configuration of the Fresnel zone plate is not limited to that described above. For example, the first ring-shaped portion 35d and the second ring-shaped portion 35e may be configured to be transparent and opaque to the light of the wavelength of the luminous flux, respectively.
 光学素子31の個々のマイクロレンズ35aに入射した光束は、撮像素子32の撮像素子面32a上に点像を結像する(図7A、図7B及び図8参照)。すなわち、図3、図4及び図5において、光学素子31がマイクロレンズアレイ35のとき、光学素子31と撮像素子32とは、各マイクロレンズ35aの集光位置が、撮像素子32の撮像素子面32a上となるように配置される。このため、波面センサ30が図3の構成の場合、個々のマイクロレンズ35aは、負の屈折力を有する。一方、波面センサ30が図4及び図5の構成の場合、個々のマイクロレンズ35aは、正の屈折力を有する。 The luminous flux incident on each microlens 35a of the optical element 31 forms a point image on the imaging element surface 32a of the imaging element 32 (see FIGS. 7A, 7B, and 8). That is, in FIGS. 3, 4 and 5, when the optical element 31 is the microlens array 35, the optical element 31 and the imaging device 32 are arranged such that the condensing position of each microlens 35a is the imaging device surface of the imaging device 32. 32a. Therefore, when the wavefront sensor 30 has the configuration of FIG. 3, each microlens 35a has a negative refractive power. On the other hand, when the wavefront sensor 30 has the configuration of FIGS. 4 and 5, each microlens 35a has a positive refractive power.
 光学素子31が、マイクロレンズアレイ35の場合、波面センサ30は、シャック・ハルトマン波面センサとして構成されてよい。波面センサ30は、撮像素子面32a上の各マイクロレンズ35aの結像点の位置の中心点からの変位に基づいて、波面の局所的な勾配を検出することができる。 When the optical element 31 is a microlens array 35, the wavefront sensor 30 may be configured as a Shack-Hartmann wavefront sensor. The wavefront sensor 30 can detect the local gradient of the wavefront based on the displacement of the position of the imaging point of each microlens 35a on the imaging element surface 32a from the center point.
 光源部10において、光軸Oに沿う方向から見たとき、光源11が第1の方向及び第1の方向に直交する第2の方向にそれぞれ3つずつ合計9つ配列され、波面センサ30が図5のように構成される場合を例にとって説明する。光軸Oが水平面内にあるとき、第1の方向は、例えば光軸と直交する水平方向である。第2の方向は例えば鉛直方向である。この場合、9つの光束が光源部10から出射される。 In the light source unit 10, when viewed from the direction along the optical axis O, a total of nine light sources 11 are arranged, three each in a first direction and a second direction perpendicular to the first direction, and the wavefront sensor 30 is An example of the configuration shown in FIG. 5 will be described. When the optical axis O is in the horizontal plane, the first direction is, for example, the horizontal direction perpendicular to the optical axis. The second direction is, for example, the vertical direction. In this case, nine light beams are emitted from the light source section 10 .
 9つの光束は、それぞれ異なる方向に被検レンズ20を透過し、光学素子31であるマイクロレンズアレイ35で各マイクロレンズ35aにより屈折され、撮像素子32の撮像素子面32aにより受光される。各光束は、図7Aに示すように、被検レンズ20へ入射する角度によって決まるマイクロレンズアレイ35の所定の領域を通り、撮像素子面32aに入射する。各光束は、撮像素子32上で光軸Oと交差する点を中心とし、第1の方向及び第2の方向に、それぞれ3つずつ合計9つの領域に空間的に分割された領域のそれぞれを照射する。本実施形態の計測装置1では、収束または収束後発散する光束を波面センサ30で計測するようにしたので、各光束の径が小さい部分を撮像素子面32a上で重なることなく受光することができる。そのため、単一の撮像素子32の撮像素子面32aを用いて、異なる複数の像高の波面を計測することが可能である。 The nine light beams pass through the lens 20 under test in different directions, are refracted by the microlenses 35a in the microlens array 35, which is the optical element 31, and are received by the imaging device surface 32a of the imaging device 32. As shown in FIG. 7A, each luminous flux passes through a predetermined area of the microlens array 35 determined by the angle of incidence on the lens 20 to be inspected, and is incident on the imaging element surface 32a. Each luminous flux is centered on the point where it intersects the optical axis O on the imaging device 32, and each of the regions spatially divided into a total of nine regions, three each in the first direction and the second direction. Irradiate. In the measuring apparatus 1 of the present embodiment, the wavefront sensor 30 measures the converging or diverging light beams, so that the small diameter portions of the respective light beams can be received without overlapping on the imaging element surface 32a. . Therefore, using the imaging element surface 32a of the single imaging element 32, it is possible to measure wavefronts at a plurality of different image heights.
 図7Aでは、各光束が互いに重複せずマイクロレンズアレイ35のそれぞれ異なる領域を透過している。しかし、各光束は、撮像素子面32a上で互いに異なる領域を照射すればよく、図7Bに示すように、マイクロレンズアレイ35では互いに重複する領域を透過してよい。このようにすることによって、被検レンズ20のより広い領域を透過した各光束の波面を計測することが可能になる。 In FIG. 7A, each light flux passes through different regions of the microlens array 35 without overlapping each other. However, each luminous flux may irradiate different areas on the imaging element surface 32a, and may pass through overlapping areas in the microlens array 35 as shown in FIG. 7B. By doing so, it is possible to measure the wavefront of each light beam that has passed through a wider area of the lens 20 to be inspected.
 図8は、9つの光束のうち一つの光束が透過するマイクロレンズアレイ35の透過領域R1、及び、当該光束が受光される撮像素子面32aの受光領域R2を、拡大して示す。撮像素子面32a上には、各マイクロレンズ35aを透過した光線が集光し、ハートマノグラム36と呼ばれる光束断面の画像を形成する。 FIG. 8 shows an enlarged transmission region R1 of the microlens array 35 through which one of the nine light beams is transmitted, and a light receiving region R2 of the imaging element surface 32a through which the light beam is received. Light rays transmitted through each microlens 35a are condensed on the imaging element surface 32a to form an image of a light beam cross section called a heartmanogram 36. FIG.
 演算部40は、撮像素子32で検出されたハートマノグラム36に基づき、各マイクロレンズ35aにより細かく分割された各領域の光量分布に対して重心を演算する。図8において、重心はハートマノグラム36の点として表される。演算部40は、撮像素子面32a上のそれぞれの基準となる位置から重心位置がどの程度ずれているかをさらに演算し、個々の光束断面内の透過波面収差を求める。 Based on the heart manogram 36 detected by the imaging device 32, the computing unit 40 computes the center of gravity of the light intensity distribution of each region finely divided by each microlens 35a. In FIG. 8 the center of gravity is represented as a point of the heartmanogram 36 . The computing unit 40 further computes how much the center of gravity position deviates from each reference position on the imaging element surface 32a, and obtains the transmitted wavefront aberration in each light beam cross section.
 演算部40は、公知の方法により、透過波面のPV(Peak To Valley)値、RMS(Root Mean Square)値、Seidelの5収差、及び/又は、Zernikeの係数を算出することができる。演算部40は、これらの透過波面収差の少なくとも1つを、表示部50に表示させることができる。 The calculation unit 40 can calculate PV (Peak To Valley) value, Root Mean Square (RMS) value, Seidel's five aberrations, and/or Zernike's coefficient of the transmitted wavefront by a known method. The calculation unit 40 can display at least one of these transmitted wavefront aberrations on the display unit 50 .
 これにより、計測装置1は、同時に異なる9つの方向から被検レンズ20に対して光束を照射し、それぞれの光束に対応する透過波面収差を算出することができる。したがって、計測装置1は、被検レンズ20に対して複数の異なる方向から入射する光束の透過波面を、短時間で、又は、実質的に同時に計測することができる。さらに、計測装置1の利用者は、表示部50に表示される透過波面収差を確認しながら、異なる方向の光束の全てに対して波面収差を小さくするように、被検レンズ20に含まれる個々のレンズの位置及び/又は向きを調整することができる。したがって、計測装置1を使用すれば、方向の異なる複数の光束による透過波面の調整を、光源部10及び波面センサ30を移動させることなく行うことができる。 Thereby, the measuring device 1 can simultaneously irradiate the lens 20 under test with light beams from nine different directions, and calculate the transmitted wavefront aberration corresponding to each light beam. Therefore, the measurement apparatus 1 can measure the transmitted wavefronts of light beams incident on the lens 20 under test from a plurality of different directions in a short period of time or substantially simultaneously. Furthermore, the user of the measurement apparatus 1 checks the transmitted wavefront aberration displayed on the display unit 50, and adjusts the wavefront aberrations of the light beams in different directions to reduce the wavefront aberrations of the individual lenses included in the lens 20 to be inspected. lens position and/or orientation can be adjusted. Therefore, by using the measurement device 1, it is possible to adjust the transmitted wavefronts of a plurality of light beams in different directions without moving the light source unit 10 and the wavefront sensor 30. FIG.
 また、本計測装置1は、実際に使用される撮像素子32を含む撮像装置の被検レンズ20の位置を調整する場合にも使用することができる。その場合、計測装置1は、被検レンズ20と撮像素子32との間に光学素子31を配置し、且つ、撮像装置の撮像素子32を像面から所定量光軸方向に移動させることにより構成することができる。計測装置1の利用者は、この状態で被検レンズ20に含まれるレンズの位置を調整することができる。これにより、計測装置1による計測結果と、実際に使用される撮像装置との結像性能が良好に一致する。 The measuring device 1 can also be used when adjusting the position of the subject lens 20 of an imaging device including the imaging device 32 that is actually used. In this case, the measurement apparatus 1 is configured by disposing the optical element 31 between the lens 20 to be examined and the imaging element 32, and moving the imaging element 32 of the imaging apparatus by a predetermined amount from the image plane in the optical axis direction. can do. The user of the measurement apparatus 1 can adjust the positions of the lenses included in the test lens 20 in this state. As a result, the measurement results obtained by the measurement apparatus 1 and the imaging performance of the actually used imaging apparatus are in good agreement with each other.
 なお、被検レンズ20に照射される方向の異なる光束の数は、9つに限られない。例えば、光束の数は5つにすることができる。例えば、光源部10において、光軸Oに沿う方向に見たとき、5つの光源11を正方形の重心と4つの頂点に位置するように配置することができる。このようにすることで、光源部10は、一つの軸上光束と4つの軸外光束とを、被検レンズ20に対して照射することができる。例えば、水平及び垂直方向に対して45度傾いた2つの面内で、それぞれ2つの軸外光束が光軸Oを挟んで光軸Oに対して傾いた方向から被検レンズ20に入射する。この場合、マイクロレンズアレイ35の透過領域R1と撮像素子面32aの受光領域R2とは、図9に示されるようになる。水平及び垂直方向に対して45度傾いた2つの面は、第1の面及び第2の面である。 It should be noted that the number of luminous fluxes irradiating the subject lens 20 in different directions is not limited to nine. For example, the number of beams can be five. For example, in the light source unit 10, when viewed in the direction along the optical axis O, the five light sources 11 can be arranged so as to be positioned at the center of gravity and the four vertices of a square. By doing so, the light source unit 10 can irradiate the lens 20 to be inspected with one axial light flux and four off-axis light fluxes. For example, two off-axis luminous fluxes are incident on the lens 20 to be inspected from directions inclined with respect to the optical axis O in two planes inclined by 45 degrees with respect to the horizontal and vertical directions. In this case, the transmissive area R1 of the microlens array 35 and the light receiving area R2 of the imaging element surface 32a are as shown in FIG. The two planes tilted 45 degrees with respect to the horizontal and vertical directions are the first plane and the second plane.
 また、光源部10において、光軸Oに沿う方向に見たとき、5つの光源11を正方形の重心と4辺の各中心に位置するように配置することができる。このようにすることで、光源部10は、一つの軸上光束と4つの軸外光束とを、被検レンズ20に対して照射することができる。例えば、それぞれ水平面内及び垂直面内で、それぞれ2つの軸外光束が光軸Oを挟んで光軸Oに対して傾いた方向から被検レンズ20に入射する。この場合、マイクロレンズアレイ35の透過領域R1と撮像素子面32aの受光領域R2とは、図10に示されるようになる。水平面及び垂直面は、第1の面及び第2の面である。 In addition, in the light source unit 10, when viewed in the direction along the optical axis O, the five light sources 11 can be arranged so as to be positioned at the center of gravity and the center of each of the four sides of the square. By doing so, the light source unit 10 can irradiate the lens 20 to be inspected with one axial light flux and four off-axis light fluxes. For example, two off-axis luminous fluxes are incident on the lens 20 to be inspected from directions inclined with respect to the optical axis O in the horizontal plane and the vertical plane, respectively. In this case, the transmissive area R1 of the microlens array 35 and the light receiving area R2 of the imaging element surface 32a are as shown in FIG. The horizontal plane and the vertical plane are the first plane and the second plane.
 撮像素子面32aの面積は一定であるから、9つの光束で照射して透過波面の計測をする場合、5つの光束を照射する場合に比べ、一光束当たり計測に寄与する画素数が少なくなり、波面測定の測定精度低くなる。一方、9つの光束を照射する場合、計測する像位置の数、すなわち測定点数が増えることにより、像面全体の収差分布を把握することができる。被検レンズ20に照射する光束の数及び照射する方向は、撮像素子32と被検レンズ20の必要とされる性能に応じて決定される。 Since the area of the imaging element surface 32a is constant, when measuring the transmitted wavefront by irradiating with nine light beams, the number of pixels contributing to the measurement per light beam is smaller than when irradiating with five light beams. Measurement accuracy of wavefront measurement becomes low. On the other hand, when nine light beams are irradiated, the number of image positions to be measured, that is, the number of measurement points increases, so that the aberration distribution of the entire image plane can be grasped. The number of luminous fluxes that irradiate the lens 20 to be examined and the direction of irradiation are determined according to the required performance of the imaging device 32 and the lens 20 to be examined.
 上記の利点に加え、互いに方向の異なる5つの光束を用いて計測を行う場合、光源11の数を減らすことで9つの光束を照射する場合よりも低コスト且つ単純な構成で計測装置1を構成することができる。また、撮像素子面32a上の受光領域R2が図9及び図10に示されるように配置される場合、4つの軸外光束の受光領域R2が互いに90度異なり、それぞれの受光領域R2は撮像素子面32aの中心から等距離に位置する。ここで、撮像素子面32aの中心は、撮像素子面32aを光軸Oが横切る位置である。これにより、それぞれの軸外光束を用いて被検レンズ20の最大像高の波面を計測するように、計測装置1を構成することができる。 In addition to the above advantages, when performing measurement using five light beams in different directions, the number of light sources 11 is reduced, so that the measurement device 1 can be configured at a lower cost and with a simpler configuration than when nine light beams are emitted. can do. 9 and 10, the light receiving regions R2 of the four off-axis light beams are different from each other by 90 degrees, and each light receiving region R2 Equidistant from the center of surface 32a. Here, the center of the imaging element surface 32a is the position where the optical axis O crosses the imaging element surface 32a. Thereby, the measuring apparatus 1 can be configured so as to measure the wavefront at the maximum image height of the lens 20 to be measured using each off-axis light flux.
 図1の計測装置1において、波面センサ30としては、トールボット(talbot)方式の干渉計を用いることができる。その場合、光学素子31は、マイクロレンズアレイ35に代えて、回折格子37を用いることができる。回折格子37は、例えば、図11に示すような複数の第1領域37aと複数の第2領域37bとの2種類の透光性の領域を有する平板状の部材で構成することができる。第1領域37aと第2領域37bとは、例えば、互いに直交する第1方向及び第2方向に交互に配列される、光軸Oに沿う方向に見たとき正方形の領域である。第1領域37aと第2領域37bとは、それぞれを透過した光の位相が180°異なるように構成される。第1領域37aと第2領域37bとをこのように構成するのは、0次回折光を少なくするためである。 In the measuring device 1 of FIG. 1, a Talbot interferometer can be used as the wavefront sensor 30 . In that case, the optical element 31 can use a diffraction grating 37 instead of the microlens array 35 . The diffraction grating 37 can be composed of, for example, a plate-like member having two types of translucent regions, a plurality of first regions 37a and a plurality of second regions 37b, as shown in FIG. The first regions 37a and the second regions 37b are, for example, square regions when viewed along the optical axis O, arranged alternately in a first direction and a second direction that are orthogonal to each other. The first region 37a and the second region 37b are configured such that the phases of light transmitted therethrough are different by 180°. The reason why the first region 37a and the second region 37b are configured in this way is to reduce the zero-order diffracted light.
 光学素子31が回折格子37である場合、波面センサ30は、図3から図5に示した何れかの構成を採用することができる。波面センサ30が図5のように構成される場合を例にとって説明する。図12に示すように、被検レンズ20を透過した光束の一つは、回折格子37の透過領域R1で回折され、撮像素子32の撮像素子面32aの受光領域R2で受光される。回折格子37による回折作用により、光束は撮像素子面32aで回折パターンを形成する。被検レンズ20を透過した光束の透過波面収差により回折パターンには、歪みが生じる。この回折パターンの歪みを計測することにより波面収差を算出することができる。 When the optical element 31 is the diffraction grating 37, the wavefront sensor 30 can employ any of the configurations shown in FIGS. A case where the wavefront sensor 30 is configured as shown in FIG. 5 will be described as an example. As shown in FIG. 12, one of the light beams transmitted through the lens 20 to be inspected is diffracted by the transmission region R1 of the diffraction grating 37 and received by the light receiving region R2 of the imaging device surface 32a of the imaging device 32. FIG. Due to the diffraction action of the diffraction grating 37, the light flux forms a diffraction pattern on the imaging element surface 32a. The diffraction pattern is distorted by the transmitted wavefront aberration of the light flux that has passed through the lens 20 to be inspected. Wavefront aberration can be calculated by measuring the distortion of this diffraction pattern.
 演算部40は、撮像素子32により取得されたそれぞれの光束の回折パターンに基づいて、それぞれの光束に対応する透過波面収差を算出する。演算部40は、回折パターンをフーリエ変換及びフーリエ逆変換を用いて解析する。これにより、演算部40は、光学素子31としてマイクロレンズアレイ35を用いた場合と同様に、各種の透過波面収差を算出することができる。 The calculation unit 40 calculates the transmitted wavefront aberration corresponding to each light flux based on the diffraction pattern of each light flux acquired by the imaging device 32 . The calculation unit 40 analyzes the diffraction pattern using Fourier transform and inverse Fourier transform. As a result, the calculation unit 40 can calculate various transmitted wavefront aberrations in the same manner as when the microlens array 35 is used as the optical element 31 .
 光学素子31として回折格子37を用いる場合、波面センサ30は、図13に示す構成を採用することができる。これは、図3に示した波面センサ30の構成において、焦点面33に空間フィルタ38を配置したものである。空間フィルタ38は、回折格子37の回折光から一部の次数の回折光をブロックし、他の一部の次数の回折光を選択的に透過させるように構成される。例えば、空間フィルタ38は、図13に示すように、0次の回折光をブロックし、±1次の回折光を透過させるように構成されてよい。これにより、光学素子31が波面収差の算出に寄与する部分の光を選択的に検出することができる。 When the diffraction grating 37 is used as the optical element 31, the wavefront sensor 30 can adopt the configuration shown in FIG. This is obtained by arranging a spatial filter 38 on the focal plane 33 in the configuration of the wavefront sensor 30 shown in FIG. The spatial filter 38 is configured to block diffracted light of some orders from the diffracted light of the diffraction grating 37 and selectively transmit other diffracted lights of some orders. For example, the spatial filter 38 may be configured to block 0th-order diffracted light and transmit ±1st-order diffracted lights, as shown in FIG. Thereby, the optical element 31 can selectively detect the portion of the light that contributes to the calculation of the wavefront aberration.
 以上説明したように、光学素子31として回折格子37を用いた場合でも、計測対象の被検レンズ20について複数の異なる像高の透過波面を、短時間で又は実施的に同時に計測することができる。また、複数の像高の透過波面を計測するために、光源11及び波面センサ30を動かさなくてよい。 As described above, even when the diffraction grating 37 is used as the optical element 31, the transmitted wavefronts at a plurality of different image heights of the lens 20 to be measured can be measured simultaneously in a short time or practically. . Moreover, the light source 11 and the wavefront sensor 30 do not need to be moved in order to measure the transmitted wavefront at a plurality of image heights.
 上述の実施形態は代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態及び実施例によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形及び/又は変更が可能である。例えば、実施形態及び実施例に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above embodiments have been described as representative examples, it is obvious to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present invention. Therefore, the present invention should not be construed as limited by the above-described embodiments and examples, and various modifications and/or modifications are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of configuration blocks described in the embodiments and examples into one, or divide one configuration block.
 また、本開示は、計測装置1が行う計測方法を含む。この計測方法は、第1の工程と、第2の工程と、第3の工程とを含む。第1の工程は、互いに方向の異なる複数の光束を、被検レンズ20に同時に照射する工程である。第2の工程は、被検レンズ20を透過した後、収束または収束後発散する、複数の光束を光学素子31により変換する工程である。第3の工程は、変換された複数の光束を撮像素子32により受光する工程である。この計測方法により、計測装置1について説明したものと同様の効果が得られる。 In addition, the present disclosure includes a measurement method performed by the measurement device 1. This measurement method includes a first step, a second step, and a third step. The first step is to simultaneously irradiate the lens 20 to be inspected with a plurality of light beams having different directions. The second step is a step of converting a plurality of light fluxes, which converge or diverge after convergence after passing through the lens 20 to be examined, by the optical element 31 . The third step is a step of receiving the plurality of converted light beams by the imaging element 32 . By this measuring method, the same effects as those described for the measuring device 1 can be obtained.
 また、本開示の計測装置1に、被検レンズ20(光学部品)の位置及び向きを調整する調整部を加えて、調整装置として構成してよい。 Further, the measurement apparatus 1 of the present disclosure may be configured as an adjustment apparatus by adding an adjustment unit that adjusts the position and orientation of the lens 20 (optical component) to be inspected.
 光学部品は、正の屈折力を有するものに限られない。光学部品は、例えば、入射した平行光束を平行光束として射出するアフォーカル系を有するものを含む。その場合、アフォーカル系の出射側に凸レンズを配置して収束系に変換することにより、本開示の計測装置1による計測が可能になる。 The optical components are not limited to those with positive refractive power. Optical components include, for example, those having an afocal system that emits an incident parallel light beam as a parallel light beam. In that case, by arranging a convex lens on the exit side of the afocal system to convert it into a convergent system, measurement by the measuring apparatus 1 of the present disclosure becomes possible.
 1  計測装置
 10  光源部
 11a、11b、11c  光源
 12  コリメートレンズ
 13  共通光源
 14  ピンホールアレイ
 14a、14b、14c  ピンホール
 20  被検レンズ(光学部品)
 30  波面センサ
 31  光学素子
 32  撮像素子
 32a  撮像素子面
 33  焦点面
 35  マイクロレンズアレイ
 35a  マイクロレンズ
 36  ハートマノグラム
 37  回折格子
 37a  第1領域
 37b  第2領域
 38  空間フィルタ
 40  演算部
 50  表示部
 O  光軸
 R1  透過領域
 R2  受光領域
 
Reference Signs List 1 measuring device 10 light source section 11a, 11b, 11c light source 12 collimating lens 13 common light source 14 pinhole array 14a, 14b, 14c pinhole 20 lens to be inspected (optical component)
30 wavefront sensor 31 optical element 32 imaging element 32a imaging element surface 33 focal plane 35 microlens array 35a microlens 36 heartmanogram 37 diffraction grating 37a first area 37b second area 38 spatial filter 40 arithmetic unit 50 display unit O optical axis R1 transmission region R2 light reception region

Claims (10)

  1.  互いに方向の異なる複数の光束を、計測対象の光学部品に同時に照射するように構成された光源部と、
     前記光学部品を透過した後、収束または収束後発散する、前記複数の光束を変換する光学素子と、
     変換された前記複数の光束を受光する少なくとも1つの撮像素子と
    を備える計測装置。
    a light source unit configured to simultaneously irradiate an optical component to be measured with a plurality of light beams in different directions;
    an optical element that converts the plurality of light beams that converge or diverge after convergence after passing through the optical component;
    and at least one imaging device that receives the converted plurality of light beams.
  2.  前記光学素子は、回折格子又はマイクロレンズアレイである、請求項1に記載の計測装置。 The measuring device according to claim 1, wherein the optical element is a diffraction grating or a microlens array.
  3.  前記光学素子は、回折格子であり、前記回折格子による回折光のうち一部の次数の回折光を選択的に透過させる空間フィルタをさらに備える、請求項1に記載の計測装置。 2. The measuring apparatus according to claim 1, wherein the optical element is a diffraction grating, and further comprises a spatial filter that selectively transmits a portion of the diffracted light of orders of the diffracted light from the diffraction grating.
  4.  前記複数の光束は、前記光学部品の光軸上を通り前記光学部品に照射される光束と、前記光学部品の前記光軸の軸外から前記光学部品に照射される光束とを含む、請求項1から3の何れか一項に記載の計測装置。 3. The plurality of light beams include a light beam that passes on the optical axis of the optical component and irradiates the optical component, and a light beam that irradiates the optical component from outside the optical axis of the optical component. 4. The measuring device according to any one of 1 to 3.
  5.  前記複数の光束は5つの光束であり、前記光軸の軸外から前記光学部品に照射される前記光束は、前記光軸を挟んで前記光軸の方向から第1の面の面内方向に傾いた2つの光束と、前記光軸を挟んで前記光軸の方向から前記第1の面に直交する第2の面の面内方向に傾いた2つの光束とを含む、請求項4に記載の計測装置。 The plurality of light beams are five light beams, and the light beams irradiated to the optical component from off-axis of the optical axis extend from the direction of the optical axis to the in-plane direction of the first surface with the optical axis interposed therebetween. 5. The light beam according to claim 4, comprising two light beams that are inclined and two light beams that are inclined from the direction of the optical axis to the in-plane direction of the second surface perpendicular to the first surface across the optical axis. measuring device.
  6.  前記複数の光束は、前記光学素子により変換された後、前記撮像素子上で前記光軸上の点を中心とし、第1の方向及び前記第1の方向に直交する第2の方向に、3つずつマトリクス状に配列された9つの領域を照射する9つの光束である、請求項4に記載の計測装置。 After being converted by the optical element, the plurality of light beams are centered on the point on the optical axis on the imaging element, and are directed in a first direction and a second direction perpendicular to the first direction. 5. The measuring device according to claim 4, wherein the nine light beams irradiate nine regions arranged in a matrix.
  7.  前記撮像素子により検出された前記複数の光束の光強度分布から、前記複数の光束のそれぞれに対応する透過波面収差を算出する演算部と、前記演算部により算出された前記複数の光束のそれぞれに対応する前記透過波面収差を同時に表示する表示部とを備える、請求項1から6の何れか一項に記載の計測装置。 a calculation unit for calculating a transmitted wavefront aberration corresponding to each of the plurality of light beams from the light intensity distribution of the plurality of light beams detected by the imaging device; The measuring device according to any one of claims 1 to 6, further comprising a display section for simultaneously displaying the corresponding transmitted wavefront aberrations.
  8.  前記表示部に表示される前記透過波面収差は、透過波面のPV(Peak To Valley)値、RMS(Root Mean Square)値、Seidelの5収差、Zernikeの係数のうち、少なくとも1つによって表される、請求項7に記載の計測装置。 The transmitted wavefront aberration displayed on the display unit is represented by at least one of a PV (Peak To Valley) value, an RMS (Root Mean Square) value, Seidel's five aberrations, and a Zernike coefficient of the transmitted wavefront. , the measuring device according to claim 7.
  9.  請求項1から8の何れか一項に記載の計測装置と、
     前記光学部品の位置及び向きを調整する調整部と、を備える調整装置。
    a measuring device according to any one of claims 1 to 8;
    and an adjustment unit that adjusts the position and orientation of the optical component.
  10.  互いに方向の異なる複数の光束を、計測対象の光学部品に同時に照射する第1の工程と、
     前記光学部品を透過した後、収束または収束後発散する、前記複数の光束を光学素子により変換する第2の工程と、
     変換された前記複数の光束を少なくとも1つの撮像素子により受光する第3の工程と
    を含む計測方法。
    a first step of simultaneously irradiating an optical component to be measured with a plurality of light beams having different directions;
    a second step of converting the plurality of light fluxes, which converge or diverge after convergence after passing through the optical component, with an optical element;
    and a third step of receiving the converted plurality of light beams by at least one imaging device.
PCT/JP2022/047217 2021-12-23 2022-12-21 Measuring device, adjusting device, and measuring method WO2023120604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-209911 2021-12-23
JP2021209911 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120604A1 true WO2023120604A1 (en) 2023-06-29

Family

ID=86902580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047217 WO2023120604A1 (en) 2021-12-23 2022-12-21 Measuring device, adjusting device, and measuring method

Country Status (1)

Country Link
WO (1) WO2023120604A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226935A (en) * 2010-04-20 2011-11-10 Fujifilm Corp Off-axis transmission wavefront measuring apparatus
CN104483817A (en) * 2014-12-25 2015-04-01 中国科学院长春光学精密机械与物理研究所 Device for detecting system wave aberration of photoetchingprojection objective
JP2019191121A (en) * 2018-04-27 2019-10-31 キヤノン株式会社 Measurement method, adjustment method, and optical system manufacturing method
US20210022602A1 (en) * 2017-09-27 2021-01-28 Carl Zeiss Smt Gmbh Method and assembly for analysing the wavefront effect of an optical system
JP2021181900A (en) * 2020-05-18 2021-11-25 キヤノン株式会社 Wavefront measurement device, wavefront measurement method, optical system, and manufacturing method of optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226935A (en) * 2010-04-20 2011-11-10 Fujifilm Corp Off-axis transmission wavefront measuring apparatus
CN104483817A (en) * 2014-12-25 2015-04-01 中国科学院长春光学精密机械与物理研究所 Device for detecting system wave aberration of photoetchingprojection objective
US20210022602A1 (en) * 2017-09-27 2021-01-28 Carl Zeiss Smt Gmbh Method and assembly for analysing the wavefront effect of an optical system
JP2019191121A (en) * 2018-04-27 2019-10-31 キヤノン株式会社 Measurement method, adjustment method, and optical system manufacturing method
JP2021181900A (en) * 2020-05-18 2021-11-25 キヤノン株式会社 Wavefront measurement device, wavefront measurement method, optical system, and manufacturing method of optical element

Similar Documents

Publication Publication Date Title
US6567584B2 (en) Illumination system for one-dimensional spatial light modulators employing multiple light sources
US10877284B2 (en) Laser module comprising a micro-lens array
US20140126690A1 (en) X-ray imaging apparatus and x-ray imaging system
WO2015030127A1 (en) Diffraction optical element, projection device, and measurement device
US9857702B2 (en) Focusing leveling device
KR20020060224A (en) Confocal microscope and height measurement method using the same
JP2007524807A (en) Spherical light scattering and far-field phase measurement
EP3998477A1 (en) Method and system for optical three-dimensional topography measurement
JP6214042B2 (en) EUV lithography system
CN105758381A (en) Method for detecting inclination of camera die set based on frequency spectrum analysis
JP2011164360A (en) Lens array, wave front sensor and wave front aberration measuring device
JP6732339B2 (en) Spectrometer
WO2023120604A1 (en) Measuring device, adjusting device, and measuring method
JP2011128516A (en) Spectral filter optical system and spectral measuring apparatus
JP3429589B2 (en) Image spectrometer
JP2009288075A (en) Aberration measuring device and aberration measuring method
JP5473743B2 (en) Off-axis transmitted wavefront measuring device
JP6883939B2 (en) Photoelectric encoder
US20220316945A1 (en) Spectrometry device
JP2550279B2 (en) Optical device
JP2003322587A (en) Surface shape measuring instrument
JP6903392B2 (en) Telecentric optics
US12019231B2 (en) Device for analyzing size of step in pair of divided mirrors of telescope
JP2024057657A (en) Wavefront measuring device, wavefront measuring method, and method for manufacturing optical system
WO2022123710A1 (en) Wavefront measurement device and wavefront measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911306

Country of ref document: EP

Kind code of ref document: A1