JP2019191121A - Measurement method, adjustment method, and optical system manufacturing method - Google Patents

Measurement method, adjustment method, and optical system manufacturing method Download PDF

Info

Publication number
JP2019191121A
JP2019191121A JP2018087520A JP2018087520A JP2019191121A JP 2019191121 A JP2019191121 A JP 2019191121A JP 2018087520 A JP2018087520 A JP 2018087520A JP 2018087520 A JP2018087520 A JP 2018087520A JP 2019191121 A JP2019191121 A JP 2019191121A
Authority
JP
Japan
Prior art keywords
optical system
aberration
wavefront
test
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018087520A
Other languages
Japanese (ja)
Inventor
正磨 加藤
Masakiyo Kato
正磨 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018087520A priority Critical patent/JP2019191121A/en
Publication of JP2019191121A publication Critical patent/JP2019191121A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a high-quality optical system.SOLUTION: A measurement method includes the steps of: measuring a transmission wavefront of transmission light transmitting an inspected optical system; acquiring each aberration component of a wavefront aberration of the inspected optical system on the basis of the transmission wavefront of the transmission light; acquiring a changing sensitivity degree of each aberration component of the wavefront aberration when causing an optical element of the inspected optical system a position deviation; acquiring coefficient information for enhancing a correlation between each aberration component of the wavefront aberration and an evaluation value about an image-formation performance of the inspected optical system; and obtaining an amount of position deviation of the optical element of the inspected optical system, using each aberration component of the wavefront aberration, the sensitivity degree of each aberration component and the coefficient information.SELECTED DRAWING: Figure 2

Description

本発明は、光学系の波面を計測することにより、光学系を構成する光学素子の位置ずれ量を計測する計測方法、調整方法及び光学系の製造方法に関する。   The present invention relates to a measurement method, an adjustment method, and an optical system manufacturing method for measuring a positional deviation amount of an optical element constituting an optical system by measuring a wavefront of the optical system.

光学系を構成する光学素子の配置に誤差が生じた場合、光学系の結像性能が低下する。光学系の結像性能の低下を防ぐために、光学系の波面収差を計測し、波面収差を小さくするように光学系の各光学素子の位置を調整する方法が知られている。   When an error occurs in the arrangement of the optical elements constituting the optical system, the imaging performance of the optical system is degraded. In order to prevent a decrease in imaging performance of the optical system, a method of measuring the wavefront aberration of the optical system and adjusting the position of each optical element of the optical system so as to reduce the wavefront aberration is known.

特許文献1に開示されている偏心量計測方法では、被検光学系から出射した光の波面データから所定の収差成分を抽出し、偏芯収差感度を用いて偏芯量を算出している。   In the eccentricity measuring method disclosed in Patent Document 1, a predetermined aberration component is extracted from the wavefront data of the light emitted from the test optical system, and the eccentricity is calculated using the eccentric aberration sensitivity.

特許文献2で開示された方法によれば、計測された透過波面の収差成分と、各調整箇所の敏感度(影響度)から、収差成分を小さくするための被検光学系の調整量を算出している。   According to the method disclosed in Patent Document 2, the adjustment amount of the test optical system for reducing the aberration component is calculated from the measured aberration component of the transmitted wavefront and the sensitivity (influence) of each adjustment location. is doing.

特許文献1、2に記載された方法は、光学系の収差を小さくすることで、MTF(Modulation Transfer Function)の値を含む結像性能を向上させることを目的としている。   The methods described in Patent Documents 1 and 2 are intended to improve the imaging performance including the value of MTF (Modulation Transfer Function) by reducing the aberration of the optical system.

特開2016−95316号公報Japanese Patent Laid-Open No. 2006-95316 特開2011−9575号公報JP 2011-9575 A

Joseph W.Goodman,Introduction of Fourier Optics,Chapter6.4,Aberrations and their effects on frequency responseJoseph W. Goodman, Induction of Fourier Optics, Chapter 6.4, Aberrations and their effects on frequency response

非特許文献1によれば、MTFは収差成分によって変化する。このことは、収差の2乗和根号で代表される収差量を小さくするように光学系を調整しても、必ずしもMTFが向上しないことを意味する。また、光学系の用途に応じて低減すべき収差成分が異なる場合、一律に収差を小さくしても所望の結像性能が得られないことがある。   According to Non-Patent Document 1, the MTF varies depending on the aberration component. This means that the MTF is not necessarily improved even if the optical system is adjusted so as to reduce the amount of aberration represented by the square root of the aberration. Further, when the aberration components to be reduced differ depending on the use of the optical system, the desired imaging performance may not be obtained even if the aberration is uniformly reduced.

本発明は、所望の結像性能を有する光学系を実現するための光学素子の位置ずれ量を計測することを目的とする。   An object of the present invention is to measure the amount of positional deviation of an optical element for realizing an optical system having desired imaging performance.

本発明の一側面としての計測方法は、被検光学系を透過した透過光の透過波面を計測するステップと、前記透過光の透過波面に基づいて前記被検光学系の波面収差の各収差成分を取得するステップと、前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度を取得するステップと、前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報を取得するステップと、前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を求めるステップとを含むことを特徴とする。   A measuring method according to one aspect of the present invention includes a step of measuring a transmitted wavefront of transmitted light that has passed through a test optical system, and each aberration component of wavefront aberration of the test optical system based on the transmitted wavefront of the transmitted light Obtaining the sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced, and evaluating the imaging performance of the test optical system Obtaining the coefficient information for enhancing the correlation between the value and each aberration component of the wavefront aberration, and using the aberration information of the wavefront aberration, the sensitivity of the aberration component, and the coefficient information, the optical system to be tested And determining the amount of positional deviation of the optical element.

本発明の他の一側面としての調整方法は、被検光学系を透過した透過光の透過波面を計測するステップと、前記透過光の透過波面に基づいて前記被検光学系の波面収差の各収差成分を取得するステップと、前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度を取得するステップと、前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報を取得するステップと、前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を求めるステップと、前記光学素子の位置ずれ量に基づいて前記光学素子の位置を調整するステップを含むことを特徴とする調整方法。   An adjustment method according to another aspect of the present invention includes a step of measuring a transmitted wavefront of transmitted light transmitted through the test optical system, and each of the wavefront aberrations of the test optical system based on the transmitted wavefront of the transmitted light. Obtaining an aberration component; obtaining a sensitivity of each aberration component of the wavefront aberration that changes when an optical element of the test optical system is displaced; and imaging performance of the test optical system Obtaining coefficient information for enhancing the correlation between the evaluation value and each aberration component of the wavefront aberration, and using each of the aberration components of the wavefront aberration, the sensitivity of each aberration component, and the coefficient information An adjustment method, comprising: obtaining a positional deviation amount of an optical element of an optical system; and adjusting a position of the optical element based on the positional deviation amount of the optical element.

本発明の他の一側面としての光学系の製造方法は、被検光学系を組み立てるステップと、前記被検光学系を透過した透過光の透過波面を計測するステップと、前記透過光の透過波面に基づいて前記被検光学系の波面収差の各収差成分を取得するステップと、前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度を取得するステップと、前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報を取得するステップと、前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を求めるステップと、前記光学素子の位置ずれ量に基づいて前記光学素子の位置を調整するステップを含むことを特徴とする。   An optical system manufacturing method according to another aspect of the present invention includes assembling a test optical system, measuring a transmitted wavefront of transmitted light transmitted through the test optical system, and a transmitted wavefront of the transmitted light. Obtaining each aberration component of the wavefront aberration of the test optical system based on the above, and obtaining the sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced Obtaining the coefficient information for enhancing the correlation between the evaluation value relating to the imaging performance of the test optical system and each aberration component of the wavefront aberration, and each aberration component of the wavefront aberration and each aberration component Determining the amount of positional deviation of the optical element of the optical system to be tested using the sensitivity and the coefficient information, and adjusting the position of the optical element based on the amount of positional deviation of the optical element. Features .

本発明によれば、所望の結像性能を有する光学系を実現するための光学素子の位置ずれ量を計測することができる。   According to the present invention, it is possible to measure the amount of positional deviation of an optical element for realizing an optical system having desired imaging performance.

実施例1における計測装置の概略図Schematic of the measuring device in Example 1 実施例1における位置ずれ量の計算方法に関するフローチャートFlowchart relating to a method for calculating the amount of misalignment in the first embodiment. 実施例2における計測装置の概略図Schematic diagram of measuring apparatus in Example 2 実施例2における計測装置の変形例の説明図Explanatory drawing of the modification of the measuring device in Example 2. 実施例3における光学系の製造方法のフローチャートFlowchart of optical system manufacturing method in Embodiment 3

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1の計測装置10の概略図を示している。実施例1の計測装置10は、光源101、102、103、投光レンズ(入射光学系)111、112、113、受光レンズ(出射光学系)131、132、133、波面センサ141、142、143、コンピュータ(演算部)150を備える。被検光学系120は、例えばカメラの撮像光学系やプロジェクタの投射光学系等の光学系であり、複数の光学素子を備えている。光学系を構成する複数の光学素子はレンズに限られず、ミラー、回折光学素子、プリズム等の光学素子を含んでいてもよい。被検光学系120を構成する複数の光学素子は3つ以上であっても良いが、本実施例においては2つの光学素子121、122を備える場合について説明する。   FIG. 1 shows a schematic diagram of a measuring apparatus 10 according to a first embodiment of the present invention. The measurement apparatus 10 according to the first embodiment includes light sources 101, 102, and 103, light projecting lenses (incident optical systems) 111, 112, and 113, light receiving lenses (output optical systems) 131, 132, and 133, and wavefront sensors 141, 142, and 143. And a computer (arithmetic unit) 150. The test optical system 120 is an optical system such as an imaging optical system of a camera or a projection optical system of a projector, and includes a plurality of optical elements. The plurality of optical elements constituting the optical system are not limited to lenses, and may include optical elements such as mirrors, diffractive optical elements, and prisms. Although the number of the plurality of optical elements constituting the test optical system 120 may be three or more, in this embodiment, a case where two optical elements 121 and 122 are provided will be described.

実施例1の計測装置10は、被検光学系120を構成する光学素子の位置ずれ量を計測する。光学素子の位置ずれは、光学素子の光軸方向(図1におけるZ軸方向)の並進による位置ずれ、光軸に垂直な方向(図1におけるX軸方向、Y軸方向)の並進による位置ずれ、光軸に垂直な軸(図1におけるX軸、Y軸)周りの回転による位置ずれを意味する。   The measuring apparatus 10 according to the first embodiment measures the amount of positional deviation of the optical elements that constitute the optical system 120 to be tested. The positional shift of the optical element is a positional shift due to translation of the optical element in the optical axis direction (Z-axis direction in FIG. 1), or a positional shift due to translation in a direction perpendicular to the optical axis (X-axis direction, Y-axis direction in FIG. 1). , And means a displacement due to rotation around an axis perpendicular to the optical axis (X axis and Y axis in FIG. 1).

レーザダイオード等の複数の光源101、102、103からの光はファイバを経由して投光レンズ111、112、113に照射される。複数の投光レンズ111、112、113から射出した光は平行光となって被検光学系120に対して互いに異なる方向から照射される。被検光学系120を透過した複数の透過光は、受光レンズ131、132、133を経由して、シャックハルトマンセンサ等の波面センサ141、142、143で受光される。   Light from a plurality of light sources 101, 102, 103 such as laser diodes is applied to the projection lenses 111, 112, 113 via fibers. Light emitted from the plurality of light projecting lenses 111, 112, 113 becomes parallel light and is irradiated to the test optical system 120 from different directions. A plurality of transmitted lights that have passed through the test optical system 120 are received by wavefront sensors 141, 142, and 143 such as Shack-Hartmann sensors via light receiving lenses 131, 132, and 133.

複数の波面センサ141、142、143に接続されたコンピュータ150は、波面センサから出力される信号に基づいて複数の透過光の波面収差成分を算出し、複数の透過光の波面収差成分に基づいて、被検光学系120内の光学素子の位置ずれ量を算出する。   The computer 150 connected to the plurality of wavefront sensors 141, 142, and 143 calculates the wavefront aberration components of the plurality of transmitted lights based on the signals output from the wavefront sensors, and based on the wavefront aberration components of the plurality of transmitted lights. Then, the positional deviation amount of the optical element in the test optical system 120 is calculated.

図2は、光学素子の位置ずれ量の計算方法に関するフローチャートを示している。ステップS11では、複数の波面センサ141、142、143を用いて被検光学系120の透過波面を計測する。ステップS12では、計測した透過波面を楕円Zernike多項式でフィッティングし、その係数を得る。ステップS13では位置ずれ量を求めたい光学素子の位置ずれ量敏感度を計算する。ステップS14では、収差成分に掛ける重み(係数情報)を計算する。ステップS15では、波面収差成分と、位置ずれ量敏感度と、重みを用いて光学素子の位置ずれ量を計算する。   FIG. 2 shows a flowchart regarding a method of calculating the amount of positional deviation of the optical element. In step S11, the transmitted wavefront of the test optical system 120 is measured using the plurality of wavefront sensors 141, 142, and 143. In step S12, the measured transmitted wavefront is fitted with an elliptic Zernike polynomial to obtain its coefficient. In step S13, the positional deviation amount sensitivity of the optical element whose positional deviation amount is desired to be calculated is calculated. In step S14, a weight (coefficient information) to be applied to the aberration component is calculated. In step S15, the positional deviation amount of the optical element is calculated using the wavefront aberration component, the positional deviation amount sensitivity, and the weight.

図1に示したように、複数の透過光が3つの場合を想定する。また、求めたい位置ずれ量Aが、光学素子121のX軸方向、Y軸方向、Z軸方向の平行移動量ΔX、ΔY、ΔZ、光学素子122のX軸周りの回転量ΔθX、Y軸周りの回転量ΔθYである場合について、説明する。   As shown in FIG. 1, it is assumed that there are three pieces of transmitted light. Further, the amount of positional deviation A to be obtained is the amount of parallel movement ΔX, ΔY, ΔZ of the optical element 121 in the X-axis direction, Y-axis direction, and Z-axis direction, and the rotation amount ΔθX around the X-axis of the optical element 122 A case where the rotation amount is ΔθY will be described.

Figure 2019191121
Figure 2019191121

ステップS11における計測方法には、波面センサを用いる。波面センサにはシャックハルトマンセンサやシアリング干渉計等を用いることができる。   A wavefront sensor is used for the measurement method in step S11. As the wavefront sensor, a Shack-Hartmann sensor, a shearing interferometer, or the like can be used.

シャックハルトマンセンサは、入射した光の波面(位相分布)を、マイクロレンズアレイを構成する複数のマイクロレンズによって分割および集光する。そして複数の集光スポット像として撮像される。マイクロレンズアレイに入射する波面の傾斜に応じて、集光スポットの重心位置がずれて集光され、集光スポットの重心位置ずれ量から波面の傾斜を算出し、2次元の位相分布を算出する。   The Shack-Hartmann sensor divides and condenses the wavefront (phase distribution) of incident light by a plurality of microlenses constituting a microlens array. And it images as a plurality of condensing spot images. Depending on the inclination of the wavefront incident on the microlens array, the focused spot is focused and the center of gravity is shifted, and the slope of the wavefront is calculated from the amount of the center of gravity of the focused spot to calculate the two-dimensional phase distribution. .

シアリング干渉計の事例の1つであるTalbot干渉計は、2次元回折格子によって入射した光を回折させ、透過光(0次光)と回折光(例えば1次光)の干渉によって生じる干渉縞として撮像する。干渉縞の縦縞、横縞の明暗の位相を位相シフト法、フーリエ変換法等の既知の手法で求める。求めた位相が入射した光の微分波面に相当するため、これを積分することで、入射した光の波面を算出する。   A Talbot interferometer, which is one example of a shearing interferometer, diffracts incident light by a two-dimensional diffraction grating and produces interference fringes caused by interference between transmitted light (0th order light) and diffracted light (for example, first order light). Take an image. The light and dark phases of the interference fringes are obtained by a known method such as a phase shift method or a Fourier transform method. Since the obtained phase corresponds to the differential wavefront of the incident light, the wavefront of the incident light is calculated by integrating this.

光軸と同軸の透過光の強度分布は円形になるが、光軸外の透過光の強度分布は円形ではなくなる。このような非円形領域の波面収差を成分分解する際にステップS12では、楕円Zernike多項式を用いることがある。楕円Zernike多項式とは、楕円領域で直交化したZernike多項式である。楕円Zernike多項式をEZ、円形Zernike多項式をCZ、瞳内の座標系をx、y、x軸方向の直径2a、軸方向の直径2bのとき、楕円Zernikeは以下の式(2)となる。   The intensity distribution of transmitted light coaxial with the optical axis is circular, but the intensity distribution of transmitted light outside the optical axis is not circular. In component decomposition of the wavefront aberration in such a non-circular region, an elliptic Zernike polynomial may be used in step S12. An elliptic Zernike polynomial is a Zernike polynomial orthogonalized in an elliptic region. When the elliptic Zernike polynomial is EZ, the circular Zernike polynomial is CZ, the coordinate system in the pupil is x, y, the diameter 2a in the x-axis direction, and the diameter 2b in the axial direction, the ellipse Zernike is expressed by the following equation (2).

Figure 2019191121
Figure 2019191121

なお、式中のjはZernike多項式の項番号を示す。楕円Zernikeの36項まで求める場合、ステップS12で取得される波面収差成分は、以下の式(3)で表される。ただし、式(3)における上付き添え字が像高番号、下付き添え字がZernike多項式の項番号を示す。   Note that j in the equation represents the term number of the Zernike polynomial. When obtaining up to 36 terms of the ellipse Zernike, the wavefront aberration component acquired in step S12 is expressed by the following equation (3). In equation (3), the superscript indicates the image height number, and the subscript indicates the term number of the Zernike polynomial.

Figure 2019191121
Figure 2019191121

ステップS13では、光学素子121、122の位置ずれ量敏感度Sを求める。位置ずれ量敏感度Sは各光学素子が単位量だけ平行移動または回転したときの収差成分の変化量であり、以下の式(4)で表現できる。   In step S13, the positional deviation amount sensitivity S of the optical elements 121 and 122 is obtained. The positional deviation amount sensitivity S is a change amount of an aberration component when each optical element is translated or rotated by a unit amount, and can be expressed by the following equation (4).

Figure 2019191121
Figure 2019191121

ステップS14では、各収差成分に掛ける重み係数(係数情報)wを求める。重みを掛けた重み付き収差成分wEは以下の式(5)となる。   In step S14, a weighting coefficient (coefficient information) w to be applied to each aberration component is obtained. The weighted aberration component wE multiplied by the weight is expressed by the following equation (5).

Figure 2019191121
Figure 2019191121

重み係数wは、重み付き収差成分wEの総和である重み付き収差量Rを小さくすれば、光学系の結像性能に関する評価値Mが向上するように設定する。すなわち、重み付き収差量Rと光学系の結像性能に関する評価値Mが負の相関を高めるように重み係数(係数情報)wを設定する。光学系の結像性能に関する評価値MとはMTFの評価値に代表される解像度や像の歪みの程度等を示す。実施例1では、式(6)に示すように、光学系の結像性能に関する評価値MをMTFの平均値とし、式(7)に示すように、重み付き収差量Rを重み付き収差成分wEの2乗和根号とする。   The weighting coefficient w is set so that the evaluation value M related to the imaging performance of the optical system is improved if the weighted aberration amount R, which is the sum of the weighted aberration components wE, is reduced. That is, the weighting coefficient (coefficient information) w is set so that the weighted aberration amount R and the evaluation value M regarding the imaging performance of the optical system have a negative correlation. The evaluation value M relating to the imaging performance of the optical system indicates the resolution represented by the MTF evaluation value, the degree of image distortion, and the like. In Example 1, the evaluation value M regarding the imaging performance of the optical system is set as the average value of the MTF as shown in Expression (6), and the weighted aberration amount R is set as the weighted aberration component as shown in Expression (7). The square root of wE.

Figure 2019191121
Figure 2019191121

Figure 2019191121
Figure 2019191121

まず、複数の重み付き収差量Rkと、各重み付き収差量Rkに対応する光学系の結像性能に関する評価値Mkを計算する。kは複数の重み付き収差量Rと光学系の結像性能に関する評価値Mに対する通し番号である。Rkは光学素子121、122の位置ずれ量敏感度Sとランダムに与えた位置ずれ量Bkを用いて計算すると、被検光学系120の特性を考慮した相関を求めやすい。
Rk=R(wEk) ・・・(8)
Ek=E+SBk ・・・(9)
First, a plurality of weighted aberration amounts Rk and an evaluation value Mk regarding the imaging performance of the optical system corresponding to each weighted aberration amount Rk are calculated. k is a serial number for a plurality of weighted aberration amounts R and an evaluation value M regarding the imaging performance of the optical system. If Rk is calculated using the positional deviation amount sensitivity S of the optical elements 121 and 122 and the randomly given positional deviation amount Bk, it is easy to obtain a correlation in consideration of the characteristics of the optical system 120 to be tested.
Rk = R (wEk) (8)
Ek = E 0 + SBk (9)

Figure 2019191121
Figure 2019191121

式(9)におけるEは、被検光学系120の収差成分の設計値とする。光学系の結像性能に関する評価値Mkは収差成分Ekが決まれば、非特許文献1に記載された計算方法により計算することができる。 E 0 in equation (9) is a design value of the aberration component of the optical system 120 to be tested. The evaluation value Mk related to the imaging performance of the optical system can be calculated by the calculation method described in Non-Patent Document 1 if the aberration component Ek is determined.

次に、光学系の結像性能に関する評価値Mkと重み付き収差量Rkの関係を線形近似する。次式のaが傾き、bが切片、nがデータ数を示す。Δは線形近似により得られる直線と各データ(Rk、Mk)の乖離を示す。一般には重み付き収差量Rが大きいほど、光学系の結像性能に関する評価値Mは低下するため、傾きaは負の値となる。
Mk=aRk+b ・・・(11)
Next, the relationship between the evaluation value Mk regarding the imaging performance of the optical system and the weighted aberration amount Rk is linearly approximated. In the following equation, a represents the slope, b represents the intercept, and n represents the number of data. Δ indicates the difference between a straight line obtained by linear approximation and each data (Rk, Mk). In general, as the weighted aberration amount R is larger, the evaluation value M regarding the imaging performance of the optical system is lower, so the inclination a becomes a negative value.
Mk = aRk + b (11)

Figure 2019191121
Figure 2019191121

Figure 2019191121
Figure 2019191121

Figure 2019191121
Figure 2019191121

線形近似により得られる直線と各データ(Rk、Mk)の乖離Δが小さくなるように重み係数wを決定する。決定方法は、最小2乗法や最急降下法等の既存の手法を用いればよい。このように、光学系の結像性能に関する評価値Mと重み付き収差量Rの関係を単調減少の線形関数に近づけることで負の相関を高めることができる。   The weighting factor w is determined so that the difference Δ between the straight line obtained by the linear approximation and each data (Rk, Mk) becomes small. As a determination method, an existing method such as a least square method or a steepest descent method may be used. In this way, the negative correlation can be increased by bringing the relationship between the evaluation value M regarding the imaging performance of the optical system and the weighted aberration amount R closer to a linear function of monotonic decrease.

ステップS15では、収差成分E、重み係数w、位置ずれ量敏感度Sを用いて位置ずれ量Aを計算するステップである。位置ずれ量Aを決定するためには、次の最小化問題を解けばよい。すなわち、式(15)に示すφが最も小さくなるように位置ずれ量Aを決めればよい。このときの位置ずれ量Aの決定方法についても最小2乗法等の既存の手法を用いればよい。
φ=wE−SA ・・・(15)
In step S15, the positional deviation amount A is calculated using the aberration component E, the weighting coefficient w, and the positional deviation amount sensitivity S. In order to determine the displacement A, the following minimization problem may be solved. That is, the misregistration amount A may be determined so that φ shown in Expression (15) is minimized. An existing method such as a least square method may be used as a method for determining the positional deviation amount A at this time.
φ = wE-SA (15)

また式(15)から明らかであるが、収差成分Eに重みwを掛ける代わりに、位置ずれ量敏感度Sに重み係数の逆数w’を掛けても同様の結果が得られる。この場合は次式で示すφ’を小さくするように位置ずれ量Aを求めればよい。   As is clear from the equation (15), the same result can be obtained by multiplying the positional deviation amount sensitivity S by the inverse of the weighting coefficient w ′ instead of multiplying the aberration component E by the weight w. In this case, the positional deviation amount A may be obtained so as to reduce φ ′ represented by the following equation.

Figure 2019191121

φ=E−w’SA ・・・(17)
Figure 2019191121

φ = E−w′SA (17)

以上のステップにより被検光学系120内の光学素子121、122の位置ずれ量を求めることができる。   Through the above steps, the amount of positional deviation of the optical elements 121 and 122 in the test optical system 120 can be obtained.

さらに、ステップS16ではステップS15で求めた位置ずれ量に従って、被検光学系120の光学素子の位置と角度の少なくとも一方を調整する。この調整は、位置ずれ量を指示する画面を見ながら人が光学素子の位置を角度の少なくとも一方を変化させる送りねじ等の調整部を介して調整してもよい。また、位置ずれ量を調整装置20から受信した不図示のロボット(コンピュータ)が調整部を操作して自動で調整するようにしてもよい。   Further, in step S16, at least one of the position and the angle of the optical element of the optical system 120 to be measured is adjusted according to the amount of displacement obtained in step S15. In this adjustment, a person may adjust the position of the optical element via an adjustment unit such as a feed screw that changes at least one of the angles while viewing a screen that indicates the amount of displacement. Further, a robot (computer) (not shown) that has received the amount of positional deviation from the adjustment device 20 may automatically adjust it by operating the adjustment unit.

これにより、被検光学系120を所望の結像性能を有する光学系に調整することができる。   Thereby, the test optical system 120 can be adjusted to an optical system having desired imaging performance.

実施例1では、説明を簡略化するため、特定の場合について記載したが、本発明は実施例1における上記の構成に限られない。   In the first embodiment, a specific case is described in order to simplify the description. However, the present invention is not limited to the above-described configuration in the first embodiment.

例えば、実施例1では、透過光を3つとしたがこれに限らない。紙面に垂直な方向も含めて更に多くの透過光を計測してもよい。   For example, in the first embodiment, the number of transmitted light is three, but the present invention is not limited to this. More transmitted light may be measured including the direction perpendicular to the paper surface.

また、複数の透過光の計測方法として複数の光源、投光レンズ、受光レンズ、波面センサを備える構成を説明したが、各1つしか使用せず、駆動して計測してもよい。   Moreover, although the structure provided with a several light source, a light projection lens, a light-receiving lens, and a wavefront sensor was demonstrated as a several transmitted light measuring method, you may drive and measure only one each.

本実施例において、光源101、102、103はそれぞれ別の光源を用いたが、例えば1つの光源からの光を分割することにより被検光学系120に対して異なる角度で光を入射させるようにしても良い。   In the present embodiment, different light sources are used for the light sources 101, 102, and 103. For example, light from one light source is divided so that light is incident on the optical system 120 to be measured at different angles. May be.

また、投光レンズ(入射光学系)111,112,113および受光レンズ(出射光学系)131,132,133は単レンズで示しているが、それぞれ複数のレンズを含むように構成しても良い。   Further, although the light projecting lenses (incident optical systems) 111, 112, and 113 and the light receiving lenses (exit optical systems) 131, 132, and 133 are shown as single lenses, they may be configured to include a plurality of lenses. .

また、被検光学系を一方向に透過させた透過光の透過波面のみを用いて位置ずれ量を算出するようにしても良い。   Alternatively, the amount of positional deviation may be calculated using only the transmitted wavefront of the transmitted light that has passed through the optical system to be tested in one direction.

被検光学系120は、カメラやプロジェクタ以外の光学装置に用いられる光学系であってよく、特に組み立て中の光学系の光学素子の位置ずれ量の計測に適している。実施例1では収差成分として楕円Zernike多項式の係数を示したが、これ以外の収差成分を用いることもできる。例えば通常のZernike多項式の係数、その他直交関数、縦収差量、横収差量、像面湾曲量であってもよい。   The test optical system 120 may be an optical system used in an optical apparatus other than a camera or a projector, and is particularly suitable for measuring a positional deviation amount of an optical element of an optical system being assembled. In the first embodiment, the coefficient of the elliptic Zernike polynomial is shown as the aberration component, but other aberration components can be used. For example, the coefficient may be a normal Zernike polynomial coefficient, other orthogonal functions, longitudinal aberration amount, lateral aberration amount, and field curvature amount.

光学系の結像性能に関する評価値Mは被検光学系120の使用目的によって適切に設定するべきである。例えば周波数cより低周波領域を重視する場合は次式でよい。   The evaluation value M regarding the imaging performance of the optical system should be set appropriately depending on the purpose of use of the optical system 120 to be tested. For example, the following equation may be used when the low frequency region is more important than the frequency c.

Figure 2019191121
Figure 2019191121

さらに縦横(x,y)2断面のMTFを評価すれば十分な場合は、光学系の結像性能に関する評価値Mに次式を用いてもよい。   Further, when it is sufficient to evaluate the MTF of the vertical and horizontal (x, y) 2 cross sections, the following equation may be used as the evaluation value M regarding the imaging performance of the optical system.

Figure 2019191121
Figure 2019191121

光学系の結像性能に関する評価値Mと重み付き収差量Rの関係は2次関数で求めてもよいし、単純に両者が負の相関を持つという制約条件のみを指定して重み係数wを決定してもよい。   The relationship between the evaluation value M regarding the imaging performance of the optical system and the weighted aberration amount R may be obtained by a quadratic function, or the weight coefficient w is simply specified by specifying only the constraint condition that both have a negative correlation. You may decide.

また、複数の光学系内の光学素子の敏感度を用いて重み付き収差量Rkを計算してもよい。これらの場合は重み係数wの決定に機械学習を用いた方が、光学系の結像性能に関する評価値と重み付き収差量の相関を高められる場合がある。機械学習を用いる場合、光学系の結像性能に関する評価値Mと重み付き収差量Rの相関関係を評価点として、自ら評価点を高めるように重み係数wを決定する強化学習を用いてもよい。   Further, the weighted aberration amount Rk may be calculated using the sensitivity of the optical elements in the plurality of optical systems. In these cases, the use of machine learning for determining the weighting coefficient w may increase the correlation between the evaluation value related to the imaging performance of the optical system and the weighted aberration amount. In the case of using machine learning, reinforcement learning that determines the weighting factor w so as to increase the evaluation point itself may be used with the correlation between the evaluation value M regarding the imaging performance of the optical system and the weighted aberration amount R as the evaluation point. .

位置ずれ量敏感度Sを用いずにランダムに設定した楕円Zernike係数から重み付き収差量Rkを作成してもよい。この場合より一般的な重み付き収差量Rと光学系の結像性能に関する評価値Mの相関関係をつくることができる。   The weighted aberration amount Rk may be generated from the elliptical Zernike coefficient set at random without using the positional deviation amount sensitivity S. In this case, a more general correlation between the weighted aberration amount R and the evaluation value M regarding the imaging performance of the optical system can be created.

このように、本発明によれば、所望の結像性能を有する光学系を実現するための光学素子の位置ずれ量を計測することができる。また、光学素子の位置ずれ量に基づいて光学素子の位置と角度の少なくとも一方を調整することにより、所望の結像性能を有する光学系を得ることができる。   As described above, according to the present invention, it is possible to measure the amount of positional deviation of an optical element for realizing an optical system having desired imaging performance. Further, an optical system having desired imaging performance can be obtained by adjusting at least one of the position and the angle of the optical element based on the positional deviation amount of the optical element.

図3は本発明の実施例2の計測装置20の概略構成図を示している。実施例1の図1と共通する部材については同じ番号を記載する。計測装置20は、光源101、102、103、投光レンズ111、112、113、反射ミラー201、202、203、投受光レンズ211、212、213、ビームスプリッタ221、222、223、波面センサ230、コンピュータ240を備える。   FIG. 3 shows a schematic configuration diagram of the measuring apparatus 20 according to the second embodiment of the present invention. The same numbers are used for members that are the same as those in FIG. The measuring device 20 includes light sources 101, 102, 103, light projecting lenses 111, 112, 113, reflection mirrors 201, 202, 203, light projecting / receiving lenses 211, 212, 213, beam splitters 221, 222, 223, a wavefront sensor 230, A computer 240 is provided.

レーザダイオード等の複数の光源101、102、103からの光はファイバを経由して投光レンズ111、112、113に照射される。複数の投光レンズ111、112、113から射出した光は平行光となってビームスプリッタ221、222、223、投受光系レンズ211、212、213を経由して被検レンズ120に照射される。被検光学系120を透過した複数の透過光は、反射ミラー201、202、203で反射され、再度被検光学系120を透過する。被検光学系120を再度透過した複数の透過光は、投受光レンズ211、212、213、ビームスプリッタ221、222、223を経由して波面センサ230で受光される。波面センサ230に接続されたコンピュータ240は、波面センサ230から出力される信号に基づいて、波面センサ上で受光した複数の透過光の波面収差成分及び被検光学系120内の光学素子121、122の位置ずれ量を計算する。   Light from a plurality of light sources 101, 102, 103 such as laser diodes is applied to the projection lenses 111, 112, 113 via fibers. Light emitted from the plurality of light projecting lenses 111, 112, and 113 is converted into parallel light and irradiated onto the test lens 120 via the beam splitters 221, 222, and 223 and the light projecting and receiving system lenses 211, 212, and 213. The plurality of transmitted lights that have passed through the test optical system 120 are reflected by the reflection mirrors 201, 202, and 203 and pass through the test optical system 120 again. The plurality of transmitted lights that have been transmitted again through the test optical system 120 are received by the wavefront sensor 230 via the light projecting / receiving lenses 211, 212, and 213 and the beam splitters 221, 222, and 223. The computer 240 connected to the wavefront sensor 230, based on the signal output from the wavefront sensor 230, the wavefront aberration components of the plurality of transmitted light received on the wavefront sensor and the optical elements 121 and 122 in the optical system 120 to be tested. Calculate the amount of misalignment.

被検光学系120の焦点距離が長い場合(画角が小さい場合)は、図4に示すように入射した光の一部を反射させて一部を透過させるハーフミラー204、205を用いても良い。ミラー206はハーフミラーであっても良いが、入射した光の全てを反射させるミラーであることが好ましい。   When the focal length of the test optical system 120 is long (when the angle of view is small), half mirrors 204 and 205 that reflect a part of incident light and transmit a part thereof can be used as shown in FIG. good. The mirror 206 may be a half mirror, but is preferably a mirror that reflects all incident light.

実施例2の位置ずれ量の計算方法に関するフローチャートは、図2の実施例1のフローチャートと同様である。   The flowchart regarding the calculation method of the positional deviation amount of the second embodiment is the same as the flowchart of the first embodiment of FIG.

図2のステップS14に対応する重み係数を取得するステップに関して、像のボケや像の歪みを改善するように重みを設定する方法について説明する。像のボケや像の歪みは対応する収差が存在するため、その収差係数の重みを大きくすればよい。例えば画面内の一部がボケている場合はデフォーカス成分(楕円Zernikeの4項)の重みを大きく設定する。波面のうねりを重視する場合、デフォーカス成分のみ特定の像高からの差分の値に設定してもよい。計測系によって変化しやすい楕円Zernikeの1〜3項は除いて評価してもよい。   With respect to the step of obtaining the weighting coefficient corresponding to step S14 in FIG. 2, a method of setting the weight so as to improve image blur and image distortion will be described. Since there is a corresponding aberration in image blur and image distortion, the weight of the aberration coefficient may be increased. For example, when a part of the screen is blurred, the weight of the defocus component (four terms of the ellipse Zernike) is set large. When emphasizing wavefront undulations, only the defocus component may be set to a difference value from a specific image height. The evaluation may be performed by excluding the items 1 to 3 of the ellipse Zernike that is likely to change depending on the measurement system.

Figure 2019191121
Figure 2019191121

例えば像のボケの非対称成分を抑えたいときは、コマ収差成分(楕円Zernikeの7,8項)と非点収差成分(楕円Zernikeの5,6項)の重みを増やせばよい。このように本発明における光学系の結像性能に関する評価値は、MTFの評価値に代表される解像度の他に像のボケ方や像の歪みといった概念を含むものとする。   For example, when it is desired to suppress the asymmetric component of the image blur, the weights of the coma aberration component (7th and 8th terms of the elliptical Zernike) and the astigmatism component (5th and 6th terms of the elliptical Zernike) may be increased. As described above, the evaluation value related to the imaging performance of the optical system according to the present invention includes concepts such as image blurring and image distortion in addition to the resolution represented by the MTF evaluation value.

このように、本発明の実施例2の計測装置によれば、所望の結像性能を有する光学系を実現するための光学素子の位置ずれ量を計測することができる。また、光学素子の位置ずれ量に基づいて光学素子の位置と角度の少なくとも一方を調整することにより、所望の結像性能を有する光学系を得ることができる。また、光学系の用途に応じて所望の収差成分を抑える調整が可能になる。   As described above, according to the measurement apparatus of the second embodiment of the present invention, it is possible to measure the positional deviation amount of the optical element for realizing the optical system having the desired imaging performance. Further, an optical system having desired imaging performance can be obtained by adjusting at least one of the position and the angle of the optical element based on the positional deviation amount of the optical element. In addition, it is possible to adjust to suppress a desired aberration component according to the use of the optical system.

図5は、本発明の実施例3の光学系の製造方法に関するフローチャートである。ステップS20では複数の光学素子を組み合わせて光学系を組み立てる。次に、ステップS21において、例えば実施例1の計測装置10を利用して、被検光学系120を構成する光学素子の位置ずれ量を計測する。ステップS22では光学素子の位置ずれ量の計測結果に基づいて光学素子の位置および角度の少なくとも一方を調整する。ステップ23では、光学素子の位置ずれを調整したのちの光学系の結像性能を評価する。ステップ23において、所望の結像性能が得られていれば調整を終了する。ステップS23において、所望の結像性能が得られていない場合はステップS20に戻り、一部の光学素子を差し替えるか、光学素子を収容する鏡筒を交換した上で被検光学系を組み立て直す。被検光学系120を構成する光学素子のうち、調整可能な全ての光学素子について上記の手順を経ることで、高画質な光学系を製造することができる。なお、被検光学系120について調整可能な光学素子が複数存在する場合において、一部の光学素子について上記の調整を行うことにより光学系の結像性能が所望の基準に達する場合は、全ての光学素子について上記の手順による位置ずれの調整を行う必要はない。   FIG. 5 is a flowchart relating to a method of manufacturing an optical system according to Example 3 of the present invention. In step S20, an optical system is assembled by combining a plurality of optical elements. Next, in step S <b> 21, for example, the amount of positional deviation of the optical elements constituting the optical system 120 to be measured is measured using the measurement apparatus 10 of the first embodiment. In step S22, at least one of the position and the angle of the optical element is adjusted based on the measurement result of the positional deviation amount of the optical element. In step 23, the imaging performance of the optical system after adjusting the positional deviation of the optical element is evaluated. In step 23, if the desired imaging performance is obtained, the adjustment is terminated. If the desired imaging performance is not obtained in step S23, the process returns to step S20, where some of the optical elements are replaced or the lens barrel that houses the optical elements is replaced, and then the test optical system is reassembled. A high-quality optical system can be manufactured by performing the above-described procedure for all adjustable optical elements among the optical elements constituting the test optical system 120. When there are a plurality of optical elements that can be adjusted for the optical system 120 to be tested, if the imaging performance of the optical system reaches a desired standard by performing the above adjustment for some of the optical elements, It is not necessary to adjust the positional deviation according to the above procedure for the optical element.

101、102、103 光源
111、112、113 入射光学系
120 被検光学系
131、132、133 出射光学系
141、142、143 波面センサ
150 コンピュータ(演算部)
101, 102, 103 Light source 111, 112, 113 Incident optical system 120 Optical system under test 131, 132, 133 Output optical system 141, 142, 143 Wavefront sensor 150 Computer (calculation unit)

Claims (12)

被検光学系を透過した透過光の透過波面を計測するステップと、
前記透過光の透過波面に基づいて前記被検光学系の波面収差の各収差成分を取得するステップと、
前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度を取得するステップと、
前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報を取得するステップと、
前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を求めるステップとを含むことを特徴とする計測方法。
Measuring the transmitted wavefront of the transmitted light that has passed through the test optical system;
Obtaining each aberration component of the wavefront aberration of the optical system under test based on the transmitted wavefront of the transmitted light;
Obtaining the sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced; and
Obtaining coefficient information for enhancing the correlation between the evaluation value relating to the imaging performance of the optical system to be examined and each aberration component of the wavefront aberration;
And a step of obtaining a positional deviation amount of the optical element of the optical system under test using each aberration component of the wavefront aberration, sensitivity of each aberration component and the coefficient information.
前記被検光学系を互いに異なる複数の方向に透過させた複数の透過光の透過波面を計測することを特徴とする請求項1に記載の計測方法。   The measurement method according to claim 1, wherein transmission wavefronts of a plurality of transmitted lights that are transmitted through the test optical system in a plurality of different directions are measured. 前記波面収差の各収差成分は、楕円Zernike多項式の係数であることを特徴とする請求項1または2に記載の計測方法。   3. The measurement method according to claim 1, wherein each aberration component of the wavefront aberration is a coefficient of an elliptic Zernike polynomial. 前記係数情報は、前記波面収差の各収差成分の大きさに応じて異なることを特徴とする請求項1乃至3のいずれか1項に記載の計測方法。   The measurement method according to claim 1, wherein the coefficient information varies depending on the magnitude of each aberration component of the wavefront aberration. 前記被検光学系の結像性能に関する評価値は前記被検光学系のMTFであることを特徴とする請求項1乃至4のいずれか1項に記載の計測方法。   The measurement method according to claim 1, wherein the evaluation value related to the imaging performance of the test optical system is an MTF of the test optical system. 被検光学系を透過した透過光の透過波面を計測するステップと、
前記透過光の透過波面に基づいて前記被検光学系の波面収差の各収差成分を取得するステップと、
前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度を取得するステップと、
前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報を取得するステップと、
前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を求めるステップと、
前記光学素子の位置ずれ量に基づいて前記光学素子の位置を調整するステップを含むことを特徴とする調整方法。
Measuring the transmitted wavefront of the transmitted light that has passed through the test optical system;
Obtaining each aberration component of the wavefront aberration of the optical system under test based on the transmitted wavefront of the transmitted light;
Obtaining the sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced; and
Obtaining coefficient information for enhancing the correlation between the evaluation value relating to the imaging performance of the optical system to be examined and each aberration component of the wavefront aberration;
Obtaining a positional deviation amount of the optical element of the optical system to be tested using each aberration component of the wavefront aberration, sensitivity of each aberration component and the coefficient information;
An adjustment method comprising the step of adjusting the position of the optical element based on a positional deviation amount of the optical element.
光源と、
前記光源からの光を被検光学系に入射させる入射光学系と、
前記被検光学系を透過した透過光が入射する出射光学系と、
前記出射光学系を介して前記透過光を受光する波面センサと、
前記波面センサの出力に基づいて前記被検光学系の波面収差の各収差成分を演算する演算部を有し、
前記演算部は、前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度と、前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報とを取得し、前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を算出することを特徴とする計測装置。
A light source;
An incident optical system for allowing light from the light source to enter the test optical system;
An outgoing optical system on which transmitted light that has passed through the test optical system enters; and
A wavefront sensor that receives the transmitted light via the exit optical system;
An arithmetic unit that calculates each aberration component of the wavefront aberration of the optical system under test based on the output of the wavefront sensor;
The calculation unit includes sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced, an evaluation value regarding the imaging performance of the test optical system, and the wavefront aberration The coefficient information for increasing the correlation of each aberration component of the optical component, and the positional deviation of the optical element of the optical system to be tested using each aberration component of the wavefront aberration, the sensitivity of each aberration component, and the coefficient information A measuring device characterized by calculating a quantity.
前記入射光学系は、前記光源からの光を前記被検光学系に複数の方向から入射させる複数のレンズを有し、
前記出射光学系は、前記被検光学系を透過した複数の透過光を透過させる複数のレンズを有することを特徴とする請求項7に記載の計測装置。
The incident optical system has a plurality of lenses that allow light from the light source to enter the test optical system from a plurality of directions;
The measuring apparatus according to claim 7, wherein the emission optical system includes a plurality of lenses that transmit a plurality of transmitted light beams that have passed through the test optical system.
前記入射光学系は、前記光源からの光を前記被検光学系に互いに異なる複数の方向から入射させる複数のレンズを有し、
前記出射光学系は、前記被検光学系を透過した複数の透過光を反射させて前記被検光学系に入射させる複数のミラーを有することを特徴とする請求項7に記載の計測装置。
The incident optical system has a plurality of lenses that allow light from the light source to enter the test optical system from a plurality of different directions.
The measuring apparatus according to claim 7, wherein the emission optical system includes a plurality of mirrors that reflect a plurality of transmitted light beams that have passed through the test optical system and cause the light to enter the test optical system.
前記複数のミラーは入射した光の一部を透過させるミラーを含むことを特徴とする請求項9に記載の計測装置。   The measuring apparatus according to claim 9, wherein the plurality of mirrors include a mirror that transmits a part of incident light. 光源と、
前記光源からの光を被検光学系に入射させる入射光学系と、
前記被検光学系を透過した透過光が入射する出射光学系と、
前記出射光学系を介して前記透過光を受光する波面センサと、
前記波面センサの出力に基づいて前記被検光学系の波面収差の各収差成分を演算する演算部を有し、
前記演算部は、前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度と、前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報とを取得し、前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を算出し、
前記光学素子の位置ずれ量に基づいて前記光学素子の位置を調整する調整部を有することを特徴とする調整装置。
A light source;
An incident optical system for allowing light from the light source to enter the test optical system;
An outgoing optical system on which transmitted light that has passed through the test optical system enters; and
A wavefront sensor that receives the transmitted light via the exit optical system;
An arithmetic unit that calculates each aberration component of the wavefront aberration of the optical system under test based on the output of the wavefront sensor;
The calculation unit includes sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced, an evaluation value regarding the imaging performance of the test optical system, and the wavefront aberration The coefficient information for increasing the correlation of each aberration component of the optical component, and the positional deviation of the optical element of the optical system to be tested using each aberration component of the wavefront aberration, the sensitivity of each aberration component, and the coefficient information Calculate the quantity,
An adjustment apparatus comprising: an adjustment unit that adjusts a position of the optical element based on a positional deviation amount of the optical element.
被検光学系を組み立てるステップと、
前記被検光学系を透過した透過光の透過波面を計測するステップと、
前記透過光の透過波面に基づいて前記被検光学系の波面収差の各収差成分を取得するステップと、
前記被検光学系の光学素子を位置ずれさせた際に変化する前記波面収差の各収差成分の敏感度を取得するステップと、
前記被検光学系の結像性能に関する評価値と前記波面収差の各収差成分の相関を高めるための係数情報を取得するステップと、
前記波面収差の各収差成分と前記各収差成分の敏感度と前記係数情報を用いて前記被検光学系の光学素子の位置ずれ量を求めるステップと、
前記光学素子の位置ずれ量に基づいて前記光学素子の位置を調整するステップを含むことを特徴とする光学系の製造方法。
Assembling the test optical system;
Measuring a transmitted wavefront of transmitted light that has passed through the test optical system;
Obtaining each aberration component of the wavefront aberration of the optical system under test based on the transmitted wavefront of the transmitted light;
Obtaining the sensitivity of each aberration component of the wavefront aberration that changes when the optical element of the test optical system is displaced; and
Obtaining coefficient information for enhancing the correlation between the evaluation value relating to the imaging performance of the optical system to be examined and each aberration component of the wavefront aberration;
Obtaining a positional deviation amount of the optical element of the optical system to be tested using each aberration component of the wavefront aberration, sensitivity of each aberration component and the coefficient information;
A method of manufacturing an optical system, comprising the step of adjusting a position of the optical element based on a positional deviation amount of the optical element.
JP2018087520A 2018-04-27 2018-04-27 Measurement method, adjustment method, and optical system manufacturing method Pending JP2019191121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087520A JP2019191121A (en) 2018-04-27 2018-04-27 Measurement method, adjustment method, and optical system manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087520A JP2019191121A (en) 2018-04-27 2018-04-27 Measurement method, adjustment method, and optical system manufacturing method

Publications (1)

Publication Number Publication Date
JP2019191121A true JP2019191121A (en) 2019-10-31

Family

ID=68390066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087520A Pending JP2019191121A (en) 2018-04-27 2018-04-27 Measurement method, adjustment method, and optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP2019191121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209056A1 (en) * 2021-03-31 2022-10-06 富士フイルム株式会社 Wavefront aberration derivation method, machine learning model generation method, lens optical system manufacturing method, wavefront aberration derivation device, and wavefront aberration derivation program
WO2023277038A1 (en) * 2021-06-28 2023-01-05 京セラ株式会社 Adjusting method and adjusting device
WO2023120604A1 (en) * 2021-12-23 2023-06-29 京セラ株式会社 Measuring device, adjusting device, and measuring method
JP7446911B2 (en) 2020-05-18 2024-03-11 キヤノン株式会社 Wavefront measurement device, wavefront measurement method, and method for manufacturing optical systems and optical elements

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446911B2 (en) 2020-05-18 2024-03-11 キヤノン株式会社 Wavefront measurement device, wavefront measurement method, and method for manufacturing optical systems and optical elements
WO2022209056A1 (en) * 2021-03-31 2022-10-06 富士フイルム株式会社 Wavefront aberration derivation method, machine learning model generation method, lens optical system manufacturing method, wavefront aberration derivation device, and wavefront aberration derivation program
WO2023277038A1 (en) * 2021-06-28 2023-01-05 京セラ株式会社 Adjusting method and adjusting device
WO2023120604A1 (en) * 2021-12-23 2023-06-29 京セラ株式会社 Measuring device, adjusting device, and measuring method

Similar Documents

Publication Publication Date Title
JP2019191121A (en) Measurement method, adjustment method, and optical system manufacturing method
JP5808836B2 (en) How to estimate the wavefront
US8748801B2 (en) Discrete wavefront sampling using a variable transmission filter
JP6097542B2 (en) Compensating optical device, compensating optical device control method, image acquisition device, and program
US20150073752A1 (en) Wavefront measuring apparatus, wavefront measuring method, method of manufacturing optical element, and assembly adjustment apparatus of optical system
JP2006527353A (en) Method for determining the imaging quality of an optical imaging system
JP2009535645A (en) Optical adapter and method for laser range sensor system
JP2017003590A (en) Polarization-based coherent gradient sensing system and method
JP2005098933A (en) Instrument for measuring aberrations
KR102026742B1 (en) Optical measuring system and method of measuring a critical size
JP2007506937A (en) Optical inclinometer
JP2008215833A (en) Apparatus and method for measuring optical characteristics
JP2009053066A (en) Focus adjusting method of wave front measuring interferometer, and manufacturing method of wave front measuring interferometer and projection optical system
JP2017146189A (en) Transmission wavefront measuring method, device and system
JP5126648B2 (en) Lens unit alignment device
JP2021051038A (en) Aberration estimation method, aberration estimation device, program, and recording medium
JP2021196230A (en) Optical characteristic acquisition method
JP2021060353A (en) Method for estimating internal error of optical system and measurement device
JP2012173125A (en) Shape measuring apparatus and shape measuring method
JP2009244227A (en) Light wave interference measuring method
JP4628762B2 (en) Ophthalmic measuring device
JP6238590B2 (en) Wavefront measuring method, shape measuring method, optical element manufacturing method
JP6184166B2 (en) Imaging performance evaluation system
EP4254038A1 (en) Microscope
JP2019066428A (en) Wavefront measurement apparatus, wavefront measurement method, and manufacturing method of optical system